Page Menu
Home
Phabricator
Search
Configure Global Search
Log In
Files
F12910232
No One
Temporary
Actions
View File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Flag For Later
Size
26 KB
Subscribers
None
View Options
diff --git a/src/crypto/sha512.h b/src/crypto/sha512.h
index b9e23f321..08dad2c95 100644
--- a/src/crypto/sha512.h
+++ b/src/crypto/sha512.h
@@ -1,27 +1,28 @@
// Copyright (c) 2014-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_CRYPTO_SHA512_H
#define BITCOIN_CRYPTO_SHA512_H
#include <cstdint>
#include <cstdlib>
/** A hasher class for SHA-512. */
class CSHA512 {
private:
uint64_t s[8];
uint8_t buf[128];
uint64_t bytes;
public:
static constexpr size_t OUTPUT_SIZE = 64;
CSHA512();
CSHA512 &Write(const uint8_t *data, size_t len);
void Finalize(uint8_t hash[OUTPUT_SIZE]);
CSHA512 &Reset();
+ uint64_t Size() const { return bytes; }
};
#endif // BITCOIN_CRYPTO_SHA512_H
diff --git a/src/random.cpp b/src/random.cpp
index acdd7a74a..b49c49c10 100644
--- a/src/random.cpp
+++ b/src/random.cpp
@@ -1,794 +1,800 @@
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <random.h>
#ifdef WIN32
#include <compat.h> // for Windows API
#include <wincrypt.h>
#endif
#include <compat/cpuid.h>
#include <crypto/sha512.h>
#include <logging.h> // for LogPrintf()
#include <randomenv.h>
#include <support/allocators/secure.h>
#include <support/cleanse.h>
#include <sync.h> // for Mutex
#include <util/time.h> // for GetTime()
#include <openssl/conf.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <chrono>
#include <cstdlib>
#include <memory>
#include <mutex>
#include <thread>
#ifndef WIN32
#include <fcntl.h>
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_GETRANDOM
#include <linux/random.h>
#include <sys/syscall.h>
#endif
#if defined(HAVE_GETENTROPY) || \
(defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX))
#include <unistd.h>
#endif
#if defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
#include <sys/random.h>
#endif
#ifdef HAVE_SYSCTL_ARND
#include <sys/sysctl.h>
#include <util/strencodings.h> // for ARRAYLEN
#endif
[[noreturn]] static void RandFailure() {
LogPrintf("Failed to read randomness, aborting\n");
std::abort();
}
static inline int64_t GetPerformanceCounter() noexcept {
// Read the hardware time stamp counter when available.
// See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
return __rdtsc();
#elif !defined(_MSC_VER) && defined(__i386__)
uint64_t r = 0;
// Constrain the r variable to the eax:edx pair.
__asm__ volatile("rdtsc" : "=A"(r));
return r;
#elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__))
uint64_t r1 = 0, r2 = 0;
// Constrain r1 to rax and r2 to rdx.
__asm__ volatile("rdtsc" : "=a"(r1), "=d"(r2));
return (r2 << 32) | r1;
#else
// Fall back to using C++11 clock (usually microsecond or nanosecond
// precision)
return std::chrono::high_resolution_clock::now().time_since_epoch().count();
#endif
}
#ifdef HAVE_GETCPUID
static bool g_rdrand_supported = false;
static bool g_rdseed_supported = false;
static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000;
static constexpr uint32_t CPUID_F7_EBX_RDSEED = 0x00040000;
#ifdef bit_RDRND
static_assert(CPUID_F1_ECX_RDRAND == bit_RDRND,
"Unexpected value for bit_RDRND");
#endif
#ifdef bit_RDSEED
static_assert(CPUID_F7_EBX_RDSEED == bit_RDSEED,
"Unexpected value for bit_RDSEED");
#endif
static void InitHardwareRand() {
uint32_t eax, ebx, ecx, edx;
GetCPUID(1, 0, eax, ebx, ecx, edx);
if (ecx & CPUID_F1_ECX_RDRAND) {
g_rdrand_supported = true;
}
GetCPUID(7, 0, eax, ebx, ecx, edx);
if (ebx & CPUID_F7_EBX_RDSEED) {
g_rdseed_supported = true;
}
}
static void ReportHardwareRand() {
// This must be done in a separate function, as InitHardwareRand() may be
// indirectly called from global constructors, before logging is
// initialized.
if (g_rdseed_supported) {
LogPrintf("Using RdSeed as additional entropy source\n");
}
if (g_rdrand_supported) {
LogPrintf("Using RdRand as an additional entropy source\n");
}
}
/**
* Read 64 bits of entropy using rdrand.
*
* Must only be called when RdRand is supported.
*/
static uint64_t GetRdRand() noexcept {
// RdRand may very rarely fail. Invoke it up to 10 times in a loop to reduce
// this risk.
#ifdef __i386__
uint8_t ok;
uint32_t r1, r2;
for (int i = 0; i < 10; ++i) {
// rdrand %eax
__asm__ volatile(".byte 0x0f, 0xc7, 0xf0; setc %1"
: "=a"(r1), "=q"(ok)::"cc");
if (ok) {
break;
}
}
for (int i = 0; i < 10; ++i) {
// rdrand %eax
__asm__ volatile(".byte 0x0f, 0xc7, 0xf0; setc %1"
: "=a"(r2), "=q"(ok)::"cc");
if (ok) {
break;
}
}
return (uint64_t(r2) << 32) | r1;
#elif defined(__x86_64__) || defined(__amd64__)
uint8_t ok;
uint64_t r1;
for (int i = 0; i < 10; ++i) {
// rdrand %rax
__asm__ volatile(".byte 0x48, 0x0f, 0xc7, 0xf0; setc %1"
: "=a"(r1), "=q"(ok)::"cc");
if (ok) {
break;
}
}
return r1;
#else
#error "RdRand is only supported on x86 and x86_64"
#endif
}
/**
* Read 64 bits of entropy using rdseed.
*
* Must only be called when RdSeed is supported.
*/
static uint64_t GetRdSeed() noexcept {
// RdSeed may fail when the HW RNG is overloaded. Loop indefinitely until
// enough entropy is gathered, but pause after every failure.
#ifdef __i386__
uint8_t ok;
uint32_t r1, r2;
do {
// rdseed %eax
__asm__ volatile(".byte 0x0f, 0xc7, 0xf8; setc %1"
: "=a"(r1), "=q"(ok)::"cc");
if (ok) {
break;
}
__asm__ volatile("pause");
} while (true);
do {
// rdseed %eax
__asm__ volatile(".byte 0x0f, 0xc7, 0xf8; setc %1"
: "=a"(r2), "=q"(ok)::"cc");
if (ok) {
break;
}
__asm__ volatile("pause");
} while (true);
return (uint64_t(r2) << 32) | r1;
#elif defined(__x86_64__) || defined(__amd64__)
uint8_t ok;
uint64_t r1;
do {
// rdseed %rax
__asm__ volatile(".byte 0x48, 0x0f, 0xc7, 0xf8; setc %1"
: "=a"(r1), "=q"(ok)::"cc");
if (ok) {
break;
}
__asm__ volatile("pause");
} while (true);
return r1;
#else
#error "RdSeed is only supported on x86 and x86_64"
#endif
}
#else
/**
* Access to other hardware random number generators could be added here later,
* assuming it is sufficiently fast (in the order of a few hundred CPU cycles).
* Slower sources should probably be invoked separately, and/or only from
* RandAddSeedSleep (which is called during idle background operation).
*/
static void InitHardwareRand() {}
static void ReportHardwareRand() {}
#endif
/**
* Add 64 bits of entropy gathered from hardware to hasher. Do nothing if not
* supported.
*/
static void SeedHardwareFast(CSHA512 &hasher) noexcept {
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
if (g_rdrand_supported) {
uint64_t out = GetRdRand();
hasher.Write((const uint8_t *)&out, sizeof(out));
return;
}
#endif
}
/**
* Add 256 bits of entropy gathered from hardware to hasher. Do nothing if not
* supported.
*/
static void SeedHardwareSlow(CSHA512 &hasher) noexcept {
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
// When we want 256 bits of entropy, prefer RdSeed over RdRand, as it's
// guaranteed to produce independent randomness on every call.
if (g_rdseed_supported) {
for (int i = 0; i < 4; ++i) {
uint64_t out = GetRdSeed();
hasher.Write((const uint8_t *)&out, sizeof(out));
}
return;
}
// When falling back to RdRand, XOR the result of 1024 results.
// This guarantees a reseeding occurs between each.
if (g_rdrand_supported) {
for (int i = 0; i < 4; ++i) {
uint64_t out = 0;
for (int j = 0; j < 1024; ++j) {
out ^= GetRdRand();
}
hasher.Write((const uint8_t *)&out, sizeof(out));
}
return;
}
#endif
}
/**
* Use repeated SHA512 to strengthen the randomness in seed32, and feed into
* hasher.
*/
static void Strengthen(const uint8_t (&seed)[32], int microseconds,
CSHA512 &hasher) noexcept {
CSHA512 inner_hasher;
inner_hasher.Write(seed, sizeof(seed));
// Hash loop
uint8_t buffer[64];
int64_t stop = GetTimeMicros() + microseconds;
do {
for (int i = 0; i < 1000; ++i) {
inner_hasher.Finalize(buffer);
inner_hasher.Reset();
inner_hasher.Write(buffer, sizeof(buffer));
}
// Benchmark operation and feed it into outer hasher.
int64_t perf = GetPerformanceCounter();
hasher.Write((const uint8_t *)&perf, sizeof(perf));
} while (GetTimeMicros() < stop);
// Produce output from inner state and feed it to outer hasher.
inner_hasher.Finalize(buffer);
hasher.Write(buffer, sizeof(buffer));
// Try to clean up.
inner_hasher.Reset();
memory_cleanse(buffer, sizeof(buffer));
}
#ifndef WIN32
/**
* Fallback: get 32 bytes of system entropy from /dev/urandom. The most
* compatible way to get cryptographic randomness on UNIX-ish platforms.
*/
static void GetDevURandom(uint8_t *ent32) {
int f = open("/dev/urandom", O_RDONLY);
if (f == -1) {
RandFailure();
}
int have = 0;
do {
ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have);
if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) {
close(f);
RandFailure();
}
have += n;
} while (have < NUM_OS_RANDOM_BYTES);
close(f);
}
#endif
/** Get 32 bytes of system entropy. */
void GetOSRand(uint8_t *ent32) {
#if defined(WIN32)
HCRYPTPROV hProvider;
int ret = CryptAcquireContextW(&hProvider, nullptr, nullptr, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT);
if (!ret) {
RandFailure();
}
ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32);
if (!ret) {
RandFailure();
}
CryptReleaseContext(hProvider, 0);
#elif defined(HAVE_SYS_GETRANDOM)
/**
* Linux. From the getrandom(2) man page:
* "If the urandom source has been initialized, reads of up to 256 bytes
* will always return as many bytes as requested and will not be interrupted
* by signals."
*/
int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0);
if (rv != NUM_OS_RANDOM_BYTES) {
if (rv < 0 && errno == ENOSYS) {
/* Fallback for kernel <3.17: the return value will be -1 and errno
* ENOSYS if the syscall is not available, in that case fall back
* to /dev/urandom.
*/
GetDevURandom(ent32);
} else {
RandFailure();
}
}
#elif defined(HAVE_GETENTROPY) && defined(__OpenBSD__)
/**
* On OpenBSD this can return up to 256 bytes of entropy, will return an
* error if more are requested.
* The call cannot return less than the requested number of bytes.
* getentropy is explicitly limited to openbsd here, as a similar (but not
* the same) function may exist on other platforms via glibc.
*/
if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
RandFailure();
}
#elif defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
// We need a fallback for OSX < 10.12
if (&getentropy != nullptr) {
if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
RandFailure();
}
} else {
GetDevURandom(ent32);
}
#elif defined(HAVE_SYSCTL_ARND)
/**
* FreeBSD and similar. It is possible for the call to return less bytes
* than requested, so need to read in a loop.
*/
static const int name[2] = {CTL_KERN, KERN_ARND};
int have = 0;
do {
size_t len = NUM_OS_RANDOM_BYTES - have;
if (sysctl(name, ARRAYLEN(name), ent32 + have, &len, nullptr, 0) != 0) {
RandFailure();
}
have += len;
} while (have < NUM_OS_RANDOM_BYTES);
#else
/**
* Fall back to /dev/urandom if there is no specific method implemented to
* get system entropy for this OS.
*/
GetDevURandom(ent32);
#endif
}
void LockingCallbackOpenSSL(int mode, int i, const char *file, int line);
namespace {
class RNGState {
Mutex m_mutex;
/**
* The RNG state consists of 256 bits of entropy, taken from the output of
* one operation's SHA512 output, and fed as input to the next one.
* Carrying 256 bits of entropy should be sufficient to guarantee
* unpredictability as long as any entropy source was ever unpredictable
* to an attacker. To protect against situations where an attacker might
* observe the RNG's state, fresh entropy is always mixed when
* GetStrongRandBytes is called.
*/
uint8_t m_state[32] GUARDED_BY(m_mutex) = {0};
uint64_t m_counter GUARDED_BY(m_mutex) = 0;
bool m_strongly_seeded GUARDED_BY(m_mutex) = false;
std::unique_ptr<Mutex[]> m_mutex_openssl;
public:
RNGState() noexcept {
InitHardwareRand();
// Init OpenSSL library multithreading support
m_mutex_openssl.reset(new Mutex[CRYPTO_num_locks()]);
CRYPTO_set_locking_callback(LockingCallbackOpenSSL);
// OpenSSL can optionally load a config file which lists optional
// loadable modules and engines. We don't use them so we don't require
// the config. However some of our libs may call functions which attempt
// to load the config file, possibly resulting in an exit() or crash if
// it is missing or corrupt. Explicitly tell OpenSSL not to try to load
// the file. The result for our libs will be that the config appears to
// have been loaded and there are no modules/engines available.
OPENSSL_no_config();
}
~RNGState() {
// Securely erase the memory used by the OpenSSL PRNG
RAND_cleanup();
// Shutdown OpenSSL library multithreading support
CRYPTO_set_locking_callback(nullptr);
}
/**
* Extract up to 32 bytes of entropy from the RNG state, mixing in new
* entropy from hasher.
*
* If this function has never been called with strong_seed = true, false is
* returned.
*/
bool MixExtract(uint8_t *out, size_t num, CSHA512 &&hasher,
bool strong_seed) noexcept {
assert(num <= 32);
uint8_t buf[64];
static_assert(sizeof(buf) == CSHA512::OUTPUT_SIZE,
"Buffer needs to have hasher's output size");
bool ret;
{
LOCK(m_mutex);
ret = (m_strongly_seeded |= strong_seed);
// Write the current state of the RNG into the hasher
hasher.Write(m_state, 32);
// Write a new counter number into the state
hasher.Write((const uint8_t *)&m_counter, sizeof(m_counter));
++m_counter;
// Finalize the hasher
hasher.Finalize(buf);
// Store the last 32 bytes of the hash output as new RNG state.
memcpy(m_state, buf + 32, 32);
}
// If desired, copy (up to) the first 32 bytes of the hash output as
// output.
if (num) {
assert(out != nullptr);
memcpy(out, buf, num);
}
// Best effort cleanup of internal state
hasher.Reset();
memory_cleanse(buf, 64);
return ret;
}
Mutex &GetOpenSSLMutex(int i) { return m_mutex_openssl[i]; }
};
RNGState &GetRNGState() noexcept {
// This C++11 idiom relies on the guarantee that static variable are
// initialized on first call, even when multiple parallel calls are
// permitted.
static std::vector<RNGState, secure_allocator<RNGState>> g_rng(1);
return g_rng[0];
}
} // namespace
void LockingCallbackOpenSSL(int mode, int i, const char *file,
int line) NO_THREAD_SAFETY_ANALYSIS {
RNGState &rng = GetRNGState();
if (mode & CRYPTO_LOCK) {
rng.GetOpenSSLMutex(i).lock();
} else {
rng.GetOpenSSLMutex(i).unlock();
}
}
/**
* A note on the use of noexcept in the seeding functions below:
*
* None of the RNG code should ever throw any exception, with the sole exception
* of MilliSleep in SeedSleep, which can (and does) support interruptions which
* cause a boost::thread_interrupted to be thrown.
*
* This means that SeedSleep, and all functions that invoke it are throwing.
* However, we know that GetRandBytes() and GetStrongRandBytes() never trigger
* this sleeping logic, so they are noexcept. The same is true for all the
* GetRand*() functions that use GetRandBytes() indirectly.
*
* TODO: After moving away from interruptible boost-based thread management,
* everything can become noexcept here.
*/
static void SeedTimestamp(CSHA512 &hasher) noexcept {
int64_t perfcounter = GetPerformanceCounter();
hasher.Write((const uint8_t *)&perfcounter, sizeof(perfcounter));
}
static void SeedFast(CSHA512 &hasher) noexcept {
uint8_t buffer[32];
// Stack pointer to indirectly commit to thread/callstack
const uint8_t *ptr = buffer;
hasher.Write((const uint8_t *)&ptr, sizeof(ptr));
// Hardware randomness is very fast when available; use it always.
SeedHardwareFast(hasher);
// High-precision timestamp
SeedTimestamp(hasher);
}
static void SeedSlow(CSHA512 &hasher) noexcept {
uint8_t buffer[32];
// Everything that the 'fast' seeder includes
SeedFast(hasher);
// OS randomness
GetOSRand(buffer);
hasher.Write(buffer, sizeof(buffer));
// OpenSSL RNG (for now)
RAND_bytes(buffer, sizeof(buffer));
hasher.Write(buffer, sizeof(buffer));
// High-precision timestamp.
//
// Note that we also commit to a timestamp in the Fast seeder, so we
// indirectly commit to a benchmark of all the entropy gathering sources in
// this function).
SeedTimestamp(hasher);
}
/** Extract entropy from rng, strengthen it, and feed it into hasher. */
static void SeedStrengthen(CSHA512 &hasher, RNGState &rng,
int microseconds) noexcept {
// Generate 32 bytes of entropy from the RNG, and a copy of the entropy
// already in hasher.
uint8_t strengthen_seed[32];
rng.MixExtract(strengthen_seed, sizeof(strengthen_seed), CSHA512(hasher),
false);
// Strengthen the seed, and feed it into hasher.
Strengthen(strengthen_seed, microseconds, hasher);
}
static void SeedPeriodic(CSHA512 &hasher, RNGState &rng) {
// Everything that the 'fast' seeder includes
SeedFast(hasher);
// High-precision timestamp
SeedTimestamp(hasher);
// Dynamic environment data (performance monitoring, ...)
+ auto old_size = hasher.Size();
RandAddDynamicEnv(hasher);
+ LogPrintf("Feeding %i bytes of dynamic environment data into RNG\n",
+ hasher.Size() - old_size);
// Strengthen for 10ms
SeedStrengthen(hasher, rng, 10000);
}
static void SeedStartup(CSHA512 &hasher, RNGState &rng) noexcept {
// Gather 256 bits of hardware randomness, if available
SeedHardwareSlow(hasher);
// Everything that the 'slow' seeder includes.
SeedSlow(hasher);
// Dynamic environment data (performance monitoring, ...)
+ auto old_size = hasher.Size();
RandAddDynamicEnv(hasher);
// Static environment data
RandAddStaticEnv(hasher);
+ LogPrintf("Feeding %i bytes of environment data into RNG\n",
+ hasher.Size() - old_size);
// Strengthen for 100ms
SeedStrengthen(hasher, rng, 100000);
}
enum class RNGLevel {
FAST, //!< Automatically called by GetRandBytes
SLOW, //!< Automatically called by GetStrongRandBytes
PERIODIC, //!< Called by RandAddPeriodic()
};
static void ProcRand(uint8_t *out, int num, RNGLevel level) {
// Make sure the RNG is initialized first (as all Seed* function possibly
// need hwrand to be available).
RNGState &rng = GetRNGState();
assert(num <= 32);
CSHA512 hasher;
switch (level) {
case RNGLevel::FAST:
SeedFast(hasher);
break;
case RNGLevel::SLOW:
SeedSlow(hasher);
break;
case RNGLevel::PERIODIC:
SeedPeriodic(hasher, rng);
break;
}
// Combine with and update state
if (!rng.MixExtract(out, num, std::move(hasher), false)) {
// On the first invocation, also seed with SeedStartup().
CSHA512 startup_hasher;
SeedStartup(startup_hasher, rng);
rng.MixExtract(out, num, std::move(startup_hasher), true);
}
// For anything but the 'fast' level, feed the resulting RNG output (after
// an additional hashing step) back into OpenSSL.
if (level != RNGLevel::FAST) {
uint8_t buf[64];
CSHA512().Write(out, num).Finalize(buf);
RAND_add(buf, sizeof(buf), num);
memory_cleanse(buf, 64);
}
}
void GetRandBytes(uint8_t *buf, int num) noexcept {
ProcRand(buf, num, RNGLevel::FAST);
}
void GetStrongRandBytes(uint8_t *buf, int num) noexcept {
ProcRand(buf, num, RNGLevel::SLOW);
}
void RandAddPeriodic() {
ProcRand(nullptr, 0, RNGLevel::PERIODIC);
}
bool g_mock_deterministic_tests{false};
uint64_t GetRand(uint64_t nMax) noexcept {
return FastRandomContext(g_mock_deterministic_tests).randrange(nMax);
}
std::chrono::microseconds
GetRandMicros(std::chrono::microseconds duration_max) noexcept {
return std::chrono::microseconds{GetRand(duration_max.count())};
}
int GetRandInt(int nMax) noexcept {
return GetRand(nMax);
}
uint256 GetRandHash() noexcept {
uint256 hash;
GetRandBytes((uint8_t *)&hash, sizeof(hash));
return hash;
}
void FastRandomContext::RandomSeed() {
uint256 seed = GetRandHash();
rng.SetKey(seed.begin(), 32);
requires_seed = false;
}
uint256 FastRandomContext::rand256() noexcept {
if (bytebuf_size < 32) {
FillByteBuffer();
}
uint256 ret;
memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32);
bytebuf_size -= 32;
return ret;
}
std::vector<uint8_t> FastRandomContext::randbytes(size_t len) {
if (requires_seed) {
RandomSeed();
}
std::vector<uint8_t> ret(len);
if (len > 0) {
rng.Output(&ret[0], len);
}
return ret;
}
FastRandomContext::FastRandomContext(const uint256 &seed) noexcept
: requires_seed(false), bytebuf_size(0), bitbuf_size(0) {
rng.SetKey(seed.begin(), 32);
}
bool Random_SanityCheck() {
uint64_t start = GetPerformanceCounter();
/**
* This does not measure the quality of randomness, but it does test that
* GetOSRand() overwrites all 32 bytes of the output given a maximum number
* of tries.
*/
static const ssize_t MAX_TRIES = 1024;
uint8_t data[NUM_OS_RANDOM_BYTES];
/* Tracks which bytes have been overwritten at least once */
bool overwritten[NUM_OS_RANDOM_BYTES] = {};
int num_overwritten;
int tries = 0;
/**
* Loop until all bytes have been overwritten at least once, or max number
* tries reached.
*/
do {
memset(data, 0, NUM_OS_RANDOM_BYTES);
GetOSRand(data);
for (int x = 0; x < NUM_OS_RANDOM_BYTES; ++x) {
overwritten[x] |= (data[x] != 0);
}
num_overwritten = 0;
for (int x = 0; x < NUM_OS_RANDOM_BYTES; ++x) {
if (overwritten[x]) {
num_overwritten += 1;
}
}
tries += 1;
} while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES);
/* If this failed, bailed out after too many tries */
if (num_overwritten != NUM_OS_RANDOM_BYTES) {
return false;
}
// Check that GetPerformanceCounter increases at least during a GetOSRand()
// call + 1ms sleep.
std::this_thread::sleep_for(std::chrono::milliseconds(1));
uint64_t stop = GetPerformanceCounter();
if (stop == start) {
return false;
}
// We called GetPerformanceCounter. Use it as entropy.
CSHA512 to_add;
to_add.Write((const uint8_t *)&start, sizeof(start));
to_add.Write((const uint8_t *)&stop, sizeof(stop));
GetRNGState().MixExtract(nullptr, 0, std::move(to_add), false);
return true;
}
FastRandomContext::FastRandomContext(bool fDeterministic) noexcept
: requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0) {
if (!fDeterministic) {
return;
}
uint256 seed;
rng.SetKey(seed.begin(), 32);
}
FastRandomContext &FastRandomContext::
operator=(FastRandomContext &&from) noexcept {
requires_seed = from.requires_seed;
rng = from.rng;
std::copy(std::begin(from.bytebuf), std::end(from.bytebuf),
std::begin(bytebuf));
bytebuf_size = from.bytebuf_size;
bitbuf = from.bitbuf;
bitbuf_size = from.bitbuf_size;
from.requires_seed = true;
from.bytebuf_size = 0;
from.bitbuf_size = 0;
return *this;
}
void RandomInit() {
// Invoke RNG code to trigger initialization (if not already performed)
ProcRand(nullptr, 0, RNGLevel::FAST);
ReportHardwareRand();
}
File Metadata
Details
Attached
Mime Type
text/x-diff
Expires
Wed, Jan 29, 16:50 (10 h, 52 m)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
5053331
Default Alt Text
(26 KB)
Attached To
rABC Bitcoin ABC
Event Timeline
Log In to Comment