Page MenuHomePhabricator

No OneTemporary

diff --git a/src/.clang-tidy b/src/.clang-tidy
index d81f73844..d1aee9f94 100644
--- a/src/.clang-tidy
+++ b/src/.clang-tidy
@@ -1,12 +1,13 @@
Checks: '
-*,
boost-use-to-string,
readability-braces-around-statements,
+readability-redundant-declaration,
bugprone-argument-comment,
performance-move-const-arg,
performance-no-automatic-move,
'
FormatStyle: file
CheckOptions:
- key: performance-move-const-arg.CheckTriviallyCopyableMove
value: false
diff --git a/src/netaddress.cpp b/src/netaddress.cpp
index f11d0dc44..7c262a29c 100644
--- a/src/netaddress.cpp
+++ b/src/netaddress.cpp
@@ -1,1255 +1,1252 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <netaddress.h>
#include <crypto/common.h>
#include <crypto/sha3.h>
#include <hash.h>
#include <prevector.h>
#include <util/asmap.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <tinyformat.h>
#include <algorithm>
#include <array>
#include <cstdint>
#include <ios>
#include <iterator>
#include <tuple>
-constexpr size_t CNetAddr::V1_SERIALIZATION_SIZE;
-constexpr size_t CNetAddr::MAX_ADDRV2_SIZE;
-
CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const {
switch (m_net) {
case NET_IPV4:
return BIP155Network::IPV4;
case NET_IPV6:
return BIP155Network::IPV6;
case NET_ONION:
switch (m_addr.size()) {
case ADDR_TORV2_SIZE:
return BIP155Network::TORV2;
case ADDR_TORV3_SIZE:
return BIP155Network::TORV3;
default:
assert(false);
}
case NET_I2P:
return BIP155Network::I2P;
case NET_CJDNS:
return BIP155Network::CJDNS;
case NET_INTERNAL:
// should have been handled before calling this function
case NET_UNROUTABLE:
// m_net is never and should not be set to NET_UNROUTABLE
case NET_MAX:
// m_net is never and should not be set to NET_MAX
assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net,
size_t address_size) {
switch (possible_bip155_net) {
case BIP155Network::IPV4:
if (address_size == ADDR_IPV4_SIZE) {
m_net = NET_IPV4;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 IPv4 address with length %u (should be %u)",
address_size, ADDR_IPV4_SIZE));
case BIP155Network::IPV6:
if (address_size == ADDR_IPV6_SIZE) {
m_net = NET_IPV6;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 IPv6 address with length %u (should be %u)",
address_size, ADDR_IPV6_SIZE));
case BIP155Network::TORV2:
if (address_size == ADDR_TORV2_SIZE) {
m_net = NET_ONION;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 TORv2 address with length %u (should be %u)",
address_size, ADDR_TORV2_SIZE));
case BIP155Network::TORV3:
if (address_size == ADDR_TORV3_SIZE) {
m_net = NET_ONION;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 TORv3 address with length %u (should be %u)",
address_size, ADDR_TORV3_SIZE));
case BIP155Network::I2P:
if (address_size == ADDR_I2P_SIZE) {
m_net = NET_I2P;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 I2P address with length %u (should be %u)",
address_size, ADDR_I2P_SIZE));
case BIP155Network::CJDNS:
if (address_size == ADDR_CJDNS_SIZE) {
m_net = NET_CJDNS;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 CJDNS address with length %u (should be %u)",
address_size, ADDR_CJDNS_SIZE));
}
// Don't throw on addresses with unknown network ids (maybe from the
// future). Instead silently drop them and have the unserialization code
// consume subsequent ones which may be known to us.
return false;
}
/**
* Construct an unspecified IPv6 network address (::/128).
*
* @note This address is considered invalid by CNetAddr::IsValid()
*/
CNetAddr::CNetAddr() {}
void CNetAddr::SetIP(const CNetAddr &ipIn) {
// Size check.
switch (ipIn.m_net) {
case NET_IPV4:
assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
break;
case NET_IPV6:
assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
break;
case NET_ONION:
assert(ipIn.m_addr.size() == ADDR_TORV2_SIZE ||
ipIn.m_addr.size() == ADDR_TORV3_SIZE);
break;
case NET_I2P:
assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
break;
case NET_CJDNS:
assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
break;
case NET_INTERNAL:
assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE);
break;
case NET_UNROUTABLE:
case NET_MAX:
assert(false);
} // no default case, so the compiler can warn about missing cases
m_net = ipIn.m_net;
m_addr = ipIn.m_addr;
}
void CNetAddr::SetLegacyIPv6(Span<const uint8_t> ipv6) {
assert(ipv6.size() == ADDR_IPV6_SIZE);
size_t skip{0};
if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
// IPv4-in-IPv6
m_net = NET_IPV4;
skip = sizeof(IPV4_IN_IPV6_PREFIX);
} else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
// TORv2-in-IPv6
m_net = NET_ONION;
skip = sizeof(TORV2_IN_IPV6_PREFIX);
} else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
// Internal-in-IPv6
m_net = NET_INTERNAL;
skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
} else {
// IPv6
m_net = NET_IPV6;
}
m_addr.assign(ipv6.begin() + skip, ipv6.end());
}
/**
* Create an "internal" address that represents a name or FQDN. AddrMan uses
* these fake addresses to keep track of which DNS seeds were used.
* @returns Whether or not the operation was successful.
* @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(),
* CNetAddr::IsRFC4193()
*/
bool CNetAddr::SetInternal(const std::string &name) {
if (name.empty()) {
return false;
}
m_net = NET_INTERNAL;
uint8_t hash[32] = {};
CSHA256().Write((const uint8_t *)name.data(), name.size()).Finalize(hash);
m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
return true;
}
namespace torv3 {
// https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt#n2135
static constexpr size_t CHECKSUM_LEN = 2;
static const uint8_t VERSION[] = {3};
static constexpr size_t TOTAL_LEN =
ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
static void Checksum(Span<const uint8_t> addr_pubkey,
uint8_t (&checksum)[CHECKSUM_LEN]) {
// TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
static const uint8_t prefix[] = ".onion checksum";
static constexpr size_t prefix_len = 15;
SHA3_256 hasher;
hasher.Write(Span{prefix}.first(prefix_len));
hasher.Write(addr_pubkey);
hasher.Write(VERSION);
uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
hasher.Finalize(checksum_full);
memcpy(checksum, checksum_full, sizeof(checksum));
}
}; // namespace torv3
bool CNetAddr::SetSpecial(const std::string &addr) {
if (!ContainsNoNUL(addr)) {
return false;
}
if (SetTor(addr)) {
return true;
}
if (SetI2P(addr)) {
return true;
}
return false;
}
bool CNetAddr::SetTor(const std::string &addr) {
static const char *suffix{".onion"};
static constexpr size_t suffix_len{6};
if (addr.size() <= suffix_len ||
addr.substr(addr.size() - suffix_len) != suffix) {
return false;
}
auto input = DecodeBase32(
std::string_view{addr}.substr(0, addr.size() - suffix_len));
if (!input) {
return false;
}
switch (input->size()) {
case ADDR_TORV2_SIZE:
m_net = NET_ONION;
m_addr.assign(input->begin(), input->end());
return true;
case torv3::TOTAL_LEN: {
Span<const uint8_t> input_pubkey{input->data(), ADDR_TORV3_SIZE};
Span<const uint8_t> input_checksum{input->data() + ADDR_TORV3_SIZE,
torv3::CHECKSUM_LEN};
Span<const uint8_t> input_version{input->data() + ADDR_TORV3_SIZE +
torv3::CHECKSUM_LEN,
sizeof(torv3::VERSION)};
if (input_version != torv3::VERSION) {
return false;
}
uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
torv3::Checksum(input_pubkey, calculated_checksum);
if (input_checksum != calculated_checksum) {
return false;
}
m_net = NET_ONION;
m_addr.assign(input_pubkey.begin(), input_pubkey.end());
return true;
}
}
return false;
}
bool CNetAddr::SetI2P(const std::string &addr) {
// I2P addresses that we support consist of 52 base32 characters +
// ".b32.i2p".
static constexpr size_t b32_len{52};
static const char *suffix{".b32.i2p"};
static constexpr size_t suffix_len{8};
if (addr.size() != b32_len + suffix_len ||
ToLower(addr.substr(b32_len)) != suffix) {
return false;
}
// Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so
// DecodeBase32() can decode it.
const std::string b32_padded = addr.substr(0, b32_len) + "====";
auto address_bytes = DecodeBase32(b32_padded);
if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) {
return false;
}
m_net = NET_I2P;
m_addr.assign(address_bytes->begin(), address_bytes->end());
return true;
}
CNetAddr::CNetAddr(const struct in_addr &ipv4Addr) {
m_net = NET_IPV4;
const uint8_t *ptr = reinterpret_cast<const uint8_t *>(&ipv4Addr);
m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
}
CNetAddr::CNetAddr(const struct in6_addr &ipv6Addr, const uint32_t scope) {
SetLegacyIPv6(
{reinterpret_cast<const uint8_t *>(&ipv6Addr), sizeof(ipv6Addr)});
m_scope_id = scope;
}
bool CNetAddr::IsBindAny() const {
if (!IsIPv4() && !IsIPv6()) {
return false;
}
return std::all_of(m_addr.begin(), m_addr.end(),
[](uint8_t b) { return b == 0; });
}
bool CNetAddr::IsIPv4() const {
return m_net == NET_IPV4;
}
bool CNetAddr::IsIPv6() const {
return m_net == NET_IPV6;
}
bool CNetAddr::IsRFC1918() const {
return IsIPv4() &&
(m_addr[0] == 10 || (m_addr[0] == 192 && m_addr[1] == 168) ||
(m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
}
bool CNetAddr::IsRFC2544() const {
return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
}
bool CNetAddr::IsRFC3927() const {
return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{{169, 254}});
}
bool CNetAddr::IsRFC6598() const {
return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
}
bool CNetAddr::IsRFC5737() const {
return IsIPv4() &&
(HasPrefix(m_addr, std::array<uint8_t, 3>{{192, 0, 2}}) ||
HasPrefix(m_addr, std::array<uint8_t, 3>{{198, 51, 100}}) ||
HasPrefix(m_addr, std::array<uint8_t, 3>{{203, 0, 113}}));
}
bool CNetAddr::IsRFC3849() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 4>{{0x20, 0x01, 0x0D, 0xB8}});
}
bool CNetAddr::IsRFC3964() const {
return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{{0x20, 0x02}});
}
bool CNetAddr::IsRFC6052() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 12>{{0x00, 0x64, 0xFF, 0x9B,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}});
}
bool CNetAddr::IsRFC4380() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 4>{{0x20, 0x01, 0x00, 0x00}});
}
bool CNetAddr::IsRFC4862() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 8>{{0xFE, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}});
}
bool CNetAddr::IsRFC4193() const {
return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
}
bool CNetAddr::IsRFC6145() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 12>{{0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0x00, 0x00}});
}
bool CNetAddr::IsRFC4843() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 3>{{0x20, 0x01, 0x00}}) &&
(m_addr[3] & 0xF0) == 0x10;
}
bool CNetAddr::IsRFC7343() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 3>{{0x20, 0x01, 0x00}}) &&
(m_addr[3] & 0xF0) == 0x20;
}
bool CNetAddr::IsHeNet() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 4>{{0x20, 0x01, 0x04, 0x70}});
}
/**
* Check whether this object represents a TOR address.
*
* @see CNetAddr::SetSpecial(const std::string &)
*/
bool CNetAddr::IsTor() const {
return m_net == NET_ONION;
}
/**
* Check whether this object represents an I2P address.
*/
bool CNetAddr::IsI2P() const {
return m_net == NET_I2P;
}
/**
* Check whether this object represents a CJDNS address.
*/
bool CNetAddr::IsCJDNS() const {
return m_net == NET_CJDNS;
}
bool CNetAddr::IsLocal() const {
// IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
return true;
}
// IPv6 loopback (::1/128)
static const uint8_t pchLocal[16] = {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1};
if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
return true;
}
return false;
}
/**
* @returns Whether or not this network address is a valid address that @a could
* be used to refer to an actual host.
*
* @note A valid address may or may not be publicly routable on the global
* internet. As in, the set of valid addresses is a superset of the set of
* publicly routable addresses.
*
* @see CNetAddr::IsRoutable()
*/
bool CNetAddr::IsValid() const {
// unspecified IPv6 address (::/128)
uint8_t ipNone6[16] = {};
if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
return false;
}
// documentation IPv6 address
if (IsRFC3849()) {
return false;
}
if (IsInternal()) {
return false;
}
if (IsIPv4()) {
const uint32_t addr = ReadBE32(m_addr.data());
if (addr == INADDR_ANY || addr == INADDR_NONE) {
return false;
}
}
return true;
}
/**
* @returns Whether or not this network address is publicly routable on the
* global internet.
*
* @note A routable address is always valid. As in, the set of routable
* addresses is a subset of the set of valid addresses.
*
* @see CNetAddr::IsValid()
*/
bool CNetAddr::IsRoutable() const {
return IsValid() &&
!(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() ||
IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) ||
IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
}
/**
* @returns Whether or not this is a dummy address that represents a name.
*
* @see CNetAddr::SetInternal(const std::string &)
*/
bool CNetAddr::IsInternal() const {
return m_net == NET_INTERNAL;
}
bool CNetAddr::IsAddrV1Compatible() const {
switch (m_net) {
case NET_IPV4:
case NET_IPV6:
case NET_INTERNAL:
return true;
case NET_ONION:
return m_addr.size() == ADDR_TORV2_SIZE;
case NET_I2P:
case NET_CJDNS:
return false;
case NET_UNROUTABLE:
// m_net is never and should not be set to NET_UNROUTABLE
case NET_MAX:
// m_net is never and should not be set to NET_MAX
assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
enum Network CNetAddr::GetNetwork() const {
if (IsInternal()) {
return NET_INTERNAL;
}
if (!IsRoutable()) {
return NET_UNROUTABLE;
}
return m_net;
}
static std::string IPv4ToString(Span<const uint8_t> a) {
return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
}
//! Return an IPv6 address text representation with zero compression as
//! described in RFC 5952 ("A Recommendation for IPv6 Address Text
//! Representation").
static std::string IPv6ToString(Span<const uint8_t> a, uint32_t scope_id) {
assert(a.size() == ADDR_IPV6_SIZE);
const std::array<uint16_t, 8> groups{{
ReadBE16(&a[0]),
ReadBE16(&a[2]),
ReadBE16(&a[4]),
ReadBE16(&a[6]),
ReadBE16(&a[8]),
ReadBE16(&a[10]),
ReadBE16(&a[12]),
ReadBE16(&a[14]),
}};
// The zero compression implementation is inspired by Rust's
// std::net::Ipv6Addr, see
// https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
struct ZeroSpan {
size_t start_index{0};
size_t len{0};
};
// Find longest sequence of consecutive all-zero fields. Use first zero
// sequence if two or more zero sequences of equal length are found.
ZeroSpan longest, current;
for (size_t i{0}; i < groups.size(); ++i) {
if (groups[i] != 0) {
current = {i + 1, 0};
continue;
}
current.len += 1;
if (current.len > longest.len) {
longest = current;
}
}
std::string r;
r.reserve(39);
for (size_t i{0}; i < groups.size(); ++i) {
// Replace the longest sequence of consecutive all-zero fields with
// two colons ("::").
if (longest.len >= 2 && i >= longest.start_index &&
i < longest.start_index + longest.len) {
if (i == longest.start_index) {
r += "::";
}
continue;
}
r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""),
groups[i]);
}
if (scope_id != 0) {
r += strprintf("%%%u", scope_id);
}
return r;
}
std::string CNetAddr::ToStringIP() const {
switch (m_net) {
case NET_IPV4:
return IPv4ToString(m_addr);
case NET_IPV6:
return IPv6ToString(m_addr, m_scope_id);
case NET_ONION:
switch (m_addr.size()) {
case ADDR_TORV2_SIZE:
return EncodeBase32(m_addr) + ".onion";
case ADDR_TORV3_SIZE: {
uint8_t checksum[torv3::CHECKSUM_LEN];
torv3::Checksum(m_addr, checksum);
// TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION)
// + ".onion"
prevector<torv3::TOTAL_LEN, uint8_t> address{m_addr.begin(),
m_addr.end()};
address.insert(address.end(), checksum,
checksum + torv3::CHECKSUM_LEN);
address.insert(address.end(), torv3::VERSION,
torv3::VERSION + sizeof(torv3::VERSION));
return EncodeBase32(address) + ".onion";
}
default:
assert(false);
}
case NET_I2P:
return EncodeBase32(m_addr, false /* don't pad with = */) +
".b32.i2p";
case NET_CJDNS:
return IPv6ToString(m_addr, 0);
case NET_INTERNAL:
return EncodeBase32(m_addr) + ".internal";
case NET_UNROUTABLE:
// m_net is never and should not be set to NET_UNROUTABLE
case NET_MAX:
// m_net is never and should not be set to NET_MAX
assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
std::string CNetAddr::ToString() const {
return ToStringIP();
}
bool operator==(const CNetAddr &a, const CNetAddr &b) {
return a.m_net == b.m_net && a.m_addr == b.m_addr;
}
bool operator<(const CNetAddr &a, const CNetAddr &b) {
return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
}
/**
* Try to get our IPv4 address.
*
* @param[out] pipv4Addr The in_addr struct to which to copy.
*
* @returns Whether or not the operation was successful, in particular, whether
* or not our address was an IPv4 address.
*
* @see CNetAddr::IsIPv4()
*/
bool CNetAddr::GetInAddr(struct in_addr *pipv4Addr) const {
if (!IsIPv4()) {
return false;
}
assert(sizeof(*pipv4Addr) == m_addr.size());
memcpy(pipv4Addr, m_addr.data(), m_addr.size());
return true;
}
/**
* Try to get our IPv6 address.
*
* @param[out] pipv6Addr The in6_addr struct to which to copy.
*
* @returns Whether or not the operation was successful, in particular, whether
* or not our address was an IPv6 address.
*
* @see CNetAddr::IsIPv6()
*/
bool CNetAddr::GetIn6Addr(struct in6_addr *pipv6Addr) const {
if (!IsIPv6()) {
return false;
}
assert(sizeof(*pipv6Addr) == m_addr.size());
memcpy(pipv6Addr, m_addr.data(), m_addr.size());
return true;
}
bool CNetAddr::HasLinkedIPv4() const {
return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() ||
IsRFC3964() || IsRFC4380());
}
uint32_t CNetAddr::GetLinkedIPv4() const {
if (IsIPv4()) {
return ReadBE32(m_addr.data());
} else if (IsRFC6052() || IsRFC6145()) {
// mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4
// bytes of the address
return ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
} else if (IsRFC3964()) {
// 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
return ReadBE32(Span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
} else if (IsRFC4380()) {
// Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the
// address, but bitflipped
return ~ReadBE32(Span{m_addr}.last(ADDR_IPV4_SIZE).data());
}
assert(false);
}
Network CNetAddr::GetNetClass() const {
// Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers
// expect that.
// Check for "internal" first because such addresses are also !IsRoutable()
// and we don't want to return NET_UNROUTABLE in that case.
if (IsInternal()) {
return NET_INTERNAL;
}
if (!IsRoutable()) {
return NET_UNROUTABLE;
}
if (HasLinkedIPv4()) {
return NET_IPV4;
}
return m_net;
}
uint32_t CNetAddr::GetMappedAS(const std::vector<bool> &asmap) const {
uint32_t net_class = GetNetClass();
if (asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) {
return 0; // Indicates not found, safe because AS0 is reserved per
// RFC7607.
}
std::vector<bool> ip_bits(128);
if (HasLinkedIPv4()) {
// For lookup, treat as if it was just an IPv4 address
// (IPV4_IN_IPV6_PREFIX + IPv4 bits)
for (int8_t byte_i = 0; byte_i < 12; ++byte_i) {
for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
ip_bits[byte_i * 8 + bit_i] =
(IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1;
}
}
uint32_t ipv4 = GetLinkedIPv4();
for (int i = 0; i < 32; ++i) {
ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1;
}
} else {
// Use all 128 bits of the IPv6 address otherwise
assert(IsIPv6());
for (int8_t byte_i = 0; byte_i < 16; ++byte_i) {
uint8_t cur_byte = m_addr[byte_i];
for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1;
}
}
}
uint32_t mapped_as = Interpret(asmap, ip_bits);
return mapped_as;
}
/**
* Get the canonical identifier of our network group
*
* The groups are assigned in a way where it should be costly for an attacker to
* obtain addresses with many different group identifiers, even if it is cheap
* to obtain addresses with the same identifier.
*
* @note No two connections will be attempted to addresses with the same network
* group.
*/
std::vector<uint8_t> CNetAddr::GetGroup(const std::vector<bool> &asmap) const {
std::vector<uint8_t> vchRet;
uint32_t net_class = GetNetClass();
// If non-empty asmap is supplied and the address is IPv4/IPv6,
// return ASN to be used for bucketing.
uint32_t asn = GetMappedAS(asmap);
if (asn != 0) { // Either asmap was empty, or address has non-asmappable net
// class (e.g. TOR).
vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in
// the same bucket
for (int i = 0; i < 4; i++) {
vchRet.push_back((asn >> (8 * i)) & 0xFF);
}
return vchRet;
}
vchRet.push_back(net_class);
int nBits{0};
if (IsLocal()) {
// all local addresses belong to the same group
} else if (IsInternal()) {
// all internal-usage addresses get their own group
nBits = ADDR_INTERNAL_SIZE * 8;
} else if (!IsRoutable()) {
// all other unroutable addresses belong to the same group
} else if (HasLinkedIPv4()) {
// IPv4 addresses (and mapped IPv4 addresses) use /16 groups
uint32_t ipv4 = GetLinkedIPv4();
vchRet.push_back((ipv4 >> 24) & 0xFF);
vchRet.push_back((ipv4 >> 16) & 0xFF);
return vchRet;
} else if (IsTor() || IsI2P() || IsCJDNS()) {
nBits = 4;
} else if (IsHeNet()) {
// for he.net, use /36 groups
nBits = 36;
} else {
// for the rest of the IPv6 network, use /32 groups
nBits = 32;
}
// Push our address onto vchRet.
const size_t num_bytes = nBits / 8;
vchRet.insert(vchRet.end(), m_addr.begin(), m_addr.begin() + num_bytes);
nBits %= 8;
// ...for the last byte, push nBits and for the rest of the byte push 1's
if (nBits > 0) {
assert(num_bytes < m_addr.size());
vchRet.push_back(m_addr[num_bytes] | ((1 << (8 - nBits)) - 1));
}
return vchRet;
}
std::vector<uint8_t> CNetAddr::GetAddrBytes() const {
if (IsAddrV1Compatible()) {
uint8_t serialized[V1_SERIALIZATION_SIZE];
SerializeV1Array(serialized);
return {std::begin(serialized), std::end(serialized)};
}
return std::vector<uint8_t>(m_addr.begin(), m_addr.end());
}
// private extensions to enum Network, only returned by GetExtNetwork, and only
// used in GetReachabilityFrom
static const int NET_UNKNOWN = NET_MAX + 0;
static const int NET_TEREDO = NET_MAX + 1;
static int GetExtNetwork(const CNetAddr *addr) {
if (addr == nullptr) {
return NET_UNKNOWN;
}
if (addr->IsRFC4380()) {
return NET_TEREDO;
}
return addr->GetNetwork();
}
/** Calculates a metric for how reachable (*this) is from a given partner */
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const {
enum Reachability {
REACH_UNREACHABLE,
REACH_DEFAULT,
REACH_TEREDO,
REACH_IPV6_WEAK,
REACH_IPV4,
REACH_IPV6_STRONG,
REACH_PRIVATE
};
if (!IsRoutable() || IsInternal()) {
return REACH_UNREACHABLE;
}
int ourNet = GetExtNetwork(this);
int theirNet = GetExtNetwork(paddrPartner);
bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
switch (theirNet) {
case NET_IPV4:
switch (ourNet) {
default:
return REACH_DEFAULT;
case NET_IPV4:
return REACH_IPV4;
}
case NET_IPV6:
switch (ourNet) {
default:
return REACH_DEFAULT;
case NET_TEREDO:
return REACH_TEREDO;
case NET_IPV4:
return REACH_IPV4;
// only prefer giving our IPv6 address if it's not tunnelled
case NET_IPV6:
return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG;
}
case NET_ONION:
switch (ourNet) {
default:
return REACH_DEFAULT;
// Tor users can connect to IPv4 as well
case NET_IPV4:
return REACH_IPV4;
case NET_ONION:
return REACH_PRIVATE;
}
case NET_I2P:
switch (ourNet) {
case NET_I2P:
return REACH_PRIVATE;
default:
return REACH_DEFAULT;
}
case NET_TEREDO:
switch (ourNet) {
default:
return REACH_DEFAULT;
case NET_TEREDO:
return REACH_TEREDO;
case NET_IPV6:
return REACH_IPV6_WEAK;
case NET_IPV4:
return REACH_IPV4;
}
case NET_UNKNOWN:
case NET_UNROUTABLE:
default:
switch (ourNet) {
default:
return REACH_DEFAULT;
case NET_TEREDO:
return REACH_TEREDO;
case NET_IPV6:
return REACH_IPV6_WEAK;
case NET_IPV4:
return REACH_IPV4;
// either from Tor, or don't care about our address
case NET_ONION:
return REACH_PRIVATE;
}
}
}
CService::CService() : port(0) {}
CService::CService(const CNetAddr &cip, uint16_t portIn)
: CNetAddr(cip), port(portIn) {}
CService::CService(const struct in_addr &ipv4Addr, uint16_t portIn)
: CNetAddr(ipv4Addr), port(portIn) {}
CService::CService(const struct in6_addr &ipv6Addr, uint16_t portIn)
: CNetAddr(ipv6Addr), port(portIn) {}
CService::CService(const struct sockaddr_in &addr)
: CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) {
assert(addr.sin_family == AF_INET);
}
CService::CService(const struct sockaddr_in6 &addr)
: CNetAddr(addr.sin6_addr, addr.sin6_scope_id),
port(ntohs(addr.sin6_port)) {
assert(addr.sin6_family == AF_INET6);
}
bool CService::SetSockAddr(const struct sockaddr *paddr) {
switch (paddr->sa_family) {
case AF_INET:
*this =
CService(*reinterpret_cast<const struct sockaddr_in *>(paddr));
return true;
case AF_INET6:
*this =
CService(*reinterpret_cast<const struct sockaddr_in6 *>(paddr));
return true;
default:
return false;
}
}
uint16_t CService::GetPort() const {
return port;
}
bool operator==(const CService &a, const CService &b) {
return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) &&
a.port == b.port;
}
bool operator<(const CService &a, const CService &b) {
return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) ||
(static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) &&
a.port < b.port);
}
/**
* Obtain the IPv4/6 socket address this represents.
*
* @param[out] paddr The obtained socket address.
* @param[in,out] addrlen The size, in bytes, of the address structure pointed
* to by paddr. The value that's pointed to by this
* parameter might change after calling this function if
* the size of the corresponding address structure
* changed.
*
* @returns Whether or not the operation was successful.
*/
bool CService::GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const {
if (IsIPv4()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) {
return false;
}
*addrlen = sizeof(struct sockaddr_in);
struct sockaddr_in *paddrin =
reinterpret_cast<struct sockaddr_in *>(paddr);
memset(paddrin, 0, *addrlen);
if (!GetInAddr(&paddrin->sin_addr)) {
return false;
}
paddrin->sin_family = AF_INET;
paddrin->sin_port = htons(port);
return true;
}
if (IsIPv6()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) {
return false;
}
*addrlen = sizeof(struct sockaddr_in6);
struct sockaddr_in6 *paddrin6 =
reinterpret_cast<struct sockaddr_in6 *>(paddr);
memset(paddrin6, 0, *addrlen);
if (!GetIn6Addr(&paddrin6->sin6_addr)) {
return false;
}
paddrin6->sin6_scope_id = m_scope_id;
paddrin6->sin6_family = AF_INET6;
paddrin6->sin6_port = htons(port);
return true;
}
return false;
}
/**
* @returns An identifier unique to this service's address and port number.
*/
std::vector<uint8_t> CService::GetKey() const {
auto key = GetAddrBytes();
// most significant byte of our port
key.push_back(port / 0x100);
// least significant byte of our port
key.push_back(port & 0x0FF);
return key;
}
std::string CService::ToStringPort() const {
return strprintf("%u", port);
}
std::string CService::ToStringIPPort() const {
if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
return ToStringIP() + ":" + ToStringPort();
} else {
return "[" + ToStringIP() + "]:" + ToStringPort();
}
}
std::string CService::ToString() const {
return ToStringIPPort();
}
CSubNet::CSubNet() : valid(false) {
memset(netmask, 0, sizeof(netmask));
}
CSubNet::CSubNet(const CNetAddr &addr, uint8_t mask) : CSubNet() {
valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
(addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
if (!valid) {
return;
}
assert(mask <= sizeof(netmask) * 8);
network = addr;
uint8_t n = mask;
for (size_t i = 0; i < network.m_addr.size(); ++i) {
const uint8_t bits = n < 8 ? n : 8;
// Set first bits.
netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits));
// Normalize network according to netmask.
network.m_addr[i] &= netmask[i];
n -= bits;
}
}
/**
* @returns The number of 1-bits in the prefix of the specified subnet mask. If
* the specified subnet mask is not a valid one, -1.
*/
static inline int NetmaskBits(uint8_t x) {
switch (x) {
case 0x00:
return 0;
case 0x80:
return 1;
case 0xc0:
return 2;
case 0xe0:
return 3;
case 0xf0:
return 4;
case 0xf8:
return 5;
case 0xfc:
return 6;
case 0xfe:
return 7;
case 0xff:
return 8;
default:
return -1;
}
}
CSubNet::CSubNet(const CNetAddr &addr, const CNetAddr &mask) : CSubNet() {
valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
if (!valid) {
return;
}
// Check if `mask` contains 1-bits after 0-bits (which is an invalid
// netmask).
bool zeros_found = false;
for (auto b : mask.m_addr) {
const int num_bits = NetmaskBits(b);
if (num_bits == -1 || (zeros_found && num_bits != 0)) {
valid = false;
return;
}
if (num_bits < 8) {
zeros_found = true;
}
}
assert(mask.m_addr.size() <= sizeof(netmask));
memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
network = addr;
// Normalize network according to netmask
for (size_t x = 0; x < network.m_addr.size(); ++x) {
network.m_addr[x] &= netmask[x];
}
}
CSubNet::CSubNet(const CNetAddr &addr) : CSubNet() {
valid = addr.IsIPv4() || addr.IsIPv6();
if (!valid) {
return;
}
assert(addr.m_addr.size() <= sizeof(netmask));
memset(netmask, 0xFF, addr.m_addr.size());
network = addr;
}
/**
* @returns True if this subnet is valid, the specified address is valid, and
* the specified address belongs in this subnet.
*/
bool CSubNet::Match(const CNetAddr &addr) const {
if (!valid || !addr.IsValid() || network.m_net != addr.m_net) {
return false;
}
assert(network.m_addr.size() == addr.m_addr.size());
for (size_t x = 0; x < addr.m_addr.size(); ++x) {
if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
return false;
}
}
return true;
}
std::string CSubNet::ToString() const {
assert(network.m_addr.size() <= sizeof(netmask));
uint8_t cidr = 0;
for (size_t i = 0; i < network.m_addr.size(); ++i) {
if (netmask[i] == 0x00) {
break;
}
cidr += NetmaskBits(netmask[i]);
}
return network.ToString() + strprintf("/%u", cidr);
}
bool CSubNet::IsValid() const {
return valid;
}
bool CSubNet::SanityCheck() const {
if (!(network.IsIPv4() || network.IsIPv6())) {
return false;
}
for (size_t x = 0; x < network.m_addr.size(); ++x) {
if (network.m_addr[x] & ~netmask[x]) {
return false;
}
}
return true;
}
bool operator==(const CSubNet &a, const CSubNet &b) {
return a.valid == b.valid && a.network == b.network &&
!memcmp(a.netmask, b.netmask, 16);
}
bool operator<(const CSubNet &a, const CSubNet &b) {
return (a.network < b.network ||
(a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
}
diff --git a/src/randomenv.cpp b/src/randomenv.cpp
index fc2f1b4e5..61f66d014 100644
--- a/src/randomenv.cpp
+++ b/src/randomenv.cpp
@@ -1,544 +1,544 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#if defined(HAVE_CONFIG_H)
#include <config/bitcoin-config.h>
#endif
#include <randomenv.h>
#include <clientversion.h>
#include <compat/cpuid.h>
#include <support/cleanse.h>
#include <util/time.h> // for GetTime()
#ifdef WIN32
#include <compat.h> // for Windows API
#endif
#include <algorithm>
#include <atomic>
#include <chrono>
#include <climits>
#include <thread>
#include <vector>
#include <cstdint>
#include <cstring>
#ifndef WIN32
#include <sys/types.h> // must go before a number of other headers
#include <fcntl.h>
#include <netinet/in.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/utsname.h>
#include <unistd.h>
#endif
#if HAVE_DECL_GETIFADDRS
#include <ifaddrs.h>
#endif
#if HAVE_SYSCTL
#include <sys/sysctl.h>
#if HAVE_VM_VM_PARAM_H
#include <vm/vm_param.h>
#endif
#if HAVE_SYS_RESOURCES_H
#include <sys/resources.h>
#endif
#if HAVE_SYS_VMMETER_H
#include <sys/vmmeter.h>
#endif
#endif
#ifdef __linux__
#include <sys/auxv.h>
#endif
//! Necessary on some platforms
-extern char **environ;
+extern char **environ; // NOLINT(readability-redundant-declaration)
namespace {
void RandAddSeedPerfmon(CSHA512 &hasher) {
#ifdef WIN32
// Seed with the entire set of perfmon data
// This can take up to 2 seconds, so only do it every 10 minutes.
// Initialize last_perfmon to 0 seconds, we don't skip the first call.
static std::atomic<std::chrono::seconds> last_perfmon{0s};
auto last_time = last_perfmon.load();
auto current_time = GetTime<std::chrono::seconds>();
if (current_time < last_time + std::chrono::minutes{10}) {
return;
}
last_perfmon = current_time;
std::vector<uint8_t> vData(250000, 0);
long ret = 0;
unsigned long nSize = 0;
// Bail out at more than 10MB of performance data
const size_t nMaxSize = 10000000;
while (true) {
nSize = vData.size();
ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", nullptr,
nullptr, vData.data(), &nSize);
if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize) {
break;
}
// Grow size of buffer exponentially
vData.resize(std::min((vData.size() * 3) / 2, nMaxSize));
}
RegCloseKey(HKEY_PERFORMANCE_DATA);
if (ret == ERROR_SUCCESS) {
hasher.Write(vData.data(), nSize);
memory_cleanse(vData.data(), nSize);
} else {
// Performance data is only a best-effort attempt at improving the
// situation when the OS randomness (and other sources) aren't
// adequate. As a result, failure to read it is isn't considered
// critical, so we don't call RandFailure().
// TODO: Add logging when the logger is made functional before global
// constructors have been invoked.
}
#endif
}
/** Helper to easily feed data into a CSHA512.
*
* Note that this does not serialize the passed object (like stream.h's <<
* operators do). Its raw memory representation is used directly.
*/
template <typename T> CSHA512 &operator<<(CSHA512 &hasher, const T &data) {
static_assert(
!std::is_same<typename std::decay<T>::type, char *>::value,
"Calling operator<<(CSHA512, char*) is probably not what you want");
static_assert(
!std::is_same<typename std::decay<T>::type, uint8_t *>::value,
"Calling operator<<(CSHA512, uint8_t*) is probably not what you "
"want");
static_assert(
!std::is_same<typename std::decay<T>::type, const char *>::value,
"Calling operator<<(CSHA512, const char*) is probably not what you "
"want");
static_assert(
!std::is_same<typename std::decay<T>::type, const uint8_t *>::value,
"Calling operator<<(CSHA512, const uint8_t*) is "
"probably not what you want");
hasher.Write((const uint8_t *)&data, sizeof(data));
return hasher;
}
#ifndef WIN32
void AddSockaddr(CSHA512 &hasher, const struct sockaddr *addr) {
if (addr == nullptr) {
return;
}
switch (addr->sa_family) {
case AF_INET:
hasher.Write((const uint8_t *)addr, sizeof(sockaddr_in));
break;
case AF_INET6:
hasher.Write((const uint8_t *)addr, sizeof(sockaddr_in6));
break;
default:
hasher.Write((const uint8_t *)&addr->sa_family,
sizeof(addr->sa_family));
}
}
void AddFile(CSHA512 &hasher, const char *path) {
struct stat sb = {};
int f = open(path, O_RDONLY);
size_t total = 0;
if (f != -1) {
uint8_t fbuf[4096];
int n;
hasher.Write((const uint8_t *)&f, sizeof(f));
if (fstat(f, &sb) == 0) {
hasher << sb;
}
do {
n = read(f, fbuf, sizeof(fbuf));
if (n > 0) {
hasher.Write(fbuf, n);
}
total += n;
/* not bothering with EINTR handling. */
} while (n == sizeof(fbuf) &&
total < 1048576); // Read only the first 1 Mbyte
close(f);
}
}
void AddPath(CSHA512 &hasher, const char *path) {
struct stat sb = {};
if (stat(path, &sb) == 0) {
hasher.Write((const uint8_t *)path, strlen(path) + 1);
hasher << sb;
}
}
#endif
#if HAVE_SYSCTL
template <int... S> void AddSysctl(CSHA512 &hasher) {
int CTL[sizeof...(S)] = {S...};
uint8_t buffer[65536];
size_t siz = 65536;
int ret = sysctl(CTL, sizeof...(S), buffer, &siz, nullptr, 0);
if (ret == 0 || (ret == -1 && errno == ENOMEM)) {
hasher << sizeof(CTL);
hasher.Write((const uint8_t *)CTL, sizeof(CTL));
if (siz > sizeof(buffer)) {
siz = sizeof(buffer);
}
hasher << siz;
hasher.Write(buffer, siz);
}
}
#endif
#ifdef HAVE_GETCPUID
void inline AddCPUID(CSHA512 &hasher, uint32_t leaf, uint32_t subleaf,
uint32_t &ax, uint32_t &bx, uint32_t &cx, uint32_t &dx) {
GetCPUID(leaf, subleaf, ax, bx, cx, dx);
hasher << leaf << subleaf << ax << bx << cx << dx;
}
void AddAllCPUID(CSHA512 &hasher) {
uint32_t ax, bx, cx, dx;
// Iterate over all standard leaves
// Returns max leaf in ax
AddCPUID(hasher, 0, 0, ax, bx, cx, dx);
uint32_t max = ax;
for (uint32_t leaf = 1; leaf <= max && leaf <= 0xFF; ++leaf) {
uint32_t maxsub = 0;
for (uint32_t subleaf = 0; subleaf <= 0xFF; ++subleaf) {
AddCPUID(hasher, leaf, subleaf, ax, bx, cx, dx);
// Iterate subleafs for leaf values 4, 7, 11, 13
if (leaf == 4) {
if ((ax & 0x1f) == 0) {
break;
}
} else if (leaf == 7) {
if (subleaf == 0) {
maxsub = ax;
}
if (subleaf == maxsub) {
break;
}
} else if (leaf == 11) {
if ((cx & 0xff00) == 0) {
break;
}
} else if (leaf == 13) {
if (ax == 0 && bx == 0 && cx == 0 && dx == 0) {
break;
}
} else {
// For any other leaf, stop after subleaf 0.
break;
}
}
}
// Iterate over all extended leaves
// Returns max extended leaf in ax
AddCPUID(hasher, 0x80000000, 0, ax, bx, cx, dx);
uint32_t ext_max = ax;
for (uint32_t leaf = 0x80000001; leaf <= ext_max && leaf <= 0x800000FF;
++leaf) {
AddCPUID(hasher, leaf, 0, ax, bx, cx, dx);
}
}
#endif
} // namespace
void RandAddDynamicEnv(CSHA512 &hasher) {
RandAddSeedPerfmon(hasher);
// Various clocks
#ifdef WIN32
FILETIME ftime;
GetSystemTimeAsFileTime(&ftime);
hasher << ftime;
#else
struct timespec ts = {};
#ifdef CLOCK_MONOTONIC
clock_gettime(CLOCK_MONOTONIC, &ts);
hasher << ts;
#endif
#ifdef CLOCK_REALTIME
clock_gettime(CLOCK_REALTIME, &ts);
hasher << ts;
#endif
#ifdef CLOCK_BOOTTIME
clock_gettime(CLOCK_BOOTTIME, &ts);
hasher << ts.tv_sec << ts.tv_nsec;
#endif
// gettimeofday is available on all UNIX systems, but only has microsecond
// precision.
struct timeval tv = {};
gettimeofday(&tv, nullptr);
hasher << tv;
#endif
// Probably redundant, but also use all the clocks C++11 provides:
hasher << std::chrono::system_clock::now().time_since_epoch().count();
hasher << std::chrono::steady_clock::now().time_since_epoch().count();
hasher
<< std::chrono::high_resolution_clock::now().time_since_epoch().count();
#ifndef WIN32
// Current resource usage.
struct rusage usage = {};
if (getrusage(RUSAGE_SELF, &usage) == 0) {
hasher << usage;
}
#endif
#ifdef __linux__
AddFile(hasher, "/proc/diskstats");
AddFile(hasher, "/proc/vmstat");
AddFile(hasher, "/proc/schedstat");
AddFile(hasher, "/proc/zoneinfo");
AddFile(hasher, "/proc/meminfo");
AddFile(hasher, "/proc/softirqs");
AddFile(hasher, "/proc/stat");
AddFile(hasher, "/proc/self/schedstat");
AddFile(hasher, "/proc/self/status");
#endif
#if HAVE_SYSCTL
#ifdef CTL_KERN
#if defined(KERN_PROC) && defined(KERN_PROC_ALL)
AddSysctl<CTL_KERN, KERN_PROC, KERN_PROC_ALL>(hasher);
#endif
#endif
#ifdef CTL_HW
#ifdef HW_DISKSTATS
AddSysctl<CTL_HW, HW_DISKSTATS>(hasher);
#endif
#endif
#ifdef CTL_VM
#ifdef VM_LOADAVG
AddSysctl<CTL_VM, VM_LOADAVG>(hasher);
#endif
#ifdef VM_TOTAL
AddSysctl<CTL_VM, VM_TOTAL>(hasher);
#endif
#ifdef VM_METER
AddSysctl<CTL_VM, VM_METER>(hasher);
#endif
#endif
#endif
// Stack and heap location
void *addr = malloc(4097);
hasher << &addr << addr;
free(addr);
}
void RandAddStaticEnv(CSHA512 &hasher) {
// Some compile-time static properties
hasher << (CHAR_MIN < 0) << sizeof(void *) << sizeof(long) << sizeof(int);
#if defined(__GNUC__) && defined(__GNUC_MINOR__) && defined(__GNUC_PATCHLEVEL__)
hasher << __GNUC__ << __GNUC_MINOR__ << __GNUC_PATCHLEVEL__;
#endif
#ifdef _MSC_VER
hasher << _MSC_VER;
#endif
hasher << __cplusplus;
#ifdef _XOPEN_VERSION
hasher << _XOPEN_VERSION;
#endif
#ifdef __VERSION__
const char *COMPILER_VERSION = __VERSION__;
hasher.Write((const uint8_t *)COMPILER_VERSION,
strlen(COMPILER_VERSION) + 1);
#endif
// Bitcoin client version
hasher << CLIENT_VERSION;
#ifdef __linux__
// Information available through getauxval()
#ifdef AT_HWCAP
hasher << getauxval(AT_HWCAP);
#endif
#ifdef AT_HWCAP2
hasher << getauxval(AT_HWCAP2);
#endif
#ifdef AT_RANDOM
const uint8_t *random_aux = (const uint8_t *)getauxval(AT_RANDOM);
if (random_aux) {
hasher.Write(random_aux, 16);
}
#endif
#ifdef AT_PLATFORM
const char *platform_str = (const char *)getauxval(AT_PLATFORM);
if (platform_str) {
hasher.Write((const uint8_t *)platform_str, strlen(platform_str) + 1);
}
#endif
#ifdef AT_EXECFN
const char *exec_str = (const char *)getauxval(AT_EXECFN);
if (exec_str) {
hasher.Write((const uint8_t *)exec_str, strlen(exec_str) + 1);
}
#endif
#endif // __linux__
#ifdef HAVE_GETCPUID
AddAllCPUID(hasher);
#endif
// Memory locations
hasher << &hasher << &RandAddStaticEnv << &malloc << &errno << &environ;
// Hostname
char hname[256];
if (gethostname(hname, 256) == 0) {
hasher.Write((const uint8_t *)hname, strnlen(hname, 256));
}
#if HAVE_DECL_GETIFADDRS
// Network interfaces
struct ifaddrs *ifad = NULL;
getifaddrs(&ifad);
struct ifaddrs *ifit = ifad;
while (ifit != NULL) {
hasher.Write((const uint8_t *)&ifit, sizeof(ifit));
hasher.Write((const uint8_t *)ifit->ifa_name,
strlen(ifit->ifa_name) + 1);
hasher.Write((const uint8_t *)&ifit->ifa_flags,
sizeof(ifit->ifa_flags));
AddSockaddr(hasher, ifit->ifa_addr);
AddSockaddr(hasher, ifit->ifa_netmask);
AddSockaddr(hasher, ifit->ifa_dstaddr);
ifit = ifit->ifa_next;
}
freeifaddrs(ifad);
#endif
#ifndef WIN32
// UNIX kernel information
struct utsname name;
if (uname(&name) != -1) {
hasher.Write((const uint8_t *)&name.sysname, strlen(name.sysname) + 1);
hasher.Write((const uint8_t *)&name.nodename,
strlen(name.nodename) + 1);
hasher.Write((const uint8_t *)&name.release, strlen(name.release) + 1);
hasher.Write((const uint8_t *)&name.version, strlen(name.version) + 1);
hasher.Write((const uint8_t *)&name.machine, strlen(name.machine) + 1);
}
/* Path and filesystem provided data */
AddPath(hasher, "/");
AddPath(hasher, ".");
AddPath(hasher, "/tmp");
AddPath(hasher, "/home");
AddPath(hasher, "/proc");
#ifdef __linux__
AddFile(hasher, "/proc/cmdline");
AddFile(hasher, "/proc/cpuinfo");
AddFile(hasher, "/proc/version");
#endif
AddFile(hasher, "/etc/passwd");
AddFile(hasher, "/etc/group");
AddFile(hasher, "/etc/hosts");
AddFile(hasher, "/etc/resolv.conf");
AddFile(hasher, "/etc/timezone");
AddFile(hasher, "/etc/localtime");
#endif
// For MacOS/BSDs, gather data through sysctl instead of /proc. Not all of
// these will exist on every system.
#if HAVE_SYSCTL
#ifdef CTL_HW
#ifdef HW_MACHINE
AddSysctl<CTL_HW, HW_MACHINE>(hasher);
#endif
#ifdef HW_MODEL
AddSysctl<CTL_HW, HW_MODEL>(hasher);
#endif
#ifdef HW_NCPU
AddSysctl<CTL_HW, HW_NCPU>(hasher);
#endif
#ifdef HW_PHYSMEM
AddSysctl<CTL_HW, HW_PHYSMEM>(hasher);
#endif
#ifdef HW_USERMEM
AddSysctl<CTL_HW, HW_USERMEM>(hasher);
#endif
#ifdef HW_MACHINE_ARCH
AddSysctl<CTL_HW, HW_MACHINE_ARCH>(hasher);
#endif
#ifdef HW_REALMEM
AddSysctl<CTL_HW, HW_REALMEM>(hasher);
#endif
#ifdef HW_CPU_FREQ
AddSysctl<CTL_HW, HW_CPU_FREQ>(hasher);
#endif
#ifdef HW_BUS_FREQ
AddSysctl<CTL_HW, HW_BUS_FREQ>(hasher);
#endif
#ifdef HW_CACHELINE
AddSysctl<CTL_HW, HW_CACHELINE>(hasher);
#endif
#endif
#ifdef CTL_KERN
#ifdef KERN_BOOTFILE
AddSysctl<CTL_KERN, KERN_BOOTFILE>(hasher);
#endif
#ifdef KERN_BOOTTIME
AddSysctl<CTL_KERN, KERN_BOOTTIME>(hasher);
#endif
#ifdef KERN_CLOCKRATE
AddSysctl<CTL_KERN, KERN_CLOCKRATE>(hasher);
#endif
#ifdef KERN_HOSTID
AddSysctl<CTL_KERN, KERN_HOSTID>(hasher);
#endif
#ifdef KERN_HOSTUUID
AddSysctl<CTL_KERN, KERN_HOSTUUID>(hasher);
#endif
#ifdef KERN_HOSTNAME
AddSysctl<CTL_KERN, KERN_HOSTNAME>(hasher);
#endif
#ifdef KERN_OSRELDATE
AddSysctl<CTL_KERN, KERN_OSRELDATE>(hasher);
#endif
#ifdef KERN_OSRELEASE
AddSysctl<CTL_KERN, KERN_OSRELEASE>(hasher);
#endif
#ifdef KERN_OSREV
AddSysctl<CTL_KERN, KERN_OSREV>(hasher);
#endif
#ifdef KERN_OSTYPE
AddSysctl<CTL_KERN, KERN_OSTYPE>(hasher);
#endif
#ifdef KERN_POSIX1
AddSysctl<CTL_KERN, KERN_OSREV>(hasher);
#endif
#ifdef KERN_VERSION
AddSysctl<CTL_KERN, KERN_VERSION>(hasher);
#endif
#endif
#endif
// Env variables
if (environ) {
for (size_t i = 0; environ[i]; ++i) {
hasher.Write((const uint8_t *)environ[i], strlen(environ[i]));
}
}
// Process, thread, user, session, group, ... ids.
#ifdef WIN32
hasher << GetCurrentProcessId() << GetCurrentThreadId();
#else
hasher << getpid() << getppid() << getsid(0) << getpgid(0) << getuid()
<< geteuid() << getgid() << getegid();
#endif
hasher << std::this_thread::get_id();
}

File Metadata

Mime Type
text/x-diff
Expires
Thu, May 22, 02:28 (14 h, 6 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5860808
Default Alt Text
(55 KB)

Event Timeline