Page MenuHomePhabricator

No OneTemporary

This file is larger than 256 KB, so syntax highlighting was skipped.
diff --git a/src/avalanche/peermanager.cpp b/src/avalanche/peermanager.cpp
index dbb3f68e0..68c3b156e 100644
--- a/src/avalanche/peermanager.cpp
+++ b/src/avalanche/peermanager.cpp
@@ -1,487 +1,488 @@
// Copyright (c) 2020 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <avalanche/peermanager.h>
#include <avalanche/delegation.h>
#include <avalanche/validation.h>
#include <random.h>
#include <validation.h> // For ChainstateActive()
#include <cassert>
namespace avalanche {
bool PeerManager::addNode(NodeId nodeid, const ProofId &proofid) {
auto &pview = peers.get<proof_index>();
auto it = pview.find(proofid);
if (it == pview.end()) {
return false;
}
return addOrUpdateNode(peers.project<0>(it), nodeid);
}
bool PeerManager::addOrUpdateNode(const PeerSet::iterator &it, NodeId nodeid) {
assert(it != peers.end());
const PeerId peerid = it->peerid;
auto nit = nodes.find(nodeid);
if (nit == nodes.end()) {
if (!nodes.emplace(nodeid, peerid).second) {
return false;
}
} else {
const PeerId oldpeerid = nit->peerid;
if (!nodes.modify(nit, [&](Node &n) { n.peerid = peerid; })) {
return false;
}
// We actually have this node already, we need to update it.
bool success = removeNodeFromPeer(peers.find(oldpeerid));
assert(success);
}
bool success = addNodeToPeer(it);
assert(success);
return true;
}
bool PeerManager::addNodeToPeer(const PeerSet::iterator &it) {
assert(it != peers.end());
return peers.modify(it, [&](Peer &p) {
if (p.node_count++ > 0) {
// We are done.
return;
}
// We need to allocate this peer.
p.index = uint32_t(slots.size());
const uint32_t score = p.getScore();
const uint64_t start = slotCount;
slots.emplace_back(start, score, it->peerid);
slotCount = start + score;
});
}
bool PeerManager::removeNode(NodeId nodeid) {
auto it = nodes.find(nodeid);
if (it == nodes.end()) {
return false;
}
const PeerId peerid = it->peerid;
nodes.erase(it);
// Keep the track of the reference count.
bool success = removeNodeFromPeer(peers.find(peerid));
assert(success);
return true;
}
bool PeerManager::removeNodeFromPeer(const PeerSet::iterator &it,
uint32_t count) {
assert(it != peers.end());
assert(count <= it->node_count);
if (count == 0) {
// This is a NOOP.
return false;
}
const uint32_t new_count = it->node_count - count;
if (!peers.modify(it, [&](Peer &p) { p.node_count = new_count; })) {
return false;
}
if (new_count > 0) {
// We are done.
return true;
}
// There are no more node left, we need to cleanup.
const size_t i = it->index;
assert(i < slots.size());
if (i + 1 == slots.size()) {
slots.pop_back();
slotCount = slots.empty() ? 0 : slots.back().getStop();
} else {
fragmentation += slots[i].getScore();
slots[i] = slots[i].withPeerId(NO_PEER);
}
return true;
}
bool PeerManager::updateNextRequestTime(NodeId nodeid, TimePoint timeout) {
auto it = nodes.find(nodeid);
if (it == nodes.end()) {
return false;
}
return nodes.modify(it, [&](Node &n) { n.nextRequestTime = timeout; });
}
+bool PeerManager::registerProof(const std::shared_ptr<Proof> &proof) {
+ return !getProof(proof->getId()) && getPeerId(proof) != NO_PEER;
+}
+
NodeId PeerManager::selectNode() {
for (int retry = 0; retry < SELECT_NODE_MAX_RETRY; retry++) {
const PeerId p = selectPeer();
// If we cannot find a peer, it may be due to the fact that it is
// unlikely due to high fragmentation, so compact and retry.
if (p == NO_PEER) {
compact();
continue;
}
// See if that peer has an available node.
auto &nview = nodes.get<next_request_time>();
auto it = nview.lower_bound(boost::make_tuple(p, TimePoint()));
if (it != nview.end() && it->peerid == p &&
it->nextRequestTime <= std::chrono::steady_clock::now()) {
return it->nodeid;
}
}
return NO_NODE;
}
static bool isOrphanState(const ProofValidationState &state) {
return state.GetResult() == ProofValidationResult::MISSING_UTXO ||
state.GetResult() == ProofValidationResult::HEIGHT_MISMATCH;
}
void PeerManager::updatedBlockTip() {
std::vector<PeerId> invalidPeers;
std::vector<std::shared_ptr<Proof>> newOrphans;
{
LOCK(cs_main);
const CCoinsViewCache &coins = ::ChainstateActive().CoinsTip();
for (const auto &p : peers) {
ProofValidationState state;
if (!p.proof->verify(state, coins)) {
if (isOrphanState(state)) {
newOrphans.push_back(p.proof);
}
invalidPeers.push_back(p.peerid);
}
}
}
orphanProofs.rescan(*this);
for (auto &p : newOrphans) {
orphanProofs.addProof(p);
}
for (const auto &pid : invalidPeers) {
removePeer(pid);
}
}
PeerId PeerManager::getPeerId(const std::shared_ptr<Proof> &proof) {
auto it = fetchOrCreatePeer(proof);
return it == peers.end() ? NO_PEER : it->peerid;
}
std::shared_ptr<Proof> PeerManager::getProof(const ProofId &proofid) const {
- auto &pview = peers.get<proof_index>();
- auto it = pview.find(proofid);
- return it == pview.end() ? nullptr : it->proof;
-}
+ std::shared_ptr<Proof> proof = nullptr;
-std::chrono::seconds
-PeerManager::getProofRegistrationTime(const ProofId &proofid) const {
- auto &pview = peers.get<proof_index>();
- auto it = pview.find(proofid);
- return it == pview.end() ? std::chrono::seconds::max()
- : it->registration_time;
+ forPeer(proofid, [&](const Peer &p) {
+ proof = p.proof;
+ return true;
+ });
+
+ return proof;
}
PeerManager::PeerSet::iterator
PeerManager::fetchOrCreatePeer(const std::shared_ptr<Proof> &proof) {
{
// Check if we already know of that peer.
auto &pview = peers.get<proof_index>();
auto it = pview.find(proof->getId());
if (it != pview.end()) {
return peers.project<0>(it);
}
}
// Check the proof's validity.
ProofValidationState state;
bool valid = [&](ProofValidationState &state) {
LOCK(cs_main);
const CCoinsViewCache &coins = ::ChainstateActive().CoinsTip();
return proof->verify(state, coins);
}(state);
if (!valid) {
if (isOrphanState(state)) {
orphanProofs.addProof(proof);
}
// Reject invalid proof.
return peers.end();
}
orphanProofs.removeProof(proof->getId());
// New peer means new peerid!
const PeerId peerid = nextPeerId++;
// Attach UTXOs to this proof.
std::unordered_set<PeerId> conflicting_peerids;
for (const auto &s : proof->getStakes()) {
auto p = utxos.emplace(s.getStake().getUTXO(), peerid);
if (!p.second) {
// We have a collision with an existing proof.
conflicting_peerids.insert(p.first->second);
}
}
// For now, if there is a conflict, just cleanup the mess.
if (conflicting_peerids.size() > 0) {
for (const auto &s : proof->getStakes()) {
auto it = utxos.find(s.getStake().getUTXO());
assert(it != utxos.end());
// We need to delete that one.
if (it->second == peerid) {
utxos.erase(it);
}
}
return peers.end();
}
// We have no peer for this proof, time to create it.
auto inserted = peers.emplace(peerid, proof);
assert(inserted.second);
return inserted.first;
}
bool PeerManager::removePeer(const PeerId peerid) {
auto it = peers.find(peerid);
if (it == peers.end()) {
return false;
}
// Remove all nodes from this peer.
removeNodeFromPeer(it, it->node_count);
// Remove nodes associated with this peer, unless their timeout is still
// active. This ensure that we don't overquery them in case they are
// subsequently added to another peer.
auto &nview = nodes.get<next_request_time>();
nview.erase(nview.lower_bound(boost::make_tuple(peerid, TimePoint())),
nview.upper_bound(boost::make_tuple(
peerid, std::chrono::steady_clock::now())));
// Release UTXOs attached to this proof.
for (const auto &s : it->proof->getStakes()) {
bool deleted = utxos.erase(s.getStake().getUTXO()) > 0;
assert(deleted);
}
m_unbroadcast_proofids.erase(it->proof->getId());
peers.erase(it);
return true;
}
PeerId PeerManager::selectPeer() const {
if (slots.empty() || slotCount == 0) {
return NO_PEER;
}
const uint64_t max = slotCount;
for (int retry = 0; retry < SELECT_PEER_MAX_RETRY; retry++) {
size_t i = selectPeerImpl(slots, GetRand(max), max);
if (i != NO_PEER) {
return i;
}
}
return NO_PEER;
}
uint64_t PeerManager::compact() {
// There is nothing to compact.
if (fragmentation == 0) {
return 0;
}
std::vector<Slot> newslots;
newslots.reserve(peers.size());
uint64_t prevStop = 0;
uint32_t i = 0;
for (auto it = peers.begin(); it != peers.end(); it++) {
if (it->node_count == 0) {
continue;
}
newslots.emplace_back(prevStop, it->getScore(), it->peerid);
prevStop = slots[i].getStop();
if (!peers.modify(it, [&](Peer &p) { p.index = i++; })) {
return 0;
}
}
slots = std::move(newslots);
const uint64_t saved = slotCount - prevStop;
slotCount = prevStop;
fragmentation = 0;
return saved;
}
bool PeerManager::verify() const {
uint64_t prevStop = 0;
for (size_t i = 0; i < slots.size(); i++) {
const Slot &s = slots[i];
// Slots must be in correct order.
if (s.getStart() < prevStop) {
return false;
}
prevStop = s.getStop();
// If this is a dead slot, then nothing more needs to be checked.
if (s.getPeerId() == NO_PEER) {
continue;
}
// We have a live slot, verify index.
auto it = peers.find(s.getPeerId());
if (it == peers.end() || it->index != i) {
return false;
}
}
for (const auto &p : peers) {
// Count node attached to this peer.
const auto count_nodes = [&]() {
size_t count = 0;
auto &nview = nodes.get<next_request_time>();
auto begin =
nview.lower_bound(boost::make_tuple(p.peerid, TimePoint()));
auto end =
nview.upper_bound(boost::make_tuple(p.peerid + 1, TimePoint()));
for (auto it = begin; it != end; ++it) {
count++;
}
return count;
};
if (p.node_count != count_nodes()) {
return false;
}
// If there are no nodes attached to this peer, then we are done.
if (p.node_count == 0) {
continue;
}
// The index must point to a slot refering to this peer.
if (p.index >= slots.size() || slots[p.index].getPeerId() != p.peerid) {
return false;
}
// If the score do not match, same thing.
if (slots[p.index].getScore() != p.getScore()) {
return false;
}
}
return true;
}
PeerId selectPeerImpl(const std::vector<Slot> &slots, const uint64_t slot,
const uint64_t max) {
assert(slot <= max);
size_t begin = 0, end = slots.size();
uint64_t bottom = 0, top = max;
// Try to find the slot using dichotomic search.
while ((end - begin) > 8) {
// The slot we picked in not allocated.
if (slot < bottom || slot >= top) {
return NO_PEER;
}
// Guesstimate the position of the slot.
size_t i = begin + ((slot - bottom) * (end - begin) / (top - bottom));
assert(begin <= i && i < end);
// We have a match.
if (slots[i].contains(slot)) {
return slots[i].getPeerId();
}
// We undershooted.
if (slots[i].precedes(slot)) {
begin = i + 1;
if (begin >= end) {
return NO_PEER;
}
bottom = slots[begin].getStart();
continue;
}
// We overshooted.
if (slots[i].follows(slot)) {
end = i;
top = slots[end].getStart();
continue;
}
// We have an unalocated slot.
return NO_PEER;
}
// Enough of that nonsense, let fallback to linear search.
for (size_t i = begin; i < end; i++) {
// We have a match.
if (slots[i].contains(slot)) {
return slots[i].getPeerId();
}
}
// We failed to find a slot, retry.
return NO_PEER;
}
bool PeerManager::isOrphan(const ProofId &id) const {
return orphanProofs.getProof(id) != nullptr;
}
std::shared_ptr<Proof> PeerManager::getOrphan(const ProofId &id) const {
return orphanProofs.getProof(id);
}
void PeerManager::addUnbroadcastProof(const ProofId &proofid) {
// The proof should be known
if (getProof(proofid)) {
m_unbroadcast_proofids.insert(proofid);
}
}
void PeerManager::removeUnbroadcastProof(const ProofId &proofid) {
m_unbroadcast_proofids.erase(proofid);
}
} // namespace avalanche
diff --git a/src/avalanche/peermanager.h b/src/avalanche/peermanager.h
index 042d112cd..de4e3a991 100644
--- a/src/avalanche/peermanager.h
+++ b/src/avalanche/peermanager.h
@@ -1,255 +1,262 @@
// Copyright (c) 2020 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_AVALANCHE_PEERMANAGER_H
#define BITCOIN_AVALANCHE_PEERMANAGER_H
#include <avalanche/node.h>
#include <avalanche/orphanproofpool.h>
#include <avalanche/proof.h>
#include <coins.h>
#include <net.h>
#include <pubkey.h>
#include <salteduint256hasher.h>
#include <boost/multi_index/composite_key.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index_container.hpp>
#include <chrono>
#include <cstdint>
#include <memory>
#include <unordered_set>
#include <vector>
namespace avalanche {
/**
* Maximum number of stakes in the orphanProofs.
* Benchmarking on a consumer grade computer shows that 10000 stakes can be
* verified in less than 1 second.
*/
static constexpr size_t AVALANCHE_ORPHANPROOFPOOL_SIZE = 10000;
class Delegation;
struct Slot {
private:
uint64_t start;
uint32_t score;
PeerId peerid;
public:
Slot(uint64_t startIn, uint32_t scoreIn, PeerId peeridIn)
: start(startIn), score(scoreIn), peerid(peeridIn) {}
Slot withStart(uint64_t startIn) const {
return Slot(startIn, score, peerid);
}
Slot withScore(uint64_t scoreIn) const {
return Slot(start, scoreIn, peerid);
}
Slot withPeerId(PeerId peeridIn) const {
return Slot(start, score, peeridIn);
}
uint64_t getStart() const { return start; }
uint64_t getStop() const { return start + score; }
uint32_t getScore() const { return score; }
PeerId getPeerId() const { return peerid; }
bool contains(uint64_t slot) const {
return getStart() <= slot && slot < getStop();
}
bool precedes(uint64_t slot) const { return slot >= getStop(); }
bool follows(uint64_t slot) const { return getStart() > slot; }
};
struct Peer {
PeerId peerid;
uint32_t index = -1;
uint32_t node_count = 0;
std::shared_ptr<Proof> proof;
// The network stack uses timestamp in seconds, so we oblige.
std::chrono::seconds registration_time;
Peer(PeerId peerid_, std::shared_ptr<Proof> proof_)
: peerid(peerid_), proof(std::move(proof_)),
registration_time(GetTime<std::chrono::seconds>()) {}
const ProofId &getProofId() const { return proof->getId(); }
uint32_t getScore() const { return proof->getScore(); }
};
struct proof_index {
using result_type = ProofId;
result_type operator()(const Peer &p) const { return p.proof->getId(); }
};
struct next_request_time {};
namespace bmi = boost::multi_index;
class PeerManager {
std::vector<Slot> slots;
uint64_t slotCount = 0;
uint64_t fragmentation = 0;
/**
* Several nodes can make an avalanche peer. In this case, all nodes are
* considered interchangeable parts of the same peer.
*/
using PeerSet = boost::multi_index_container<
Peer, bmi::indexed_by<
// index by peerid
bmi::hashed_unique<bmi::member<Peer, PeerId, &Peer::peerid>>,
// index by proof
bmi::hashed_unique<bmi::tag<proof_index>, proof_index,
SaltedProofIdHasher>>>;
PeerId nextPeerId = 0;
PeerSet peers;
std::unordered_map<COutPoint, PeerId, SaltedOutpointHasher> utxos;
using NodeSet = boost::multi_index_container<
Node,
bmi::indexed_by<
// index by nodeid
bmi::hashed_unique<bmi::member<Node, NodeId, &Node::nodeid>>,
// sorted by peerid/nextRequestTime
bmi::ordered_non_unique<
bmi::tag<next_request_time>,
bmi::composite_key<
Node, bmi::member<Node, PeerId, &Node::peerid>,
bmi::member<Node, TimePoint, &Node::nextRequestTime>>>>>;
NodeSet nodes;
static constexpr int SELECT_PEER_MAX_RETRY = 3;
static constexpr int SELECT_NODE_MAX_RETRY = 3;
/**
* Tracks proof which for which the UTXO are unavailable.
*/
OrphanProofPool orphanProofs{AVALANCHE_ORPHANPROOFPOOL_SIZE};
/**
* Track proof ids to broadcast
*/
std::unordered_set<ProofId, SaltedProofIdHasher> m_unbroadcast_proofids;
public:
/**
* Node API.
*/
bool addNode(NodeId nodeid, const ProofId &proofid);
bool removeNode(NodeId nodeid);
// Update when a node is to be polled next.
bool updateNextRequestTime(NodeId nodeid, TimePoint timeout);
// Randomly select a node to poll.
NodeId selectNode();
template <typename Callable>
bool forNode(NodeId nodeid, Callable &&func) const {
auto it = nodes.find(nodeid);
return it != nodes.end() && func(*it);
}
template <typename Callable>
void forEachNode(const Peer &peer, Callable &&func) const {
auto &nview = nodes.get<next_request_time>();
auto range = nview.equal_range(peer.peerid);
for (auto it = range.first; it != range.second; ++it) {
func(*it);
}
}
/**
* Proof and Peer related API.
*/
+ bool registerProof(const std::shared_ptr<Proof> &proof);
bool exists(const ProofId &proofid) const {
return getProof(proofid) != nullptr;
}
+ template <typename Callable>
+ bool forPeer(const ProofId &proofid, Callable &&func) const {
+ auto &pview = peers.get<proof_index>();
+ auto it = pview.find(proofid);
+ return it != pview.end() && func(*it);
+ }
+
template <typename Callable> void forEachPeer(Callable &&func) const {
for (const auto &p : peers) {
func(p);
}
}
/**
* Update the peer set when a new block is connected.
*/
void updatedBlockTip();
/**
* Proof broadcast API.
*/
void addUnbroadcastProof(const ProofId &proofid);
void removeUnbroadcastProof(const ProofId &proofid);
auto getUnbroadcastProofs() const { return m_unbroadcast_proofids; }
/****************************************************
* Functions which are public for testing purposes. *
****************************************************/
/**
* Provide the PeerId associated with the given proof. If the peer does not
* exist, then it is created.
*/
PeerId getPeerId(const std::shared_ptr<Proof> &proof);
/**
* Remove an existing peer.
*/
bool removePeer(const PeerId peerid);
/**
* Randomly select a peer to poll.
*/
PeerId selectPeer() const;
/**
* Trigger maintenance of internal data structures.
* Returns how much slot space was saved after compaction.
*/
uint64_t compact();
/**
* Perform consistency check on internal data structures.
*/
bool verify() const;
// Accessors.
uint64_t getSlotCount() const { return slotCount; }
uint64_t getFragmentation() const { return fragmentation; }
std::shared_ptr<Proof> getProof(const ProofId &proofid) const;
- std::chrono::seconds getProofRegistrationTime(const ProofId &proofid) const;
bool isOrphan(const ProofId &id) const;
std::shared_ptr<Proof> getOrphan(const ProofId &id) const;
private:
PeerSet::iterator fetchOrCreatePeer(const std::shared_ptr<Proof> &proof);
bool addOrUpdateNode(const PeerSet::iterator &it, NodeId nodeid);
bool addNodeToPeer(const PeerSet::iterator &it);
bool removeNodeFromPeer(const PeerSet::iterator &it, uint32_t count = 1);
};
/**
* This is an internal method that is exposed for testing purposes.
*/
PeerId selectPeerImpl(const std::vector<Slot> &slots, const uint64_t slot,
const uint64_t max);
} // namespace avalanche
#endif // BITCOIN_AVALANCHE_PEERMANAGER_H
diff --git a/src/avalanche/processor.cpp b/src/avalanche/processor.cpp
index 24374de7b..cfaacca1c 100644
--- a/src/avalanche/processor.cpp
+++ b/src/avalanche/processor.cpp
@@ -1,773 +1,766 @@
// Copyright (c) 2018-2019 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <avalanche/processor.h>
#include <avalanche/delegationbuilder.h>
#include <avalanche/peermanager.h>
#include <avalanche/validation.h>
#include <chain.h>
#include <key_io.h> // For DecodeSecret
#include <net_processing.h> // For ::PeerManager
#include <netmessagemaker.h>
#include <reverse_iterator.h>
#include <scheduler.h>
#include <util/bitmanip.h>
#include <util/translation.h>
#include <validation.h>
#include <chrono>
#include <tuple>
/**
* Run the avalanche event loop every 10ms.
*/
static constexpr std::chrono::milliseconds AVALANCHE_TIME_STEP{10};
// Unfortunately, the bitcoind codebase is full of global and we are kinda
// forced into it here.
std::unique_ptr<avalanche::Processor> g_avalanche;
namespace avalanche {
bool VoteRecord::registerVote(NodeId nodeid, uint32_t error) {
// We just got a new vote, so there is one less inflight request.
clearInflightRequest();
// We want to avoid having the same node voting twice in a quorum.
if (!addNodeToQuorum(nodeid)) {
return false;
}
/**
* The result of the vote is determined from the error code. If the error
* code is 0, there is no error and therefore the vote is yes. If there is
* an error, we check the most significant bit to decide if the vote is a no
* (for instance, the block is invalid) or is the vote inconclusive (for
* instance, the queried node does not have the block yet).
*/
votes = (votes << 1) | (error == 0);
consider = (consider << 1) | (int32_t(error) >= 0);
/**
* We compute the number of yes and/or no votes as follow:
*
* votes: 1010
* consider: 1100
*
* yes votes: 1000 using votes & consider
* no votes: 0100 using ~votes & consider
*/
bool yes = countBits(votes & consider & 0xff) > 6;
if (!yes) {
bool no = countBits(~votes & consider & 0xff) > 6;
if (!no) {
// The round is inconclusive.
return false;
}
}
// If the round is in agreement with previous rounds, increase confidence.
if (isAccepted() == yes) {
confidence += 2;
return getConfidence() == AVALANCHE_FINALIZATION_SCORE;
}
// The round changed our state. We reset the confidence.
confidence = yes;
return true;
}
bool VoteRecord::addNodeToQuorum(NodeId nodeid) {
if (nodeid == NO_NODE) {
// Helpful for testing.
return true;
}
// MMIX Linear Congruent Generator.
const uint64_t r1 =
6364136223846793005 * uint64_t(nodeid) + 1442695040888963407;
// Fibonacci hashing.
const uint64_t r2 = 11400714819323198485ull * (nodeid ^ seed);
// Combine and extract hash.
const uint16_t h = (r1 + r2) >> 48;
/**
* Check if the node is in the filter.
*/
for (size_t i = 1; i < nodeFilter.size(); i++) {
if (nodeFilter[(successfulVotes + i) % nodeFilter.size()] == h) {
return false;
}
}
/**
* Add the node which just voted to the filter.
*/
nodeFilter[successfulVotes % nodeFilter.size()] = h;
successfulVotes++;
return true;
}
bool VoteRecord::registerPoll() const {
uint8_t count = inflight.load();
while (count < AVALANCHE_MAX_INFLIGHT_POLL) {
if (inflight.compare_exchange_weak(count, count + 1)) {
return true;
}
}
return false;
}
static bool IsWorthPolling(const CBlockIndex *pindex) {
AssertLockHeld(cs_main);
if (pindex->nStatus.isInvalid()) {
// No point polling invalid blocks.
return false;
}
if (::ChainstateActive().IsBlockFinalized(pindex)) {
// There is no point polling finalized block.
return false;
}
return true;
}
static bool VerifyProof(const Proof &proof, bilingual_str &error) {
ProofValidationState proof_state;
if (!proof.verify(proof_state)) {
switch (proof_state.GetResult()) {
case ProofValidationResult::NO_STAKE:
error = _("The avalanche proof has no stake.");
return false;
case ProofValidationResult::DUST_THRESOLD:
error = _("The avalanche proof stake is too low.");
return false;
case ProofValidationResult::DUPLICATE_STAKE:
error = _("The avalanche proof has duplicated stake.");
return false;
case ProofValidationResult::INVALID_SIGNATURE:
error = _("The avalanche proof has invalid stake signatures.");
return false;
case ProofValidationResult::TOO_MANY_UTXOS:
error = strprintf(
_("The avalanche proof has too many utxos (max: %u)."),
AVALANCHE_MAX_PROOF_STAKES);
return false;
default:
error = _("The avalanche proof is invalid.");
return false;
}
}
return true;
}
static bool VerifyDelegation(const Delegation &dg,
const CPubKey &expectedPubKey,
bilingual_str &error) {
DelegationState dg_state;
CPubKey auth;
if (!dg.verify(dg_state, auth)) {
switch (dg_state.GetResult()) {
case avalanche::DelegationResult::INVALID_SIGNATURE:
error = _("The avalanche delegation has invalid signatures.");
return false;
default:
error = _("The avalanche delegation is invalid.");
return false;
}
}
if (auth != expectedPubKey) {
error = _(
"The avalanche delegation does not match the expected public key.");
return false;
}
return true;
}
struct Processor::PeerData {
std::shared_ptr<Proof> proof;
Delegation delegation;
};
class Processor::NotificationsHandler
: public interfaces::Chain::Notifications {
Processor *m_processor;
public:
NotificationsHandler(Processor *p) : m_processor(p) {}
void updatedBlockTip() override {
LOCK(m_processor->cs_peerManager);
if (m_processor->mustRegisterProof &&
!::ChainstateActive().IsInitialBlockDownload()) {
m_processor->peerManager->getPeerId(m_processor->peerData->proof);
m_processor->mustRegisterProof = false;
}
m_processor->peerManager->updatedBlockTip();
}
};
Processor::Processor(interfaces::Chain &chain, CConnman *connmanIn,
NodePeerManager *nodePeerManagerIn,
std::unique_ptr<PeerData> peerDataIn, CKey sessionKeyIn)
: connman(connmanIn), nodePeerManager(nodePeerManagerIn),
queryTimeoutDuration(AVALANCHE_DEFAULT_QUERY_TIMEOUT), round(0),
peerManager(std::make_unique<PeerManager>()),
peerData(std::move(peerDataIn)), sessionKey(std::move(sessionKeyIn)),
// Schedule proof registration at the first new block after IBD.
// FIXME: get rid of this flag
mustRegisterProof(!!peerData) {
// Make sure we get notified of chain state changes.
chainNotificationsHandler =
chain.handleNotifications(std::make_shared<NotificationsHandler>(this));
}
Processor::~Processor() {
chainNotificationsHandler.reset();
stopEventLoop();
}
std::unique_ptr<Processor>
Processor::MakeProcessor(const ArgsManager &argsman, interfaces::Chain &chain,
CConnman *connman, NodePeerManager *nodePeerManager,
bilingual_str &error) {
std::unique_ptr<PeerData> peerData;
CKey masterKey;
CKey sessionKey;
if (argsman.IsArgSet("-avasessionkey")) {
sessionKey = DecodeSecret(argsman.GetArg("-avasessionkey", ""));
if (!sessionKey.IsValid()) {
error = _("The avalanche session key is invalid.");
return nullptr;
}
} else {
// Pick a random key for the session.
sessionKey.MakeNewKey(true);
}
if (argsman.IsArgSet("-avaproof")) {
if (!argsman.IsArgSet("-avamasterkey")) {
error = _(
"The avalanche master key is missing for the avalanche proof.");
return nullptr;
}
masterKey = DecodeSecret(argsman.GetArg("-avamasterkey", ""));
if (!masterKey.IsValid()) {
error = _("The avalanche master key is invalid.");
return nullptr;
}
peerData = std::make_unique<PeerData>();
peerData->proof = std::make_shared<Proof>();
if (!Proof::FromHex(*peerData->proof, argsman.GetArg("-avaproof", ""),
error)) {
// error is set by FromHex
return nullptr;
}
if (!VerifyProof(*peerData->proof, error)) {
// error is set by VerifyProof
return nullptr;
}
std::unique_ptr<DelegationBuilder> dgb;
const CPubKey &masterPubKey = masterKey.GetPubKey();
if (argsman.IsArgSet("-avadelegation")) {
Delegation dg;
if (!Delegation::FromHex(dg, argsman.GetArg("-avadelegation", ""),
error)) {
// error is set by FromHex()
return nullptr;
}
if (dg.getProofId() != peerData->proof->getId()) {
error = _("The delegation does not match the proof.");
return nullptr;
}
if (masterPubKey != dg.getDelegatedPubkey()) {
error = _(
"The master key does not match the delegation public key.");
return nullptr;
}
dgb = std::make_unique<DelegationBuilder>(dg);
} else {
if (masterPubKey != peerData->proof->getMaster()) {
error =
_("The master key does not match the proof public key.");
return nullptr;
}
dgb = std::make_unique<DelegationBuilder>(*peerData->proof);
}
// Generate the delegation to the session key.
const CPubKey sessionPubKey = sessionKey.GetPubKey();
if (sessionPubKey != masterPubKey) {
if (!dgb->addLevel(masterKey, sessionPubKey)) {
error = _("Failed to generate a delegation for this session.");
return nullptr;
}
}
peerData->delegation = dgb->build();
if (!VerifyDelegation(peerData->delegation, sessionPubKey, error)) {
// error is set by VerifyDelegation
return nullptr;
}
}
// We can't use std::make_unique with a private constructor
return std::unique_ptr<Processor>(
new Processor(chain, connman, nodePeerManager, std::move(peerData),
std::move(sessionKey)));
}
bool Processor::addBlockToReconcile(const CBlockIndex *pindex) {
bool isAccepted;
{
LOCK(cs_main);
if (!IsWorthPolling(pindex)) {
// There is no point polling this block.
return false;
}
isAccepted = ::ChainActive().Contains(pindex);
}
return vote_records.getWriteView()
->insert(std::make_pair(pindex, VoteRecord(isAccepted)))
.second;
}
bool Processor::isAccepted(const CBlockIndex *pindex) const {
auto r = vote_records.getReadView();
auto it = r->find(pindex);
if (it == r.end()) {
return false;
}
return it->second.isAccepted();
}
int Processor::getConfidence(const CBlockIndex *pindex) const {
auto r = vote_records.getReadView();
auto it = r->find(pindex);
if (it == r.end()) {
return -1;
}
return it->second.getConfidence();
}
namespace {
/**
* When using TCP, we need to sign all messages as the transport layer is
* not secure.
*/
class TCPResponse {
Response response;
SchnorrSig sig;
public:
TCPResponse(Response responseIn, const CKey &key)
: response(std::move(responseIn)) {
CHashWriter hasher(SER_GETHASH, 0);
hasher << response;
const uint256 hash = hasher.GetHash();
// Now let's sign!
if (!key.SignSchnorr(hash, sig)) {
sig.fill(0);
}
}
// serialization support
SERIALIZE_METHODS(TCPResponse, obj) {
READWRITE(obj.response, obj.sig);
}
};
} // namespace
void Processor::sendResponse(CNode *pfrom, Response response) const {
connman->PushMessage(
pfrom, CNetMsgMaker(pfrom->GetCommonVersion())
.Make(NetMsgType::AVARESPONSE,
TCPResponse(std::move(response), sessionKey)));
}
bool Processor::registerVotes(NodeId nodeid, const Response &response,
std::vector<BlockUpdate> &updates) {
{
// Save the time at which we can query again.
LOCK(cs_peerManager);
// FIXME: This will override the time even when we received an old stale
// message. This should check that the message is indeed the most up to
// date one before updating the time.
peerManager->updateNextRequestTime(
nodeid, std::chrono::steady_clock::now() +
std::chrono::milliseconds(response.getCooldown()));
}
std::vector<CInv> invs;
{
// Check that the query exists.
auto w = queries.getWriteView();
auto it = w->find(std::make_tuple(nodeid, response.getRound()));
if (it == w.end()) {
nodePeerManager->Misbehaving(nodeid, 2, "unexpected-ava-response");
return false;
}
invs = std::move(it->invs);
w->erase(it);
}
// Verify that the request and the vote are consistent.
const std::vector<Vote> &votes = response.GetVotes();
size_t size = invs.size();
if (votes.size() != size) {
nodePeerManager->Misbehaving(nodeid, 100, "invalid-ava-response-size");
return false;
}
for (size_t i = 0; i < size; i++) {
if (invs[i].hash != votes[i].GetHash()) {
nodePeerManager->Misbehaving(nodeid, 100,
"invalid-ava-response-content");
return false;
}
}
std::map<CBlockIndex *, Vote> responseIndex;
{
LOCK(cs_main);
for (const auto &v : votes) {
auto pindex = LookupBlockIndex(BlockHash(v.GetHash()));
if (!pindex) {
// This should not happen, but just in case...
continue;
}
if (!IsWorthPolling(pindex)) {
// There is no point polling this block.
continue;
}
responseIndex.insert(std::make_pair(pindex, v));
}
}
{
// Register votes.
auto w = vote_records.getWriteView();
for (const auto &p : responseIndex) {
CBlockIndex *pindex = p.first;
const Vote &v = p.second;
auto it = w->find(pindex);
if (it == w.end()) {
// We are not voting on that item anymore.
continue;
}
auto &vr = it->second;
if (!vr.registerVote(nodeid, v.GetError())) {
// This vote did not provide any extra information, move on.
continue;
}
if (!vr.hasFinalized()) {
// This item has note been finalized, so we have nothing more to
// do.
updates.emplace_back(
pindex, vr.isAccepted() ? BlockUpdate::Status::Accepted
: BlockUpdate::Status::Rejected);
continue;
}
// We just finalized a vote. If it is valid, then let the caller
// know. Either way, remove the item from the map.
updates.emplace_back(pindex, vr.isAccepted()
? BlockUpdate::Status::Finalized
: BlockUpdate::Status::Invalid);
w->erase(it);
}
}
return true;
}
bool Processor::addNode(NodeId nodeid, const ProofId &proofid) {
LOCK(cs_peerManager);
return peerManager->addNode(nodeid, proofid);
}
bool Processor::forNode(NodeId nodeid,
std::function<bool(const Node &n)> func) const {
LOCK(cs_peerManager);
return peerManager->forNode(nodeid, std::move(func));
}
CPubKey Processor::getSessionPubKey() const {
return sessionKey.GetPubKey();
}
uint256 Processor::buildLocalSighash(CNode *pfrom) const {
CHashWriter hasher(SER_GETHASH, 0);
hasher << peerData->delegation.getId();
hasher << pfrom->GetLocalNonce();
hasher << pfrom->nRemoteHostNonce;
hasher << pfrom->GetLocalExtraEntropy();
hasher << pfrom->nRemoteExtraEntropy;
return hasher.GetHash();
}
bool Processor::sendHello(CNode *pfrom) const {
if (!peerData) {
// We do not have a delegation to advertise.
return false;
}
// Now let's sign!
SchnorrSig sig;
{
const uint256 hash = buildLocalSighash(pfrom);
if (!sessionKey.SignSchnorr(hash, sig)) {
return false;
}
}
connman->PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion())
.Make(NetMsgType::AVAHELLO,
Hello(peerData->delegation, sig)));
pfrom->AddKnownProof(peerData->delegation.getProofId());
return true;
}
bool Processor::addProof(const std::shared_ptr<Proof> &proof) {
LOCK(cs_peerManager);
- return !peerManager->getProof(proof->getId()) &&
- peerManager->getPeerId(proof) != NO_PEER;
+ return peerManager->registerProof(proof);
}
std::shared_ptr<Proof> Processor::getProof(const ProofId &proofid) const {
LOCK(cs_peerManager);
return peerManager->getProof(proofid);
}
std::shared_ptr<Proof> Processor::getLocalProof() const {
return peerData ? peerData->proof : nullptr;
}
-std::chrono::seconds
-Processor::getProofRegistrationTime(const ProofId &proofid) const {
- LOCK(cs_peerManager);
- return peerManager->getProofRegistrationTime(proofid);
-}
-
std::shared_ptr<Proof> Processor::getOrphan(const ProofId &proofid) const {
LOCK(cs_peerManager);
return peerManager->getOrphan(proofid);
}
bool Processor::startEventLoop(CScheduler &scheduler) {
return eventLoop.startEventLoop(
scheduler, [this]() { this->runEventLoop(); }, AVALANCHE_TIME_STEP);
}
bool Processor::stopEventLoop() {
return eventLoop.stopEventLoop();
}
std::vector<CInv> Processor::getInvsForNextPoll(bool forPoll) {
std::vector<CInv> invs;
// First remove all blocks that are not worth polling.
{
LOCK(cs_main);
auto w = vote_records.getWriteView();
for (auto it = w->begin(); it != w->end();) {
const CBlockIndex *pindex = it->first;
if (!IsWorthPolling(pindex)) {
w->erase(it++);
} else {
++it;
}
}
}
auto r = vote_records.getReadView();
for (const std::pair<const CBlockIndex *const, VoteRecord> &p :
reverse_iterate(r)) {
// Check if we can run poll.
const bool shouldPoll =
forPoll ? p.second.registerPoll() : p.second.shouldPoll();
if (!shouldPoll) {
continue;
}
// We don't have a decision, we need more votes.
invs.emplace_back(MSG_BLOCK, p.first->GetBlockHash());
if (invs.size() >= AVALANCHE_MAX_ELEMENT_POLL) {
// Make sure we do not produce more invs than specified by the
// protocol.
return invs;
}
}
return invs;
}
NodeId Processor::getSuitableNodeToQuery() {
LOCK(cs_peerManager);
return peerManager->selectNode();
}
void Processor::clearTimedoutRequests() {
auto now = std::chrono::steady_clock::now();
std::map<CInv, uint8_t> timedout_items{};
{
// Clear expired requests.
auto w = queries.getWriteView();
auto it = w->get<query_timeout>().begin();
while (it != w->get<query_timeout>().end() && it->timeout < now) {
for (const auto &i : it->invs) {
timedout_items[i]++;
}
w->get<query_timeout>().erase(it++);
}
}
if (timedout_items.empty()) {
return;
}
// In flight request accounting.
for (const auto &p : timedout_items) {
const CInv &inv = p.first;
assert(inv.type == MSG_BLOCK);
CBlockIndex *pindex;
{
LOCK(cs_main);
pindex = LookupBlockIndex(BlockHash(inv.hash));
if (!pindex) {
continue;
}
}
auto w = vote_records.getWriteView();
auto it = w->find(pindex);
if (it == w.end()) {
continue;
}
it->second.clearInflightRequest(p.second);
}
}
void Processor::runEventLoop() {
// Don't do Avalanche while node is IBD'ing
if (::ChainstateActive().IsInitialBlockDownload()) {
return;
}
// First things first, check if we have requests that timed out and clear
// them.
clearTimedoutRequests();
// Make sure there is at least one suitable node to query before gathering
// invs.
NodeId nodeid = getSuitableNodeToQuery();
if (nodeid == NO_NODE) {
return;
}
std::vector<CInv> invs = getInvsForNextPoll();
if (invs.empty()) {
return;
}
do {
/**
* If we lost contact to that node, then we remove it from nodeids, but
* never add the request to queries, which ensures bad nodes get cleaned
* up over time.
*/
bool hasSent = connman->ForNode(nodeid, [this, &invs](CNode *pnode) {
uint64_t current_round = round++;
{
// Compute the time at which this requests times out.
auto timeout =
std::chrono::steady_clock::now() + queryTimeoutDuration;
// Register the query.
queries.getWriteView()->insert(
{pnode->GetId(), current_round, timeout, invs});
// Set the timeout.
LOCK(cs_peerManager);
peerManager->updateNextRequestTime(pnode->GetId(), timeout);
}
// Send the query to the node.
connman->PushMessage(
pnode, CNetMsgMaker(pnode->GetCommonVersion())
.Make(NetMsgType::AVAPOLL,
Poll(current_round, std::move(invs))));
return true;
});
// Success!
if (hasSent) {
return;
}
{
// This node is obsolete, delete it.
LOCK(cs_peerManager);
peerManager->removeNode(nodeid);
}
// Get next suitable node to try again
nodeid = getSuitableNodeToQuery();
} while (nodeid != NO_NODE);
}
void Processor::addUnbroadcastProof(const ProofId &proofid) {
LOCK(cs_peerManager);
peerManager->addUnbroadcastProof(proofid);
}
void Processor::removeUnbroadcastProof(const ProofId &proofid) {
LOCK(cs_peerManager);
peerManager->removeUnbroadcastProof(proofid);
}
} // namespace avalanche
diff --git a/src/avalanche/processor.h b/src/avalanche/processor.h
index 86bf9e6de..3b345f006 100644
--- a/src/avalanche/processor.h
+++ b/src/avalanche/processor.h
@@ -1,328 +1,327 @@
// Copyright (c) 2018-2019 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_AVALANCHE_PROCESSOR_H
#define BITCOIN_AVALANCHE_PROCESSOR_H
#include <avalanche/node.h>
#include <avalanche/protocol.h>
#include <blockindexworkcomparator.h>
#include <eventloop.h>
#include <interfaces/chain.h>
#include <interfaces/handler.h>
#include <key.h>
#include <rwcollection.h>
#include <boost/multi_index/composite_key.hpp>
#include <boost/multi_index/hashed_index.hpp>
#include <boost/multi_index/member.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index_container.hpp>
#include <atomic>
#include <chrono>
#include <cstdint>
#include <memory>
#include <vector>
class ArgsManager;
class Config;
class CBlockIndex;
class CScheduler;
class PeerManager;
struct bilingual_str;
using NodePeerManager = PeerManager;
/**
* Finalization score.
*/
static constexpr int AVALANCHE_FINALIZATION_SCORE = 128;
/**
* Maximum item that can be polled at once.
*/
static constexpr size_t AVALANCHE_MAX_ELEMENT_POLL = 16;
/**
* How long before we consider that a query timed out.
*/
static constexpr std::chrono::milliseconds AVALANCHE_DEFAULT_QUERY_TIMEOUT{
10000};
/**
* How many inflight requests can exist for one item.
*/
static constexpr int AVALANCHE_MAX_INFLIGHT_POLL = 10;
namespace avalanche {
class Delegation;
class PeerManager;
class Proof;
/**
* Vote history.
*/
struct VoteRecord {
private:
// confidence's LSB bit is the result. Higher bits are actual confidence
// score.
uint16_t confidence = 0;
// Historical record of votes.
uint8_t votes = 0;
// Each bit indicate if the vote is to be considered.
uint8_t consider = 0;
// How many in flight requests exists for this element.
mutable std::atomic<uint8_t> inflight{0};
// Seed for pseudorandom operations.
const uint32_t seed = 0;
// Track how many successful votes occured.
uint32_t successfulVotes = 0;
// Track the nodes which are part of the quorum.
std::array<uint16_t, 8> nodeFilter{{0, 0, 0, 0, 0, 0, 0, 0}};
public:
explicit VoteRecord(bool accepted) : confidence(accepted) {}
/**
* Copy semantic
*/
VoteRecord(const VoteRecord &other)
: confidence(other.confidence), votes(other.votes),
consider(other.consider), inflight(other.inflight.load()),
successfulVotes(other.successfulVotes), nodeFilter(other.nodeFilter) {
}
/**
* Vote accounting facilities.
*/
bool isAccepted() const { return confidence & 0x01; }
uint16_t getConfidence() const { return confidence >> 1; }
bool hasFinalized() const {
return getConfidence() >= AVALANCHE_FINALIZATION_SCORE;
}
/**
* Register a new vote for an item and update confidence accordingly.
* Returns true if the acceptance or finalization state changed.
*/
bool registerVote(NodeId nodeid, uint32_t error);
/**
* Register that a request is being made regarding that item.
* The method is made const so that it can be accessed via a read only view
* of vote_records. It's not a problem as it is made thread safe.
*/
bool registerPoll() const;
/**
* Return if this item is in condition to be polled at the moment.
*/
bool shouldPoll() const { return inflight < AVALANCHE_MAX_INFLIGHT_POLL; }
/**
* Clear `count` inflight requests.
*/
void clearInflightRequest(uint8_t count = 1) { inflight -= count; }
private:
/**
* Add the node to the quorum.
* Returns true if the node was added, false if the node already was in the
* quorum.
*/
bool addNodeToQuorum(NodeId nodeid);
};
class BlockUpdate {
union {
CBlockIndex *pindex;
uintptr_t raw;
};
static const size_t STATUS_BITS = 2;
static const uintptr_t MASK = (1 << STATUS_BITS) - 1;
static_assert(
alignof(CBlockIndex) >= (1 << STATUS_BITS),
"CBlockIndex alignement doesn't allow for Status to be stored.");
public:
enum Status : uint8_t {
Invalid,
Rejected,
Accepted,
Finalized,
};
BlockUpdate(CBlockIndex *pindexIn, Status statusIn) : pindex(pindexIn) {
raw |= statusIn;
}
Status getStatus() const { return Status(raw & MASK); }
CBlockIndex *getBlockIndex() {
return reinterpret_cast<CBlockIndex *>(raw & ~MASK);
}
const CBlockIndex *getBlockIndex() const {
return const_cast<BlockUpdate *>(this)->getBlockIndex();
}
};
using BlockVoteMap =
std::map<const CBlockIndex *, VoteRecord, CBlockIndexWorkComparator>;
struct query_timeout {};
namespace {
struct AvalancheTest;
}
class Processor {
CConnman *connman;
NodePeerManager *nodePeerManager;
std::chrono::milliseconds queryTimeoutDuration;
/**
* Blocks to run avalanche on.
*/
RWCollection<BlockVoteMap> vote_records;
/**
* Keep track of peers and queries sent.
*/
std::atomic<uint64_t> round;
/**
* Keep track of the peers and associated infos.
*/
mutable Mutex cs_peerManager;
std::unique_ptr<PeerManager> peerManager GUARDED_BY(cs_peerManager);
struct Query {
NodeId nodeid;
uint64_t round;
TimePoint timeout;
/**
* We declare this as mutable so it can be modified in the multi_index.
* This is ok because we do not use this field to index in anyway.
*
* /!\ Do not use any mutable field as index.
*/
mutable std::vector<CInv> invs;
};
using QuerySet = boost::multi_index_container<
Query,
boost::multi_index::indexed_by<
// index by nodeid/round
boost::multi_index::hashed_unique<boost::multi_index::composite_key<
Query,
boost::multi_index::member<Query, NodeId, &Query::nodeid>,
boost::multi_index::member<Query, uint64_t, &Query::round>>>,
// sorted by timeout
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<query_timeout>,
boost::multi_index::member<Query, TimePoint,
&Query::timeout>>>>;
RWCollection<QuerySet> queries;
/** Data required to participate. */
struct PeerData;
std::unique_ptr<PeerData> peerData;
CKey sessionKey;
/** Event loop machinery. */
EventLoop eventLoop;
/** Registered interfaces::Chain::Notifications handler. */
class NotificationsHandler;
std::unique_ptr<interfaces::Handler> chainNotificationsHandler;
/**
* Flag indicating that the proof must be registered at first new block
* after IBD
*/
bool mustRegisterProof = false;
Processor(interfaces::Chain &chain, CConnman *connmanIn,
NodePeerManager *nodePeerManagerIn,
std::unique_ptr<PeerData> peerDataIn, CKey sessionKeyIn);
public:
~Processor();
static std::unique_ptr<Processor>
MakeProcessor(const ArgsManager &argsman, interfaces::Chain &chain,
CConnman *connman, NodePeerManager *nodePeerManager,
bilingual_str &error);
void setQueryTimeoutDuration(std::chrono::milliseconds d) {
queryTimeoutDuration = d;
}
bool addBlockToReconcile(const CBlockIndex *pindex);
bool isAccepted(const CBlockIndex *pindex) const;
int getConfidence(const CBlockIndex *pindex) const;
// TDOD: Refactor the API to remove the dependency on avalanche/protocol.h
void sendResponse(CNode *pfrom, Response response) const;
bool registerVotes(NodeId nodeid, const Response &response,
std::vector<BlockUpdate> &updates);
bool addNode(NodeId nodeid, const ProofId &proofid);
bool forNode(NodeId nodeid, std::function<bool(const Node &n)> func) const;
template <typename Callable> auto withPeerManager(Callable &&func) const {
LOCK(cs_peerManager);
return func(*peerManager);
}
CPubKey getSessionPubKey() const;
bool sendHello(CNode *pfrom) const;
bool addProof(const std::shared_ptr<Proof> &proof);
std::shared_ptr<Proof> getProof(const ProofId &proofid) const;
std::shared_ptr<Proof> getLocalProof() const;
- std::chrono::seconds getProofRegistrationTime(const ProofId &proofid) const;
std::shared_ptr<Proof> getOrphan(const ProofId &proofid) const;
/*
* Return whether the avalanche service flag should be set.
*/
bool isAvalancheServiceAvailable() { return !!peerData; }
bool startEventLoop(CScheduler &scheduler);
bool stopEventLoop();
void addUnbroadcastProof(const ProofId &proofid);
void removeUnbroadcastProof(const ProofId &proofid);
private:
void runEventLoop();
void clearTimedoutRequests();
std::vector<CInv> getInvsForNextPoll(bool forPoll = true);
NodeId getSuitableNodeToQuery();
/**
* Build and return the challenge whose signature is included in the
* AVAHELLO message that we send to a peer.
*/
uint256 buildLocalSighash(CNode *pfrom) const;
friend struct ::avalanche::AvalancheTest;
};
} // namespace avalanche
#endif // BITCOIN_AVALANCHE_PROCESSOR_H
diff --git a/src/avalanche/test/processor_tests.cpp b/src/avalanche/test/processor_tests.cpp
index 7e64e541a..95675117c 100644
--- a/src/avalanche/test/processor_tests.cpp
+++ b/src/avalanche/test/processor_tests.cpp
@@ -1,1015 +1,1003 @@
// Copyright (c) 2018-2020 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <avalanche/processor.h>
#include <avalanche/delegationbuilder.h>
#include <avalanche/peermanager.h>
#include <avalanche/proofbuilder.h>
#include <chain.h>
#include <config.h>
#include <net_processing.h> // For ::PeerManager
#include <util/time.h>
#include <util/translation.h> // For bilingual_str
// D6970 moved LookupBlockIndex from chain.h to validation.h TODO: remove this
// when LookupBlockIndex is refactored out of validation
#include <validation.h>
#include <test/util/setup_common.h>
#include <boost/test/unit_test.hpp>
using namespace avalanche;
namespace avalanche {
namespace {
struct AvalancheTest {
static void runEventLoop(avalanche::Processor &p) { p.runEventLoop(); }
static std::vector<CInv> getInvsForNextPoll(Processor &p) {
return p.getInvsForNextPoll(false);
}
static NodeId getSuitableNodeToQuery(Processor &p) {
return p.getSuitableNodeToQuery();
}
static uint64_t getRound(const Processor &p) { return p.round; }
};
} // namespace
} // namespace avalanche
namespace {
struct CConnmanTest : public CConnman {
using CConnman::CConnman;
void AddNode(CNode &node) {
LOCK(cs_vNodes);
vNodes.push_back(&node);
}
void ClearNodes() {
LOCK(cs_vNodes);
for (CNode *node : vNodes) {
delete node;
}
vNodes.clear();
}
};
CService ip(uint32_t i) {
struct in_addr s;
s.s_addr = i;
return CService(CNetAddr(s), Params().GetDefaultPort());
}
struct AvalancheTestingSetup : public TestChain100Setup {
const Config &config;
CConnmanTest *m_connman;
std::unique_ptr<Processor> m_processor;
CKey masterpriv;
AvalancheTestingSetup()
: TestChain100Setup(), config(GetConfig()), masterpriv() {
// Deterministic randomness for tests.
auto connman = std::make_unique<CConnmanTest>(config, 0x1337, 0x1337);
m_connman = connman.get();
m_node.connman = std::move(connman);
m_node.peerman = std::make_unique<::PeerManager>(
config.GetChainParams(), *m_connman, m_node.banman.get(),
*m_node.scheduler, *m_node.chainman, *m_node.mempool);
m_node.chain = interfaces::MakeChain(m_node, config.GetChainParams());
// Get the processor ready.
bilingual_str error;
m_processor = Processor::MakeProcessor(*m_node.args, *m_node.chain,
m_node.connman.get(),
m_node.peerman.get(), error);
BOOST_CHECK(m_processor);
// The master private key we delegate to.
masterpriv.MakeNewKey(true);
}
~AvalancheTestingSetup() {
m_connman->ClearNodes();
SyncWithValidationInterfaceQueue();
}
CNode *ConnectNode(ServiceFlags nServices) {
static NodeId id = 0;
CAddress addr(ip(GetRandInt(0xffffffff)), NODE_NONE);
auto node =
new CNode(id++, ServiceFlags(NODE_NETWORK), 0, INVALID_SOCKET, addr,
0, 0, 0, CAddress(), "", ConnectionType::OUTBOUND);
node->SetCommonVersion(PROTOCOL_VERSION);
node->nServices = nServices;
m_node.peerman->InitializeNode(config, node);
node->nVersion = 1;
node->fSuccessfullyConnected = true;
m_connman->AddNode(*node);
return node;
}
size_t next_coinbase = 0;
std::shared_ptr<Proof> GetProof() {
size_t current_coinbase = next_coinbase++;
const CTransaction &coinbase = *m_coinbase_txns[current_coinbase];
ProofBuilder pb(0, 0, masterpriv.GetPubKey());
BOOST_CHECK(pb.addUTXO(COutPoint(coinbase.GetId(), 0),
coinbase.vout[0].nValue, current_coinbase + 1,
true, coinbaseKey));
return std::make_shared<Proof>(pb.build());
}
bool addNode(NodeId nodeid) {
auto proof = GetProof();
BOOST_CHECK(m_processor->addProof(proof));
return m_processor->addNode(nodeid, proof->getId());
}
std::array<CNode *, 8> ConnectNodes() {
auto proof = GetProof();
BOOST_CHECK(m_processor->addProof(proof));
const ProofId &proofid = proof->getId();
std::array<CNode *, 8> nodes;
for (CNode *&n : nodes) {
n = ConnectNode(NODE_AVALANCHE);
BOOST_CHECK(m_processor->addNode(n->GetId(), proofid));
}
return nodes;
}
void runEventLoop() { AvalancheTest::runEventLoop(*m_processor); }
NodeId getSuitableNodeToQuery() {
return AvalancheTest::getSuitableNodeToQuery(*m_processor);
}
std::vector<CInv> getInvsForNextPoll() {
return AvalancheTest::getInvsForNextPoll(*m_processor);
}
uint64_t getRound() const { return AvalancheTest::getRound(*m_processor); }
};
} // namespace
BOOST_FIXTURE_TEST_SUITE(processor_tests, AvalancheTestingSetup)
#define REGISTER_VOTE_AND_CHECK(vr, vote, state, finalized, confidence) \
vr.registerVote(NO_NODE, vote); \
BOOST_CHECK_EQUAL(vr.isAccepted(), state); \
BOOST_CHECK_EQUAL(vr.hasFinalized(), finalized); \
BOOST_CHECK_EQUAL(vr.getConfidence(), confidence);
BOOST_AUTO_TEST_CASE(vote_record) {
VoteRecord vraccepted(true);
// Check initial state.
BOOST_CHECK_EQUAL(vraccepted.isAccepted(), true);
BOOST_CHECK_EQUAL(vraccepted.hasFinalized(), false);
BOOST_CHECK_EQUAL(vraccepted.getConfidence(), 0);
VoteRecord vr(false);
// Check initial state.
BOOST_CHECK_EQUAL(vr.isAccepted(), false);
BOOST_CHECK_EQUAL(vr.hasFinalized(), false);
BOOST_CHECK_EQUAL(vr.getConfidence(), 0);
// We need to register 6 positive votes before we start counting.
for (int i = 0; i < 6; i++) {
REGISTER_VOTE_AND_CHECK(vr, 0, false, false, 0);
}
// Next vote will flip state, and confidence will increase as long as we
// vote yes.
REGISTER_VOTE_AND_CHECK(vr, 0, true, false, 0);
// A single neutral vote do not change anything.
REGISTER_VOTE_AND_CHECK(vr, -1, true, false, 1);
for (int i = 2; i < 8; i++) {
REGISTER_VOTE_AND_CHECK(vr, 0, true, false, i);
}
// Two neutral votes will stall progress.
REGISTER_VOTE_AND_CHECK(vr, -1, true, false, 7);
REGISTER_VOTE_AND_CHECK(vr, -1, true, false, 7);
for (int i = 2; i < 8; i++) {
REGISTER_VOTE_AND_CHECK(vr, 0, true, false, 7);
}
// Now confidence will increase as long as we vote yes.
for (int i = 8; i < AVALANCHE_FINALIZATION_SCORE; i++) {
REGISTER_VOTE_AND_CHECK(vr, 0, true, false, i);
}
// The next vote will finalize the decision.
REGISTER_VOTE_AND_CHECK(vr, 1, true, true, AVALANCHE_FINALIZATION_SCORE);
// Now that we have two no votes, confidence stop increasing.
for (int i = 0; i < 5; i++) {
REGISTER_VOTE_AND_CHECK(vr, 1, true, true,
AVALANCHE_FINALIZATION_SCORE);
}
// Next vote will flip state, and confidence will increase as long as we
// vote no.
REGISTER_VOTE_AND_CHECK(vr, 1, false, false, 0);
// A single neutral vote do not change anything.
REGISTER_VOTE_AND_CHECK(vr, -1, false, false, 1);
for (int i = 2; i < 8; i++) {
REGISTER_VOTE_AND_CHECK(vr, 1, false, false, i);
}
// Two neutral votes will stall progress.
REGISTER_VOTE_AND_CHECK(vr, -1, false, false, 7);
REGISTER_VOTE_AND_CHECK(vr, -1, false, false, 7);
for (int i = 2; i < 8; i++) {
REGISTER_VOTE_AND_CHECK(vr, 1, false, false, 7);
}
// Now confidence will increase as long as we vote no.
for (int i = 8; i < AVALANCHE_FINALIZATION_SCORE; i++) {
REGISTER_VOTE_AND_CHECK(vr, 1, false, false, i);
}
// The next vote will finalize the decision.
REGISTER_VOTE_AND_CHECK(vr, 0, false, true, AVALANCHE_FINALIZATION_SCORE);
// Check that inflight accounting work as expected.
VoteRecord vrinflight(false);
for (int i = 0; i < 2 * AVALANCHE_MAX_INFLIGHT_POLL; i++) {
bool shouldPoll = vrinflight.shouldPoll();
BOOST_CHECK_EQUAL(shouldPoll, i < AVALANCHE_MAX_INFLIGHT_POLL);
BOOST_CHECK_EQUAL(vrinflight.registerPoll(), shouldPoll);
}
// Clear various number of inflight requests and check everything behaves as
// expected.
for (int i = 1; i < AVALANCHE_MAX_INFLIGHT_POLL; i++) {
vrinflight.clearInflightRequest(i);
BOOST_CHECK(vrinflight.shouldPoll());
for (int j = 1; j < i; j++) {
BOOST_CHECK(vrinflight.registerPoll());
BOOST_CHECK(vrinflight.shouldPoll());
}
BOOST_CHECK(vrinflight.registerPoll());
BOOST_CHECK(!vrinflight.shouldPoll());
}
}
BOOST_AUTO_TEST_CASE(block_update) {
CBlockIndex index;
CBlockIndex *pindex = &index;
std::set<BlockUpdate::Status> status{
BlockUpdate::Status::Invalid,
BlockUpdate::Status::Rejected,
BlockUpdate::Status::Accepted,
BlockUpdate::Status::Finalized,
};
for (auto s : status) {
BlockUpdate abu(pindex, s);
BOOST_CHECK(abu.getBlockIndex() == pindex);
BOOST_CHECK_EQUAL(abu.getStatus(), s);
}
}
namespace {
Response next(Response &r) {
auto copy = r;
r = {r.getRound() + 1, r.getCooldown(), r.GetVotes()};
return copy;
}
} // namespace
BOOST_AUTO_TEST_CASE(block_register) {
std::vector<BlockUpdate> updates;
CBlock block = CreateAndProcessBlock({}, CScript());
const BlockHash blockHash = block.GetHash();
const CBlockIndex *pindex;
{
LOCK(cs_main);
pindex = LookupBlockIndex(blockHash);
}
// Create nodes that supports avalanche.
auto avanodes = ConnectNodes();
// Querying for random block returns false.
BOOST_CHECK(!m_processor->isAccepted(pindex));
// Add a new block. Check it is added to the polls.
BOOST_CHECK(m_processor->addBlockToReconcile(pindex));
auto invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 1);
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHash);
// Newly added blocks' state reflect the blockchain.
BOOST_CHECK(m_processor->isAccepted(pindex));
int nextNodeIndex = 0;
auto registerNewVote = [&](const Response &resp) {
runEventLoop();
auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId();
BOOST_CHECK(m_processor->registerVotes(nodeid, resp, updates));
};
// Let's vote for this block a few times.
Response resp{0, 0, {Vote(0, blockHash)}};
for (int i = 0; i < 6; i++) {
registerNewVote(next(resp));
BOOST_CHECK(m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), 0);
BOOST_CHECK_EQUAL(updates.size(), 0);
}
// A single neutral vote do not change anything.
resp = {getRound(), 0, {Vote(-1, blockHash)}};
registerNewVote(next(resp));
BOOST_CHECK(m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), 0);
BOOST_CHECK_EQUAL(updates.size(), 0);
resp = {getRound(), 0, {Vote(0, blockHash)}};
for (int i = 1; i < 7; i++) {
registerNewVote(next(resp));
BOOST_CHECK(m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), i);
BOOST_CHECK_EQUAL(updates.size(), 0);
}
// Two neutral votes will stall progress.
resp = {getRound(), 0, {Vote(-1, blockHash)}};
registerNewVote(next(resp));
BOOST_CHECK(m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), 6);
BOOST_CHECK_EQUAL(updates.size(), 0);
registerNewVote(next(resp));
BOOST_CHECK(m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), 6);
BOOST_CHECK_EQUAL(updates.size(), 0);
resp = {getRound(), 0, {Vote(0, blockHash)}};
for (int i = 2; i < 8; i++) {
registerNewVote(next(resp));
BOOST_CHECK(m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), 6);
BOOST_CHECK_EQUAL(updates.size(), 0);
}
// We vote for it numerous times to finalize it.
for (int i = 7; i < AVALANCHE_FINALIZATION_SCORE; i++) {
registerNewVote(next(resp));
BOOST_CHECK(m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), i);
BOOST_CHECK_EQUAL(updates.size(), 0);
}
// As long as it is not finalized, we poll.
invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 1);
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHash);
// Now finalize the decision.
registerNewVote(next(resp));
BOOST_CHECK_EQUAL(updates.size(), 1);
BOOST_CHECK(updates[0].getBlockIndex() == pindex);
BOOST_CHECK_EQUAL(updates[0].getStatus(), BlockUpdate::Status::Finalized);
updates = {};
// Once the decision is finalized, there is no poll for it.
invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 0);
// Now let's undo this and finalize rejection.
BOOST_CHECK(m_processor->addBlockToReconcile(pindex));
invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 1);
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHash);
resp = {getRound(), 0, {Vote(1, blockHash)}};
for (int i = 0; i < 6; i++) {
registerNewVote(next(resp));
BOOST_CHECK(m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(updates.size(), 0);
}
// Now the state will flip.
registerNewVote(next(resp));
BOOST_CHECK(!m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(updates.size(), 1);
BOOST_CHECK(updates[0].getBlockIndex() == pindex);
BOOST_CHECK_EQUAL(updates[0].getStatus(), BlockUpdate::Status::Rejected);
updates = {};
// Now it is rejected, but we can vote for it numerous times.
for (int i = 1; i < AVALANCHE_FINALIZATION_SCORE; i++) {
registerNewVote(next(resp));
BOOST_CHECK(!m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(updates.size(), 0);
}
// As long as it is not finalized, we poll.
invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 1);
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHash);
// Now finalize the decision.
registerNewVote(next(resp));
BOOST_CHECK(!m_processor->isAccepted(pindex));
BOOST_CHECK_EQUAL(updates.size(), 1);
BOOST_CHECK(updates[0].getBlockIndex() == pindex);
BOOST_CHECK_EQUAL(updates[0].getStatus(), BlockUpdate::Status::Invalid);
updates = {};
// Once the decision is finalized, there is no poll for it.
invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 0);
// Adding the block twice does nothing.
BOOST_CHECK(m_processor->addBlockToReconcile(pindex));
BOOST_CHECK(!m_processor->addBlockToReconcile(pindex));
BOOST_CHECK(m_processor->isAccepted(pindex));
}
BOOST_AUTO_TEST_CASE(multi_block_register) {
CBlockIndex indexA, indexB;
std::vector<BlockUpdate> updates;
// Create several nodes that support avalanche.
auto avanodes = ConnectNodes();
// Make sure the block has a hash.
CBlock blockA = CreateAndProcessBlock({}, CScript());
const BlockHash blockHashA = blockA.GetHash();
CBlock blockB = CreateAndProcessBlock({}, CScript());
const BlockHash blockHashB = blockB.GetHash();
const CBlockIndex *pindexA;
const CBlockIndex *pindexB;
{
LOCK(cs_main);
pindexA = LookupBlockIndex(blockHashA);
pindexB = LookupBlockIndex(blockHashB);
}
// Querying for random block returns false.
BOOST_CHECK(!m_processor->isAccepted(pindexA));
BOOST_CHECK(!m_processor->isAccepted(pindexB));
// Start voting on block A.
BOOST_CHECK(m_processor->addBlockToReconcile(pindexA));
auto invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 1);
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHashA);
uint64_t round = getRound();
runEventLoop();
BOOST_CHECK(m_processor->registerVotes(
avanodes[0]->GetId(), {round, 0, {Vote(0, blockHashA)}}, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
// Start voting on block B after one vote.
Response resp{round + 1, 0, {Vote(0, blockHashB), Vote(0, blockHashA)}};
BOOST_CHECK(m_processor->addBlockToReconcile(pindexB));
invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 2);
// Ensure B comes before A because it has accumulated more PoW.
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHashB);
BOOST_CHECK_EQUAL(invs[1].type, MSG_BLOCK);
BOOST_CHECK(invs[1].hash == blockHashA);
// Let's vote for these blocks a few times.
for (int i = 0; i < 4; i++) {
NodeId nodeid = getSuitableNodeToQuery();
runEventLoop();
BOOST_CHECK(m_processor->registerVotes(nodeid, next(resp), updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
}
// Now it is accepted, but we can vote for it numerous times.
for (int i = 0; i < AVALANCHE_FINALIZATION_SCORE; i++) {
NodeId nodeid = getSuitableNodeToQuery();
runEventLoop();
BOOST_CHECK(m_processor->registerVotes(nodeid, next(resp), updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
}
// Running two iterration of the event loop so that vote gets triggered on A
// and B.
NodeId firstNodeid = getSuitableNodeToQuery();
runEventLoop();
NodeId secondNodeid = getSuitableNodeToQuery();
runEventLoop();
BOOST_CHECK(firstNodeid != secondNodeid);
// Next vote will finalize block A.
BOOST_CHECK(m_processor->registerVotes(firstNodeid, next(resp), updates));
BOOST_CHECK_EQUAL(updates.size(), 1);
BOOST_CHECK(updates[0].getBlockIndex() == pindexA);
BOOST_CHECK_EQUAL(updates[0].getStatus(), BlockUpdate::Status::Finalized);
updates = {};
// We do not vote on A anymore.
invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 1);
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHashB);
// Next vote will finalize block B.
BOOST_CHECK(m_processor->registerVotes(secondNodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 1);
BOOST_CHECK(updates[0].getBlockIndex() == pindexB);
BOOST_CHECK_EQUAL(updates[0].getStatus(), BlockUpdate::Status::Finalized);
updates = {};
// There is nothing left to vote on.
invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 0);
}
BOOST_AUTO_TEST_CASE(poll_and_response) {
std::vector<BlockUpdate> updates;
CBlock block = CreateAndProcessBlock({}, CScript());
const BlockHash blockHash = block.GetHash();
const CBlockIndex *pindex;
{
LOCK(cs_main);
pindex = LookupBlockIndex(blockHash);
}
// There is no node to query.
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE);
// Create a node that supports avalanche and one that doesn't.
ConnectNode(NODE_NONE);
auto avanode = ConnectNode(NODE_AVALANCHE);
NodeId avanodeid = avanode->GetId();
BOOST_CHECK(addNode(avanodeid));
// It returns the avalanche peer.
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
// Register a block and check it is added to the list of elements to poll.
BOOST_CHECK(m_processor->addBlockToReconcile(pindex));
auto invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 1);
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHash);
// Trigger a poll on avanode.
uint64_t round = getRound();
runEventLoop();
// There is no more suitable peer available, so return nothing.
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE);
// Respond to the request.
Response resp = {round, 0, {Vote(0, blockHash)}};
BOOST_CHECK(m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
// Now that avanode fullfilled his request, it is added back to the list of
// queriable nodes.
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
// Sending a response when not polled fails.
BOOST_CHECK(!m_processor->registerVotes(avanodeid, next(resp), updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
// Trigger a poll on avanode.
round = getRound();
runEventLoop();
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE);
// Sending responses that do not match the request also fails.
// 1. Too many results.
resp = {round, 0, {Vote(0, blockHash), Vote(0, blockHash)}};
runEventLoop();
BOOST_CHECK(!m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
// 2. Not enough results.
resp = {getRound(), 0, {}};
runEventLoop();
BOOST_CHECK(!m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
// 3. Do not match the poll.
resp = {getRound(), 0, {Vote()}};
runEventLoop();
BOOST_CHECK(!m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
// 4. Invalid round count. Request is not discarded.
uint64_t queryRound = getRound();
runEventLoop();
resp = {queryRound + 1, 0, {Vote()}};
BOOST_CHECK(!m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
resp = {queryRound - 1, 0, {Vote()}};
BOOST_CHECK(!m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
// 5. Making request for invalid nodes do not work. Request is not
// discarded.
resp = {queryRound, 0, {Vote(0, blockHash)}};
BOOST_CHECK(!m_processor->registerVotes(avanodeid + 1234, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
// Proper response gets processed and avanode is available again.
resp = {queryRound, 0, {Vote(0, blockHash)}};
BOOST_CHECK(m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
// Out of order response are rejected.
CBlock block2 = CreateAndProcessBlock({}, CScript());
const BlockHash blockHash2 = block2.GetHash();
CBlockIndex *pindex2;
{
LOCK(cs_main);
pindex2 = LookupBlockIndex(blockHash2);
}
BOOST_CHECK(m_processor->addBlockToReconcile(pindex2));
resp = {getRound(), 0, {Vote(0, blockHash), Vote(0, blockHash2)}};
runEventLoop();
BOOST_CHECK(!m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
// But they are accepted in order.
resp = {getRound(), 0, {Vote(0, blockHash2), Vote(0, blockHash)}};
runEventLoop();
BOOST_CHECK(m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
// When a block is marked invalid, stop polling.
pindex2->nStatus = pindex2->nStatus.withFailed();
resp = {getRound(), 0, {Vote(0, blockHash)}};
runEventLoop();
BOOST_CHECK(m_processor->registerVotes(avanodeid, resp, updates));
BOOST_CHECK_EQUAL(updates.size(), 0);
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid);
}
BOOST_AUTO_TEST_CASE(poll_inflight_timeout, *boost::unit_test::timeout(60)) {
std::vector<BlockUpdate> updates;
CBlock block = CreateAndProcessBlock({}, CScript());
const BlockHash blockHash = block.GetHash();
const CBlockIndex *pindex;
{
LOCK(cs_main);
pindex = LookupBlockIndex(blockHash);
}
// Add the block
BOOST_CHECK(m_processor->addBlockToReconcile(pindex));
// Create a node that supports avalanche.
auto avanode = ConnectNode(NODE_AVALANCHE);
NodeId avanodeid = avanode->GetId();
BOOST_CHECK(addNode(avanodeid));
// Expire requests after some time.
auto queryTimeDuration = std::chrono::milliseconds(10);
m_processor->setQueryTimeoutDuration(queryTimeDuration);
for (int i = 0; i < 10; i++) {
Response resp = {getRound(), 0, {Vote(0, blockHash)}};
auto start = std::chrono::steady_clock::now();
runEventLoop();
// We cannot guarantee that we'll wait for just 1ms, so we have to bail
// if we aren't within the proper time range.
std::this_thread::sleep_for(std::chrono::milliseconds(1));
runEventLoop();
bool ret = m_processor->registerVotes(avanodeid, next(resp), updates);
if (std::chrono::steady_clock::now() > start + queryTimeDuration) {
// We waited for too long, bail. Because we can't know for sure when
// previous steps ran, ret is not deterministic and we do not check
// it.
i--;
continue;
}
// We are within time bounds, so the vote should have worked.
BOOST_CHECK(ret);
// Now try again but wait for expiration.
runEventLoop();
std::this_thread::sleep_for(queryTimeDuration);
runEventLoop();
BOOST_CHECK(
!m_processor->registerVotes(avanodeid, next(resp), updates));
}
}
BOOST_AUTO_TEST_CASE(poll_inflight_count) {
// Create enough nodes so that we run into the inflight request limit.
auto proof = GetProof();
BOOST_CHECK(m_processor->addProof(proof));
std::array<CNode *, AVALANCHE_MAX_INFLIGHT_POLL + 1> nodes;
for (auto &n : nodes) {
n = ConnectNode(NODE_AVALANCHE);
BOOST_CHECK(m_processor->addNode(n->GetId(), proof->getId()));
}
// Add a block to poll
CBlock block = CreateAndProcessBlock({}, CScript());
const BlockHash blockHash = block.GetHash();
const CBlockIndex *pindex;
{
LOCK(cs_main);
pindex = LookupBlockIndex(blockHash);
}
BOOST_CHECK(m_processor->addBlockToReconcile(pindex));
// Ensure there are enough requests in flight.
std::map<NodeId, uint64_t> node_round_map;
for (int i = 0; i < AVALANCHE_MAX_INFLIGHT_POLL; i++) {
NodeId nodeid = getSuitableNodeToQuery();
BOOST_CHECK(node_round_map.find(nodeid) == node_round_map.end());
node_round_map[nodeid] = getRound();
auto invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 1);
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHash);
runEventLoop();
}
// Now that we have enough in flight requests, we shouldn't poll.
auto suitablenodeid = getSuitableNodeToQuery();
BOOST_CHECK(suitablenodeid != NO_NODE);
auto invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 0);
runEventLoop();
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), suitablenodeid);
std::vector<BlockUpdate> updates;
// Send one response, now we can poll again.
auto it = node_round_map.begin();
Response resp = {it->second, 0, {Vote(0, blockHash)}};
BOOST_CHECK(m_processor->registerVotes(it->first, resp, updates));
node_round_map.erase(it);
invs = getInvsForNextPoll();
BOOST_CHECK_EQUAL(invs.size(), 1);
BOOST_CHECK_EQUAL(invs[0].type, MSG_BLOCK);
BOOST_CHECK(invs[0].hash == blockHash);
}
BOOST_AUTO_TEST_CASE(quorum_diversity) {
std::vector<BlockUpdate> updates;
CBlock block = CreateAndProcessBlock({}, CScript());
const BlockHash blockHash = block.GetHash();
const CBlockIndex *pindex;
{
LOCK(cs_main);
pindex = LookupBlockIndex(blockHash);
}
// Create nodes that supports avalanche.
auto avanodes = ConnectNodes();
// Querying for random block returns false.
BOOST_CHECK(!m_processor->isAccepted(pindex));
// Add a new block. Check it is added to the polls.
BOOST_CHECK(m_processor->addBlockToReconcile(pindex));
// Do one valid round of voting.
uint64_t round = getRound();
Response resp{round, 0, {Vote(0, blockHash)}};
// Check that all nodes can vote.
for (size_t i = 0; i < avanodes.size(); i++) {
runEventLoop();
BOOST_CHECK(m_processor->registerVotes(avanodes[i]->GetId(), next(resp),
updates));
}
// Generate a query for every single node.
const NodeId firstNodeId = getSuitableNodeToQuery();
std::map<NodeId, uint64_t> node_round_map;
round = getRound();
for (size_t i = 0; i < avanodes.size(); i++) {
NodeId nodeid = getSuitableNodeToQuery();
BOOST_CHECK(node_round_map.find(nodeid) == node_round_map.end());
node_round_map[nodeid] = getRound();
runEventLoop();
}
// Now only tge first node can vote. All others would be duplicate in the
// quorum.
auto confidence = m_processor->getConfidence(pindex);
BOOST_REQUIRE(confidence > 0);
for (auto &pair : node_round_map) {
NodeId nodeid = pair.first;
uint64_t r = pair.second;
if (nodeid == firstNodeId) {
// Node 0 is the only one which can vote at this stage.
round = r;
continue;
}
BOOST_CHECK(m_processor->registerVotes(
nodeid, {r, 0, {Vote(0, blockHash)}}, updates));
BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), confidence);
}
BOOST_CHECK(m_processor->registerVotes(
firstNodeId, {round, 0, {Vote(0, blockHash)}}, updates));
BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), confidence + 1);
}
BOOST_AUTO_TEST_CASE(event_loop) {
CScheduler s;
CBlock block = CreateAndProcessBlock({}, CScript());
const BlockHash blockHash = block.GetHash();
const CBlockIndex *pindex;
{
LOCK(cs_main);
pindex = LookupBlockIndex(blockHash);
}
// Starting the event loop.
BOOST_CHECK(m_processor->startEventLoop(s));
// There is one task planned in the next hour (our event loop).
std::chrono::system_clock::time_point start, stop;
BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1);
// Starting twice doesn't start it twice.
BOOST_CHECK(!m_processor->startEventLoop(s));
// Start the scheduler thread.
std::thread schedulerThread(std::bind(&CScheduler::serviceQueue, &s));
// Create a node that supports avalanche.
auto avanode = ConnectNode(NODE_AVALANCHE);
NodeId nodeid = avanode->GetId();
BOOST_CHECK(addNode(nodeid));
// There is no query in flight at the moment.
BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), nodeid);
// Add a new block. Check it is added to the polls.
uint64_t queryRound = getRound();
BOOST_CHECK(m_processor->addBlockToReconcile(pindex));
for (int i = 0; i < 60 * 1000; i++) {
// Technically, this is a race condition, but this should do just fine
// as we wait up to 1 minute for an event that should take 10ms.
UninterruptibleSleep(std::chrono::milliseconds(1));
if (getRound() != queryRound) {
break;
}
}
// Check that we effectively got a request and not timed out.
BOOST_CHECK(getRound() > queryRound);
// Respond and check the cooldown time is respected.
uint64_t responseRound = getRound();
auto queryTime =
std::chrono::steady_clock::now() + std::chrono::milliseconds(100);
std::vector<BlockUpdate> updates;
m_processor->registerVotes(nodeid, {queryRound, 100, {Vote(0, blockHash)}},
updates);
for (int i = 0; i < 10000; i++) {
// We make sure that we do not get a request before queryTime.
UninterruptibleSleep(std::chrono::milliseconds(1));
if (getRound() != responseRound) {
BOOST_CHECK(std::chrono::steady_clock::now() > queryTime);
break;
}
}
// But we eventually get one.
BOOST_CHECK(getRound() > responseRound);
// Stop event loop.
BOOST_CHECK(m_processor->stopEventLoop());
// We don't have any task scheduled anymore.
BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0);
// Can't stop the event loop twice.
BOOST_CHECK(!m_processor->stopEventLoop());
// Wait for the scheduler to stop.
s.stop(true);
schedulerThread.join();
}
BOOST_AUTO_TEST_CASE(destructor) {
CScheduler s;
std::chrono::system_clock::time_point start, stop;
std::thread schedulerThread;
BOOST_CHECK(m_processor->startEventLoop(s));
BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1);
// Start the service thread after the queue size check to prevent a race
// condition where the thread may be processing the event loop task during
// the check.
schedulerThread = std::thread(std::bind(&CScheduler::serviceQueue, &s));
// Destroy the processor.
m_processor.reset();
// Now that avalanche is destroyed, there is no more scheduled tasks.
BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0);
// Wait for the scheduler to stop.
s.stop(true);
schedulerThread.join();
}
BOOST_AUTO_TEST_CASE(proof_accessors) {
constexpr int numProofs = 10;
std::vector<std::shared_ptr<Proof>> proofs;
proofs.reserve(numProofs);
for (int i = 0; i < numProofs; i++) {
proofs.push_back(GetProof());
}
- const auto checkpoint = GetTime<std::chrono::seconds>();
-
- for (int i = 0; i < numProofs; i++) {
- BOOST_CHECK(m_processor->addProof(proofs[i]));
- // Fail to add an existing proof
- BOOST_CHECK(!m_processor->addProof(proofs[i]));
-
- for (int added = 0; added <= i; added++) {
- auto proof = m_processor->getProof(proofs[added]->getId());
- BOOST_CHECK(proof != nullptr);
-
- const ProofId &proofid = proof->getId();
- BOOST_CHECK_EQUAL(proofid, proofs[added]->getId());
-
- const auto proofTime =
- m_processor->getProofRegistrationTime(proofid);
- BOOST_CHECK(proofTime != std::chrono::seconds::max());
- BOOST_CHECK(proofTime >= checkpoint);
- }
-
- for (int missing = i + 1; missing < numProofs; missing++) {
- const ProofId &proofid = proofs[missing]->getId();
- BOOST_CHECK(!m_processor->getProof(proofid));
- BOOST_CHECK(m_processor->getProofRegistrationTime(proofid) ==
- std::chrono::seconds::max());
+ m_processor->withPeerManager([&](avalanche::PeerManager &pm) {
+ for (int i = 0; i < numProofs; i++) {
+ BOOST_CHECK(pm.registerProof(proofs[i]));
+ // Fail to add an existing proof
+ BOOST_CHECK(!pm.registerProof(proofs[i]));
+
+ for (int added = 0; added <= i; added++) {
+ auto proof = pm.getProof(proofs[added]->getId());
+ BOOST_CHECK(proof != nullptr);
+
+ const ProofId &proofid = proof->getId();
+ BOOST_CHECK_EQUAL(proofid, proofs[added]->getId());
+ }
}
- }
+ });
// No stake, copied from proof_tests.cpp
const std::string badProofHex(
"96527eae083f1f24625f049d9e54bb9a2102a93d98bf42ab90cfc0bf9e7c634ed76a7"
"3e95b02cacfd357b64e4fb6c92e92dd00");
bilingual_str error;
Proof badProof;
BOOST_CHECK(Proof::FromHex(badProof, badProofHex, error));
BOOST_CHECK(
!m_processor->addProof(std::make_shared<Proof>(std::move(badProof))));
}
BOOST_AUTO_TEST_SUITE_END()
diff --git a/src/net_processing.cpp b/src/net_processing.cpp
index 53502faff..d9bc07c3d 100644
--- a/src/net_processing.cpp
+++ b/src/net_processing.cpp
@@ -1,5861 +1,5867 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <net_processing.h>
#include <addrman.h>
#include <avalanche/avalanche.h>
#include <avalanche/peermanager.h>
#include <avalanche/processor.h>
#include <avalanche/proof.h>
#include <avalanche/validation.h>
#include <banman.h>
#include <blockdb.h>
#include <blockencodings.h>
#include <blockfilter.h>
#include <blockvalidity.h>
#include <chain.h>
#include <chainparams.h>
#include <config.h>
#include <consensus/validation.h>
#include <hash.h>
#include <index/blockfilterindex.h>
#include <merkleblock.h>
#include <netbase.h>
#include <netmessagemaker.h>
#include <policy/fees.h>
#include <policy/policy.h>
#include <primitives/block.h>
#include <primitives/transaction.h>
#include <random.h>
#include <reverse_iterator.h>
#include <scheduler.h>
#include <streams.h>
#include <tinyformat.h>
#include <txmempool.h>
#include <util/check.h> // For NDEBUG compile time check
#include <util/strencodings.h>
#include <util/system.h>
#include <validation.h>
#include <memory>
#include <typeinfo>
/** Expiration time for orphan transactions in seconds */
static constexpr int64_t ORPHAN_TX_EXPIRE_TIME = 20 * 60;
/** Minimum time between orphan transactions expire time checks in seconds */
static constexpr int64_t ORPHAN_TX_EXPIRE_INTERVAL = 5 * 60;
/** How long to cache transactions in mapRelay for normal relay */
static constexpr std::chrono::seconds RELAY_TX_CACHE_TIME =
std::chrono::minutes{15};
/** How long a transaction has to be in the mempool before it can
* unconditionally be relayed (even when not in mapRelay). */
static constexpr std::chrono::seconds UNCONDITIONAL_RELAY_DELAY =
std::chrono::minutes{2};
/**
* Headers download timeout expressed in microseconds.
* Timeout = base + per_header * (expected number of headers)
*/
// 15 minutes
static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_BASE = 15 * 60 * 1000000;
// 1ms/header
static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1000;
/**
* Protect at least this many outbound peers from disconnection due to
* slow/behind headers chain.
*/
static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4;
/**
* Timeout for (unprotected) outbound peers to sync to our chainwork, in
* seconds.
*/
// 20 minutes
static constexpr int64_t CHAIN_SYNC_TIMEOUT = 20 * 60;
/** How frequently to check for stale tips, in seconds */
// 10 minutes
static constexpr int64_t STALE_CHECK_INTERVAL = 10 * 60;
/**
* How frequently to check for extra outbound peers and disconnect, in seconds.
*/
static constexpr int64_t EXTRA_PEER_CHECK_INTERVAL = 45;
/**
* Minimum time an outbound-peer-eviction candidate must be connected for, in
* order to evict, in seconds.
*/
static constexpr int64_t MINIMUM_CONNECT_TIME = 30;
/** SHA256("main address relay")[0:8] */
static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL;
/// Age after which a stale block will no longer be served if requested as
/// protection against fingerprinting. Set to one month, denominated in seconds.
static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60;
/// Age after which a block is considered historical for purposes of rate
/// limiting block relay. Set to one week, denominated in seconds.
static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60;
/**
* Time between pings automatically sent out for latency probing and keepalive.
*/
static constexpr std::chrono::minutes PING_INTERVAL{2};
/** The maximum number of entries in a locator */
static const unsigned int MAX_LOCATOR_SZ = 101;
/** The maximum number of entries in an 'inv' protocol message */
static const unsigned int MAX_INV_SZ = 50000;
static_assert(MAX_PROTOCOL_MESSAGE_LENGTH > MAX_INV_SZ * sizeof(CInv),
"Max protocol message length must be greater than largest "
"possible INV message");
struct DataRequestParameters {
/**
* Maximum number of in-flight data requests from a peer. It is not a hard
* limit, but the threshold at which point the overloaded_peer_delay kicks
* in.
*/
const size_t max_peer_request_in_flight;
/**
* Maximum number of inventories to consider for requesting, per peer. It
* provides a reasonable DoS limit to per-peer memory usage spent on
* announcements, while covering peers continuously sending INVs at the
* maximum rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for
* several minutes, while not receiving the actual data (from any peer) in
* response to requests for them.
*/
const size_t max_peer_announcements;
/** How long to delay requesting data from non-preferred peers */
const std::chrono::seconds nonpref_peer_delay;
/**
* How long to delay requesting data from overloaded peers (see
* max_peer_request_in_flight).
*/
const std::chrono::seconds overloaded_peer_delay;
/**
* How long to wait (in microseconds) before a data request from an
* additional peer.
*/
const std::chrono::microseconds getdata_interval;
/**
* Permission flags a peer requires to bypass the request limits tracking
* limits and delay penalty.
*/
const NetPermissionFlags bypass_request_limits_permissions;
};
static constexpr DataRequestParameters TX_REQUEST_PARAMS{
100, // max_peer_request_in_flight
5000, // max_peer_announcements
std::chrono::seconds(2), // nonpref_peer_delay
std::chrono::seconds(2), // overloaded_peer_delay
std::chrono::seconds(60), // getdata_interval
PF_RELAY, // bypass_request_limits_permissions
};
static constexpr DataRequestParameters PROOF_REQUEST_PARAMS{
100, // max_peer_request_in_flight
5000, // max_peer_announcements
std::chrono::seconds(2), // nonpref_peer_delay
std::chrono::seconds(2), // overloaded_peer_delay
std::chrono::seconds(60), // getdata_interval
PF_BYPASS_PROOF_REQUEST_LIMITS, // bypass_request_limits_permissions
};
/**
* Limit to avoid sending big packets. Not used in processing incoming GETDATA
* for compatibility.
*/
static const unsigned int MAX_GETDATA_SZ = 1000;
/**
* Number of blocks that can be requested at any given time from a single peer.
*/
static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16;
/**
* Timeout in seconds during which a peer must stall block download progress
* before being disconnected.
*/
static const unsigned int BLOCK_STALLING_TIMEOUT = 2;
/**
* Number of headers sent in one getheaders result. We rely on the assumption
* that if a peer sends
* less than this number, we reached its tip. Changing this value is a protocol
* upgrade.
*/
static const unsigned int MAX_HEADERS_RESULTS = 2000;
/**
* Maximum depth of blocks we're willing to serve as compact blocks to peers
* when requested. For older blocks, a regular BLOCK response will be sent.
*/
static const int MAX_CMPCTBLOCK_DEPTH = 5;
/**
* Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests
* for.
*/
static const int MAX_BLOCKTXN_DEPTH = 10;
/**
* Size of the "block download window": how far ahead of our current height do
* we fetch? Larger windows tolerate larger download speed differences between
* peer, but increase the potential degree of disordering of blocks on disk
* (which make reindexing and pruning harder). We'll probably
* want to make this a per-peer adaptive value at some point.
*/
static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024;
/**
* Block download timeout base, expressed in millionths of the block interval
* (i.e. 10 min)
*/
static const int64_t BLOCK_DOWNLOAD_TIMEOUT_BASE = 1000000;
/**
* Additional block download timeout per parallel downloading peer (i.e. 5 min)
*/
static const int64_t BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 500000;
/**
* Maximum number of headers to announce when relaying blocks with headers
* message.
*/
static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8;
/** Maximum number of unconnecting headers announcements before DoS score */
static const int MAX_UNCONNECTING_HEADERS = 10;
/** Minimum blocks required to signal NODE_NETWORK_LIMITED */
static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288;
/**
* Average delay between local address broadcasts.
*/
static constexpr std::chrono::hours AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24};
/**
* Average delay between peer address broadcasts.
*/
static const std::chrono::seconds AVG_ADDRESS_BROADCAST_INTERVAL{30};
/**
* Average delay between trickled inventory transmissions in seconds.
* Blocks and whitelisted receivers bypass this, outbound peers get half this
* delay.
*/
static const unsigned int INVENTORY_BROADCAST_INTERVAL = 5;
/**
* Maximum rate of inventory items to send per second.
* Limits the impact of low-fee transaction floods.
*/
static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7;
/** Maximum number of inventory items to send per transmission. */
static constexpr unsigned int INVENTORY_BROADCAST_MAX_PER_MB =
INVENTORY_BROADCAST_PER_SECOND * INVENTORY_BROADCAST_INTERVAL;
/** The number of most recently announced transactions a peer can request. */
static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500;
/**
* Verify that INVENTORY_MAX_RECENT_RELAY is enough to cache everything
* typically relayed before unconditional relay from the mempool kicks in. This
* is only a lower bound, and it should be larger to account for higher inv rate
* to outbound peers, and random variations in the broadcast mechanism.
*/
static_assert(INVENTORY_MAX_RECENT_RELAY >= INVENTORY_BROADCAST_PER_SECOND *
UNCONDITIONAL_RELAY_DELAY /
std::chrono::seconds{1},
"INVENTORY_RELAY_MAX too low");
/**
* Average delay between feefilter broadcasts in seconds.
*/
static constexpr unsigned int AVG_FEEFILTER_BROADCAST_INTERVAL = 10 * 60;
/**
* Maximum feefilter broadcast delay after significant change.
*/
static constexpr unsigned int MAX_FEEFILTER_CHANGE_DELAY = 5 * 60;
/**
* Maximum number of compact filters that may be requested with one
* getcfilters. See BIP 157.
*/
static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000;
/**
* Maximum number of cf hashes that may be requested with one getcfheaders. See
* BIP 157.
*/
static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000;
/// How many non standard orphan do we consider from a node before ignoring it.
static constexpr uint32_t MAX_NON_STANDARD_ORPHAN_PER_NODE = 5;
struct COrphanTx {
// When modifying, adapt the copy of this definition in tests/DoS_tests.
CTransactionRef tx;
NodeId fromPeer;
int64_t nTimeExpire;
size_t list_pos;
};
RecursiveMutex g_cs_orphans;
std::map<TxId, COrphanTx> mapOrphanTransactions GUARDED_BY(g_cs_orphans);
void EraseOrphansFor(NodeId peer);
// Internal stuff
namespace {
/** Number of nodes with fSyncStarted. */
int nSyncStarted GUARDED_BY(cs_main) = 0;
/**
* Sources of received blocks, saved to be able to punish them when processing
* happens afterwards.
* Set mapBlockSource[hash].second to false if the node should not be punished
* if the block is invalid.
*/
std::map<BlockHash, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main);
/**
* Filter for transactions that were recently rejected by AcceptToMemoryPool.
* These are not rerequested until the chain tip changes, at which point the
* entire filter is reset.
*
* Without this filter we'd be re-requesting txs from each of our peers,
* increasing bandwidth consumption considerably. For instance, with 100 peers,
* half of which relay a tx we don't accept, that might be a 50x bandwidth
* increase. A flooding attacker attempting to roll-over the filter using
* minimum-sized, 60byte, transactions might manage to send 1000/sec if we have
* fast peers, so we pick 120,000 to give our peers a two minute window to send
* invs to us.
*
* Decreasing the false positive rate is fairly cheap, so we pick one in a
* million to make it highly unlikely for users to have issues with this filter.
*
* Memory used: 1.3 MB
*/
std::unique_ptr<CRollingBloomFilter> recentRejects GUARDED_BY(cs_main);
uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main);
/**
* Filter for proofs that were recently rejected but not orphaned.
* These are not rerequested until they are rolled out of the filter.
*
* Without this filter we'd be re-requesting proofs from each of our peers,
* increasing bandwidth consumption considerably.
*
* Decreasing the false positive rate is fairly cheap, so we pick one in a
* million to make it highly unlikely for users to have issues with this filter.
*/
Mutex cs_rejectedProofs;
std::unique_ptr<CRollingBloomFilter>
rejectedProofs GUARDED_BY(cs_rejectedProofs);
/**
* Filter for transactions that have been recently confirmed.
* We use this to avoid requesting transactions that have already been
* confirmed.
*/
Mutex g_cs_recent_confirmed_transactions;
std::unique_ptr<CRollingBloomFilter> g_recent_confirmed_transactions
GUARDED_BY(g_cs_recent_confirmed_transactions);
/**
* Blocks that are in flight, and that are in the queue to be downloaded.
*/
struct QueuedBlock {
BlockHash hash;
//! Optional.
const CBlockIndex *pindex;
//! Whether this block has validated headers at the time of request.
bool fValidatedHeaders;
//! Optional, used for CMPCTBLOCK downloads
std::unique_ptr<PartiallyDownloadedBlock> partialBlock;
};
std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>>
mapBlocksInFlight GUARDED_BY(cs_main);
/** Stack of nodes which we have set to announce using compact blocks */
std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main);
/** Number of preferable block download peers. */
int nPreferredDownload GUARDED_BY(cs_main) = 0;
/** Number of peers from which we're downloading blocks. */
int nPeersWithValidatedDownloads GUARDED_BY(cs_main) = 0;
/** Number of outbound peers with m_chain_sync.m_protect. */
int g_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0;
/** When our tip was last updated. */
std::atomic<int64_t> g_last_tip_update(0);
/** Relay map. */
typedef std::map<uint256, CTransactionRef> MapRelay;
MapRelay mapRelay GUARDED_BY(cs_main);
/**
* Expiration-time ordered list of (expire time, relay map entry) pairs,
* protected by cs_main).
*/
std::deque<std::pair<int64_t, MapRelay::iterator>>
vRelayExpiration GUARDED_BY(cs_main);
struct IteratorComparator {
template <typename I> bool operator()(const I &a, const I &b) const {
return &(*a) < &(*b);
}
};
std::map<COutPoint,
std::set<std::map<TxId, COrphanTx>::iterator, IteratorComparator>>
mapOrphanTransactionsByPrev GUARDED_BY(g_cs_orphans);
//! For random eviction
std::vector<std::map<TxId, COrphanTx>::iterator>
g_orphan_list GUARDED_BY(g_cs_orphans);
static size_t vExtraTxnForCompactIt GUARDED_BY(g_cs_orphans) = 0;
static std::vector<std::pair<TxHash, CTransactionRef>>
vExtraTxnForCompact GUARDED_BY(g_cs_orphans);
} // namespace
namespace {
/**
* Maintain validation-specific state about nodes, protected by cs_main, instead
* by CNode's own locks. This simplifies asynchronous operation, where
* processing of incoming data is done after the ProcessMessage call returns,
* and we're no longer holding the node's locks.
*/
struct CNodeState {
//! The peer's address
const CService address;
//! Whether we have a fully established connection.
bool fCurrentlyConnected;
//! The best known block we know this peer has announced.
const CBlockIndex *pindexBestKnownBlock;
//! The hash of the last unknown block this peer has announced.
BlockHash hashLastUnknownBlock;
//! The last full block we both have.
const CBlockIndex *pindexLastCommonBlock;
//! The best header we have sent our peer.
const CBlockIndex *pindexBestHeaderSent;
//! Length of current-streak of unconnecting headers announcements
int nUnconnectingHeaders;
//! Whether we've started headers synchronization with this peer.
bool fSyncStarted;
//! When to potentially disconnect peer for stalling headers download
int64_t nHeadersSyncTimeout;
//! Since when we're stalling block download progress (in microseconds), or
//! 0.
int64_t nStallingSince;
std::list<QueuedBlock> vBlocksInFlight;
//! When the first entry in vBlocksInFlight started downloading. Don't care
//! when vBlocksInFlight is empty.
int64_t nDownloadingSince;
int nBlocksInFlight;
int nBlocksInFlightValidHeaders;
//! Whether we consider this a preferred download peer.
bool fPreferredDownload;
//! Whether this peer wants invs or headers (when possible) for block
//! announcements.
bool fPreferHeaders;
//! Whether this peer wants invs or cmpctblocks (when possible) for block
//! announcements.
bool fPreferHeaderAndIDs;
/**
* Whether this peer will send us cmpctblocks if we request them.
* This is not used to gate request logic, as we really only care about
* fSupportsDesiredCmpctVersion, but is used as a flag to "lock in" the
* version of compact blocks we send.
*/
bool fProvidesHeaderAndIDs;
/**
* If we've announced NODE_WITNESS to this peer: whether the peer sends
* witnesses in cmpctblocks/blocktxns, otherwise: whether this peer sends
* non-witnesses in cmpctblocks/blocktxns.
*/
bool fSupportsDesiredCmpctVersion;
/**
* State used to enforce CHAIN_SYNC_TIMEOUT
* Only in effect for outbound, non-manual, full-relay connections, with
* m_protect == false
* Algorithm: if a peer's best known block has less work than our tip, set
* a timeout CHAIN_SYNC_TIMEOUT seconds in the future:
* - If at timeout their best known block now has more work than our tip
* when the timeout was set, then either reset the timeout or clear it
* (after comparing against our current tip's work)
* - If at timeout their best known block still has less work than our tip
* did when the timeout was set, then send a getheaders message, and set a
* shorter timeout, HEADERS_RESPONSE_TIME seconds in future. If their best
* known block is still behind when that new timeout is reached, disconnect.
*/
struct ChainSyncTimeoutState {
//! A timeout used for checking whether our peer has sufficiently
//! synced.
int64_t m_timeout;
//! A header with the work we require on our peer's chain.
const CBlockIndex *m_work_header;
//! After timeout is reached, set to true after sending getheaders.
bool m_sent_getheaders;
//! Whether this peer is protected from disconnection due to a bad/slow
//! chain.
bool m_protect;
};
ChainSyncTimeoutState m_chain_sync;
//! Time of last new block announcement
int64_t m_last_block_announcement;
struct AvalancheState {
std::chrono::time_point<std::chrono::steady_clock> last_poll;
};
AvalancheState m_avalanche_state;
//! Whether this peer is an inbound connection
bool m_is_inbound;
//! Whether this peer is a manual connection
bool m_is_manual_connection;
//! A rolling bloom filter of all announced tx CInvs to this peer.
CRollingBloomFilter m_recently_announced_invs =
CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001};
//! A rolling bloom filter of all announced Proofs CInvs to this peer.
CRollingBloomFilter m_recently_announced_proofs =
CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001};
CNodeState(CAddress addrIn, bool is_inbound, bool is_manual)
: address(addrIn), m_is_inbound(is_inbound),
m_is_manual_connection(is_manual) {
fCurrentlyConnected = false;
pindexBestKnownBlock = nullptr;
hashLastUnknownBlock = BlockHash();
pindexLastCommonBlock = nullptr;
pindexBestHeaderSent = nullptr;
nUnconnectingHeaders = 0;
fSyncStarted = false;
nHeadersSyncTimeout = 0;
nStallingSince = 0;
nDownloadingSince = 0;
nBlocksInFlight = 0;
nBlocksInFlightValidHeaders = 0;
fPreferredDownload = false;
fPreferHeaders = false;
fPreferHeaderAndIDs = false;
fProvidesHeaderAndIDs = false;
fSupportsDesiredCmpctVersion = false;
m_chain_sync = {0, nullptr, false, false};
m_last_block_announcement = 0;
m_recently_announced_invs.reset();
m_recently_announced_proofs.reset();
}
};
/** Map maintaining per-node state. */
static std::map<NodeId, CNodeState> mapNodeState GUARDED_BY(cs_main);
static CNodeState *State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
std::map<NodeId, CNodeState>::iterator it = mapNodeState.find(pnode);
if (it == mapNodeState.end()) {
return nullptr;
}
return &it->second;
}
/**
* Data structure for an individual peer. This struct is not protected by
* cs_main since it does not contain validation-critical data.
*
* Memory is owned by shared pointers and this object is destructed when
* the refcount drops to zero.
*
* TODO: move most members from CNodeState to this structure.
* TODO: move remaining application-layer data members from CNode to this
* structure.
*/
struct Peer {
/** Same id as the CNode object for this peer */
const NodeId m_id{0};
/** Protects misbehavior data members */
Mutex m_misbehavior_mutex;
/** Accumulated misbehavior score for this peer */
int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0};
/** Whether this peer should be disconnected and marked as discouraged
* (unless it has the noban permission). */
bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false};
Peer(NodeId id) : m_id(id) {}
};
using PeerRef = std::shared_ptr<Peer>;
/**
* Map of all Peer objects, keyed by peer id. This map is protected
* by the global g_peer_mutex. Once a shared pointer reference is
* taken, the lock may be released. Individual fields are protected by
* their own locks.
*/
Mutex g_peer_mutex;
static std::map<NodeId, PeerRef> g_peer_map GUARDED_BY(g_peer_mutex);
/**
* Get a shared pointer to the Peer object.
* May return nullptr if the Peer object can't be found.
*/
static PeerRef GetPeerRef(NodeId id) {
LOCK(g_peer_mutex);
auto it = g_peer_map.find(id);
return it != g_peer_map.end() ? it->second : nullptr;
}
static bool isPreferredDownloadPeer(const CNode &pfrom) {
LOCK(cs_main);
const CNodeState *state = State(pfrom.GetId());
return state && state->fPreferredDownload;
}
static void UpdatePreferredDownload(const CNode &node, CNodeState *state)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
nPreferredDownload -= state->fPreferredDownload;
// Whether this node should be marked as a preferred download node.
state->fPreferredDownload =
(!node.IsInboundConn() || node.HasPermission(PF_NOBAN)) &&
!node.IsAddrFetchConn() && !node.fClient;
nPreferredDownload += state->fPreferredDownload;
}
static void PushNodeVersion(const Config &config, CNode &pnode,
CConnman &connman, int64_t nTime) {
// Note that pnode.GetLocalServices() is a reflection of the local
// services we were offering when the CNode object was created for this
// peer.
ServiceFlags nLocalNodeServices = pnode.GetLocalServices();
uint64_t nonce = pnode.GetLocalNonce();
int nNodeStartingHeight = pnode.GetMyStartingHeight();
NodeId nodeid = pnode.GetId();
CAddress addr = pnode.addr;
uint64_t extraEntropy = pnode.GetLocalExtraEntropy();
CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr)
? addr
: CAddress(CService(), addr.nServices));
CAddress addrMe = CAddress(CService(), nLocalNodeServices);
connman.PushMessage(
&pnode,
CNetMsgMaker(INIT_PROTO_VERSION)
.Make(NetMsgType::VERSION, PROTOCOL_VERSION,
uint64_t(nLocalNodeServices), nTime, addrYou, addrMe, nonce,
userAgent(config), nNodeStartingHeight,
::g_relay_txes && pnode.m_tx_relay != nullptr, extraEntropy));
if (fLogIPs) {
LogPrint(BCLog::NET,
"send version message: version %d, blocks=%d, us=%s, them=%s, "
"peer=%d\n",
PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(),
addrYou.ToString(), nodeid);
} else {
LogPrint(
BCLog::NET,
"send version message: version %d, blocks=%d, us=%s, peer=%d\n",
PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), nodeid);
}
LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
}
// Returns a bool indicating whether we requested this block.
// Also used if a block was /not/ received and timed out or started with another
// peer.
static bool MarkBlockAsReceived(const BlockHash &hash)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
std::map<BlockHash,
std::pair<NodeId, std::list<QueuedBlock>::iterator>>::iterator
itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end()) {
CNodeState *state = State(itInFlight->second.first);
assert(state != nullptr);
state->nBlocksInFlightValidHeaders -=
itInFlight->second.second->fValidatedHeaders;
if (state->nBlocksInFlightValidHeaders == 0 &&
itInFlight->second.second->fValidatedHeaders) {
// Last validated block on the queue was received.
nPeersWithValidatedDownloads--;
}
if (state->vBlocksInFlight.begin() == itInFlight->second.second) {
// First block on the queue was received, update the start download
// time for the next one
state->nDownloadingSince = std::max(
state->nDownloadingSince,
count_microseconds(GetTime<std::chrono::microseconds>()));
}
state->vBlocksInFlight.erase(itInFlight->second.second);
state->nBlocksInFlight--;
state->nStallingSince = 0;
mapBlocksInFlight.erase(itInFlight);
return true;
}
return false;
}
// returns false, still setting pit, if the block was already in flight from the
// same peer
// pit will only be valid as long as the same cs_main lock is being held.
static bool
MarkBlockAsInFlight(const Config &config, CTxMemPool &mempool, NodeId nodeid,
const BlockHash &hash,
const Consensus::Params &consensusParams,
const CBlockIndex *pindex = nullptr,
std::list<QueuedBlock>::iterator **pit = nullptr)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
CNodeState *state = State(nodeid);
assert(state != nullptr);
// Short-circuit most stuff in case it is from the same node.
std::map<BlockHash,
std::pair<NodeId, std::list<QueuedBlock>::iterator>>::iterator
itInFlight = mapBlocksInFlight.find(hash);
if (itInFlight != mapBlocksInFlight.end() &&
itInFlight->second.first == nodeid) {
if (pit) {
*pit = &itInFlight->second.second;
}
return false;
}
// Make sure it's not listed somewhere already.
MarkBlockAsReceived(hash);
std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert(
state->vBlocksInFlight.end(),
{hash, pindex, pindex != nullptr,
std::unique_ptr<PartiallyDownloadedBlock>(
pit ? new PartiallyDownloadedBlock(config, &mempool) : nullptr)});
state->nBlocksInFlight++;
state->nBlocksInFlightValidHeaders += it->fValidatedHeaders;
if (state->nBlocksInFlight == 1) {
// We're starting a block download (batch) from this peer.
state->nDownloadingSince = GetTime<std::chrono::microseconds>().count();
}
if (state->nBlocksInFlightValidHeaders == 1 && pindex != nullptr) {
nPeersWithValidatedDownloads++;
}
itInFlight = mapBlocksInFlight
.insert(std::make_pair(hash, std::make_pair(nodeid, it)))
.first;
if (pit) {
*pit = &itInFlight->second.second;
}
return true;
}
/** Check whether the last unknown block a peer advertised is not yet known. */
static void ProcessBlockAvailability(NodeId nodeid)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
CNodeState *state = State(nodeid);
assert(state != nullptr);
if (!state->hashLastUnknownBlock.IsNull()) {
const CBlockIndex *pindex =
LookupBlockIndex(state->hashLastUnknownBlock);
if (pindex && pindex->nChainWork > 0) {
if (state->pindexBestKnownBlock == nullptr ||
pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
state->pindexBestKnownBlock = pindex;
}
state->hashLastUnknownBlock.SetNull();
}
}
}
/** Update tracking information about which blocks a peer is assumed to have. */
static void UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
CNodeState *state = State(nodeid);
assert(state != nullptr);
ProcessBlockAvailability(nodeid);
const CBlockIndex *pindex = LookupBlockIndex(hash);
if (pindex && pindex->nChainWork > 0) {
// An actually better block was announced.
if (state->pindexBestKnownBlock == nullptr ||
pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) {
state->pindexBestKnownBlock = pindex;
}
} else {
// An unknown block was announced; just assume that the latest one is
// the best one.
state->hashLastUnknownBlock = hash;
}
}
/**
* When a peer sends us a valid block, instruct it to announce blocks to us
* using CMPCTBLOCK if possible by adding its nodeid to the end of
* lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by
* removing the first element if necessary.
*/
static void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid,
CConnman &connman)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
AssertLockHeld(cs_main);
CNodeState *nodestate = State(nodeid);
if (!nodestate) {
LogPrint(BCLog::NET, "node state unavailable: peer=%d\n", nodeid);
return;
}
if (!nodestate->fProvidesHeaderAndIDs) {
return;
}
for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin();
it != lNodesAnnouncingHeaderAndIDs.end(); it++) {
if (*it == nodeid) {
lNodesAnnouncingHeaderAndIDs.erase(it);
lNodesAnnouncingHeaderAndIDs.push_back(nodeid);
return;
}
}
connman.ForNode(nodeid, [&connman](CNode *pfrom) {
AssertLockHeld(cs_main);
uint64_t nCMPCTBLOCKVersion = 1;
if (lNodesAnnouncingHeaderAndIDs.size() >= 3) {
// As per BIP152, we only get 3 of our peers to announce
// blocks using compact encodings.
connman.ForNode(
lNodesAnnouncingHeaderAndIDs.front(),
[&connman, nCMPCTBLOCKVersion](CNode *pnodeStop) {
AssertLockHeld(cs_main);
connman.PushMessage(
pnodeStop, CNetMsgMaker(pnodeStop->GetCommonVersion())
.Make(NetMsgType::SENDCMPCT,
/*fAnnounceUsingCMPCTBLOCK=*/false,
nCMPCTBLOCKVersion));
return true;
});
lNodesAnnouncingHeaderAndIDs.pop_front();
}
connman.PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion())
.Make(NetMsgType::SENDCMPCT,
/*fAnnounceUsingCMPCTBLOCK=*/true,
nCMPCTBLOCKVersion));
lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId());
return true;
});
}
static bool TipMayBeStale(const Consensus::Params &consensusParams)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
AssertLockHeld(cs_main);
if (g_last_tip_update == 0) {
g_last_tip_update = GetTime();
}
return g_last_tip_update <
GetTime() - consensusParams.nPowTargetSpacing * 3 &&
mapBlocksInFlight.empty();
}
static bool CanDirectFetch(const Consensus::Params &consensusParams)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
return ::ChainActive().Tip()->GetBlockTime() >
GetAdjustedTime() - consensusParams.nPowTargetSpacing * 20;
}
static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
if (state->pindexBestKnownBlock &&
pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight)) {
return true;
}
if (state->pindexBestHeaderSent &&
pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight)) {
return true;
}
return false;
}
/**
* Update pindexLastCommonBlock and add not-in-flight missing successors to
* vBlocks, until it has at most count entries.
*/
static void FindNextBlocksToDownload(NodeId nodeid, unsigned int count,
std::vector<const CBlockIndex *> &vBlocks,
NodeId &nodeStaller,
const Consensus::Params &consensusParams)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
if (count == 0) {
return;
}
vBlocks.reserve(vBlocks.size() + count);
CNodeState *state = State(nodeid);
assert(state != nullptr);
// Make sure pindexBestKnownBlock is up to date, we'll need it.
ProcessBlockAvailability(nodeid);
if (state->pindexBestKnownBlock == nullptr ||
state->pindexBestKnownBlock->nChainWork <
::ChainActive().Tip()->nChainWork ||
state->pindexBestKnownBlock->nChainWork < nMinimumChainWork) {
// This peer has nothing interesting.
return;
}
if (state->pindexLastCommonBlock == nullptr) {
// Bootstrap quickly by guessing a parent of our best tip is the forking
// point. Guessing wrong in either direction is not a problem.
state->pindexLastCommonBlock = ::ChainActive()[std::min(
state->pindexBestKnownBlock->nHeight, ::ChainActive().Height())];
}
// If the peer reorganized, our previous pindexLastCommonBlock may not be an
// ancestor of its current tip anymore. Go back enough to fix that.
state->pindexLastCommonBlock = LastCommonAncestor(
state->pindexLastCommonBlock, state->pindexBestKnownBlock);
if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) {
return;
}
std::vector<const CBlockIndex *> vToFetch;
const CBlockIndex *pindexWalk = state->pindexLastCommonBlock;
// Never fetch further than the best block we know the peer has, or more
// than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last linked block we have in
// common with this peer. The +1 is so we can detect stalling, namely if we
// would be able to download that next block if the window were 1 larger.
int nWindowEnd =
state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW;
int nMaxHeight =
std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1);
NodeId waitingfor = -1;
while (pindexWalk->nHeight < nMaxHeight) {
// Read up to 128 (or more, if more blocks than that are needed)
// successors of pindexWalk (towards pindexBestKnownBlock) into
// vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as
// expensive as iterating over ~100 CBlockIndex* entries anyway.
int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight,
std::max<int>(count - vBlocks.size(), 128));
vToFetch.resize(nToFetch);
pindexWalk = state->pindexBestKnownBlock->GetAncestor(
pindexWalk->nHeight + nToFetch);
vToFetch[nToFetch - 1] = pindexWalk;
for (unsigned int i = nToFetch - 1; i > 0; i--) {
vToFetch[i - 1] = vToFetch[i]->pprev;
}
// Iterate over those blocks in vToFetch (in forward direction), adding
// the ones that are not yet downloaded and not in flight to vBlocks. In
// the meantime, update pindexLastCommonBlock as long as all ancestors
// are already downloaded, or if it's already part of our chain (and
// therefore don't need it even if pruned).
for (const CBlockIndex *pindex : vToFetch) {
if (!pindex->IsValid(BlockValidity::TREE)) {
// We consider the chain that this peer is on invalid.
return;
}
if (pindex->nStatus.hasData() || ::ChainActive().Contains(pindex)) {
if (pindex->HaveTxsDownloaded()) {
state->pindexLastCommonBlock = pindex;
}
} else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) {
// The block is not already downloaded, and not yet in flight.
if (pindex->nHeight > nWindowEnd) {
// We reached the end of the window.
if (vBlocks.size() == 0 && waitingfor != nodeid) {
// We aren't able to fetch anything, but we would be if
// the download window was one larger.
nodeStaller = waitingfor;
}
return;
}
vBlocks.push_back(pindex);
if (vBlocks.size() == count) {
return;
}
} else if (waitingfor == -1) {
// This is the first already-in-flight block.
waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first;
}
}
}
}
} // namespace
template <class InvId>
static bool TooManyAnnouncements(const CNode &node,
const InvRequestTracker<InvId> &requestTracker,
const DataRequestParameters &requestParams) {
return !node.HasPermission(
requestParams.bypass_request_limits_permissions) &&
requestTracker.Count(node.GetId()) >=
requestParams.max_peer_announcements;
}
/**
* Compute the request time for this announcement, current time plus delays for:
* - nonpref_peer_delay for announcements from non-preferred connections
* - overloaded_peer_delay for announcements from peers which have at least
* max_peer_request_in_flight requests in flight (and don't have PF_RELAY).
*/
template <class InvId>
static std::chrono::microseconds
ComputeRequestTime(const CNode &node,
const InvRequestTracker<InvId> &requestTracker,
const DataRequestParameters &requestParams,
std::chrono::microseconds current_time, bool preferred) {
auto delay = std::chrono::microseconds{0};
if (!preferred) {
delay += requestParams.nonpref_peer_delay;
}
if (!node.HasPermission(requestParams.bypass_request_limits_permissions) &&
requestTracker.CountInFlight(node.GetId()) >=
requestParams.max_peer_request_in_flight) {
delay += requestParams.overloaded_peer_delay;
}
return current_time + delay;
}
void PeerManager::AddTxAnnouncement(const CNode &node, const TxId &txid,
std::chrono::microseconds current_time) {
// For m_txrequest and state
AssertLockHeld(::cs_main);
if (TooManyAnnouncements(node, m_txrequest, TX_REQUEST_PARAMS)) {
return;
}
const bool preferred = isPreferredDownloadPeer(node);
auto reqtime = ComputeRequestTime(node, m_txrequest, TX_REQUEST_PARAMS,
current_time, preferred);
m_txrequest.ReceivedInv(node.GetId(), txid, preferred, reqtime);
}
void PeerManager::AddProofAnnouncement(const CNode &node,
const avalanche::ProofId &proofid,
std::chrono::microseconds current_time,
bool preferred) {
// For m_proofrequest
AssertLockHeld(cs_proofrequest);
if (TooManyAnnouncements(node, m_proofrequest, PROOF_REQUEST_PARAMS)) {
return;
}
auto reqtime = ComputeRequestTime(
node, m_proofrequest, PROOF_REQUEST_PARAMS, current_time, preferred);
m_proofrequest.ReceivedInv(node.GetId(), proofid, preferred, reqtime);
}
// This function is used for testing the stale tip eviction logic, see
// denialofservice_tests.cpp
void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) {
LOCK(cs_main);
CNodeState *state = State(node);
if (state) {
state->m_last_block_announcement = time_in_seconds;
}
}
void PeerManager::InitializeNode(const Config &config, CNode *pnode) {
CAddress addr = pnode->addr;
std::string addrName = pnode->GetAddrName();
NodeId nodeid = pnode->GetId();
{
LOCK(cs_main);
mapNodeState.emplace_hint(mapNodeState.end(), std::piecewise_construct,
std::forward_as_tuple(nodeid),
std::forward_as_tuple(addr,
pnode->IsInboundConn(),
pnode->IsManualConn()));
assert(m_txrequest.Count(nodeid) == 0);
}
{
PeerRef peer = std::make_shared<Peer>(nodeid);
LOCK(g_peer_mutex);
g_peer_map.emplace_hint(g_peer_map.end(), nodeid, std::move(peer));
}
if (!pnode->IsInboundConn()) {
PushNodeVersion(config, *pnode, m_connman, GetTime());
}
}
void PeerManager::ReattemptInitialBroadcast(CScheduler &scheduler) const {
std::set<TxId> unbroadcast_txids = m_mempool.GetUnbroadcastTxs();
for (const TxId &txid : unbroadcast_txids) {
// Sanity check: all unbroadcast txns should exist in the mempool
if (m_mempool.exists(txid)) {
RelayTransaction(txid, m_connman);
} else {
m_mempool.RemoveUnbroadcastTx(txid, true);
}
}
if (g_avalanche && isAvalancheEnabled(gArgs)) {
g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) {
auto unbroadcasted_proofids = pm.getUnbroadcastProofs();
for (const auto &proofid : unbroadcasted_proofids) {
// Sanity check: all unbroadcast proofs should exist in the
// peermanager
if (pm.exists(proofid)) {
RelayProof(proofid, m_connman);
} else {
pm.removeUnbroadcastProof(proofid);
}
}
});
}
// Schedule next run for 10-15 minutes in the future.
// We add randomness on every cycle to avoid the possibility of P2P
// fingerprinting.
const std::chrono::milliseconds delta =
std::chrono::minutes{10} + GetRandMillis(std::chrono::minutes{5});
scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); },
delta);
}
void PeerManager::FinalizeNode(const Config &config, NodeId nodeid,
bool &fUpdateConnectionTime) {
fUpdateConnectionTime = false;
{
LOCK(cs_main);
int misbehavior{0};
{
PeerRef peer = GetPeerRef(nodeid);
assert(peer != nullptr);
misbehavior = WITH_LOCK(peer->m_misbehavior_mutex,
return peer->m_misbehavior_score);
LOCK(g_peer_mutex);
g_peer_map.erase(nodeid);
}
CNodeState *state = State(nodeid);
assert(state != nullptr);
if (state->fSyncStarted) {
nSyncStarted--;
}
if (misbehavior == 0 && state->fCurrentlyConnected) {
fUpdateConnectionTime = true;
}
for (const QueuedBlock &entry : state->vBlocksInFlight) {
mapBlocksInFlight.erase(entry.hash);
}
EraseOrphansFor(nodeid);
m_txrequest.DisconnectedPeer(nodeid);
nPreferredDownload -= state->fPreferredDownload;
nPeersWithValidatedDownloads -=
(state->nBlocksInFlightValidHeaders != 0);
assert(nPeersWithValidatedDownloads >= 0);
g_outbound_peers_with_protect_from_disconnect -=
state->m_chain_sync.m_protect;
assert(g_outbound_peers_with_protect_from_disconnect >= 0);
mapNodeState.erase(nodeid);
if (mapNodeState.empty()) {
// Do a consistency check after the last peer is removed.
assert(mapBlocksInFlight.empty());
assert(nPreferredDownload == 0);
assert(nPeersWithValidatedDownloads == 0);
assert(g_outbound_peers_with_protect_from_disconnect == 0);
assert(m_txrequest.Size() == 0);
}
}
WITH_LOCK(cs_proofrequest, m_proofrequest.DisconnectedPeer(nodeid));
LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid);
}
bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) {
{
LOCK(cs_main);
CNodeState *state = State(nodeid);
if (state == nullptr) {
return false;
}
stats.nSyncHeight = state->pindexBestKnownBlock
? state->pindexBestKnownBlock->nHeight
: -1;
stats.nCommonHeight = state->pindexLastCommonBlock
? state->pindexLastCommonBlock->nHeight
: -1;
for (const QueuedBlock &queue : state->vBlocksInFlight) {
if (queue.pindex) {
stats.vHeightInFlight.push_back(queue.pindex->nHeight);
}
}
}
PeerRef peer = GetPeerRef(nodeid);
if (peer == nullptr) {
return false;
}
stats.m_misbehavior_score =
WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score);
return true;
}
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
static void AddToCompactExtraTransactions(const CTransactionRef &tx)
EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) {
size_t max_extra_txn = gArgs.GetArg("-blockreconstructionextratxn",
DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN);
if (max_extra_txn <= 0) {
return;
}
if (!vExtraTxnForCompact.size()) {
vExtraTxnForCompact.resize(max_extra_txn);
}
vExtraTxnForCompact[vExtraTxnForCompactIt] =
std::make_pair(tx->GetHash(), tx);
vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % max_extra_txn;
}
bool AddOrphanTx(const CTransactionRef &tx, NodeId peer)
EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) {
const TxId &txid = tx->GetId();
if (mapOrphanTransactions.count(txid)) {
return false;
}
// Ignore big transactions, to avoid a send-big-orphans memory exhaustion
// attack. If a peer has a legitimate large transaction with a missing
// parent then we assume it will rebroadcast it later, after the parent
// transaction(s) have been mined or received.
// 100 orphans, each of which is at most 100,000 bytes big is at most 10
// megabytes of orphans and somewhat more byprev index (in the worst case):
unsigned int sz = tx->GetTotalSize();
if (sz > MAX_STANDARD_TX_SIZE) {
LogPrint(BCLog::MEMPOOL,
"ignoring large orphan tx (size: %u, hash: %s)\n", sz,
txid.ToString());
return false;
}
auto ret = mapOrphanTransactions.emplace(
txid, COrphanTx{tx, peer, GetTime() + ORPHAN_TX_EXPIRE_TIME,
g_orphan_list.size()});
assert(ret.second);
g_orphan_list.push_back(ret.first);
for (const CTxIn &txin : tx->vin) {
mapOrphanTransactionsByPrev[txin.prevout].insert(ret.first);
}
AddToCompactExtraTransactions(tx);
LogPrint(BCLog::MEMPOOL, "stored orphan tx %s (mapsz %u outsz %u)\n",
txid.ToString(), mapOrphanTransactions.size(),
mapOrphanTransactionsByPrev.size());
return true;
}
static int EraseOrphanTx(const TxId id) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) {
const auto it = mapOrphanTransactions.find(id);
if (it == mapOrphanTransactions.end()) {
return 0;
}
for (const CTxIn &txin : it->second.tx->vin) {
const auto itPrev = mapOrphanTransactionsByPrev.find(txin.prevout);
if (itPrev == mapOrphanTransactionsByPrev.end()) {
continue;
}
itPrev->second.erase(it);
if (itPrev->second.empty()) {
mapOrphanTransactionsByPrev.erase(itPrev);
}
}
size_t old_pos = it->second.list_pos;
assert(g_orphan_list[old_pos] == it);
if (old_pos + 1 != g_orphan_list.size()) {
// Unless we're deleting the last entry in g_orphan_list, move the last
// entry to the position we're deleting.
auto it_last = g_orphan_list.back();
g_orphan_list[old_pos] = it_last;
it_last->second.list_pos = old_pos;
}
g_orphan_list.pop_back();
mapOrphanTransactions.erase(it);
return 1;
}
void EraseOrphansFor(NodeId peer) {
LOCK(g_cs_orphans);
int nErased = 0;
auto iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end()) {
// Increment to avoid iterator becoming invalid.
const auto maybeErase = iter++;
if (maybeErase->second.fromPeer == peer) {
nErased += EraseOrphanTx(maybeErase->second.tx->GetId());
}
}
if (nErased > 0) {
LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx from peer=%d\n", nErased,
peer);
}
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) {
LOCK(g_cs_orphans);
unsigned int nEvicted = 0;
static int64_t nNextSweep;
int64_t nNow = GetTime();
if (nNextSweep <= nNow) {
// Sweep out expired orphan pool entries:
int nErased = 0;
int64_t nMinExpTime =
nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL;
auto iter = mapOrphanTransactions.begin();
while (iter != mapOrphanTransactions.end()) {
const auto maybeErase = iter++;
if (maybeErase->second.nTimeExpire <= nNow) {
nErased += EraseOrphanTx(maybeErase->second.tx->GetId());
} else {
nMinExpTime =
std::min(maybeErase->second.nTimeExpire, nMinExpTime);
}
}
// Sweep again 5 minutes after the next entry that expires in order to
// batch the linear scan.
nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL;
if (nErased > 0) {
LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx due to expiration\n",
nErased);
}
}
FastRandomContext rng;
while (mapOrphanTransactions.size() > nMaxOrphans) {
// Evict a random orphan:
size_t randompos = rng.randrange(g_orphan_list.size());
EraseOrphanTx(g_orphan_list[randompos]->first);
++nEvicted;
}
return nEvicted;
}
void PeerManager::Misbehaving(const NodeId pnode, const int howmuch,
const std::string &message) {
assert(howmuch > 0);
PeerRef peer = GetPeerRef(pnode);
if (peer == nullptr) {
return;
}
LOCK(peer->m_misbehavior_mutex);
peer->m_misbehavior_score += howmuch;
const std::string message_prefixed =
message.empty() ? "" : (": " + message);
if (peer->m_misbehavior_score >= DISCOURAGEMENT_THRESHOLD &&
peer->m_misbehavior_score - howmuch < DISCOURAGEMENT_THRESHOLD) {
LogPrint(BCLog::NET,
"Misbehaving: peer=%d (%d -> %d) BAN THRESHOLD EXCEEDED%s\n",
pnode, peer->m_misbehavior_score - howmuch,
peer->m_misbehavior_score, message_prefixed);
peer->m_should_discourage = true;
} else {
LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s\n", pnode,
peer->m_misbehavior_score - howmuch, peer->m_misbehavior_score,
message_prefixed);
}
}
/**
* Returns true if the given validation state result may result in a peer
* banning/disconnecting us. We use this to determine which unaccepted
* transactions from a whitelisted peer that we can safely relay.
*/
static bool TxRelayMayResultInDisconnect(const TxValidationState &state) {
return state.GetResult() == TxValidationResult::TX_CONSENSUS;
}
bool PeerManager::MaybePunishNodeForBlock(NodeId nodeid,
const BlockValidationState &state,
bool via_compact_block,
const std::string &message) {
switch (state.GetResult()) {
case BlockValidationResult::BLOCK_RESULT_UNSET:
break;
// The node is providing invalid data:
case BlockValidationResult::BLOCK_CONSENSUS:
case BlockValidationResult::BLOCK_MUTATED:
if (!via_compact_block) {
Misbehaving(nodeid, 100, message);
return true;
}
break;
case BlockValidationResult::BLOCK_CACHED_INVALID: {
LOCK(cs_main);
CNodeState *node_state = State(nodeid);
if (node_state == nullptr) {
break;
}
// Ban outbound (but not inbound) peers if on an invalid chain.
// Exempt HB compact block peers and manual connections.
if (!via_compact_block && !node_state->m_is_inbound &&
!node_state->m_is_manual_connection) {
Misbehaving(nodeid, 100, message);
return true;
}
break;
}
case BlockValidationResult::BLOCK_INVALID_HEADER:
case BlockValidationResult::BLOCK_CHECKPOINT:
case BlockValidationResult::BLOCK_INVALID_PREV:
Misbehaving(nodeid, 100, message);
return true;
case BlockValidationResult::BLOCK_FINALIZATION:
// TODO: Use the state object to report this is probably not the
// best idea. This is effectively unreachable, unless there is a bug
// somewhere.
Misbehaving(nodeid, 20, message);
return true;
// Conflicting (but not necessarily invalid) data or different policy:
case BlockValidationResult::BLOCK_MISSING_PREV:
// TODO: Handle this much more gracefully (10 DoS points is super
// arbitrary)
Misbehaving(nodeid, 10, message);
return true;
case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE:
case BlockValidationResult::BLOCK_TIME_FUTURE:
break;
}
if (message != "") {
LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
}
return false;
}
bool PeerManager::MaybePunishNodeForTx(NodeId nodeid,
const TxValidationState &state,
const std::string &message) {
switch (state.GetResult()) {
case TxValidationResult::TX_RESULT_UNSET:
break;
// The node is providing invalid data:
case TxValidationResult::TX_CONSENSUS:
Misbehaving(nodeid, 100, message);
return true;
// Conflicting (but not necessarily invalid) data or different policy:
case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE:
case TxValidationResult::TX_NOT_STANDARD:
case TxValidationResult::TX_MISSING_INPUTS:
case TxValidationResult::TX_PREMATURE_SPEND:
case TxValidationResult::TX_CONFLICT:
case TxValidationResult::TX_MEMPOOL_POLICY:
break;
}
if (message != "") {
LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message);
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// blockchain -> download logic notification
//
// To prevent fingerprinting attacks, only send blocks/headers outside of the
// active chain if they are no more than a month older (both in time, and in
// best equivalent proof of work) than the best header chain we know about and
// we fully-validated them at some point.
static bool BlockRequestAllowed(const CBlockIndex *pindex,
const Consensus::Params &consensusParams)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
AssertLockHeld(cs_main);
if (::ChainActive().Contains(pindex)) {
return true;
}
return pindex->IsValid(BlockValidity::SCRIPTS) &&
(pindexBestHeader != nullptr) &&
(pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() <
STALE_RELAY_AGE_LIMIT) &&
(GetBlockProofEquivalentTime(*pindexBestHeader, *pindex,
*pindexBestHeader, consensusParams) <
STALE_RELAY_AGE_LIMIT);
}
PeerManager::PeerManager(const CChainParams &chainparams, CConnman &connman,
BanMan *banman, CScheduler &scheduler,
ChainstateManager &chainman, CTxMemPool &pool)
: m_chainparams(chainparams), m_connman(connman), m_banman(banman),
m_chainman(chainman), m_mempool(pool), m_stale_tip_check_time(0) {
// Initialize global variables that cannot be constructed at startup.
recentRejects.reset(new CRollingBloomFilter(120000, 0.000001));
{
LOCK(cs_rejectedProofs);
rejectedProofs =
std::make_unique<CRollingBloomFilter>(100000, 0.000001);
}
// Blocks don't typically have more than 4000 transactions, so this should
// be at least six blocks (~1 hr) worth of transactions that we can store.
// If the number of transactions appearing in a block goes up, or if we are
// seeing getdata requests more than an hour after initial announcement, we
// can increase this number.
// The false positive rate of 1/1M should come out to less than 1
// transaction per day that would be inadvertently ignored (which is the
// same probability that we have in the reject filter).
g_recent_confirmed_transactions.reset(
new CRollingBloomFilter(24000, 0.000001));
const Consensus::Params &consensusParams = chainparams.GetConsensus();
// Stale tip checking and peer eviction are on two different timers, but we
// don't want them to get out of sync due to drift in the scheduler, so we
// combine them in one function and schedule at the quicker (peer-eviction)
// timer.
static_assert(
EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL,
"peer eviction timer should be less than stale tip check timer");
scheduler.scheduleEvery(
[this, &consensusParams]() {
this->CheckForStaleTipAndEvictPeers(consensusParams);
return true;
},
std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL});
// schedule next run for 10-15 minutes in the future
const std::chrono::milliseconds delta =
std::chrono::minutes{10} + GetRandMillis(std::chrono::minutes{5});
scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); },
delta);
}
/**
* Evict orphan txn pool entries (EraseOrphanTx) based on a newly connected
* block, remember the recently confirmed transactions, and delete tracked
* announcements for them. Also save the time of the last tip update.
*/
void PeerManager::BlockConnected(const std::shared_ptr<const CBlock> &pblock,
const CBlockIndex *pindex) {
{
LOCK(g_cs_orphans);
std::vector<TxId> vOrphanErase;
for (const CTransactionRef &ptx : pblock->vtx) {
const CTransaction &tx = *ptx;
// Which orphan pool entries must we evict?
for (const auto &txin : tx.vin) {
auto itByPrev = mapOrphanTransactionsByPrev.find(txin.prevout);
if (itByPrev == mapOrphanTransactionsByPrev.end()) {
continue;
}
for (auto mi = itByPrev->second.begin();
mi != itByPrev->second.end(); ++mi) {
const CTransaction &orphanTx = *(*mi)->second.tx;
const TxId &orphanId = orphanTx.GetId();
vOrphanErase.push_back(orphanId);
}
}
}
// Erase orphan transactions included or precluded by this block
if (vOrphanErase.size()) {
int nErased = 0;
for (const auto &orphanId : vOrphanErase) {
nErased += EraseOrphanTx(orphanId);
}
LogPrint(BCLog::MEMPOOL,
"Erased %d orphan tx included or conflicted by block\n",
nErased);
}
g_last_tip_update = GetTime();
}
{
LOCK(g_cs_recent_confirmed_transactions);
for (const CTransactionRef &ptx : pblock->vtx) {
g_recent_confirmed_transactions->insert(ptx->GetId());
}
}
{
LOCK(cs_main);
for (const auto &ptx : pblock->vtx) {
m_txrequest.ForgetInvId(ptx->GetId());
}
}
}
void PeerManager::BlockDisconnected(const std::shared_ptr<const CBlock> &block,
const CBlockIndex *pindex) {
// To avoid relay problems with transactions that were previously
// confirmed, clear our filter of recently confirmed transactions whenever
// there's a reorg.
// This means that in a 1-block reorg (where 1 block is disconnected and
// then another block reconnected), our filter will drop to having only one
// block's worth of transactions in it, but that should be fine, since
// presumably the most common case of relaying a confirmed transaction
// should be just after a new block containing it is found.
LOCK(g_cs_recent_confirmed_transactions);
g_recent_confirmed_transactions->reset();
}
// All of the following cache a recent block, and are protected by
// cs_most_recent_block
static RecursiveMutex cs_most_recent_block;
static std::shared_ptr<const CBlock>
most_recent_block GUARDED_BY(cs_most_recent_block);
static std::shared_ptr<const CBlockHeaderAndShortTxIDs>
most_recent_compact_block GUARDED_BY(cs_most_recent_block);
static uint256 most_recent_block_hash GUARDED_BY(cs_most_recent_block);
/**
* Maintain state about the best-seen block and fast-announce a compact block
* to compatible peers.
*/
void PeerManager::NewPoWValidBlock(
const CBlockIndex *pindex, const std::shared_ptr<const CBlock> &pblock) {
std::shared_ptr<const CBlockHeaderAndShortTxIDs> pcmpctblock =
std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock);
const CNetMsgMaker msgMaker(PROTOCOL_VERSION);
LOCK(cs_main);
static int nHighestFastAnnounce = 0;
if (pindex->nHeight <= nHighestFastAnnounce) {
return;
}
nHighestFastAnnounce = pindex->nHeight;
uint256 hashBlock(pblock->GetHash());
{
LOCK(cs_most_recent_block);
most_recent_block_hash = hashBlock;
most_recent_block = pblock;
most_recent_compact_block = pcmpctblock;
}
m_connman.ForEachNode([this, &pcmpctblock, pindex, &msgMaker,
&hashBlock](CNode *pnode) {
AssertLockHeld(cs_main);
// TODO: Avoid the repeated-serialization here
if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION ||
pnode->fDisconnect) {
return;
}
ProcessBlockAvailability(pnode->GetId());
CNodeState &state = *State(pnode->GetId());
// If the peer has, or we announced to them the previous block already,
// but we don't think they have this one, go ahead and announce it.
if (state.fPreferHeaderAndIDs && !PeerHasHeader(&state, pindex) &&
PeerHasHeader(&state, pindex->pprev)) {
LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n",
"PeerManager::NewPoWValidBlock", hashBlock.ToString(),
pnode->GetId());
m_connman.PushMessage(
pnode, msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock));
state.pindexBestHeaderSent = pindex;
}
});
}
/**
* Update our best height and announce any block hashes which weren't previously
* in ::ChainActive() to our peers.
*/
void PeerManager::UpdatedBlockTip(const CBlockIndex *pindexNew,
const CBlockIndex *pindexFork,
bool fInitialDownload) {
const int nNewHeight = pindexNew->nHeight;
m_connman.SetBestHeight(nNewHeight);
SetServiceFlagsIBDCache(!fInitialDownload);
if (!fInitialDownload) {
// Find the hashes of all blocks that weren't previously in the best
// chain.
std::vector<BlockHash> vHashes;
const CBlockIndex *pindexToAnnounce = pindexNew;
while (pindexToAnnounce != pindexFork) {
vHashes.push_back(pindexToAnnounce->GetBlockHash());
pindexToAnnounce = pindexToAnnounce->pprev;
if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) {
// Limit announcements in case of a huge reorganization. Rely on
// the peer's synchronization mechanism in that case.
break;
}
}
// Relay inventory, but don't relay old inventory during initial block
// download.
m_connman.ForEachNode([nNewHeight, &vHashes](CNode *pnode) {
LOCK(pnode->cs_inventory);
if (nNewHeight > (pnode->nStartingHeight != -1
? pnode->nStartingHeight - 2000
: 0)) {
for (const BlockHash &hash : reverse_iterate(vHashes)) {
pnode->vBlockHashesToAnnounce.push_back(hash);
}
}
});
m_connman.WakeMessageHandler();
}
}
/**
* Handle invalid block rejection and consequent peer banning, maintain which
* peers announce compact blocks.
*/
void PeerManager::BlockChecked(const CBlock &block,
const BlockValidationState &state) {
LOCK(cs_main);
const BlockHash hash = block.GetHash();
std::map<BlockHash, std::pair<NodeId, bool>>::iterator it =
mapBlockSource.find(hash);
// If the block failed validation, we know where it came from and we're
// still connected to that peer, maybe punish.
if (state.IsInvalid() && it != mapBlockSource.end() &&
State(it->second.first)) {
MaybePunishNodeForBlock(/*nodeid=*/it->second.first, state,
/*via_compact_block=*/!it->second.second);
}
// Check that:
// 1. The block is valid
// 2. We're not in initial block download
// 3. This is currently the best block we're aware of. We haven't updated
// the tip yet so we have no way to check this directly here. Instead we
// just check that there are currently no other blocks in flight.
else if (state.IsValid() &&
!::ChainstateActive().IsInitialBlockDownload() &&
mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) {
if (it != mapBlockSource.end()) {
MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first, m_connman);
}
}
if (it != mapBlockSource.end()) {
mapBlockSource.erase(it);
}
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
static bool AlreadyHaveTx(const TxId &txid, const CTxMemPool &mempool)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
assert(recentRejects);
if (::ChainActive().Tip()->GetBlockHash() != hashRecentRejectsChainTip) {
// If the chain tip has changed previously rejected transactions
// might be now valid, e.g. due to a nLockTime'd tx becoming
// valid, or a double-spend. Reset the rejects filter and give
// those txs a second chance.
hashRecentRejectsChainTip = ::ChainActive().Tip()->GetBlockHash();
recentRejects->reset();
}
{
LOCK(g_cs_orphans);
if (mapOrphanTransactions.count(txid)) {
return true;
}
}
{
LOCK(g_cs_recent_confirmed_transactions);
if (g_recent_confirmed_transactions->contains(txid)) {
return true;
}
}
return recentRejects->contains(txid) || mempool.exists(txid);
}
static bool AlreadyHaveBlock(const BlockHash &block_hash)
EXCLUSIVE_LOCKS_REQUIRED(cs_main) {
return LookupBlockIndex(block_hash) != nullptr;
}
static bool AlreadyHaveProof(const avalanche::ProofId &proofid) {
assert(g_avalanche);
LOCK(cs_rejectedProofs);
return rejectedProofs->contains(proofid) ||
g_avalanche->getProof(proofid) || g_avalanche->getOrphan(proofid);
}
void RelayTransaction(const TxId &txid, const CConnman &connman) {
connman.ForEachNode(
[&txid](CNode *pnode) { pnode->PushTxInventory(txid); });
}
void RelayProof(const avalanche::ProofId &proofid, const CConnman &connman) {
connman.ForEachNode(
[&proofid](CNode *pnode) { pnode->PushProofInventory(proofid); });
}
static void RelayAddress(const CAddress &addr, bool fReachable,
const CConnman &connman) {
// Limited relaying of addresses outside our network(s)
unsigned int nRelayNodes = fReachable ? 2 : 1;
// Relay to a limited number of other nodes.
// Use deterministic randomness to send to the same nodes for 24 hours at a
// time so the m_addr_knowns of the chosen nodes prevent repeats
uint64_t hashAddr = addr.GetHash();
const CSipHasher hasher =
connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY)
.Write(hashAddr << 32)
.Write((GetTime() + hashAddr) / (24 * 60 * 60));
FastRandomContext insecure_rand;
std::array<std::pair<uint64_t, CNode *>, 2> best{
{{0, nullptr}, {0, nullptr}}};
assert(nRelayNodes <= best.size());
auto sortfunc = [&best, &hasher, nRelayNodes](CNode *pnode) {
if (pnode->IsAddrRelayPeer()) {
uint64_t hashKey =
CSipHasher(hasher).Write(pnode->GetId()).Finalize();
for (unsigned int i = 0; i < nRelayNodes; i++) {
if (hashKey > best[i].first) {
std::copy(best.begin() + i, best.begin() + nRelayNodes - 1,
best.begin() + i + 1);
best[i] = std::make_pair(hashKey, pnode);
break;
}
}
}
};
auto pushfunc = [&addr, &best, nRelayNodes, &insecure_rand] {
for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) {
best[i].second->PushAddress(addr, insecure_rand);
}
};
connman.ForEachNodeThen(std::move(sortfunc), std::move(pushfunc));
}
static void ProcessGetBlockData(const Config &config, CNode &pfrom,
const CInv &inv, CConnman &connman,
const std::atomic<bool> &interruptMsgProc) {
const Consensus::Params &consensusParams =
config.GetChainParams().GetConsensus();
const BlockHash hash(inv.hash);
bool send = false;
std::shared_ptr<const CBlock> a_recent_block;
std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block;
{
LOCK(cs_most_recent_block);
a_recent_block = most_recent_block;
a_recent_compact_block = most_recent_compact_block;
}
bool need_activate_chain = false;
{
LOCK(cs_main);
const CBlockIndex *pindex = LookupBlockIndex(hash);
if (pindex) {
if (pindex->HaveTxsDownloaded() &&
!pindex->IsValid(BlockValidity::SCRIPTS) &&
pindex->IsValid(BlockValidity::TREE)) {
// If we have the block and all of its parents, but have not yet
// validated it, we might be in the middle of connecting it (ie
// in the unlock of cs_main before ActivateBestChain but after
// AcceptBlock). In this case, we need to run ActivateBestChain
// prior to checking the relay conditions below.
need_activate_chain = true;
}
}
} // release cs_main before calling ActivateBestChain
if (need_activate_chain) {
BlockValidationState state;
if (!ActivateBestChain(config, state, a_recent_block)) {
LogPrint(BCLog::NET, "failed to activate chain (%s)\n",
state.ToString());
}
}
LOCK(cs_main);
const CBlockIndex *pindex = LookupBlockIndex(hash);
if (pindex) {
send = BlockRequestAllowed(pindex, consensusParams);
if (!send) {
LogPrint(BCLog::NET,
"%s: ignoring request from peer=%i for old "
"block that isn't in the main chain\n",
__func__, pfrom.GetId());
}
}
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
// Disconnect node in case we have reached the outbound limit for serving
// historical blocks.
if (send && connman.OutboundTargetReached(true) &&
(((pindexBestHeader != nullptr) &&
(pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() >
HISTORICAL_BLOCK_AGE)) ||
inv.IsMsgFilteredBlk()) &&
// nodes with the download permission may exceed target
!pfrom.HasPermission(PF_DOWNLOAD)) {
LogPrint(BCLog::NET,
"historical block serving limit reached, disconnect peer=%d\n",
pfrom.GetId());
// disconnect node
pfrom.fDisconnect = true;
send = false;
}
// Avoid leaking prune-height by never sending blocks below the
// NODE_NETWORK_LIMITED threshold.
// Add two blocks buffer extension for possible races
if (send && !pfrom.HasPermission(PF_NOBAN) &&
((((pfrom.GetLocalServices() & NODE_NETWORK_LIMITED) ==
NODE_NETWORK_LIMITED) &&
((pfrom.GetLocalServices() & NODE_NETWORK) != NODE_NETWORK) &&
(::ChainActive().Tip()->nHeight - pindex->nHeight >
(int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2)))) {
LogPrint(BCLog::NET,
"Ignore block request below NODE_NETWORK_LIMITED "
"threshold from peer=%d\n",
pfrom.GetId());
// disconnect node and prevent it from stalling (would otherwise wait
// for the missing block)
pfrom.fDisconnect = true;
send = false;
}
// Pruned nodes may have deleted the block, so check whether it's available
// before trying to send.
if (send && pindex->nStatus.hasData()) {
std::shared_ptr<const CBlock> pblock;
if (a_recent_block &&
a_recent_block->GetHash() == pindex->GetBlockHash()) {
pblock = a_recent_block;
} else {
// Send block from disk
std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>();
if (!ReadBlockFromDisk(*pblockRead, pindex, consensusParams)) {
assert(!"cannot load block from disk");
}
pblock = pblockRead;
}
if (inv.IsMsgBlk()) {
connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::BLOCK, *pblock));
} else if (inv.IsMsgFilteredBlk()) {
bool sendMerkleBlock = false;
CMerkleBlock merkleBlock;
if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_filter);
if (pfrom.m_tx_relay->pfilter) {
sendMerkleBlock = true;
merkleBlock =
CMerkleBlock(*pblock, *pfrom.m_tx_relay->pfilter);
}
}
if (sendMerkleBlock) {
connman.PushMessage(
&pfrom,
msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock));
// CMerkleBlock just contains hashes, so also push any
// transactions in the block the client did not see. This avoids
// hurting performance by pointlessly requiring a round-trip.
// Note that there is currently no way for a node to request any
// single transactions we didn't send here - they must either
// disconnect and retry or request the full block. Thus, the
// protocol spec specified allows for us to provide duplicate
// txn here, however we MUST always provide at least what the
// remote peer needs.
typedef std::pair<size_t, uint256> PairType;
for (PairType &pair : merkleBlock.vMatchedTxn) {
connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::TX,
*pblock->vtx[pair.first]));
}
}
// else
// no response
} else if (inv.IsMsgCmpctBlk()) {
// If a peer is asking for old blocks, we're almost guaranteed they
// won't have a useful mempool to match against a compact block, and
// we don't feel like constructing the object for them, so instead
// we respond with the full, non-compact block.
int nSendFlags = 0;
if (CanDirectFetch(consensusParams) &&
pindex->nHeight >=
::ChainActive().Height() - MAX_CMPCTBLOCK_DEPTH) {
CBlockHeaderAndShortTxIDs cmpctblock(*pblock);
connman.PushMessage(
&pfrom, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK,
cmpctblock));
} else {
connman.PushMessage(
&pfrom,
msgMaker.Make(nSendFlags, NetMsgType::BLOCK, *pblock));
}
}
// Trigger the peer node to send a getblocks request for the next batch
// of inventory.
if (hash == pfrom.hashContinue) {
// Send immediately. This must send even if redundant, and
// we want it right after the last block so they don't wait for
// other stuff first.
std::vector<CInv> vInv;
vInv.push_back(
CInv(MSG_BLOCK, ::ChainActive().Tip()->GetBlockHash()));
connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::INV, vInv));
pfrom.hashContinue = BlockHash();
}
}
}
//! Determine whether or not a peer can request a transaction, and return it (or
//! nullptr if not found or not allowed).
CTransactionRef static FindTxForGetData(const CNode &peer, const TxId &txid,
const std::chrono::seconds mempool_req,
const std::chrono::seconds now)
LOCKS_EXCLUDED(cs_main) {
auto txinfo = g_mempool.info(txid);
if (txinfo.tx) {
// If a TX could have been INVed in reply to a MEMPOOL request,
// or is older than UNCONDITIONAL_RELAY_DELAY, permit the request
// unconditionally.
if ((mempool_req.count() && txinfo.m_time <= mempool_req) ||
txinfo.m_time <= now - UNCONDITIONAL_RELAY_DELAY) {
return std::move(txinfo.tx);
}
}
{
LOCK(cs_main);
// Otherwise, the transaction must have been announced recently.
if (State(peer.GetId())->m_recently_announced_invs.contains(txid)) {
// If it was, it can be relayed from either the mempool...
if (txinfo.tx) {
return std::move(txinfo.tx);
}
// ... or the relay pool.
auto mi = mapRelay.find(txid);
if (mi != mapRelay.end()) {
return mi->second;
}
}
}
return {};
}
//! Determine whether or not a peer can request a proof, and return it (or
//! nullptr if not found or not allowed).
static std::shared_ptr<avalanche::Proof>
FindProofForGetData(const CNode &peer, const avalanche::ProofId &proofid,
const std::chrono::seconds now) {
- auto proof = g_avalanche->getProof(proofid);
+ std::shared_ptr<avalanche::Proof> proof = nullptr;
+
+ bool send_unconditionally =
+ g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) {
+ return pm.forPeer(proofid, [&](const avalanche::Peer &peer) {
+ proof = peer.proof;
+
+ // If we know that proof for long enough, allow for requesting
+ // it.
+ return peer.registration_time <=
+ now - UNCONDITIONAL_RELAY_DELAY;
+ });
+ });
// We don't have this proof
if (!proof) {
return nullptr;
}
- auto proofRegistrationTime = g_avalanche->getProofRegistrationTime(proofid);
-
- // If we know that proof for long enough, allow for requesting it
- if (proofRegistrationTime <= now - UNCONDITIONAL_RELAY_DELAY) {
+ if (send_unconditionally) {
return proof;
}
- {
- LOCK(cs_main);
- // Otherwise, the proofs must have been announced recently.
- if (State(peer.GetId())
- ->m_recently_announced_proofs.contains(proofid)) {
- return proof;
- }
+ // Otherwise, the proofs must have been announced recently.
+ LOCK(cs_main);
+ if (State(peer.GetId())->m_recently_announced_proofs.contains(proofid)) {
+ return proof;
}
return nullptr;
}
static void ProcessGetData(const Config &config, CNode &pfrom,
CConnman &connman, CTxMemPool &mempool,
const std::atomic<bool> &interruptMsgProc)
LOCKS_EXCLUDED(cs_main) {
AssertLockNotHeld(cs_main);
std::deque<CInv>::iterator it = pfrom.vRecvGetData.begin();
std::vector<CInv> vNotFound;
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
const std::chrono::seconds now = GetTime<std::chrono::seconds>();
// Get last mempool request time
const std::chrono::seconds mempool_req =
pfrom.m_tx_relay != nullptr
? pfrom.m_tx_relay->m_last_mempool_req.load()
: std::chrono::seconds::min();
// Process as many TX or AVA_PROOF items from the front of the getdata
// queue as possible, since they're common and it's efficient to batch
// process them.
while (it != pfrom.vRecvGetData.end()) {
if (interruptMsgProc) {
return;
}
// The send buffer provides backpressure. If there's no space in
// the buffer, pause processing until the next call.
if (pfrom.fPauseSend) {
break;
}
const CInv &inv = *it;
if (it->IsMsgProof()) {
const avalanche::ProofId proofid = avalanche::ProofId{inv.hash};
auto proof = FindProofForGetData(pfrom, proofid, now);
if (proof) {
connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::AVAPROOF, *proof));
g_avalanche->removeUnbroadcastProof(proofid);
} else {
vNotFound.push_back(inv);
}
++it;
continue;
}
if (it->IsMsgTx()) {
if (pfrom.m_tx_relay == nullptr) {
// Ignore GETDATA requests for transactions from blocks-only
// peers.
continue;
}
CTransactionRef tx =
FindTxForGetData(pfrom, TxId{inv.hash}, mempool_req, now);
if (tx) {
int nSendFlags = 0;
connman.PushMessage(
&pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *tx));
mempool.RemoveUnbroadcastTx(TxId(inv.hash));
// As we're going to send tx, make sure its unconfirmed parents
// are made requestable.
for (const auto &txin : tx->vin) {
auto txinfo = mempool.info(txin.prevout.GetTxId());
if (txinfo.tx &&
txinfo.m_time > now - UNCONDITIONAL_RELAY_DELAY) {
// Relaying a transaction with a recent but unconfirmed
// parent.
if (WITH_LOCK(
pfrom.m_tx_relay->cs_tx_inventory,
return !pfrom.m_tx_relay->filterInventoryKnown
.contains(
txin.prevout.GetTxId()))) {
LOCK(cs_main);
State(pfrom.GetId())
->m_recently_announced_invs.insert(
txin.prevout.GetTxId());
}
}
}
} else {
vNotFound.push_back(inv);
}
++it;
continue;
}
// It's neither a proof nor a transaction
break;
}
// Only process one BLOCK item per call, since they're uncommon and can be
// expensive to process.
if (it != pfrom.vRecvGetData.end() && !pfrom.fPauseSend) {
const CInv &inv = *it++;
if (inv.IsGenBlkMsg()) {
ProcessGetBlockData(config, pfrom, inv, connman, interruptMsgProc);
}
// else: If the first item on the queue is an unknown type, we erase it
// and continue processing the queue on the next call.
}
pfrom.vRecvGetData.erase(pfrom.vRecvGetData.begin(), it);
if (!vNotFound.empty()) {
// Let the peer know that we didn't find what it asked for, so it
// doesn't have to wait around forever. SPV clients care about this
// message: it's needed when they are recursively walking the
// dependencies of relevant unconfirmed transactions. SPV clients want
// to do that because they want to know about (and store and rebroadcast
// and risk analyze) the dependencies of transactions relevant to them,
// without having to download the entire memory pool. Also, other nodes
// can use these messages to automatically request a transaction from
// some other peer that annnounced it, and stop waiting for us to
// respond. In normal operation, we often send NOTFOUND messages for
// parents of transactions that we relay; if a peer is missing a parent,
// they may assume we have them and request the parents from us.
connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::NOTFOUND, vNotFound));
}
}
void PeerManager::SendBlockTransactions(CNode &pfrom, const CBlock &block,
const BlockTransactionsRequest &req) {
BlockTransactions resp(req);
for (size_t i = 0; i < req.indices.size(); i++) {
if (req.indices[i] >= block.vtx.size()) {
Misbehaving(pfrom, 100,
"getblocktxn with out-of-bounds tx indices");
return;
}
resp.txn[i] = block.vtx[req.indices[i]];
}
LOCK(cs_main);
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
int nSendFlags = 0;
m_connman.PushMessage(
&pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCKTXN, resp));
}
void PeerManager::ProcessHeadersMessage(
const Config &config, CNode &pfrom,
const std::vector<CBlockHeader> &headers, bool via_compact_block) {
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
size_t nCount = headers.size();
if (nCount == 0) {
// Nothing interesting. Stop asking this peers for more headers.
return;
}
bool received_new_header = false;
const CBlockIndex *pindexLast = nullptr;
{
LOCK(cs_main);
CNodeState *nodestate = State(pfrom.GetId());
// If this looks like it could be a block announcement (nCount <
// MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that
// don't connect:
// - Send a getheaders message in response to try to connect the chain.
// - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that
// don't connect before giving DoS points
// - Once a headers message is received that is valid and does connect,
// nUnconnectingHeaders gets reset back to 0.
if (!LookupBlockIndex(headers[0].hashPrevBlock) &&
nCount < MAX_BLOCKS_TO_ANNOUNCE) {
nodestate->nUnconnectingHeaders++;
m_connman.PushMessage(
&pfrom,
msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(pindexBestHeader),
uint256()));
LogPrint(
BCLog::NET,
"received header %s: missing prev block %s, sending getheaders "
"(%d) to end (peer=%d, nUnconnectingHeaders=%d)\n",
headers[0].GetHash().ToString(),
headers[0].hashPrevBlock.ToString(), pindexBestHeader->nHeight,
pfrom.GetId(), nodestate->nUnconnectingHeaders);
// Set hashLastUnknownBlock for this peer, so that if we eventually
// get the headers - even from a different peer - we can use this
// peer to download.
UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash());
if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS ==
0) {
// The peer is sending us many headers we can't connect.
Misbehaving(pfrom, 20,
strprintf("%d non-connecting headers",
nodestate->nUnconnectingHeaders));
}
return;
}
BlockHash hashLastBlock;
for (const CBlockHeader &header : headers) {
if (!hashLastBlock.IsNull() &&
header.hashPrevBlock != hashLastBlock) {
Misbehaving(pfrom, 20, "non-continuous headers sequence");
return;
}
hashLastBlock = header.GetHash();
}
// If we don't have the last header, then they'll have given us
// something new (if these headers are valid).
if (!LookupBlockIndex(hashLastBlock)) {
received_new_header = true;
}
}
BlockValidationState state;
if (!m_chainman.ProcessNewBlockHeaders(config, headers, state,
&pindexLast)) {
if (state.IsInvalid()) {
MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block,
"invalid header received");
return;
}
}
{
LOCK(cs_main);
CNodeState *nodestate = State(pfrom.GetId());
if (nodestate->nUnconnectingHeaders > 0) {
LogPrint(BCLog::NET,
"peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n",
pfrom.GetId(), nodestate->nUnconnectingHeaders);
}
nodestate->nUnconnectingHeaders = 0;
assert(pindexLast);
UpdateBlockAvailability(pfrom.GetId(), pindexLast->GetBlockHash());
// From here, pindexBestKnownBlock should be guaranteed to be non-null,
// because it is set in UpdateBlockAvailability. Some nullptr checks are
// still present, however, as belt-and-suspenders.
if (received_new_header &&
pindexLast->nChainWork > ::ChainActive().Tip()->nChainWork) {
nodestate->m_last_block_announcement = GetTime();
}
if (nCount == MAX_HEADERS_RESULTS) {
// Headers message had its maximum size; the peer may have more
// headers.
// TODO: optimize: if pindexLast is an ancestor of
// ::ChainActive().Tip or pindexBestHeader, continue from there
// instead.
LogPrint(
BCLog::NET,
"more getheaders (%d) to end to peer=%d (startheight:%d)\n",
pindexLast->nHeight, pfrom.GetId(), pfrom.nStartingHeight);
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(pindexLast),
uint256()));
}
bool fCanDirectFetch = CanDirectFetch(m_chainparams.GetConsensus());
// If this set of headers is valid and ends in a block with at least as
// much work as our tip, download as much as possible.
if (fCanDirectFetch && pindexLast->IsValid(BlockValidity::TREE) &&
::ChainActive().Tip()->nChainWork <= pindexLast->nChainWork) {
std::vector<const CBlockIndex *> vToFetch;
const CBlockIndex *pindexWalk = pindexLast;
// Calculate all the blocks we'd need to switch to pindexLast, up to
// a limit.
while (pindexWalk && !::ChainActive().Contains(pindexWalk) &&
vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
if (!pindexWalk->nStatus.hasData() &&
!mapBlocksInFlight.count(pindexWalk->GetBlockHash())) {
// We don't have this block, and it's not yet in flight.
vToFetch.push_back(pindexWalk);
}
pindexWalk = pindexWalk->pprev;
}
// If pindexWalk still isn't on our main chain, we're looking at a
// very large reorg at a time we think we're close to caught up to
// the main chain -- this shouldn't really happen. Bail out on the
// direct fetch and rely on parallel download instead.
if (!::ChainActive().Contains(pindexWalk)) {
LogPrint(
BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n",
pindexLast->GetBlockHash().ToString(), pindexLast->nHeight);
} else {
std::vector<CInv> vGetData;
// Download as much as possible, from earliest to latest.
for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) {
if (nodestate->nBlocksInFlight >=
MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
// Can't download any more from this peer
break;
}
vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash()));
MarkBlockAsInFlight(config, m_mempool, pfrom.GetId(),
pindex->GetBlockHash(),
m_chainparams.GetConsensus(), pindex);
LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n",
pindex->GetBlockHash().ToString(), pfrom.GetId());
}
if (vGetData.size() > 1) {
LogPrint(BCLog::NET,
"Downloading blocks toward %s (%d) via headers "
"direct fetch\n",
pindexLast->GetBlockHash().ToString(),
pindexLast->nHeight);
}
if (vGetData.size() > 0) {
if (nodestate->fSupportsDesiredCmpctVersion &&
vGetData.size() == 1 && mapBlocksInFlight.size() == 1 &&
pindexLast->pprev->IsValid(BlockValidity::CHAIN)) {
// In any case, we want to download using a compact
// block, not a regular one.
vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash);
}
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData));
}
}
}
// If we're in IBD, we want outbound peers that will serve us a useful
// chain. Disconnect peers that are on chains with insufficient work.
if (::ChainstateActive().IsInitialBlockDownload() &&
nCount != MAX_HEADERS_RESULTS) {
// When nCount < MAX_HEADERS_RESULTS, we know we have no more
// headers to fetch from this peer.
if (nodestate->pindexBestKnownBlock &&
nodestate->pindexBestKnownBlock->nChainWork <
nMinimumChainWork) {
// This peer has too little work on their headers chain to help
// us sync -- disconnect if using an outbound slot (unless
// whitelisted or addnode).
// Note: We compare their tip to nMinimumChainWork (rather than
// ::ChainActive().Tip()) because we won't start block download
// until we have a headers chain that has at least
// nMinimumChainWork, even if a peer has a chain past our tip,
// as an anti-DoS measure.
if (pfrom.IsOutboundOrBlockRelayConn()) {
LogPrintf("Disconnecting outbound peer %d -- headers "
"chain has insufficient work\n",
pfrom.GetId());
pfrom.fDisconnect = true;
}
}
}
if (!pfrom.fDisconnect && pfrom.IsOutboundOrBlockRelayConn() &&
nodestate->pindexBestKnownBlock != nullptr &&
pfrom.m_tx_relay != nullptr) {
// If this is an outbound full-relay peer, check to see if we should
// protect it from the bad/lagging chain logic. Note that
// block-relay-only peers are already implicitly protected, so we
// only consider setting m_protect for the full-relay peers.
if (g_outbound_peers_with_protect_from_disconnect <
MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT &&
nodestate->pindexBestKnownBlock->nChainWork >=
::ChainActive().Tip()->nChainWork &&
!nodestate->m_chain_sync.m_protect) {
LogPrint(BCLog::NET,
"Protecting outbound peer=%d from eviction\n",
pfrom.GetId());
nodestate->m_chain_sync.m_protect = true;
++g_outbound_peers_with_protect_from_disconnect;
}
}
}
}
void PeerManager::ProcessOrphanTx(const Config &config,
std::set<TxId> &orphan_work_set)
EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans) {
AssertLockHeld(cs_main);
AssertLockHeld(g_cs_orphans);
std::unordered_map<NodeId, uint32_t> rejectCountPerNode;
bool done = false;
while (!done && !orphan_work_set.empty()) {
const TxId orphanTxId = *orphan_work_set.begin();
orphan_work_set.erase(orphan_work_set.begin());
auto orphan_it = mapOrphanTransactions.find(orphanTxId);
if (orphan_it == mapOrphanTransactions.end()) {
continue;
}
const CTransactionRef porphanTx = orphan_it->second.tx;
const CTransaction &orphanTx = *porphanTx;
NodeId fromPeer = orphan_it->second.fromPeer;
// Use a new TxValidationState because orphans come from different peers
// (and we call MaybePunishNodeForTx based on the source peer from the
// orphan map, not based on the peer that relayed the previous
// transaction).
TxValidationState orphan_state;
auto it = rejectCountPerNode.find(fromPeer);
if (it != rejectCountPerNode.end() &&
it->second > MAX_NON_STANDARD_ORPHAN_PER_NODE) {
continue;
}
if (AcceptToMemoryPool(config, m_mempool, orphan_state, porphanTx,
false /* bypass_limits */,
Amount::zero() /* nAbsurdFee */)) {
LogPrint(BCLog::MEMPOOL, " accepted orphan tx %s\n",
orphanTxId.ToString());
RelayTransaction(orphanTxId, m_connman);
for (size_t i = 0; i < orphanTx.vout.size(); i++) {
auto it_by_prev =
mapOrphanTransactionsByPrev.find(COutPoint(orphanTxId, i));
if (it_by_prev != mapOrphanTransactionsByPrev.end()) {
for (const auto &elem : it_by_prev->second) {
orphan_work_set.insert(elem->first);
}
}
}
EraseOrphanTx(orphanTxId);
done = true;
} else if (orphan_state.GetResult() !=
TxValidationResult::TX_MISSING_INPUTS) {
if (orphan_state.IsInvalid()) {
// Punish peer that gave us an invalid orphan tx
MaybePunishNodeForTx(fromPeer, orphan_state);
LogPrint(BCLog::MEMPOOL, " invalid orphan tx %s\n",
orphanTxId.ToString());
}
// Has inputs but not accepted to mempool
// Probably non-standard or insufficient fee
LogPrint(BCLog::MEMPOOL, " removed orphan tx %s\n",
orphanTxId.ToString());
assert(recentRejects);
recentRejects->insert(orphanTxId);
EraseOrphanTx(orphanTxId);
done = true;
}
m_mempool.check(&::ChainstateActive().CoinsTip());
}
}
/**
* Validation logic for compact filters request handling.
*
* May disconnect from the peer in the case of a bad request.
*
* @param[in] peer The peer that we received the request from
* @param[in] chain_params Chain parameters
* @param[in] filter_type The filter type the request is for. Must be
* basic filters.
* @param[in] start_height The start height for the request
* @param[in] stop_hash The stop_hash for the request
* @param[in] max_height_diff The maximum number of items permitted to
* request, as specified in BIP 157
* @param[out] stop_index The CBlockIndex for the stop_hash block, if the
* request can be serviced.
* @param[out] filter_index The filter index, if the request can be
* serviced.
* @return True if the request can be serviced.
*/
static bool PrepareBlockFilterRequest(
CNode &peer, const CChainParams &chain_params, BlockFilterType filter_type,
uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff,
const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index) {
const bool supported_filter_type =
(filter_type == BlockFilterType::BASIC &&
(peer.GetLocalServices() & NODE_COMPACT_FILTERS));
if (!supported_filter_type) {
LogPrint(BCLog::NET,
"peer %d requested unsupported block filter type: %d\n",
peer.GetId(), static_cast<uint8_t>(filter_type));
peer.fDisconnect = true;
return false;
}
{
LOCK(cs_main);
stop_index = LookupBlockIndex(stop_hash);
// Check that the stop block exists and the peer would be allowed to
// fetch it.
if (!stop_index ||
!BlockRequestAllowed(stop_index, chain_params.GetConsensus())) {
LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n",
peer.GetId(), stop_hash.ToString());
peer.fDisconnect = true;
return false;
}
}
uint32_t stop_height = stop_index->nHeight;
if (start_height > stop_height) {
LogPrint(
BCLog::NET,
"peer %d sent invalid getcfilters/getcfheaders with " /* Continued
*/
"start height %d and stop height %d\n",
peer.GetId(), start_height, stop_height);
peer.fDisconnect = true;
return false;
}
if (stop_height - start_height >= max_height_diff) {
LogPrint(BCLog::NET,
"peer %d requested too many cfilters/cfheaders: %d / %d\n",
peer.GetId(), stop_height - start_height + 1, max_height_diff);
peer.fDisconnect = true;
return false;
}
filter_index = GetBlockFilterIndex(filter_type);
if (!filter_index) {
LogPrint(BCLog::NET, "Filter index for supported type %s not found\n",
BlockFilterTypeName(filter_type));
return false;
}
return true;
}
/**
* Handle a cfilters request.
*
* May disconnect from the peer in the case of a bad request.
*
* @param[in] peer The peer that we received the request from
* @param[in] vRecv The raw message received
* @param[in] chain_params Chain parameters
* @param[in] connman Pointer to the connection manager
*/
static void ProcessGetCFilters(CNode &peer, CDataStream &vRecv,
const CChainParams &chain_params,
CConnman &connman) {
uint8_t filter_type_ser;
uint32_t start_height;
BlockHash stop_hash;
vRecv >> filter_type_ser >> start_height >> stop_hash;
const BlockFilterType filter_type =
static_cast<BlockFilterType>(filter_type_ser);
const CBlockIndex *stop_index;
BlockFilterIndex *filter_index;
if (!PrepareBlockFilterRequest(
peer, chain_params, filter_type, start_height, stop_hash,
MAX_GETCFILTERS_SIZE, stop_index, filter_index)) {
return;
}
std::vector<BlockFilter> filters;
if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) {
LogPrint(BCLog::NET,
"Failed to find block filter in index: filter_type=%s, "
"start_height=%d, stop_hash=%s\n",
BlockFilterTypeName(filter_type), start_height,
stop_hash.ToString());
return;
}
for (const auto &filter : filters) {
CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion())
.Make(NetMsgType::CFILTER, filter);
connman.PushMessage(&peer, std::move(msg));
}
}
/**
* Handle a cfheaders request.
*
* May disconnect from the peer in the case of a bad request.
*
* @param[in] peer The peer that we received the request from
* @param[in] vRecv The raw message received
* @param[in] chain_params Chain parameters
* @param[in] connman Pointer to the connection manager
*/
static void ProcessGetCFHeaders(CNode &peer, CDataStream &vRecv,
const CChainParams &chain_params,
CConnman &connman) {
uint8_t filter_type_ser;
uint32_t start_height;
BlockHash stop_hash;
vRecv >> filter_type_ser >> start_height >> stop_hash;
const BlockFilterType filter_type =
static_cast<BlockFilterType>(filter_type_ser);
const CBlockIndex *stop_index;
BlockFilterIndex *filter_index;
if (!PrepareBlockFilterRequest(
peer, chain_params, filter_type, start_height, stop_hash,
MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) {
return;
}
uint256 prev_header;
if (start_height > 0) {
const CBlockIndex *const prev_block =
stop_index->GetAncestor(static_cast<int>(start_height - 1));
if (!filter_index->LookupFilterHeader(prev_block, prev_header)) {
LogPrint(BCLog::NET,
"Failed to find block filter header in index: "
"filter_type=%s, block_hash=%s\n",
BlockFilterTypeName(filter_type),
prev_block->GetBlockHash().ToString());
return;
}
}
std::vector<uint256> filter_hashes;
if (!filter_index->LookupFilterHashRange(start_height, stop_index,
filter_hashes)) {
LogPrint(BCLog::NET,
"Failed to find block filter hashes in index: filter_type=%s, "
"start_height=%d, stop_hash=%s\n",
BlockFilterTypeName(filter_type), start_height,
stop_hash.ToString());
return;
}
CSerializedNetMsg msg =
CNetMsgMaker(peer.GetCommonVersion())
.Make(NetMsgType::CFHEADERS, filter_type_ser,
stop_index->GetBlockHash(), prev_header, filter_hashes);
connman.PushMessage(&peer, std::move(msg));
}
/**
* Handle a getcfcheckpt request.
*
* May disconnect from the peer in the case of a bad request.
*
* @param[in] peer The peer that we received the request from
* @param[in] vRecv The raw message received
* @param[in] chain_params Chain parameters
* @param[in] connman Pointer to the connection manager
*/
static void ProcessGetCFCheckPt(CNode &peer, CDataStream &vRecv,
const CChainParams &chain_params,
CConnman &connman) {
uint8_t filter_type_ser;
BlockHash stop_hash;
vRecv >> filter_type_ser >> stop_hash;
const BlockFilterType filter_type =
static_cast<BlockFilterType>(filter_type_ser);
const CBlockIndex *stop_index;
BlockFilterIndex *filter_index;
if (!PrepareBlockFilterRequest(
peer, chain_params, filter_type, /*start_height=*/0, stop_hash,
/*max_height_diff=*/std::numeric_limits<uint32_t>::max(),
stop_index, filter_index)) {
return;
}
std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL);
// Populate headers.
const CBlockIndex *block_index = stop_index;
for (int i = headers.size() - 1; i >= 0; i--) {
int height = (i + 1) * CFCHECKPT_INTERVAL;
block_index = block_index->GetAncestor(height);
if (!filter_index->LookupFilterHeader(block_index, headers[i])) {
LogPrint(BCLog::NET,
"Failed to find block filter header in index: "
"filter_type=%s, block_hash=%s\n",
BlockFilterTypeName(filter_type),
block_index->GetBlockHash().ToString());
return;
}
}
CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion())
.Make(NetMsgType::CFCHECKPT, filter_type_ser,
stop_index->GetBlockHash(), headers);
connman.PushMessage(&peer, std::move(msg));
}
bool IsAvalancheMessageType(const std::string &msg_type) {
return msg_type == NetMsgType::AVAHELLO ||
msg_type == NetMsgType::AVAPOLL ||
msg_type == NetMsgType::AVARESPONSE ||
msg_type == NetMsgType::AVAPROOF;
}
void PeerManager::ProcessMessage(const Config &config, CNode &pfrom,
const std::string &msg_type,
CDataStream &vRecv,
const std::chrono::microseconds time_received,
const std::atomic<bool> &interruptMsgProc) {
LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n",
SanitizeString(msg_type), vRecv.size(), pfrom.GetId());
if (gArgs.IsArgSet("-dropmessagestest") &&
GetRand(gArgs.GetArg("-dropmessagestest", 0)) == 0) {
LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n");
return;
}
if (IsAvalancheMessageType(msg_type)) {
if (!g_avalanche) {
LogPrint(BCLog::NET,
"Avalanche is not initialized, ignoring %s message\n",
msg_type);
return;
}
if (!isAvalancheEnabled(gArgs)) {
Misbehaving(pfrom, 20, "unsolicited-" + msg_type);
return;
}
}
if (msg_type == NetMsgType::VERSION) {
// Each connection can only send one version message
if (pfrom.nVersion != 0) {
Misbehaving(pfrom, 1, "redundant version message");
return;
}
int64_t nTime;
CAddress addrMe;
CAddress addrFrom;
uint64_t nNonce = 1;
uint64_t nServiceInt;
ServiceFlags nServices;
int nVersion;
std::string cleanSubVer;
int nStartingHeight = -1;
bool fRelay = true;
uint64_t nExtraEntropy = 1;
vRecv >> nVersion >> nServiceInt >> nTime >> addrMe;
nServices = ServiceFlags(nServiceInt);
if (!pfrom.IsInboundConn()) {
m_connman.SetServices(pfrom.addr, nServices);
}
if (pfrom.ExpectServicesFromConn() &&
!HasAllDesirableServiceFlags(nServices)) {
LogPrint(BCLog::NET,
"peer=%d does not offer the expected services "
"(%08x offered, %08x expected); disconnecting\n",
pfrom.GetId(), nServices,
GetDesirableServiceFlags(nServices));
pfrom.fDisconnect = true;
return;
}
if (nVersion < MIN_PEER_PROTO_VERSION) {
// disconnect from peers older than this proto version
LogPrint(BCLog::NET,
"peer=%d using obsolete version %i; disconnecting\n",
pfrom.GetId(), nVersion);
pfrom.fDisconnect = true;
return;
}
if (!vRecv.empty()) {
vRecv >> addrFrom >> nNonce;
}
if (!vRecv.empty()) {
std::string strSubVer;
vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH);
cleanSubVer = SanitizeString(strSubVer);
}
if (!vRecv.empty()) {
vRecv >> nStartingHeight;
}
if (!vRecv.empty()) {
vRecv >> fRelay;
}
if (!vRecv.empty()) {
vRecv >> nExtraEntropy;
}
// Disconnect if we connected to ourself
if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce)) {
LogPrintf("connected to self at %s, disconnecting\n",
pfrom.addr.ToString());
pfrom.fDisconnect = true;
return;
}
if (pfrom.IsInboundConn() && addrMe.IsRoutable()) {
SeenLocal(addrMe);
}
// Be shy and don't send version until we hear
if (pfrom.IsInboundConn()) {
PushNodeVersion(config, pfrom, m_connman, GetAdjustedTime());
}
// Change version
const int greatest_common_version =
std::min(nVersion, PROTOCOL_VERSION);
pfrom.SetCommonVersion(greatest_common_version);
pfrom.nVersion = nVersion;
const CNetMsgMaker msg_maker(greatest_common_version);
m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::VERACK));
// Signal ADDRv2 support (BIP155).
m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDADDRV2));
pfrom.nServices = nServices;
pfrom.SetAddrLocal(addrMe);
{
LOCK(pfrom.cs_SubVer);
pfrom.cleanSubVer = cleanSubVer;
}
pfrom.nStartingHeight = nStartingHeight;
// set nodes not relaying blocks and tx and not serving (parts) of the
// historical blockchain as "clients"
pfrom.fClient = (!(nServices & NODE_NETWORK) &&
!(nServices & NODE_NETWORK_LIMITED));
// set nodes not capable of serving the complete blockchain history as
// "limited nodes"
pfrom.m_limited_node =
(!(nServices & NODE_NETWORK) && (nServices & NODE_NETWORK_LIMITED));
if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_filter);
// set to true after we get the first filter* message
pfrom.m_tx_relay->fRelayTxes = fRelay;
}
pfrom.nRemoteHostNonce = nNonce;
pfrom.nRemoteExtraEntropy = nExtraEntropy;
// Potentially mark this peer as a preferred download peer.
{
LOCK(cs_main);
UpdatePreferredDownload(pfrom, State(pfrom.GetId()));
}
if (!pfrom.IsInboundConn() && pfrom.IsAddrRelayPeer()) {
// Advertise our address
if (fListen && !::ChainstateActive().IsInitialBlockDownload()) {
CAddress addr =
GetLocalAddress(&pfrom.addr, pfrom.GetLocalServices());
FastRandomContext insecure_rand;
if (addr.IsRoutable()) {
LogPrint(BCLog::NET,
"ProcessMessages: advertising address %s\n",
addr.ToString());
pfrom.PushAddress(addr, insecure_rand);
} else if (IsPeerAddrLocalGood(&pfrom)) {
addr.SetIP(addrMe);
LogPrint(BCLog::NET,
"ProcessMessages: advertising address %s\n",
addr.ToString());
pfrom.PushAddress(addr, insecure_rand);
}
}
// Get recent addresses
m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version)
.Make(NetMsgType::GETADDR));
pfrom.fGetAddr = true;
m_connman.MarkAddressGood(pfrom.addr);
}
std::string remoteAddr;
if (fLogIPs) {
remoteAddr = ", peeraddr=" + pfrom.addr.ToString();
}
LogPrint(BCLog::NET,
"receive version message: [%s] %s: version %d, blocks=%d, "
"us=%s, peer=%d%s\n",
pfrom.addr.ToString(), cleanSubVer, pfrom.nVersion,
pfrom.nStartingHeight, addrMe.ToString(), pfrom.GetId(),
remoteAddr);
// Ignore time offsets that are improbable (before the Genesis block)
// and may underflow the nTimeOffset calculation.
int64_t currentTime = GetTime();
if (nTime >= int64_t(m_chainparams.GenesisBlock().nTime)) {
int64_t nTimeOffset = nTime - currentTime;
pfrom.nTimeOffset = nTimeOffset;
AddTimeData(pfrom.addr, nTimeOffset);
} else {
Misbehaving(pfrom, 20,
"Ignoring invalid timestamp in version message");
}
// Feeler connections exist only to verify if address is online.
if (pfrom.IsFeelerConn()) {
pfrom.fDisconnect = true;
}
return;
}
if (pfrom.nVersion == 0) {
// Must have a version message before anything else
Misbehaving(pfrom, 10, "non-version message before version handshake");
return;
}
// At this point, the outgoing message serialization version can't change.
const CNetMsgMaker msgMaker(pfrom.GetCommonVersion());
if (msg_type == NetMsgType::VERACK) {
if (!pfrom.IsInboundConn()) {
// Mark this node as currently connected, so we update its timestamp
// later.
LOCK(cs_main);
State(pfrom.GetId())->fCurrentlyConnected = true;
LogPrintf(
"New outbound peer connected: version: %d, blocks=%d, "
"peer=%d%s (%s)\n",
pfrom.nVersion.load(), pfrom.nStartingHeight, pfrom.GetId(),
(fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToString())
: ""),
pfrom.m_tx_relay == nullptr ? "block-relay" : "full-relay");
}
if (pfrom.GetCommonVersion() >= SENDHEADERS_VERSION) {
// Tell our peer we prefer to receive headers rather than inv's
// We send this to non-NODE NETWORK peers as well, because even
// non-NODE NETWORK peers can announce blocks (such as pruning
// nodes)
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::SENDHEADERS));
}
if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) {
// Tell our peer we are willing to provide version 1 or 2
// cmpctblocks. However, we do not request new block announcements
// using cmpctblock messages. We send this to non-NODE NETWORK peers
// as well, because they may wish to request compact blocks from us.
bool fAnnounceUsingCMPCTBLOCK = false;
uint64_t nCMPCTBLOCKVersion = 1;
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::SENDCMPCT,
fAnnounceUsingCMPCTBLOCK,
nCMPCTBLOCKVersion));
}
if ((pfrom.nServices & NODE_AVALANCHE) && g_avalanche &&
isAvalancheEnabled(gArgs)) {
if (g_avalanche->sendHello(&pfrom)) {
LogPrint(BCLog::NET, "Send avahello to peer %d\n",
pfrom.GetId());
auto localProof = g_avalanche->getLocalProof();
// If we sent a hello message, we should have a proof
assert(localProof);
// Add our proof id to the list or the recently announced proof
// INVs to this peer. This is used for filtering which INV can
// be requested for download.
LOCK(cs_main);
State(pfrom.GetId())
->m_recently_announced_proofs.insert(localProof->getId());
}
}
pfrom.fSuccessfullyConnected = true;
return;
}
if (!pfrom.fSuccessfullyConnected) {
// Must have a verack message before anything else
Misbehaving(pfrom, 10, "non-verack message before version handshake");
return;
}
if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) {
int stream_version = vRecv.GetVersion();
if (msg_type == NetMsgType::ADDRV2) {
// Add ADDRV2_FORMAT to the version so that the CNetAddr and
// CAddress unserialize methods know that an address in v2 format is
// coming.
stream_version |= ADDRV2_FORMAT;
}
OverrideStream<CDataStream> s(&vRecv, vRecv.GetType(), stream_version);
std::vector<CAddress> vAddr;
s >> vAddr;
if (!pfrom.IsAddrRelayPeer()) {
return;
}
if (vAddr.size() > 1000) {
Misbehaving(
pfrom, 20,
strprintf("%s message size = %u", msg_type, vAddr.size()));
return;
}
// Store the new addresses
std::vector<CAddress> vAddrOk;
int64_t nNow = GetAdjustedTime();
int64_t nSince = nNow - 10 * 60;
for (CAddress &addr : vAddr) {
if (interruptMsgProc) {
return;
}
// We only bother storing full nodes, though this may include things
// which we would not make an outbound connection to, in part
// because we may make feeler connections to them.
if (!MayHaveUsefulAddressDB(addr.nServices) &&
!HasAllDesirableServiceFlags(addr.nServices)) {
continue;
}
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) {
addr.nTime = nNow - 5 * 24 * 60 * 60;
}
pfrom.AddAddressKnown(addr);
if (m_banman &&
(m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) {
// Do not process banned/discouraged addresses beyond
// remembering we received them
continue;
}
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom.fGetAddr && vAddr.size() <= 10 &&
addr.IsRoutable()) {
// Relay to a limited number of other nodes
RelayAddress(addr, fReachable, m_connman);
}
// Do not store addresses outside our network
if (fReachable) {
vAddrOk.push_back(addr);
}
}
m_connman.AddNewAddresses(vAddrOk, pfrom.addr, 2 * 60 * 60);
if (vAddr.size() < 1000) {
pfrom.fGetAddr = false;
}
if (pfrom.IsAddrFetchConn()) {
pfrom.fDisconnect = true;
}
return;
}
if (msg_type == NetMsgType::SENDADDRV2) {
pfrom.m_wants_addrv2 = true;
return;
}
if (msg_type == NetMsgType::SENDHEADERS) {
LOCK(cs_main);
State(pfrom.GetId())->fPreferHeaders = true;
return;
}
if (msg_type == NetMsgType::SENDCMPCT) {
bool fAnnounceUsingCMPCTBLOCK = false;
uint64_t nCMPCTBLOCKVersion = 0;
vRecv >> fAnnounceUsingCMPCTBLOCK >> nCMPCTBLOCKVersion;
if (nCMPCTBLOCKVersion == 1) {
LOCK(cs_main);
// fProvidesHeaderAndIDs is used to "lock in" version of compact
// blocks we send.
if (!State(pfrom.GetId())->fProvidesHeaderAndIDs) {
State(pfrom.GetId())->fProvidesHeaderAndIDs = true;
}
State(pfrom.GetId())->fPreferHeaderAndIDs =
fAnnounceUsingCMPCTBLOCK;
if (!State(pfrom.GetId())->fSupportsDesiredCmpctVersion) {
State(pfrom.GetId())->fSupportsDesiredCmpctVersion = true;
}
}
return;
}
if (msg_type == NetMsgType::INV) {
std::vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ) {
Misbehaving(pfrom, 20,
strprintf("inv message size = %u", vInv.size()));
return;
}
// We won't accept tx inv's if we're in blocks-only mode, or this is a
// block-relay-only peer
bool fBlocksOnly = !g_relay_txes || (pfrom.m_tx_relay == nullptr);
// Allow whitelisted peers to send data other than blocks in blocks only
// mode if whitelistrelay is true
if (pfrom.HasPermission(PF_RELAY)) {
fBlocksOnly = false;
}
const auto current_time = GetTime<std::chrono::microseconds>();
std::optional<BlockHash> best_block;
auto logInv = [&](const CInv &inv, bool fAlreadyHave) {
LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(),
fAlreadyHave ? "have" : "new", pfrom.GetId());
};
for (CInv &inv : vInv) {
if (interruptMsgProc) {
return;
}
if (inv.IsMsgBlk()) {
LOCK(cs_main);
const bool fAlreadyHave = AlreadyHaveBlock(BlockHash(inv.hash));
logInv(inv, fAlreadyHave);
const BlockHash hash{inv.hash};
UpdateBlockAvailability(pfrom.GetId(), hash);
if (!fAlreadyHave && !fImporting && !fReindex &&
!mapBlocksInFlight.count(hash)) {
// Headers-first is the primary method of announcement on
// the network. If a node fell back to sending blocks by
// inv, it's probably for a re-org. The final block hash
// provided should be the highest, so send a getheaders and
// then fetch the blocks we need to catch up.
best_block = std::move(hash);
}
continue;
}
if (inv.IsMsgProof()) {
const avalanche::ProofId proofid(inv.hash);
const bool fAlreadyHave = AlreadyHaveProof(proofid);
logInv(inv, fAlreadyHave);
pfrom.AddKnownProof(proofid);
if (!fAlreadyHave && g_avalanche && isAvalancheEnabled(gArgs)) {
const bool preferred = isPreferredDownloadPeer(pfrom);
LOCK(cs_proofrequest);
AddProofAnnouncement(pfrom, proofid, current_time,
preferred);
}
continue;
}
if (inv.IsMsgTx()) {
LOCK(cs_main);
const TxId txid(inv.hash);
const bool fAlreadyHave = AlreadyHaveTx(txid, m_mempool);
logInv(inv, fAlreadyHave);
pfrom.AddKnownTx(txid);
if (fBlocksOnly) {
LogPrint(BCLog::NET,
"transaction (%s) inv sent in violation of "
"protocol, disconnecting peer=%d\n",
txid.ToString(), pfrom.GetId());
pfrom.fDisconnect = true;
return;
} else if (!fAlreadyHave && !m_chainman.ActiveChainstate()
.IsInitialBlockDownload()) {
AddTxAnnouncement(pfrom, txid, current_time);
}
continue;
}
LogPrint(BCLog::NET,
"Unknown inv type \"%s\" received from peer=%d\n",
inv.ToString(), pfrom.GetId());
}
if (best_block) {
m_connman.PushMessage(
&pfrom,
msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(pindexBestHeader),
*best_block));
LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n",
pindexBestHeader->nHeight, best_block->ToString(),
pfrom.GetId());
}
return;
}
if (msg_type == NetMsgType::GETDATA) {
std::vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ) {
Misbehaving(pfrom, 20,
strprintf("getdata message size = %u", vInv.size()));
return;
}
LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n",
vInv.size(), pfrom.GetId());
if (vInv.size() > 0) {
LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n",
vInv[0].ToString(), pfrom.GetId());
}
pfrom.vRecvGetData.insert(pfrom.vRecvGetData.end(), vInv.begin(),
vInv.end());
ProcessGetData(config, pfrom, m_connman, m_mempool, interruptMsgProc);
return;
}
if (msg_type == NetMsgType::GETBLOCKS) {
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
if (locator.vHave.size() > MAX_LOCATOR_SZ) {
LogPrint(BCLog::NET,
"getblocks locator size %lld > %d, disconnect peer=%d\n",
locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
pfrom.fDisconnect = true;
return;
}
// We might have announced the currently-being-connected tip using a
// compact block, which resulted in the peer sending a getblocks
// request, which we would otherwise respond to without the new block.
// To avoid this situation we simply verify that we are on our best
// known chain now. This is super overkill, but we handle it better
// for getheaders requests, and there are no known nodes which support
// compact blocks but still use getblocks to request blocks.
{
std::shared_ptr<const CBlock> a_recent_block;
{
LOCK(cs_most_recent_block);
a_recent_block = most_recent_block;
}
BlockValidationState state;
if (!ActivateBestChain(config, state, a_recent_block)) {
LogPrint(BCLog::NET, "failed to activate chain (%s)\n",
state.ToString());
}
}
LOCK(cs_main);
// Find the last block the caller has in the main chain
const CBlockIndex *pindex =
FindForkInGlobalIndex(::ChainActive(), locator);
// Send the rest of the chain
if (pindex) {
pindex = ::ChainActive().Next(pindex);
}
int nLimit = 500;
LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n",
(pindex ? pindex->nHeight : -1),
hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit,
pfrom.GetId());
for (; pindex; pindex = ::ChainActive().Next(pindex)) {
if (pindex->GetBlockHash() == hashStop) {
LogPrint(BCLog::NET, " getblocks stopping at %d %s\n",
pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
// If pruning, don't inv blocks unless we have on disk and are
// likely to still have for some reasonable time window (1 hour)
// that block relay might require.
const int nPrunedBlocksLikelyToHave =
MIN_BLOCKS_TO_KEEP -
3600 / m_chainparams.GetConsensus().nPowTargetSpacing;
if (fPruneMode &&
(!pindex->nStatus.hasData() ||
pindex->nHeight <= ::ChainActive().Tip()->nHeight -
nPrunedBlocksLikelyToHave)) {
LogPrint(
BCLog::NET,
" getblocks stopping, pruned or too old block at %d %s\n",
pindex->nHeight, pindex->GetBlockHash().ToString());
break;
}
WITH_LOCK(pfrom.cs_inventory, pfrom.vInventoryBlockToSend.push_back(
pindex->GetBlockHash()));
if (--nLimit <= 0) {
// When this block is requested, we'll send an inv that'll
// trigger the peer to getblocks the next batch of inventory.
LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n",
pindex->nHeight, pindex->GetBlockHash().ToString());
pfrom.hashContinue = pindex->GetBlockHash();
break;
}
}
return;
}
if (msg_type == NetMsgType::GETBLOCKTXN) {
BlockTransactionsRequest req;
vRecv >> req;
std::shared_ptr<const CBlock> recent_block;
{
LOCK(cs_most_recent_block);
if (most_recent_block_hash == req.blockhash) {
recent_block = most_recent_block;
}
// Unlock cs_most_recent_block to avoid cs_main lock inversion
}
if (recent_block) {
SendBlockTransactions(pfrom, *recent_block, req);
return;
}
LOCK(cs_main);
const CBlockIndex *pindex = LookupBlockIndex(req.blockhash);
if (!pindex || !pindex->nStatus.hasData()) {
LogPrint(
BCLog::NET,
"Peer %d sent us a getblocktxn for a block we don't have\n",
pfrom.GetId());
return;
}
if (pindex->nHeight < ::ChainActive().Height() - MAX_BLOCKTXN_DEPTH) {
// If an older block is requested (should never happen in practice,
// but can happen in tests) send a block response instead of a
// blocktxn response. Sending a full block response instead of a
// small blocktxn response is preferable in the case where a peer
// might maliciously send lots of getblocktxn requests to trigger
// expensive disk reads, because it will require the peer to
// actually receive all the data read from disk over the network.
LogPrint(BCLog::NET,
"Peer %d sent us a getblocktxn for a block > %i deep\n",
pfrom.GetId(), MAX_BLOCKTXN_DEPTH);
CInv inv;
inv.type = MSG_BLOCK;
inv.hash = req.blockhash;
pfrom.vRecvGetData.push_back(inv);
// The message processing loop will go around again (without
// pausing) and we'll respond then (without cs_main)
return;
}
CBlock block;
bool ret =
ReadBlockFromDisk(block, pindex, m_chainparams.GetConsensus());
assert(ret);
SendBlockTransactions(pfrom, block, req);
return;
}
if (msg_type == NetMsgType::GETHEADERS) {
CBlockLocator locator;
BlockHash hashStop;
vRecv >> locator >> hashStop;
if (locator.vHave.size() > MAX_LOCATOR_SZ) {
LogPrint(BCLog::NET,
"getheaders locator size %lld > %d, disconnect peer=%d\n",
locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId());
pfrom.fDisconnect = true;
return;
}
LOCK(cs_main);
if (::ChainstateActive().IsInitialBlockDownload() &&
!pfrom.HasPermission(PF_DOWNLOAD)) {
LogPrint(BCLog::NET,
"Ignoring getheaders from peer=%d because node is in "
"initial block download\n",
pfrom.GetId());
return;
}
CNodeState *nodestate = State(pfrom.GetId());
const CBlockIndex *pindex = nullptr;
if (locator.IsNull()) {
// If locator is null, return the hashStop block
pindex = LookupBlockIndex(hashStop);
if (!pindex) {
return;
}
if (!BlockRequestAllowed(pindex, m_chainparams.GetConsensus())) {
LogPrint(BCLog::NET,
"%s: ignoring request from peer=%i for old block "
"header that isn't in the main chain\n",
__func__, pfrom.GetId());
return;
}
} else {
// Find the last block the caller has in the main chain
pindex = FindForkInGlobalIndex(::ChainActive(), locator);
if (pindex) {
pindex = ::ChainActive().Next(pindex);
}
}
// we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx
// count at the end
std::vector<CBlock> vHeaders;
int nLimit = MAX_HEADERS_RESULTS;
LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n",
(pindex ? pindex->nHeight : -1),
hashStop.IsNull() ? "end" : hashStop.ToString(),
pfrom.GetId());
for (; pindex; pindex = ::ChainActive().Next(pindex)) {
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) {
break;
}
}
// pindex can be nullptr either if we sent ::ChainActive().Tip() OR
// if our peer has ::ChainActive().Tip() (and thus we are sending an
// empty headers message). In both cases it's safe to update
// pindexBestHeaderSent to be our tip.
//
// It is important that we simply reset the BestHeaderSent value here,
// and not max(BestHeaderSent, newHeaderSent). We might have announced
// the currently-being-connected tip using a compact block, which
// resulted in the peer sending a headers request, which we respond to
// without the new block. By resetting the BestHeaderSent, we ensure we
// will re-announce the new block via headers (or compact blocks again)
// in the SendMessages logic.
nodestate->pindexBestHeaderSent =
pindex ? pindex : ::ChainActive().Tip();
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::HEADERS, vHeaders));
return;
}
if (msg_type == NetMsgType::TX) {
// Stop processing the transaction early if
// 1) We are in blocks only mode and peer has no relay permission
// 2) This peer is a block-relay-only peer
if ((!g_relay_txes && !pfrom.HasPermission(PF_RELAY)) ||
(pfrom.m_tx_relay == nullptr)) {
LogPrint(BCLog::NET,
"transaction sent in violation of protocol peer=%d\n",
pfrom.GetId());
pfrom.fDisconnect = true;
return;
}
CTransactionRef ptx;
vRecv >> ptx;
const CTransaction &tx = *ptx;
const TxId &txid = tx.GetId();
pfrom.AddKnownTx(txid);
LOCK2(cs_main, g_cs_orphans);
TxValidationState state;
m_txrequest.ReceivedResponse(pfrom.GetId(), txid);
if (!AlreadyHaveTx(txid, m_mempool) &&
AcceptToMemoryPool(config, m_mempool, state, ptx,
false /* bypass_limits */,
Amount::zero() /* nAbsurdFee */)) {
m_mempool.check(&::ChainstateActive().CoinsTip());
// As this version of the transaction was acceptable, we can forget
// about any requests for it.
m_txrequest.ForgetInvId(tx.GetId());
RelayTransaction(tx.GetId(), m_connman);
for (size_t i = 0; i < tx.vout.size(); i++) {
auto it_by_prev =
mapOrphanTransactionsByPrev.find(COutPoint(txid, i));
if (it_by_prev != mapOrphanTransactionsByPrev.end()) {
for (const auto &elem : it_by_prev->second) {
pfrom.orphan_work_set.insert(elem->first);
}
}
}
pfrom.nLastTXTime = GetTime();
LogPrint(BCLog::MEMPOOL,
"AcceptToMemoryPool: peer=%d: accepted %s "
"(poolsz %u txn, %u kB)\n",
pfrom.GetId(), tx.GetId().ToString(), m_mempool.size(),
m_mempool.DynamicMemoryUsage() / 1000);
// Recursively process any orphan transactions that depended on this
// one
ProcessOrphanTx(config, pfrom.orphan_work_set);
} else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS) {
// It may be the case that the orphans parents have all been
// rejected.
bool fRejectedParents = false;
for (const CTxIn &txin : tx.vin) {
if (recentRejects->contains(txin.prevout.GetTxId())) {
fRejectedParents = true;
break;
}
}
if (!fRejectedParents) {
const auto current_time = GetTime<std::chrono::microseconds>();
for (const CTxIn &txin : tx.vin) {
// FIXME: MSG_TX should use a TxHash, not a TxId.
const TxId _txid = txin.prevout.GetTxId();
pfrom.AddKnownTx(_txid);
if (!AlreadyHaveTx(_txid, m_mempool)) {
AddTxAnnouncement(pfrom, _txid, current_time);
}
}
AddOrphanTx(ptx, pfrom.GetId());
// Once added to the orphan pool, a tx is considered
// AlreadyHave, and we shouldn't request it anymore.
m_txrequest.ForgetInvId(tx.GetId());
// DoS prevention: do not allow mapOrphanTransactions to grow
// unbounded (see CVE-2012-3789)
unsigned int nMaxOrphanTx = (unsigned int)std::max(
int64_t(0), gArgs.GetArg("-maxorphantx",
DEFAULT_MAX_ORPHAN_TRANSACTIONS));
unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx);
if (nEvicted > 0) {
LogPrint(BCLog::MEMPOOL,
"mapOrphan overflow, removed %u tx\n", nEvicted);
}
} else {
LogPrint(BCLog::MEMPOOL,
"not keeping orphan with rejected parents %s\n",
tx.GetId().ToString());
// We will continue to reject this tx since it has rejected
// parents so avoid re-requesting it from other peers.
recentRejects->insert(tx.GetId());
m_txrequest.ForgetInvId(tx.GetId());
}
} else {
assert(recentRejects);
recentRejects->insert(tx.GetId());
m_txrequest.ForgetInvId(tx.GetId());
if (RecursiveDynamicUsage(*ptx) < 100000) {
AddToCompactExtraTransactions(ptx);
}
if (pfrom.HasPermission(PF_FORCERELAY)) {
// Always relay transactions received from whitelisted peers,
// even if they were already in the mempool or rejected from it
// due to policy, allowing the node to function as a gateway for
// nodes hidden behind it.
//
// Never relay transactions that might result in being
// disconnected (or banned).
if (state.IsInvalid() && TxRelayMayResultInDisconnect(state)) {
LogPrintf("Not relaying invalid transaction %s from "
"whitelisted peer=%d (%s)\n",
tx.GetId().ToString(), pfrom.GetId(),
state.ToString());
} else {
LogPrintf("Force relaying tx %s from whitelisted peer=%d\n",
tx.GetId().ToString(), pfrom.GetId());
RelayTransaction(tx.GetId(), m_connman);
}
}
}
// If a tx has been detected by recentRejects, we will have reached
// this point and the tx will have been ignored. Because we haven't run
// the tx through AcceptToMemoryPool, we won't have computed a DoS
// score for it or determined exactly why we consider it invalid.
//
// This means we won't penalize any peer subsequently relaying a DoSy
// tx (even if we penalized the first peer who gave it to us) because
// we have to account for recentRejects showing false positives. In
// other words, we shouldn't penalize a peer if we aren't *sure* they
// submitted a DoSy tx.
//
// Note that recentRejects doesn't just record DoSy or invalid
// transactions, but any tx not accepted by the mempool, which may be
// due to node policy (vs. consensus). So we can't blanket penalize a
// peer simply for relaying a tx that our recentRejects has caught,
// regardless of false positives.
if (state.IsInvalid()) {
LogPrint(BCLog::MEMPOOLREJ,
"%s from peer=%d was not accepted: %s\n",
tx.GetHash().ToString(), pfrom.GetId(), state.ToString());
MaybePunishNodeForTx(pfrom.GetId(), state);
}
return;
}
if (msg_type == NetMsgType::CMPCTBLOCK) {
// Ignore cmpctblock received while importing
if (fImporting || fReindex) {
LogPrint(BCLog::NET,
"Unexpected cmpctblock message received from peer %d\n",
pfrom.GetId());
return;
}
CBlockHeaderAndShortTxIDs cmpctblock;
vRecv >> cmpctblock;
bool received_new_header = false;
{
LOCK(cs_main);
if (!LookupBlockIndex(cmpctblock.header.hashPrevBlock)) {
// Doesn't connect (or is genesis), instead of DoSing in
// AcceptBlockHeader, request deeper headers
if (!::ChainstateActive().IsInitialBlockDownload()) {
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(
pindexBestHeader),
uint256()));
}
return;
}
if (!LookupBlockIndex(cmpctblock.header.GetHash())) {
received_new_header = true;
}
}
const CBlockIndex *pindex = nullptr;
BlockValidationState state;
if (!m_chainman.ProcessNewBlockHeaders(config, {cmpctblock.header},
state, &pindex)) {
if (state.IsInvalid()) {
MaybePunishNodeForBlock(pfrom.GetId(), state,
/*via_compact_block*/ true,
"invalid header via cmpctblock");
return;
}
}
// When we succeed in decoding a block's txids from a cmpctblock
// message we typically jump to the BLOCKTXN handling code, with a
// dummy (empty) BLOCKTXN message, to re-use the logic there in
// completing processing of the putative block (without cs_main).
bool fProcessBLOCKTXN = false;
CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION);
// If we end up treating this as a plain headers message, call that as
// well
// without cs_main.
bool fRevertToHeaderProcessing = false;
// Keep a CBlock for "optimistic" compactblock reconstructions (see
// below)
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
bool fBlockReconstructed = false;
{
LOCK2(cs_main, g_cs_orphans);
// If AcceptBlockHeader returned true, it set pindex
assert(pindex);
UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash());
CNodeState *nodestate = State(pfrom.GetId());
// If this was a new header with more work than our tip, update the
// peer's last block announcement time
if (received_new_header &&
pindex->nChainWork > ::ChainActive().Tip()->nChainWork) {
nodestate->m_last_block_announcement = GetTime();
}
std::map<BlockHash,
std::pair<NodeId, std::list<QueuedBlock>::iterator>>::
iterator blockInFlightIt =
mapBlocksInFlight.find(pindex->GetBlockHash());
bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end();
if (pindex->nStatus.hasData()) {
// Nothing to do here
return;
}
if (pindex->nChainWork <=
::ChainActive()
.Tip()
->nChainWork || // We know something better
pindex->nTx != 0) {
// We had this block at some point, but pruned it
if (fAlreadyInFlight) {
// We requested this block for some reason, but our mempool
// will probably be useless so we just grab the block via
// normal getdata.
std::vector<CInv> vInv(1);
vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash());
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
}
return;
}
// If we're not close to tip yet, give up and let parallel block
// fetch work its magic.
if (!fAlreadyInFlight &&
!CanDirectFetch(m_chainparams.GetConsensus())) {
return;
}
// We want to be a bit conservative just to be extra careful about
// DoS possibilities in compact block processing...
if (pindex->nHeight <= ::ChainActive().Height() + 2) {
if ((!fAlreadyInFlight && nodestate->nBlocksInFlight <
MAX_BLOCKS_IN_TRANSIT_PER_PEER) ||
(fAlreadyInFlight &&
blockInFlightIt->second.first == pfrom.GetId())) {
std::list<QueuedBlock>::iterator *queuedBlockIt = nullptr;
if (!MarkBlockAsInFlight(config, m_mempool, pfrom.GetId(),
pindex->GetBlockHash(),
m_chainparams.GetConsensus(),
pindex, &queuedBlockIt)) {
if (!(*queuedBlockIt)->partialBlock) {
(*queuedBlockIt)
->partialBlock.reset(
new PartiallyDownloadedBlock(config,
&m_mempool));
} else {
// The block was already in flight using compact
// blocks from the same peer.
LogPrint(BCLog::NET, "Peer sent us compact block "
"we were already syncing!\n");
return;
}
}
PartiallyDownloadedBlock &partialBlock =
*(*queuedBlockIt)->partialBlock;
ReadStatus status =
partialBlock.InitData(cmpctblock, vExtraTxnForCompact);
if (status == READ_STATUS_INVALID) {
// Reset in-flight state in case of whitelist
MarkBlockAsReceived(pindex->GetBlockHash());
Misbehaving(pfrom, 100, "invalid compact block");
return;
} else if (status == READ_STATUS_FAILED) {
// Duplicate txindices, the block is now in-flight, so
// just request it.
std::vector<CInv> vInv(1);
vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash());
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
return;
}
BlockTransactionsRequest req;
for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) {
if (!partialBlock.IsTxAvailable(i)) {
req.indices.push_back(i);
}
}
if (req.indices.empty()) {
// Dirty hack to jump to BLOCKTXN code (TODO: move
// message handling into their own functions)
BlockTransactions txn;
txn.blockhash = cmpctblock.header.GetHash();
blockTxnMsg << txn;
fProcessBLOCKTXN = true;
} else {
req.blockhash = pindex->GetBlockHash();
m_connman.PushMessage(
&pfrom,
msgMaker.Make(NetMsgType::GETBLOCKTXN, req));
}
} else {
// This block is either already in flight from a different
// peer, or this peer has too many blocks outstanding to
// download from. Optimistically try to reconstruct anyway
// since we might be able to without any round trips.
PartiallyDownloadedBlock tempBlock(config, &m_mempool);
ReadStatus status =
tempBlock.InitData(cmpctblock, vExtraTxnForCompact);
if (status != READ_STATUS_OK) {
// TODO: don't ignore failures
return;
}
std::vector<CTransactionRef> dummy;
status = tempBlock.FillBlock(*pblock, dummy);
if (status == READ_STATUS_OK) {
fBlockReconstructed = true;
}
}
} else {
if (fAlreadyInFlight) {
// We requested this block, but its far into the future, so
// our mempool will probably be useless - request the block
// normally.
std::vector<CInv> vInv(1);
vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash());
m_connman.PushMessage(
&pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv));
return;
} else {
// If this was an announce-cmpctblock, we want the same
// treatment as a header message.
fRevertToHeaderProcessing = true;
}
}
} // cs_main
if (fProcessBLOCKTXN) {
return ProcessMessage(config, pfrom, NetMsgType::BLOCKTXN,
blockTxnMsg, time_received, interruptMsgProc);
}
if (fRevertToHeaderProcessing) {
// Headers received from HB compact block peers are permitted to be
// relayed before full validation (see BIP 152), so we don't want to
// disconnect the peer if the header turns out to be for an invalid
// block. Note that if a peer tries to build on an invalid chain,
// that will be detected and the peer will be banned.
return ProcessHeadersMessage(config, pfrom, {cmpctblock.header},
/*via_compact_block=*/true);
}
if (fBlockReconstructed) {
// If we got here, we were able to optimistically reconstruct a
// block that is in flight from some other peer.
{
LOCK(cs_main);
mapBlockSource.emplace(pblock->GetHash(),
std::make_pair(pfrom.GetId(), false));
}
bool fNewBlock = false;
// Setting fForceProcessing to true means that we bypass some of
// our anti-DoS protections in AcceptBlock, which filters
// unrequested blocks that might be trying to waste our resources
// (eg disk space). Because we only try to reconstruct blocks when
// we're close to caught up (via the CanDirectFetch() requirement
// above, combined with the behavior of not requesting blocks until
// we have a chain with at least nMinimumChainWork), and we ignore
// compact blocks with less work than our tip, it is safe to treat
// reconstructed compact blocks as having been requested.
m_chainman.ProcessNewBlock(config, pblock,
/*fForceProcessing=*/true, &fNewBlock);
if (fNewBlock) {
pfrom.nLastBlockTime = GetTime();
} else {
LOCK(cs_main);
mapBlockSource.erase(pblock->GetHash());
}
// hold cs_main for CBlockIndex::IsValid()
LOCK(cs_main);
if (pindex->IsValid(BlockValidity::TRANSACTIONS)) {
// Clear download state for this block, which is in process from
// some other peer. We do this after calling. ProcessNewBlock so
// that a malleated cmpctblock announcement can't be used to
// interfere with block relay.
MarkBlockAsReceived(pblock->GetHash());
}
}
return;
}
if (msg_type == NetMsgType::BLOCKTXN) {
// Ignore blocktxn received while importing
if (fImporting || fReindex) {
LogPrint(BCLog::NET,
"Unexpected blocktxn message received from peer %d\n",
pfrom.GetId());
return;
}
BlockTransactions resp;
vRecv >> resp;
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
bool fBlockRead = false;
{
LOCK(cs_main);
std::map<BlockHash,
std::pair<NodeId, std::list<QueuedBlock>::iterator>>::
iterator it = mapBlocksInFlight.find(resp.blockhash);
if (it == mapBlocksInFlight.end() ||
!it->second.second->partialBlock ||
it->second.first != pfrom.GetId()) {
LogPrint(BCLog::NET,
"Peer %d sent us block transactions for block "
"we weren't expecting\n",
pfrom.GetId());
return;
}
PartiallyDownloadedBlock &partialBlock =
*it->second.second->partialBlock;
ReadStatus status = partialBlock.FillBlock(*pblock, resp.txn);
if (status == READ_STATUS_INVALID) {
// Reset in-flight state in case of whitelist.
MarkBlockAsReceived(resp.blockhash);
Misbehaving(
pfrom, 100,
"invalid compact block/non-matching block transactions");
return;
} else if (status == READ_STATUS_FAILED) {
// Might have collided, fall back to getdata now :(
std::vector<CInv> invs;
invs.push_back(CInv(MSG_BLOCK, resp.blockhash));
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::GETDATA, invs));
} else {
// Block is either okay, or possibly we received
// READ_STATUS_CHECKBLOCK_FAILED.
// Note that CheckBlock can only fail for one of a few reasons:
// 1. bad-proof-of-work (impossible here, because we've already
// accepted the header)
// 2. merkleroot doesn't match the transactions given (already
// caught in FillBlock with READ_STATUS_FAILED, so
// impossible here)
// 3. the block is otherwise invalid (eg invalid coinbase,
// block is too big, too many legacy sigops, etc).
// So if CheckBlock failed, #3 is the only possibility.
// Under BIP 152, we don't DoS-ban unless proof of work is
// invalid (we don't require all the stateless checks to have
// been run). This is handled below, so just treat this as
// though the block was successfully read, and rely on the
// handling in ProcessNewBlock to ensure the block index is
// updated, etc.
// it is now an empty pointer
MarkBlockAsReceived(resp.blockhash);
fBlockRead = true;
// mapBlockSource is used for potentially punishing peers and
// updating which peers send us compact blocks, so the race
// between here and cs_main in ProcessNewBlock is fine.
// BIP 152 permits peers to relay compact blocks after
// validating the header only; we should not punish peers
// if the block turns out to be invalid.
mapBlockSource.emplace(resp.blockhash,
std::make_pair(pfrom.GetId(), false));
}
} // Don't hold cs_main when we call into ProcessNewBlock
if (fBlockRead) {
bool fNewBlock = false;
// Since we requested this block (it was in mapBlocksInFlight),
// force it to be processed, even if it would not be a candidate for
// new tip (missing previous block, chain not long enough, etc)
// This bypasses some anti-DoS logic in AcceptBlock (eg to prevent
// disk-space attacks), but this should be safe due to the
// protections in the compact block handler -- see related comment
// in compact block optimistic reconstruction handling.
m_chainman.ProcessNewBlock(config, pblock,
/*fForceProcessing=*/true, &fNewBlock);
if (fNewBlock) {
pfrom.nLastBlockTime = GetTime();
} else {
LOCK(cs_main);
mapBlockSource.erase(pblock->GetHash());
}
}
return;
}
if (msg_type == NetMsgType::HEADERS) {
// Ignore headers received while importing
if (fImporting || fReindex) {
LogPrint(BCLog::NET,
"Unexpected headers message received from peer %d\n",
pfrom.GetId());
return;
}
std::vector<CBlockHeader> headers;
// Bypass the normal CBlock deserialization, as we don't want to risk
// deserializing 2000 full blocks.
unsigned int nCount = ReadCompactSize(vRecv);
if (nCount > MAX_HEADERS_RESULTS) {
Misbehaving(pfrom, 20,
strprintf("too-many-headers: headers message size = %u",
nCount));
return;
}
headers.resize(nCount);
for (unsigned int n = 0; n < nCount; n++) {
vRecv >> headers[n];
// Ignore tx count; assume it is 0.
ReadCompactSize(vRecv);
}
return ProcessHeadersMessage(config, pfrom, headers,
/*via_compact_block=*/false);
}
if (msg_type == NetMsgType::BLOCK) {
// Ignore block received while importing
if (fImporting || fReindex) {
LogPrint(BCLog::NET,
"Unexpected block message received from peer %d\n",
pfrom.GetId());
return;
}
std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>();
vRecv >> *pblock;
LogPrint(BCLog::NET, "received block %s peer=%d\n",
pblock->GetHash().ToString(), pfrom.GetId());
// Process all blocks from whitelisted peers, even if not requested,
// unless we're still syncing with the network. Such an unrequested
// block may still be processed, subject to the conditions in
// AcceptBlock().
bool forceProcessing = pfrom.HasPermission(PF_NOBAN) &&
!::ChainstateActive().IsInitialBlockDownload();
const BlockHash hash = pblock->GetHash();
{
LOCK(cs_main);
// Also always process if we requested the block explicitly, as we
// may need it even though it is not a candidate for a new best tip.
forceProcessing |= MarkBlockAsReceived(hash);
// mapBlockSource is only used for punishing peers and setting
// which peers send us compact blocks, so the race between here and
// cs_main in ProcessNewBlock is fine.
mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true));
}
bool fNewBlock = false;
m_chainman.ProcessNewBlock(config, pblock, forceProcessing, &fNewBlock);
if (fNewBlock) {
pfrom.nLastBlockTime = GetTime();
} else {
LOCK(cs_main);
mapBlockSource.erase(hash);
}
return;
}
if (msg_type == NetMsgType::AVAHELLO) {
if (!pfrom.m_avalanche_state) {
pfrom.m_avalanche_state = std::make_unique<CNode::AvalancheState>();
}
CHashVerifier<CDataStream> verifier(&vRecv);
avalanche::Delegation delegation;
verifier >> delegation;
avalanche::DelegationState state;
CPubKey &pubkey = pfrom.m_avalanche_state->pubkey;
if (!delegation.verify(state, pubkey)) {
Misbehaving(pfrom, 100, "invalid-delegation");
return;
}
CHashWriter sighasher(SER_GETHASH, 0);
sighasher << delegation.getId();
sighasher << pfrom.nRemoteHostNonce;
sighasher << pfrom.GetLocalNonce();
sighasher << pfrom.nRemoteExtraEntropy;
sighasher << pfrom.GetLocalExtraEntropy();
SchnorrSig sig;
verifier >> sig;
if (!pubkey.VerifySchnorr(sighasher.GetHash(), sig)) {
Misbehaving(pfrom, 100, "invalid-avahello-signature");
return;
}
// If we don't know this proof already, add it to the tracker so it can
// be requested.
const avalanche::ProofId proofid(delegation.getProofId());
if (!AlreadyHaveProof(proofid)) {
const bool preferred = isPreferredDownloadPeer(pfrom);
LOCK(cs_proofrequest);
AddProofAnnouncement(pfrom, proofid,
GetTime<std::chrono::microseconds>(),
preferred);
}
return;
}
if (msg_type == NetMsgType::AVAPOLL) {
auto now = std::chrono::steady_clock::now();
int64_t cooldown =
gArgs.GetArg("-avacooldown", AVALANCHE_DEFAULT_COOLDOWN);
{
LOCK(cs_main);
auto &node_state = State(pfrom.GetId())->m_avalanche_state;
if (now <
node_state.last_poll + std::chrono::milliseconds(cooldown)) {
Misbehaving(pfrom, 20, "avapool-cooldown");
}
node_state.last_poll = now;
}
uint64_t round;
Unserialize(vRecv, round);
unsigned int nCount = ReadCompactSize(vRecv);
if (nCount > AVALANCHE_MAX_ELEMENT_POLL) {
Misbehaving(
pfrom, 20,
strprintf("too-many-ava-poll: poll message size = %u", nCount));
return;
}
std::vector<avalanche::Vote> votes;
votes.reserve(nCount);
LogPrint(BCLog::NET, "received avalanche poll from peer=%d\n",
pfrom.GetId());
{
LOCK(cs_main);
for (unsigned int n = 0; n < nCount; n++) {
CInv inv;
vRecv >> inv;
const auto insertVote = [&](uint32_t e) {
votes.emplace_back(e, inv.hash);
};
// Not a block.
if (inv.type != MSG_BLOCK) {
insertVote(-1);
continue;
}
// We have a block.
const CBlockIndex *pindex =
LookupBlockIndex(BlockHash(inv.hash));
// Unknown block.
if (!pindex) {
insertVote(-1);
continue;
}
// Invalid block
if (pindex->nStatus.isInvalid()) {
insertVote(1);
continue;
}
// Parked block
if (pindex->nStatus.isOnParkedChain()) {
insertVote(2);
continue;
}
const CBlockIndex *pindexTip = ::ChainActive().Tip();
const CBlockIndex *pindexFork =
LastCommonAncestor(pindex, pindexTip);
// Active block.
if (pindex == pindexFork) {
insertVote(0);
continue;
}
// Fork block.
if (pindexFork != pindexTip) {
insertVote(3);
continue;
}
// Missing block data.
if (!pindex->nStatus.hasData()) {
insertVote(-2);
continue;
}
// This block is built on top of the tip, we have the data, it
// is pending connection or rejection.
insertVote(-3);
}
}
// Send the query to the node.
g_avalanche->sendResponse(
&pfrom, avalanche::Response(round, cooldown, std::move(votes)));
return;
}
if (msg_type == NetMsgType::AVARESPONSE) {
// As long as QUIC is not implemented, we need to sign response and
// verify response's signatures in order to avoid any manipulation of
// messages at the transport level.
CHashVerifier<CDataStream> verifier(&vRecv);
avalanche::Response response;
verifier >> response;
SchnorrSig sig;
vRecv >> sig;
if (!pfrom.m_avalanche_state ||
!pfrom.m_avalanche_state->pubkey.VerifySchnorr(verifier.GetHash(),
sig)) {
Misbehaving(pfrom, 100, "invalid-ava-response-signature");
return;
}
std::vector<avalanche::BlockUpdate> updates;
if (!g_avalanche->registerVotes(pfrom.GetId(), response, updates)) {
return;
}
if (updates.size()) {
for (avalanche::BlockUpdate &u : updates) {
CBlockIndex *pindex = u.getBlockIndex();
switch (u.getStatus()) {
case avalanche::BlockUpdate::Status::Invalid:
case avalanche::BlockUpdate::Status::Rejected: {
LogPrintf("Avalanche rejected %s, parking\n",
pindex->GetBlockHash().GetHex());
BlockValidationState state;
::ChainstateActive().ParkBlock(config, state, pindex);
if (!state.IsValid()) {
LogPrintf("ERROR: Database error: %s\n",
state.GetRejectReason());
return;
}
} break;
case avalanche::BlockUpdate::Status::Accepted:
case avalanche::BlockUpdate::Status::Finalized: {
LogPrintf("Avalanche accepted %s\n",
pindex->GetBlockHash().GetHex());
LOCK(cs_main);
UnparkBlock(pindex);
} break;
}
}
BlockValidationState state;
if (!ActivateBestChain(config, state)) {
LogPrint(BCLog::NET, "failed to activate chain (%s)\n",
state.ToString());
}
}
return;
}
if (msg_type == NetMsgType::AVAPROOF) {
auto proof = std::make_shared<avalanche::Proof>();
vRecv >> *proof;
const avalanche::ProofId &proofid = proof->getId();
pfrom.AddKnownProof(proofid);
const NodeId nodeid = pfrom.GetId();
{
LOCK(cs_proofrequest);
m_proofrequest.ReceivedResponse(nodeid, proofid);
if (AlreadyHaveProof(proofid)) {
m_proofrequest.ForgetInvId(proofid);
return;
}
}
// addProof should not be called while cs_proofrequest because it holds
// cs_main and that creates a potential deadlock during shutdown
if (g_avalanche->addProof(proof)) {
WITH_LOCK(cs_proofrequest, m_proofrequest.ForgetInvId(proofid));
RelayProof(proofid, m_connman);
LogPrint(BCLog::NET, "New avalanche proof: peer=%d, proofid %s\n",
nodeid, proofid.ToString());
} else {
// If the proof couldn't be added, it can be either orphan or
// invalid. In the latter case we should increase the ban score.
// TODO improve the ban reason by printing the validation state
if (!g_avalanche->getOrphan(proofid)) {
WITH_LOCK(cs_rejectedProofs, rejectedProofs->insert(proofid));
Misbehaving(nodeid, 100, "invalid-avaproof");
}
}
return;
}
if (msg_type == NetMsgType::GETADDR) {
// This asymmetric behavior for inbound and outbound connections was
// introduced to prevent a fingerprinting attack: an attacker can send
// specific fake addresses to users' AddrMan and later request them by
// sending getaddr messages. Making nodes which are behind NAT and can
// only make outgoing connections ignore the getaddr message mitigates
// the attack.
if (!pfrom.IsInboundConn()) {
LogPrint(BCLog::NET,
"Ignoring \"getaddr\" from outbound connection. peer=%d\n",
pfrom.GetId());
return;
}
if (!pfrom.IsAddrRelayPeer()) {
LogPrint(BCLog::NET,
"Ignoring \"getaddr\" from block-relay-only connection. "
"peer=%d\n",
pfrom.GetId());
return;
}
// Only send one GetAddr response per connection to reduce resource
// waste and discourage addr stamping of INV announcements.
if (pfrom.fSentAddr) {
LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n",
pfrom.GetId());
return;
}
pfrom.fSentAddr = true;
pfrom.vAddrToSend.clear();
std::vector<CAddress> vAddr = m_connman.GetAddresses();
FastRandomContext insecure_rand;
for (const CAddress &addr : vAddr) {
bool banned_or_discouraged =
m_banman &&
(m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr));
if (!banned_or_discouraged) {
pfrom.PushAddress(addr, insecure_rand);
}
}
return;
}
if (msg_type == NetMsgType::MEMPOOL) {
if (!(pfrom.GetLocalServices() & NODE_BLOOM) &&
!pfrom.HasPermission(PF_MEMPOOL)) {
if (!pfrom.HasPermission(PF_NOBAN)) {
LogPrint(BCLog::NET,
"mempool request with bloom filters disabled, "
"disconnect peer=%d\n",
pfrom.GetId());
pfrom.fDisconnect = true;
}
return;
}
if (m_connman.OutboundTargetReached(false) &&
!pfrom.HasPermission(PF_MEMPOOL)) {
if (!pfrom.HasPermission(PF_NOBAN)) {
LogPrint(BCLog::NET,
"mempool request with bandwidth limit reached, "
"disconnect peer=%d\n",
pfrom.GetId());
pfrom.fDisconnect = true;
}
return;
}
if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_tx_inventory);
pfrom.m_tx_relay->fSendMempool = true;
}
return;
}
if (msg_type == NetMsgType::PING) {
if (pfrom.GetCommonVersion() > BIP0031_VERSION) {
uint64_t nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful
// features:
//
// 1) A remote node can quickly check if the connection is
// operational.
// 2) Remote nodes can measure the latency of the network thread. If
// this node is overloaded it won't respond to pings quickly and the
// remote node can avoid sending us more work, like chain download
// requests.
//
// The nonce stops the remote getting confused between different
// pings: without it, if the remote node sends a ping once per
// second and this node takes 5 seconds to respond to each, the 5th
// ping the remote sends would appear to return very quickly.
m_connman.PushMessage(&pfrom,
msgMaker.Make(NetMsgType::PONG, nonce));
}
return;
}
if (msg_type == NetMsgType::PONG) {
const auto ping_end = time_received;
uint64_t nonce = 0;
size_t nAvail = vRecv.in_avail();
bool bPingFinished = false;
std::string sProblem;
if (nAvail >= sizeof(nonce)) {
vRecv >> nonce;
// Only process pong message if there is an outstanding ping (old
// ping without nonce should never pong)
if (pfrom.nPingNonceSent != 0) {
if (nonce == pfrom.nPingNonceSent) {
// Matching pong received, this ping is no longer
// outstanding
bPingFinished = true;
const auto ping_time = ping_end - pfrom.m_ping_start.load();
if (ping_time.count() >= 0) {
// Successful ping time measurement, replace previous
pfrom.nPingUsecTime = count_microseconds(ping_time);
pfrom.nMinPingUsecTime =
std::min(pfrom.nMinPingUsecTime.load(),
count_microseconds(ping_time));
} else {
// This should never happen
sProblem = "Timing mishap";
}
} else {
// Nonce mismatches are normal when pings are overlapping
sProblem = "Nonce mismatch";
if (nonce == 0) {
// This is most likely a bug in another implementation
// somewhere; cancel this ping
bPingFinished = true;
sProblem = "Nonce zero";
}
}
} else {
sProblem = "Unsolicited pong without ping";
}
} else {
// This is most likely a bug in another implementation somewhere;
// cancel this ping
bPingFinished = true;
sProblem = "Short payload";
}
if (!(sProblem.empty())) {
LogPrint(BCLog::NET,
"pong peer=%d: %s, %x expected, %x received, %u bytes\n",
pfrom.GetId(), sProblem, pfrom.nPingNonceSent, nonce,
nAvail);
}
if (bPingFinished) {
pfrom.nPingNonceSent = 0;
}
return;
}
if (msg_type == NetMsgType::FILTERLOAD) {
if (!(pfrom.GetLocalServices() & NODE_BLOOM)) {
pfrom.fDisconnect = true;
return;
}
CBloomFilter filter;
vRecv >> filter;
if (!filter.IsWithinSizeConstraints()) {
// There is no excuse for sending a too-large filter
Misbehaving(pfrom, 100, "too-large bloom filter");
} else if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_filter);
pfrom.m_tx_relay->pfilter.reset(new CBloomFilter(filter));
pfrom.m_tx_relay->fRelayTxes = true;
}
return;
}
if (msg_type == NetMsgType::FILTERADD) {
if (!(pfrom.GetLocalServices() & NODE_BLOOM)) {
pfrom.fDisconnect = true;
return;
}
std::vector<uint8_t> vData;
vRecv >> vData;
// Nodes must NEVER send a data item > 520 bytes (the max size for a
// script data object, and thus, the maximum size any matched object can
// have) in a filteradd message.
bool bad = false;
if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) {
bad = true;
} else if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_filter);
if (pfrom.m_tx_relay->pfilter) {
pfrom.m_tx_relay->pfilter->insert(vData);
} else {
bad = true;
}
}
if (bad) {
// The structure of this code doesn't really allow for a good error
// code. We'll go generic.
Misbehaving(pfrom, 100, "bad filteradd message");
}
return;
}
if (msg_type == NetMsgType::FILTERCLEAR) {
if (!(pfrom.GetLocalServices() & NODE_BLOOM)) {
pfrom.fDisconnect = true;
return;
}
if (pfrom.m_tx_relay == nullptr) {
return;
}
LOCK(pfrom.m_tx_relay->cs_filter);
pfrom.m_tx_relay->pfilter = nullptr;
pfrom.m_tx_relay->fRelayTxes = true;
return;
}
if (msg_type == NetMsgType::FEEFILTER) {
Amount newFeeFilter = Amount::zero();
vRecv >> newFeeFilter;
if (MoneyRange(newFeeFilter)) {
if (pfrom.m_tx_relay != nullptr) {
LOCK(pfrom.m_tx_relay->cs_feeFilter);
pfrom.m_tx_relay->minFeeFilter = newFeeFilter;
}
LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n",
CFeeRate(newFeeFilter).ToString(), pfrom.GetId());
}
return;
}
if (msg_type == NetMsgType::GETCFILTERS) {
ProcessGetCFilters(pfrom, vRecv, m_chainparams, m_connman);
return;
}
if (msg_type == NetMsgType::GETCFHEADERS) {
ProcessGetCFHeaders(pfrom, vRecv, m_chainparams, m_connman);
return;
}
if (msg_type == NetMsgType::GETCFCHECKPT) {
ProcessGetCFCheckPt(pfrom, vRecv, m_chainparams, m_connman);
return;
}
if (msg_type == NetMsgType::NOTFOUND) {
std::vector<CInv> vInv;
vRecv >> vInv;
// A peer might send up to 1 notfound per getdata request, but no more
if (vInv.size() <= PROOF_REQUEST_PARAMS.max_peer_announcements +
TX_REQUEST_PARAMS.max_peer_announcements +
MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
for (CInv &inv : vInv) {
if (inv.IsMsgTx()) {
// If we receive a NOTFOUND message for a tx we requested,
// mark the announcement for it as completed in
// InvRequestTracker.
LOCK(::cs_main);
m_txrequest.ReceivedResponse(pfrom.GetId(), TxId(inv.hash));
continue;
}
if (inv.IsMsgProof()) {
LOCK(cs_proofrequest);
m_proofrequest.ReceivedResponse(
pfrom.GetId(), avalanche::ProofId(inv.hash));
}
}
}
return;
}
// Ignore unknown commands for extensibility
LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n",
SanitizeString(msg_type), pfrom.GetId());
return;
}
bool PeerManager::MaybeDiscourageAndDisconnect(CNode &pnode) {
const NodeId peer_id{pnode.GetId()};
PeerRef peer = GetPeerRef(peer_id);
if (peer == nullptr) {
return false;
}
{
LOCK(peer->m_misbehavior_mutex);
// There's nothing to do if the m_should_discourage flag isn't set
if (!peer->m_should_discourage) {
return false;
}
peer->m_should_discourage = false;
} // peer.m_misbehavior_mutex
if (pnode.HasPermission(PF_NOBAN)) {
// We never disconnect or discourage peers for bad behavior if they have
// the NOBAN permission flag
LogPrintf("Warning: not punishing noban peer %d!\n", peer_id);
return false;
}
if (pnode.IsManualConn()) {
// We never disconnect or discourage manual peers for bad behavior
LogPrintf("Warning: not punishing manually connected peer %d!\n",
peer_id);
return false;
}
if (pnode.addr.IsLocal()) {
// We disconnect local peers for bad behavior but don't discourage
// (since that would discourage all peers on the same local address)
LogPrintf(
"Warning: disconnecting but not discouraging local peer %d!\n",
peer_id);
pnode.fDisconnect = true;
return true;
}
// Normal case: Disconnect the peer and discourage all nodes sharing the
// address
LogPrintf("Disconnecting and discouraging peer %d!\n", peer_id);
if (m_banman) {
m_banman->Discourage(pnode.addr);
}
m_connman.DisconnectNode(pnode.addr);
return true;
}
bool PeerManager::ProcessMessages(const Config &config, CNode *pfrom,
std::atomic<bool> &interruptMsgProc) {
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
bool fMoreWork = false;
if (!pfrom->vRecvGetData.empty()) {
ProcessGetData(config, *pfrom, m_connman, m_mempool, interruptMsgProc);
}
if (!pfrom->orphan_work_set.empty()) {
LOCK2(cs_main, g_cs_orphans);
ProcessOrphanTx(config, pfrom->orphan_work_set);
}
if (pfrom->fDisconnect) {
return false;
}
// this maintains the order of responses and prevents vRecvGetData from
// growing unbounded
if (!pfrom->vRecvGetData.empty()) {
return true;
}
if (!pfrom->orphan_work_set.empty()) {
return true;
}
// Don't bother if send buffer is too full to respond anyway
if (pfrom->fPauseSend) {
return false;
}
std::list<CNetMessage> msgs;
{
LOCK(pfrom->cs_vProcessMsg);
if (pfrom->vProcessMsg.empty()) {
return false;
}
// Just take one message
msgs.splice(msgs.begin(), pfrom->vProcessMsg,
pfrom->vProcessMsg.begin());
pfrom->nProcessQueueSize -= msgs.front().m_raw_message_size;
pfrom->fPauseRecv =
pfrom->nProcessQueueSize > m_connman.GetReceiveFloodSize();
fMoreWork = !pfrom->vProcessMsg.empty();
}
CNetMessage &msg(msgs.front());
msg.SetVersion(pfrom->GetCommonVersion());
// Check network magic
if (!msg.m_valid_netmagic) {
LogPrint(BCLog::NET,
"PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n",
SanitizeString(msg.m_command), pfrom->GetId());
// Make sure we discourage where that come from for some time.
if (m_banman) {
m_banman->Discourage(pfrom->addr);
}
m_connman.DisconnectNode(pfrom->addr);
pfrom->fDisconnect = true;
return false;
}
// Check header
if (!msg.m_valid_header) {
LogPrint(BCLog::NET, "PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n",
SanitizeString(msg.m_command), pfrom->GetId());
return fMoreWork;
}
const std::string &msg_type = msg.m_command;
// Message size
unsigned int nMessageSize = msg.m_message_size;
// Checksum
CDataStream &vRecv = msg.m_recv;
if (!msg.m_valid_checksum) {
LogPrint(BCLog::NET, "%s(%s, %u bytes): CHECKSUM ERROR peer=%d\n",
__func__, SanitizeString(msg_type), nMessageSize,
pfrom->GetId());
if (m_banman) {
m_banman->Discourage(pfrom->addr);
}
m_connman.DisconnectNode(pfrom->addr);
return fMoreWork;
}
try {
ProcessMessage(config, *pfrom, msg_type, vRecv, msg.m_time,
interruptMsgProc);
if (interruptMsgProc) {
return false;
}
if (!pfrom->vRecvGetData.empty()) {
fMoreWork = true;
}
} catch (const std::exception &e) {
LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n",
__func__, SanitizeString(msg_type), nMessageSize, e.what(),
typeid(e).name());
} catch (...) {
LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n",
__func__, SanitizeString(msg_type), nMessageSize);
}
return fMoreWork;
}
void PeerManager::ConsiderEviction(CNode &pto, int64_t time_in_seconds) {
AssertLockHeld(cs_main);
CNodeState &state = *State(pto.GetId());
const CNetMsgMaker msgMaker(pto.GetCommonVersion());
if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() &&
state.fSyncStarted) {
// This is an outbound peer subject to disconnection if they don't
// announce a block with as much work as the current tip within
// CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if their
// chain has more work than ours, we should sync to it, unless it's
// invalid, in which case we should find that out and disconnect from
// them elsewhere).
if (state.pindexBestKnownBlock != nullptr &&
state.pindexBestKnownBlock->nChainWork >=
::ChainActive().Tip()->nChainWork) {
if (state.m_chain_sync.m_timeout != 0) {
state.m_chain_sync.m_timeout = 0;
state.m_chain_sync.m_work_header = nullptr;
state.m_chain_sync.m_sent_getheaders = false;
}
} else if (state.m_chain_sync.m_timeout == 0 ||
(state.m_chain_sync.m_work_header != nullptr &&
state.pindexBestKnownBlock != nullptr &&
state.pindexBestKnownBlock->nChainWork >=
state.m_chain_sync.m_work_header->nChainWork)) {
// Our best block known by this peer is behind our tip, and we're
// either noticing that for the first time, OR this peer was able to
// catch up to some earlier point where we checked against our tip.
// Either way, set a new timeout based on current tip.
state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT;
state.m_chain_sync.m_work_header = ::ChainActive().Tip();
state.m_chain_sync.m_sent_getheaders = false;
} else if (state.m_chain_sync.m_timeout > 0 &&
time_in_seconds > state.m_chain_sync.m_timeout) {
// No evidence yet that our peer has synced to a chain with work
// equal to that of our tip, when we first detected it was behind.
// Send a single getheaders message to give the peer a chance to
// update us.
if (state.m_chain_sync.m_sent_getheaders) {
// They've run out of time to catch up!
LogPrintf(
"Disconnecting outbound peer %d for old chain, best known "
"block = %s\n",
pto.GetId(),
state.pindexBestKnownBlock != nullptr
? state.pindexBestKnownBlock->GetBlockHash().ToString()
: "<none>");
pto.fDisconnect = true;
} else {
assert(state.m_chain_sync.m_work_header);
LogPrint(
BCLog::NET,
"sending getheaders to outbound peer=%d to verify chain "
"work (current best known block:%s, benchmark blockhash: "
"%s)\n",
pto.GetId(),
state.pindexBestKnownBlock != nullptr
? state.pindexBestKnownBlock->GetBlockHash().ToString()
: "<none>",
state.m_chain_sync.m_work_header->GetBlockHash()
.ToString());
m_connman.PushMessage(
&pto,
msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(
state.m_chain_sync.m_work_header->pprev),
uint256()));
state.m_chain_sync.m_sent_getheaders = true;
// 2 minutes
constexpr int64_t HEADERS_RESPONSE_TIME = 120;
// Bump the timeout to allow a response, which could clear the
// timeout (if the response shows the peer has synced), reset
// the timeout (if the peer syncs to the required work but not
// to our tip), or result in disconnect (if we advance to the
// timeout and pindexBestKnownBlock has not sufficiently
// progressed)
state.m_chain_sync.m_timeout =
time_in_seconds + HEADERS_RESPONSE_TIME;
}
}
}
}
void PeerManager::EvictExtraOutboundPeers(int64_t time_in_seconds) {
// Check whether we have too many outbound peers
int extra_peers = m_connman.GetExtraOutboundCount();
if (extra_peers <= 0) {
return;
}
// If we have more outbound peers than we target, disconnect one.
// Pick the outbound peer that least recently announced us a new block, with
// ties broken by choosing the more recent connection (higher node id)
NodeId worst_peer = -1;
int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max();
m_connman.ForEachNode([&](CNode *pnode) {
AssertLockHeld(cs_main);
// Ignore non-outbound peers, or nodes marked for disconnect already
if (!pnode->IsOutboundOrBlockRelayConn() || pnode->fDisconnect) {
return;
}
CNodeState *state = State(pnode->GetId());
if (state == nullptr) {
// shouldn't be possible, but just in case
return;
}
// Don't evict our protected peers
if (state->m_chain_sync.m_protect) {
return;
}
// Don't evict our block-relay-only peers.
if (pnode->m_tx_relay == nullptr) {
return;
}
if (state->m_last_block_announcement < oldest_block_announcement ||
(state->m_last_block_announcement == oldest_block_announcement &&
pnode->GetId() > worst_peer)) {
worst_peer = pnode->GetId();
oldest_block_announcement = state->m_last_block_announcement;
}
});
if (worst_peer == -1) {
return;
}
bool disconnected = m_connman.ForNode(worst_peer, [&](CNode *pnode) {
AssertLockHeld(cs_main);
// Only disconnect a peer that has been connected to us for some
// reasonable fraction of our check-frequency, to give it time for new
// information to have arrived.
// Also don't disconnect any peer we're trying to download a block from.
CNodeState &state = *State(pnode->GetId());
if (time_in_seconds - pnode->nTimeConnected > MINIMUM_CONNECT_TIME &&
state.nBlocksInFlight == 0) {
LogPrint(BCLog::NET,
"disconnecting extra outbound peer=%d (last block "
"announcement received at time %d)\n",
pnode->GetId(), oldest_block_announcement);
pnode->fDisconnect = true;
return true;
} else {
LogPrint(BCLog::NET,
"keeping outbound peer=%d chosen for eviction "
"(connect time: %d, blocks_in_flight: %d)\n",
pnode->GetId(), pnode->nTimeConnected,
state.nBlocksInFlight);
return false;
}
});
if (disconnected) {
// If we disconnected an extra peer, that means we successfully
// connected to at least one peer after the last time we detected a
// stale tip. Don't try any more extra peers until we next detect a
// stale tip, to limit the load we put on the network from these extra
// connections.
m_connman.SetTryNewOutboundPeer(false);
}
}
void PeerManager::CheckForStaleTipAndEvictPeers(
const Consensus::Params &consensusParams) {
LOCK(cs_main);
int64_t time_in_seconds = GetTime();
EvictExtraOutboundPeers(time_in_seconds);
if (time_in_seconds <= m_stale_tip_check_time) {
return;
}
// Check whether our tip is stale, and if so, allow using an extra outbound
// peer.
if (!fImporting && !fReindex && m_connman.GetNetworkActive() &&
m_connman.GetUseAddrmanOutgoing() && TipMayBeStale(consensusParams)) {
LogPrintf("Potential stale tip detected, will try using extra outbound "
"peer (last tip update: %d seconds ago)\n",
time_in_seconds - g_last_tip_update);
m_connman.SetTryNewOutboundPeer(true);
} else if (m_connman.GetTryNewOutboundPeer()) {
m_connman.SetTryNewOutboundPeer(false);
}
m_stale_tip_check_time = time_in_seconds + STALE_CHECK_INTERVAL;
}
namespace {
class CompareInvMempoolOrder {
CTxMemPool *mp;
public:
explicit CompareInvMempoolOrder(CTxMemPool *_mempool) { mp = _mempool; }
bool operator()(std::set<TxId>::iterator a, std::set<TxId>::iterator b) {
/**
* As std::make_heap produces a max-heap, we want the entries with the
* fewest ancestors/highest fee to sort later.
*/
return mp->CompareDepthAndScore(*b, *a);
}
};
} // namespace
bool PeerManager::SendMessages(const Config &config, CNode *pto,
std::atomic<bool> &interruptMsgProc) {
const Consensus::Params &consensusParams =
config.GetChainParams().GetConsensus();
// We must call MaybeDiscourageAndDisconnect first, to ensure that we'll
// disconnect misbehaving peers even before the version handshake is
// complete.
if (MaybeDiscourageAndDisconnect(*pto)) {
return true;
}
// Don't send anything until the version handshake is complete
if (!pto->fSuccessfullyConnected || pto->fDisconnect) {
return true;
}
// If we get here, the outgoing message serialization version is set and
// can't change.
const CNetMsgMaker msgMaker(pto->GetCommonVersion());
//
// Message: ping
//
bool pingSend = false;
if (pto->fPingQueued) {
// RPC ping request by user
pingSend = true;
}
if (pto->nPingNonceSent == 0 && pto->m_ping_start.load() + PING_INTERVAL <
GetTime<std::chrono::microseconds>()) {
// Ping automatically sent as a latency probe & keepalive.
pingSend = true;
}
if (pingSend) {
uint64_t nonce = 0;
while (nonce == 0) {
GetRandBytes((uint8_t *)&nonce, sizeof(nonce));
}
pto->fPingQueued = false;
pto->m_ping_start = GetTime<std::chrono::microseconds>();
if (pto->GetCommonVersion() > BIP0031_VERSION) {
pto->nPingNonceSent = nonce;
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::PING, nonce));
} else {
// Peer is too old to support ping command with nonce, pong will
// never arrive.
pto->nPingNonceSent = 0;
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::PING));
}
}
auto current_time = GetTime<std::chrono::microseconds>();
bool fFetch;
{
LOCK(cs_main);
CNodeState &state = *State(pto->GetId());
// Address refresh broadcast
if (pto->IsAddrRelayPeer() &&
!::ChainstateActive().IsInitialBlockDownload() &&
pto->m_next_local_addr_send < current_time) {
AdvertiseLocal(pto);
pto->m_next_local_addr_send = PoissonNextSend(
current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL);
}
//
// Message: addr
//
if (pto->IsAddrRelayPeer() && pto->m_next_addr_send < current_time) {
pto->m_next_addr_send =
PoissonNextSend(current_time, AVG_ADDRESS_BROADCAST_INTERVAL);
std::vector<CAddress> vAddr;
vAddr.reserve(pto->vAddrToSend.size());
assert(pto->m_addr_known);
const char *msg_type;
int make_flags;
if (pto->m_wants_addrv2) {
msg_type = NetMsgType::ADDRV2;
make_flags = ADDRV2_FORMAT;
} else {
msg_type = NetMsgType::ADDR;
make_flags = 0;
}
for (const CAddress &addr : pto->vAddrToSend) {
if (!pto->m_addr_known->contains(addr.GetKey())) {
pto->m_addr_known->insert(addr.GetKey());
vAddr.push_back(addr);
// receiver rejects addr messages larger than 1000
if (vAddr.size() >= 1000) {
m_connman.PushMessage(
pto, msgMaker.Make(make_flags, msg_type, vAddr));
vAddr.clear();
}
}
}
pto->vAddrToSend.clear();
if (!vAddr.empty()) {
m_connman.PushMessage(
pto, msgMaker.Make(make_flags, msg_type, vAddr));
}
// we only send the big addr message once
if (pto->vAddrToSend.capacity() > 40) {
pto->vAddrToSend.shrink_to_fit();
}
}
// Start block sync
if (pindexBestHeader == nullptr) {
pindexBestHeader = ::ChainActive().Tip();
}
// Download if this is a nice peer, or we have no nice peers and this
// one might do.
fFetch = state.fPreferredDownload ||
(nPreferredDownload == 0 && !pto->fClient &&
!pto->IsAddrFetchConn());
if (!state.fSyncStarted && !pto->fClient && !fImporting && !fReindex) {
// Only actively request headers from a single peer, unless we're
// close to today.
if ((nSyncStarted == 0 && fFetch) ||
pindexBestHeader->GetBlockTime() >
GetAdjustedTime() - 24 * 60 * 60) {
state.fSyncStarted = true;
state.nHeadersSyncTimeout =
count_microseconds(current_time) +
HEADERS_DOWNLOAD_TIMEOUT_BASE +
HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER *
(GetAdjustedTime() - pindexBestHeader->GetBlockTime()) /
(consensusParams.nPowTargetSpacing);
nSyncStarted++;
const CBlockIndex *pindexStart = pindexBestHeader;
/**
* If possible, start at the block preceding the currently best
* known header. This ensures that we always get a non-empty
* list of headers back as long as the peer is up-to-date. With
* a non-empty response, we can initialise the peer's known best
* block. This wouldn't be possible if we requested starting at
* pindexBestHeader and got back an empty response.
*/
if (pindexStart->pprev) {
pindexStart = pindexStart->pprev;
}
LogPrint(
BCLog::NET,
"initial getheaders (%d) to peer=%d (startheight:%d)\n",
pindexStart->nHeight, pto->GetId(), pto->nStartingHeight);
m_connman.PushMessage(
pto, msgMaker.Make(NetMsgType::GETHEADERS,
::ChainActive().GetLocator(pindexStart),
uint256()));
}
}
//
// Try sending block announcements via headers
//
{
// If we have less than MAX_BLOCKS_TO_ANNOUNCE in our list of block
// hashes we're relaying, and our peer wants headers announcements,
// then find the first header not yet known to our peer but would
// connect, and send. If no header would connect, or if we have too
// many blocks, or if the peer doesn't want headers, just add all to
// the inv queue.
LOCK(pto->cs_inventory);
std::vector<CBlock> vHeaders;
bool fRevertToInv =
((!state.fPreferHeaders &&
(!state.fPreferHeaderAndIDs ||
pto->vBlockHashesToAnnounce.size() > 1)) ||
pto->vBlockHashesToAnnounce.size() > MAX_BLOCKS_TO_ANNOUNCE);
// last header queued for delivery
const CBlockIndex *pBestIndex = nullptr;
// ensure pindexBestKnownBlock is up-to-date
ProcessBlockAvailability(pto->GetId());
if (!fRevertToInv) {
bool fFoundStartingHeader = false;
// Try to find first header that our peer doesn't have, and then
// send all headers past that one. If we come across an headers
// that aren't on ::ChainActive(), give up.
for (const BlockHash &hash : pto->vBlockHashesToAnnounce) {
const CBlockIndex *pindex = LookupBlockIndex(hash);
assert(pindex);
if (::ChainActive()[pindex->nHeight] != pindex) {
// Bail out if we reorged away from this block
fRevertToInv = true;
break;
}
if (pBestIndex != nullptr && pindex->pprev != pBestIndex) {
// This means that the list of blocks to announce don't
// connect to each other. This shouldn't really be
// possible to hit during regular operation (because
// reorgs should take us to a chain that has some block
// not on the prior chain, which should be caught by the
// prior check), but one way this could happen is by
// using invalidateblock / reconsiderblock repeatedly on
// the tip, causing it to be added multiple times to
// vBlockHashesToAnnounce. Robustly deal with this rare
// situation by reverting to an inv.
fRevertToInv = true;
break;
}
pBestIndex = pindex;
if (fFoundStartingHeader) {
// add this to the headers message
vHeaders.push_back(pindex->GetBlockHeader());
} else if (PeerHasHeader(&state, pindex)) {
// Keep looking for the first new block.
continue;
} else if (pindex->pprev == nullptr ||
PeerHasHeader(&state, pindex->pprev)) {
// Peer doesn't have this header but they do have the
// prior one. Start sending headers.
fFoundStartingHeader = true;
vHeaders.push_back(pindex->GetBlockHeader());
} else {
// Peer doesn't have this header or the prior one --
// nothing will connect, so bail out.
fRevertToInv = true;
break;
}
}
}
if (!fRevertToInv && !vHeaders.empty()) {
if (vHeaders.size() == 1 && state.fPreferHeaderAndIDs) {
// We only send up to 1 block as header-and-ids, as
// otherwise probably means we're doing an initial-ish-sync
// or they're slow.
LogPrint(BCLog::NET,
"%s sending header-and-ids %s to peer=%d\n",
__func__, vHeaders.front().GetHash().ToString(),
pto->GetId());
int nSendFlags = 0;
bool fGotBlockFromCache = false;
{
LOCK(cs_most_recent_block);
if (most_recent_block_hash ==
pBestIndex->GetBlockHash()) {
CBlockHeaderAndShortTxIDs cmpctblock(
*most_recent_block);
m_connman.PushMessage(
pto, msgMaker.Make(nSendFlags,
NetMsgType::CMPCTBLOCK,
cmpctblock));
fGotBlockFromCache = true;
}
}
if (!fGotBlockFromCache) {
CBlock block;
bool ret = ReadBlockFromDisk(block, pBestIndex,
consensusParams);
assert(ret);
CBlockHeaderAndShortTxIDs cmpctblock(block);
m_connman.PushMessage(
pto,
msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK,
cmpctblock));
}
state.pindexBestHeaderSent = pBestIndex;
} else if (state.fPreferHeaders) {
if (vHeaders.size() > 1) {
LogPrint(BCLog::NET,
"%s: %u headers, range (%s, %s), to peer=%d\n",
__func__, vHeaders.size(),
vHeaders.front().GetHash().ToString(),
vHeaders.back().GetHash().ToString(),
pto->GetId());
} else {
LogPrint(BCLog::NET,
"%s: sending header %s to peer=%d\n", __func__,
vHeaders.front().GetHash().ToString(),
pto->GetId());
}
m_connman.PushMessage(
pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders));
state.pindexBestHeaderSent = pBestIndex;
} else {
fRevertToInv = true;
}
}
if (fRevertToInv) {
// If falling back to using an inv, just try to inv the tip. The
// last entry in vBlockHashesToAnnounce was our tip at some
// point in the past.
if (!pto->vBlockHashesToAnnounce.empty()) {
const BlockHash &hashToAnnounce =
pto->vBlockHashesToAnnounce.back();
const CBlockIndex *pindex =
LookupBlockIndex(hashToAnnounce);
assert(pindex);
// Warn if we're announcing a block that is not on the main
// chain. This should be very rare and could be optimized
// out. Just log for now.
if (::ChainActive()[pindex->nHeight] != pindex) {
LogPrint(
BCLog::NET,
"Announcing block %s not on main chain (tip=%s)\n",
hashToAnnounce.ToString(),
::ChainActive().Tip()->GetBlockHash().ToString());
}
// If the peer's chain has this block, don't inv it back.
if (!PeerHasHeader(&state, pindex)) {
pto->vInventoryBlockToSend.push_back(hashToAnnounce);
LogPrint(BCLog::NET,
"%s: sending inv peer=%d hash=%s\n", __func__,
pto->GetId(), hashToAnnounce.ToString());
}
}
}
pto->vBlockHashesToAnnounce.clear();
}
} // release cs_main
//
// Message: inventory
//
std::vector<CInv> vInv;
auto addInvAndMaybeFlush = [&](uint32_t type, const uint256 &hash) {
vInv.emplace_back(type, hash);
if (vInv.size() == MAX_INV_SZ) {
m_connman.PushMessage(
pto, msgMaker.Make(NetMsgType::INV, std::move(vInv)));
vInv.clear();
}
};
{
LOCK2(cs_main, pto->cs_inventory);
vInv.reserve(std::max<size_t>(pto->vInventoryBlockToSend.size(),
INVENTORY_BROADCAST_MAX_PER_MB *
config.GetMaxBlockSize() / 1000000));
// Add blocks
for (const BlockHash &hash : pto->vInventoryBlockToSend) {
addInvAndMaybeFlush(MSG_BLOCK, hash);
}
pto->vInventoryBlockToSend.clear();
auto computeNextInvSendTime =
[&](std::chrono::microseconds &next) -> bool {
bool fSendTrickle = pto->HasPermission(PF_NOBAN);
if (next < current_time) {
fSendTrickle = true;
if (pto->IsInboundConn()) {
next = std::chrono::microseconds{
m_connman.PoissonNextSendInbound(
count_microseconds(current_time),
INVENTORY_BROADCAST_INTERVAL)};
} else {
// Skip delay for outbound peers, as there is less privacy
// concern for them.
next = current_time;
}
}
return fSendTrickle;
};
// Add proofs to inventory
if (pto->m_proof_relay != nullptr) {
LOCK(pto->m_proof_relay->cs_proof_inventory);
if (computeNextInvSendTime(pto->m_proof_relay->nextInvSend)) {
auto it = pto->m_proof_relay->setInventoryProofToSend.begin();
while (it !=
pto->m_proof_relay->setInventoryProofToSend.end()) {
const avalanche::ProofId proofid = *it;
it = pto->m_proof_relay->setInventoryProofToSend.erase(it);
if (pto->m_proof_relay->filterProofKnown.contains(
proofid)) {
continue;
}
pto->m_proof_relay->filterProofKnown.insert(proofid);
addInvAndMaybeFlush(MSG_AVA_PROOF, proofid);
}
}
}
if (pto->m_tx_relay != nullptr) {
LOCK(pto->m_tx_relay->cs_tx_inventory);
// Check whether periodic sends should happen
const bool fSendTrickle =
computeNextInvSendTime(pto->m_tx_relay->nNextInvSend);
// Time to send but the peer has requested we not relay
// transactions.
if (fSendTrickle) {
LOCK(pto->m_tx_relay->cs_filter);
if (!pto->m_tx_relay->fRelayTxes) {
pto->m_tx_relay->setInventoryTxToSend.clear();
}
}
// Respond to BIP35 mempool requests
if (fSendTrickle && pto->m_tx_relay->fSendMempool) {
auto vtxinfo = m_mempool.infoAll();
pto->m_tx_relay->fSendMempool = false;
CFeeRate filterrate;
{
LOCK(pto->m_tx_relay->cs_feeFilter);
filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter);
}
LOCK(pto->m_tx_relay->cs_filter);
for (const auto &txinfo : vtxinfo) {
const TxId &txid = txinfo.tx->GetId();
pto->m_tx_relay->setInventoryTxToSend.erase(txid);
// Don't send transactions that peers will not put into
// their mempool
if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
continue;
}
if (pto->m_tx_relay->pfilter &&
!pto->m_tx_relay->pfilter->IsRelevantAndUpdate(
*txinfo.tx)) {
continue;
}
pto->m_tx_relay->filterInventoryKnown.insert(txid);
// Responses to MEMPOOL requests bypass the
// m_recently_announced_invs filter.
addInvAndMaybeFlush(MSG_TX, txid);
}
pto->m_tx_relay->m_last_mempool_req =
GetTime<std::chrono::seconds>();
}
// Determine transactions to relay
if (fSendTrickle) {
// Produce a vector with all candidates for sending
std::vector<std::set<TxId>::iterator> vInvTx;
vInvTx.reserve(pto->m_tx_relay->setInventoryTxToSend.size());
for (std::set<TxId>::iterator it =
pto->m_tx_relay->setInventoryTxToSend.begin();
it != pto->m_tx_relay->setInventoryTxToSend.end(); it++) {
vInvTx.push_back(it);
}
CFeeRate filterrate;
{
LOCK(pto->m_tx_relay->cs_feeFilter);
filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter);
}
// Topologically and fee-rate sort the inventory we send for
// privacy and priority reasons. A heap is used so that not
// all items need sorting if only a few are being sent.
CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool);
std::make_heap(vInvTx.begin(), vInvTx.end(),
compareInvMempoolOrder);
// No reason to drain out at many times the network's
// capacity, especially since we have many peers and some
// will draw much shorter delays.
unsigned int nRelayedTransactions = 0;
LOCK(pto->m_tx_relay->cs_filter);
while (!vInvTx.empty() &&
nRelayedTransactions < INVENTORY_BROADCAST_MAX_PER_MB *
config.GetMaxBlockSize() /
1000000) {
// Fetch the top element from the heap
std::pop_heap(vInvTx.begin(), vInvTx.end(),
compareInvMempoolOrder);
std::set<TxId>::iterator it = vInvTx.back();
vInvTx.pop_back();
const TxId txid = *it;
// Remove it from the to-be-sent set
pto->m_tx_relay->setInventoryTxToSend.erase(it);
// Check if not in the filter already
if (pto->m_tx_relay->filterInventoryKnown.contains(txid)) {
continue;
}
// Not in the mempool anymore? don't bother sending it.
auto txinfo = m_mempool.info(txid);
if (!txinfo.tx) {
continue;
}
// Peer told you to not send transactions at that
// feerate? Don't bother sending it.
if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) {
continue;
}
if (pto->m_tx_relay->pfilter &&
!pto->m_tx_relay->pfilter->IsRelevantAndUpdate(
*txinfo.tx)) {
continue;
}
// Send
State(pto->GetId())->m_recently_announced_invs.insert(txid);
addInvAndMaybeFlush(MSG_TX, txid);
nRelayedTransactions++;
{
// Expire old relay messages
while (!vRelayExpiration.empty() &&
vRelayExpiration.front().first <
count_microseconds(current_time)) {
mapRelay.erase(vRelayExpiration.front().second);
vRelayExpiration.pop_front();
}
auto ret = mapRelay.insert(
std::make_pair(txid, std::move(txinfo.tx)));
if (ret.second) {
vRelayExpiration.push_back(std::make_pair(
count_microseconds(current_time) +
std::chrono::microseconds{
RELAY_TX_CACHE_TIME}
.count(),
ret.first));
}
}
pto->m_tx_relay->filterInventoryKnown.insert(txid);
}
}
}
} // release cs_main, pto->cs_inventory
if (!vInv.empty()) {
m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv));
}
{
LOCK(cs_main);
CNodeState &state = *State(pto->GetId());
// Detect whether we're stalling
current_time = GetTime<std::chrono::microseconds>();
if (state.nStallingSince &&
state.nStallingSince < count_microseconds(current_time) -
1000000 * BLOCK_STALLING_TIMEOUT) {
// Stalling only triggers when the block download window cannot
// move. During normal steady state, the download window should be
// much larger than the to-be-downloaded set of blocks, so
// disconnection should only happen during initial block download.
LogPrintf("Peer=%d is stalling block download, disconnecting\n",
pto->GetId());
pto->fDisconnect = true;
return true;
}
// In case there is a block that has been in flight from this peer for 2
// + 0.5 * N times the block interval (with N the number of peers from
// which we're downloading validated blocks), disconnect due to timeout.
// We compensate for other peers to prevent killing off peers due to our
// own downstream link being saturated. We only count validated
// in-flight blocks so peers can't advertise non-existing block hashes
// to unreasonably increase our timeout.
if (state.vBlocksInFlight.size() > 0) {
QueuedBlock &queuedBlock = state.vBlocksInFlight.front();
int nOtherPeersWithValidatedDownloads =
nPeersWithValidatedDownloads -
(state.nBlocksInFlightValidHeaders > 0);
if (count_microseconds(current_time) >
state.nDownloadingSince +
consensusParams.nPowTargetSpacing *
(BLOCK_DOWNLOAD_TIMEOUT_BASE +
BLOCK_DOWNLOAD_TIMEOUT_PER_PEER *
nOtherPeersWithValidatedDownloads)) {
LogPrintf("Timeout downloading block %s from peer=%d, "
"disconnecting\n",
queuedBlock.hash.ToString(), pto->GetId());
pto->fDisconnect = true;
return true;
}
}
// Check for headers sync timeouts
if (state.fSyncStarted &&
state.nHeadersSyncTimeout < std::numeric_limits<int64_t>::max()) {
// Detect whether this is a stalling initial-headers-sync peer
if (pindexBestHeader->GetBlockTime() <=
GetAdjustedTime() - 24 * 60 * 60) {
if (count_microseconds(current_time) >
state.nHeadersSyncTimeout &&
nSyncStarted == 1 &&
(nPreferredDownload - state.fPreferredDownload >= 1)) {
// Disconnect a (non-whitelisted) peer if it is our only
// sync peer, and we have others we could be using instead.
// Note: If all our peers are inbound, then we won't
// disconnect our sync peer for stalling; we have bigger
// problems if we can't get any outbound peers.
if (!pto->HasPermission(PF_NOBAN)) {
LogPrintf("Timeout downloading headers from peer=%d, "
"disconnecting\n",
pto->GetId());
pto->fDisconnect = true;
return true;
} else {
LogPrintf(
"Timeout downloading headers from whitelisted "
"peer=%d, not disconnecting\n",
pto->GetId());
// Reset the headers sync state so that we have a chance
// to try downloading from a different peer. Note: this
// will also result in at least one more getheaders
// message to be sent to this peer (eventually).
state.fSyncStarted = false;
nSyncStarted--;
state.nHeadersSyncTimeout = 0;
}
}
} else {
// After we've caught up once, reset the timeout so we can't
// trigger disconnect later.
state.nHeadersSyncTimeout = std::numeric_limits<int64_t>::max();
}
}
// Check that outbound peers have reasonable chains GetTime() is used by
// this anti-DoS logic so we can test this using mocktime.
ConsiderEviction(*pto, GetTime());
} // release cs_main
std::vector<CInv> vGetData;
//
// Message: getdata (blocks)
//
{
LOCK(cs_main);
CNodeState &state = *State(pto->GetId());
if (!pto->fClient &&
((fFetch && !pto->m_limited_node) ||
!::ChainstateActive().IsInitialBlockDownload()) &&
state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) {
std::vector<const CBlockIndex *> vToDownload;
NodeId staller = -1;
FindNextBlocksToDownload(pto->GetId(),
MAX_BLOCKS_IN_TRANSIT_PER_PEER -
state.nBlocksInFlight,
vToDownload, staller, consensusParams);
for (const CBlockIndex *pindex : vToDownload) {
vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash()));
MarkBlockAsInFlight(config, m_mempool, pto->GetId(),
pindex->GetBlockHash(), consensusParams,
pindex);
LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n",
pindex->GetBlockHash().ToString(), pindex->nHeight,
pto->GetId());
}
if (state.nBlocksInFlight == 0 && staller != -1) {
if (State(staller)->nStallingSince == 0) {
State(staller)->nStallingSince =
count_microseconds(current_time);
LogPrint(BCLog::NET, "Stall started peer=%d\n", staller);
}
}
}
} // release cs_main
auto addGetDataAndMaybeFlush = [&](uint32_t type, const uint256 &hash) {
CInv inv(type, hash);
LogPrint(BCLog::NET, "Requesting %s from peer=%d\n", inv.ToString(),
pto->GetId());
vGetData.push_back(std::move(inv));
if (vGetData.size() >= MAX_GETDATA_SZ) {
m_connman.PushMessage(
pto, msgMaker.Make(NetMsgType::GETDATA, std::move(vGetData)));
vGetData.clear();
}
};
//
// Message: getdata (proof)
//
{
LOCK(cs_proofrequest);
std::vector<std::pair<NodeId, avalanche::ProofId>> expired;
auto requestable =
m_proofrequest.GetRequestable(pto->GetId(), current_time, &expired);
for (const auto &entry : expired) {
LogPrint(BCLog::NET, "timeout of inflight proof %s from peer=%d\n",
entry.second.ToString(), entry.first);
}
for (const auto &proofid : requestable) {
if (!AlreadyHaveProof(proofid)) {
addGetDataAndMaybeFlush(MSG_AVA_PROOF, proofid);
m_proofrequest.RequestedData(
pto->GetId(), proofid,
current_time + PROOF_REQUEST_PARAMS.getdata_interval);
} else {
// We have already seen this proof, no need to download.
// This is just a belt-and-suspenders, as this should
// already be called whenever a transaction becomes
// AlreadyHaveProof().
m_proofrequest.ForgetInvId(proofid);
}
}
} // release cs_proofrequest
//
// Message: getdata (transactions)
//
{
LOCK(cs_main);
std::vector<std::pair<NodeId, TxId>> expired;
auto requestable =
m_txrequest.GetRequestable(pto->GetId(), current_time, &expired);
for (const auto &entry : expired) {
LogPrint(BCLog::NET, "timeout of inflight tx %s from peer=%d\n",
entry.second.ToString(), entry.first);
}
for (const TxId &txid : requestable) {
if (!AlreadyHaveTx(txid, m_mempool)) {
addGetDataAndMaybeFlush(MSG_TX, txid);
m_txrequest.RequestedData(
pto->GetId(), txid,
current_time + TX_REQUEST_PARAMS.getdata_interval);
} else {
// We have already seen this transaction, no need to download.
// This is just a belt-and-suspenders, as this should already be
// called whenever a transaction becomes AlreadyHaveTx().
m_txrequest.ForgetInvId(txid);
}
}
if (!vGetData.empty()) {
m_connman.PushMessage(pto,
msgMaker.Make(NetMsgType::GETDATA, vGetData));
}
//
// Message: feefilter
//
// peers with the forcerelay permission should not filter txs to us
if (pto->m_tx_relay != nullptr &&
pto->GetCommonVersion() >= FEEFILTER_VERSION &&
gArgs.GetBoolArg("-feefilter", DEFAULT_FEEFILTER) &&
!pto->HasPermission(PF_FORCERELAY)) {
Amount currentFilter =
m_mempool
.GetMinFee(
gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) *
1000000)
.GetFeePerK();
static FeeFilterRounder g_filter_rounder{
CFeeRate{DEFAULT_MIN_RELAY_TX_FEE_PER_KB}};
if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) {
// Received tx-inv messages are discarded when the active
// chainstate is in IBD, so tell the peer to not send them.
currentFilter = MAX_MONEY;
} else {
static const Amount MAX_FILTER{
g_filter_rounder.round(MAX_MONEY)};
if (pto->m_tx_relay->lastSentFeeFilter == MAX_FILTER) {
// Send the current filter if we sent MAX_FILTER previously
// and made it out of IBD.
pto->m_tx_relay->nextSendTimeFeeFilter =
count_microseconds(current_time) - 1;
}
}
if (count_microseconds(current_time) >
pto->m_tx_relay->nextSendTimeFeeFilter) {
Amount filterToSend = g_filter_rounder.round(currentFilter);
filterToSend =
std::max(filterToSend, ::minRelayTxFee.GetFeePerK());
if (filterToSend != pto->m_tx_relay->lastSentFeeFilter) {
m_connman.PushMessage(
pto,
msgMaker.Make(NetMsgType::FEEFILTER, filterToSend));
pto->m_tx_relay->lastSentFeeFilter = filterToSend;
}
pto->m_tx_relay->nextSendTimeFeeFilter =
PoissonNextSend(count_microseconds(current_time),
AVG_FEEFILTER_BROADCAST_INTERVAL);
}
// If the fee filter has changed substantially and it's still more
// than MAX_FEEFILTER_CHANGE_DELAY until scheduled broadcast, then
// move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY.
else if (count_microseconds(current_time) +
MAX_FEEFILTER_CHANGE_DELAY * 1000000 <
pto->m_tx_relay->nextSendTimeFeeFilter &&
(currentFilter <
3 * pto->m_tx_relay->lastSentFeeFilter / 4 ||
currentFilter >
4 * pto->m_tx_relay->lastSentFeeFilter / 3)) {
pto->m_tx_relay->nextSendTimeFeeFilter =
count_microseconds(current_time) +
GetRandInt(MAX_FEEFILTER_CHANGE_DELAY) * 1000000;
}
}
} // release cs_main
return true;
}
class CNetProcessingCleanup {
public:
CNetProcessingCleanup() {}
~CNetProcessingCleanup() {
// orphan transactions
mapOrphanTransactions.clear();
mapOrphanTransactionsByPrev.clear();
}
};
static CNetProcessingCleanup instance_of_cnetprocessingcleanup;

File Metadata

Mime Type
text/x-diff
Expires
Wed, Jan 29, 16:56 (10 h, 46 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5053344
Default Alt Text
(331 KB)

Event Timeline