Page MenuHomePhabricator

blockencodings.cpp
No OneTemporary

blockencodings.cpp

// Copyright (c) 2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "blockencodings.h"
#include "chainparams.h"
#include "config.h"
#include "consensus/consensus.h"
#include "consensus/validation.h"
#include "hash.h"
#include "random.h"
#include "streams.h"
#include "txmempool.h"
#include "util.h"
#include "validation.h"
#include <unordered_map>
CBlockHeaderAndShortTxIDs::CBlockHeaderAndShortTxIDs(const CBlock &block)
: nonce(GetRand(std::numeric_limits<uint64_t>::max())),
shorttxids(block.vtx.size() - 1), prefilledtxn(1), header(block) {
FillShortTxIDSelector();
// TODO: Use our mempool prior to block acceptance to predictively fill more
// than just the coinbase.
prefilledtxn[0] = {0, block.vtx[0]};
for (size_t i = 1; i < block.vtx.size(); i++) {
const CTransaction &tx = *block.vtx[i];
shorttxids[i - 1] = GetShortID(tx.GetHash());
}
}
void CBlockHeaderAndShortTxIDs::FillShortTxIDSelector() const {
CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
stream << header << nonce;
CSHA256 hasher;
hasher.Write((uint8_t *)&(*stream.begin()), stream.end() - stream.begin());
uint256 shorttxidhash;
hasher.Finalize(shorttxidhash.begin());
shorttxidk0 = shorttxidhash.GetUint64(0);
shorttxidk1 = shorttxidhash.GetUint64(1);
}
uint64_t CBlockHeaderAndShortTxIDs::GetShortID(const uint256 &txhash) const {
static_assert(SHORTTXIDS_LENGTH == 6,
"shorttxids calculation assumes 6-byte shorttxids");
return SipHashUint256(shorttxidk0, shorttxidk1, txhash) & 0xffffffffffffL;
}
ReadStatus PartiallyDownloadedBlock::InitData(
const CBlockHeaderAndShortTxIDs &cmpctblock,
const std::vector<std::pair<uint256, CTransactionRef>> &extra_txn) {
if (cmpctblock.header.IsNull() ||
(cmpctblock.shorttxids.empty() && cmpctblock.prefilledtxn.empty()))
return READ_STATUS_INVALID;
if (cmpctblock.shorttxids.size() + cmpctblock.prefilledtxn.size() >
config->GetMaxBlockSize() / MIN_TRANSACTION_SIZE)
return READ_STATUS_INVALID;
assert(header.IsNull() && txn_available.empty());
header = cmpctblock.header;
txn_available.resize(cmpctblock.BlockTxCount());
int32_t lastprefilledindex = -1;
for (size_t i = 0; i < cmpctblock.prefilledtxn.size(); i++) {
if (cmpctblock.prefilledtxn[i].tx->IsNull()) return READ_STATUS_INVALID;
// index is a uint16_t, so can't overflow here.
lastprefilledindex += cmpctblock.prefilledtxn[i].index + 1;
if (lastprefilledindex > std::numeric_limits<uint16_t>::max())
return READ_STATUS_INVALID;
if ((uint32_t)lastprefilledindex > cmpctblock.shorttxids.size() + i) {
// If we are inserting a tx at an index greater than our full list
// of shorttxids plus the number of prefilled txn we've inserted,
// then we have txn for which we have neither a prefilled txn or a
// shorttxid!
return READ_STATUS_INVALID;
}
txn_available[lastprefilledindex] = cmpctblock.prefilledtxn[i].tx;
}
prefilled_count = cmpctblock.prefilledtxn.size();
// Calculate map of txids -> positions and check mempool to see what we have
// (or don't). Because well-formed cmpctblock messages will have a
// (relatively) uniform distribution of short IDs, any highly-uneven
// distribution of elements can be safely treated as a READ_STATUS_FAILED.
std::unordered_map<uint64_t, uint16_t> shorttxids(
cmpctblock.shorttxids.size());
uint16_t index_offset = 0;
for (size_t i = 0; i < cmpctblock.shorttxids.size(); i++) {
while (txn_available[i + index_offset])
index_offset++;
shorttxids[cmpctblock.shorttxids[i]] = i + index_offset;
// To determine the chance that the number of entries in a bucket
// exceeds N, we use the fact that the number of elements in a single
// bucket is binomially distributed (with n = the number of shorttxids
// S, and p = 1 / the number of buckets), that in the worst case the
// number of buckets is equal to S (due to std::unordered_map having a
// default load factor of 1.0), and that the chance for any bucket to
// exceed N elements is at most buckets * (the chance that any given
// bucket is above N elements). Thus: P(max_elements_per_bucket > N) <=
// S * (1 - cdf(binomial(n=S,p=1/S), N)). If we assume blocks of up to
// 16000, allowing 12 elements per bucket should only fail once per ~1
// million block transfers (per peer and connection).
if (shorttxids.bucket_size(
shorttxids.bucket(cmpctblock.shorttxids[i])) > 12)
return READ_STATUS_FAILED;
}
// TODO: in the shortid-collision case, we should instead request both
// transactions which collided. Falling back to full-block-request here is
// overkill.
if (shorttxids.size() != cmpctblock.shorttxids.size()) {
// Short ID collision
return READ_STATUS_FAILED;
}
std::vector<bool> have_txn(txn_available.size());
{
LOCK(pool->cs);
const std::vector<std::pair<uint256, CTxMemPool::txiter>> &vTxHashes =
pool->vTxHashes;
for (size_t i = 0; i < vTxHashes.size(); i++) {
uint64_t shortid = cmpctblock.GetShortID(vTxHashes[i].first);
std::unordered_map<uint64_t, uint16_t>::iterator idit =
shorttxids.find(shortid);
if (idit != shorttxids.end()) {
if (!have_txn[idit->second]) {
txn_available[idit->second] =
vTxHashes[i].second->GetSharedTx();
have_txn[idit->second] = true;
mempool_count++;
} else {
// If we find two mempool txn that match the short id, just
// request it. This should be rare enough that the extra
// bandwidth doesn't matter, but eating a round-trip due to
// FillBlock failure would be annoying.
if (txn_available[idit->second]) {
txn_available[idit->second].reset();
mempool_count--;
}
}
}
// Though ideally we'd continue scanning for the
// two-txn-match-shortid case, the performance win of an early exit
// here is too good to pass up and worth the extra risk.
if (mempool_count == shorttxids.size()) break;
}
}
for (size_t i = 0; i < extra_txn.size(); i++) {
uint64_t shortid = cmpctblock.GetShortID(extra_txn[i].first);
std::unordered_map<uint64_t, uint16_t>::iterator idit =
shorttxids.find(shortid);
if (idit != shorttxids.end()) {
if (!have_txn[idit->second]) {
txn_available[idit->second] = extra_txn[i].second;
have_txn[idit->second] = true;
mempool_count++;
extra_count++;
} else {
// If we find two mempool/extra txn that match the short id,
// just request it. This should be rare enough that the extra
// bandwidth doesn't matter, but eating a round-trip due to
// FillBlock failure would be annoying. Note that we dont want
// duplication between extra_txn and mempool to trigger this
// case, so we compare hashes first.
if (txn_available[idit->second] &&
txn_available[idit->second]->GetHash() !=
extra_txn[i].second->GetHash()) {
txn_available[idit->second].reset();
mempool_count--;
extra_count--;
}
}
}
// Though ideally we'd continue scanning for the two-txn-match-shortid
// case, the performance win of an early exit here is too good to pass
// up and worth the extra risk.
if (mempool_count == shorttxids.size()) break;
}
LogPrint(BCLog::CMPCTBLOCK, "Initialized PartiallyDownloadedBlock for "
"block %s using a cmpctblock of size %lu\n",
cmpctblock.header.GetHash().ToString(),
GetSerializeSize(cmpctblock, SER_NETWORK, PROTOCOL_VERSION));
return READ_STATUS_OK;
}
bool PartiallyDownloadedBlock::IsTxAvailable(size_t index) const {
assert(!header.IsNull());
assert(index < txn_available.size());
return txn_available[index] ? true : false;
}
ReadStatus PartiallyDownloadedBlock::FillBlock(
CBlock &block, const std::vector<CTransactionRef> &vtx_missing) {
assert(!header.IsNull());
uint256 hash = header.GetHash();
block = header;
block.vtx.resize(txn_available.size());
size_t tx_missing_offset = 0;
for (size_t i = 0; i < txn_available.size(); i++) {
if (!txn_available[i]) {
if (vtx_missing.size() <= tx_missing_offset)
return READ_STATUS_INVALID;
block.vtx[i] = vtx_missing[tx_missing_offset++];
} else
block.vtx[i] = std::move(txn_available[i]);
}
// Make sure we can't call FillBlock again.
header.SetNull();
txn_available.clear();
if (vtx_missing.size() != tx_missing_offset) return READ_STATUS_INVALID;
CValidationState state;
if (!CheckBlock(*config, block, state)) {
// TODO: We really want to just check merkle tree manually here, but
// that is expensive, and CheckBlock caches a block's "checked-status"
// (in the CBlock?). CBlock should be able to check its own merkle root
// and cache that check.
if (state.CorruptionPossible()) {
// Possible Short ID collision.
return READ_STATUS_FAILED;
}
return READ_STATUS_CHECKBLOCK_FAILED;
}
LogPrint(BCLog::CMPCTBLOCK, "Successfully reconstructed block %s with %lu "
"txn prefilled, %lu txn from mempool (incl at "
"least %lu from extra pool) and %lu txn "
"requested\n",
hash.ToString(), prefilled_count, mempool_count, extra_count,
vtx_missing.size());
if (vtx_missing.size() < 5) {
for (const auto &tx : vtx_missing) {
LogPrint(BCLog::CMPCTBLOCK,
"Reconstructed block %s required tx %s\n", hash.ToString(),
tx->GetId().ToString());
}
}
return READ_STATUS_OK;
}

File Metadata

Mime Type
text/x-c
Expires
Fri, Feb 7, 17:12 (1 d, 21 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5082756
Default Alt Text
blockencodings.cpp (10 KB)

Event Timeline