Page MenuHomePhabricator

No OneTemporary

diff --git a/src/secp256k1/include/secp256k1_extrakeys.h b/src/secp256k1/include/secp256k1_extrakeys.h
index 0c5dff2c9..6fc7b290f 100644
--- a/src/secp256k1/include/secp256k1_extrakeys.h
+++ b/src/secp256k1/include/secp256k1_extrakeys.h
@@ -1,236 +1,249 @@
#ifndef SECP256K1_EXTRAKEYS_H
#define SECP256K1_EXTRAKEYS_H
#include "secp256k1.h"
#ifdef __cplusplus
extern "C" {
#endif
/** Opaque data structure that holds a parsed and valid "x-only" public key.
* An x-only pubkey encodes a point whose Y coordinate is even. It is
* serialized using only its X coordinate (32 bytes). See BIP-340 for more
* information about x-only pubkeys.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage, transmission, or
* comparison, use secp256k1_xonly_pubkey_serialize and
* secp256k1_xonly_pubkey_parse.
*/
typedef struct {
unsigned char data[64];
} secp256k1_xonly_pubkey;
/** Opaque data structure that holds a keypair consisting of a secret and a
* public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 96 bytes in size, and can be safely copied/moved.
*/
typedef struct {
unsigned char data[96];
} secp256k1_keypair;
/** Parse a 32-byte sequence into a xonly_pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
*
* Args: ctx: a secp256k1 context object (cannot be NULL).
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, it's set to an invalid value.
* (cannot be NULL).
* In: input32: pointer to a serialized xonly_pubkey (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_parse(
const secp256k1_context* ctx,
secp256k1_xonly_pubkey* pubkey,
const unsigned char *input32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an xonly_pubkey object into a 32-byte sequence.
*
* Returns: 1 always.
*
* Args: ctx: a secp256k1 context object (cannot be NULL).
* Out: output32: a pointer to a 32-byte array to place the serialized key in
* (cannot be NULL).
* In: pubkey: a pointer to a secp256k1_xonly_pubkey containing an
* initialized public key (cannot be NULL).
*/
SECP256K1_API int secp256k1_xonly_pubkey_serialize(
const secp256k1_context* ctx,
unsigned char *output32,
const secp256k1_xonly_pubkey* pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Converts a secp256k1_pubkey into a secp256k1_xonly_pubkey.
*
* Returns: 1 if the public key was successfully converted
* 0 otherwise
*
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: xonly_pubkey: pointer to an x-only public key object for placing the
* converted public key (cannot be NULL)
* pk_parity: pointer to an integer that will be set to 1 if the point
* encoded by xonly_pubkey is the negation of the pubkey and
* set to 0 otherwise. (can be NULL)
* In: pubkey: pointer to a public key that is converted (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_from_pubkey(
const secp256k1_context* ctx,
secp256k1_xonly_pubkey *xonly_pubkey,
int *pk_parity,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Tweak an x-only public key by adding the generator multiplied with tweak32
* to it.
*
* Note that the resulting point can not in general be represented by an x-only
* pubkey because it may have an odd Y coordinate. Instead, the output_pubkey
* is a normal secp256k1_pubkey.
*
* Returns: 0 if the arguments are invalid or the resulting public key would be
* invalid (only when the tweak is the negation of the corresponding
* secret key). 1 otherwise.
*
* Args: ctx: pointer to a context object initialized for verification
* (cannot be NULL)
* Out: output_pubkey: pointer to a public key to store the result. Will be set
* to an invalid value if this function returns 0 (cannot
* be NULL)
* In: internal_pubkey: pointer to an x-only pubkey to apply the tweak to.
* (cannot be NULL).
* tweak32: pointer to a 32-byte tweak. If the tweak is invalid
* according to secp256k1_ec_seckey_verify, this function
* returns 0. For uniformly random 32-byte arrays the
* chance of being invalid is negligible (around 1 in
* 2^128) (cannot be NULL).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add(
const secp256k1_context* ctx,
secp256k1_pubkey *output_pubkey,
const secp256k1_xonly_pubkey *internal_pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Checks that a tweaked pubkey is the result of calling
* secp256k1_xonly_pubkey_tweak_add with internal_pubkey and tweak32.
*
* The tweaked pubkey is represented by its 32-byte x-only serialization and
* its pk_parity, which can both be obtained by converting the result of
* tweak_add to a secp256k1_xonly_pubkey.
*
* Note that this alone does _not_ verify that the tweaked pubkey is a
* commitment. If the tweak is not chosen in a specific way, the tweaked pubkey
* can easily be the result of a different internal_pubkey and tweak.
*
* Returns: 0 if the arguments are invalid or the tweaked pubkey is not the
* result of tweaking the internal_pubkey with tweak32. 1 otherwise.
* Args: ctx: pointer to a context object initialized for verification
* (cannot be NULL)
* In: tweaked_pubkey32: pointer to a serialized xonly_pubkey (cannot be NULL)
* tweaked_pk_parity: the parity of the tweaked pubkey (whose serialization
* is passed in as tweaked_pubkey32). This must match the
* pk_parity value that is returned when calling
* secp256k1_xonly_pubkey with the tweaked pubkey, or
* this function will fail.
* internal_pubkey: pointer to an x-only public key object to apply the
* tweak to (cannot be NULL)
* tweak32: pointer to a 32-byte tweak (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_xonly_pubkey_tweak_add_check(
const secp256k1_context* ctx,
const unsigned char *tweaked_pubkey32,
int tweaked_pk_parity,
const secp256k1_xonly_pubkey *internal_pubkey,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Compute the keypair for a secret key.
*
* Returns: 1: secret was valid, keypair is ready to use
* 0: secret was invalid, try again with a different secret
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: keypair: pointer to the created keypair (cannot be NULL)
* In: seckey: pointer to a 32-byte secret key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_create(
const secp256k1_context* ctx,
secp256k1_keypair *keypair,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+/** Get the secret key from a keypair.
+ *
+ * Returns: 0 if the arguments are invalid. 1 otherwise.
+ * Args: ctx: pointer to a context object (cannot be NULL)
+ * Out: seckey: pointer to a 32-byte buffer for the secret key (cannot be NULL)
+ * In: keypair: pointer to a keypair (cannot be NULL)
+ */
+SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_sec(
+ const secp256k1_context* ctx,
+ unsigned char *seckey,
+ const secp256k1_keypair *keypair
+) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
+
/** Get the public key from a keypair.
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to
* the keypair public key. If not, it's set to an invalid value.
* (cannot be NULL)
* In: keypair: pointer to a keypair (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_pub(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Get the x-only public key from a keypair.
*
* This is the same as calling secp256k1_keypair_pub and then
* secp256k1_xonly_pubkey_from_pubkey.
*
* Returns: 0 if the arguments are invalid. 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: pubkey: pointer to an xonly_pubkey object. If 1 is returned, it is set
* to the keypair public key after converting it to an
* xonly_pubkey. If not, it's set to an invalid value (cannot be
* NULL).
* pk_parity: pointer to an integer that will be set to the pk_parity
* argument of secp256k1_xonly_pubkey_from_pubkey (can be NULL).
* In: keypair: pointer to a keypair (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_pub(
const secp256k1_context* ctx,
secp256k1_xonly_pubkey *pubkey,
int *pk_parity,
const secp256k1_keypair *keypair
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Tweak a keypair by adding tweak32 to the secret key and updating the public
* key accordingly.
*
* Calling this function and then secp256k1_keypair_pub results in the same
* public key as calling secp256k1_keypair_xonly_pub and then
* secp256k1_xonly_pubkey_tweak_add.
*
* Returns: 0 if the arguments are invalid or the resulting keypair would be
* invalid (only when the tweak is the negation of the keypair's
* secret key). 1 otherwise.
*
* Args: ctx: pointer to a context object initialized for verification
* (cannot be NULL)
* In/Out: keypair: pointer to a keypair to apply the tweak to. Will be set to
* an invalid value if this function returns 0 (cannot be
* NULL).
* In: tweak32: pointer to a 32-byte tweak. If the tweak is invalid according
* to secp256k1_ec_seckey_verify, this function returns 0. For
* uniformly random 32-byte arrays the chance of being invalid
* is negligible (around 1 in 2^128) (cannot be NULL).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_keypair_xonly_tweak_add(
const secp256k1_context* ctx,
secp256k1_keypair *keypair,
const unsigned char *tweak32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif /* SECP256K1_EXTRAKEYS_H */
diff --git a/src/secp256k1/src/modules/extrakeys/main_impl.h b/src/secp256k1/src/modules/extrakeys/main_impl.h
index e8beaa3f1..81be7e7d5 100644
--- a/src/secp256k1/src/modules/extrakeys/main_impl.h
+++ b/src/secp256k1/src/modules/extrakeys/main_impl.h
@@ -1,251 +1,261 @@
/***********************************************************************
* Copyright (c) 2020 Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef _SECP256K1_MODULE_EXTRAKEYS_MAIN_
#define _SECP256K1_MODULE_EXTRAKEYS_MAIN_
#include "include/secp256k1.h"
#include "include/secp256k1_extrakeys.h"
static SECP256K1_INLINE int secp256k1_xonly_pubkey_load(const secp256k1_context* ctx, secp256k1_ge *ge, const secp256k1_xonly_pubkey *pubkey) {
return secp256k1_pubkey_load(ctx, ge, (const secp256k1_pubkey *) pubkey);
}
static SECP256K1_INLINE void secp256k1_xonly_pubkey_save(secp256k1_xonly_pubkey *pubkey, secp256k1_ge *ge) {
secp256k1_pubkey_save((secp256k1_pubkey *) pubkey, ge);
}
int secp256k1_xonly_pubkey_parse(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, const unsigned char *input32) {
secp256k1_ge pk;
secp256k1_fe x;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(input32 != NULL);
if (!secp256k1_fe_set_b32(&x, input32)) {
return 0;
}
if (!secp256k1_ge_set_xo_var(&pk, &x, 0)) {
return 0;
}
if (!secp256k1_ge_is_in_correct_subgroup(&pk)) {
return 0;
}
secp256k1_xonly_pubkey_save(pubkey, &pk);
return 1;
}
int secp256k1_xonly_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output32, const secp256k1_xonly_pubkey *pubkey) {
secp256k1_ge pk;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output32 != NULL);
memset(output32, 0, 32);
ARG_CHECK(pubkey != NULL);
if (!secp256k1_xonly_pubkey_load(ctx, &pk, pubkey)) {
return 0;
}
secp256k1_fe_get_b32(output32, &pk.x);
return 1;
}
/** Keeps a group element as is if it has an even Y and otherwise negates it.
* y_parity is set to 0 in the former case and to 1 in the latter case.
* Requires that the coordinates of r are normalized. */
static int secp256k1_extrakeys_ge_even_y(secp256k1_ge *r) {
int y_parity = 0;
VERIFY_CHECK(!secp256k1_ge_is_infinity(r));
if (secp256k1_fe_is_odd(&r->y)) {
secp256k1_fe_negate(&r->y, &r->y, 1);
y_parity = 1;
}
return y_parity;
}
int secp256k1_xonly_pubkey_from_pubkey(const secp256k1_context* ctx, secp256k1_xonly_pubkey *xonly_pubkey, int *pk_parity, const secp256k1_pubkey *pubkey) {
secp256k1_ge pk;
int tmp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(xonly_pubkey != NULL);
ARG_CHECK(pubkey != NULL);
if (!secp256k1_pubkey_load(ctx, &pk, pubkey)) {
return 0;
}
tmp = secp256k1_extrakeys_ge_even_y(&pk);
if (pk_parity != NULL) {
*pk_parity = tmp;
}
secp256k1_xonly_pubkey_save(xonly_pubkey, &pk);
return 1;
}
int secp256k1_xonly_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *output_pubkey, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) {
secp256k1_ge pk;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output_pubkey != NULL);
memset(output_pubkey, 0, sizeof(*output_pubkey));
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(internal_pubkey != NULL);
ARG_CHECK(tweak32 != NULL);
if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey)
|| !secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32)) {
return 0;
}
secp256k1_pubkey_save(output_pubkey, &pk);
return 1;
}
int secp256k1_xonly_pubkey_tweak_add_check(const secp256k1_context* ctx, const unsigned char *tweaked_pubkey32, int tweaked_pk_parity, const secp256k1_xonly_pubkey *internal_pubkey, const unsigned char *tweak32) {
secp256k1_ge pk;
unsigned char pk_expected32[32];
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(internal_pubkey != NULL);
ARG_CHECK(tweaked_pubkey32 != NULL);
ARG_CHECK(tweak32 != NULL);
if (!secp256k1_xonly_pubkey_load(ctx, &pk, internal_pubkey)
|| !secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32)) {
return 0;
}
secp256k1_fe_normalize_var(&pk.x);
secp256k1_fe_normalize_var(&pk.y);
secp256k1_fe_get_b32(pk_expected32, &pk.x);
return secp256k1_memcmp_var(&pk_expected32, tweaked_pubkey32, 32) == 0
&& secp256k1_fe_is_odd(&pk.y) == tweaked_pk_parity;
}
static void secp256k1_keypair_save(secp256k1_keypair *keypair, const secp256k1_scalar *sk, secp256k1_ge *pk) {
secp256k1_scalar_get_b32(&keypair->data[0], sk);
secp256k1_pubkey_save((secp256k1_pubkey *)&keypair->data[32], pk);
}
static int secp256k1_keypair_seckey_load(const secp256k1_context* ctx, secp256k1_scalar *sk, const secp256k1_keypair *keypair) {
int ret;
ret = secp256k1_scalar_set_b32_seckey(sk, &keypair->data[0]);
/* We can declassify ret here because sk is only zero if a keypair function
* failed (which zeroes the keypair) and its return value is ignored. */
secp256k1_declassify(ctx, &ret, sizeof(ret));
ARG_CHECK(ret);
return ret;
}
/* Load a keypair into pk and sk (if non-NULL). This function declassifies pk
* and ARG_CHECKs that the keypair is not invalid. It always initializes sk and
* pk with dummy values. */
static int secp256k1_keypair_load(const secp256k1_context* ctx, secp256k1_scalar *sk, secp256k1_ge *pk, const secp256k1_keypair *keypair) {
int ret;
const secp256k1_pubkey *pubkey = (const secp256k1_pubkey *)&keypair->data[32];
/* Need to declassify the pubkey because pubkey_load ARG_CHECKs if it's
* invalid. */
secp256k1_declassify(ctx, pubkey, sizeof(*pubkey));
ret = secp256k1_pubkey_load(ctx, pk, pubkey);
if (sk != NULL) {
ret = ret && secp256k1_keypair_seckey_load(ctx, sk, keypair);
}
if (!ret) {
*pk = secp256k1_ge_const_g;
if (sk != NULL) {
*sk = secp256k1_scalar_one;
}
}
return ret;
}
int secp256k1_keypair_create(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *seckey32) {
secp256k1_scalar sk;
secp256k1_ge pk;
int ret = 0;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(keypair != NULL);
memset(keypair, 0, sizeof(*keypair));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey32 != NULL);
ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &sk, &pk, seckey32);
secp256k1_keypair_save(keypair, &sk, &pk);
secp256k1_memczero(keypair, sizeof(*keypair), !ret);
secp256k1_scalar_clear(&sk);
return ret;
}
+int secp256k1_keypair_sec(const secp256k1_context* ctx, unsigned char *seckey, const secp256k1_keypair *keypair) {
+ VERIFY_CHECK(ctx != NULL);
+ ARG_CHECK(seckey != NULL);
+ memset(seckey, 0, 32);
+ ARG_CHECK(keypair != NULL);
+
+ memcpy(seckey, &keypair->data[0], 32);
+ return 1;
+}
+
int secp256k1_keypair_pub(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const secp256k1_keypair *keypair) {
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(keypair != NULL);
memcpy(pubkey->data, &keypair->data[32], sizeof(*pubkey));
return 1;
}
int secp256k1_keypair_xonly_pub(const secp256k1_context* ctx, secp256k1_xonly_pubkey *pubkey, int *pk_parity, const secp256k1_keypair *keypair) {
secp256k1_ge pk;
int tmp;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
memset(pubkey, 0, sizeof(*pubkey));
ARG_CHECK(keypair != NULL);
if (!secp256k1_keypair_load(ctx, NULL, &pk, keypair)) {
return 0;
}
tmp = secp256k1_extrakeys_ge_even_y(&pk);
if (pk_parity != NULL) {
*pk_parity = tmp;
}
secp256k1_xonly_pubkey_save(pubkey, &pk);
return 1;
}
int secp256k1_keypair_xonly_tweak_add(const secp256k1_context* ctx, secp256k1_keypair *keypair, const unsigned char *tweak32) {
secp256k1_ge pk;
secp256k1_scalar sk;
int y_parity;
int ret;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(keypair != NULL);
ARG_CHECK(tweak32 != NULL);
ret = secp256k1_keypair_load(ctx, &sk, &pk, keypair);
memset(keypair, 0, sizeof(*keypair));
y_parity = secp256k1_extrakeys_ge_even_y(&pk);
if (y_parity == 1) {
secp256k1_scalar_negate(&sk, &sk);
}
ret &= secp256k1_ec_seckey_tweak_add_helper(&sk, tweak32);
ret &= secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &pk, tweak32);
secp256k1_declassify(ctx, &ret, sizeof(ret));
if (ret) {
secp256k1_keypair_save(keypair, &sk, &pk);
}
secp256k1_scalar_clear(&sk);
return ret;
}
#endif
diff --git a/src/secp256k1/src/modules/extrakeys/tests_impl.h b/src/secp256k1/src/modules/extrakeys/tests_impl.h
index 5b15968d8..880543195 100644
--- a/src/secp256k1/src/modules/extrakeys/tests_impl.h
+++ b/src/secp256k1/src/modules/extrakeys/tests_impl.h
@@ -1,524 +1,549 @@
/***********************************************************************
* Copyright (c) 2020 Jonas Nick *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef _SECP256K1_MODULE_EXTRAKEYS_TESTS_
#define _SECP256K1_MODULE_EXTRAKEYS_TESTS_
#include "secp256k1_extrakeys.h"
static secp256k1_context* api_test_context(int flags, int *ecount) {
secp256k1_context *ctx0 = secp256k1_context_create(flags);
secp256k1_context_set_error_callback(ctx0, counting_illegal_callback_fn, ecount);
secp256k1_context_set_illegal_callback(ctx0, counting_illegal_callback_fn, ecount);
return ctx0;
}
void test_xonly_pubkey(void) {
secp256k1_pubkey pk;
secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
secp256k1_ge pk1;
secp256k1_ge pk2;
secp256k1_fe y;
unsigned char sk[32];
unsigned char xy_sk[32];
unsigned char buf32[32];
unsigned char ones32[32];
unsigned char zeros64[64] = { 0 };
int pk_parity;
int i;
int ecount;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
secp256k1_testrand256(sk);
memset(ones32, 0xFF, 32);
secp256k1_testrand256(xy_sk);
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
/* Test xonly_pubkey_from_pubkey */
ecount = 0;
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(sign, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, NULL, &pk_parity, &pk) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, NULL) == 0);
CHECK(ecount == 2);
memset(&pk, 0, sizeof(pk));
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 0);
CHECK(ecount == 3);
/* Choose a secret key such that the resulting pubkey and xonly_pubkey match. */
memset(sk, 0, sizeof(sk));
sk[0] = 1;
CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_memcmp_var(&pk, &xonly_pk, sizeof(pk)) == 0);
CHECK(pk_parity == 0);
/* Choose a secret key such that pubkey and xonly_pubkey are each others
* negation. */
sk[0] = 2;
CHECK(secp256k1_ec_pubkey_create(ctx, &pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_memcmp_var(&xonly_pk, &pk, sizeof(xonly_pk)) != 0);
CHECK(pk_parity == 1);
secp256k1_pubkey_load(ctx, &pk1, &pk);
secp256k1_pubkey_load(ctx, &pk2, (secp256k1_pubkey *) &xonly_pk);
CHECK(secp256k1_fe_equal(&pk1.x, &pk2.x) == 1);
secp256k1_fe_negate(&y, &pk2.y, 1);
CHECK(secp256k1_fe_equal(&pk1.y, &y) == 1);
/* Test xonly_pubkey_serialize and xonly_pubkey_parse */
ecount = 0;
CHECK(secp256k1_xonly_pubkey_serialize(none, NULL, &xonly_pk) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, NULL) == 0);
CHECK(secp256k1_memcmp_var(buf32, zeros64, 32) == 0);
CHECK(ecount == 2);
{
/* A pubkey filled with 0s will fail to serialize due to pubkey_load
* special casing. */
secp256k1_xonly_pubkey pk_tmp;
memset(&pk_tmp, 0, sizeof(pk_tmp));
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &pk_tmp) == 0);
}
/* pubkey_load called illegal callback */
CHECK(ecount == 3);
CHECK(secp256k1_xonly_pubkey_serialize(none, buf32, &xonly_pk) == 1);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_parse(none, NULL, buf32) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, NULL) == 0);
CHECK(ecount == 2);
/* Serialization and parse roundtrip */
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, NULL, &pk) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk_tmp, buf32) == 1);
CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(xonly_pk)) == 0);
/* Test parsing invalid field elements */
memset(&xonly_pk, 1, sizeof(xonly_pk));
/* Overflowing field element */
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, ones32) == 0);
CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
memset(&xonly_pk, 1, sizeof(xonly_pk));
/* There's no point with x-coordinate 0 on secp256k1 */
CHECK(secp256k1_xonly_pubkey_parse(none, &xonly_pk, zeros64) == 0);
CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
/* If a random 32-byte string can not be parsed with ec_pubkey_parse
* (because interpreted as X coordinate it does not correspond to a point on
* the curve) then xonly_pubkey_parse should fail as well. */
for (i = 0; i < count; i++) {
unsigned char rand33[33];
secp256k1_testrand256(&rand33[1]);
rand33[0] = SECP256K1_TAG_PUBKEY_EVEN;
if (!secp256k1_ec_pubkey_parse(ctx, &pk, rand33, 33)) {
memset(&xonly_pk, 1, sizeof(xonly_pk));
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 0);
CHECK(secp256k1_memcmp_var(&xonly_pk, zeros64, sizeof(xonly_pk)) == 0);
} else {
CHECK(secp256k1_xonly_pubkey_parse(ctx, &xonly_pk, &rand33[1]) == 1);
}
}
CHECK(ecount == 2);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
void test_xonly_pubkey_tweak(void) {
unsigned char zeros64[64] = { 0 };
unsigned char overflows[32];
unsigned char sk[32];
secp256k1_pubkey internal_pk;
secp256k1_xonly_pubkey internal_xonly_pk;
secp256k1_pubkey output_pk;
int pk_parity;
unsigned char tweak[32];
int i;
int ecount;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
memset(overflows, 0xff, sizeof(overflows));
secp256k1_testrand256(tweak);
secp256k1_testrand256(sk);
CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_tweak_add(none, &output_pk, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(sign, &output_pk, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, NULL, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, NULL, tweak) == 0);
CHECK(ecount == 4);
/* NULL internal_xonly_pk zeroes the output_pk */
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, NULL) == 0);
CHECK(ecount == 5);
/* NULL tweak zeroes the output_pk */
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
/* Invalid tweak zeroes the output_pk */
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, overflows) == 0);
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
/* A zero tweak is fine */
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, zeros64) == 1);
/* Fails if the resulting key was infinity */
for (i = 0; i < count; i++) {
secp256k1_scalar scalar_tweak;
/* Because sk may be negated before adding, we need to try with tweak =
* sk as well as tweak = -sk. */
secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL);
secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak);
secp256k1_scalar_get_b32(tweak, &scalar_tweak);
CHECK((secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, sk) == 0)
|| (secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0));
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
}
/* Invalid pk with a valid tweak */
memset(&internal_xonly_pk, 0, sizeof(internal_xonly_pk));
secp256k1_testrand256(tweak);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
void test_xonly_pubkey_tweak_check(void) {
unsigned char zeros64[64] = { 0 };
unsigned char overflows[32];
unsigned char sk[32];
secp256k1_pubkey internal_pk;
secp256k1_xonly_pubkey internal_xonly_pk;
secp256k1_pubkey output_pk;
secp256k1_xonly_pubkey output_xonly_pk;
unsigned char output_pk32[32];
unsigned char buf32[32];
int pk_parity;
unsigned char tweak[32];
int ecount;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
memset(overflows, 0xff, sizeof(overflows));
secp256k1_testrand256(tweak);
secp256k1_testrand256(sk);
CHECK(secp256k1_ec_pubkey_create(ctx, &internal_pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &internal_xonly_pk, &pk_parity, &internal_pk) == 1);
ecount = 0;
CHECK(secp256k1_xonly_pubkey_tweak_add(verify, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(verify, &output_xonly_pk, &pk_parity, &output_pk) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &output_xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(none, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(sign, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, NULL, pk_parity, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 3);
/* invalid pk_parity value */
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, 2, &internal_xonly_pk, tweak) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, NULL, tweak) == 0);
CHECK(ecount == 4);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(verify, buf32, pk_parity, &internal_xonly_pk, NULL) == 0);
CHECK(ecount == 5);
memset(tweak, 1, sizeof(tweak));
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &internal_xonly_pk, NULL, &internal_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, tweak) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &output_xonly_pk, &pk_parity, &output_pk) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, output_pk32, &output_xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, tweak) == 1);
/* Wrong pk_parity */
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, !pk_parity, &internal_xonly_pk, tweak) == 0);
/* Wrong public key */
CHECK(secp256k1_xonly_pubkey_serialize(ctx, buf32, &internal_xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, buf32, pk_parity, &internal_xonly_pk, tweak) == 0);
/* Overflowing tweak not allowed */
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, output_pk32, pk_parity, &internal_xonly_pk, overflows) == 0);
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk, &internal_xonly_pk, overflows) == 0);
CHECK(secp256k1_memcmp_var(&output_pk, zeros64, sizeof(output_pk)) == 0);
CHECK(ecount == 5);
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
/* Starts with an initial pubkey and recursively creates N_PUBKEYS - 1
* additional pubkeys by calling tweak_add. Then verifies every tweak starting
* from the last pubkey. */
#define N_PUBKEYS 32
void test_xonly_pubkey_tweak_recursive(void) {
unsigned char sk[32];
secp256k1_pubkey pk[N_PUBKEYS];
unsigned char pk_serialized[32];
unsigned char tweak[N_PUBKEYS - 1][32];
int i;
secp256k1_testrand256(sk);
CHECK(secp256k1_ec_pubkey_create(ctx, &pk[0], sk) == 1);
/* Add tweaks */
for (i = 0; i < N_PUBKEYS - 1; i++) {
secp256k1_xonly_pubkey xonly_pk;
memset(tweak[i], i + 1, sizeof(tweak[i]));
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i]) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &pk[i + 1], &xonly_pk, tweak[i]) == 1);
}
/* Verify tweaks */
for (i = N_PUBKEYS - 1; i > 0; i--) {
secp256k1_xonly_pubkey xonly_pk;
int pk_parity;
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, &pk_parity, &pk[i]) == 1);
CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk_serialized, &xonly_pk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(ctx, &xonly_pk, NULL, &pk[i - 1]) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk_serialized, pk_parity, &xonly_pk, tweak[i - 1]) == 1);
}
}
#undef N_PUBKEYS
void test_keypair(void) {
unsigned char sk[32];
+ unsigned char sk_tmp[32];
unsigned char zeros96[96] = { 0 };
unsigned char overflows[32];
secp256k1_keypair keypair;
secp256k1_pubkey pk, pk_tmp;
secp256k1_xonly_pubkey xonly_pk, xonly_pk_tmp;
int pk_parity, pk_parity_tmp;
int ecount;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
CHECK(sizeof(zeros96) == sizeof(keypair));
memset(overflows, 0xFF, sizeof(overflows));
/* Test keypair_create */
ecount = 0;
secp256k1_testrand256(sk);
CHECK(secp256k1_keypair_create(none, &keypair, sk) == 0);
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_create(verify, &keypair, sk) == 0);
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
CHECK(secp256k1_keypair_create(sign, NULL, sk) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_keypair_create(sign, &keypair, NULL) == 0);
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(ecount == 4);
/* Invalid secret key */
CHECK(secp256k1_keypair_create(sign, &keypair, zeros96) == 0);
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
CHECK(secp256k1_keypair_create(sign, &keypair, overflows) == 0);
CHECK(secp256k1_memcmp_var(zeros96, &keypair, sizeof(keypair)) == 0);
/* Test keypair_pub */
ecount = 0;
secp256k1_testrand256(sk);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
CHECK(secp256k1_keypair_pub(none, NULL, &keypair) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_pub(none, &pk, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0);
/* Using an invalid keypair is fine for keypair_pub */
memset(&keypair, 0, sizeof(keypair));
CHECK(secp256k1_keypair_pub(none, &pk, &keypair) == 1);
CHECK(secp256k1_memcmp_var(zeros96, &pk, sizeof(pk)) == 0);
/* keypair holds the same pubkey as pubkey_create */
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
CHECK(secp256k1_keypair_pub(none, &pk_tmp, &keypair) == 1);
CHECK(secp256k1_memcmp_var(&pk, &pk_tmp, sizeof(pk)) == 0);
/** Test keypair_xonly_pub **/
ecount = 0;
secp256k1_testrand256(sk);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
CHECK(secp256k1_keypair_xonly_pub(none, NULL, &pk_parity, &keypair) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, NULL, &keypair) == 1);
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, NULL) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
/* Using an invalid keypair will set the xonly_pk to 0 (first reset
* xonly_pk). */
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 1);
memset(&keypair, 0, sizeof(keypair));
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk, &pk_parity, &keypair) == 0);
CHECK(secp256k1_memcmp_var(zeros96, &xonly_pk, sizeof(xonly_pk)) == 0);
CHECK(ecount == 3);
/** keypair holds the same xonly pubkey as pubkey_create **/
CHECK(secp256k1_ec_pubkey_create(sign, &pk, sk) == 1);
CHECK(secp256k1_xonly_pubkey_from_pubkey(none, &xonly_pk, &pk_parity, &pk) == 1);
CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_pub(none, &xonly_pk_tmp, &pk_parity_tmp, &keypair) == 1);
CHECK(secp256k1_memcmp_var(&xonly_pk, &xonly_pk_tmp, sizeof(pk)) == 0);
CHECK(pk_parity == pk_parity_tmp);
+ /* Test keypair_seckey */
+ ecount = 0;
+ secp256k1_testrand256(sk);
+ CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_sec(none, sk_tmp, &keypair) == 1);
+ CHECK(secp256k1_keypair_sec(none, NULL, &keypair) == 0);
+ CHECK(ecount == 1);
+ CHECK(secp256k1_keypair_sec(none, sk_tmp, NULL) == 0);
+ CHECK(ecount == 2);
+ CHECK(secp256k1_memcmp_var(zeros96, sk_tmp, sizeof(sk_tmp)) == 0);
+
+ /* keypair returns the same seckey it got */
+ CHECK(secp256k1_keypair_create(sign, &keypair, sk) == 1);
+ CHECK(secp256k1_keypair_sec(none, sk_tmp, &keypair) == 1);
+ CHECK(secp256k1_memcmp_var(sk, sk_tmp, sizeof(sk_tmp)) == 0);
+
+
+ /* Using an invalid keypair is fine for keypair_seckey */
+ memset(&keypair, 0, sizeof(keypair));
+ CHECK(secp256k1_keypair_sec(none, sk_tmp, &keypair) == 1);
+ CHECK(secp256k1_memcmp_var(zeros96, sk_tmp, sizeof(sk_tmp)) == 0);
+
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
void test_keypair_add(void) {
unsigned char sk[32];
secp256k1_keypair keypair;
unsigned char overflows[32];
unsigned char zeros96[96] = { 0 };
unsigned char tweak[32];
int i;
int ecount = 0;
secp256k1_context *none = api_test_context(SECP256K1_CONTEXT_NONE, &ecount);
secp256k1_context *sign = api_test_context(SECP256K1_CONTEXT_SIGN, &ecount);
secp256k1_context *verify = api_test_context(SECP256K1_CONTEXT_VERIFY, &ecount);
CHECK(sizeof(zeros96) == sizeof(keypair));
secp256k1_testrand256(sk);
secp256k1_testrand256(tweak);
memset(overflows, 0xFF, 32);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(none, &keypair, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(sign, &keypair, tweak) == 0);
CHECK(ecount == 2);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, NULL, tweak) == 0);
CHECK(ecount == 3);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, NULL) == 0);
CHECK(ecount == 4);
/* This does not set the keypair to zeroes */
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) != 0);
/* Invalid tweak zeroes the keypair */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, overflows) == 0);
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0);
/* A zero tweak is fine */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, zeros96) == 1);
/* Fails if the resulting keypair was (sk=0, pk=infinity) */
for (i = 0; i < count; i++) {
secp256k1_scalar scalar_tweak;
secp256k1_keypair keypair_tmp;
secp256k1_testrand256(sk);
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
memcpy(&keypair_tmp, &keypair, sizeof(keypair));
/* Because sk may be negated before adding, we need to try with tweak =
* sk as well as tweak = -sk. */
secp256k1_scalar_set_b32(&scalar_tweak, sk, NULL);
secp256k1_scalar_negate(&scalar_tweak, &scalar_tweak);
secp256k1_scalar_get_b32(tweak, &scalar_tweak);
CHECK((secp256k1_keypair_xonly_tweak_add(ctx, &keypair, sk) == 0)
|| (secp256k1_keypair_xonly_tweak_add(ctx, &keypair_tmp, tweak) == 0));
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0
|| secp256k1_memcmp_var(&keypair_tmp, zeros96, sizeof(keypair_tmp)) == 0);
}
/* Invalid keypair with a valid tweak */
memset(&keypair, 0, sizeof(keypair));
secp256k1_testrand256(tweak);
ecount = 0;
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
CHECK(ecount == 1);
CHECK(secp256k1_memcmp_var(&keypair, zeros96, sizeof(keypair)) == 0);
/* Only seckey part of keypair invalid */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
memset(&keypair, 0, 32);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
CHECK(ecount == 2);
/* Only pubkey part of keypair invalid */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
memset(&keypair.data[32], 0, 64);
CHECK(secp256k1_keypair_xonly_tweak_add(verify, &keypair, tweak) == 0);
CHECK(ecount == 3);
/* Check that the keypair_tweak_add implementation is correct */
CHECK(secp256k1_keypair_create(ctx, &keypair, sk) == 1);
for (i = 0; i < count; i++) {
secp256k1_xonly_pubkey internal_pk;
secp256k1_xonly_pubkey output_pk;
secp256k1_pubkey output_pk_xy;
secp256k1_pubkey output_pk_expected;
unsigned char pk32[32];
+ unsigned char sk32[32];
int pk_parity;
secp256k1_testrand256(tweak);
CHECK(secp256k1_keypair_xonly_pub(ctx, &internal_pk, NULL, &keypair) == 1);
CHECK(secp256k1_keypair_xonly_tweak_add(ctx, &keypair, tweak) == 1);
CHECK(secp256k1_keypair_xonly_pub(ctx, &output_pk, &pk_parity, &keypair) == 1);
/* Check that it passes xonly_pubkey_tweak_add_check */
CHECK(secp256k1_xonly_pubkey_serialize(ctx, pk32, &output_pk) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add_check(ctx, pk32, pk_parity, &internal_pk, tweak) == 1);
/* Check that the resulting pubkey matches xonly_pubkey_tweak_add */
CHECK(secp256k1_keypair_pub(ctx, &output_pk_xy, &keypair) == 1);
CHECK(secp256k1_xonly_pubkey_tweak_add(ctx, &output_pk_expected, &internal_pk, tweak) == 1);
CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
/* Check that the secret key in the keypair is tweaked correctly */
- CHECK(secp256k1_ec_pubkey_create(ctx, &output_pk_expected, &keypair.data[0]) == 1);
+ CHECK(secp256k1_keypair_sec(none, sk32, &keypair) == 1);
+ CHECK(secp256k1_ec_pubkey_create(ctx, &output_pk_expected, sk32) == 1);
CHECK(secp256k1_memcmp_var(&output_pk_xy, &output_pk_expected, sizeof(output_pk_xy)) == 0);
}
secp256k1_context_destroy(none);
secp256k1_context_destroy(sign);
secp256k1_context_destroy(verify);
}
void run_extrakeys_tests(void) {
/* xonly key test cases */
test_xonly_pubkey();
test_xonly_pubkey_tweak();
test_xonly_pubkey_tweak_check();
test_xonly_pubkey_tweak_recursive();
/* keypair tests */
test_keypair();
test_keypair_add();
}
#endif
diff --git a/src/secp256k1/src/valgrind_ctime_test.c b/src/secp256k1/src/valgrind_ctime_test.c
index 73c8435f6..f894ab0e5 100644
--- a/src/secp256k1/src/valgrind_ctime_test.c
+++ b/src/secp256k1/src/valgrind_ctime_test.c
@@ -1,170 +1,176 @@
/***********************************************************************
* Copyright (c) 2020 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#include <valgrind/memcheck.h>
#include "include/secp256k1.h"
#include "assumptions.h"
#include "util.h"
#ifdef ENABLE_MODULE_ECDH
# include "include/secp256k1_ecdh.h"
#endif
#ifdef ENABLE_MODULE_RECOVERY
# include "include/secp256k1_recovery.h"
#endif
#ifdef ENABLE_MODULE_SCHNORR
# include "include/secp256k1_schnorr.h"
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
# include "include/secp256k1_extrakeys.h"
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
#include "include/secp256k1_schnorrsig.h"
#endif
int main(void) {
secp256k1_context* ctx;
secp256k1_ecdsa_signature signature;
secp256k1_pubkey pubkey;
size_t siglen = 74;
size_t outputlen = 33;
int i;
int ret;
unsigned char msg[32];
unsigned char key[32];
unsigned char sig[74];
unsigned char spubkey[33];
#ifdef ENABLE_MODULE_RECOVERY
secp256k1_ecdsa_recoverable_signature recoverable_signature;
int recid;
#endif
#ifdef ENABLE_MODULE_EXTRAKEYS
secp256k1_keypair keypair;
#endif
if (!RUNNING_ON_VALGRIND) {
fprintf(stderr, "This test can only usefully be run inside valgrind.\n");
fprintf(stderr, "Usage: libtool --mode=execute valgrind ./valgrind_ctime_test\n");
exit(1);
}
/** In theory, testing with a single secret input should be sufficient:
* If control flow depended on secrets the tool would generate an error.
*/
for (i = 0; i < 32; i++) {
key[i] = i + 65;
}
for (i = 0; i < 32; i++) {
msg[i] = i + 1;
}
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN
| SECP256K1_CONTEXT_VERIFY
| SECP256K1_CONTEXT_DECLASSIFY);
/* Test keygen. */
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_ec_pubkey_create(ctx, &pubkey, key);
VALGRIND_MAKE_MEM_DEFINED(&pubkey, sizeof(secp256k1_pubkey));
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret);
CHECK(secp256k1_ec_pubkey_serialize(ctx, spubkey, &outputlen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
/* Test signing. */
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_ecdsa_sign(ctx, &signature, msg, key, NULL, NULL);
VALGRIND_MAKE_MEM_DEFINED(&signature, sizeof(secp256k1_ecdsa_signature));
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret);
CHECK(secp256k1_ecdsa_signature_serialize_der(ctx, sig, &siglen, &signature));
#ifdef ENABLE_MODULE_ECDH
/* Test ECDH. */
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_ecdh(ctx, msg, &pubkey, key, NULL, NULL);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
#ifdef ENABLE_MODULE_RECOVERY
/* Test signing a recoverable signature. */
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_ecdsa_sign_recoverable(ctx, &recoverable_signature, msg, key, NULL, NULL);
VALGRIND_MAKE_MEM_DEFINED(&recoverable_signature, sizeof(recoverable_signature));
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret);
CHECK(secp256k1_ecdsa_recoverable_signature_serialize_compact(ctx, sig, &recid, &recoverable_signature));
CHECK(recid >= 0 && recid <= 3);
#endif
#if ENABLE_MODULE_SCHNORR
/* Test schnorr signing. */
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_schnorr_sign(ctx, sig, msg, key, NULL, NULL);
VALGRIND_MAKE_MEM_DEFINED(&sig, sizeof(64));
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret);
#endif
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_ec_seckey_verify(ctx, key);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_ec_seckey_negate(ctx, key);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
VALGRIND_MAKE_MEM_UNDEFINED(msg, 32);
ret = secp256k1_ec_seckey_tweak_add(ctx, key, msg);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
VALGRIND_MAKE_MEM_UNDEFINED(msg, 32);
ret = secp256k1_ec_seckey_tweak_mul(ctx, key, msg);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
/* Test context randomisation. Do this last because it leaves the context tainted. */
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_context_randomize(ctx, key);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret);
/* Test keypair_create and keypair_xonly_tweak_add. */
#ifdef ENABLE_MODULE_EXTRAKEYS
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_keypair_create(ctx, &keypair, key);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
/* The tweak is not treated as a secret in keypair_tweak_add */
VALGRIND_MAKE_MEM_DEFINED(msg, 32);
ret = secp256k1_keypair_xonly_tweak_add(ctx, &keypair, msg);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
+
+ VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
+ VALGRIND_MAKE_MEM_UNDEFINED(&keypair, sizeof(keypair));
+ ret = secp256k1_keypair_sec(ctx, key, &keypair);
+ VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
+ CHECK(ret == 1);
#endif
#ifdef ENABLE_MODULE_SCHNORRSIG
VALGRIND_MAKE_MEM_UNDEFINED(key, 32);
ret = secp256k1_keypair_create(ctx, &keypair, key);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
ret = secp256k1_schnorrsig_sign(ctx, sig, msg, &keypair, NULL, NULL);
VALGRIND_MAKE_MEM_DEFINED(&ret, sizeof(ret));
CHECK(ret == 1);
#endif
secp256k1_context_destroy(ctx);
return 0;
}

File Metadata

Mime Type
text/x-diff
Expires
Sun, Apr 27, 10:21 (23 h, 53 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5573238
Default Alt Text
(52 KB)

Event Timeline