Page MenuHomePhabricator

No OneTemporary

diff --git a/src/netaddress.cpp b/src/netaddress.cpp
index a2e7e8955..6356bf913 100644
--- a/src/netaddress.cpp
+++ b/src/netaddress.cpp
@@ -1,1186 +1,1186 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <netaddress.h>
#include <crypto/common.h>
#include <crypto/sha3.h>
#include <hash.h>
#include <prevector.h>
#include <util/asmap.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <tinyformat.h>
#include <algorithm>
#include <array>
#include <cstdint>
#include <ios>
#include <iterator>
#include <tuple>
constexpr size_t CNetAddr::V1_SERIALIZATION_SIZE;
constexpr size_t CNetAddr::MAX_ADDRV2_SIZE;
CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const {
switch (m_net) {
case NET_IPV4:
return BIP155Network::IPV4;
case NET_IPV6:
return BIP155Network::IPV6;
case NET_ONION:
switch (m_addr.size()) {
case ADDR_TORV2_SIZE:
return BIP155Network::TORV2;
case ADDR_TORV3_SIZE:
return BIP155Network::TORV3;
default:
assert(false);
}
case NET_I2P:
return BIP155Network::I2P;
case NET_CJDNS:
return BIP155Network::CJDNS;
case NET_INTERNAL:
// should have been handled before calling this function
case NET_UNROUTABLE:
// m_net is never and should not be set to NET_UNROUTABLE
case NET_MAX:
// m_net is never and should not be set to NET_MAX
assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net,
size_t address_size) {
switch (possible_bip155_net) {
case BIP155Network::IPV4:
if (address_size == ADDR_IPV4_SIZE) {
m_net = NET_IPV4;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 IPv4 address with length %u (should be %u)",
address_size, ADDR_IPV4_SIZE));
case BIP155Network::IPV6:
if (address_size == ADDR_IPV6_SIZE) {
m_net = NET_IPV6;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 IPv6 address with length %u (should be %u)",
address_size, ADDR_IPV6_SIZE));
case BIP155Network::TORV2:
if (address_size == ADDR_TORV2_SIZE) {
m_net = NET_ONION;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 TORv2 address with length %u (should be %u)",
address_size, ADDR_TORV2_SIZE));
case BIP155Network::TORV3:
if (address_size == ADDR_TORV3_SIZE) {
m_net = NET_ONION;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 TORv3 address with length %u (should be %u)",
address_size, ADDR_TORV3_SIZE));
case BIP155Network::I2P:
if (address_size == ADDR_I2P_SIZE) {
m_net = NET_I2P;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 I2P address with length %u (should be %u)",
address_size, ADDR_I2P_SIZE));
case BIP155Network::CJDNS:
if (address_size == ADDR_CJDNS_SIZE) {
m_net = NET_CJDNS;
return true;
}
throw std::ios_base::failure(
strprintf("BIP155 CJDNS address with length %u (should be %u)",
address_size, ADDR_CJDNS_SIZE));
}
// Don't throw on addresses with unknown network ids (maybe from the
// future). Instead silently drop them and have the unserialization code
// consume subsequent ones which may be known to us.
return false;
}
/**
* Construct an unspecified IPv6 network address (::/128).
*
* @note This address is considered invalid by CNetAddr::IsValid()
*/
CNetAddr::CNetAddr() {}
void CNetAddr::SetIP(const CNetAddr &ipIn) {
// Size check.
switch (ipIn.m_net) {
case NET_IPV4:
assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
break;
case NET_IPV6:
assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
break;
case NET_ONION:
assert(ipIn.m_addr.size() == ADDR_TORV2_SIZE ||
ipIn.m_addr.size() == ADDR_TORV3_SIZE);
break;
case NET_I2P:
assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
break;
case NET_CJDNS:
assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
break;
case NET_INTERNAL:
assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE);
break;
case NET_UNROUTABLE:
case NET_MAX:
assert(false);
} // no default case, so the compiler can warn about missing cases
m_net = ipIn.m_net;
m_addr = ipIn.m_addr;
}
void CNetAddr::SetLegacyIPv6(Span<const uint8_t> ipv6) {
assert(ipv6.size() == ADDR_IPV6_SIZE);
size_t skip{0};
if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
// IPv4-in-IPv6
m_net = NET_IPV4;
skip = sizeof(IPV4_IN_IPV6_PREFIX);
} else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
// TORv2-in-IPv6
m_net = NET_ONION;
skip = sizeof(TORV2_IN_IPV6_PREFIX);
} else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
// Internal-in-IPv6
m_net = NET_INTERNAL;
skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
} else {
// IPv6
m_net = NET_IPV6;
}
m_addr.assign(ipv6.begin() + skip, ipv6.end());
}
/**
* Create an "internal" address that represents a name or FQDN. CAddrMan uses
* these fake addresses to keep track of which DNS seeds were used.
* @returns Whether or not the operation was successful.
* @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(),
* CNetAddr::IsRFC4193()
*/
bool CNetAddr::SetInternal(const std::string &name) {
if (name.empty()) {
return false;
}
m_net = NET_INTERNAL;
uint8_t hash[32] = {};
CSHA256().Write((const uint8_t *)name.data(), name.size()).Finalize(hash);
m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
return true;
}
namespace torv3 {
// https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt#n2135
static constexpr size_t CHECKSUM_LEN = 2;
static const uint8_t VERSION[] = {3};
static constexpr size_t TOTAL_LEN =
ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
static void Checksum(Span<const uint8_t> addr_pubkey,
uint8_t (&checksum)[CHECKSUM_LEN]) {
// TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
static const uint8_t prefix[] = ".onion checksum";
static constexpr size_t prefix_len = 15;
SHA3_256 hasher;
hasher.Write(MakeSpan(prefix).first(prefix_len));
hasher.Write(addr_pubkey);
hasher.Write(VERSION);
uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
hasher.Finalize(checksum_full);
memcpy(checksum, checksum_full, sizeof(checksum));
}
}; // namespace torv3
/**
* Parse a TOR address and set this object to it.
*
* @returns Whether or not the operation was successful.
*
* @see CNetAddr::IsTor()
*/
bool CNetAddr::SetSpecial(const std::string &str) {
static const char *suffix{".onion"};
static constexpr size_t suffix_len{6};
if (!ValidAsCString(str) || str.size() <= suffix_len ||
str.substr(str.size() - suffix_len) != suffix) {
return false;
}
bool invalid;
const auto &input =
DecodeBase32(str.substr(0, str.size() - suffix_len).c_str(), &invalid);
if (invalid) {
return false;
}
switch (input.size()) {
case ADDR_TORV2_SIZE:
m_net = NET_ONION;
m_addr.assign(input.begin(), input.end());
return true;
case torv3::TOTAL_LEN: {
Span<const uint8_t> input_pubkey{input.data(), ADDR_TORV3_SIZE};
Span<const uint8_t> input_checksum{input.data() + ADDR_TORV3_SIZE,
torv3::CHECKSUM_LEN};
Span<const uint8_t> input_version{input.data() + ADDR_TORV3_SIZE +
torv3::CHECKSUM_LEN,
sizeof(torv3::VERSION)};
uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
torv3::Checksum(input_pubkey, calculated_checksum);
if (input_checksum != calculated_checksum ||
input_version != torv3::VERSION) {
return false;
}
m_net = NET_ONION;
m_addr.assign(input_pubkey.begin(), input_pubkey.end());
return true;
}
}
return false;
}
CNetAddr::CNetAddr(const struct in_addr &ipv4Addr) {
m_net = NET_IPV4;
const uint8_t *ptr = reinterpret_cast<const uint8_t *>(&ipv4Addr);
m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
}
CNetAddr::CNetAddr(const struct in6_addr &ipv6Addr, const uint32_t scope) {
SetLegacyIPv6(Span<const uint8_t>(
reinterpret_cast<const uint8_t *>(&ipv6Addr), sizeof(ipv6Addr)));
- scopeId = scope;
+ m_scope_id = scope;
}
bool CNetAddr::IsBindAny() const {
if (!IsIPv4() && !IsIPv6()) {
return false;
}
return std::all_of(m_addr.begin(), m_addr.end(),
[](uint8_t b) { return b == 0; });
}
bool CNetAddr::IsIPv4() const {
return m_net == NET_IPV4;
}
bool CNetAddr::IsIPv6() const {
return m_net == NET_IPV6;
}
bool CNetAddr::IsRFC1918() const {
return IsIPv4() &&
(m_addr[0] == 10 || (m_addr[0] == 192 && m_addr[1] == 168) ||
(m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
}
bool CNetAddr::IsRFC2544() const {
return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
}
bool CNetAddr::IsRFC3927() const {
return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{{169, 254}});
}
bool CNetAddr::IsRFC6598() const {
return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
}
bool CNetAddr::IsRFC5737() const {
return IsIPv4() &&
(HasPrefix(m_addr, std::array<uint8_t, 3>{{192, 0, 2}}) ||
HasPrefix(m_addr, std::array<uint8_t, 3>{{198, 51, 100}}) ||
HasPrefix(m_addr, std::array<uint8_t, 3>{{203, 0, 113}}));
}
bool CNetAddr::IsRFC3849() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 4>{{0x20, 0x01, 0x0D, 0xB8}});
}
bool CNetAddr::IsRFC3964() const {
return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{{0x20, 0x02}});
}
bool CNetAddr::IsRFC6052() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 12>{{0x00, 0x64, 0xFF, 0x9B,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}});
}
bool CNetAddr::IsRFC4380() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 4>{{0x20, 0x01, 0x00, 0x00}});
}
bool CNetAddr::IsRFC4862() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 8>{{0xFE, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00}});
}
bool CNetAddr::IsRFC4193() const {
return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
}
bool CNetAddr::IsRFC6145() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 12>{{0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0x00, 0x00}});
}
bool CNetAddr::IsRFC4843() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 3>{{0x20, 0x01, 0x00}}) &&
(m_addr[3] & 0xF0) == 0x10;
}
bool CNetAddr::IsRFC7343() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 3>{{0x20, 0x01, 0x00}}) &&
(m_addr[3] & 0xF0) == 0x20;
}
bool CNetAddr::IsHeNet() const {
return IsIPv6() &&
HasPrefix(m_addr, std::array<uint8_t, 4>{{0x20, 0x01, 0x04, 0x70}});
}
/**
* Check whether this object represents a TOR address.
*
* @see CNetAddr::SetSpecial(const std::string &)
*/
bool CNetAddr::IsTor() const {
return m_net == NET_ONION;
}
/**
* Check whether this object represents an I2P address.
*/
bool CNetAddr::IsI2P() const {
return m_net == NET_I2P;
}
/**
* Check whether this object represents a CJDNS address.
*/
bool CNetAddr::IsCJDNS() const {
return m_net == NET_CJDNS;
}
bool CNetAddr::IsLocal() const {
// IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
return true;
}
// IPv6 loopback (::1/128)
static const uint8_t pchLocal[16] = {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1};
if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
return true;
}
return false;
}
/**
* @returns Whether or not this network address is a valid address that @a could
* be used to refer to an actual host.
*
* @note A valid address may or may not be publicly routable on the global
* internet. As in, the set of valid addresses is a superset of the set of
* publicly routable addresses.
*
* @see CNetAddr::IsRoutable()
*/
bool CNetAddr::IsValid() const {
// unspecified IPv6 address (::/128)
uint8_t ipNone6[16] = {};
if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
return false;
}
// documentation IPv6 address
if (IsRFC3849()) {
return false;
}
if (IsInternal()) {
return false;
}
if (IsIPv4()) {
const uint32_t addr = ReadBE32(m_addr.data());
if (addr == INADDR_ANY || addr == INADDR_NONE) {
return false;
}
}
return true;
}
/**
* @returns Whether or not this network address is publicly routable on the
* global internet.
*
* @note A routable address is always valid. As in, the set of routable
* addresses is a subset of the set of valid addresses.
*
* @see CNetAddr::IsValid()
*/
bool CNetAddr::IsRoutable() const {
return IsValid() &&
!(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() ||
IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) ||
IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
}
/**
* @returns Whether or not this is a dummy address that represents a name.
*
* @see CNetAddr::SetInternal(const std::string &)
*/
bool CNetAddr::IsInternal() const {
return m_net == NET_INTERNAL;
}
bool CNetAddr::IsAddrV1Compatible() const {
switch (m_net) {
case NET_IPV4:
case NET_IPV6:
case NET_INTERNAL:
return true;
case NET_ONION:
return m_addr.size() == ADDR_TORV2_SIZE;
case NET_I2P:
case NET_CJDNS:
return false;
case NET_UNROUTABLE:
// m_net is never and should not be set to NET_UNROUTABLE
case NET_MAX:
// m_net is never and should not be set to NET_MAX
assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
enum Network CNetAddr::GetNetwork() const {
if (IsInternal()) {
return NET_INTERNAL;
}
if (!IsRoutable()) {
return NET_UNROUTABLE;
}
return m_net;
}
static std::string IPv6ToString(Span<const uint8_t> a) {
assert(a.size() == ADDR_IPV6_SIZE);
// clang-format off
return strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
ReadBE16(&a[0]),
ReadBE16(&a[2]),
ReadBE16(&a[4]),
ReadBE16(&a[6]),
ReadBE16(&a[8]),
ReadBE16(&a[10]),
ReadBE16(&a[12]),
ReadBE16(&a[14]));
// clang-format on
}
std::string CNetAddr::ToStringIP() const {
switch (m_net) {
case NET_IPV4:
case NET_IPV6: {
CService serv(*this, 0);
struct sockaddr_storage sockaddr;
socklen_t socklen = sizeof(sockaddr);
if (serv.GetSockAddr((struct sockaddr *)&sockaddr, &socklen)) {
char name[1025] = "";
if (!getnameinfo((const struct sockaddr *)&sockaddr, socklen,
name, sizeof(name), nullptr, 0,
NI_NUMERICHOST)) {
return std::string(name);
}
}
if (m_net == NET_IPV4) {
return strprintf("%u.%u.%u.%u", m_addr[0], m_addr[1], m_addr[2],
m_addr[3]);
}
return IPv6ToString(m_addr);
}
case NET_ONION:
switch (m_addr.size()) {
case ADDR_TORV2_SIZE:
return EncodeBase32(m_addr) + ".onion";
case ADDR_TORV3_SIZE: {
uint8_t checksum[torv3::CHECKSUM_LEN];
torv3::Checksum(m_addr, checksum);
// TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION)
// + ".onion"
prevector<torv3::TOTAL_LEN, uint8_t> address{m_addr.begin(),
m_addr.end()};
address.insert(address.end(), checksum,
checksum + torv3::CHECKSUM_LEN);
address.insert(address.end(), torv3::VERSION,
torv3::VERSION + sizeof(torv3::VERSION));
return EncodeBase32(address) + ".onion";
}
default:
assert(false);
}
case NET_I2P:
return EncodeBase32(m_addr, false /* don't pad with = */) +
".b32.i2p";
case NET_CJDNS:
return IPv6ToString(m_addr);
case NET_INTERNAL:
return EncodeBase32(m_addr) + ".internal";
case NET_UNROUTABLE:
// m_net is never and should not be set to NET_UNROUTABLE
case NET_MAX:
// m_net is never and should not be set to NET_MAX
assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
std::string CNetAddr::ToString() const {
return ToStringIP();
}
bool operator==(const CNetAddr &a, const CNetAddr &b) {
return a.m_net == b.m_net && a.m_addr == b.m_addr;
}
bool operator<(const CNetAddr &a, const CNetAddr &b) {
return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
}
/**
* Try to get our IPv4 address.
*
* @param[out] pipv4Addr The in_addr struct to which to copy.
*
* @returns Whether or not the operation was successful, in particular, whether
* or not our address was an IPv4 address.
*
* @see CNetAddr::IsIPv4()
*/
bool CNetAddr::GetInAddr(struct in_addr *pipv4Addr) const {
if (!IsIPv4()) {
return false;
}
assert(sizeof(*pipv4Addr) == m_addr.size());
memcpy(pipv4Addr, m_addr.data(), m_addr.size());
return true;
}
/**
* Try to get our IPv6 address.
*
* @param[out] pipv6Addr The in6_addr struct to which to copy.
*
* @returns Whether or not the operation was successful, in particular, whether
* or not our address was an IPv6 address.
*
* @see CNetAddr::IsIPv6()
*/
bool CNetAddr::GetIn6Addr(struct in6_addr *pipv6Addr) const {
if (!IsIPv6()) {
return false;
}
assert(sizeof(*pipv6Addr) == m_addr.size());
memcpy(pipv6Addr, m_addr.data(), m_addr.size());
return true;
}
bool CNetAddr::HasLinkedIPv4() const {
return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() ||
IsRFC3964() || IsRFC4380());
}
uint32_t CNetAddr::GetLinkedIPv4() const {
if (IsIPv4()) {
return ReadBE32(m_addr.data());
} else if (IsRFC6052() || IsRFC6145()) {
// mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4
// bytes of the address
return ReadBE32(MakeSpan(m_addr).last(ADDR_IPV4_SIZE).data());
} else if (IsRFC3964()) {
// 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
return ReadBE32(MakeSpan(m_addr).subspan(2, ADDR_IPV4_SIZE).data());
} else if (IsRFC4380()) {
// Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the
// address, but bitflipped
return ~ReadBE32(MakeSpan(m_addr).last(ADDR_IPV4_SIZE).data());
}
assert(false);
}
uint32_t CNetAddr::GetNetClass() const {
// Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers
// expect that.
// Check for "internal" first because such addresses are also !IsRoutable()
// and we don't want to return NET_UNROUTABLE in that case.
if (IsInternal()) {
return NET_INTERNAL;
}
if (!IsRoutable()) {
return NET_UNROUTABLE;
}
if (HasLinkedIPv4()) {
return NET_IPV4;
}
return m_net;
}
uint32_t CNetAddr::GetMappedAS(const std::vector<bool> &asmap) const {
uint32_t net_class = GetNetClass();
if (asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) {
return 0; // Indicates not found, safe because AS0 is reserved per
// RFC7607.
}
std::vector<bool> ip_bits(128);
if (HasLinkedIPv4()) {
// For lookup, treat as if it was just an IPv4 address
// (IPV4_IN_IPV6_PREFIX + IPv4 bits)
for (int8_t byte_i = 0; byte_i < 12; ++byte_i) {
for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
ip_bits[byte_i * 8 + bit_i] =
(IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1;
}
}
uint32_t ipv4 = GetLinkedIPv4();
for (int i = 0; i < 32; ++i) {
ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1;
}
} else {
// Use all 128 bits of the IPv6 address otherwise
assert(IsIPv6());
for (int8_t byte_i = 0; byte_i < 16; ++byte_i) {
uint8_t cur_byte = m_addr[byte_i];
for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1;
}
}
}
uint32_t mapped_as = Interpret(asmap, ip_bits);
return mapped_as;
}
/**
* Get the canonical identifier of our network group
*
* The groups are assigned in a way where it should be costly for an attacker to
* obtain addresses with many different group identifiers, even if it is cheap
* to obtain addresses with the same identifier.
*
* @note No two connections will be attempted to addresses with the same network
* group.
*/
std::vector<uint8_t> CNetAddr::GetGroup(const std::vector<bool> &asmap) const {
std::vector<uint8_t> vchRet;
uint32_t net_class = GetNetClass();
// If non-empty asmap is supplied and the address is IPv4/IPv6,
// return ASN to be used for bucketing.
uint32_t asn = GetMappedAS(asmap);
if (asn != 0) { // Either asmap was empty, or address has non-asmappable net
// class (e.g. TOR).
vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in
// the same bucket
for (int i = 0; i < 4; i++) {
vchRet.push_back((asn >> (8 * i)) & 0xFF);
}
return vchRet;
}
vchRet.push_back(net_class);
int nBits{0};
if (IsLocal()) {
// all local addresses belong to the same group
} else if (IsInternal()) {
// all internal-usage addresses get their own group
nBits = ADDR_INTERNAL_SIZE * 8;
} else if (!IsRoutable()) {
// all other unroutable addresses belong to the same group
} else if (HasLinkedIPv4()) {
// IPv4 addresses (and mapped IPv4 addresses) use /16 groups
uint32_t ipv4 = GetLinkedIPv4();
vchRet.push_back((ipv4 >> 24) & 0xFF);
vchRet.push_back((ipv4 >> 16) & 0xFF);
return vchRet;
} else if (IsTor() || IsI2P() || IsCJDNS()) {
nBits = 4;
} else if (IsHeNet()) {
// for he.net, use /36 groups
nBits = 36;
} else {
// for the rest of the IPv6 network, use /32 groups
nBits = 32;
}
// Push our address onto vchRet.
const size_t num_bytes = nBits / 8;
vchRet.insert(vchRet.end(), m_addr.begin(), m_addr.begin() + num_bytes);
nBits %= 8;
// ...for the last byte, push nBits and for the rest of the byte push 1's
if (nBits > 0) {
assert(num_bytes < m_addr.size());
vchRet.push_back(m_addr[num_bytes] | ((1 << (8 - nBits)) - 1));
}
return vchRet;
}
std::vector<uint8_t> CNetAddr::GetAddrBytes() const {
if (IsAddrV1Compatible()) {
uint8_t serialized[V1_SERIALIZATION_SIZE];
SerializeV1Array(serialized);
return {std::begin(serialized), std::end(serialized)};
}
return std::vector<uint8_t>(m_addr.begin(), m_addr.end());
}
uint64_t CNetAddr::GetHash() const {
uint256 hash = Hash(m_addr);
uint64_t nRet;
memcpy(&nRet, &hash, sizeof(nRet));
return nRet;
}
// private extensions to enum Network, only returned by GetExtNetwork, and only
// used in GetReachabilityFrom
static const int NET_UNKNOWN = NET_MAX + 0;
static const int NET_TEREDO = NET_MAX + 1;
static int GetExtNetwork(const CNetAddr *addr) {
if (addr == nullptr) {
return NET_UNKNOWN;
}
if (addr->IsRFC4380()) {
return NET_TEREDO;
}
return addr->GetNetwork();
}
/** Calculates a metric for how reachable (*this) is from a given partner */
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const {
enum Reachability {
REACH_UNREACHABLE,
REACH_DEFAULT,
REACH_TEREDO,
REACH_IPV6_WEAK,
REACH_IPV4,
REACH_IPV6_STRONG,
REACH_PRIVATE
};
if (!IsRoutable() || IsInternal()) {
return REACH_UNREACHABLE;
}
int ourNet = GetExtNetwork(this);
int theirNet = GetExtNetwork(paddrPartner);
bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
switch (theirNet) {
case NET_IPV4:
switch (ourNet) {
default:
return REACH_DEFAULT;
case NET_IPV4:
return REACH_IPV4;
}
case NET_IPV6:
switch (ourNet) {
default:
return REACH_DEFAULT;
case NET_TEREDO:
return REACH_TEREDO;
case NET_IPV4:
return REACH_IPV4;
// only prefer giving our IPv6 address if it's not tunnelled
case NET_IPV6:
return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG;
}
case NET_ONION:
switch (ourNet) {
default:
return REACH_DEFAULT;
// Tor users can connect to IPv4 as well
case NET_IPV4:
return REACH_IPV4;
case NET_ONION:
return REACH_PRIVATE;
}
case NET_TEREDO:
switch (ourNet) {
default:
return REACH_DEFAULT;
case NET_TEREDO:
return REACH_TEREDO;
case NET_IPV6:
return REACH_IPV6_WEAK;
case NET_IPV4:
return REACH_IPV4;
}
case NET_UNKNOWN:
case NET_UNROUTABLE:
default:
switch (ourNet) {
default:
return REACH_DEFAULT;
case NET_TEREDO:
return REACH_TEREDO;
case NET_IPV6:
return REACH_IPV6_WEAK;
case NET_IPV4:
return REACH_IPV4;
// either from Tor, or don't care about our address
case NET_ONION:
return REACH_PRIVATE;
}
}
}
CService::CService() : port(0) {}
CService::CService(const CNetAddr &cip, uint16_t portIn)
: CNetAddr(cip), port(portIn) {}
CService::CService(const struct in_addr &ipv4Addr, uint16_t portIn)
: CNetAddr(ipv4Addr), port(portIn) {}
CService::CService(const struct in6_addr &ipv6Addr, uint16_t portIn)
: CNetAddr(ipv6Addr), port(portIn) {}
CService::CService(const struct sockaddr_in &addr)
: CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) {
assert(addr.sin_family == AF_INET);
}
CService::CService(const struct sockaddr_in6 &addr)
: CNetAddr(addr.sin6_addr, addr.sin6_scope_id),
port(ntohs(addr.sin6_port)) {
assert(addr.sin6_family == AF_INET6);
}
bool CService::SetSockAddr(const struct sockaddr *paddr) {
switch (paddr->sa_family) {
case AF_INET:
*this =
CService(*reinterpret_cast<const struct sockaddr_in *>(paddr));
return true;
case AF_INET6:
*this =
CService(*reinterpret_cast<const struct sockaddr_in6 *>(paddr));
return true;
default:
return false;
}
}
uint16_t CService::GetPort() const {
return port;
}
bool operator==(const CService &a, const CService &b) {
return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) &&
a.port == b.port;
}
bool operator<(const CService &a, const CService &b) {
return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) ||
(static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) &&
a.port < b.port);
}
/**
* Obtain the IPv4/6 socket address this represents.
*
* @param[out] paddr The obtained socket address.
* @param[in,out] addrlen The size, in bytes, of the address structure pointed
* to by paddr. The value that's pointed to by this
* parameter might change after calling this function if
* the size of the corresponding address structure
* changed.
*
* @returns Whether or not the operation was successful.
*/
bool CService::GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const {
if (IsIPv4()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) {
return false;
}
*addrlen = sizeof(struct sockaddr_in);
struct sockaddr_in *paddrin =
reinterpret_cast<struct sockaddr_in *>(paddr);
memset(paddrin, 0, *addrlen);
if (!GetInAddr(&paddrin->sin_addr)) {
return false;
}
paddrin->sin_family = AF_INET;
paddrin->sin_port = htons(port);
return true;
}
if (IsIPv6()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) {
return false;
}
*addrlen = sizeof(struct sockaddr_in6);
struct sockaddr_in6 *paddrin6 =
reinterpret_cast<struct sockaddr_in6 *>(paddr);
memset(paddrin6, 0, *addrlen);
if (!GetIn6Addr(&paddrin6->sin6_addr)) {
return false;
}
- paddrin6->sin6_scope_id = scopeId;
+ paddrin6->sin6_scope_id = m_scope_id;
paddrin6->sin6_family = AF_INET6;
paddrin6->sin6_port = htons(port);
return true;
}
return false;
}
/**
* @returns An identifier unique to this service's address and port number.
*/
std::vector<uint8_t> CService::GetKey() const {
auto key = GetAddrBytes();
// most significant byte of our port
key.push_back(port / 0x100);
// least significant byte of our port
key.push_back(port & 0x0FF);
return key;
}
std::string CService::ToStringPort() const {
return strprintf("%u", port);
}
std::string CService::ToStringIPPort() const {
if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
return ToStringIP() + ":" + ToStringPort();
} else {
return "[" + ToStringIP() + "]:" + ToStringPort();
}
}
std::string CService::ToString() const {
return ToStringIPPort();
}
CSubNet::CSubNet() : valid(false) {
memset(netmask, 0, sizeof(netmask));
}
CSubNet::CSubNet(const CNetAddr &addr, uint8_t mask) : CSubNet() {
valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
(addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
if (!valid) {
return;
}
assert(mask <= sizeof(netmask) * 8);
network = addr;
uint8_t n = mask;
for (size_t i = 0; i < network.m_addr.size(); ++i) {
const uint8_t bits = n < 8 ? n : 8;
// Set first bits.
netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits));
// Normalize network according to netmask.
network.m_addr[i] &= netmask[i];
n -= bits;
}
}
/**
* @returns The number of 1-bits in the prefix of the specified subnet mask. If
* the specified subnet mask is not a valid one, -1.
*/
static inline int NetmaskBits(uint8_t x) {
switch (x) {
case 0x00:
return 0;
case 0x80:
return 1;
case 0xc0:
return 2;
case 0xe0:
return 3;
case 0xf0:
return 4;
case 0xf8:
return 5;
case 0xfc:
return 6;
case 0xfe:
return 7;
case 0xff:
return 8;
default:
return -1;
}
}
CSubNet::CSubNet(const CNetAddr &addr, const CNetAddr &mask) : CSubNet() {
valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
if (!valid) {
return;
}
// Check if `mask` contains 1-bits after 0-bits (which is an invalid
// netmask).
bool zeros_found = false;
for (auto b : mask.m_addr) {
const int num_bits = NetmaskBits(b);
if (num_bits == -1 || (zeros_found && num_bits != 0)) {
valid = false;
return;
}
if (num_bits < 8) {
zeros_found = true;
}
}
assert(mask.m_addr.size() <= sizeof(netmask));
memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
network = addr;
// Normalize network according to netmask
for (size_t x = 0; x < network.m_addr.size(); ++x) {
network.m_addr[x] &= netmask[x];
}
}
CSubNet::CSubNet(const CNetAddr &addr) : CSubNet() {
valid = addr.IsIPv4() || addr.IsIPv6();
if (!valid) {
return;
}
assert(addr.m_addr.size() <= sizeof(netmask));
memset(netmask, 0xFF, addr.m_addr.size());
network = addr;
}
/**
* @returns True if this subnet is valid, the specified address is valid, and
* the specified address belongs in this subnet.
*/
bool CSubNet::Match(const CNetAddr &addr) const {
if (!valid || !addr.IsValid() || network.m_net != addr.m_net) {
return false;
}
assert(network.m_addr.size() == addr.m_addr.size());
for (size_t x = 0; x < addr.m_addr.size(); ++x) {
if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
return false;
}
}
return true;
}
std::string CSubNet::ToString() const {
assert(network.m_addr.size() <= sizeof(netmask));
uint8_t cidr = 0;
for (size_t i = 0; i < network.m_addr.size(); ++i) {
if (netmask[i] == 0x00) {
break;
}
cidr += NetmaskBits(netmask[i]);
}
return network.ToString() + strprintf("/%u", cidr);
}
bool CSubNet::IsValid() const {
return valid;
}
bool CSubNet::SanityCheck() const {
if (!(network.IsIPv4() || network.IsIPv6())) {
return false;
}
for (size_t x = 0; x < network.m_addr.size(); ++x) {
if (network.m_addr[x] & ~netmask[x]) {
return false;
}
}
return true;
}
bool operator==(const CSubNet &a, const CSubNet &b) {
return a.valid == b.valid && a.network == b.network &&
!memcmp(a.netmask, b.netmask, 16);
}
bool operator<(const CSubNet &a, const CSubNet &b) {
return (a.network < b.network ||
(a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
}
bool SanityCheckASMap(const std::vector<bool> &asmap) {
// For IP address lookups, the input is 128 bits
return SanityCheckASMap(asmap, 128);
}
diff --git a/src/netaddress.h b/src/netaddress.h
index 5ae5eb117..2af717f04 100644
--- a/src/netaddress.h
+++ b/src/netaddress.h
@@ -1,539 +1,542 @@
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NETADDRESS_H
#define BITCOIN_NETADDRESS_H
#if defined(HAVE_CONFIG_H)
#include <config/bitcoin-config.h>
#endif
#include <attributes.h>
#include <compat.h>
#include <prevector.h>
#include <serialize.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <tinyformat.h>
#include <array>
#include <cstdint>
#include <ios>
#include <string>
#include <vector>
/**
* A flag that is ORed into the protocol version to designate that addresses
* should be serialized in (unserialized from) v2 format (BIP155).
* Make sure that this does not collide with any of the values in `version.h`.
*/
static const int ADDRV2_FORMAT = 0x20000000;
/**
* A network type.
* @note An address may belong to more than one network, for example `10.0.0.1`
* belongs to both `NET_UNROUTABLE` and `NET_IPV4`.
* Keep these sequential starting from 0 and `NET_MAX` as the last entry.
* We have loops like `for (int i = 0; i < NET_MAX; i++)` that expect to iterate
* over all enum values and also `GetExtNetwork()` "extends" this enum by
* introducing standalone constants starting from `NET_MAX`.
*/
enum Network {
/// Addresses from these networks are not publicly routable on the global
/// Internet.
NET_UNROUTABLE = 0,
/// IPv4
NET_IPV4,
/// IPv6
NET_IPV6,
/// TOR (v2 or v3)
NET_ONION,
/// I2P
NET_I2P,
/// CJDNS
NET_CJDNS,
/// A set of addresses that represent the hash of a string or FQDN. We use
/// them in CAddrMan to keep track of which DNS seeds were used.
NET_INTERNAL,
/// Dummy value to indicate the number of NET_* constants.
NET_MAX,
};
/// Prefix of an IPv6 address when it contains an embedded IPv4 address.
/// Used when (un)serializing addresses in ADDRv1 format (pre-BIP155).
static const std::array<uint8_t, 12> IPV4_IN_IPV6_PREFIX{
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF}};
/// Prefix of an IPv6 address when it contains an embedded TORv2 address.
/// Used when (un)serializing addresses in ADDRv1 format (pre-BIP155).
/// Such dummy IPv6 addresses are guaranteed to not be publicly routable as they
/// fall under RFC4193's fc00::/7 subnet allocated to unique-local addresses.
static const std::array<uint8_t, 6> TORV2_IN_IPV6_PREFIX{
{0xFD, 0x87, 0xD8, 0x7E, 0xEB, 0x43}};
/// Prefix of an IPv6 address when it contains an embedded "internal" address.
/// Used when (un)serializing addresses in ADDRv1 format (pre-BIP155).
/// The prefix comes from 0xFD + SHA256("bitcoin")[0:5].
/// Such dummy IPv6 addresses are guaranteed to not be publicly routable as they
/// fall under RFC4193's fc00::/7 subnet allocated to unique-local addresses.
static const std::array<uint8_t, 6> INTERNAL_IN_IPV6_PREFIX{
// 0xFD + sha256("bitcoin")[0:5].
{0xFD, 0x6B, 0x88, 0xC0, 0x87, 0x24}};
/// Size of IPv4 address (in bytes).
static constexpr size_t ADDR_IPV4_SIZE = 4;
/// Size of IPv6 address (in bytes).
static constexpr size_t ADDR_IPV6_SIZE = 16;
/// Size of TORv2 address (in bytes).
static constexpr size_t ADDR_TORV2_SIZE = 10;
/// Size of TORv3 address (in bytes). This is the length of just the address
/// as used in BIP155, without the checksum and the version byte.
static constexpr size_t ADDR_TORV3_SIZE = 32;
/// Size of I2P address (in bytes).
static constexpr size_t ADDR_I2P_SIZE = 32;
/// Size of CJDNS address (in bytes).
static constexpr size_t ADDR_CJDNS_SIZE = 16;
/// Size of "internal" (NET_INTERNAL) address (in bytes).
static constexpr size_t ADDR_INTERNAL_SIZE = 10;
/**
* Network address.
*/
class CNetAddr {
protected:
/**
* Raw representation of the network address.
* In network byte order (big endian) for IPv4 and IPv6.
*/
prevector<ADDR_IPV6_SIZE, uint8_t> m_addr{ADDR_IPV6_SIZE, 0x0};
/**
* Network to which this address belongs.
*/
Network m_net{NET_IPV6};
- // for scoped/link-local ipv6 addresses
- uint32_t scopeId{0};
+ /**
+ * Scope id if scoped/link-local IPV6 address.
+ * See https://tools.ietf.org/html/rfc4007
+ */
+ uint32_t m_scope_id{0};
public:
CNetAddr();
explicit CNetAddr(const struct in_addr &ipv4Addr);
void SetIP(const CNetAddr &ip);
/**
* Set from a legacy IPv6 address.
* Legacy IPv6 address may be a normal IPv6 address, or another address
* (e.g. IPv4) disguised as IPv6. This encoding is used in the legacy
* `addr` encoding.
*/
void SetLegacyIPv6(Span<const uint8_t> ipv6);
bool SetInternal(const std::string &name);
// for Tor addresses
bool SetSpecial(const std::string &strName);
// INADDR_ANY equivalent
bool IsBindAny() const;
// IPv4 mapped address (::FFFF:0:0/96, 0.0.0.0/0)
bool IsIPv4() const;
// IPv6 address (not mapped IPv4, not Tor)
bool IsIPv6() const;
// IPv4 private networks (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12)
bool IsRFC1918() const;
// IPv4 inter-network communications (198.18.0.0/15)
bool IsRFC2544() const;
// IPv4 ISP-level NAT (100.64.0.0/10)
bool IsRFC6598() const;
// IPv4 documentation addresses (192.0.2.0/24, 198.51.100.0/24,
// 203.0.113.0/24)
bool IsRFC5737() const;
// IPv6 documentation address (2001:0DB8::/32)
bool IsRFC3849() const;
// IPv4 autoconfig (169.254.0.0/16)
bool IsRFC3927() const;
// IPv6 6to4 tunnelling (2002::/16)
bool IsRFC3964() const;
// IPv6 unique local (FC00::/7)
bool IsRFC4193() const;
// IPv6 Teredo tunnelling (2001::/32)
bool IsRFC4380() const;
// IPv6 ORCHID (deprecated) (2001:10::/28)
bool IsRFC4843() const;
// IPv6 ORCHIDv2 (2001:20::/28)
bool IsRFC7343() const;
// IPv6 autoconfig (FE80::/64)
bool IsRFC4862() const;
// IPv6 well-known prefix for IPv4-embedded address (64:FF9B::/96)
bool IsRFC6052() const;
// IPv6 IPv4-translated address (::FFFF:0:0:0/96) (actually defined in
// RFC2765)
bool IsRFC6145() const;
// IPv6 Hurricane Electric - https://he.net (2001:0470::/36)
bool IsHeNet() const;
bool IsTor() const;
bool IsI2P() const;
bool IsCJDNS() const;
bool IsLocal() const;
bool IsRoutable() const;
bool IsInternal() const;
bool IsValid() const;
/**
* Check if the current object can be serialized in pre-ADDRv2/BIP155
* format.
*/
bool IsAddrV1Compatible() const;
enum Network GetNetwork() const;
std::string ToString() const;
std::string ToStringIP() const;
uint64_t GetHash() const;
bool GetInAddr(struct in_addr *pipv4Addr) const;
uint32_t GetNetClass() const;
//! For IPv4, mapped IPv4, SIIT translated IPv4, Teredo, 6to4 tunneled
//! addresses, return the relevant IPv4 address as a uint32.
uint32_t GetLinkedIPv4() const;
//! Whether this address has a linked IPv4 address (see GetLinkedIPv4()).
bool HasLinkedIPv4() const;
// The AS on the BGP path to the node we use to diversify
// peers in AddrMan bucketing based on the AS infrastructure.
// The ip->AS mapping depends on how asmap is constructed.
uint32_t GetMappedAS(const std::vector<bool> &asmap) const;
std::vector<uint8_t> GetGroup(const std::vector<bool> &asmap) const;
std::vector<uint8_t> GetAddrBytes() const;
int GetReachabilityFrom(const CNetAddr *paddrPartner = nullptr) const;
explicit CNetAddr(const struct in6_addr &pipv6Addr,
const uint32_t scope = 0);
bool GetIn6Addr(struct in6_addr *pipv6Addr) const;
friend bool operator==(const CNetAddr &a, const CNetAddr &b);
friend bool operator!=(const CNetAddr &a, const CNetAddr &b) {
return !(a == b);
}
friend bool operator<(const CNetAddr &a, const CNetAddr &b);
/**
* Serialize to a stream.
*/
template <typename Stream> void Serialize(Stream &s) const {
if (s.GetVersion() & ADDRV2_FORMAT) {
SerializeV2Stream(s);
} else {
SerializeV1Stream(s);
}
}
/**
* Unserialize from a stream.
*/
template <typename Stream> void Unserialize(Stream &s) {
if (s.GetVersion() & ADDRV2_FORMAT) {
UnserializeV2Stream(s);
} else {
UnserializeV1Stream(s);
}
}
friend class CSubNet;
private:
/**
* BIP155 network ids recognized by this software.
*/
enum BIP155Network : uint8_t {
IPV4 = 1,
IPV6 = 2,
TORV2 = 3,
TORV3 = 4,
I2P = 5,
CJDNS = 6,
};
/**
* Size of CNetAddr when serialized as ADDRv1 (pre-BIP155) (in bytes).
*/
static constexpr size_t V1_SERIALIZATION_SIZE = ADDR_IPV6_SIZE;
/**
* Maximum size of an address as defined in BIP155 (in bytes).
* This is only the size of the address, not the entire CNetAddr object
* when serialized.
*/
static constexpr size_t MAX_ADDRV2_SIZE = 512;
/**
* Get the BIP155 network id of this address.
* Must not be called for IsInternal() objects.
* @returns BIP155 network id
*/
BIP155Network GetBIP155Network() const;
/**
* Set `m_net` from the provided BIP155 network id and size after
* validation.
* @retval true the network was recognized, is valid and `m_net` was set
* @retval false not recognised (from future?) and should be silently
* ignored
* @throws std::ios_base::failure if the network is one of the BIP155
* founding networks recognized by this software (id 1..6) with wrong
* address size.
*/
bool SetNetFromBIP155Network(uint8_t possible_bip155_net,
size_t address_size);
/**
* Serialize in pre-ADDRv2/BIP155 format to an array.
*/
void SerializeV1Array(uint8_t (&arr)[V1_SERIALIZATION_SIZE]) const {
size_t prefix_size;
switch (m_net) {
case NET_IPV6:
assert(m_addr.size() == sizeof(arr));
memcpy(arr, m_addr.data(), m_addr.size());
return;
case NET_IPV4:
prefix_size = sizeof(IPV4_IN_IPV6_PREFIX);
assert(prefix_size + m_addr.size() == sizeof(arr));
memcpy(arr, IPV4_IN_IPV6_PREFIX.data(), prefix_size);
memcpy(arr + prefix_size, m_addr.data(), m_addr.size());
return;
case NET_ONION:
if (m_addr.size() == ADDR_TORV3_SIZE) {
break;
}
prefix_size = sizeof(TORV2_IN_IPV6_PREFIX);
assert(prefix_size + m_addr.size() == sizeof(arr));
memcpy(arr, TORV2_IN_IPV6_PREFIX.data(), prefix_size);
memcpy(arr + prefix_size, m_addr.data(), m_addr.size());
return;
case NET_INTERNAL:
prefix_size = sizeof(INTERNAL_IN_IPV6_PREFIX);
assert(prefix_size + m_addr.size() == sizeof(arr));
memcpy(arr, INTERNAL_IN_IPV6_PREFIX.data(), prefix_size);
memcpy(arr + prefix_size, m_addr.data(), m_addr.size());
return;
case NET_I2P:
break;
case NET_CJDNS:
break;
case NET_UNROUTABLE:
case NET_MAX:
assert(false);
} // no default case, so the compiler can warn about missing cases
// Serialize TORv3, I2P and CJDNS as all-zeros.
memset(arr, 0x0, V1_SERIALIZATION_SIZE);
}
/**
* Serialize in pre-ADDRv2/BIP155 format to a stream.
*/
template <typename Stream> void SerializeV1Stream(Stream &s) const {
uint8_t serialized[V1_SERIALIZATION_SIZE];
SerializeV1Array(serialized);
s << serialized;
}
/**
* Serialize as ADDRv2 / BIP155.
*/
template <typename Stream> void SerializeV2Stream(Stream &s) const {
if (IsInternal()) {
// Serialize NET_INTERNAL as embedded in IPv6. We need to
// serialize such addresses from addrman.
s << static_cast<uint8_t>(BIP155Network::IPV6);
s << COMPACTSIZE(ADDR_IPV6_SIZE);
SerializeV1Stream(s);
return;
}
s << static_cast<uint8_t>(GetBIP155Network());
s << m_addr;
}
/**
* Unserialize from a pre-ADDRv2/BIP155 format from an array.
*/
void UnserializeV1Array(uint8_t (&arr)[V1_SERIALIZATION_SIZE]) {
// Use SetLegacyIPv6() so that m_net is set correctly. For example
// ::FFFF:0102:0304 should be set as m_net=NET_IPV4 (1.2.3.4).
SetLegacyIPv6(arr);
}
/**
* Unserialize from a pre-ADDRv2/BIP155 format from a stream.
*/
template <typename Stream> void UnserializeV1Stream(Stream &s) {
uint8_t serialized[V1_SERIALIZATION_SIZE];
s >> serialized;
UnserializeV1Array(serialized);
}
/**
* Unserialize from a ADDRv2 / BIP155 format.
*/
template <typename Stream> void UnserializeV2Stream(Stream &s) {
uint8_t bip155_net;
s >> bip155_net;
size_t address_size;
s >> COMPACTSIZE(address_size);
if (address_size > MAX_ADDRV2_SIZE) {
throw std::ios_base::failure(strprintf(
"Address too long: %u > %u", address_size, MAX_ADDRV2_SIZE));
}
- scopeId = 0;
+ m_scope_id = 0;
if (SetNetFromBIP155Network(bip155_net, address_size)) {
m_addr.resize(address_size);
s >> MakeSpan(m_addr);
if (m_net != NET_IPV6) {
return;
}
// Do some special checks on IPv6 addresses.
// Recognize NET_INTERNAL embedded in IPv6, such addresses are not
// gossiped but could be coming from addrman, when unserializing
// from disk.
if (HasPrefix(m_addr, INTERNAL_IN_IPV6_PREFIX)) {
m_net = NET_INTERNAL;
memmove(m_addr.data(),
m_addr.data() + INTERNAL_IN_IPV6_PREFIX.size(),
ADDR_INTERNAL_SIZE);
m_addr.resize(ADDR_INTERNAL_SIZE);
return;
}
if (!HasPrefix(m_addr, IPV4_IN_IPV6_PREFIX) &&
!HasPrefix(m_addr, TORV2_IN_IPV6_PREFIX)) {
return;
}
// IPv4 and TORv2 are not supposed to be embedded in IPv6 (like in
// V1 encoding). Unserialize as !IsValid(), thus ignoring them.
} else {
// If we receive an unknown BIP155 network id (from the future?)
// then ignore the address - unserialize as !IsValid().
s.ignore(address_size);
}
// Mimic a default-constructed CNetAddr object which is !IsValid() and
// thus will not be gossiped, but continue reading next addresses from
// the stream.
m_net = NET_IPV6;
m_addr.assign(ADDR_IPV6_SIZE, 0x0);
}
};
class CSubNet {
protected:
/// Network (base) address
CNetAddr network;
/// Netmask, in network byte order
uint8_t netmask[16];
/// Is this value valid? (only used to signal parse errors)
bool valid;
bool SanityCheck() const;
public:
CSubNet();
CSubNet(const CNetAddr &addr, uint8_t mask);
CSubNet(const CNetAddr &addr, const CNetAddr &mask);
// constructor for single ip subnet (<ipv4>/32 or <ipv6>/128)
explicit CSubNet(const CNetAddr &addr);
bool Match(const CNetAddr &addr) const;
std::string ToString() const;
bool IsValid() const;
friend bool operator==(const CSubNet &a, const CSubNet &b);
friend bool operator!=(const CSubNet &a, const CSubNet &b) {
return !(a == b);
}
friend bool operator<(const CSubNet &a, const CSubNet &b);
SERIALIZE_METHODS(CSubNet, obj) {
READWRITE(obj.network);
if (obj.network.IsIPv4()) {
// Before D9176, CSubNet used the last 4 bytes of netmask to store
// the relevant bytes for an IPv4 mask. For compatiblity reasons,
// keep doing so in serialized form.
uint8_t dummy[12] = {0};
READWRITE(dummy);
READWRITE(MakeSpan(obj.netmask).first(4));
} else {
READWRITE(obj.netmask);
}
READWRITE(obj.valid);
// Mark invalid if the result doesn't pass sanity checking.
SER_READ(obj, if (obj.valid) obj.valid = obj.SanityCheck());
}
};
/** A combination of a network address (CNetAddr) and a (TCP) port */
class CService : public CNetAddr {
protected:
// host order
uint16_t port;
public:
CService();
CService(const CNetAddr &ip, uint16_t port);
CService(const struct in_addr &ipv4Addr, uint16_t port);
explicit CService(const struct sockaddr_in &addr);
uint16_t GetPort() const;
bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const;
bool SetSockAddr(const struct sockaddr *paddr);
friend bool operator==(const CService &a, const CService &b);
friend bool operator!=(const CService &a, const CService &b) {
return !(a == b);
}
friend bool operator<(const CService &a, const CService &b);
std::vector<uint8_t> GetKey() const;
std::string ToString() const;
std::string ToStringPort() const;
std::string ToStringIPPort() const;
CService(const struct in6_addr &ipv6Addr, uint16_t port);
explicit CService(const struct sockaddr_in6 &addr);
SERIALIZE_METHODS(CService, obj) {
READWRITEAS(CNetAddr, obj);
READWRITE(Using<BigEndianFormatter<2>>(obj.port));
}
};
bool SanityCheckASMap(const std::vector<bool> &asmap);
#endif // BITCOIN_NETADDRESS_H

File Metadata

Mime Type
text/x-diff
Expires
Thu, May 22, 00:59 (19 h, 38 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5866235
Default Alt Text
(55 KB)

Event Timeline