Page MenuHomePhabricator

No OneTemporary

diff --git a/doc/abc/buip-hf-technical-spec.md b/doc/abc/buip-hf-technical-spec.md
index df0083a8de..0fbbe26cf3 100644
--- a/doc/abc/buip-hf-technical-spec.md
+++ b/doc/abc/buip-hf-technical-spec.md
@@ -1,317 +1,318 @@
# BUIP-HF Technical Specification
## Introduction
This document described proposed requirements and design for a block size
Hard Fork (HF).
BUIP 55 specified a block height fork. This BUIP-HF specification is
inspired by the idea of a flag day, but changed to a time-based fork due
to miner requests. It should be possible to change easily to a height-based
fork - the sense of the requirements would largely stay the same.
## Definitions
MTP: the "median time past" value of a block, calculated from the
nTime values of its past up to 11 ancestors, as obtained by the
GetMedianTimePast(block.parent) call.
"activation time": a block whose MTP is after this time
shall comply with the new consensus rules introduced by this BUIP.
"fork block": the first block in the active chain whose nTime is past the
activation time.
"fork EB": the user-specified value that EB shall be set to at
activation time. EB can be adjusted post-activation by the user.
"fork MG": the user-specified value that MG shall be set to at activation
time. It must be > 1MB. The user can adjust MG to any value once the
fork has occurred (not limited to > 1MB after the fork).
"Large block" means a block satisfying 1,000,000 bytes < block
size <= EB, where EB is as adjusted by REQ-4-1 and a regular block
is a block up to 1,000,000 bytes in size.
"Core rules" means all blocks <= 1,000,000 bytes (Base block size).
"BU tx/sigops rules" means the existing additional consensus rules (1) and
(2) below, as formalized by BUIP040 [1] and used by the Bitcoin Unlimited
client's excessive checks for blocks larger than 1MB:
1. maximum sigops per block is calculated based on the actual size of
a block using
max_block_sigops = 20000 * ceil((max(blocksize, 1000000) / 1000000))
2. maximum allowed size of a single transaction is 1,000,000 bytes (1MB)
+3. maximum allowed number of sigops for a single transaction is 20k .
NOTE 1: In plain English, the maximum allowed sigops per block is
20K sigops per the size of the block, rounded up to nearest integer in MB.
i.e. 20K if <= 1MB, 40K for the blocks > 1MB and up to 2MB, etc.
NOTE 2: BU treats both rules (1) and (2) as falling under the Emergent
Consensus rules (AD). Other clients may choose to implement them as
firm rules at their own risk.
## Requirements
### REQ-1 (fork by default)
The client (with BUIP-HF implementation) shall default to activating
a hard fork with new consensus rules as specified by the remaining
requirements.
RATIONALE:: It is better to make the HF active by default in a
special HF release version. Users have to download a version capable
of HF anyway, it is more convenient for them if the default does not
require them to make additional configuration.
NOTE 1: It will be possible to disable the fork behavior (see
REQ-DISABLE)
### REQ-2 (configurable activation time)
The client shall allow a "activation time" to be configured by the user,
with a default value of 1501545600 (epoch time corresponding to Tue
1 Aug 2017 00:00:00 UTC)
RATIONALE: Make it configurable to adapt easily to UASF activation
time changes.
NOTE 1: Configuring a "activation time" value of zero (0) shall disable
any BUIP-HF hard fork special rules (see REQ-DISABLE)
### REQ-3 (fork block must be > 1MB)
The client shall enforce a block size larger than 1,000,000 bytes
for the fork block.
RATIONALE: This enforces the hard fork from the original 1MB
chain and prevents a re-organization of the forked chain to
the original chain.
### REQ-4-1 (require "fork EB" configured to at least 8MB at startup)
If BUIP-HF is not disabled (see REQ-DISABLE), the client shall enforce
that the "fork EB" is configured to at least 8,000,000 (bytes) by raising
an error during startup requesting the user to ensure adequate configuration.
RATIONALE: Users need to be able to run with their usual EB prior to the
fork (e.g. some are running EB1 currently). The fork code needs to adjust
this EB automatically to a > 1MB value. 8MB is chosen as a minimum since
miners have indicated in the past that they would be willing to support
such a size, and the current network is capable of handling it.
### REQ-4-2 (require user to specify suitable *new* MG at startup)
If BUIP-HF is not disabled (see REQ-DISABLE), the client shall require
the user to specify a "fork MG" (mining generation size) greater than
1,000,000 bytes.
RATIONALE: This ensures a suitable MG is set at the activation time so
that a mining node would produce a fork block compatible with REQ-3.
It also forces the user (miner) to decide on what size blocks they want to
produce immediately after the fork.
NOTE 1: The DEFAULT_MAX_GENERATED_BLOCK_SIZE in the released client needs
to remain 1,000,000 bytes so that the client will not generate invalid
blocks before the fork activates. At activation time, however, the "fork MG"
specified by the user (default: 8MB) will take effect.
### REQ-5 (max tx / max block sigops rules for blocks > 1 MB)
Blocks larger than 1,000,000 shall be subject to "BU tx/sigops rules"
as follows:
1. maximum sigops per block shall be calculated based on the actual size of
a block using
`max_block_sigops = 20000 * ceil((max(blocksize_bytes, 1000000) / 1000000))`
2. maximum allowed size of a single transaction shall be 1,000,000 bytes
NOTE 1: Blocks up to and including 1,000,000 bytes in size shall be subject
to existing pre-fork Bitcoin consensus rules.
NOTE 2: Transactions exceeding 100,000 bytes (100KB) shall remain
non-standard after the activation time, meaning they will not be relayed.
NOTE 3: BU treats both rules (1) and (2) as falling under the Emergent
Consensus rules (AD). Other clients may choose to implement them as
firm rules at their own risk.
### REQ-6-1 (disallow special OP_RETURN-marked transactions with sunset clause)
Once the fork has activated, transactions containing an OP_RETURN output
with a specific magic data value shall be considered invalid until
block 530,000 inclusive.
RATIONALE: To give users on the legacy chain (or other fork chains)
an opt-in way to exclude their transactions from processing on the BUIP-HF
fork chain. The sunset clause block height is calculated as approximately
1 year after currently planned UASF activation time (Aug 1 2017 00:00:00 GMT),
rounded down to a human friendly number.
NOTE: Transactions with such OP_RETURNs shall be considered valid again
for block 530,001 and onwards.
### REQ-6-2 (opt-in signature shift via hash type)
Once the fork has activated, a transaction shall not be deemed invalid if
the following are true in combination:
- the nHashType has bit 6 set (mask 0x40)
- adding a magic 'fork id' value to the nHashType before the hash is
calculated allows a successful signature verification as per REQ-6-3
RATIONALE: To give users on the BUIP-HF chain an opt-in way to encumber
replay of their transactions to the legacy chain (and other forks which may
consider such transactions invalid).
NOTE 1: It is possible for other hard forks to defeat this protection by
implementing a compatible signature check that accepts transactions
signed in this special way. However, this does require a counter hard fork.
NOTE 2: The client shall still accept transactions whose signatures
verify according to pre-fork rules, subject to the additional OP_RETURN
constraint introduced by REQ-6-1.
NOTE 3: If bit 6 is not set, only the unmodified nHashType will be used
to compute the hash and verify the signature.
### REQ-6-3 (use adapted BIP143 hash algorithm for protected transactions)
Once the fork has activated, any transaction that has bit 6 set in its
hash type shall have its signature hash computed using a minimally revised
form of the transaction digest algorithm specified in BIP143.
RATIONALE: see Motivation section of BIP143 [2].
NOTE 1: refer to [3] for the specificaton of the revised transaction
digest based on BIP143. Revisions were made to account for non-Segwit
deployment.
### REQ-DISABLE (disable fork by setting fork time to 0)
If the activation time is configured to 0, the client shall not enforce
the new consensus rules of BUIP-HF, including the activation of the
fork, the size constraint at a certain time, and the enforcing of EB/AD
constraints at startup.
RATIONALE: To make it possible to use such a release as a compatible
client with legacy chain / i.e. to decide to not follow the HF on one's
node / make a decision at late stage without needing to change client.
## Test Plan
What follows are rough descriptions of test cases.
NOTE: ** wording for excessive in 3, 4, 5, and invalid in 6, 7,
needs to be considered carefully. I recommend BUIP 55 forcing EB
1MB up to activation, and to be max(8MB, user EB) at activation, for
simplicity. Similarly for MG. If user doesn't like that they can
just disable it. (Consider: If MG is bumped then 4MB is sufficient
for fork block and a while after.
### TEST-1
If BUIP 55 is disabled a large block is considered to break
core rules, as is presently the case.
### TEST-2
If BUIP 55 is disabled, a regular block is accepted at or
after the activation time (as determined by MTP(block.parent)
without being considered invalid.
### TEST-3
If enabled, a large block is considered excessive if all blocks
have time < activation time.
### TEST-4
If enabled, a large block B is not considered excessive if
MTP(B.parent) >= activation time
### TEST-5
If enabled, a large block B is not considered excessive if
MTP(B.parent) < activation time, provided a prior block A has
MTP(A.parent) >= activation time.
### TEST-6
If enabled, a regular block R that is the first such that
MTP(R.parent) >= activation time is considered invalid (satisfy REQ-3).
### TEST-7
If enabled, a regular block R that is not the first such that
MTP(R.parent) >= activation time is considered valid.
### TEST-8
A small block more-work chain does not get re-orged to from a big
block chain after activation has kicked in.
### TEST-9
Test that enabling after being disabled renders a small chain going
past activation invalid that was previously valid owing to it being
disabled. And vice versa (enabled -> disabled).
### TEST-10
If enabled, if a large but < 8MB block is produced, ensure that the
degenerate case of sigops heavy instructions does not unduly affect
validation times above and beyond the standard expected if BUIP-HF
is not enabled.
### TEST-11
Test that linear scaling of 20,000 sigops / MB works for block
sizes > 1MB (rounding block size up to nearest MB) (ref. BUIP040).
### TEST-12
(similar to (TEST-9), but test interoperability of datadir with other
clients.)
Test what happens when the unmodified BU / Core / other clients are
used on a datadir where the BUIP 55 client has been run. Should
test again data from disabled (Core rules data, should be fine) ,
and enabled (big block data stored - may need to rebuild DB? or
provide tool to truncate the data back to pre-fork block?)
## References
[1] https://bitco.in/forum/threads/buip040-passed-emergent-consensus-parameters-and-defaults-for-large-1mb-blocks.1643/
[2] https://github.com/bitcoin/bips/blob/master/bip-0143.mediawiki#Motivation
[3] [Digest for replay protected signature verification accross hard forks](replay-protected-sighash.md)
END
diff --git a/src/consensus/consensus.h b/src/consensus/consensus.h
index cc110345a1..669faedbf6 100644
--- a/src/consensus/consensus.h
+++ b/src/consensus/consensus.h
@@ -1,44 +1,46 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_CONSENSUS_CONSENSUS_H
#define BITCOIN_CONSENSUS_CONSENSUS_H
#include <cstdint>
/** 1MB */
static const uint64_t ONE_MEGABYTE = 1000000;
/** The maximum allowed size for a transaction, in bytes */
static const uint64_t MAX_TX_SIZE = ONE_MEGABYTE;
/** Default setting for maximum allowed size for a block, in bytes */
static const uint64_t DEFAULT_MAX_BLOCK_SIZE = ONE_MEGABYTE;
/** The maximum allowed number of signature check operations per MB in a block
* (network rule) */
static const int64_t MAX_BLOCK_SIGOPS_PER_MB = 20000;
+/** allowed number of signature check operations per transaction. */
+static const uint64_t MAX_TX_SIGOPS_COUNT = 20000;
/** Coinbase transaction outputs can only be spent after this number of new
* blocks (network rule) */
static const int COINBASE_MATURITY = 100;
/** Flags for nSequence and nLockTime locks */
enum {
/* Interpret sequence numbers as relative lock-time constraints. */
LOCKTIME_VERIFY_SEQUENCE = (1 << 0),
/* Use GetMedianTimePast() instead of nTime for end point timestamp. */
LOCKTIME_MEDIAN_TIME_PAST = (1 << 1),
};
/**
* Compute the maximum number of sigops operation that can contained in a block
* given the block size as parameter. It is computed by multiplying
* MAX_BLOCK_SIGOPS_PER_MB by the size of the block in MB rounded up to the
* closest integer.
*/
inline uint64_t GetMaxBlockSigOpsCount(uint64_t blockSize) {
auto nMbRoundedUp = 1 + ((blockSize - 1) / ONE_MEGABYTE);
return nMbRoundedUp * MAX_BLOCK_SIGOPS_PER_MB;
}
#endif // BITCOIN_CONSENSUS_CONSENSUS_H
diff --git a/src/policy/policy.h b/src/policy/policy.h
index fe6a493407..5f6bc209b7 100644
--- a/src/policy/policy.h
+++ b/src/policy/policy.h
@@ -1,96 +1,96 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_POLICY_POLICY_H
#define BITCOIN_POLICY_POLICY_H
#include "consensus/consensus.h"
#include "script/interpreter.h"
#include "script/standard.h"
#include <string>
class CCoinsViewCache;
/** Default for -blockmaxsize, which controls the maximum size of block the
* mining code will create **/
static const unsigned int DEFAULT_MAX_GENERATED_BLOCK_SIZE = 750000;
/** Default for -blockprioritysize, maximum space for zero/low-fee transactions
* **/
static const unsigned int DEFAULT_BLOCK_PRIORITY_SIZE = 0;
/** Default for -blockmintxfee, which sets the minimum feerate for a transaction
* in blocks created by mining code **/
static const unsigned int DEFAULT_BLOCK_MIN_TX_FEE = 1000;
/** The maximum size for transactions we're willing to relay/mine */
static const unsigned int MAX_STANDARD_TX_SIZE = 100000;
/** Maximum number of signature check operations in an IsStandard() P2SH script
*/
static const unsigned int MAX_P2SH_SIGOPS = 15;
/** The maximum number of sigops we're willing to relay/mine in a single tx */
-static const unsigned int MAX_STANDARD_TX_SIGOPS = 4000;
+static const unsigned int MAX_STANDARD_TX_SIGOPS = MAX_TX_SIGOPS_COUNT / 5;
/** Default for -maxmempool, maximum megabytes of mempool memory usage */
static const unsigned int DEFAULT_MAX_MEMPOOL_SIZE = 300;
/** Default for -incrementalrelayfee, which sets the minimum feerate increase
* for mempool limiting or BIP 125 replacement **/
static const unsigned int DEFAULT_INCREMENTAL_RELAY_FEE = 1000;
/** Default for -bytespersigop */
static const unsigned int DEFAULT_BYTES_PER_SIGOP = 20;
/** The maximum number of witness stack items in a standard P2WSH script */
static const unsigned int MAX_STANDARD_P2WSH_STACK_ITEMS = 100;
/** The maximum size of each witness stack item in a standard P2WSH script */
static const unsigned int MAX_STANDARD_P2WSH_STACK_ITEM_SIZE = 80;
/** The maximum size of a standard witnessScript */
static const unsigned int MAX_STANDARD_P2WSH_SCRIPT_SIZE = 3600;
/**
* Min feerate for defining dust. Historically this has been the same as the
* minRelayTxFee, however changing the dust limit changes which transactions are
* standard and should be done with care and ideally rarely. It makes sense to
* only increase the dust limit after prior releases were already not creating
* outputs below the new threshold.
*/
static const unsigned int DUST_RELAY_TX_FEE = 1000;
/**
* Standard script verification flags that standard transactions will comply
* with. However scripts violating these flags may still be present in valid
* blocks and we must accept those blocks.
*/
static const unsigned int STANDARD_SCRIPT_VERIFY_FLAGS =
MANDATORY_SCRIPT_VERIFY_FLAGS | SCRIPT_VERIFY_DERSIG |
SCRIPT_VERIFY_STRICTENC | SCRIPT_VERIFY_MINIMALDATA |
SCRIPT_VERIFY_NULLDUMMY | SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS |
SCRIPT_VERIFY_CLEANSTACK | SCRIPT_VERIFY_NULLFAIL |
SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY | SCRIPT_VERIFY_CHECKSEQUENCEVERIFY |
SCRIPT_VERIFY_LOW_S | SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_WITNESS_PROGRAM;
/** For convenience, standard but not mandatory verify flags. */
static const unsigned int STANDARD_NOT_MANDATORY_VERIFY_FLAGS =
STANDARD_SCRIPT_VERIFY_FLAGS & ~MANDATORY_SCRIPT_VERIFY_FLAGS;
/** Used as the flags parameter to sequence and nLocktime checks in
* non-consensus code. */
static const unsigned int STANDARD_LOCKTIME_VERIFY_FLAGS =
LOCKTIME_VERIFY_SEQUENCE | LOCKTIME_MEDIAN_TIME_PAST;
bool IsStandard(const CScript &scriptPubKey, txnouttype &whichType);
/**
* Check for standard transaction types
* @return True if all outputs (scriptPubKeys) use only standard transaction
* forms
*/
bool IsStandardTx(const CTransaction &tx, std::string &reason);
/**
* Check for standard transaction types
* @param[in] mapInputs Map of previous transactions that have outputs we're
* spending
* @return True if all inputs (scriptSigs) use only standard transaction forms
*/
bool AreInputsStandard(const CTransaction &tx,
const CCoinsViewCache &mapInputs);
extern CFeeRate incrementalRelayFee;
extern CFeeRate dustRelayFee;
extern unsigned int nBytesPerSigOp;
#endif // BITCOIN_POLICY_POLICY_H
diff --git a/src/test/sigopcount_tests.cpp b/src/test/sigopcount_tests.cpp
index 0a01389125..02172ab754 100644
--- a/src/test/sigopcount_tests.cpp
+++ b/src/test/sigopcount_tests.cpp
@@ -1,187 +1,224 @@
// Copyright (c) 2012-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "consensus/consensus.h"
+#include "consensus/validation.h"
#include "key.h"
#include "pubkey.h"
#include "script/script.h"
#include "script/standard.h"
#include "test/test_bitcoin.h"
#include "uint256.h"
#include "validation.h"
#include <limits>
#include <vector>
#include <boost/test/unit_test.hpp>
// Helpers:
static std::vector<unsigned char> Serialize(const CScript &s) {
std::vector<unsigned char> sSerialized(s.begin(), s.end());
return sSerialized;
}
BOOST_FIXTURE_TEST_SUITE(sigopcount_tests, BasicTestingSetup)
BOOST_AUTO_TEST_CASE(GetSigOpCount) {
// Test CScript::GetSigOpCount()
CScript s1;
BOOST_CHECK_EQUAL(s1.GetSigOpCount(false), 0U);
BOOST_CHECK_EQUAL(s1.GetSigOpCount(true), 0U);
uint160 dummy;
s1 << OP_1 << ToByteVector(dummy) << ToByteVector(dummy) << OP_2
<< OP_CHECKMULTISIG;
BOOST_CHECK_EQUAL(s1.GetSigOpCount(true), 2U);
s1 << OP_IF << OP_CHECKSIG << OP_ENDIF;
BOOST_CHECK_EQUAL(s1.GetSigOpCount(true), 3U);
BOOST_CHECK_EQUAL(s1.GetSigOpCount(false), 21U);
CScript p2sh = GetScriptForDestination(CScriptID(s1));
CScript scriptSig;
scriptSig << OP_0 << Serialize(s1);
BOOST_CHECK_EQUAL(p2sh.GetSigOpCount(scriptSig), 3U);
std::vector<CPubKey> keys;
for (int i = 0; i < 3; i++) {
CKey k;
k.MakeNewKey(true);
keys.push_back(k.GetPubKey());
}
CScript s2 = GetScriptForMultisig(1, keys);
BOOST_CHECK_EQUAL(s2.GetSigOpCount(true), 3U);
BOOST_CHECK_EQUAL(s2.GetSigOpCount(false), 20U);
p2sh = GetScriptForDestination(CScriptID(s2));
BOOST_CHECK_EQUAL(p2sh.GetSigOpCount(true), 0U);
BOOST_CHECK_EQUAL(p2sh.GetSigOpCount(false), 0U);
CScript scriptSig2;
scriptSig2 << OP_1 << ToByteVector(dummy) << ToByteVector(dummy)
<< Serialize(s2);
BOOST_CHECK_EQUAL(p2sh.GetSigOpCount(scriptSig2), 3U);
}
/**
* Verifies script execution of the zeroth scriptPubKey of tx output and zeroth
* scriptSig and witness of tx input.
*/
ScriptError VerifyWithFlag(const CTransaction &output,
const CMutableTransaction &input, int flags) {
ScriptError error;
CTransaction inputi(input);
bool ret = VerifyScript(
inputi.vin[0].scriptSig, output.vout[0].scriptPubKey, flags,
TransactionSignatureChecker(&inputi, 0, output.vout[0].nValue), &error);
BOOST_CHECK((ret == true) == (error == SCRIPT_ERR_OK));
return error;
}
/**
* Builds a creationTx from scriptPubKey and a spendingTx from scriptSig and
* witness such that spendingTx spends output zero of creationTx. Also inserts
* creationTx's output into the coins view.
*/
void BuildTxs(CMutableTransaction &spendingTx, CCoinsViewCache &coins,
CMutableTransaction &creationTx, const CScript &scriptPubKey,
const CScript &scriptSig) {
creationTx.nVersion = 1;
creationTx.vin.resize(1);
creationTx.vin[0].prevout.SetNull();
creationTx.vin[0].scriptSig = CScript();
creationTx.vout.resize(1);
creationTx.vout[0].nValue = 1;
creationTx.vout[0].scriptPubKey = scriptPubKey;
spendingTx.nVersion = 1;
spendingTx.vin.resize(1);
spendingTx.vin[0].prevout.hash = creationTx.GetId();
spendingTx.vin[0].prevout.n = 0;
spendingTx.vin[0].scriptSig = scriptSig;
spendingTx.vout.resize(1);
spendingTx.vout[0].nValue = 1;
spendingTx.vout[0].scriptPubKey = CScript();
coins.ModifyCoins(creationTx.GetId())->FromTx(creationTx, 0);
}
BOOST_AUTO_TEST_CASE(GetTxSigOpCost) {
// Transaction creates outputs
CMutableTransaction creationTx;
// Transaction that spends outputs and whose sig op cost is going to be
// tested
CMutableTransaction spendingTx;
// Create utxo set
CCoinsView coinsDummy;
CCoinsViewCache coins(&coinsDummy);
// Create key
CKey key;
key.MakeNewKey(true);
CPubKey pubkey = key.GetPubKey();
// Default flags
int flags = SCRIPT_VERIFY_P2SH;
// Multisig script (legacy counting)
{
CScript scriptPubKey = CScript() << 1 << ToByteVector(pubkey)
<< ToByteVector(pubkey) << 2
<< OP_CHECKMULTISIGVERIFY;
// Do not use a valid signature to avoid using wallet operations.
CScript scriptSig = CScript() << OP_0 << OP_0;
BuildTxs(spendingTx, coins, creationTx, scriptPubKey, scriptSig);
// Legacy counting only includes signature operations in scriptSigs and
// scriptPubKeys of a transaction and does not take the actual executed
// sig operations into account. spendingTx in itself does not contain a
// signature operation.
assert(GetTransactionSigOpCount(CTransaction(spendingTx), coins,
flags) == 0);
// creationTx contains two signature operations in its scriptPubKey, but
// legacy counting is not accurate.
assert(GetTransactionSigOpCount(CTransaction(creationTx), coins,
flags) == MAX_PUBKEYS_PER_MULTISIG);
// Sanity check: script verification fails because of an invalid
// signature.
assert(VerifyWithFlag(creationTx, spendingTx, flags) ==
SCRIPT_ERR_CHECKMULTISIGVERIFY);
}
// Multisig nested in P2SH
{
CScript redeemScript = CScript() << 1 << ToByteVector(pubkey)
<< ToByteVector(pubkey) << 2
<< OP_CHECKMULTISIGVERIFY;
CScript scriptPubKey = GetScriptForDestination(CScriptID(redeemScript));
CScript scriptSig = CScript() << OP_0 << OP_0
<< ToByteVector(redeemScript);
BuildTxs(spendingTx, coins, creationTx, scriptPubKey, scriptSig);
assert(GetTransactionSigOpCount(CTransaction(spendingTx), coins,
flags) == 2);
assert(VerifyWithFlag(creationTx, spendingTx, flags) ==
SCRIPT_ERR_CHECKMULTISIGVERIFY);
}
}
BOOST_AUTO_TEST_CASE(test_consensus_sigops_limit) {
BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(1), MAX_BLOCK_SIGOPS_PER_MB);
BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(123456), MAX_BLOCK_SIGOPS_PER_MB);
BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(1000000), MAX_BLOCK_SIGOPS_PER_MB);
BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(1000001),
2 * MAX_BLOCK_SIGOPS_PER_MB);
BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(1348592),
2 * MAX_BLOCK_SIGOPS_PER_MB);
BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(2000000),
2 * MAX_BLOCK_SIGOPS_PER_MB);
BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(2000001),
3 * MAX_BLOCK_SIGOPS_PER_MB);
BOOST_CHECK_EQUAL(GetMaxBlockSigOpsCount(2654321),
3 * MAX_BLOCK_SIGOPS_PER_MB);
BOOST_CHECK_EQUAL(
GetMaxBlockSigOpsCount(std::numeric_limits<uint32_t>::max()),
4295 * MAX_BLOCK_SIGOPS_PER_MB);
}
+BOOST_AUTO_TEST_CASE(test_max_sigops_per_tx) {
+ CMutableTransaction tx;
+ tx.nVersion = 1;
+ tx.vin.resize(1);
+ tx.vin[0].prevout.hash = GetRandHash();
+ tx.vin[0].prevout.n = 0;
+ tx.vin[0].scriptSig = CScript();
+ tx.vout.resize(1);
+ tx.vout[0].nValue = 1;
+ tx.vout[0].scriptPubKey = CScript();
+
+ {
+ CValidationState state;
+ BOOST_CHECK(CheckRegularTransaction(tx, state, false));
+ }
+
+ // Get just before the limit.
+ for (size_t i = 0; i < MAX_TX_SIGOPS_COUNT; i++) {
+ tx.vout[0].scriptPubKey << OP_CHECKSIG;
+ }
+
+ {
+ CValidationState state;
+ BOOST_CHECK(CheckRegularTransaction(tx, state, false));
+ }
+
+ // And go over.
+ tx.vout[0].scriptPubKey << OP_CHECKSIG;
+
+ {
+ CValidationState state;
+ BOOST_CHECK(!CheckRegularTransaction(tx, state, false));
+ BOOST_CHECK_EQUAL(state.GetRejectReason(), "bad-txn-sigops");
+ }
+}
+
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/validation.cpp b/src/validation.cpp
index 07172112a7..d5c36aaf59 100644
--- a/src/validation.cpp
+++ b/src/validation.cpp
@@ -1,4655 +1,4664 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Copyright (c) 2017 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "validation.h"
#include "arith_uint256.h"
#include "chainparams.h"
#include "checkpoints.h"
#include "checkqueue.h"
#include "config.h"
#include "consensus/consensus.h"
#include "consensus/merkle.h"
#include "consensus/validation.h"
#include "hash.h"
#include "init.h"
#include "policy/fees.h"
#include "policy/policy.h"
#include "pow.h"
#include "primitives/block.h"
#include "primitives/transaction.h"
#include "random.h"
#include "script/script.h"
#include "script/sigcache.h"
#include "script/standard.h"
#include "timedata.h"
#include "tinyformat.h"
#include "txdb.h"
#include "txmempool.h"
#include "ui_interface.h"
#include "undo.h"
#include "util.h"
#include "utilmoneystr.h"
#include "utilstrencodings.h"
#include "validationinterface.h"
#include "versionbits.h"
#include "warnings.h"
#include <atomic>
#include <sstream>
#include <boost/algorithm/string/join.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
#include <boost/math/distributions/poisson.hpp>
#include <boost/range/adaptor/reversed.hpp>
#include <boost/thread.hpp>
#if defined(NDEBUG)
#error "Bitcoin cannot be compiled without assertions."
#endif
/**
* Global state
*/
CCriticalSection cs_main;
BlockMap mapBlockIndex;
CChain chainActive;
CBlockIndex *pindexBestHeader = NULL;
CWaitableCriticalSection csBestBlock;
CConditionVariable cvBlockChange;
int nScriptCheckThreads = 0;
std::atomic_bool fImporting(false);
bool fReindex = false;
bool fTxIndex = false;
bool fHavePruned = false;
bool fPruneMode = false;
bool fIsBareMultisigStd = DEFAULT_PERMIT_BAREMULTISIG;
bool fRequireStandard = true;
bool fCheckBlockIndex = false;
bool fCheckpointsEnabled = DEFAULT_CHECKPOINTS_ENABLED;
size_t nCoinCacheUsage = 5000 * 300;
uint64_t nPruneTarget = 0;
int64_t nMaxTipAge = DEFAULT_MAX_TIP_AGE;
uint256 hashAssumeValid;
CFeeRate minRelayTxFee = CFeeRate(DEFAULT_MIN_RELAY_TX_FEE);
CAmount maxTxFee = DEFAULT_TRANSACTION_MAXFEE;
CTxMemPool mempool(::minRelayTxFee);
static void CheckBlockIndex(const Consensus::Params &consensusParams);
/** Constant stuff for coinbase transactions we create: */
CScript COINBASE_FLAGS;
const std::string strMessageMagic = "Bitcoin Signed Message:\n";
// Internal stuff
namespace {
struct CBlockIndexWorkComparator {
bool operator()(CBlockIndex *pa, CBlockIndex *pb) const {
// First sort by most total work, ...
if (pa->nChainWork > pb->nChainWork) return false;
if (pa->nChainWork < pb->nChainWork) return true;
// ... then by earliest time received, ...
if (pa->nSequenceId < pb->nSequenceId) return false;
if (pa->nSequenceId > pb->nSequenceId) return true;
// Use pointer address as tie breaker (should only happen with blocks
// loaded from disk, as those all have id 0).
if (pa < pb) return false;
if (pa > pb) return true;
// Identical blocks.
return false;
}
};
CBlockIndex *pindexBestInvalid;
/**
* The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS (for itself
* and all ancestors) and as good as our current tip or better. Entries may be
* failed, though, and pruning nodes may be missing the data for the block.
*/
std::set<CBlockIndex *, CBlockIndexWorkComparator> setBlockIndexCandidates;
/** All pairs A->B, where A (or one of its ancestors) misses transactions, but B
* has transactions. Pruned nodes may have entries where B is missing data.
*/
std::multimap<CBlockIndex *, CBlockIndex *> mapBlocksUnlinked;
CCriticalSection cs_LastBlockFile;
std::vector<CBlockFileInfo> vinfoBlockFile;
int nLastBlockFile = 0;
/** Global flag to indicate we should check to see if there are
* block/undo files that should be deleted. Set on startup
* or if we allocate more file space when we're in prune mode
*/
bool fCheckForPruning = false;
/**
* Every received block is assigned a unique and increasing identifier, so we
* know which one to give priority in case of a fork.
*/
CCriticalSection cs_nBlockSequenceId;
/** Blocks loaded from disk are assigned id 0, so start the counter at 1. */
int32_t nBlockSequenceId = 1;
/** Decreasing counter (used by subsequent preciousblock calls). */
int32_t nBlockReverseSequenceId = -1;
/** chainwork for the last block that preciousblock has been applied to. */
arith_uint256 nLastPreciousChainwork = 0;
/** Dirty block index entries. */
std::set<CBlockIndex *> setDirtyBlockIndex;
/** Dirty block file entries. */
std::set<int> setDirtyFileInfo;
} // anon namespace
/* Use this class to start tracking transactions that are removed from the
* mempool and pass all those transactions through SyncTransaction when the
* object goes out of scope. This is currently only used to call SyncTransaction
* on conflicts removed from the mempool during block connection. Applied in
* ActivateBestChain around ActivateBestStep which in turn calls:
* ConnectTip->removeForBlock->removeConflicts
*/
class MemPoolConflictRemovalTracker {
private:
std::vector<CTransactionRef> conflictedTxs;
CTxMemPool &pool;
public:
MemPoolConflictRemovalTracker(CTxMemPool &_pool) : pool(_pool) {
pool.NotifyEntryRemoved.connect(boost::bind(
&MemPoolConflictRemovalTracker::NotifyEntryRemoved, this, _1, _2));
}
void NotifyEntryRemoved(CTransactionRef txRemoved,
MemPoolRemovalReason reason) {
if (reason == MemPoolRemovalReason::CONFLICT) {
conflictedTxs.push_back(txRemoved);
}
}
~MemPoolConflictRemovalTracker() {
pool.NotifyEntryRemoved.disconnect(boost::bind(
&MemPoolConflictRemovalTracker::NotifyEntryRemoved, this, _1, _2));
for (const auto &tx : conflictedTxs) {
GetMainSignals().SyncTransaction(
*tx, NULL, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK);
}
conflictedTxs.clear();
}
};
CBlockIndex *FindForkInGlobalIndex(const CChain &chain,
const CBlockLocator &locator) {
// Find the first block the caller has in the main chain
for (const uint256 &hash : locator.vHave) {
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end()) {
CBlockIndex *pindex = (*mi).second;
if (chain.Contains(pindex)) return pindex;
if (pindex->GetAncestor(chain.Height()) == chain.Tip()) {
return chain.Tip();
}
}
}
return chain.Genesis();
}
CCoinsViewCache *pcoinsTip = NULL;
CBlockTreeDB *pblocktree = NULL;
enum FlushStateMode {
FLUSH_STATE_NONE,
FLUSH_STATE_IF_NEEDED,
FLUSH_STATE_PERIODIC,
FLUSH_STATE_ALWAYS
};
// See definition for documentation
bool static FlushStateToDisk(CValidationState &state, FlushStateMode mode,
int nManualPruneHeight = 0);
void FindFilesToPruneManual(std::set<int> &setFilesToPrune,
int nManualPruneHeight);
bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime) {
if (tx.nLockTime == 0) return true;
if ((int64_t)tx.nLockTime < ((int64_t)tx.nLockTime < LOCKTIME_THRESHOLD
? (int64_t)nBlockHeight
: nBlockTime))
return true;
for (const auto &txin : tx.vin) {
if (!(txin.nSequence == CTxIn::SEQUENCE_FINAL)) return false;
}
return true;
}
bool CheckFinalTx(const CTransaction &tx, int flags) {
AssertLockHeld(cs_main);
// By convention a negative value for flags indicates that the
// current network-enforced consensus rules should be used. In
// a future soft-fork scenario that would mean checking which
// rules would be enforced for the next block and setting the
// appropriate flags. At the present time no soft-forks are
// scheduled, so no flags are set.
flags = std::max(flags, 0);
// CheckFinalTx() uses chainActive.Height()+1 to evaluate
// nLockTime because when IsFinalTx() is called within
// CBlock::AcceptBlock(), the height of the block *being*
// evaluated is what is used. Thus if we want to know if a
// transaction can be part of the *next* block, we need to call
// IsFinalTx() with one more than chainActive.Height().
const int nBlockHeight = chainActive.Height() + 1;
// BIP113 will require that time-locked transactions have nLockTime set to
// less than the median time of the previous block they're contained in.
// When the next block is created its previous block will be the current
// chain tip, so we use that to calculate the median time passed to
// IsFinalTx() if LOCKTIME_MEDIAN_TIME_PAST is set.
const int64_t nBlockTime = (flags & LOCKTIME_MEDIAN_TIME_PAST)
? chainActive.Tip()->GetMedianTimePast()
: GetAdjustedTime();
return IsFinalTx(tx, nBlockHeight, nBlockTime);
}
/**
* Calculates the block height and previous block's median time past at
* which the transaction will be considered final in the context of BIP 68.
* Also removes from the vector of input heights any entries which did not
* correspond to sequence locked inputs as they do not affect the calculation.
*/
static std::pair<int, int64_t>
CalculateSequenceLocks(const CTransaction &tx, int flags,
std::vector<int> *prevHeights,
const CBlockIndex &block) {
assert(prevHeights->size() == tx.vin.size());
// Will be set to the equivalent height- and time-based nLockTime
// values that would be necessary to satisfy all relative lock-
// time constraints given our view of block chain history.
// The semantics of nLockTime are the last invalid height/time, so
// use -1 to have the effect of any height or time being valid.
int nMinHeight = -1;
int64_t nMinTime = -1;
// tx.nVersion is signed integer so requires cast to unsigned otherwise
// we would be doing a signed comparison and half the range of nVersion
// wouldn't support BIP 68.
bool fEnforceBIP68 = static_cast<uint32_t>(tx.nVersion) >= 2 &&
flags & LOCKTIME_VERIFY_SEQUENCE;
// Do not enforce sequence numbers as a relative lock time
// unless we have been instructed to
if (!fEnforceBIP68) {
return std::make_pair(nMinHeight, nMinTime);
}
for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) {
const CTxIn &txin = tx.vin[txinIndex];
// Sequence numbers with the most significant bit set are not
// treated as relative lock-times, nor are they given any
// consensus-enforced meaning at this point.
if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) {
// The height of this input is not relevant for sequence locks
(*prevHeights)[txinIndex] = 0;
continue;
}
int nCoinHeight = (*prevHeights)[txinIndex];
if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) {
int64_t nCoinTime = block.GetAncestor(std::max(nCoinHeight - 1, 0))
->GetMedianTimePast();
// NOTE: Subtract 1 to maintain nLockTime semantics
// BIP 68 relative lock times have the semantics of calculating
// the first block or time at which the transaction would be
// valid. When calculating the effective block time or height
// for the entire transaction, we switch to using the
// semantics of nLockTime which is the last invalid block
// time or height. Thus we subtract 1 from the calculated
// time or height.
// Time-based relative lock-times are measured from the
// smallest allowed timestamp of the block containing the
// txout being spent, which is the median time past of the
// block prior.
nMinTime = std::max(
nMinTime,
nCoinTime +
(int64_t)((txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK)
<< CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) -
1);
} else {
nMinHeight = std::max(
nMinHeight,
nCoinHeight +
(int)(txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) - 1);
}
}
return std::make_pair(nMinHeight, nMinTime);
}
static bool EvaluateSequenceLocks(const CBlockIndex &block,
std::pair<int, int64_t> lockPair) {
assert(block.pprev);
int64_t nBlockTime = block.pprev->GetMedianTimePast();
if (lockPair.first >= block.nHeight || lockPair.second >= nBlockTime)
return false;
return true;
}
bool SequenceLocks(const CTransaction &tx, int flags,
std::vector<int> *prevHeights, const CBlockIndex &block) {
return EvaluateSequenceLocks(
block, CalculateSequenceLocks(tx, flags, prevHeights, block));
}
bool TestLockPointValidity(const LockPoints *lp) {
AssertLockHeld(cs_main);
assert(lp);
// If there are relative lock times then the maxInputBlock will be set
// If there are no relative lock times, the LockPoints don't depend on the
// chain
if (lp->maxInputBlock) {
// Check whether chainActive is an extension of the block at which the
// LockPoints
// calculation was valid. If not LockPoints are no longer valid
if (!chainActive.Contains(lp->maxInputBlock)) {
return false;
}
}
// LockPoints still valid
return true;
}
bool CheckSequenceLocks(const CTransaction &tx, int flags, LockPoints *lp,
bool useExistingLockPoints) {
AssertLockHeld(cs_main);
AssertLockHeld(mempool.cs);
CBlockIndex *tip = chainActive.Tip();
CBlockIndex index;
index.pprev = tip;
// CheckSequenceLocks() uses chainActive.Height()+1 to evaluate
// height based locks because when SequenceLocks() is called within
// ConnectBlock(), the height of the block *being*
// evaluated is what is used.
// Thus if we want to know if a transaction can be part of the
// *next* block, we need to use one more than chainActive.Height()
index.nHeight = tip->nHeight + 1;
std::pair<int, int64_t> lockPair;
if (useExistingLockPoints) {
assert(lp);
lockPair.first = lp->height;
lockPair.second = lp->time;
} else {
// pcoinsTip contains the UTXO set for chainActive.Tip()
CCoinsViewMemPool viewMemPool(pcoinsTip, mempool);
std::vector<int> prevheights;
prevheights.resize(tx.vin.size());
for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) {
const CTxIn &txin = tx.vin[txinIndex];
CCoins coins;
if (!viewMemPool.GetCoins(txin.prevout.hash, coins)) {
return error("%s: Missing input", __func__);
}
if (coins.nHeight == MEMPOOL_HEIGHT) {
// Assume all mempool transaction confirm in the next block
prevheights[txinIndex] = tip->nHeight + 1;
} else {
prevheights[txinIndex] = coins.nHeight;
}
}
lockPair = CalculateSequenceLocks(tx, flags, &prevheights, index);
if (lp) {
lp->height = lockPair.first;
lp->time = lockPair.second;
// Also store the hash of the block with the highest height of
// all the blocks which have sequence locked prevouts.
// This hash needs to still be on the chain
// for these LockPoint calculations to be valid
// Note: It is impossible to correctly calculate a maxInputBlock
// if any of the sequence locked inputs depend on unconfirmed txs,
// except in the special case where the relative lock time/height
// is 0, which is equivalent to no sequence lock. Since we assume
// input height of tip+1 for mempool txs and test the resulting
// lockPair from CalculateSequenceLocks against tip+1. We know
// EvaluateSequenceLocks will fail if there was a non-zero sequence
// lock on a mempool input, so we can use the return value of
// CheckSequenceLocks to indicate the LockPoints validity
int maxInputHeight = 0;
for (int height : prevheights) {
// Can ignore mempool inputs since we'll fail if they had
// non-zero locks
if (height != tip->nHeight + 1) {
maxInputHeight = std::max(maxInputHeight, height);
}
}
lp->maxInputBlock = tip->GetAncestor(maxInputHeight);
}
}
return EvaluateSequenceLocks(index, lockPair);
}
uint64_t GetSigOpCountWithoutP2SH(const CTransaction &tx) {
uint64_t nSigOps = 0;
for (const auto &txin : tx.vin) {
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
for (const auto &txout : tx.vout) {
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
uint64_t GetP2SHSigOpCount(const CTransaction &tx,
const CCoinsViewCache &inputs) {
if (tx.IsCoinBase()) return 0;
uint64_t nSigOps = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const CTxOut &prevout = inputs.GetOutputFor(tx.vin[i]);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(tx.vin[i].scriptSig);
}
return nSigOps;
}
uint64_t GetTransactionSigOpCount(const CTransaction &tx,
const CCoinsViewCache &inputs, int flags) {
uint64_t nSigOps = GetSigOpCountWithoutP2SH(tx);
if (tx.IsCoinBase()) return nSigOps;
if (flags & SCRIPT_VERIFY_P2SH) {
nSigOps += GetP2SHSigOpCount(tx, inputs);
}
return nSigOps;
}
static bool CheckTransactionCommon(const CTransaction &tx,
CValidationState &state,
bool fCheckDuplicateInputs) {
// Basic checks that don't depend on any context
if (tx.vin.empty()) {
return state.DoS(10, false, REJECT_INVALID, "bad-txns-vin-empty");
}
if (tx.vout.empty()) {
return state.DoS(10, false, REJECT_INVALID, "bad-txns-vout-empty");
}
// Size limit
if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION) > MAX_TX_SIZE) {
return state.DoS(100, false, REJECT_INVALID, "bad-txns-oversize");
}
// Check for negative or overflow output values
CAmount nValueOut = 0;
for (const auto &txout : tx.vout) {
if (txout.nValue < 0) {
return state.DoS(100, false, REJECT_INVALID,
"bad-txns-vout-negative");
}
if (txout.nValue > MAX_MONEY) {
return state.DoS(100, false, REJECT_INVALID,
"bad-txns-vout-toolarge");
}
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut)) {
return state.DoS(100, false, REJECT_INVALID,
"bad-txns-txouttotal-toolarge");
}
}
+ if (GetSigOpCountWithoutP2SH(tx) > MAX_TX_SIGOPS_COUNT) {
+ return state.DoS(100, false, REJECT_INVALID, "bad-txn-sigops");
+ }
+
// Check for duplicate inputs - note that this check is slow so we skip it
// in CheckBlock
if (fCheckDuplicateInputs) {
std::set<COutPoint> vInOutPoints;
for (const auto &txin : tx.vin) {
if (!vInOutPoints.insert(txin.prevout).second) {
return state.DoS(100, false, REJECT_INVALID,
"bad-txns-inputs-duplicate");
}
}
}
return true;
}
bool CheckCoinbase(const CTransaction &tx, CValidationState &state,
bool fCheckDuplicateInputs) {
if (!tx.IsCoinBase()) {
return state.DoS(100, false, REJECT_INVALID, "bad-cb-missing", false,
"first tx is not coinbase");
}
if (!CheckTransactionCommon(tx, state, fCheckDuplicateInputs)) {
// CheckTransactionCommon fill in the state.
return false;
}
if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100) {
return state.DoS(100, false, REJECT_INVALID, "bad-cb-length");
}
return true;
}
bool CheckRegularTransaction(const CTransaction &tx, CValidationState &state,
bool fCheckDuplicateInputs) {
if (tx.IsCoinBase()) {
return state.DoS(100, false, REJECT_INVALID, "bad-tx-coinbase");
}
if (!CheckTransactionCommon(tx, state, fCheckDuplicateInputs)) {
// CheckTransactionCommon fill in the state.
return false;
}
for (const auto &txin : tx.vin) {
if (txin.prevout.IsNull()) {
return state.DoS(10, false, REJECT_INVALID,
"bad-txns-prevout-null");
}
}
return true;
}
void LimitMempoolSize(CTxMemPool &pool, size_t limit, unsigned long age) {
int expired = pool.Expire(GetTime() - age);
if (expired != 0)
LogPrint("mempool", "Expired %i transactions from the memory pool\n",
expired);
std::vector<uint256> vNoSpendsRemaining;
pool.TrimToSize(limit, &vNoSpendsRemaining);
for (const uint256 &removed : vNoSpendsRemaining) {
pcoinsTip->Uncache(removed);
}
}
/** Convert CValidationState to a human-readable message for logging */
std::string FormatStateMessage(const CValidationState &state) {
return strprintf(
"%s%s (code %i)", state.GetRejectReason(),
state.GetDebugMessage().empty() ? "" : ", " + state.GetDebugMessage(),
state.GetRejectCode());
}
static bool IsCurrentForFeeEstimation() {
AssertLockHeld(cs_main);
if (IsInitialBlockDownload()) return false;
if (chainActive.Tip()->GetBlockTime() <
(GetTime() - MAX_FEE_ESTIMATION_TIP_AGE))
return false;
if (chainActive.Height() < pindexBestHeader->nHeight - 1) return false;
return true;
}
bool AcceptToMemoryPoolWorker(CTxMemPool &pool, CValidationState &state,
const CTransactionRef &ptx, bool fLimitFree,
bool *pfMissingInputs, int64_t nAcceptTime,
std::list<CTransactionRef> *plTxnReplaced,
bool fOverrideMempoolLimit,
const CAmount &nAbsurdFee,
std::vector<uint256> &vHashTxnToUncache) {
AssertLockHeld(cs_main);
const CTransaction &tx = *ptx;
const uint256 txid = tx.GetId();
if (pfMissingInputs) {
*pfMissingInputs = false;
}
// Coinbase is only valid in a block, not as a loose transaction.
if (!CheckRegularTransaction(tx, state, true)) {
// state filled in by CheckRegularTransaction.
return false;
}
// Rather not work on nonstandard transactions (unless -testnet/-regtest)
std::string reason;
if (fRequireStandard && !IsStandardTx(tx, reason)) {
return state.DoS(0, false, REJECT_NONSTANDARD, reason);
}
// Only accept nLockTime-using transactions that can be mined in the next
// block; we don't want our mempool filled up with transactions that can't
// be mined yet.
if (!CheckFinalTx(tx, STANDARD_LOCKTIME_VERIFY_FLAGS)) {
return state.DoS(0, false, REJECT_NONSTANDARD, "non-final");
}
// Is it already in the memory pool?
if (pool.exists(txid)) {
return state.Invalid(false, REJECT_ALREADY_KNOWN,
"txn-already-in-mempool");
}
// Check for conflicts with in-memory transactions
{
// Protect pool.mapNextTx
LOCK(pool.cs);
for (const CTxIn &txin : tx.vin) {
auto itConflicting = pool.mapNextTx.find(txin.prevout);
if (itConflicting != pool.mapNextTx.end()) {
// Disable replacement feature for good
return state.Invalid(false, REJECT_CONFLICT,
"txn-mempool-conflict");
}
}
}
{
CCoinsView dummy;
CCoinsViewCache view(&dummy);
CAmount nValueIn = 0;
LockPoints lp;
{
LOCK(pool.cs);
CCoinsViewMemPool viewMemPool(pcoinsTip, pool);
view.SetBackend(viewMemPool);
// Do we already have it?
bool fHadTxInCache = pcoinsTip->HaveCoinsInCache(txid);
if (view.HaveCoins(txid)) {
if (!fHadTxInCache) {
vHashTxnToUncache.push_back(txid);
}
return state.Invalid(false, REJECT_ALREADY_KNOWN,
"txn-already-known");
}
// Do all inputs exist? Note that this does not check for the
// presence of actual outputs (see the next check for that), and
// only helps with filling in pfMissingInputs (to determine missing
// vs spent).
for (const CTxIn txin : tx.vin) {
if (!pcoinsTip->HaveCoinsInCache(txin.prevout.hash)) {
vHashTxnToUncache.push_back(txin.prevout.hash);
}
if (!view.HaveCoins(txin.prevout.hash)) {
if (pfMissingInputs) {
*pfMissingInputs = true;
}
// fMissingInputs and !state.IsInvalid() is used to detect
// this condition, don't set state.Invalid()
return false;
}
}
// Are the actual inputs available?
if (!view.HaveInputs(tx)) {
return state.Invalid(false, REJECT_DUPLICATE,
"bad-txns-inputs-spent");
}
// Bring the best block into scope.
view.GetBestBlock();
nValueIn = view.GetValueIn(tx);
// We have all inputs cached now, so switch back to dummy, so we
// don't need to keep lock on mempool.
view.SetBackend(dummy);
// Only accept BIP68 sequence locked transactions that can be mined
// in the next block; we don't want our mempool filled up with
// transactions that can't be mined yet. Must keep pool.cs for this
// unless we change CheckSequenceLocks to take a CoinsViewCache
// instead of create its own.
if (!CheckSequenceLocks(tx, STANDARD_LOCKTIME_VERIFY_FLAGS, &lp)) {
return state.DoS(0, false, REJECT_NONSTANDARD,
"non-BIP68-final");
}
}
// Check for non-standard pay-to-script-hash in inputs
if (fRequireStandard && !AreInputsStandard(tx, view)) {
return state.Invalid(false, REJECT_NONSTANDARD,
"bad-txns-nonstandard-inputs");
}
int64_t nSigOpsCount =
GetTransactionSigOpCount(tx, view, STANDARD_SCRIPT_VERIFY_FLAGS);
CAmount nValueOut = tx.GetValueOut();
CAmount nFees = nValueIn - nValueOut;
// nModifiedFees includes any fee deltas from PrioritiseTransaction
CAmount nModifiedFees = nFees;
double nPriorityDummy = 0;
pool.ApplyDeltas(txid, nPriorityDummy, nModifiedFees);
CAmount inChainInputValue;
double dPriority =
view.GetPriority(tx, chainActive.Height(), inChainInputValue);
// Keep track of transactions that spend a coinbase, which we re-scan
// during reorgs to ensure COINBASE_MATURITY is still met.
bool fSpendsCoinbase = false;
for (const CTxIn &txin : tx.vin) {
const CCoins *coins = view.AccessCoins(txin.prevout.hash);
if (coins->IsCoinBase()) {
fSpendsCoinbase = true;
break;
}
}
CTxMemPoolEntry entry(ptx, nFees, nAcceptTime, dPriority,
chainActive.Height(), inChainInputValue,
fSpendsCoinbase, nSigOpsCount, lp);
unsigned int nSize = entry.GetTxSize();
// Check that the transaction doesn't have an excessive number of
// sigops, making it impossible to mine. Since the coinbase transaction
// itself can contain sigops MAX_STANDARD_TX_SIGOPS is less than
// MAX_BLOCK_SIGOPS_PER_MB; we still consider this an invalid rather
// than merely non-standard transaction.
if (nSigOpsCount > MAX_STANDARD_TX_SIGOPS) {
return state.DoS(0, false, REJECT_NONSTANDARD,
"bad-txns-too-many-sigops", false,
strprintf("%d", nSigOpsCount));
}
CAmount mempoolRejectFee =
pool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) *
1000000)
.GetFee(nSize);
if (mempoolRejectFee > 0 && nModifiedFees < mempoolRejectFee) {
return state.DoS(0, false, REJECT_INSUFFICIENTFEE,
"mempool min fee not met", false,
strprintf("%d < %d", nFees, mempoolRejectFee));
} else if (GetBoolArg("-relaypriority", DEFAULT_RELAYPRIORITY) &&
nModifiedFees < ::minRelayTxFee.GetFee(nSize) &&
!AllowFree(entry.GetPriority(chainActive.Height() + 1))) {
// Require that free transactions have sufficient priority to be
// mined in the next block.
return state.DoS(0, false, REJECT_INSUFFICIENTFEE,
"insufficient priority");
}
// Continuously rate-limit free (really, very-low-fee) transactions.
// This mitigates 'penny-flooding' -- sending thousands of free
// transactions just to be annoying or make others' transactions take
// longer to confirm.
if (fLimitFree && nModifiedFees < ::minRelayTxFee.GetFee(nSize)) {
static CCriticalSection csFreeLimiter;
static double dFreeCount;
static int64_t nLastTime;
int64_t nNow = GetTime();
LOCK(csFreeLimiter);
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0 / 600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount + nSize >=
GetArg("-limitfreerelay", DEFAULT_LIMITFREERELAY) * 10 * 1000) {
return state.DoS(0, false, REJECT_INSUFFICIENTFEE,
"rate limited free transaction");
}
LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount,
dFreeCount + nSize);
dFreeCount += nSize;
}
if (nAbsurdFee && nFees > nAbsurdFee) {
return state.Invalid(false, REJECT_HIGHFEE, "absurdly-high-fee",
strprintf("%d > %d", nFees, nAbsurdFee));
}
// Calculate in-mempool ancestors, up to a limit.
CTxMemPool::setEntries setAncestors;
size_t nLimitAncestors =
GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT);
size_t nLimitAncestorSize =
GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT) * 1000;
size_t nLimitDescendants =
GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT);
size_t nLimitDescendantSize =
GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT) *
1000;
std::string errString;
if (!pool.CalculateMemPoolAncestors(
entry, setAncestors, nLimitAncestors, nLimitAncestorSize,
nLimitDescendants, nLimitDescendantSize, errString)) {
return state.DoS(0, false, REJECT_NONSTANDARD,
"too-long-mempool-chain", false, errString);
}
unsigned int scriptVerifyFlags = STANDARD_SCRIPT_VERIFY_FLAGS;
if (!Params().RequireStandard()) {
scriptVerifyFlags =
GetArg("-promiscuousmempoolflags", scriptVerifyFlags);
}
// Check against previous transactions. This is done last to help
// prevent CPU exhaustion denial-of-service attacks.
PrecomputedTransactionData txdata(tx);
if (!CheckInputs(tx, state, view, true, scriptVerifyFlags, true,
txdata)) {
// State filled in by CheckInputs.
return false;
}
// Check again against just the consensus-critical mandatory script
// verification flags, in case of bugs in the standard flags that cause
// transactions to pass as valid when they're actually invalid. For
// instance the STRICTENC flag was incorrectly allowing certain
// CHECKSIG NOT scripts to pass, even though they were invalid.
//
// There is a similar check in CreateNewBlock() to prevent creating
// invalid blocks, however allowing such transactions into the mempool
// can be exploited as a DoS attack.
if (!CheckInputs(tx, state, view, true, MANDATORY_SCRIPT_VERIFY_FLAGS,
true, txdata)) {
return error("%s: BUG! PLEASE REPORT THIS! ConnectInputs failed "
"against MANDATORY but not STANDARD flags %s, %s",
__func__, txid.ToString(), FormatStateMessage(state));
}
// This transaction should only count for fee estimation if
// the node is not behind and it is not dependent on any other
// transactions in the mempool.
bool validForFeeEstimation =
IsCurrentForFeeEstimation() && pool.HasNoInputsOf(tx);
// Store transaction in memory.
pool.addUnchecked(txid, entry, setAncestors, validForFeeEstimation);
// Trim mempool and check if tx was trimmed.
if (!fOverrideMempoolLimit) {
LimitMempoolSize(
pool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000,
GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
if (!pool.exists(txid))
return state.DoS(0, false, REJECT_INSUFFICIENTFEE,
"mempool full");
}
}
GetMainSignals().SyncTransaction(
tx, NULL, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK);
return true;
}
bool AcceptToMemoryPoolWithTime(CTxMemPool &pool, CValidationState &state,
const CTransactionRef &tx, bool fLimitFree,
bool *pfMissingInputs, int64_t nAcceptTime,
std::list<CTransactionRef> *plTxnReplaced,
bool fOverrideMempoolLimit,
const CAmount nAbsurdFee) {
std::vector<uint256> vHashTxToUncache;
bool res = AcceptToMemoryPoolWorker(
pool, state, tx, fLimitFree, pfMissingInputs, nAcceptTime,
plTxnReplaced, fOverrideMempoolLimit, nAbsurdFee, vHashTxToUncache);
if (!res) {
for (const uint256 &txid : vHashTxToUncache) {
pcoinsTip->Uncache(txid);
}
}
// After we've (potentially) uncached entries, ensure our coins cache is
// still within its size limits
CValidationState stateDummy;
FlushStateToDisk(stateDummy, FLUSH_STATE_PERIODIC);
return res;
}
bool AcceptToMemoryPool(CTxMemPool &pool, CValidationState &state,
const CTransactionRef &tx, bool fLimitFree,
bool *pfMissingInputs,
std::list<CTransactionRef> *plTxnReplaced,
bool fOverrideMempoolLimit, const CAmount nAbsurdFee) {
return AcceptToMemoryPoolWithTime(pool, state, tx, fLimitFree,
pfMissingInputs, GetTime(), plTxnReplaced,
fOverrideMempoolLimit, nAbsurdFee);
}
/** Return transaction in txOut, and if it was found inside a block, its hash is
* placed in hashBlock */
bool GetTransaction(const uint256 &txid, CTransactionRef &txOut,
const Consensus::Params &consensusParams,
uint256 &hashBlock, bool fAllowSlow) {
CBlockIndex *pindexSlow = NULL;
LOCK(cs_main);
CTransactionRef ptx = mempool.get(txid);
if (ptx) {
txOut = ptx;
return true;
}
if (fTxIndex) {
CDiskTxPos postx;
if (pblocktree->ReadTxIndex(txid, postx)) {
CAutoFile file(OpenBlockFile(postx, true), SER_DISK,
CLIENT_VERSION);
if (file.IsNull())
return error("%s: OpenBlockFile failed", __func__);
CBlockHeader header;
try {
file >> header;
fseek(file.Get(), postx.nTxOffset, SEEK_CUR);
file >> txOut;
} catch (const std::exception &e) {
return error("%s: Deserialize or I/O error - %s", __func__,
e.what());
}
hashBlock = header.GetHash();
if (txOut->GetId() != txid)
return error("%s: txid mismatch", __func__);
return true;
}
}
if (fAllowSlow) { // use coin database to locate block that contains
// transaction, and scan it
int nHeight = -1;
{
const CCoinsViewCache &view = *pcoinsTip;
const CCoins *coins = view.AccessCoins(txid);
if (coins) nHeight = coins->nHeight;
}
if (nHeight > 0) pindexSlow = chainActive[nHeight];
}
if (pindexSlow) {
CBlock block;
if (ReadBlockFromDisk(block, pindexSlow, consensusParams)) {
for (const auto &tx : block.vtx) {
if (tx->GetId() == txid) {
txOut = tx;
hashBlock = pindexSlow->GetBlockHash();
return true;
}
}
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
bool WriteBlockToDisk(const CBlock &block, CDiskBlockPos &pos,
const CMessageHeader::MessageStartChars &messageStart) {
// Open history file to append
CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull())
return error("WriteBlockToDisk: OpenBlockFile failed");
// Write index header
unsigned int nSize = GetSerializeSize(fileout, block);
fileout << FLATDATA(messageStart) << nSize;
// Write block
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0) return error("WriteBlockToDisk: ftell failed");
pos.nPos = (unsigned int)fileOutPos;
fileout << block;
return true;
}
bool ReadBlockFromDisk(CBlock &block, const CDiskBlockPos &pos,
const Consensus::Params &consensusParams) {
block.SetNull();
// Open history file to read
CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull())
return error("ReadBlockFromDisk: OpenBlockFile failed for %s",
pos.ToString());
// Read block
try {
filein >> block;
} catch (const std::exception &e) {
return error("%s: Deserialize or I/O error - %s at %s", __func__,
e.what(), pos.ToString());
}
// Check the header
if (!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
return error("ReadBlockFromDisk: Errors in block header at %s",
pos.ToString());
return true;
}
bool ReadBlockFromDisk(CBlock &block, const CBlockIndex *pindex,
const Consensus::Params &consensusParams) {
if (!ReadBlockFromDisk(block, pindex->GetBlockPos(), consensusParams))
return false;
if (block.GetHash() != pindex->GetBlockHash())
return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() "
"doesn't match index for %s at %s",
pindex->ToString(), pindex->GetBlockPos().ToString());
return true;
}
CAmount GetBlockSubsidy(int nHeight, const Consensus::Params &consensusParams) {
int halvings = nHeight / consensusParams.nSubsidyHalvingInterval;
// Force block reward to zero when right shift is undefined.
if (halvings >= 64) return 0;
CAmount nSubsidy = 50 * COIN;
// Subsidy is cut in half every 210,000 blocks which will occur
// approximately every 4 years.
nSubsidy >>= halvings;
return nSubsidy;
}
bool IsInitialBlockDownload() {
const CChainParams &chainParams = Params();
// Once this function has returned false, it must remain false.
static std::atomic<bool> latchToFalse{false};
// Optimization: pre-test latch before taking the lock.
if (latchToFalse.load(std::memory_order_relaxed)) return false;
LOCK(cs_main);
if (latchToFalse.load(std::memory_order_relaxed)) return false;
if (fImporting || fReindex) return true;
if (chainActive.Tip() == NULL) return true;
if (chainActive.Tip()->nChainWork <
UintToArith256(chainParams.GetConsensus().nMinimumChainWork))
return true;
if (chainActive.Tip()->GetBlockTime() < (GetTime() - nMaxTipAge))
return true;
latchToFalse.store(true, std::memory_order_relaxed);
return false;
}
CBlockIndex *pindexBestForkTip = NULL, *pindexBestForkBase = NULL;
static void AlertNotify(const std::string &strMessage) {
uiInterface.NotifyAlertChanged();
std::string strCmd = GetArg("-alertnotify", "");
if (strCmd.empty()) return;
// Alert text should be plain ascii coming from a trusted source, but to
// be safe we first strip anything not in safeChars, then add single quotes
// around
// the whole string before passing it to the shell:
std::string singleQuote("'");
std::string safeStatus = SanitizeString(strMessage);
safeStatus = singleQuote + safeStatus + singleQuote;
boost::replace_all(strCmd, "%s", safeStatus);
boost::thread t(runCommand, strCmd); // thread runs free
}
void CheckForkWarningConditions() {
AssertLockHeld(cs_main);
// Before we get past initial download, we cannot reliably alert about forks
// (we assume we don't get stuck on a fork before finishing our initial
// sync)
if (IsInitialBlockDownload()) return;
// If our best fork is no longer within 72 blocks (+/- 12 hours if no one
// mines it)
// of our head, drop it
if (pindexBestForkTip &&
chainActive.Height() - pindexBestForkTip->nHeight >= 72)
pindexBestForkTip = NULL;
if (pindexBestForkTip ||
(pindexBestInvalid &&
pindexBestInvalid->nChainWork >
chainActive.Tip()->nChainWork +
(GetBlockProof(*chainActive.Tip()) * 6))) {
if (!GetfLargeWorkForkFound() && pindexBestForkBase) {
std::string warning =
std::string("'Warning: Large-work fork detected, forking after "
"block ") +
pindexBestForkBase->phashBlock->ToString() + std::string("'");
AlertNotify(warning);
}
if (pindexBestForkTip && pindexBestForkBase) {
LogPrintf("%s: Warning: Large valid fork found\n forking the "
"chain at height %d (%s)\n lasting to height %d "
"(%s).\nChain state database corruption likely.\n",
__func__, pindexBestForkBase->nHeight,
pindexBestForkBase->phashBlock->ToString(),
pindexBestForkTip->nHeight,
pindexBestForkTip->phashBlock->ToString());
SetfLargeWorkForkFound(true);
} else {
LogPrintf("%s: Warning: Found invalid chain at least ~6 blocks "
"longer than our best chain.\nChain state database "
"corruption likely.\n",
__func__);
SetfLargeWorkInvalidChainFound(true);
}
} else {
SetfLargeWorkForkFound(false);
SetfLargeWorkInvalidChainFound(false);
}
}
void CheckForkWarningConditionsOnNewFork(CBlockIndex *pindexNewForkTip) {
AssertLockHeld(cs_main);
// If we are on a fork that is sufficiently large, set a warning flag
CBlockIndex *pfork = pindexNewForkTip;
CBlockIndex *plonger = chainActive.Tip();
while (pfork && pfork != plonger) {
while (plonger && plonger->nHeight > pfork->nHeight)
plonger = plonger->pprev;
if (pfork == plonger) break;
pfork = pfork->pprev;
}
// We define a condition where we should warn the user about as a fork of at
// least 7 blocks
// with a tip within 72 blocks (+/- 12 hours if no one mines it) of ours
// We use 7 blocks rather arbitrarily as it represents just under 10% of
// sustained network
// hash rate operating on the fork.
// or a chain that is entirely longer than ours and invalid (note that this
// should be detected by both)
// We define it this way because it allows us to only store the highest fork
// tip (+ base) which meets
// the 7-block condition and from this always have the
// most-likely-to-cause-warning fork
if (pfork && (!pindexBestForkTip ||
(pindexBestForkTip &&
pindexNewForkTip->nHeight > pindexBestForkTip->nHeight)) &&
pindexNewForkTip->nChainWork - pfork->nChainWork >
(GetBlockProof(*pfork) * 7) &&
chainActive.Height() - pindexNewForkTip->nHeight < 72) {
pindexBestForkTip = pindexNewForkTip;
pindexBestForkBase = pfork;
}
CheckForkWarningConditions();
}
void static InvalidChainFound(CBlockIndex *pindexNew) {
if (!pindexBestInvalid ||
pindexNew->nChainWork > pindexBestInvalid->nChainWork)
pindexBestInvalid = pindexNew;
LogPrintf(
"%s: invalid block=%s height=%d log2_work=%.8g date=%s\n", __func__,
pindexNew->GetBlockHash().ToString(), pindexNew->nHeight,
log(pindexNew->nChainWork.getdouble()) / log(2.0),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexNew->GetBlockTime()));
CBlockIndex *tip = chainActive.Tip();
assert(tip);
LogPrintf("%s: current best=%s height=%d log2_work=%.8g date=%s\n",
__func__, tip->GetBlockHash().ToString(), chainActive.Height(),
log(tip->nChainWork.getdouble()) / log(2.0),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S", tip->GetBlockTime()));
CheckForkWarningConditions();
}
void static InvalidBlockFound(CBlockIndex *pindex,
const CValidationState &state) {
if (!state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
InvalidChainFound(pindex);
}
}
void UpdateCoins(const CTransaction &tx, CCoinsViewCache &inputs,
CTxUndo &txundo, int nHeight) {
// mark inputs spent
if (!tx.IsCoinBase()) {
txundo.vprevout.reserve(tx.vin.size());
for (const CTxIn &txin : tx.vin) {
CCoinsModifier coins = inputs.ModifyCoins(txin.prevout.hash);
unsigned nPos = txin.prevout.n;
if (nPos >= coins->vout.size() || coins->vout[nPos].IsNull())
assert(false);
// mark an outpoint spent, and construct undo information
txundo.vprevout.push_back(CTxInUndo(coins->vout[nPos]));
coins->Spend(nPos);
if (coins->vout.size() == 0) {
CTxInUndo &undo = txundo.vprevout.back();
undo.nHeight = coins->nHeight;
undo.fCoinBase = coins->fCoinBase;
undo.nVersion = coins->nVersion;
}
}
}
// add outputs
inputs.ModifyNewCoins(tx.GetId(), tx.IsCoinBase())->FromTx(tx, nHeight);
}
void UpdateCoins(const CTransaction &tx, CCoinsViewCache &inputs, int nHeight) {
CTxUndo txundo;
UpdateCoins(tx, inputs, txundo, nHeight);
}
bool CScriptCheck::operator()() {
const CScript &scriptSig = ptxTo->vin[nIn].scriptSig;
if (!VerifyScript(scriptSig, scriptPubKey, nFlags,
CachingTransactionSignatureChecker(ptxTo, nIn, amount,
cacheStore, *txdata),
&error)) {
return false;
}
return true;
}
int GetSpendHeight(const CCoinsViewCache &inputs) {
LOCK(cs_main);
CBlockIndex *pindexPrev = mapBlockIndex.find(inputs.GetBestBlock())->second;
return pindexPrev->nHeight + 1;
}
namespace Consensus {
bool CheckTxInputs(const CTransaction &tx, CValidationState &state,
const CCoinsViewCache &inputs, int nSpendHeight) {
// This doesn't trigger the DoS code on purpose; if it did, it would make it
// easier
// for an attacker to attempt to split the network.
if (!inputs.HaveInputs(tx))
return state.Invalid(false, 0, "", "Inputs unavailable");
CAmount nValueIn = 0;
CAmount nFees = 0;
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins *coins = inputs.AccessCoins(prevout.hash);
assert(coins);
// If prev is coinbase, check that it's matured
if (coins->IsCoinBase()) {
if (nSpendHeight - coins->nHeight < COINBASE_MATURITY)
return state.Invalid(
false, REJECT_INVALID,
"bad-txns-premature-spend-of-coinbase",
strprintf("tried to spend coinbase at depth %d",
nSpendHeight - coins->nHeight));
}
// Check for negative or overflow input values
nValueIn += coins->vout[prevout.n].nValue;
if (!MoneyRange(coins->vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return state.DoS(100, false, REJECT_INVALID,
"bad-txns-inputvalues-outofrange");
}
if (nValueIn < tx.GetValueOut())
return state.DoS(100, false, REJECT_INVALID, "bad-txns-in-belowout",
false, strprintf("value in (%s) < value out (%s)",
FormatMoney(nValueIn),
FormatMoney(tx.GetValueOut())));
// Tally transaction fees
CAmount nTxFee = nValueIn - tx.GetValueOut();
if (nTxFee < 0)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-negative");
nFees += nTxFee;
if (!MoneyRange(nFees))
return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-outofrange");
return true;
}
} // namespace Consensus
bool CheckInputs(const CTransaction &tx, CValidationState &state,
const CCoinsViewCache &inputs, bool fScriptChecks,
unsigned int flags, bool cacheStore,
PrecomputedTransactionData &txdata,
std::vector<CScriptCheck> *pvChecks) {
assert(!tx.IsCoinBase());
if (!Consensus::CheckTxInputs(tx, state, inputs, GetSpendHeight(inputs))) {
return false;
}
if (pvChecks) {
pvChecks->reserve(tx.vin.size());
}
// The first loop above does all the inexpensive checks. Only if ALL inputs
// pass do we perform expensive ECDSA signature checks. Helps prevent CPU
// exhaustion attacks.
// Skip script verification when connecting blocks under the assumedvalid
// block. Assuming the assumedvalid block is valid this is safe because
// block merkle hashes are still computed and checked, of course, if an
// assumed valid block is invalid due to false scriptSigs this optimization
// would allow an invalid chain to be accepted.
if (!fScriptChecks) {
return true;
}
for (unsigned int i = 0; i < tx.vin.size(); i++) {
const COutPoint &prevout = tx.vin[i].prevout;
const CCoins *coins = inputs.AccessCoins(prevout.hash);
assert(coins);
// Verify signature
CScriptCheck check(*coins, tx, i, flags, cacheStore, &txdata);
if (pvChecks) {
pvChecks->push_back(CScriptCheck());
check.swap(pvChecks->back());
} else if (!check()) {
if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) {
// Check whether the failure was caused by a non-mandatory
// script verification check, such as non-standard DER encodings
// or non-null dummy arguments; if so, don't trigger DoS
// protection to avoid splitting the network between upgraded
// and non-upgraded nodes.
CScriptCheck check2(
*coins, tx, i, flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS,
cacheStore, &txdata);
if (check2()) {
return state.Invalid(
false, REJECT_NONSTANDARD,
strprintf("non-mandatory-script-verify-flag (%s)",
ScriptErrorString(check.GetScriptError())));
}
}
// Failures of other flags indicate a transaction that is invalid in
// new blocks, e.g. a invalid P2SH. We DoS ban such nodes as they
// are not following the protocol. That said during an upgrade
// careful thought should be taken as to the correct behavior - we
// may want to continue peering with non-upgraded nodes even after
// soft-fork super-majority signaling has occurred.
return state.DoS(
100, false, REJECT_INVALID,
strprintf("mandatory-script-verify-flag-failed (%s)",
ScriptErrorString(check.GetScriptError())));
}
}
return true;
}
namespace {
bool UndoWriteToDisk(const CBlockUndo &blockundo, CDiskBlockPos &pos,
const uint256 &hashBlock,
const CMessageHeader::MessageStartChars &messageStart) {
// Open history file to append
CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION);
if (fileout.IsNull()) return error("%s: OpenUndoFile failed", __func__);
// Write index header
unsigned int nSize = GetSerializeSize(fileout, blockundo);
fileout << FLATDATA(messageStart) << nSize;
// Write undo data
long fileOutPos = ftell(fileout.Get());
if (fileOutPos < 0) return error("%s: ftell failed", __func__);
pos.nPos = (unsigned int)fileOutPos;
fileout << blockundo;
// calculate & write checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << blockundo;
fileout << hasher.GetHash();
return true;
}
bool UndoReadFromDisk(CBlockUndo &blockundo, const CDiskBlockPos &pos,
const uint256 &hashBlock) {
// Open history file to read
CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION);
if (filein.IsNull()) return error("%s: OpenUndoFile failed", __func__);
// Read block
uint256 hashChecksum;
try {
filein >> blockundo;
filein >> hashChecksum;
} catch (const std::exception &e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
// Verify checksum
CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
hasher << hashBlock;
hasher << blockundo;
if (hashChecksum != hasher.GetHash())
return error("%s: Checksum mismatch", __func__);
return true;
}
/** Abort with a message */
bool AbortNode(const std::string &strMessage,
const std::string &userMessage = "") {
SetMiscWarning(strMessage);
LogPrintf("*** %s\n", strMessage);
uiInterface.ThreadSafeMessageBox(
userMessage.empty() ? _("Error: A fatal internal error occurred, see "
"debug.log for details")
: userMessage,
"", CClientUIInterface::MSG_ERROR);
StartShutdown();
return false;
}
bool AbortNode(CValidationState &state, const std::string &strMessage,
const std::string &userMessage = "") {
AbortNode(strMessage, userMessage);
return state.Error(strMessage);
}
} // anon namespace
/**
* Apply the undo operation of a CTxInUndo to the given chain state.
* @param undo The undo object.
* @param view The coins view to which to apply the changes.
* @param out The out point that corresponds to the tx input.
* @return True on success.
*/
bool ApplyTxInUndo(const CTxInUndo &undo, CCoinsViewCache &view,
const COutPoint &out) {
bool fClean = true;
CCoinsModifier coins = view.ModifyCoins(out.hash);
if (undo.nHeight != 0) {
// undo data contains height: this is the last output of the prevout tx
// being spent
if (!coins->IsPruned())
fClean = fClean &&
error("%s: undo data overwriting existing transaction",
__func__);
coins->Clear();
coins->fCoinBase = undo.fCoinBase;
coins->nHeight = undo.nHeight;
coins->nVersion = undo.nVersion;
} else {
if (coins->IsPruned())
fClean = fClean &&
error("%s: undo data adding output to missing transaction",
__func__);
}
if (coins->IsAvailable(out.n))
fClean = fClean &&
error("%s: undo data overwriting existing output", __func__);
if (coins->vout.size() < out.n + 1) coins->vout.resize(out.n + 1);
coins->vout[out.n] = undo.txout;
return fClean;
}
bool DisconnectBlock(const CBlock &block, CValidationState &state,
const CBlockIndex *pindex, CCoinsViewCache &view,
bool *pfClean) {
assert(pindex->GetBlockHash() == view.GetBestBlock());
if (pfClean) *pfClean = false;
CBlockUndo blockUndo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (pos.IsNull()) return error("DisconnectBlock(): no undo data available");
if (!UndoReadFromDisk(blockUndo, pos, pindex->pprev->GetBlockHash()))
return error("DisconnectBlock(): failure reading undo data");
return ApplyBlockUndo(block, state, pindex, view, blockUndo, pfClean);
}
bool ApplyBlockUndo(const CBlock &block, CValidationState &state,
const CBlockIndex *pindex, CCoinsViewCache &view,
const CBlockUndo &blockUndo, bool *pfClean) {
if (pfClean) *pfClean = false;
bool fClean = true;
if (blockUndo.vtxundo.size() + 1 != block.vtx.size())
return error("DisconnectBlock(): block and undo data inconsistent");
// Undo transactions in reverse order.
size_t i = block.vtx.size();
while (i-- > 0) {
const CTransaction &tx = *(block.vtx[i]);
uint256 txid = tx.GetId();
// Check that all outputs are available and match the outputs in the
// block itself exactly.
{
CCoinsModifier outs = view.ModifyCoins(txid);
outs->ClearUnspendable();
CCoins outsBlock(tx, pindex->nHeight);
// The CCoins serialization does not serialize negative numbers. No
// network rules currently depend on the version here, so an
// inconsistency is harmless but it must be corrected before txout
// nversion ever influences a network rule.
if (outsBlock.nVersion < 0) outs->nVersion = outsBlock.nVersion;
if (*outs != outsBlock)
fClean = fClean && error("DisconnectBlock(): added transaction "
"mismatch? database corrupted");
// Remove outputs.
outs->Clear();
}
// Restore inputs.
if (i < 1) {
// Skip the coinbase.
continue;
}
const CTxUndo &txundo = blockUndo.vtxundo[i - 1];
if (txundo.vprevout.size() != tx.vin.size())
return error("DisconnectBlock(): transaction and undo data "
"inconsistent");
for (unsigned int j = tx.vin.size(); j-- > 0;) {
const COutPoint &out = tx.vin[j].prevout;
const CTxInUndo &undo = txundo.vprevout[j];
if (!ApplyTxInUndo(undo, view, out)) fClean = false;
}
}
// Move best block pointer to previous block.
view.SetBestBlock(block.hashPrevBlock);
if (pfClean) {
*pfClean = fClean;
return true;
}
return fClean;
}
void static FlushBlockFile(bool fFinalize = false) {
LOCK(cs_LastBlockFile);
CDiskBlockPos posOld(nLastBlockFile, 0);
FILE *fileOld = OpenBlockFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nSize);
FileCommit(fileOld);
fclose(fileOld);
}
fileOld = OpenUndoFile(posOld);
if (fileOld) {
if (fFinalize)
TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nUndoSize);
FileCommit(fileOld);
fclose(fileOld);
}
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos,
unsigned int nAddSize);
static CCheckQueue<CScriptCheck> scriptcheckqueue(128);
void ThreadScriptCheck() {
RenameThread("bitcoin-scriptch");
scriptcheckqueue.Thread();
}
// Protected by cs_main
VersionBitsCache versionbitscache;
int32_t ComputeBlockVersion(const CBlockIndex *pindexPrev,
const Consensus::Params &params) {
LOCK(cs_main);
int32_t nVersion = VERSIONBITS_TOP_BITS;
for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) {
ThresholdState state = VersionBitsState(
pindexPrev, params, (Consensus::DeploymentPos)i, versionbitscache);
if (state == THRESHOLD_LOCKED_IN || state == THRESHOLD_STARTED) {
nVersion |= VersionBitsMask(params, (Consensus::DeploymentPos)i);
}
}
return nVersion;
}
/**
* Threshold condition checker that triggers when unknown versionbits are seen
* on the network.
*/
class WarningBitsConditionChecker : public AbstractThresholdConditionChecker {
private:
int bit;
public:
WarningBitsConditionChecker(int bitIn) : bit(bitIn) {}
int64_t BeginTime(const Consensus::Params &params) const { return 0; }
int64_t EndTime(const Consensus::Params &params) const {
return std::numeric_limits<int64_t>::max();
}
int Period(const Consensus::Params &params) const {
return params.nMinerConfirmationWindow;
}
int Threshold(const Consensus::Params &params) const {
return params.nRuleChangeActivationThreshold;
}
bool Condition(const CBlockIndex *pindex,
const Consensus::Params &params) const {
return ((pindex->nVersion & VERSIONBITS_TOP_MASK) ==
VERSIONBITS_TOP_BITS) &&
((pindex->nVersion >> bit) & 1) != 0 &&
((ComputeBlockVersion(pindex->pprev, params) >> bit) & 1) == 0;
}
};
// Protected by cs_main
static ThresholdConditionCache warningcache[VERSIONBITS_NUM_BITS];
static int64_t nTimeCheck = 0;
static int64_t nTimeForks = 0;
static int64_t nTimeVerify = 0;
static int64_t nTimeConnect = 0;
static int64_t nTimeIndex = 0;
static int64_t nTimeCallbacks = 0;
static int64_t nTimeTotal = 0;
bool ConnectBlock(const Config &config, const CBlock &block,
CValidationState &state, CBlockIndex *pindex,
CCoinsViewCache &view, const CChainParams &chainparams,
bool fJustCheck) {
AssertLockHeld(cs_main);
int64_t nTimeStart = GetTimeMicros();
// Check it again in case a previous version let a bad block in
if (!CheckBlock(config, block, state, chainparams.GetConsensus(),
!fJustCheck, !fJustCheck))
return error("%s: Consensus::CheckBlock: %s", __func__,
FormatStateMessage(state));
// verify that the view's current state corresponds to the previous block
uint256 hashPrevBlock =
pindex->pprev == NULL ? uint256() : pindex->pprev->GetBlockHash();
assert(hashPrevBlock == view.GetBestBlock());
// Special case for the genesis block, skipping connection of its
// transactions (its coinbase is unspendable)
if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) {
if (!fJustCheck) view.SetBestBlock(pindex->GetBlockHash());
return true;
}
bool fScriptChecks = true;
if (!hashAssumeValid.IsNull()) {
// We've been configured with the hash of a block which has been
// externally verified to have a valid history. A suitable default value
// is included with the software and updated from time to time. Because
// validity relative to a piece of software is an objective fact these
// defaults can be easily reviewed. This setting doesn't force the
// selection of any particular chain but makes validating some faster by
// effectively caching the result of part of the verification.
BlockMap::const_iterator it = mapBlockIndex.find(hashAssumeValid);
if (it != mapBlockIndex.end()) {
if (it->second->GetAncestor(pindex->nHeight) == pindex &&
pindexBestHeader->GetAncestor(pindex->nHeight) == pindex &&
pindexBestHeader->nChainWork >=
UintToArith256(
chainparams.GetConsensus().nMinimumChainWork)) {
// This block is a member of the assumed verified chain and an
// ancestor of the best header. The equivalent time check
// discourages hashpower from extorting the network via DOS
// attack into accepting an invalid block through telling users
// they must manually set assumevalid. Requiring a software
// change or burying the invalid block, regardless of the
// setting, makes it hard to hide the implication of the demand.
// This also avoids having release candidates that are hardly
// doing any signature verification at all in testing without
// having to artificially set the default assumed verified block
// further back. The test against nMinimumChainWork prevents the
// skipping when denied access to any chain at least as good as
// the expected chain.
fScriptChecks =
(GetBlockProofEquivalentTime(
*pindexBestHeader, *pindex, *pindexBestHeader,
chainparams.GetConsensus()) <= 60 * 60 * 24 * 7 * 2);
}
}
}
int64_t nTime1 = GetTimeMicros();
nTimeCheck += nTime1 - nTimeStart;
LogPrint("bench", " - Sanity checks: %.2fms [%.2fs]\n",
0.001 * (nTime1 - nTimeStart), nTimeCheck * 0.000001);
// Do not allow blocks that contain transactions which 'overwrite' older
// transactions, unless those are already completely spent. If such
// overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance --
// even after being sent to another address. See BIP30 and
// http://r6.ca/blog/20120206T005236Z.html for more information. This logic
// is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely. This rule was
// originally applied to all blocks with a timestamp after March 15, 2012,
// 0:00 UTC. Now that the whole chain is irreversibly beyond that time it is
// applied to all blocks except the two in the chain that violate it. This
// prevents exploiting the issue against nodes during their initial block
// download.
bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock
// invocations which don't
// have a hash.
!((pindex->nHeight == 91842 &&
pindex->GetBlockHash() ==
uint256S("0x00000000000a4d0a398161ffc163c503763"
"b1f4360639393e0e4c8e300e0caec")) ||
(pindex->nHeight == 91880 &&
pindex->GetBlockHash() ==
uint256S("0x00000000000743f190a18c5577a3c2d2a1f"
"610ae9601ac046a38084ccb7cd721")));
// Once BIP34 activated it was not possible to create new duplicate
// coinbases and thus other than starting with the 2 existing duplicate
// coinbase pairs, not possible to create overwriting txs. But by the time
// BIP34 activated, in each of the existing pairs the duplicate coinbase had
// overwritten the first before the first had been spent. Since those
// coinbases are sufficiently buried its no longer possible to create
// further duplicate transactions descending from the known pairs either. If
// we're on the known chain at height greater than where BIP34 activated, we
// can save the db accesses needed for the BIP30 check.
CBlockIndex *pindexBIP34height =
pindex->pprev->GetAncestor(chainparams.GetConsensus().BIP34Height);
// Only continue to enforce if we're below BIP34 activation height or the
// block hash at that height doesn't correspond.
fEnforceBIP30 = fEnforceBIP30 && (!pindexBIP34height ||
!(pindexBIP34height->GetBlockHash() ==
chainparams.GetConsensus().BIP34Hash));
if (fEnforceBIP30) {
for (const auto &tx : block.vtx) {
const CCoins *coins = view.AccessCoins(tx->GetId());
if (coins && !coins->IsPruned())
return state.DoS(
100,
error("ConnectBlock(): tried to overwrite transaction"),
REJECT_INVALID, "bad-txns-BIP30");
}
}
// BIP16 didn't become active until Apr 1 2012
int64_t nBIP16SwitchTime = 1333238400;
bool fStrictPayToScriptHash = (pindex->GetBlockTime() >= nBIP16SwitchTime);
unsigned int flags =
fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE;
// Start enforcing the DERSIG (BIP66) rule
if (pindex->nHeight >= chainparams.GetConsensus().BIP66Height) {
flags |= SCRIPT_VERIFY_DERSIG;
}
// Start enforcing CHECKLOCKTIMEVERIFY (BIP65) rule
if (pindex->nHeight >= chainparams.GetConsensus().BIP65Height) {
flags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY;
}
// Start enforcing BIP68 (sequence locks) and BIP112 (CHECKSEQUENCEVERIFY)
// using versionbits logic.
int nLockTimeFlags = 0;
if (VersionBitsState(pindex->pprev, chainparams.GetConsensus(),
Consensus::DEPLOYMENT_CSV,
versionbitscache) == THRESHOLD_ACTIVE) {
flags |= SCRIPT_VERIFY_CHECKSEQUENCEVERIFY;
nLockTimeFlags |= LOCKTIME_VERIFY_SEQUENCE;
}
int64_t nTime2 = GetTimeMicros();
nTimeForks += nTime2 - nTime1;
LogPrint("bench", " - Fork checks: %.2fms [%.2fs]\n",
0.001 * (nTime2 - nTime1), nTimeForks * 0.000001);
CBlockUndo blockundo;
CCheckQueueControl<CScriptCheck> control(
fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL);
std::vector<int> prevheights;
CAmount nFees = 0;
int nInputs = 0;
// Sigops counting. We need to do it again because of P2SH.
uint64_t nSigOpsCount = 0;
auto currentBlockSize =
::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION);
auto nMaxSigOpsCount = GetMaxBlockSigOpsCount(currentBlockSize);
CDiskTxPos pos(pindex->GetBlockPos(),
GetSizeOfCompactSize(block.vtx.size()));
std::vector<std::pair<uint256, CDiskTxPos>> vPos;
vPos.reserve(block.vtx.size());
blockundo.vtxundo.reserve(block.vtx.size() - 1);
for (unsigned int i = 0; i < block.vtx.size(); i++) {
const CTransaction &tx = *(block.vtx[i]);
nInputs += tx.vin.size();
if (!tx.IsCoinBase()) {
if (!view.HaveInputs(tx))
return state.DoS(
100, error("ConnectBlock(): inputs missing/spent"),
REJECT_INVALID, "bad-txns-inputs-missingorspent");
// Check that transaction is BIP68 final BIP68 lock checks (as
// opposed to nLockTime checks) must be in ConnectBlock because they
// require the UTXO set.
prevheights.resize(tx.vin.size());
for (size_t j = 0; j < tx.vin.size(); j++) {
prevheights[j] =
view.AccessCoins(tx.vin[j].prevout.hash)->nHeight;
}
if (!SequenceLocks(tx, nLockTimeFlags, &prevheights, *pindex)) {
return state.DoS(
100, error("%s: contains a non-BIP68-final transaction",
__func__),
REJECT_INVALID, "bad-txns-nonfinal");
}
}
// GetTransactionSigOpCount counts 2 types of sigops:
// * legacy (always)
// * p2sh (when P2SH enabled in flags and excludes coinbase)
- nSigOpsCount += GetTransactionSigOpCount(tx, view, flags);
+ auto txSigOpsCount = GetTransactionSigOpCount(tx, view, flags);
+ if (txSigOpsCount > MAX_TX_SIGOPS_COUNT) {
+ return state.DoS(100, false, REJECT_INVALID, "bad-txn-sigops");
+ }
+
+ nSigOpsCount += txSigOpsCount;
if (nSigOpsCount > nMaxSigOpsCount) {
return state.DoS(100, error("ConnectBlock(): too many sigops"),
REJECT_INVALID, "bad-blk-sigops");
}
PrecomputedTransactionData txdata(tx);
if (!tx.IsCoinBase()) {
nFees += view.GetValueIn(tx) - tx.GetValueOut();
// Don't cache results if we're actually connecting blocks (still
// consult the cache, though).
bool fCacheResults = fJustCheck;
std::vector<CScriptCheck> vChecks;
if (!CheckInputs(tx, state, view, fScriptChecks, flags,
fCacheResults, txdata,
nScriptCheckThreads ? &vChecks : nullptr))
return error("ConnectBlock(): CheckInputs on %s failed with %s",
tx.GetId().ToString(), FormatStateMessage(state));
control.Add(vChecks);
}
CTxUndo undoDummy;
if (i > 0) {
blockundo.vtxundo.push_back(CTxUndo());
}
UpdateCoins(tx, view, i == 0 ? undoDummy : blockundo.vtxundo.back(),
pindex->nHeight);
vPos.push_back(std::make_pair(tx.GetId(), pos));
pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION);
}
int64_t nTime3 = GetTimeMicros();
nTimeConnect += nTime3 - nTime2;
LogPrint("bench", " - Connect %u transactions: %.2fms (%.3fms/tx, "
"%.3fms/txin) [%.2fs]\n",
(unsigned)block.vtx.size(), 0.001 * (nTime3 - nTime2),
0.001 * (nTime3 - nTime2) / block.vtx.size(),
nInputs <= 1 ? 0 : 0.001 * (nTime3 - nTime2) / (nInputs - 1),
nTimeConnect * 0.000001);
CAmount blockReward =
nFees + GetBlockSubsidy(pindex->nHeight, chainparams.GetConsensus());
if (block.vtx[0]->GetValueOut() > blockReward)
return state.DoS(100, error("ConnectBlock(): coinbase pays too much "
"(actual=%d vs limit=%d)",
block.vtx[0]->GetValueOut(), blockReward),
REJECT_INVALID, "bad-cb-amount");
if (!control.Wait()) return state.DoS(100, false);
int64_t nTime4 = GetTimeMicros();
nTimeVerify += nTime4 - nTime2;
LogPrint("bench", " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs]\n",
nInputs - 1, 0.001 * (nTime4 - nTime2),
nInputs <= 1 ? 0 : 0.001 * (nTime4 - nTime2) / (nInputs - 1),
nTimeVerify * 0.000001);
if (fJustCheck) return true;
// Write undo information to disk
if (pindex->GetUndoPos().IsNull() ||
!pindex->IsValid(BLOCK_VALID_SCRIPTS)) {
if (pindex->GetUndoPos().IsNull()) {
CDiskBlockPos _pos;
if (!FindUndoPos(
state, pindex->nFile, _pos,
::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) +
40))
return error("ConnectBlock(): FindUndoPos failed");
if (!UndoWriteToDisk(blockundo, _pos, pindex->pprev->GetBlockHash(),
chainparams.MessageStart()))
return AbortNode(state, "Failed to write undo data");
// update nUndoPos in block index
pindex->nUndoPos = _pos.nPos;
pindex->nStatus |= BLOCK_HAVE_UNDO;
}
pindex->RaiseValidity(BLOCK_VALID_SCRIPTS);
setDirtyBlockIndex.insert(pindex);
}
if (fTxIndex)
if (!pblocktree->WriteTxIndex(vPos))
return AbortNode(state, "Failed to write transaction index");
// add this block to the view's block chain
view.SetBestBlock(pindex->GetBlockHash());
int64_t nTime5 = GetTimeMicros();
nTimeIndex += nTime5 - nTime4;
LogPrint("bench", " - Index writing: %.2fms [%.2fs]\n",
0.001 * (nTime5 - nTime4), nTimeIndex * 0.000001);
// Watch for changes to the previous coinbase transaction.
static uint256 hashPrevBestCoinBase;
GetMainSignals().UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = block.vtx[0]->GetId();
int64_t nTime6 = GetTimeMicros();
nTimeCallbacks += nTime6 - nTime5;
LogPrint("bench", " - Callbacks: %.2fms [%.2fs]\n",
0.001 * (nTime6 - nTime5), nTimeCallbacks * 0.000001);
return true;
}
/**
* Update the on-disk chain state.
* The caches and indexes are flushed depending on the mode we're called with
* if they're too large, if it's been a while since the last write,
* or always and in all cases if we're in prune mode and are deleting files.
*/
bool static FlushStateToDisk(CValidationState &state, FlushStateMode mode,
int nManualPruneHeight) {
int64_t nMempoolUsage = mempool.DynamicMemoryUsage();
const CChainParams &chainparams = Params();
LOCK2(cs_main, cs_LastBlockFile);
static int64_t nLastWrite = 0;
static int64_t nLastFlush = 0;
static int64_t nLastSetChain = 0;
std::set<int> setFilesToPrune;
bool fFlushForPrune = false;
try {
if (fPruneMode && (fCheckForPruning || nManualPruneHeight > 0) &&
!fReindex) {
if (nManualPruneHeight > 0) {
FindFilesToPruneManual(setFilesToPrune, nManualPruneHeight);
} else {
FindFilesToPrune(setFilesToPrune,
chainparams.PruneAfterHeight());
fCheckForPruning = false;
}
if (!setFilesToPrune.empty()) {
fFlushForPrune = true;
if (!fHavePruned) {
pblocktree->WriteFlag("prunedblockfiles", true);
fHavePruned = true;
}
}
}
int64_t nNow = GetTimeMicros();
// Avoid writing/flushing immediately after startup.
if (nLastWrite == 0) {
nLastWrite = nNow;
}
if (nLastFlush == 0) {
nLastFlush = nNow;
}
if (nLastSetChain == 0) {
nLastSetChain = nNow;
}
int64_t nMempoolSizeMax =
GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000;
int64_t cacheSize =
pcoinsTip->DynamicMemoryUsage() * DB_PEAK_USAGE_FACTOR;
int64_t nTotalSpace =
nCoinCacheUsage +
std::max<int64_t>(nMempoolSizeMax - nMempoolUsage, 0);
// The cache is large and we're within 10% and 200 MiB or 50% and 50MiB
// of the limit, but we have time now (not in the middle of a block
// processing).
bool fCacheLarge =
mode == FLUSH_STATE_PERIODIC &&
cacheSize >
std::min(std::max(nTotalSpace / 2,
nTotalSpace -
MIN_BLOCK_COINSDB_USAGE * 1024 * 1024),
std::max((9 * nTotalSpace) / 10,
nTotalSpace -
MAX_BLOCK_COINSDB_USAGE * 1024 * 1024));
// The cache is over the limit, we have to write now.
bool fCacheCritical =
mode == FLUSH_STATE_IF_NEEDED && cacheSize > nTotalSpace;
// It's been a while since we wrote the block index to disk. Do this
// frequently, so we don't need to redownload after a crash.
bool fPeriodicWrite =
mode == FLUSH_STATE_PERIODIC &&
nNow > nLastWrite + (int64_t)DATABASE_WRITE_INTERVAL * 1000000;
// It's been very long since we flushed the cache. Do this infrequently,
// to optimize cache usage.
bool fPeriodicFlush =
mode == FLUSH_STATE_PERIODIC &&
nNow > nLastFlush + (int64_t)DATABASE_FLUSH_INTERVAL * 1000000;
// Combine all conditions that result in a full cache flush.
bool fDoFullFlush = (mode == FLUSH_STATE_ALWAYS) || fCacheLarge ||
fCacheCritical || fPeriodicFlush || fFlushForPrune;
// Write blocks and block index to disk.
if (fDoFullFlush || fPeriodicWrite) {
// Depend on nMinDiskSpace to ensure we can write block index
if (!CheckDiskSpace(0)) return state.Error("out of disk space");
// First make sure all block and undo data is flushed to disk.
FlushBlockFile();
// Then update all block file information (which may refer to block
// and undo files).
{
std::vector<std::pair<int, const CBlockFileInfo *>> vFiles;
vFiles.reserve(setDirtyFileInfo.size());
for (std::set<int>::iterator it = setDirtyFileInfo.begin();
it != setDirtyFileInfo.end();) {
vFiles.push_back(std::make_pair(*it, &vinfoBlockFile[*it]));
setDirtyFileInfo.erase(it++);
}
std::vector<const CBlockIndex *> vBlocks;
vBlocks.reserve(setDirtyBlockIndex.size());
for (std::set<CBlockIndex *>::iterator it =
setDirtyBlockIndex.begin();
it != setDirtyBlockIndex.end();) {
vBlocks.push_back(*it);
setDirtyBlockIndex.erase(it++);
}
if (!pblocktree->WriteBatchSync(vFiles, nLastBlockFile,
vBlocks)) {
return AbortNode(state,
"Failed to write to block index database");
}
}
// Finally remove any pruned files
if (fFlushForPrune) UnlinkPrunedFiles(setFilesToPrune);
nLastWrite = nNow;
}
// Flush best chain related state. This can only be done if the blocks /
// block index write was also done.
if (fDoFullFlush) {
// Typical CCoins structures on disk are around 128 bytes in size.
// Pushing a new one to the database can cause it to be written
// twice (once in the log, and once in the tables). This is already
// an overestimation, as most will delete an existing entry or
// overwrite one. Still, use a conservative safety factor of 2.
if (!CheckDiskSpace(128 * 2 * 2 * pcoinsTip->GetCacheSize()))
return state.Error("out of disk space");
// Flush the chainstate (which may refer to block index entries).
if (!pcoinsTip->Flush())
return AbortNode(state, "Failed to write to coin database");
nLastFlush = nNow;
}
if (fDoFullFlush ||
((mode == FLUSH_STATE_ALWAYS || mode == FLUSH_STATE_PERIODIC) &&
nNow >
nLastSetChain + (int64_t)DATABASE_WRITE_INTERVAL * 1000000)) {
// Update best block in wallet (so we can detect restored wallets).
GetMainSignals().SetBestChain(chainActive.GetLocator());
nLastSetChain = nNow;
}
} catch (const std::runtime_error &e) {
return AbortNode(state, std::string("System error while flushing: ") +
e.what());
}
return true;
}
void FlushStateToDisk() {
CValidationState state;
FlushStateToDisk(state, FLUSH_STATE_ALWAYS);
}
void PruneAndFlush() {
CValidationState state;
fCheckForPruning = true;
FlushStateToDisk(state, FLUSH_STATE_NONE);
}
/** Update chainActive and related internal data structures. */
void static UpdateTip(CBlockIndex *pindexNew, const CChainParams &chainParams) {
chainActive.SetTip(pindexNew);
// New best block
mempool.AddTransactionsUpdated(1);
cvBlockChange.notify_all();
static bool fWarned = false;
std::vector<std::string> warningMessages;
if (!IsInitialBlockDownload()) {
int nUpgraded = 0;
const CBlockIndex *pindex = chainActive.Tip();
for (int bit = 0; bit < VERSIONBITS_NUM_BITS; bit++) {
WarningBitsConditionChecker checker(bit);
ThresholdState state = checker.GetStateFor(
pindex, chainParams.GetConsensus(), warningcache[bit]);
if (state == THRESHOLD_ACTIVE || state == THRESHOLD_LOCKED_IN) {
if (state == THRESHOLD_ACTIVE) {
std::string strWarning =
strprintf(_("Warning: unknown new rules activated "
"(versionbit %i)"),
bit);
SetMiscWarning(strWarning);
if (!fWarned) {
AlertNotify(strWarning);
fWarned = true;
}
} else {
warningMessages.push_back(
strprintf("unknown new rules are about to activate "
"(versionbit %i)",
bit));
}
}
}
// Check the version of the last 100 blocks to see if we need to
// upgrade:
for (int i = 0; i < 100 && pindex != NULL; i++) {
int32_t nExpectedVersion =
ComputeBlockVersion(pindex->pprev, chainParams.GetConsensus());
if (pindex->nVersion > VERSIONBITS_LAST_OLD_BLOCK_VERSION &&
(pindex->nVersion & ~nExpectedVersion) != 0)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
warningMessages.push_back(strprintf(
"%d of last 100 blocks have unexpected version", nUpgraded));
if (nUpgraded > 100 / 2) {
std::string strWarning =
_("Warning: Unknown block versions being mined! It's possible "
"unknown rules are in effect");
// notify GetWarnings(), called by Qt and the JSON-RPC code to warn
// the user:
SetMiscWarning(strWarning);
if (!fWarned) {
AlertNotify(strWarning);
fWarned = true;
}
}
}
LogPrintf(
"%s: new best=%s height=%d version=0x%08x log2_work=%.8g tx=%lu "
"date='%s' progress=%f cache=%.1fMiB(%utx)",
__func__, chainActive.Tip()->GetBlockHash().ToString(),
chainActive.Height(), chainActive.Tip()->nVersion,
log(chainActive.Tip()->nChainWork.getdouble()) / log(2.0),
(unsigned long)chainActive.Tip()->nChainTx,
DateTimeStrFormat("%Y-%m-%d %H:%M:%S",
chainActive.Tip()->GetBlockTime()),
GuessVerificationProgress(chainParams.TxData(), chainActive.Tip()),
pcoinsTip->DynamicMemoryUsage() * (1.0 / (1 << 20)),
pcoinsTip->GetCacheSize());
if (!warningMessages.empty())
LogPrintf(" warning='%s'",
boost::algorithm::join(warningMessages, ", "));
LogPrintf("\n");
}
/** Disconnect chainActive's tip. You probably want to call
* mempool.removeForReorg and manually re-limit mempool size after this, with
* cs_main held. */
bool static DisconnectTip(CValidationState &state,
const CChainParams &chainparams, bool fBare = false) {
CBlockIndex *pindexDelete = chainActive.Tip();
assert(pindexDelete);
// Read block from disk.
CBlock block;
if (!ReadBlockFromDisk(block, pindexDelete, chainparams.GetConsensus()))
return AbortNode(state, "Failed to read block");
// Apply the block atomically to the chain state.
int64_t nStart = GetTimeMicros();
{
CCoinsViewCache view(pcoinsTip);
if (!DisconnectBlock(block, state, pindexDelete, view))
return error("DisconnectTip(): DisconnectBlock %s failed",
pindexDelete->GetBlockHash().ToString());
bool flushed = view.Flush();
assert(flushed);
}
LogPrint("bench", "- Disconnect block: %.2fms\n",
(GetTimeMicros() - nStart) * 0.001);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED)) return false;
if (!fBare) {
// Resurrect mempool transactions from the disconnected block.
std::vector<uint256> vHashUpdate;
for (const auto &it : block.vtx) {
const CTransaction &tx = *it;
// ignore validation errors in resurrected transactions
CValidationState stateDummy;
if (tx.IsCoinBase() ||
!AcceptToMemoryPool(mempool, stateDummy, it, false, NULL, NULL,
true)) {
mempool.removeRecursive(tx, MemPoolRemovalReason::REORG);
} else if (mempool.exists(tx.GetId())) {
vHashUpdate.push_back(tx.GetId());
}
}
// AcceptToMemoryPool/addUnchecked all assume that new mempool entries
// have
// no in-mempool children, which is generally not true when adding
// previously-confirmed transactions back to the mempool.
// UpdateTransactionsFromBlock finds descendants of any transactions in
// this
// block that were added back and cleans up the mempool state.
mempool.UpdateTransactionsFromBlock(vHashUpdate);
}
// Update chainActive and related variables.
UpdateTip(pindexDelete->pprev, chainparams);
// Let wallets know transactions went from 1-confirmed to
// 0-confirmed or conflicted:
for (const auto &tx : block.vtx) {
GetMainSignals().SyncTransaction(
*tx, pindexDelete->pprev,
CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK);
}
return true;
}
static int64_t nTimeReadFromDisk = 0;
static int64_t nTimeConnectTotal = 0;
static int64_t nTimeFlush = 0;
static int64_t nTimeChainState = 0;
static int64_t nTimePostConnect = 0;
/**
* Used to track blocks whose transactions were applied to the UTXO state as a
* part of a single ActivateBestChainStep call.
*/
struct ConnectTrace {
std::vector<std::pair<CBlockIndex *, std::shared_ptr<const CBlock>>>
blocksConnected;
};
/**
* Connect a new block to chainActive. pblock is either NULL or a pointer to a
* CBlock corresponding to pindexNew, to bypass loading it again from disk.
*
* The block is always added to connectTrace (either after loading from disk or
* by copying pblock) - if that is not intended, care must be taken to remove
* the last entry in blocksConnected in case of failure.
*/
bool static ConnectTip(const Config &config, CValidationState &state,
const CChainParams &chainparams, CBlockIndex *pindexNew,
const std::shared_ptr<const CBlock> &pblock,
ConnectTrace &connectTrace) {
assert(pindexNew->pprev == chainActive.Tip());
// Read block from disk.
int64_t nTime1 = GetTimeMicros();
if (!pblock) {
std::shared_ptr<CBlock> pblockNew = std::make_shared<CBlock>();
connectTrace.blocksConnected.emplace_back(pindexNew, pblockNew);
if (!ReadBlockFromDisk(*pblockNew, pindexNew,
chainparams.GetConsensus()))
return AbortNode(state, "Failed to read block");
} else {
connectTrace.blocksConnected.emplace_back(pindexNew, pblock);
}
const CBlock &blockConnecting = *connectTrace.blocksConnected.back().second;
// Apply the block atomically to the chain state.
int64_t nTime2 = GetTimeMicros();
nTimeReadFromDisk += nTime2 - nTime1;
int64_t nTime3;
LogPrint("bench", " - Load block from disk: %.2fms [%.2fs]\n",
(nTime2 - nTime1) * 0.001, nTimeReadFromDisk * 0.000001);
{
CCoinsViewCache view(pcoinsTip);
bool rv = ConnectBlock(config, blockConnecting, state, pindexNew, view,
chainparams);
GetMainSignals().BlockChecked(blockConnecting, state);
if (!rv) {
if (state.IsInvalid()) InvalidBlockFound(pindexNew, state);
return error("ConnectTip(): ConnectBlock %s failed",
pindexNew->GetBlockHash().ToString());
}
nTime3 = GetTimeMicros();
nTimeConnectTotal += nTime3 - nTime2;
LogPrint("bench", " - Connect total: %.2fms [%.2fs]\n",
(nTime3 - nTime2) * 0.001, nTimeConnectTotal * 0.000001);
bool flushed = view.Flush();
assert(flushed);
}
int64_t nTime4 = GetTimeMicros();
nTimeFlush += nTime4 - nTime3;
LogPrint("bench", " - Flush: %.2fms [%.2fs]\n", (nTime4 - nTime3) * 0.001,
nTimeFlush * 0.000001);
// Write the chain state to disk, if necessary.
if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED)) return false;
int64_t nTime5 = GetTimeMicros();
nTimeChainState += nTime5 - nTime4;
LogPrint("bench", " - Writing chainstate: %.2fms [%.2fs]\n",
(nTime5 - nTime4) * 0.001, nTimeChainState * 0.000001);
// Remove conflicting transactions from the mempool.;
mempool.removeForBlock(blockConnecting.vtx, pindexNew->nHeight);
// Update chainActive & related variables.
UpdateTip(pindexNew, chainparams);
int64_t nTime6 = GetTimeMicros();
nTimePostConnect += nTime6 - nTime5;
nTimeTotal += nTime6 - nTime1;
LogPrint("bench", " - Connect postprocess: %.2fms [%.2fs]\n",
(nTime6 - nTime5) * 0.001, nTimePostConnect * 0.000001);
LogPrint("bench", "- Connect block: %.2fms [%.2fs]\n",
(nTime6 - nTime1) * 0.001, nTimeTotal * 0.000001);
return true;
}
/**
* Return the tip of the chain with the most work in it, that isn't
* known to be invalid (it's however far from certain to be valid).
*/
static CBlockIndex *FindMostWorkChain() {
do {
CBlockIndex *pindexNew = NULL;
// Find the best candidate header.
{
std::set<CBlockIndex *, CBlockIndexWorkComparator>::reverse_iterator
it = setBlockIndexCandidates.rbegin();
if (it == setBlockIndexCandidates.rend()) return NULL;
pindexNew = *it;
}
// Check whether all blocks on the path between the currently active
// chain and the candidate are valid. Just going until the active chain
// is an optimization, as we know all blocks in it are valid already.
CBlockIndex *pindexTest = pindexNew;
bool fInvalidAncestor = false;
while (pindexTest && !chainActive.Contains(pindexTest)) {
assert(pindexTest->nChainTx || pindexTest->nHeight == 0);
// Pruned nodes may have entries in setBlockIndexCandidates for
// which block files have been deleted. Remove those as candidates
// for the most work chain if we come across them; we can't switch
// to a chain unless we have all the non-active-chain parent blocks.
bool fFailedChain = pindexTest->nStatus & BLOCK_FAILED_MASK;
bool fMissingData = !(pindexTest->nStatus & BLOCK_HAVE_DATA);
if (fFailedChain || fMissingData) {
// Candidate chain is not usable (either invalid or missing
// data)
if (fFailedChain &&
(pindexBestInvalid == NULL ||
pindexNew->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindexNew;
CBlockIndex *pindexFailed = pindexNew;
// Remove the entire chain from the set.
while (pindexTest != pindexFailed) {
if (fFailedChain) {
pindexFailed->nStatus |= BLOCK_FAILED_CHILD;
} else if (fMissingData) {
// If we're missing data, then add back to
// mapBlocksUnlinked, so that if the block arrives in
// the future we can try adding to
// setBlockIndexCandidates again.
mapBlocksUnlinked.insert(
std::make_pair(pindexFailed->pprev, pindexFailed));
}
setBlockIndexCandidates.erase(pindexFailed);
pindexFailed = pindexFailed->pprev;
}
setBlockIndexCandidates.erase(pindexTest);
fInvalidAncestor = true;
break;
}
pindexTest = pindexTest->pprev;
}
if (!fInvalidAncestor) return pindexNew;
} while (true);
}
/** Delete all entries in setBlockIndexCandidates that are worse than the
* current tip. */
static void PruneBlockIndexCandidates() {
// Note that we can't delete the current block itself, as we may need to
// return to it later in case a reorganization to a better block fails.
std::set<CBlockIndex *, CBlockIndexWorkComparator>::iterator it =
setBlockIndexCandidates.begin();
while (it != setBlockIndexCandidates.end() &&
setBlockIndexCandidates.value_comp()(*it, chainActive.Tip())) {
setBlockIndexCandidates.erase(it++);
}
// Either the current tip or a successor of it we're working towards is left
// in setBlockIndexCandidates.
assert(!setBlockIndexCandidates.empty());
}
/**
* Try to make some progress towards making pindexMostWork the active block.
* pblock is either NULL or a pointer to a CBlock corresponding to
* pindexMostWork.
*/
static bool ActivateBestChainStep(const Config &config, CValidationState &state,
const CChainParams &chainparams,
CBlockIndex *pindexMostWork,
const std::shared_ptr<const CBlock> &pblock,
bool &fInvalidFound,
ConnectTrace &connectTrace) {
AssertLockHeld(cs_main);
const CBlockIndex *pindexOldTip = chainActive.Tip();
const CBlockIndex *pindexFork = chainActive.FindFork(pindexMostWork);
// Disconnect active blocks which are no longer in the best chain.
bool fBlocksDisconnected = false;
while (chainActive.Tip() && chainActive.Tip() != pindexFork) {
if (!DisconnectTip(state, chainparams)) return false;
fBlocksDisconnected = true;
}
// Build list of new blocks to connect.
std::vector<CBlockIndex *> vpindexToConnect;
bool fContinue = true;
int nHeight = pindexFork ? pindexFork->nHeight : -1;
while (fContinue && nHeight != pindexMostWork->nHeight) {
// Don't iterate the entire list of potential improvements toward the
// best tip, as we likely only need a few blocks along the way.
int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight);
vpindexToConnect.clear();
vpindexToConnect.reserve(nTargetHeight - nHeight);
CBlockIndex *pindexIter = pindexMostWork->GetAncestor(nTargetHeight);
while (pindexIter && pindexIter->nHeight != nHeight) {
vpindexToConnect.push_back(pindexIter);
pindexIter = pindexIter->pprev;
}
nHeight = nTargetHeight;
// Connect new blocks.
for (CBlockIndex *pindexConnect :
boost::adaptors::reverse(vpindexToConnect)) {
if (!ConnectTip(config, state, chainparams, pindexConnect,
pindexConnect == pindexMostWork
? pblock
: std::shared_ptr<const CBlock>(),
connectTrace)) {
if (state.IsInvalid()) {
// The block violates a consensus rule.
if (!state.CorruptionPossible())
InvalidChainFound(vpindexToConnect.back());
state = CValidationState();
fInvalidFound = true;
fContinue = false;
// If we didn't actually connect the block, don't notify
// listeners about it
connectTrace.blocksConnected.pop_back();
break;
} else {
// A system error occurred (disk space, database error,
// ...).
return false;
}
} else {
PruneBlockIndexCandidates();
if (!pindexOldTip ||
chainActive.Tip()->nChainWork > pindexOldTip->nChainWork) {
// We're in a better position than we were. Return
// temporarily to release the lock.
fContinue = false;
break;
}
}
}
}
if (fBlocksDisconnected) {
mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1,
STANDARD_LOCKTIME_VERIFY_FLAGS);
LimitMempoolSize(
mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000,
GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
}
mempool.check(pcoinsTip);
// Callbacks/notifications for a new best chain.
if (fInvalidFound)
CheckForkWarningConditionsOnNewFork(vpindexToConnect.back());
else
CheckForkWarningConditions();
return true;
}
static void NotifyHeaderTip() {
bool fNotify = false;
bool fInitialBlockDownload = false;
static CBlockIndex *pindexHeaderOld = NULL;
CBlockIndex *pindexHeader = NULL;
{
LOCK(cs_main);
pindexHeader = pindexBestHeader;
if (pindexHeader != pindexHeaderOld) {
fNotify = true;
fInitialBlockDownload = IsInitialBlockDownload();
pindexHeaderOld = pindexHeader;
}
}
// Send block tip changed notifications without cs_main
if (fNotify) {
uiInterface.NotifyHeaderTip(fInitialBlockDownload, pindexHeader);
}
}
/**
* Make the best chain active, in multiple steps. The result is either failure
* or an activated best chain. pblock is either NULL or a pointer to a block
* that is already loaded (to avoid loading it again from disk).
*/
bool ActivateBestChain(const Config &config, CValidationState &state,
const CChainParams &chainparams,
std::shared_ptr<const CBlock> pblock) {
// Note that while we're often called here from ProcessNewBlock, this is
// far from a guarantee. Things in the P2P/RPC will often end up calling
// us in the middle of ProcessNewBlock - do not assume pblock is set
// sanely for performance or correctness!
CBlockIndex *pindexMostWork = NULL;
CBlockIndex *pindexNewTip = NULL;
do {
boost::this_thread::interruption_point();
if (ShutdownRequested()) break;
const CBlockIndex *pindexFork;
ConnectTrace connectTrace;
bool fInitialDownload;
{
LOCK(cs_main);
{
// TODO: Tempoarily ensure that mempool removals are notified
// before connected transactions. This shouldn't matter, but the
// abandoned state of transactions in our wallet is currently
// cleared when we receive another notification and there is a
// race condition where notification of a connected conflict
// might cause an outside process to abandon a transaction and
// then have it inadvertantly cleared by the notification that
// the conflicted transaction was evicted.
MemPoolConflictRemovalTracker mrt(mempool);
CBlockIndex *pindexOldTip = chainActive.Tip();
if (pindexMostWork == NULL) {
pindexMostWork = FindMostWorkChain();
}
// Whether we have anything to do at all.
if (pindexMostWork == NULL ||
pindexMostWork == chainActive.Tip())
return true;
bool fInvalidFound = false;
std::shared_ptr<const CBlock> nullBlockPtr;
if (!ActivateBestChainStep(
config, state, chainparams, pindexMostWork,
pblock &&
pblock->GetHash() ==
pindexMostWork->GetBlockHash()
? pblock
: nullBlockPtr,
fInvalidFound, connectTrace))
return false;
if (fInvalidFound) {
// Wipe cache, we may need another branch now.
pindexMostWork = NULL;
}
pindexNewTip = chainActive.Tip();
pindexFork = chainActive.FindFork(pindexOldTip);
fInitialDownload = IsInitialBlockDownload();
// throw all transactions though the signal-interface
} // MemPoolConflictRemovalTracker destroyed and conflict evictions
// are notified
// Transactions in the connnected block are notified
for (const auto &pair : connectTrace.blocksConnected) {
assert(pair.second);
const CBlock &block = *(pair.second);
for (unsigned int i = 0; i < block.vtx.size(); i++)
GetMainSignals().SyncTransaction(*block.vtx[i], pair.first,
i);
}
}
// When we reach this point, we switched to a new tip (stored in
// pindexNewTip).
// Notifications/callbacks that can run without cs_main
// Notify external listeners about the new tip.
GetMainSignals().UpdatedBlockTip(pindexNewTip, pindexFork,
fInitialDownload);
// Always notify the UI if a new block tip was connected
if (pindexFork != pindexNewTip) {
uiInterface.NotifyBlockTip(fInitialDownload, pindexNewTip);
}
} while (pindexNewTip != pindexMostWork);
CheckBlockIndex(chainparams.GetConsensus());
// Write changes periodically to disk, after relay.
if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC)) {
return false;
}
return true;
}
bool PreciousBlock(const Config &config, CValidationState &state,
const CChainParams &params, CBlockIndex *pindex) {
{
LOCK(cs_main);
if (pindex->nChainWork < chainActive.Tip()->nChainWork) {
// Nothing to do, this block is not at the tip.
return true;
}
if (chainActive.Tip()->nChainWork > nLastPreciousChainwork) {
// The chain has been extended since the last call, reset the
// counter.
nBlockReverseSequenceId = -1;
}
nLastPreciousChainwork = chainActive.Tip()->nChainWork;
setBlockIndexCandidates.erase(pindex);
pindex->nSequenceId = nBlockReverseSequenceId;
if (nBlockReverseSequenceId > std::numeric_limits<int32_t>::min()) {
// We can't keep reducing the counter if somebody really wants to
// call preciousblock 2**31-1 times on the same set of tips...
nBlockReverseSequenceId--;
}
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && pindex->nChainTx) {
setBlockIndexCandidates.insert(pindex);
PruneBlockIndexCandidates();
}
}
return ActivateBestChain(config, state, params);
}
bool InvalidateBlock(CValidationState &state, const CChainParams &chainparams,
CBlockIndex *pindex) {
AssertLockHeld(cs_main);
// Mark the block itself as invalid.
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
setBlockIndexCandidates.erase(pindex);
while (chainActive.Contains(pindex)) {
CBlockIndex *pindexWalk = chainActive.Tip();
pindexWalk->nStatus |= BLOCK_FAILED_CHILD;
setDirtyBlockIndex.insert(pindexWalk);
setBlockIndexCandidates.erase(pindexWalk);
// ActivateBestChain considers blocks already in chainActive
// unconditionally valid already, so force disconnect away from it.
if (!DisconnectTip(state, chainparams)) {
mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1,
STANDARD_LOCKTIME_VERIFY_FLAGS);
return false;
}
}
LimitMempoolSize(
mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000,
GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
// The resulting new best tip may not be in setBlockIndexCandidates anymore,
// so
// add it again.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) &&
it->second->nChainTx &&
!setBlockIndexCandidates.value_comp()(it->second,
chainActive.Tip())) {
setBlockIndexCandidates.insert(it->second);
}
it++;
}
InvalidChainFound(pindex);
mempool.removeForReorg(pcoinsTip, chainActive.Tip()->nHeight + 1,
STANDARD_LOCKTIME_VERIFY_FLAGS);
uiInterface.NotifyBlockTip(IsInitialBlockDownload(), pindex->pprev);
return true;
}
bool ResetBlockFailureFlags(CBlockIndex *pindex) {
AssertLockHeld(cs_main);
int nHeight = pindex->nHeight;
// Remove the invalidity flag from this block and all its descendants.
BlockMap::iterator it = mapBlockIndex.begin();
while (it != mapBlockIndex.end()) {
if (!it->second->IsValid() &&
it->second->GetAncestor(nHeight) == pindex) {
it->second->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(it->second);
if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) &&
it->second->nChainTx &&
setBlockIndexCandidates.value_comp()(chainActive.Tip(),
it->second)) {
setBlockIndexCandidates.insert(it->second);
}
if (it->second == pindexBestInvalid) {
// Reset invalid block marker if it was pointing to one of
// those.
pindexBestInvalid = NULL;
}
}
it++;
}
// Remove the invalidity flag from all ancestors too.
while (pindex != NULL) {
if (pindex->nStatus & BLOCK_FAILED_MASK) {
pindex->nStatus &= ~BLOCK_FAILED_MASK;
setDirtyBlockIndex.insert(pindex);
}
pindex = pindex->pprev;
}
return true;
}
CBlockIndex *AddToBlockIndex(const CBlockHeader &block) {
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator it = mapBlockIndex.find(hash);
if (it != mapBlockIndex.end()) return it->second;
// Construct new block index object
CBlockIndex *pindexNew = new CBlockIndex(block);
assert(pindexNew);
// We assign the sequence id to blocks only when the full data is available,
// to avoid miners withholding blocks but broadcasting headers, to get a
// competitive advantage.
pindexNew->nSequenceId = 0;
BlockMap::iterator mi =
mapBlockIndex.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
BlockMap::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock);
if (miPrev != mapBlockIndex.end()) {
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
pindexNew->BuildSkip();
}
pindexNew->nTimeMax =
(pindexNew->pprev
? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime)
: pindexNew->nTime);
pindexNew->nChainWork =
(pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) +
GetBlockProof(*pindexNew);
pindexNew->RaiseValidity(BLOCK_VALID_TREE);
if (pindexBestHeader == NULL ||
pindexBestHeader->nChainWork < pindexNew->nChainWork)
pindexBestHeader = pindexNew;
setDirtyBlockIndex.insert(pindexNew);
return pindexNew;
}
/** Mark a block as having its data received and checked (up to
* BLOCK_VALID_TRANSACTIONS). */
bool ReceivedBlockTransactions(const CBlock &block, CValidationState &state,
CBlockIndex *pindexNew,
const CDiskBlockPos &pos) {
pindexNew->nTx = block.vtx.size();
pindexNew->nChainTx = 0;
pindexNew->nFile = pos.nFile;
pindexNew->nDataPos = pos.nPos;
pindexNew->nUndoPos = 0;
pindexNew->nStatus |= BLOCK_HAVE_DATA;
pindexNew->RaiseValidity(BLOCK_VALID_TRANSACTIONS);
setDirtyBlockIndex.insert(pindexNew);
if (pindexNew->pprev == NULL || pindexNew->pprev->nChainTx) {
// If pindexNew is the genesis block or all parents are
// BLOCK_VALID_TRANSACTIONS.
std::deque<CBlockIndex *> queue;
queue.push_back(pindexNew);
// Recursively process any descendant blocks that now may be eligible to
// be connected.
while (!queue.empty()) {
CBlockIndex *pindex = queue.front();
queue.pop_front();
pindex->nChainTx =
(pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx;
{
LOCK(cs_nBlockSequenceId);
pindex->nSequenceId = nBlockSequenceId++;
}
if (chainActive.Tip() == NULL ||
!setBlockIndexCandidates.value_comp()(pindex,
chainActive.Tip())) {
setBlockIndexCandidates.insert(pindex);
}
std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator,
std::multimap<CBlockIndex *, CBlockIndex *>::iterator>
range = mapBlocksUnlinked.equal_range(pindex);
while (range.first != range.second) {
std::multimap<CBlockIndex *, CBlockIndex *>::iterator it =
range.first;
queue.push_back(it->second);
range.first++;
mapBlocksUnlinked.erase(it);
}
}
} else {
if (pindexNew->pprev && pindexNew->pprev->IsValid(BLOCK_VALID_TREE)) {
mapBlocksUnlinked.insert(
std::make_pair(pindexNew->pprev, pindexNew));
}
}
return true;
}
bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos,
unsigned int nAddSize, unsigned int nHeight, uint64_t nTime,
bool fKnown = false) {
LOCK(cs_LastBlockFile);
unsigned int nFile = fKnown ? pos.nFile : nLastBlockFile;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
if (!fKnown) {
while (vinfoBlockFile[nFile].nSize + nAddSize >= MAX_BLOCKFILE_SIZE) {
nFile++;
if (vinfoBlockFile.size() <= nFile) {
vinfoBlockFile.resize(nFile + 1);
}
}
pos.nFile = nFile;
pos.nPos = vinfoBlockFile[nFile].nSize;
}
if ((int)nFile != nLastBlockFile) {
if (!fKnown) {
LogPrintf("Leaving block file %i: %s\n", nLastBlockFile,
vinfoBlockFile[nLastBlockFile].ToString());
}
FlushBlockFile(!fKnown);
nLastBlockFile = nFile;
}
vinfoBlockFile[nFile].AddBlock(nHeight, nTime);
if (fKnown)
vinfoBlockFile[nFile].nSize =
std::max(pos.nPos + nAddSize, vinfoBlockFile[nFile].nSize);
else
vinfoBlockFile[nFile].nSize += nAddSize;
if (!fKnown) {
unsigned int nOldChunks =
(pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE;
unsigned int nNewChunks =
(vinfoBlockFile[nFile].nSize + BLOCKFILE_CHUNK_SIZE - 1) /
BLOCKFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (fPruneMode) fCheckForPruning = true;
if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenBlockFile(pos);
if (file) {
LogPrintf(
"Pre-allocating up to position 0x%x in blk%05u.dat\n",
nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos,
nNewChunks * BLOCKFILE_CHUNK_SIZE -
pos.nPos);
fclose(file);
}
} else
return state.Error("out of disk space");
}
}
setDirtyFileInfo.insert(nFile);
return true;
}
bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos,
unsigned int nAddSize) {
pos.nFile = nFile;
LOCK(cs_LastBlockFile);
unsigned int nNewSize;
pos.nPos = vinfoBlockFile[nFile].nUndoSize;
nNewSize = vinfoBlockFile[nFile].nUndoSize += nAddSize;
setDirtyFileInfo.insert(nFile);
unsigned int nOldChunks =
(pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
unsigned int nNewChunks =
(nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE;
if (nNewChunks > nOldChunks) {
if (fPruneMode) fCheckForPruning = true;
if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) {
FILE *file = OpenUndoFile(pos);
if (file) {
LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n",
nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile);
AllocateFileRange(file, pos.nPos,
nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos);
fclose(file);
}
} else
return state.Error("out of disk space");
}
return true;
}
bool CheckBlockHeader(const CBlockHeader &block, CValidationState &state,
const Consensus::Params &consensusParams,
bool fCheckPOW) {
// Check proof of work matches claimed amount
if (fCheckPOW &&
!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams))
return state.DoS(50, false, REJECT_INVALID, "high-hash", false,
"proof of work failed");
return true;
}
bool CheckBlock(const Config &config, const CBlock &block,
CValidationState &state,
const Consensus::Params &consensusParams, bool fCheckPOW,
bool fCheckMerkleRoot) {
// These are checks that are independent of context.
if (block.fChecked) return true;
// Check that the header is valid (particularly PoW). This is mostly
// redundant with the call in AcceptBlockHeader.
if (!CheckBlockHeader(block, state, consensusParams, fCheckPOW))
return false;
// Check the merkle root.
if (fCheckMerkleRoot) {
bool mutated;
uint256 hashMerkleRoot2 = BlockMerkleRoot(block, &mutated);
if (block.hashMerkleRoot != hashMerkleRoot2)
return state.DoS(100, false, REJECT_INVALID, "bad-txnmrklroot",
true, "hashMerkleRoot mismatch");
// Check for merkle tree malleability (CVE-2012-2459): repeating
// sequences of transactions in a block without affecting the merkle
// root of a block, while still invalidating it.
if (mutated)
return state.DoS(100, false, REJECT_INVALID, "bad-txns-duplicate",
true, "duplicate transaction");
}
// All potential-corruption validation must be done before we do any
// transaction validation, as otherwise we may mark the header as invalid
// because we receive the wrong transactions for it.
// First transaction must be coinbase.
if (block.vtx.empty()) {
return state.DoS(100, false, REJECT_INVALID, "bad-cb-missing", false,
"first tx is not coinbase");
}
// Size limits.
auto nMaxBlockSize = config.GetMaxBlockSize();
// Bail early if there is no way this block is of reasonable size.
if ((block.vtx.size() * MIN_TRANSACTION_SIZE) > nMaxBlockSize) {
return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false,
"size limits failed");
}
auto currentBlockSize =
::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION);
if (currentBlockSize > nMaxBlockSize) {
return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false,
"size limits failed");
}
// And a valid coinbase.
if (!CheckCoinbase(*block.vtx[0], state, false)) {
return state.Invalid(false, state.GetRejectCode(),
state.GetRejectReason(),
strprintf("Coinbase check failed (txid %s) %s",
block.vtx[0]->GetId().ToString(),
state.GetDebugMessage()));
}
// Keep track of the sigops count.
uint64_t nSigOps = 0;
auto nMaxSigOpsCount = GetMaxBlockSigOpsCount(currentBlockSize);
// Check transactions
auto txCount = block.vtx.size();
auto *tx = block.vtx[0].get();
size_t i = 0;
while (true) {
// Count the sigops for the current transaction. If the total sigops
// count is too high, the the block is invalid.
nSigOps += GetSigOpCountWithoutP2SH(*tx);
if (nSigOps > nMaxSigOpsCount) {
return state.DoS(100, false, REJECT_INVALID, "bad-blk-sigops",
false, "out-of-bounds SigOpCount");
}
// Go to the next transaction.
i++;
// We reached the end of the block, success.
if (i >= txCount) break;
// Check that the transaction is valid. because this check differs for
// the coinbase, the loos is arranged such as this only runs after at
// least one increment.
tx = block.vtx[i].get();
if (!CheckRegularTransaction(*tx, state, false)) {
return state.Invalid(
false, state.GetRejectCode(), state.GetRejectReason(),
strprintf("Transaction check failed (txid %s) %s",
tx->GetId().ToString(), state.GetDebugMessage()));
}
}
if (fCheckPOW && fCheckMerkleRoot) {
block.fChecked = true;
}
return true;
}
static bool CheckIndexAgainstCheckpoint(const CBlockIndex *pindexPrev,
CValidationState &state,
const CChainParams &chainparams,
const uint256 &hash) {
if (*pindexPrev->phashBlock == chainparams.GetConsensus().hashGenesisBlock)
return true;
int nHeight = pindexPrev->nHeight + 1;
// Don't accept any forks from the main chain prior to last checkpoint
CBlockIndex *pcheckpoint =
Checkpoints::GetLastCheckpoint(chainparams.Checkpoints());
if (pcheckpoint && nHeight < pcheckpoint->nHeight)
return state.DoS(
100,
error("%s: forked chain older than last checkpoint (height %d)",
__func__, nHeight));
return true;
}
bool ContextualCheckBlockHeader(const CBlockHeader &block,
CValidationState &state,
const Consensus::Params &consensusParams,
const CBlockIndex *pindexPrev,
int64_t nAdjustedTime) {
const int nHeight = pindexPrev == NULL ? 0 : pindexPrev->nHeight + 1;
// Check proof of work
if (block.nBits != GetNextWorkRequired(pindexPrev, &block, consensusParams))
return state.DoS(100, false, REJECT_INVALID, "bad-diffbits", false,
"incorrect proof of work");
// Check timestamp against prev
if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast())
return state.Invalid(false, REJECT_INVALID, "time-too-old",
"block's timestamp is too early");
// Check timestamp
if (block.GetBlockTime() > nAdjustedTime + 2 * 60 * 60)
return state.Invalid(false, REJECT_INVALID, "time-too-new",
"block timestamp too far in the future");
// Reject outdated version blocks when 95% (75% on testnet) of the network
// has upgraded:
// check for version 2, 3 and 4 upgrades
if ((block.nVersion < 2 && nHeight >= consensusParams.BIP34Height) ||
(block.nVersion < 3 && nHeight >= consensusParams.BIP66Height) ||
(block.nVersion < 4 && nHeight >= consensusParams.BIP65Height))
return state.Invalid(
false, REJECT_OBSOLETE,
strprintf("bad-version(0x%08x)", block.nVersion),
strprintf("rejected nVersion=0x%08x block", block.nVersion));
return true;
}
bool ContextualCheckBlock(const CBlock &block, CValidationState &state,
const Consensus::Params &consensusParams,
const CBlockIndex *pindexPrev) {
const int nHeight = pindexPrev == NULL ? 0 : pindexPrev->nHeight + 1;
// Start enforcing BIP113 (Median Time Past) using versionbits logic.
int nLockTimeFlags = 0;
if (VersionBitsState(pindexPrev, consensusParams, Consensus::DEPLOYMENT_CSV,
versionbitscache) == THRESHOLD_ACTIVE) {
nLockTimeFlags |= LOCKTIME_MEDIAN_TIME_PAST;
}
int64_t nLockTimeCutoff = (nLockTimeFlags & LOCKTIME_MEDIAN_TIME_PAST)
? pindexPrev->GetMedianTimePast()
: block.GetBlockTime();
// Check that all transactions are finalized
for (const auto &tx : block.vtx) {
if (!IsFinalTx(*tx, nHeight, nLockTimeCutoff)) {
return state.DoS(10, false, REJECT_INVALID, "bad-txns-nonfinal",
false, "non-final transaction");
}
}
// Enforce rule that the coinbase starts with serialized block height
if (nHeight >= consensusParams.BIP34Height) {
CScript expect = CScript() << nHeight;
if (block.vtx[0]->vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(),
block.vtx[0]->vin[0].scriptSig.begin())) {
return state.DoS(100, false, REJECT_INVALID, "bad-cb-height", false,
"block height mismatch in coinbase");
}
}
return true;
}
static bool AcceptBlockHeader(const CBlockHeader &block,
CValidationState &state,
const CChainParams &chainparams,
CBlockIndex **ppindex) {
AssertLockHeld(cs_main);
// Check for duplicate
uint256 hash = block.GetHash();
BlockMap::iterator miSelf = mapBlockIndex.find(hash);
CBlockIndex *pindex = NULL;
if (hash != chainparams.GetConsensus().hashGenesisBlock) {
if (miSelf != mapBlockIndex.end()) {
// Block header is already known.
pindex = miSelf->second;
if (ppindex) *ppindex = pindex;
if (pindex->nStatus & BLOCK_FAILED_MASK)
return state.Invalid(error("%s: block %s is marked invalid",
__func__, hash.ToString()),
0, "duplicate");
return true;
}
if (!CheckBlockHeader(block, state, chainparams.GetConsensus()))
return error("%s: Consensus::CheckBlockHeader: %s, %s", __func__,
hash.ToString(), FormatStateMessage(state));
// Get prev block index
CBlockIndex *pindexPrev = NULL;
BlockMap::iterator mi = mapBlockIndex.find(block.hashPrevBlock);
if (mi == mapBlockIndex.end())
return state.DoS(10, error("%s: prev block not found", __func__), 0,
"bad-prevblk");
pindexPrev = (*mi).second;
if (pindexPrev->nStatus & BLOCK_FAILED_MASK)
return state.DoS(100, error("%s: prev block invalid", __func__),
REJECT_INVALID, "bad-prevblk");
assert(pindexPrev);
if (fCheckpointsEnabled &&
!CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams, hash))
return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__,
state.GetRejectReason().c_str());
if (!ContextualCheckBlockHeader(block, state,
chainparams.GetConsensus(), pindexPrev,
GetAdjustedTime()))
return error("%s: Consensus::ContextualCheckBlockHeader: %s, %s",
__func__, hash.ToString(), FormatStateMessage(state));
}
if (pindex == NULL) pindex = AddToBlockIndex(block);
if (ppindex) *ppindex = pindex;
CheckBlockIndex(chainparams.GetConsensus());
return true;
}
// Exposed wrapper for AcceptBlockHeader
bool ProcessNewBlockHeaders(const std::vector<CBlockHeader> &headers,
CValidationState &state,
const CChainParams &chainparams,
const CBlockIndex **ppindex) {
{
LOCK(cs_main);
for (const CBlockHeader &header : headers) {
CBlockIndex *pindex = NULL; // Use a temp pindex instead of ppindex
// to avoid a const_cast
if (!AcceptBlockHeader(header, state, chainparams, &pindex)) {
return false;
}
if (ppindex) {
*ppindex = pindex;
}
}
}
NotifyHeaderTip();
return true;
}
/** Store block on disk. If dbp is non-NULL, the file is known to already reside
* on disk */
static bool AcceptBlock(const Config &config,
const std::shared_ptr<const CBlock> &pblock,
CValidationState &state,
const CChainParams &chainparams, CBlockIndex **ppindex,
bool fRequested, const CDiskBlockPos *dbp,
bool *fNewBlock) {
const CBlock &block = *pblock;
if (fNewBlock) *fNewBlock = false;
AssertLockHeld(cs_main);
CBlockIndex *pindexDummy = NULL;
CBlockIndex *&pindex = ppindex ? *ppindex : pindexDummy;
if (!AcceptBlockHeader(block, state, chainparams, &pindex)) return false;
// Try to process all requested blocks that we don't have, but only
// process an unrequested block if it's new and has enough work to
// advance our tip, and isn't too many blocks ahead.
bool fAlreadyHave = pindex->nStatus & BLOCK_HAVE_DATA;
bool fHasMoreWork =
(chainActive.Tip() ? pindex->nChainWork > chainActive.Tip()->nChainWork
: true);
// Blocks that are too out-of-order needlessly limit the effectiveness of
// pruning, because pruning will not delete block files that contain any
// blocks which are too close in height to the tip. Apply this test
// regardless of whether pruning is enabled; it should generally be safe to
// not process unrequested blocks.
bool fTooFarAhead =
(pindex->nHeight > int(chainActive.Height() + MIN_BLOCKS_TO_KEEP));
// TODO: Decouple this function from the block download logic by removing
// fRequested
// This requires some new chain datastructure to efficiently look up if a
// block is in a chain leading to a candidate for best tip, despite not
// being such a candidate itself.
// TODO: deal better with return value and error conditions for duplicate
// and unrequested blocks.
if (fAlreadyHave) {
return true;
}
// If we didn't ask for it:
if (!fRequested) {
// This is a previously-processed block that was pruned.
if (pindex->nTx != 0) return true;
// Don't process less-work chains.
if (!fHasMoreWork) return true;
// Block height is too high.
if (fTooFarAhead) return true;
}
if (fNewBlock) {
*fNewBlock = true;
}
if (!CheckBlock(config, block, state, chainparams.GetConsensus()) ||
!ContextualCheckBlock(block, state, chainparams.GetConsensus(),
pindex->pprev)) {
if (state.IsInvalid() && !state.CorruptionPossible()) {
pindex->nStatus |= BLOCK_FAILED_VALID;
setDirtyBlockIndex.insert(pindex);
}
return error("%s: %s", __func__, FormatStateMessage(state));
}
// Header is valid/has work, merkle tree and segwit merkle tree are
// good...RELAY NOW (but if it does not build on our best tip, let the
// SendMessages loop relay it)
if (!IsInitialBlockDownload() && chainActive.Tip() == pindex->pprev)
GetMainSignals().NewPoWValidBlock(pindex, pblock);
int nHeight = pindex->nHeight;
// Write block to history file
try {
unsigned int nBlockSize =
::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
if (dbp != NULL) blockPos = *dbp;
if (!FindBlockPos(state, blockPos, nBlockSize + 8, nHeight,
block.GetBlockTime(), dbp != NULL))
return error("AcceptBlock(): FindBlockPos failed");
if (dbp == NULL)
if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart()))
AbortNode(state, "Failed to write block");
if (!ReceivedBlockTransactions(block, state, pindex, blockPos))
return error("AcceptBlock(): ReceivedBlockTransactions failed");
} catch (const std::runtime_error &e) {
return AbortNode(state, std::string("System error: ") + e.what());
}
if (fCheckForPruning) {
// we just allocated more disk space for block files.
FlushStateToDisk(state, FLUSH_STATE_NONE);
}
return true;
}
bool ProcessNewBlock(const Config &config, const CChainParams &chainparams,
const std::shared_ptr<const CBlock> pblock,
bool fForceProcessing, bool *fNewBlock) {
{
CBlockIndex *pindex = NULL;
if (fNewBlock) *fNewBlock = false;
CValidationState state;
// Ensure that CheckBlock() passes before calling AcceptBlock, as
// belt-and-suspenders.
bool ret =
CheckBlock(config, *pblock, state, chainparams.GetConsensus());
LOCK(cs_main);
if (ret) {
// Store to disk
ret = AcceptBlock(config, pblock, state, chainparams, &pindex,
fForceProcessing, NULL, fNewBlock);
}
CheckBlockIndex(chainparams.GetConsensus());
if (!ret) {
GetMainSignals().BlockChecked(*pblock, state);
return error("%s: AcceptBlock FAILED", __func__);
}
}
NotifyHeaderTip();
CValidationState
state; // Only used to report errors, not invalidity - ignore it
if (!ActivateBestChain(config, state, chainparams, pblock))
return error("%s: ActivateBestChain failed", __func__);
return true;
}
bool TestBlockValidity(const Config &config, CValidationState &state,
const CChainParams &chainparams, const CBlock &block,
CBlockIndex *pindexPrev, bool fCheckPOW,
bool fCheckMerkleRoot) {
AssertLockHeld(cs_main);
assert(pindexPrev && pindexPrev == chainActive.Tip());
if (fCheckpointsEnabled &&
!CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams,
block.GetHash()))
return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__,
state.GetRejectReason().c_str());
CCoinsViewCache viewNew(pcoinsTip);
CBlockIndex indexDummy(block);
indexDummy.pprev = pindexPrev;
indexDummy.nHeight = pindexPrev->nHeight + 1;
// NOTE: CheckBlockHeader is called by CheckBlock
if (!ContextualCheckBlockHeader(block, state, chainparams.GetConsensus(),
pindexPrev, GetAdjustedTime()))
return error("%s: Consensus::ContextualCheckBlockHeader: %s", __func__,
FormatStateMessage(state));
if (!CheckBlock(config, block, state, chainparams.GetConsensus(), fCheckPOW,
fCheckMerkleRoot))
return error("%s: Consensus::CheckBlock: %s", __func__,
FormatStateMessage(state));
if (!ContextualCheckBlock(block, state, chainparams.GetConsensus(),
pindexPrev))
return error("%s: Consensus::ContextualCheckBlock: %s", __func__,
FormatStateMessage(state));
if (!ConnectBlock(config, block, state, &indexDummy, viewNew, chainparams,
true))
return false;
assert(state.IsValid());
return true;
}
/**
* BLOCK PRUNING CODE
*/
/* Calculate the amount of disk space the block & undo files currently use */
uint64_t CalculateCurrentUsage() {
uint64_t retval = 0;
for (const CBlockFileInfo &file : vinfoBlockFile) {
retval += file.nSize + file.nUndoSize;
}
return retval;
}
/* Prune a block file (modify associated database entries)*/
void PruneOneBlockFile(const int fileNumber) {
for (BlockMap::iterator it = mapBlockIndex.begin();
it != mapBlockIndex.end(); ++it) {
CBlockIndex *pindex = it->second;
if (pindex->nFile == fileNumber) {
pindex->nStatus &= ~BLOCK_HAVE_DATA;
pindex->nStatus &= ~BLOCK_HAVE_UNDO;
pindex->nFile = 0;
pindex->nDataPos = 0;
pindex->nUndoPos = 0;
setDirtyBlockIndex.insert(pindex);
// Prune from mapBlocksUnlinked -- any block we prune would have
// to be downloaded again in order to consider its chain, at which
// point it would be considered as a candidate for
// mapBlocksUnlinked or setBlockIndexCandidates.
std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator,
std::multimap<CBlockIndex *, CBlockIndex *>::iterator>
range = mapBlocksUnlinked.equal_range(pindex->pprev);
while (range.first != range.second) {
std::multimap<CBlockIndex *, CBlockIndex *>::iterator _it =
range.first;
range.first++;
if (_it->second == pindex) {
mapBlocksUnlinked.erase(_it);
}
}
}
}
vinfoBlockFile[fileNumber].SetNull();
setDirtyFileInfo.insert(fileNumber);
}
void UnlinkPrunedFiles(const std::set<int> &setFilesToPrune) {
for (std::set<int>::iterator it = setFilesToPrune.begin();
it != setFilesToPrune.end(); ++it) {
CDiskBlockPos pos(*it, 0);
boost::filesystem::remove(GetBlockPosFilename(pos, "blk"));
boost::filesystem::remove(GetBlockPosFilename(pos, "rev"));
LogPrintf("Prune: %s deleted blk/rev (%05u)\n", __func__, *it);
}
}
/* Calculate the block/rev files to delete based on height specified by user
* with RPC command pruneblockchain */
void FindFilesToPruneManual(std::set<int> &setFilesToPrune,
int nManualPruneHeight) {
assert(fPruneMode && nManualPruneHeight > 0);
LOCK2(cs_main, cs_LastBlockFile);
if (chainActive.Tip() == NULL) return;
// last block to prune is the lesser of (user-specified height,
// MIN_BLOCKS_TO_KEEP from the tip)
unsigned int nLastBlockWeCanPrune =
std::min((unsigned)nManualPruneHeight,
chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP);
int count = 0;
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
if (vinfoBlockFile[fileNumber].nSize == 0 ||
vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune)
continue;
PruneOneBlockFile(fileNumber);
setFilesToPrune.insert(fileNumber);
count++;
}
LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n",
nLastBlockWeCanPrune, count);
}
/* This function is called from the RPC code for pruneblockchain */
void PruneBlockFilesManual(int nManualPruneHeight) {
CValidationState state;
FlushStateToDisk(state, FLUSH_STATE_NONE, nManualPruneHeight);
}
/* Calculate the block/rev files that should be deleted to remain under target*/
void FindFilesToPrune(std::set<int> &setFilesToPrune,
uint64_t nPruneAfterHeight) {
LOCK2(cs_main, cs_LastBlockFile);
if (chainActive.Tip() == NULL || nPruneTarget == 0) {
return;
}
if ((uint64_t)chainActive.Tip()->nHeight <= nPruneAfterHeight) {
return;
}
unsigned int nLastBlockWeCanPrune =
chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP;
uint64_t nCurrentUsage = CalculateCurrentUsage();
// We don't check to prune until after we've allocated new space for files,
// so we should leave a buffer under our target to account for another
// allocation before the next pruning.
uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
uint64_t nBytesToPrune;
int count = 0;
if (nCurrentUsage + nBuffer >= nPruneTarget) {
for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) {
nBytesToPrune = vinfoBlockFile[fileNumber].nSize +
vinfoBlockFile[fileNumber].nUndoSize;
if (vinfoBlockFile[fileNumber].nSize == 0) continue;
if (nCurrentUsage + nBuffer <
nPruneTarget) // are we below our target?
break;
// don't prune files that could have a block within
// MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune)
continue;
PruneOneBlockFile(fileNumber);
// Queue up the files for removal
setFilesToPrune.insert(fileNumber);
nCurrentUsage -= nBytesToPrune;
count++;
}
}
LogPrint("prune", "Prune: target=%dMiB actual=%dMiB diff=%dMiB "
"max_prune_height=%d removed %d blk/rev pairs\n",
nPruneTarget / 1024 / 1024, nCurrentUsage / 1024 / 1024,
((int64_t)nPruneTarget - (int64_t)nCurrentUsage) / 1024 / 1024,
nLastBlockWeCanPrune, count);
}
bool CheckDiskSpace(uint64_t nAdditionalBytes) {
uint64_t nFreeBytesAvailable =
boost::filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
return AbortNode("Disk space is low!", _("Error: Disk space is low!"));
return true;
}
FILE *OpenDiskFile(const CDiskBlockPos &pos, const char *prefix,
bool fReadOnly) {
if (pos.IsNull()) return NULL;
boost::filesystem::path path = GetBlockPosFilename(pos, prefix);
boost::filesystem::create_directories(path.parent_path());
FILE *file = fopen(path.string().c_str(), "rb+");
if (!file && !fReadOnly) file = fopen(path.string().c_str(), "wb+");
if (!file) {
LogPrintf("Unable to open file %s\n", path.string());
return NULL;
}
if (pos.nPos) {
if (fseek(file, pos.nPos, SEEK_SET)) {
LogPrintf("Unable to seek to position %u of %s\n", pos.nPos,
path.string());
fclose(file);
return NULL;
}
}
return file;
}
FILE *OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "blk", fReadOnly);
}
FILE *OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) {
return OpenDiskFile(pos, "rev", fReadOnly);
}
boost::filesystem::path GetBlockPosFilename(const CDiskBlockPos &pos,
const char *prefix) {
return GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile);
}
CBlockIndex *InsertBlockIndex(uint256 hash) {
if (hash.IsNull()) return NULL;
// Return existing
BlockMap::iterator mi = mapBlockIndex.find(hash);
if (mi != mapBlockIndex.end()) return (*mi).second;
// Create new
CBlockIndex *pindexNew = new CBlockIndex();
if (!pindexNew)
throw std::runtime_error(std::string(__func__) +
": new CBlockIndex failed");
mi = mapBlockIndex.insert(std::make_pair(hash, pindexNew)).first;
pindexNew->phashBlock = &((*mi).first);
return pindexNew;
}
bool static LoadBlockIndexDB(const CChainParams &chainparams) {
if (!pblocktree->LoadBlockIndexGuts(InsertBlockIndex)) return false;
boost::this_thread::interruption_point();
// Calculate nChainWork
std::vector<std::pair<int, CBlockIndex *>> vSortedByHeight;
vSortedByHeight.reserve(mapBlockIndex.size());
for (const std::pair<uint256, CBlockIndex *> &item : mapBlockIndex) {
CBlockIndex *pindex = item.second;
vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex));
}
sort(vSortedByHeight.begin(), vSortedByHeight.end());
for (const std::pair<int, CBlockIndex *> &item : vSortedByHeight) {
CBlockIndex *pindex = item.second;
pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) +
GetBlockProof(*pindex);
pindex->nTimeMax =
(pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime)
: pindex->nTime);
// We can link the chain of blocks for which we've received transactions
// at some point. Pruned nodes may have deleted the block.
if (pindex->nTx > 0) {
if (pindex->pprev) {
if (pindex->pprev->nChainTx) {
pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
} else {
pindex->nChainTx = 0;
mapBlocksUnlinked.insert(
std::make_pair(pindex->pprev, pindex));
}
} else {
pindex->nChainTx = pindex->nTx;
}
}
if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) &&
(pindex->nChainTx || pindex->pprev == NULL))
setBlockIndexCandidates.insert(pindex);
if (pindex->nStatus & BLOCK_FAILED_MASK &&
(!pindexBestInvalid ||
pindex->nChainWork > pindexBestInvalid->nChainWork))
pindexBestInvalid = pindex;
if (pindex->pprev) pindex->BuildSkip();
if (pindex->IsValid(BLOCK_VALID_TREE) &&
(pindexBestHeader == NULL ||
CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
pindexBestHeader = pindex;
}
// Load block file info
pblocktree->ReadLastBlockFile(nLastBlockFile);
vinfoBlockFile.resize(nLastBlockFile + 1);
LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile);
for (int nFile = 0; nFile <= nLastBlockFile; nFile++) {
pblocktree->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]);
}
LogPrintf("%s: last block file info: %s\n", __func__,
vinfoBlockFile[nLastBlockFile].ToString());
for (int nFile = nLastBlockFile + 1; true; nFile++) {
CBlockFileInfo info;
if (pblocktree->ReadBlockFileInfo(nFile, info)) {
vinfoBlockFile.push_back(info);
} else {
break;
}
}
// Check presence of blk files
LogPrintf("Checking all blk files are present...\n");
std::set<int> setBlkDataFiles;
for (const std::pair<uint256, CBlockIndex *> &item : mapBlockIndex) {
CBlockIndex *pindex = item.second;
if (pindex->nStatus & BLOCK_HAVE_DATA) {
setBlkDataFiles.insert(pindex->nFile);
}
}
for (std::set<int>::iterator it = setBlkDataFiles.begin();
it != setBlkDataFiles.end(); it++) {
CDiskBlockPos pos(*it, 0);
if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION)
.IsNull()) {
return false;
}
}
// Check whether we have ever pruned block & undo files
pblocktree->ReadFlag("prunedblockfiles", fHavePruned);
if (fHavePruned)
LogPrintf(
"LoadBlockIndexDB(): Block files have previously been pruned\n");
// Check whether we need to continue reindexing
bool fReindexing = false;
pblocktree->ReadReindexing(fReindexing);
fReindex |= fReindexing;
// Check whether we have a transaction index
pblocktree->ReadFlag("txindex", fTxIndex);
LogPrintf("%s: transaction index %s\n", __func__,
fTxIndex ? "enabled" : "disabled");
// Load pointer to end of best chain
BlockMap::iterator it = mapBlockIndex.find(pcoinsTip->GetBestBlock());
if (it == mapBlockIndex.end()) return true;
chainActive.SetTip(it->second);
PruneBlockIndexCandidates();
LogPrintf(
"%s: hashBestChain=%s height=%d date=%s progress=%f\n", __func__,
chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(),
DateTimeStrFormat("%Y-%m-%d %H:%M:%S",
chainActive.Tip()->GetBlockTime()),
GuessVerificationProgress(chainparams.TxData(), chainActive.Tip()));
return true;
}
CVerifyDB::CVerifyDB() {
uiInterface.ShowProgress(_("Verifying blocks..."), 0);
}
CVerifyDB::~CVerifyDB() {
uiInterface.ShowProgress("", 100);
}
bool CVerifyDB::VerifyDB(const Config &config, const CChainParams &chainparams,
CCoinsView *coinsview, int nCheckLevel,
int nCheckDepth) {
LOCK(cs_main);
if (chainActive.Tip() == NULL || chainActive.Tip()->pprev == NULL)
return true;
// Verify blocks in the best chain
if (nCheckDepth <= 0)
nCheckDepth = 1000000000; // suffices until the year 19000
if (nCheckDepth > chainActive.Height()) nCheckDepth = chainActive.Height();
nCheckLevel = std::max(0, std::min(4, nCheckLevel));
LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth,
nCheckLevel);
CCoinsViewCache coins(coinsview);
CBlockIndex *pindexState = chainActive.Tip();
CBlockIndex *pindexFailure = NULL;
int nGoodTransactions = 0;
CValidationState state;
int reportDone = 0;
LogPrintf("[0%%]...");
for (CBlockIndex *pindex = chainActive.Tip(); pindex && pindex->pprev;
pindex = pindex->pprev) {
boost::this_thread::interruption_point();
int percentageDone = std::max(
1, std::min(
99,
(int)(((double)(chainActive.Height() - pindex->nHeight)) /
(double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100))));
if (reportDone < percentageDone / 10) {
// report every 10% step
LogPrintf("[%d%%]...", percentageDone);
reportDone = percentageDone / 10;
}
uiInterface.ShowProgress(_("Verifying blocks..."), percentageDone);
if (pindex->nHeight < chainActive.Height() - nCheckDepth) break;
if (fPruneMode && !(pindex->nStatus & BLOCK_HAVE_DATA)) {
// If pruning, only go back as far as we have data.
LogPrintf("VerifyDB(): block verification stopping at height %d "
"(pruning, no data)\n",
pindex->nHeight);
break;
}
CBlock block;
// check level 0: read from disk
if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus()))
return error(
"VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s",
pindex->nHeight, pindex->GetBlockHash().ToString());
// check level 1: verify block validity
if (nCheckLevel >= 1 &&
!CheckBlock(config, block, state, chainparams.GetConsensus()))
return error("%s: *** found bad block at %d, hash=%s (%s)\n",
__func__, pindex->nHeight,
pindex->GetBlockHash().ToString(),
FormatStateMessage(state));
// check level 2: verify undo validity
if (nCheckLevel >= 2 && pindex) {
CBlockUndo undo;
CDiskBlockPos pos = pindex->GetUndoPos();
if (!pos.IsNull()) {
if (!UndoReadFromDisk(undo, pos, pindex->pprev->GetBlockHash()))
return error(
"VerifyDB(): *** found bad undo data at %d, hash=%s\n",
pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
// check level 3: check for inconsistencies during memory-only
// disconnect of tip blocks
if (nCheckLevel >= 3 && pindex == pindexState &&
(coins.DynamicMemoryUsage() + pcoinsTip->DynamicMemoryUsage()) <=
nCoinCacheUsage) {
bool fClean = true;
if (!DisconnectBlock(block, state, pindex, coins, &fClean))
return error("VerifyDB(): *** irrecoverable inconsistency in "
"block data at %d, hash=%s",
pindex->nHeight,
pindex->GetBlockHash().ToString());
pindexState = pindex->pprev;
if (!fClean) {
nGoodTransactions = 0;
pindexFailure = pindex;
} else
nGoodTransactions += block.vtx.size();
}
if (ShutdownRequested()) return true;
}
if (pindexFailure)
return error("VerifyDB(): *** coin database inconsistencies found "
"(last %i blocks, %i good transactions before that)\n",
chainActive.Height() - pindexFailure->nHeight + 1,
nGoodTransactions);
// check level 4: try reconnecting blocks
if (nCheckLevel >= 4) {
CBlockIndex *pindex = pindexState;
while (pindex != chainActive.Tip()) {
boost::this_thread::interruption_point();
uiInterface.ShowProgress(
_("Verifying blocks..."),
std::max(
1, std::min(99, 100 - (int)(((double)(chainActive.Height() -
pindex->nHeight)) /
(double)nCheckDepth * 50))));
pindex = chainActive.Next(pindex);
CBlock block;
if (!ReadBlockFromDisk(block, pindex, chainparams.GetConsensus()))
return error(
"VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s",
pindex->nHeight, pindex->GetBlockHash().ToString());
if (!ConnectBlock(config, block, state, pindex, coins, chainparams))
return error(
"VerifyDB(): *** found unconnectable block at %d, hash=%s",
pindex->nHeight, pindex->GetBlockHash().ToString());
}
}
LogPrintf("[DONE].\n");
LogPrintf("No coin database inconsistencies in last %i blocks (%i "
"transactions)\n",
chainActive.Height() - pindexState->nHeight, nGoodTransactions);
return true;
}
bool RewindBlockIndex(const CChainParams &params) {
LOCK(cs_main);
int nHeight = chainActive.Height() + 1;
// nHeight is now the height of the first insufficiently-validated block, or
// tipheight + 1
CValidationState state;
CBlockIndex *pindex = chainActive.Tip();
while (chainActive.Height() >= nHeight) {
if (fPruneMode && !(chainActive.Tip()->nStatus & BLOCK_HAVE_DATA)) {
// If pruning, don't try rewinding past the HAVE_DATA point;
// since older blocks can't be served anyway, there's
// no need to walk further, and trying to DisconnectTip()
// will fail (and require a needless reindex/redownload
// of the blockchain).
break;
}
if (!DisconnectTip(state, params, true)) {
return error(
"RewindBlockIndex: unable to disconnect block at height %i",
pindex->nHeight);
}
// Occasionally flush state to disk.
if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC)) return false;
}
// Reduce validity flag and have-data flags.
// We do this after actual disconnecting, otherwise we'll end up writing the
// lack of data to disk before writing the chainstate, resulting in a
// failure to continue if interrupted.
for (BlockMap::iterator it = mapBlockIndex.begin();
it != mapBlockIndex.end(); it++) {
CBlockIndex *pindexIter = it->second;
if (pindexIter->IsValid(BLOCK_VALID_TRANSACTIONS) &&
pindexIter->nChainTx) {
setBlockIndexCandidates.insert(pindexIter);
}
}
PruneBlockIndexCandidates();
CheckBlockIndex(params.GetConsensus());
if (!FlushStateToDisk(state, FLUSH_STATE_ALWAYS)) {
return false;
}
return true;
}
// May NOT be used after any connections are up as much of the peer-processing
// logic assumes a consistent block index state
void UnloadBlockIndex() {
LOCK(cs_main);
setBlockIndexCandidates.clear();
chainActive.SetTip(NULL);
pindexBestInvalid = NULL;
pindexBestHeader = NULL;
mempool.clear();
mapBlocksUnlinked.clear();
vinfoBlockFile.clear();
nLastBlockFile = 0;
nBlockSequenceId = 1;
setDirtyBlockIndex.clear();
setDirtyFileInfo.clear();
versionbitscache.Clear();
for (int b = 0; b < VERSIONBITS_NUM_BITS; b++) {
warningcache[b].clear();
}
for (BlockMap::value_type &entry : mapBlockIndex) {
delete entry.second;
}
mapBlockIndex.clear();
fHavePruned = false;
}
bool LoadBlockIndex(const CChainParams &chainparams) {
// Load block index from databases
if (!fReindex && !LoadBlockIndexDB(chainparams)) return false;
return true;
}
bool InitBlockIndex(const CChainParams &chainparams) {
LOCK(cs_main);
// Check whether we're already initialized
if (chainActive.Genesis() != NULL) return true;
// Use the provided setting for -txindex in the new database
fTxIndex = GetBoolArg("-txindex", DEFAULT_TXINDEX);
pblocktree->WriteFlag("txindex", fTxIndex);
LogPrintf("Initializing databases...\n");
// Only add the genesis block if not reindexing (in which case we reuse the
// one already on disk)
if (!fReindex) {
try {
CBlock &block = const_cast<CBlock &>(chainparams.GenesisBlock());
// Start new block file
unsigned int nBlockSize =
::GetSerializeSize(block, SER_DISK, CLIENT_VERSION);
CDiskBlockPos blockPos;
CValidationState state;
if (!FindBlockPos(state, blockPos, nBlockSize + 8, 0,
block.GetBlockTime()))
return error("LoadBlockIndex(): FindBlockPos failed");
if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart()))
return error(
"LoadBlockIndex(): writing genesis block to disk failed");
CBlockIndex *pindex = AddToBlockIndex(block);
if (!ReceivedBlockTransactions(block, state, pindex, blockPos))
return error("LoadBlockIndex(): genesis block not accepted");
// Force a chainstate write so that when we VerifyDB in a moment, it
// doesn't check stale data
return FlushStateToDisk(state, FLUSH_STATE_ALWAYS);
} catch (const std::runtime_error &e) {
return error(
"LoadBlockIndex(): failed to initialize block database: %s",
e.what());
}
}
return true;
}
bool LoadExternalBlockFile(const Config &config,
const CChainParams &chainparams, FILE *fileIn,
CDiskBlockPos *dbp) {
// Map of disk positions for blocks with unknown parent (only used for
// reindex)
static std::multimap<uint256, CDiskBlockPos> mapBlocksUnknownParent;
int64_t nStart = GetTimeMillis();
int nLoaded = 0;
try {
// This takes over fileIn and calls fclose() on it in the CBufferedFile
// destructor. Make sure we have at least 2*MAX_TX_SIZE space in there
// so any transaction can fit in the buffer.
CBufferedFile blkdat(fileIn, 2 * MAX_TX_SIZE, MAX_TX_SIZE + 8, SER_DISK,
CLIENT_VERSION);
uint64_t nRewind = blkdat.GetPos();
while (!blkdat.eof()) {
boost::this_thread::interruption_point();
blkdat.SetPos(nRewind);
// Start one byte further next time, in case of failure.
nRewind++;
// Remove former limit.
blkdat.SetLimit();
unsigned int nSize = 0;
try {
// Locate a header.
unsigned char buf[CMessageHeader::MESSAGE_START_SIZE];
blkdat.FindByte(chainparams.MessageStart()[0]);
nRewind = blkdat.GetPos() + 1;
blkdat >> FLATDATA(buf);
if (memcmp(buf, chainparams.MessageStart(),
CMessageHeader::MESSAGE_START_SIZE))
continue;
// Read size.
blkdat >> nSize;
if (nSize < 80) continue;
} catch (const std::exception &) {
// No valid block header found; don't complain.
break;
}
try {
// read block
uint64_t nBlockPos = blkdat.GetPos();
if (dbp) dbp->nPos = nBlockPos;
blkdat.SetLimit(nBlockPos + nSize);
blkdat.SetPos(nBlockPos);
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
CBlock &block = *pblock;
blkdat >> block;
nRewind = blkdat.GetPos();
// detect out of order blocks, and store them for later
uint256 hash = block.GetHash();
if (hash != chainparams.GetConsensus().hashGenesisBlock &&
mapBlockIndex.find(block.hashPrevBlock) ==
mapBlockIndex.end()) {
LogPrint("reindex",
"%s: Out of order block %s, parent %s not known\n",
__func__, hash.ToString(),
block.hashPrevBlock.ToString());
if (dbp)
mapBlocksUnknownParent.insert(
std::make_pair(block.hashPrevBlock, *dbp));
continue;
}
// process in case the block isn't known yet
if (mapBlockIndex.count(hash) == 0 ||
(mapBlockIndex[hash]->nStatus & BLOCK_HAVE_DATA) == 0) {
LOCK(cs_main);
CValidationState state;
if (AcceptBlock(config, pblock, state, chainparams, NULL,
true, dbp, NULL))
nLoaded++;
if (state.IsError()) break;
} else if (hash !=
chainparams.GetConsensus().hashGenesisBlock &&
mapBlockIndex[hash]->nHeight % 1000 == 0) {
LogPrint(
"reindex",
"Block Import: already had block %s at height %d\n",
hash.ToString(), mapBlockIndex[hash]->nHeight);
}
// Activate the genesis block so normal node progress can
// continue
if (hash == chainparams.GetConsensus().hashGenesisBlock) {
CValidationState state;
if (!ActivateBestChain(config, state, chainparams)) {
break;
}
}
NotifyHeaderTip();
// Recursively process earlier encountered successors of this
// block
std::deque<uint256> queue;
queue.push_back(hash);
while (!queue.empty()) {
uint256 head = queue.front();
queue.pop_front();
std::pair<std::multimap<uint256, CDiskBlockPos>::iterator,
std::multimap<uint256, CDiskBlockPos>::iterator>
range = mapBlocksUnknownParent.equal_range(head);
while (range.first != range.second) {
std::multimap<uint256, CDiskBlockPos>::iterator it =
range.first;
std::shared_ptr<CBlock> pblockrecursive =
std::make_shared<CBlock>();
if (ReadBlockFromDisk(*pblockrecursive, it->second,
chainparams.GetConsensus())) {
LogPrint(
"reindex",
"%s: Processing out of order child %s of %s\n",
__func__, pblockrecursive->GetHash().ToString(),
head.ToString());
LOCK(cs_main);
CValidationState dummy;
if (AcceptBlock(config, pblockrecursive, dummy,
chainparams, NULL, true,
&it->second, NULL)) {
nLoaded++;
queue.push_back(pblockrecursive->GetHash());
}
}
range.first++;
mapBlocksUnknownParent.erase(it);
NotifyHeaderTip();
}
}
} catch (const std::exception &e) {
LogPrintf("%s: Deserialize or I/O error - %s\n", __func__,
e.what());
}
}
} catch (const std::runtime_error &e) {
AbortNode(std::string("System error: ") + e.what());
}
if (nLoaded > 0)
LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded,
GetTimeMillis() - nStart);
return nLoaded > 0;
}
void static CheckBlockIndex(const Consensus::Params &consensusParams) {
if (!fCheckBlockIndex) {
return;
}
LOCK(cs_main);
// During a reindex, we read the genesis block and call CheckBlockIndex
// before ActivateBestChain, so we have the genesis block in mapBlockIndex
// but no active chain. (A few of the tests when iterating the block tree
// require that chainActive has been initialized.)
if (chainActive.Height() < 0) {
assert(mapBlockIndex.size() <= 1);
return;
}
// Build forward-pointing map of the entire block tree.
std::multimap<CBlockIndex *, CBlockIndex *> forward;
for (BlockMap::iterator it = mapBlockIndex.begin();
it != mapBlockIndex.end(); it++) {
forward.insert(std::make_pair(it->second->pprev, it->second));
}
assert(forward.size() == mapBlockIndex.size());
std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator,
std::multimap<CBlockIndex *, CBlockIndex *>::iterator>
rangeGenesis = forward.equal_range(NULL);
CBlockIndex *pindex = rangeGenesis.first->second;
rangeGenesis.first++;
assert(
rangeGenesis.first ==
rangeGenesis.second); // There is only one index entry with parent NULL.
// Iterate over the entire block tree, using depth-first search.
// Along the way, remember whether there are blocks on the path from genesis
// block being explored which are the first to have certain properties.
size_t nNodes = 0;
int nHeight = 0;
CBlockIndex *pindexFirstInvalid =
NULL; // Oldest ancestor of pindex which is invalid.
CBlockIndex *pindexFirstMissing =
NULL; // Oldest ancestor of pindex which does not have BLOCK_HAVE_DATA.
CBlockIndex *pindexFirstNeverProcessed =
NULL; // Oldest ancestor of pindex for which nTx == 0.
CBlockIndex *pindexFirstNotTreeValid =
NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_TREE
// (regardless of being valid or not).
CBlockIndex *pindexFirstNotTransactionsValid =
NULL; // Oldest ancestor of pindex which does not have
// BLOCK_VALID_TRANSACTIONS (regardless of being valid or not).
CBlockIndex *pindexFirstNotChainValid =
NULL; // Oldest ancestor of pindex which does not have BLOCK_VALID_CHAIN
// (regardless of being valid or not).
CBlockIndex *pindexFirstNotScriptsValid =
NULL; // Oldest ancestor of pindex which does not have
// BLOCK_VALID_SCRIPTS (regardless of being valid or not).
while (pindex != NULL) {
nNodes++;
if (pindexFirstInvalid == NULL && pindex->nStatus & BLOCK_FAILED_VALID)
pindexFirstInvalid = pindex;
if (pindexFirstMissing == NULL && !(pindex->nStatus & BLOCK_HAVE_DATA))
pindexFirstMissing = pindex;
if (pindexFirstNeverProcessed == NULL && pindex->nTx == 0)
pindexFirstNeverProcessed = pindex;
if (pindex->pprev != NULL && pindexFirstNotTreeValid == NULL &&
(pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TREE)
pindexFirstNotTreeValid = pindex;
if (pindex->pprev != NULL && pindexFirstNotTransactionsValid == NULL &&
(pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TRANSACTIONS)
pindexFirstNotTransactionsValid = pindex;
if (pindex->pprev != NULL && pindexFirstNotChainValid == NULL &&
(pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_CHAIN)
pindexFirstNotChainValid = pindex;
if (pindex->pprev != NULL && pindexFirstNotScriptsValid == NULL &&
(pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS)
pindexFirstNotScriptsValid = pindex;
// Begin: actual consistency checks.
if (pindex->pprev == NULL) {
// Genesis block checks.
assert(pindex->GetBlockHash() ==
consensusParams
.hashGenesisBlock); // Genesis block's hash must match.
assert(pindex == chainActive.Genesis()); // The current active
// chain's genesis block
// must be this block.
}
if (pindex->nChainTx == 0)
assert(pindex->nSequenceId <= 0); // nSequenceId can't be set
// positive for blocks that aren't
// linked (negative is used for
// preciousblock)
// VALID_TRANSACTIONS is equivalent to nTx > 0 for all nodes (whether or
// not pruning has occurred). HAVE_DATA is only equivalent to nTx > 0
// (or VALID_TRANSACTIONS) if no pruning has occurred.
if (!fHavePruned) {
// If we've never pruned, then HAVE_DATA should be equivalent to nTx
// > 0
assert(!(pindex->nStatus & BLOCK_HAVE_DATA) == (pindex->nTx == 0));
assert(pindexFirstMissing == pindexFirstNeverProcessed);
} else {
// If we have pruned, then we can only say that HAVE_DATA implies
// nTx > 0
if (pindex->nStatus & BLOCK_HAVE_DATA) assert(pindex->nTx > 0);
}
if (pindex->nStatus & BLOCK_HAVE_UNDO)
assert(pindex->nStatus & BLOCK_HAVE_DATA);
assert(((pindex->nStatus & BLOCK_VALID_MASK) >=
BLOCK_VALID_TRANSACTIONS) ==
(pindex->nTx > 0)); // This is pruning-independent.
// All parents having had data (at some point) is equivalent to all
// parents being VALID_TRANSACTIONS, which is equivalent to nChainTx
// being set.
assert((pindexFirstNeverProcessed != NULL) ==
(pindex->nChainTx == 0)); // nChainTx != 0 is used to signal that
// all parent blocks have been
// processed (but may have been
// pruned).
assert((pindexFirstNotTransactionsValid != NULL) ==
(pindex->nChainTx == 0));
assert(pindex->nHeight == nHeight); // nHeight must be consistent.
assert(pindex->pprev == NULL ||
pindex->nChainWork >=
pindex->pprev->nChainWork); // For every block except the
// genesis block, the chainwork
// must be larger than the
// parent's.
assert(nHeight < 2 ||
(pindex->pskip &&
(pindex->pskip->nHeight < nHeight))); // The pskip pointer must
// point back for all but
// the first 2 blocks.
assert(pindexFirstNotTreeValid ==
NULL); // All mapBlockIndex entries must at least be TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TREE)
assert(pindexFirstNotTreeValid ==
NULL); // TREE valid implies all parents are TREE valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_CHAIN)
assert(pindexFirstNotChainValid ==
NULL); // CHAIN valid implies all parents are CHAIN valid
if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_SCRIPTS)
assert(pindexFirstNotScriptsValid ==
NULL); // SCRIPTS valid implies all parents are SCRIPTS valid
if (pindexFirstInvalid == NULL) {
// Checks for not-invalid blocks.
assert((pindex->nStatus & BLOCK_FAILED_MASK) ==
0); // The failed mask cannot be set for blocks without
// invalid parents.
}
if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) &&
pindexFirstNeverProcessed == NULL) {
if (pindexFirstInvalid == NULL) {
// If this block sorts at least as good as the current tip and
// is valid and we have all data for its parents, it must be in
// setBlockIndexCandidates. chainActive.Tip() must also be there
// even if some data has been pruned.
if (pindexFirstMissing == NULL || pindex == chainActive.Tip()) {
assert(setBlockIndexCandidates.count(pindex));
}
// If some parent is missing, then it could be that this block
// was in setBlockIndexCandidates but had to be removed because
// of the missing data. In this case it must be in
// mapBlocksUnlinked -- see test below.
}
} else {
// If this block sorts worse than the current tip or some ancestor's
// block has never been seen, it cannot be in
// setBlockIndexCandidates.
assert(setBlockIndexCandidates.count(pindex) == 0);
}
// Check whether this block is in mapBlocksUnlinked.
std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator,
std::multimap<CBlockIndex *, CBlockIndex *>::iterator>
rangeUnlinked = mapBlocksUnlinked.equal_range(pindex->pprev);
bool foundInUnlinked = false;
while (rangeUnlinked.first != rangeUnlinked.second) {
assert(rangeUnlinked.first->first == pindex->pprev);
if (rangeUnlinked.first->second == pindex) {
foundInUnlinked = true;
break;
}
rangeUnlinked.first++;
}
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) &&
pindexFirstNeverProcessed != NULL && pindexFirstInvalid == NULL) {
// If this block has block data available, some parent was never
// received, and has no invalid parents, it must be in
// mapBlocksUnlinked.
assert(foundInUnlinked);
}
if (!(pindex->nStatus & BLOCK_HAVE_DATA))
assert(!foundInUnlinked); // Can't be in mapBlocksUnlinked if we
// don't HAVE_DATA
if (pindexFirstMissing == NULL)
assert(!foundInUnlinked); // We aren't missing data for any parent
// -- cannot be in mapBlocksUnlinked.
if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) &&
pindexFirstNeverProcessed == NULL && pindexFirstMissing != NULL) {
// We HAVE_DATA for this block, have received data for all parents
// at some point, but we're currently missing data for some parent.
assert(fHavePruned); // We must have pruned.
// This block may have entered mapBlocksUnlinked if:
// - it has a descendant that at some point had more work than the
// tip, and
// - we tried switching to that descendant but were missing
// data for some intermediate block between chainActive and the
// tip.
// So if this block is itself better than chainActive.Tip() and it
// wasn't in
// setBlockIndexCandidates, then it must be in mapBlocksUnlinked.
if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) &&
setBlockIndexCandidates.count(pindex) == 0) {
if (pindexFirstInvalid == NULL) {
assert(foundInUnlinked);
}
}
}
// assert(pindex->GetBlockHash() == pindex->GetBlockHeader().GetHash());
// // Perhaps too slow
// End: actual consistency checks.
// Try descending into the first subnode.
std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator,
std::multimap<CBlockIndex *, CBlockIndex *>::iterator>
range = forward.equal_range(pindex);
if (range.first != range.second) {
// A subnode was found.
pindex = range.first->second;
nHeight++;
continue;
}
// This is a leaf node. Move upwards until we reach a node of which we
// have not yet visited the last child.
while (pindex) {
// We are going to either move to a parent or a sibling of pindex.
// If pindex was the first with a certain property, unset the
// corresponding variable.
if (pindex == pindexFirstInvalid) pindexFirstInvalid = NULL;
if (pindex == pindexFirstMissing) pindexFirstMissing = NULL;
if (pindex == pindexFirstNeverProcessed)
pindexFirstNeverProcessed = NULL;
if (pindex == pindexFirstNotTreeValid)
pindexFirstNotTreeValid = NULL;
if (pindex == pindexFirstNotTransactionsValid)
pindexFirstNotTransactionsValid = NULL;
if (pindex == pindexFirstNotChainValid)
pindexFirstNotChainValid = NULL;
if (pindex == pindexFirstNotScriptsValid)
pindexFirstNotScriptsValid = NULL;
// Find our parent.
CBlockIndex *pindexPar = pindex->pprev;
// Find which child we just visited.
std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator,
std::multimap<CBlockIndex *, CBlockIndex *>::iterator>
rangePar = forward.equal_range(pindexPar);
while (rangePar.first->second != pindex) {
assert(rangePar.first != rangePar.second); // Our parent must
// have at least the
// node we're coming
// from as child.
rangePar.first++;
}
// Proceed to the next one.
rangePar.first++;
if (rangePar.first != rangePar.second) {
// Move to the sibling.
pindex = rangePar.first->second;
break;
} else {
// Move up further.
pindex = pindexPar;
nHeight--;
continue;
}
}
}
// Check that we actually traversed the entire map.
assert(nNodes == forward.size());
}
std::string CBlockFileInfo::ToString() const {
return strprintf(
"CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)",
nBlocks, nSize, nHeightFirst, nHeightLast,
DateTimeStrFormat("%Y-%m-%d", nTimeFirst),
DateTimeStrFormat("%Y-%m-%d", nTimeLast));
}
CBlockFileInfo *GetBlockFileInfo(size_t n) {
return &vinfoBlockFile.at(n);
}
ThresholdState VersionBitsTipState(const Consensus::Params &params,
Consensus::DeploymentPos pos) {
LOCK(cs_main);
return VersionBitsState(chainActive.Tip(), params, pos, versionbitscache);
}
int VersionBitsTipStateSinceHeight(const Consensus::Params &params,
Consensus::DeploymentPos pos) {
LOCK(cs_main);
return VersionBitsStateSinceHeight(chainActive.Tip(), params, pos,
versionbitscache);
}
static const uint64_t MEMPOOL_DUMP_VERSION = 1;
bool LoadMempool(void) {
int64_t nExpiryTimeout =
GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60;
FILE *filestr =
fopen((GetDataDir() / "mempool.dat").string().c_str(), "rb");
CAutoFile file(filestr, SER_DISK, CLIENT_VERSION);
if (file.IsNull()) {
LogPrintf(
"Failed to open mempool file from disk. Continuing anyway.\n");
return false;
}
int64_t count = 0;
int64_t skipped = 0;
int64_t failed = 0;
int64_t nNow = GetTime();
try {
uint64_t version;
file >> version;
if (version != MEMPOOL_DUMP_VERSION) {
return false;
}
uint64_t num;
file >> num;
double prioritydummy = 0;
while (num--) {
CTransactionRef tx;
int64_t nTime;
int64_t nFeeDelta;
file >> tx;
file >> nTime;
file >> nFeeDelta;
CAmount amountdelta = nFeeDelta;
if (amountdelta) {
mempool.PrioritiseTransaction(tx->GetId(),
tx->GetId().ToString(),
prioritydummy, amountdelta);
}
CValidationState state;
if (nTime + nExpiryTimeout > nNow) {
LOCK(cs_main);
AcceptToMemoryPoolWithTime(mempool, state, tx, true, NULL,
nTime);
if (state.IsValid()) {
++count;
} else {
++failed;
}
} else {
++skipped;
}
if (ShutdownRequested()) return false;
}
std::map<uint256, CAmount> mapDeltas;
file >> mapDeltas;
for (const auto &i : mapDeltas) {
mempool.PrioritiseTransaction(i.first, i.first.ToString(),
prioritydummy, i.second);
}
} catch (const std::exception &e) {
LogPrintf("Failed to deserialize mempool data on disk: %s. Continuing "
"anyway.\n",
e.what());
return false;
}
LogPrintf("Imported mempool transactions from disk: %i successes, %i "
"failed, %i expired\n",
count, failed, skipped);
return true;
}
void DumpMempool(void) {
int64_t start = GetTimeMicros();
std::map<uint256, CAmount> mapDeltas;
std::vector<TxMempoolInfo> vinfo;
{
LOCK(mempool.cs);
for (const auto &i : mempool.mapDeltas) {
mapDeltas[i.first] = i.second.second;
}
vinfo = mempool.infoAll();
}
int64_t mid = GetTimeMicros();
try {
FILE *filestr =
fopen((GetDataDir() / "mempool.dat.new").string().c_str(), "wb");
if (!filestr) {
return;
}
CAutoFile file(filestr, SER_DISK, CLIENT_VERSION);
uint64_t version = MEMPOOL_DUMP_VERSION;
file << version;
file << (uint64_t)vinfo.size();
for (const auto &i : vinfo) {
file << *(i.tx);
file << (int64_t)i.nTime;
file << (int64_t)i.nFeeDelta;
mapDeltas.erase(i.tx->GetId());
}
file << mapDeltas;
FileCommit(file.Get());
file.fclose();
RenameOver(GetDataDir() / "mempool.dat.new",
GetDataDir() / "mempool.dat");
int64_t last = GetTimeMicros();
LogPrintf("Dumped mempool: %gs to copy, %gs to dump\n",
(mid - start) * 0.000001, (last - mid) * 0.000001);
} catch (const std::exception &e) {
LogPrintf("Failed to dump mempool: %s. Continuing anyway.\n", e.what());
}
}
//! Guess how far we are in the verification process at the given block index
double GuessVerificationProgress(const ChainTxData &data, CBlockIndex *pindex) {
if (pindex == NULL) return 0.0;
int64_t nNow = time(NULL);
double fTxTotal;
if (pindex->nChainTx <= data.nTxCount) {
fTxTotal = data.nTxCount + (nNow - data.nTime) * data.dTxRate;
} else {
fTxTotal =
pindex->nChainTx + (nNow - pindex->GetBlockTime()) * data.dTxRate;
}
return pindex->nChainTx / fTxTotal;
}
class CMainCleanup {
public:
CMainCleanup() {}
~CMainCleanup() {
// block headers
BlockMap::iterator it1 = mapBlockIndex.begin();
for (; it1 != mapBlockIndex.end(); it1++)
delete (*it1).second;
mapBlockIndex.clear();
}
} instance_of_cmaincleanup;

File Metadata

Mime Type
text/x-diff
Expires
Wed, May 21, 21:28 (1 d, 17 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5865955
Default Alt Text
(216 KB)

Event Timeline