Page MenuHomePhabricator

merkleblock.cpp
No OneTemporary

merkleblock.cpp

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <merkleblock.h>
#include <consensus/consensus.h>
#include <hash.h>
#include <util/strencodings.h>
CMerkleBlock::CMerkleBlock(const CBlock &block, CBloomFilter *filter,
const std::set<TxId> *txids) {
header = block.GetBlockHeader();
std::vector<bool> vMatch;
std::vector<uint256> vHashes;
vMatch.reserve(block.vtx.size());
vHashes.reserve(block.vtx.size());
if (filter) {
for (const auto &tx : block.vtx) {
vMatch.push_back(filter->MatchAndInsertOutputs(*tx));
}
}
for (size_t i = 0; i < block.vtx.size(); i++) {
const CTransaction *tx = block.vtx[i].get();
const TxId &txid = tx->GetId();
if (filter) {
if (!vMatch[i]) {
vMatch[i] = filter->MatchInputs(*tx);
}
if (vMatch[i]) {
vMatchedTxn.push_back(std::make_pair(i, txid));
}
} else {
vMatch.push_back(txids && txids->count(txid));
}
vHashes.push_back(txid);
}
txn = CPartialMerkleTree(vHashes, vMatch);
}
uint256 CPartialMerkleTree::CalcHash(int height, size_t pos,
const std::vector<uint256> &vTxid) {
// we can never have zero txs in a merkle block, we always need the
// coinbase tx if we do not have this assert, we can hit a memory
// access violation when indexing into vTxid
assert(vTxid.size() != 0);
if (height == 0) {
// hash at height 0 is the txids themself.
return vTxid[pos];
}
// Calculate left hash.
uint256 left = CalcHash(height - 1, pos * 2, vTxid), right;
// Calculate right hash if not beyond the end of the array - copy left hash
// otherwise.
if (pos * 2 + 1 < CalcTreeWidth(height - 1)) {
right = CalcHash(height - 1, pos * 2 + 1, vTxid);
} else {
right = left;
}
// Combine subhashes.
return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
}
void CPartialMerkleTree::TraverseAndBuild(int height, size_t pos,
const std::vector<uint256> &vTxid,
const std::vector<bool> &vMatch) {
// Determine whether this node is the parent of at least one matched txid.
bool fParentOfMatch = false;
for (size_t p = pos << height; p < (pos + 1) << height && p < nTransactions;
p++) {
fParentOfMatch |= vMatch[p];
}
// Store as flag bit.
vBits.push_back(fParentOfMatch);
if (height == 0 || !fParentOfMatch) {
// If at height 0, or nothing interesting below, store hash and stop.
vHash.push_back(CalcHash(height, pos, vTxid));
} else {
// Otherwise, don't store any hash, but descend into the subtrees.
TraverseAndBuild(height - 1, pos * 2, vTxid, vMatch);
if (pos * 2 + 1 < CalcTreeWidth(height - 1)) {
TraverseAndBuild(height - 1, pos * 2 + 1, vTxid, vMatch);
}
}
}
uint256 CPartialMerkleTree::TraverseAndExtract(int height, size_t pos,
size_t &nBitsUsed,
size_t &nHashUsed,
std::vector<uint256> &vMatch,
std::vector<size_t> &vnIndex) {
if (nBitsUsed >= vBits.size()) {
// Overflowed the bits array - failure
fBad = true;
return uint256();
}
bool fParentOfMatch = vBits[nBitsUsed++];
if (height == 0 || !fParentOfMatch) {
// If at height 0, or nothing interesting below, use stored hash and do
// not descend.
if (nHashUsed >= vHash.size()) {
// Overflowed the hash array - failure
fBad = true;
return uint256();
}
const uint256 &hash = vHash[nHashUsed++];
// In case of height 0, we have a matched txid.
if (height == 0 && fParentOfMatch) {
vMatch.push_back(hash);
vnIndex.push_back(pos);
}
return hash;
}
// Otherwise, descend into the subtrees to extract matched txids and hashes.
uint256 left = TraverseAndExtract(height - 1, pos * 2, nBitsUsed, nHashUsed,
vMatch, vnIndex),
right;
if (pos * 2 + 1 < CalcTreeWidth(height - 1)) {
right = TraverseAndExtract(height - 1, pos * 2 + 1, nBitsUsed,
nHashUsed, vMatch, vnIndex);
if (right == left) {
// The left and right branches should never be identical, as the
// transaction hashes covered by them must each be unique.
fBad = true;
}
} else {
right = left;
}
// and combine them before returning.
return Hash(BEGIN(left), END(left), BEGIN(right), END(right));
}
CPartialMerkleTree::CPartialMerkleTree(const std::vector<uint256> &vTxid,
const std::vector<bool> &vMatch)
: nTransactions(vTxid.size()), fBad(false) {
// reset state
vBits.clear();
vHash.clear();
// calculate height of tree
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1) {
nHeight++;
}
// traverse the partial tree
TraverseAndBuild(nHeight, 0, vTxid, vMatch);
}
CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {}
uint256 CPartialMerkleTree::ExtractMatches(std::vector<uint256> &vMatch,
std::vector<size_t> &vnIndex) {
vMatch.clear();
// An empty set will not work
if (nTransactions == 0) {
return uint256();
}
// Check for excessively high numbers of transactions.
// FIXME: Track the maximum block size we've seen and use it here.
// There can never be more hashes provided than one for every txid.
if (vHash.size() > nTransactions) {
return uint256();
}
// There must be at least one bit per node in the partial tree, and at least
// one node per hash.
if (vBits.size() < vHash.size()) {
return uint256();
}
// calculate height of tree.
int nHeight = 0;
while (CalcTreeWidth(nHeight) > 1) {
nHeight++;
}
// traverse the partial tree.
size_t nBitsUsed = 0, nHashUsed = 0;
uint256 hashMerkleRoot =
TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex);
// verify that no problems occurred during the tree traversal.
if (fBad) {
return uint256();
}
// verify that all bits were consumed (except for the padding caused by
// serializing it as a byte sequence)
if ((nBitsUsed + 7) / 8 != (vBits.size() + 7) / 8) {
return uint256();
}
// verify that all hashes were consumed.
if (nHashUsed != vHash.size()) {
return uint256();
}
return hashMerkleRoot;
}

File Metadata

Mime Type
text/x-c
Expires
Mon, Nov 25, 08:00 (1 d, 14 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4571608
Default Alt Text
merkleblock.cpp (7 KB)

Event Timeline