Page MenuHomePhabricator

key.h
No OneTemporary

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_KEY_H
#define BITCOIN_KEY_H
#include <pubkey.h>
#include <serialize.h>
#include <support/allocators/secure.h>
#include <uint256.h>
#include <stdexcept>
#include <vector>
/**
* secp256k1:
* const unsigned int PRIVATE_KEY_SIZE = 279;
* const unsigned int PUBLIC_KEY_SIZE = 65;
* const unsigned int SIGNATURE_SIZE = 72;
*
* see www.keylength.com
* script supports up to 75 for single byte push
*/
/**
* secure_allocator is defined in allocators.h
* CPrivKey is a serialized private key, with all parameters included (279
* bytes)
*/
typedef std::vector<uint8_t, secure_allocator<uint8_t>> CPrivKey;
/** An encapsulated secp256k1 private key. */
class CKey {
private:
//! Whether this private key is valid. We check for correctness when
//! modifying the key data, so fValid should always correspond to the actual
//! state.
bool fValid;
//! Whether the public key corresponding to this private key is (to be)
//! compressed.
bool fCompressed;
//! The actual byte data
std::vector<uint8_t, secure_allocator<uint8_t>> keydata;
//! Check whether the 32-byte array pointed to by vch is valid keydata.
static bool Check(const uint8_t *vch);
public:
//! Construct an invalid private key.
CKey() : fValid(false), fCompressed(false) {
// Important: vch must be 32 bytes in length to not break serialization
keydata.resize(32);
}
friend bool operator==(const CKey &a, const CKey &b) {
return a.fCompressed == b.fCompressed && a.size() == b.size() &&
memcmp(a.keydata.data(), b.keydata.data(), a.size()) == 0;
}
//! Initialize using begin and end iterators to byte data.
template <typename T>
void Set(const T pbegin, const T pend, bool fCompressedIn) {
if (size_t(pend - pbegin) != keydata.size()) {
fValid = false;
} else if (Check(&pbegin[0])) {
memcpy(keydata.data(), (uint8_t *)&pbegin[0], keydata.size());
fValid = true;
fCompressed = fCompressedIn;
} else {
fValid = false;
}
}
//! Simple read-only vector-like interface.
unsigned int size() const { return (fValid ? keydata.size() : 0); }
const uint8_t *begin() const { return keydata.data(); }
const uint8_t *end() const { return keydata.data() + size(); }
//! Check whether this private key is valid.
bool IsValid() const { return fValid; }
//! Check whether the public key corresponding to this private key is (to
//! be) compressed.
bool IsCompressed() const { return fCompressed; }
//! Generate a new private key using a cryptographic PRNG.
void MakeNewKey(bool fCompressed);
/**
* Convert the private key to a CPrivKey (serialized OpenSSL private key
* data).
* This is expensive.
*/
CPrivKey GetPrivKey() const;
/**
* Compute the public key from a private key.
* This is expensive.
*/
CPubKey GetPubKey() const;
/**
* Create a DER-serialized ECDSA signature.
* The test_case parameter tweaks the deterministic nonce.
*/
bool SignECDSA(const uint256 &hash, std::vector<uint8_t> &vchSig,
uint32_t test_case = 0) const;
/**
* Create a Schnorr signature.
* The test_case parameter tweaks the deterministic nonce.
*/
bool SignSchnorr(const uint256 &hash, std::vector<uint8_t> &vchSig,
uint32_t test_case = 0) const;
/**
* Create a compact ECDSA signature (65 bytes), which allows reconstructing
* the used public key.
* The format is one header byte, followed by two times 32 bytes for the
* serialized r and s values.
* The header byte: 0x1B = first key with even y, 0x1C = first key with odd
* y,
* 0x1D = second key with even y, 0x1E = second key with
* odd y,
* add 0x04 for compressed keys.
*/
bool SignCompact(const uint256 &hash, std::vector<uint8_t> &vchSig) const;
//! Derive BIP32 child key.
bool Derive(CKey &keyChild, ChainCode &ccChild, unsigned int nChild,
const ChainCode &cc) const;
/**
* Verify thoroughly whether a private key and a public key match.
* This is done using a different mechanism than just regenerating it.
* (An ECDSA signature is created then verified.)
*/
bool VerifyPubKey(const CPubKey &vchPubKey) const;
//! Load private key and check that public key matches.
bool Load(const CPrivKey &privkey, const CPubKey &vchPubKey,
bool fSkipCheck);
};
struct CExtKey {
uint8_t nDepth;
uint8_t vchFingerprint[4];
unsigned int nChild;
ChainCode chaincode;
CKey key;
friend bool operator==(const CExtKey &a, const CExtKey &b) {
return a.nDepth == b.nDepth &&
memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0],
sizeof(vchFingerprint)) == 0 &&
a.nChild == b.nChild && a.chaincode == b.chaincode &&
a.key == b.key;
}
void Encode(uint8_t code[BIP32_EXTKEY_SIZE]) const;
void Decode(const uint8_t code[BIP32_EXTKEY_SIZE]);
bool Derive(CExtKey &out, unsigned int nChild) const;
CExtPubKey Neuter() const;
void SetMaster(const uint8_t *seed, unsigned int nSeedLen);
template <typename Stream> void Serialize(Stream &s) const {
unsigned int len = BIP32_EXTKEY_SIZE;
::WriteCompactSize(s, len);
uint8_t code[BIP32_EXTKEY_SIZE];
Encode(code);
s.write((const char *)&code[0], len);
}
template <typename Stream> void Unserialize(Stream &s) {
unsigned int len = ::ReadCompactSize(s);
if (len != BIP32_EXTKEY_SIZE) {
throw std::runtime_error("Invalid extended key size\n");
}
uint8_t code[BIP32_EXTKEY_SIZE];
s.read((char *)&code[0], len);
Decode(code);
}
};
/**
* Initialize the elliptic curve support. May not be called twice without
* calling ECC_Stop first.
*/
void ECC_Start(void);
/**
* Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called
* first.
*/
void ECC_Stop(void);
/** Check that required EC support is available at runtime. */
bool ECC_InitSanityCheck(void);
#endif // BITCOIN_KEY_H

File Metadata

Mime Type
text/x-c++
Expires
Mon, Nov 25, 07:58 (1 d, 17 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4538937
Default Alt Text
key.h (6 KB)

Event Timeline