Page MenuHomePhabricator

txmempool.cpp
No OneTemporary

txmempool.cpp

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2016 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <txmempool.h>
#include <chain.h>
#include <chainparams.h> // for GetConsensus.
#include <clientversion.h>
#include <config.h>
#include <consensus/consensus.h>
#include <consensus/tx_verify.h>
#include <consensus/validation.h>
#include <policy/fees.h>
#include <policy/policy.h>
#include <policy/settings.h>
#include <reverse_iterator.h>
#include <streams.h>
#include <timedata.h>
#include <util/moneystr.h>
#include <util/system.h>
#include <util/time.h>
#include <validation.h>
#include <version.h>
#include <algorithm>
CTxMemPoolEntry::CTxMemPoolEntry(const CTransactionRef &_tx, const Amount _nFee,
int64_t _nTime, unsigned int _entryHeight,
bool _spendsCoinbase, int64_t _sigOpsCount,
LockPoints lp)
: tx(_tx), nFee(_nFee), nTxSize(tx->GetTotalSize()),
nUsageSize(RecursiveDynamicUsage(tx)), nTime(_nTime),
entryHeight(_entryHeight), spendsCoinbase(_spendsCoinbase),
sigOpCount(_sigOpsCount), lockPoints(lp) {
nCountWithDescendants = 1;
nSizeWithDescendants = GetTxSize();
nSigOpCountWithDescendants = sigOpCount;
nModFeesWithDescendants = nFee;
feeDelta = Amount::zero();
nCountWithAncestors = 1;
nSizeWithAncestors = GetTxSize();
nModFeesWithAncestors = nFee;
nSigOpCountWithAncestors = sigOpCount;
}
size_t CTxMemPoolEntry::GetTxVirtualSize() const {
return GetVirtualTransactionSize(nTxSize, sigOpCount);
}
uint64_t CTxMemPoolEntry::GetVirtualSizeWithDescendants() const {
// note this is distinct from the sum of descendants' individual virtual
// sizes, and may be smaller.
return GetVirtualTransactionSize(nSizeWithDescendants,
nSigOpCountWithDescendants);
}
uint64_t CTxMemPoolEntry::GetVirtualSizeWithAncestors() const {
// note this is distinct from the sum of ancestors' individual virtual
// sizes, and may be smaller.
return GetVirtualTransactionSize(nSizeWithAncestors,
nSigOpCountWithAncestors);
}
void CTxMemPoolEntry::UpdateFeeDelta(Amount newFeeDelta) {
nModFeesWithDescendants += newFeeDelta - feeDelta;
nModFeesWithAncestors += newFeeDelta - feeDelta;
feeDelta = newFeeDelta;
}
void CTxMemPoolEntry::UpdateLockPoints(const LockPoints &lp) {
lockPoints = lp;
}
// Update the given tx for any in-mempool descendants.
// Assumes that setMemPoolChildren is correct for the given tx and all
// descendants.
void CTxMemPool::UpdateForDescendants(txiter updateIt,
cacheMap &cachedDescendants,
const std::set<TxId> &setExclude) {
setEntries stageEntries, setAllDescendants;
stageEntries = GetMemPoolChildren(updateIt);
while (!stageEntries.empty()) {
const txiter cit = *stageEntries.begin();
setAllDescendants.insert(cit);
stageEntries.erase(cit);
const setEntries &setChildren = GetMemPoolChildren(cit);
for (txiter childEntry : setChildren) {
cacheMap::iterator cacheIt = cachedDescendants.find(childEntry);
if (cacheIt != cachedDescendants.end()) {
// We've already calculated this one, just add the entries for
// this set but don't traverse again.
for (txiter cacheEntry : cacheIt->second) {
setAllDescendants.insert(cacheEntry);
}
} else if (!setAllDescendants.count(childEntry)) {
// Schedule for later processing
stageEntries.insert(childEntry);
}
}
}
// setAllDescendants now contains all in-mempool descendants of updateIt.
// Update and add to cached descendant map
int64_t modifySize = 0;
int64_t modifyCount = 0;
Amount modifyFee = Amount::zero();
int64_t modifySigOpCount = 0;
for (txiter cit : setAllDescendants) {
if (!setExclude.count(cit->GetTx().GetId())) {
modifySize += cit->GetTxSize();
modifyFee += cit->GetModifiedFee();
modifyCount++;
modifySigOpCount += cit->GetSigOpCount();
cachedDescendants[updateIt].insert(cit);
// Update ancestor state for each descendant
mapTx.modify(cit,
update_ancestor_state(updateIt->GetTxSize(),
updateIt->GetModifiedFee(), 1,
updateIt->GetSigOpCount()));
}
}
mapTx.modify(updateIt,
update_descendant_state(modifySize, modifyFee, modifyCount,
modifySigOpCount));
}
// txidsToUpdate is the set of transaction hashes from a disconnected block
// which has been re-added to the mempool. For each entry, look for descendants
// that are outside txidsToUpdate, and add fee/size information for such
// descendants to the parent. For each such descendant, also update the ancestor
// state to include the parent.
void CTxMemPool::UpdateTransactionsFromBlock(
const std::vector<TxId> &txidsToUpdate) {
LOCK(cs);
// For each entry in txidsToUpdate, store the set of in-mempool, but not
// in-txidsToUpdate transactions, so that we don't have to recalculate
// descendants when we come across a previously seen entry.
cacheMap mapMemPoolDescendantsToUpdate;
// Use a set for lookups into txidsToUpdate (these entries are already
// accounted for in the state of their ancestors)
std::set<TxId> setAlreadyIncluded(txidsToUpdate.begin(),
txidsToUpdate.end());
// Iterate in reverse, so that whenever we are looking at a transaction
// we are sure that all in-mempool descendants have already been processed.
// This maximizes the benefit of the descendant cache and guarantees that
// setMemPoolChildren will be updated, an assumption made in
// UpdateForDescendants.
for (const TxId &txid : reverse_iterate(txidsToUpdate)) {
// we cache the in-mempool children to avoid duplicate updates
setEntries setChildren;
// calculate children from mapNextTx
txiter it = mapTx.find(txid);
if (it == mapTx.end()) {
continue;
}
auto iter = mapNextTx.lower_bound(COutPoint(txid, 0));
// First calculate the children, and update setMemPoolChildren to
// include them, and update their setMemPoolParents to include this tx.
for (; iter != mapNextTx.end() && iter->first->GetTxId() == txid;
++iter) {
const TxId &childTxId = iter->second->GetId();
txiter childIter = mapTx.find(childTxId);
assert(childIter != mapTx.end());
// We can skip updating entries we've encountered before or that are
// in the block (which are already accounted for).
if (setChildren.insert(childIter).second &&
!setAlreadyIncluded.count(childTxId)) {
UpdateChild(it, childIter, true);
UpdateParent(childIter, it, true);
}
}
UpdateForDescendants(it, mapMemPoolDescendantsToUpdate,
setAlreadyIncluded);
}
}
bool CTxMemPool::CalculateMemPoolAncestors(
const CTxMemPoolEntry &entry, setEntries &setAncestors,
uint64_t limitAncestorCount, uint64_t limitAncestorSize,
uint64_t limitDescendantCount, uint64_t limitDescendantSize,
std::string &errString, bool fSearchForParents /* = true */) const {
setEntries parentHashes;
const CTransaction &tx = entry.GetTx();
if (fSearchForParents) {
// Get parents of this transaction that are in the mempool
// GetMemPoolParents() is only valid for entries in the mempool, so we
// iterate mapTx to find parents.
for (const CTxIn &in : tx.vin) {
boost::optional<txiter> piter = GetIter(in.prevout.GetTxId());
if (!piter) {
continue;
}
parentHashes.insert(*piter);
if (parentHashes.size() + 1 > limitAncestorCount) {
errString =
strprintf("too many unconfirmed parents [limit: %u]",
limitAncestorCount);
return false;
}
}
} else {
// If we're not searching for parents, we require this to be an entry in
// the mempool already.
txiter it = mapTx.iterator_to(entry);
parentHashes = GetMemPoolParents(it);
}
size_t totalSizeWithAncestors = entry.GetTxSize();
while (!parentHashes.empty()) {
txiter stageit = *parentHashes.begin();
setAncestors.insert(stageit);
parentHashes.erase(stageit);
totalSizeWithAncestors += stageit->GetTxSize();
if (stageit->GetSizeWithDescendants() + entry.GetTxSize() >
limitDescendantSize) {
errString = strprintf(
"exceeds descendant size limit for tx %s [limit: %u]",
stageit->GetTx().GetId().ToString(), limitDescendantSize);
return false;
}
if (stageit->GetCountWithDescendants() + 1 > limitDescendantCount) {
errString = strprintf("too many descendants for tx %s [limit: %u]",
stageit->GetTx().GetId().ToString(),
limitDescendantCount);
return false;
}
if (totalSizeWithAncestors > limitAncestorSize) {
errString = strprintf("exceeds ancestor size limit [limit: %u]",
limitAncestorSize);
return false;
}
const setEntries &setMemPoolParents = GetMemPoolParents(stageit);
for (txiter phash : setMemPoolParents) {
// If this is a new ancestor, add it.
if (setAncestors.count(phash) == 0) {
parentHashes.insert(phash);
}
if (parentHashes.size() + setAncestors.size() + 1 >
limitAncestorCount) {
errString =
strprintf("too many unconfirmed ancestors [limit: %u]",
limitAncestorCount);
return false;
}
}
}
return true;
}
void CTxMemPool::UpdateAncestorsOf(bool add, txiter it,
setEntries &setAncestors) {
setEntries parentIters = GetMemPoolParents(it);
// add or remove this tx as a child of each parent
for (txiter piter : parentIters) {
UpdateChild(piter, it, add);
}
const int64_t updateCount = (add ? 1 : -1);
const int64_t updateSize = updateCount * it->GetTxSize();
const int64_t updateSigOpCount = updateCount * it->GetSigOpCount();
const Amount updateFee = updateCount * it->GetModifiedFee();
for (txiter ancestorIt : setAncestors) {
mapTx.modify(ancestorIt,
update_descendant_state(updateSize, updateFee, updateCount,
updateSigOpCount));
}
}
void CTxMemPool::UpdateEntryForAncestors(txiter it,
const setEntries &setAncestors) {
int64_t updateCount = setAncestors.size();
int64_t updateSize = 0;
int64_t updateSigOpsCount = 0;
Amount updateFee = Amount::zero();
for (txiter ancestorIt : setAncestors) {
updateSize += ancestorIt->GetTxSize();
updateFee += ancestorIt->GetModifiedFee();
updateSigOpsCount += ancestorIt->GetSigOpCount();
}
mapTx.modify(it, update_ancestor_state(updateSize, updateFee, updateCount,
updateSigOpsCount));
}
void CTxMemPool::UpdateChildrenForRemoval(txiter it) {
const setEntries &setMemPoolChildren = GetMemPoolChildren(it);
for (txiter updateIt : setMemPoolChildren) {
UpdateParent(updateIt, it, false);
}
}
void CTxMemPool::UpdateForRemoveFromMempool(const setEntries &entriesToRemove,
bool updateDescendants) {
// For each entry, walk back all ancestors and decrement size associated
// with this transaction.
const uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
if (updateDescendants) {
// updateDescendants should be true whenever we're not recursively
// removing a tx and all its descendants, eg when a transaction is
// confirmed in a block. Here we only update statistics and not data in
// mapLinks (which we need to preserve until we're finished with all
// operations that need to traverse the mempool).
for (txiter removeIt : entriesToRemove) {
setEntries setDescendants;
CalculateDescendants(removeIt, setDescendants);
setDescendants.erase(removeIt); // don't update state for self
int64_t modifySize = -int64_t(removeIt->GetTxSize());
Amount modifyFee = -1 * removeIt->GetModifiedFee();
int modifySigOps = -removeIt->GetSigOpCount();
for (txiter dit : setDescendants) {
mapTx.modify(dit, update_ancestor_state(modifySize, modifyFee,
-1, modifySigOps));
}
}
}
for (txiter removeIt : entriesToRemove) {
setEntries setAncestors;
const CTxMemPoolEntry &entry = *removeIt;
std::string dummy;
// Since this is a tx that is already in the mempool, we can call CMPA
// with fSearchForParents = false. If the mempool is in a consistent
// state, then using true or false should both be correct, though false
// should be a bit faster.
// However, if we happen to be in the middle of processing a reorg, then
// the mempool can be in an inconsistent state. In this case, the set of
// ancestors reachable via mapLinks will be the same as the set of
// ancestors whose packages include this transaction, because when we
// add a new transaction to the mempool in addUnchecked(), we assume it
// has no children, and in the case of a reorg where that assumption is
// false, the in-mempool children aren't linked to the in-block tx's
// until UpdateTransactionsFromBlock() is called. So if we're being
// called during a reorg, ie before UpdateTransactionsFromBlock() has
// been called, then mapLinks[] will differ from the set of mempool
// parents we'd calculate by searching, and it's important that we use
// the mapLinks[] notion of ancestor transactions as the set of things
// to update for removal.
CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit,
nNoLimit, nNoLimit, dummy, false);
// Note that UpdateAncestorsOf severs the child links that point to
// removeIt in the entries for the parents of removeIt.
UpdateAncestorsOf(false, removeIt, setAncestors);
}
// After updating all the ancestor sizes, we can now sever the link between
// each transaction being removed and any mempool children (ie, update
// setMemPoolParents for each direct child of a transaction being removed).
for (txiter removeIt : entriesToRemove) {
UpdateChildrenForRemoval(removeIt);
}
}
void CTxMemPoolEntry::UpdateDescendantState(int64_t modifySize,
Amount modifyFee,
int64_t modifyCount,
int64_t modifySigOpCount) {
nSizeWithDescendants += modifySize;
assert(int64_t(nSizeWithDescendants) > 0);
nModFeesWithDescendants += modifyFee;
nCountWithDescendants += modifyCount;
assert(int64_t(nCountWithDescendants) > 0);
nSigOpCountWithDescendants += modifySigOpCount;
assert(int64_t(nSigOpCountWithDescendants) >= 0);
}
void CTxMemPoolEntry::UpdateAncestorState(int64_t modifySize, Amount modifyFee,
int64_t modifyCount,
int64_t modifySigOps) {
nSizeWithAncestors += modifySize;
assert(int64_t(nSizeWithAncestors) > 0);
nModFeesWithAncestors += modifyFee;
nCountWithAncestors += modifyCount;
assert(int64_t(nCountWithAncestors) > 0);
nSigOpCountWithAncestors += modifySigOps;
assert(int(nSigOpCountWithAncestors) >= 0);
}
CTxMemPool::CTxMemPool() : nTransactionsUpdated(0) {
// lock free clear
_clear();
// Sanity checks off by default for performance, because otherwise accepting
// transactions becomes O(N^2) where N is the number of transactions in the
// pool
nCheckFrequency = 0;
}
CTxMemPool::~CTxMemPool() {}
bool CTxMemPool::isSpent(const COutPoint &outpoint) const {
LOCK(cs);
return mapNextTx.count(outpoint);
}
unsigned int CTxMemPool::GetTransactionsUpdated() const {
LOCK(cs);
return nTransactionsUpdated;
}
void CTxMemPool::AddTransactionsUpdated(unsigned int n) {
LOCK(cs);
nTransactionsUpdated += n;
}
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry,
setEntries &setAncestors) {
NotifyEntryAdded(entry.GetSharedTx());
// Add to memory pool without checking anything.
// Used by AcceptToMemoryPool(), which DOES do all the appropriate checks.
indexed_transaction_set::iterator newit = mapTx.insert(entry).first;
mapLinks.insert(make_pair(newit, TxLinks()));
// Update transaction for any feeDelta created by PrioritiseTransaction
// TODO: refactor so that the fee delta is calculated before inserting into
// mapTx.
Amount feeDelta = Amount::zero();
ApplyDelta(entry.GetTx().GetId(), feeDelta);
if (feeDelta != Amount::zero()) {
mapTx.modify(newit, update_fee_delta(feeDelta));
}
// Update cachedInnerUsage to include contained transaction's usage.
// (When we update the entry for in-mempool parents, memory usage will be
// further updated.)
cachedInnerUsage += entry.DynamicMemoryUsage();
const CTransaction &tx = newit->GetTx();
std::set<TxId> setParentTransactions;
for (const CTxIn &in : tx.vin) {
mapNextTx.insert(std::make_pair(&in.prevout, &tx));
setParentTransactions.insert(in.prevout.GetTxId());
}
// Don't bother worrying about child transactions of this one. Normal case
// of a new transaction arriving is that there can't be any children,
// because such children would be orphans. An exception to that is if a
// transaction enters that used to be in a block. In that case, our
// disconnect block logic will call UpdateTransactionsFromBlock to clean up
// the mess we're leaving here.
// Update ancestors with information about this tx
for (const auto &pit : GetIterSet(setParentTransactions)) {
UpdateParent(newit, pit, true);
}
UpdateAncestorsOf(true, newit, setAncestors);
UpdateEntryForAncestors(newit, setAncestors);
nTransactionsUpdated++;
totalTxSize += entry.GetTxSize();
vTxHashes.emplace_back(tx.GetHash(), newit);
newit->vTxHashesIdx = vTxHashes.size() - 1;
}
void CTxMemPool::removeUnchecked(txiter it, MemPoolRemovalReason reason) {
NotifyEntryRemoved(it->GetSharedTx(), reason);
for (const CTxIn &txin : it->GetTx().vin) {
mapNextTx.erase(txin.prevout);
}
if (vTxHashes.size() > 1) {
vTxHashes[it->vTxHashesIdx] = std::move(vTxHashes.back());
vTxHashes[it->vTxHashesIdx].second->vTxHashesIdx = it->vTxHashesIdx;
vTxHashes.pop_back();
if (vTxHashes.size() * 2 < vTxHashes.capacity()) {
vTxHashes.shrink_to_fit();
}
} else {
vTxHashes.clear();
}
totalTxSize -= it->GetTxSize();
cachedInnerUsage -= it->DynamicMemoryUsage();
cachedInnerUsage -= memusage::DynamicUsage(mapLinks[it].parents) +
memusage::DynamicUsage(mapLinks[it].children);
mapLinks.erase(it);
mapTx.erase(it);
nTransactionsUpdated++;
}
// Calculates descendants of entry that are not already in setDescendants, and
// adds to setDescendants. Assumes entryit is already a tx in the mempool and
// setMemPoolChildren is correct for tx and all descendants. Also assumes that
// if an entry is in setDescendants already, then all in-mempool descendants of
// it are already in setDescendants as well, so that we can save time by not
// iterating over those entries.
void CTxMemPool::CalculateDescendants(txiter entryit,
setEntries &setDescendants) const {
setEntries stage;
if (setDescendants.count(entryit) == 0) {
stage.insert(entryit);
}
// Traverse down the children of entry, only adding children that are not
// accounted for in setDescendants already (because those children have
// either already been walked, or will be walked in this iteration).
while (!stage.empty()) {
txiter it = *stage.begin();
setDescendants.insert(it);
stage.erase(it);
const setEntries &setChildren = GetMemPoolChildren(it);
for (txiter childiter : setChildren) {
if (!setDescendants.count(childiter)) {
stage.insert(childiter);
}
}
}
}
void CTxMemPool::removeRecursive(const CTransaction &origTx,
MemPoolRemovalReason reason) {
// Remove transaction from memory pool.
LOCK(cs);
setEntries txToRemove;
txiter origit = mapTx.find(origTx.GetId());
if (origit != mapTx.end()) {
txToRemove.insert(origit);
} else {
// When recursively removing but origTx isn't in the mempool be sure to
// remove any children that are in the pool. This can happen during
// chain re-orgs if origTx isn't re-accepted into the mempool for any
// reason.
for (size_t i = 0; i < origTx.vout.size(); i++) {
auto it = mapNextTx.find(COutPoint(origTx.GetId(), i));
if (it == mapNextTx.end()) {
continue;
}
txiter nextit = mapTx.find(it->second->GetId());
assert(nextit != mapTx.end());
txToRemove.insert(nextit);
}
}
setEntries setAllRemoves;
for (txiter it : txToRemove) {
CalculateDescendants(it, setAllRemoves);
}
RemoveStaged(setAllRemoves, false, reason);
}
void CTxMemPool::removeForReorg(const Config &config,
const CCoinsViewCache *pcoins,
unsigned int nMemPoolHeight, int flags) {
// Remove transactions spending a coinbase which are now immature and
// no-longer-final transactions.
LOCK(cs);
setEntries txToRemove;
for (indexed_transaction_set::const_iterator it = mapTx.begin();
it != mapTx.end(); it++) {
const CTransaction &tx = it->GetTx();
LockPoints lp = it->GetLockPoints();
bool validLP = TestLockPointValidity(&lp);
CValidationState state;
if (!ContextualCheckTransactionForCurrentBlock(
config.GetChainParams().GetConsensus(), tx, state, flags) ||
!CheckSequenceLocks(*this, tx, flags, &lp, validLP)) {
// Note if CheckSequenceLocks fails the LockPoints may still be
// invalid. So it's critical that we remove the tx and not depend on
// the LockPoints.
txToRemove.insert(it);
} else if (it->GetSpendsCoinbase()) {
for (const CTxIn &txin : tx.vin) {
indexed_transaction_set::const_iterator it2 =
mapTx.find(txin.prevout.GetTxId());
if (it2 != mapTx.end()) {
continue;
}
const Coin &coin = pcoins->AccessCoin(txin.prevout);
if (nCheckFrequency != 0) {
assert(!coin.IsSpent());
}
if (coin.IsSpent() ||
(coin.IsCoinBase() &&
int64_t(nMemPoolHeight) - coin.GetHeight() <
COINBASE_MATURITY)) {
txToRemove.insert(it);
break;
}
}
}
if (!validLP) {
mapTx.modify(it, update_lock_points(lp));
}
}
setEntries setAllRemoves;
for (txiter it : txToRemove) {
CalculateDescendants(it, setAllRemoves);
}
RemoveStaged(setAllRemoves, false, MemPoolRemovalReason::REORG);
}
void CTxMemPool::removeConflicts(const CTransaction &tx) {
// Remove transactions which depend on inputs of tx, recursively
AssertLockHeld(cs);
for (const CTxIn &txin : tx.vin) {
auto it = mapNextTx.find(txin.prevout);
if (it != mapNextTx.end()) {
const CTransaction &txConflict = *it->second;
if (txConflict != tx) {
ClearPrioritisation(txConflict.GetId());
removeRecursive(txConflict, MemPoolRemovalReason::CONFLICT);
}
}
}
}
/**
* Called when a block is connected. Removes from mempool and updates the miner
* fee estimator.
*/
void CTxMemPool::removeForBlock(const std::vector<CTransactionRef> &vtx,
unsigned int nBlockHeight) {
LOCK(cs);
DisconnectedBlockTransactions disconnectpool;
disconnectpool.addForBlock(vtx);
std::vector<const CTxMemPoolEntry *> entries;
for (const CTransactionRef &tx :
reverse_iterate(disconnectpool.GetQueuedTx().get<insertion_order>())) {
const TxId &txid = tx->GetId();
indexed_transaction_set::iterator i = mapTx.find(txid);
if (i != mapTx.end()) {
entries.push_back(&*i);
}
}
for (const CTransactionRef &tx :
reverse_iterate(disconnectpool.GetQueuedTx().get<insertion_order>())) {
txiter it = mapTx.find(tx->GetId());
if (it != mapTx.end()) {
setEntries stage;
stage.insert(it);
RemoveStaged(stage, true, MemPoolRemovalReason::BLOCK);
}
removeConflicts(*tx);
ClearPrioritisation(tx->GetId());
}
disconnectpool.clear();
lastRollingFeeUpdate = GetTime();
blockSinceLastRollingFeeBump = true;
}
void CTxMemPool::_clear() {
mapLinks.clear();
mapTx.clear();
mapNextTx.clear();
vTxHashes.clear();
totalTxSize = 0;
cachedInnerUsage = 0;
lastRollingFeeUpdate = GetTime();
blockSinceLastRollingFeeBump = false;
rollingMinimumFeeRate = 0;
++nTransactionsUpdated;
}
void CTxMemPool::clear() {
LOCK(cs);
_clear();
}
static void CheckInputsAndUpdateCoins(const CTransaction &tx,
CCoinsViewCache &mempoolDuplicate,
const int64_t spendheight) {
CValidationState state;
Amount txfee = Amount::zero();
bool fCheckResult =
tx.IsCoinBase() || Consensus::CheckTxInputs(tx, state, mempoolDuplicate,
spendheight, txfee);
assert(fCheckResult);
UpdateCoins(mempoolDuplicate, tx, std::numeric_limits<int>::max());
}
void CTxMemPool::check(const CCoinsViewCache *pcoins) const {
LOCK(cs);
if (nCheckFrequency == 0) {
return;
}
if (GetRand(std::numeric_limits<uint32_t>::max()) >= nCheckFrequency) {
return;
}
LogPrint(BCLog::MEMPOOL,
"Checking mempool with %u transactions and %u inputs\n",
(unsigned int)mapTx.size(), (unsigned int)mapNextTx.size());
uint64_t checkTotal = 0;
uint64_t innerUsage = 0;
CCoinsViewCache mempoolDuplicate(const_cast<CCoinsViewCache *>(pcoins));
const int64_t spendheight = GetSpendHeight(mempoolDuplicate);
std::list<const CTxMemPoolEntry *> waitingOnDependants;
for (indexed_transaction_set::const_iterator it = mapTx.begin();
it != mapTx.end(); it++) {
unsigned int i = 0;
checkTotal += it->GetTxSize();
innerUsage += it->DynamicMemoryUsage();
const CTransaction &tx = it->GetTx();
txlinksMap::const_iterator linksiter = mapLinks.find(it);
assert(linksiter != mapLinks.end());
const TxLinks &links = linksiter->second;
innerUsage += memusage::DynamicUsage(links.parents) +
memusage::DynamicUsage(links.children);
bool fDependsWait = false;
setEntries setParentCheck;
for (const CTxIn &txin : tx.vin) {
// Check that every mempool transaction's inputs refer to available
// coins, or other mempool tx's.
indexed_transaction_set::const_iterator it2 =
mapTx.find(txin.prevout.GetTxId());
if (it2 != mapTx.end()) {
const CTransaction &tx2 = it2->GetTx();
assert(tx2.vout.size() > txin.prevout.GetN() &&
!tx2.vout[txin.prevout.GetN()].IsNull());
fDependsWait = true;
setParentCheck.insert(it2);
} else {
assert(pcoins->HaveCoin(txin.prevout));
}
// Check whether its inputs are marked in mapNextTx.
auto it3 = mapNextTx.find(txin.prevout);
assert(it3 != mapNextTx.end());
assert(it3->first == &txin.prevout);
assert(it3->second == &tx);
i++;
}
assert(setParentCheck == GetMemPoolParents(it));
// Verify ancestor state is correct.
setEntries setAncestors;
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit,
nNoLimit, nNoLimit, dummy);
uint64_t nCountCheck = setAncestors.size() + 1;
uint64_t nSizeCheck = it->GetTxSize();
Amount nFeesCheck = it->GetModifiedFee();
int64_t nSigOpCheck = it->GetSigOpCount();
for (txiter ancestorIt : setAncestors) {
nSizeCheck += ancestorIt->GetTxSize();
nFeesCheck += ancestorIt->GetModifiedFee();
nSigOpCheck += ancestorIt->GetSigOpCount();
}
assert(it->GetCountWithAncestors() == nCountCheck);
assert(it->GetSizeWithAncestors() == nSizeCheck);
assert(it->GetSigOpCountWithAncestors() == nSigOpCheck);
assert(it->GetModFeesWithAncestors() == nFeesCheck);
// Check children against mapNextTx
CTxMemPool::setEntries setChildrenCheck;
auto iter = mapNextTx.lower_bound(COutPoint(it->GetTx().GetId(), 0));
uint64_t child_sizes = 0;
int64_t child_sigop_counts = 0;
for (; iter != mapNextTx.end() &&
iter->first->GetTxId() == it->GetTx().GetId();
++iter) {
txiter childit = mapTx.find(iter->second->GetId());
// mapNextTx points to in-mempool transactions
assert(childit != mapTx.end());
if (setChildrenCheck.insert(childit).second) {
child_sizes += childit->GetTxSize();
child_sigop_counts += childit->GetSigOpCount();
}
}
assert(setChildrenCheck == GetMemPoolChildren(it));
// Also check to make sure size is greater than sum with immediate
// children. Just a sanity check, not definitive that this calc is
// correct...
assert(it->GetSizeWithDescendants() >= child_sizes + it->GetTxSize());
assert(it->GetSigOpCountWithDescendants() >=
child_sigop_counts + it->GetSigOpCount());
if (fDependsWait) {
waitingOnDependants.push_back(&(*it));
} else {
CheckInputsAndUpdateCoins(tx, mempoolDuplicate, spendheight);
}
}
unsigned int stepsSinceLastRemove = 0;
while (!waitingOnDependants.empty()) {
const CTxMemPoolEntry *entry = waitingOnDependants.front();
waitingOnDependants.pop_front();
if (!mempoolDuplicate.HaveInputs(entry->GetTx())) {
waitingOnDependants.push_back(entry);
stepsSinceLastRemove++;
assert(stepsSinceLastRemove < waitingOnDependants.size());
} else {
CheckInputsAndUpdateCoins(entry->GetTx(), mempoolDuplicate,
spendheight);
stepsSinceLastRemove = 0;
}
}
for (auto it = mapNextTx.cbegin(); it != mapNextTx.cend(); it++) {
const TxId &txid = it->second->GetId();
indexed_transaction_set::const_iterator it2 = mapTx.find(txid);
const CTransaction &tx = it2->GetTx();
assert(it2 != mapTx.end());
assert(&tx == it->second);
}
assert(totalTxSize == checkTotal);
assert(innerUsage == cachedInnerUsage);
}
bool CTxMemPool::CompareDepthAndScore(const TxId &txida, const TxId &txidb) {
LOCK(cs);
indexed_transaction_set::const_iterator i = mapTx.find(txida);
if (i == mapTx.end()) {
return false;
}
indexed_transaction_set::const_iterator j = mapTx.find(txidb);
if (j == mapTx.end()) {
return true;
}
uint64_t counta = i->GetCountWithAncestors();
uint64_t countb = j->GetCountWithAncestors();
if (counta == countb) {
return CompareTxMemPoolEntryByScore()(*i, *j);
}
return counta < countb;
}
namespace {
class DepthAndScoreComparator {
public:
bool
operator()(const CTxMemPool::indexed_transaction_set::const_iterator &a,
const CTxMemPool::indexed_transaction_set::const_iterator &b) {
uint64_t counta = a->GetCountWithAncestors();
uint64_t countb = b->GetCountWithAncestors();
if (counta == countb) {
return CompareTxMemPoolEntryByScore()(*a, *b);
}
return counta < countb;
}
};
} // namespace
std::vector<CTxMemPool::indexed_transaction_set::const_iterator>
CTxMemPool::GetSortedDepthAndScore() const {
std::vector<indexed_transaction_set::const_iterator> iters;
AssertLockHeld(cs);
iters.reserve(mapTx.size());
for (indexed_transaction_set::iterator mi = mapTx.begin();
mi != mapTx.end(); ++mi) {
iters.push_back(mi);
}
std::sort(iters.begin(), iters.end(), DepthAndScoreComparator());
return iters;
}
void CTxMemPool::queryHashes(std::vector<uint256> &vtxid) const {
LOCK(cs);
auto iters = GetSortedDepthAndScore();
vtxid.clear();
vtxid.reserve(mapTx.size());
for (auto it : iters) {
vtxid.push_back(it->GetTx().GetId());
}
}
static TxMempoolInfo
GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it) {
return TxMempoolInfo{it->GetSharedTx(), it->GetTime(),
CFeeRate(it->GetFee(), it->GetTxSize()),
it->GetModifiedFee() - it->GetFee()};
}
std::vector<TxMempoolInfo> CTxMemPool::infoAll() const {
LOCK(cs);
auto iters = GetSortedDepthAndScore();
std::vector<TxMempoolInfo> ret;
ret.reserve(mapTx.size());
for (auto it : iters) {
ret.push_back(GetInfo(it));
}
return ret;
}
CTransactionRef CTxMemPool::get(const TxId &txid) const {
LOCK(cs);
indexed_transaction_set::const_iterator i = mapTx.find(txid);
if (i == mapTx.end()) {
return nullptr;
}
return i->GetSharedTx();
}
TxMempoolInfo CTxMemPool::info(const TxId &txid) const {
LOCK(cs);
indexed_transaction_set::const_iterator i = mapTx.find(txid);
if (i == mapTx.end()) {
return TxMempoolInfo();
}
return GetInfo(i);
}
CFeeRate CTxMemPool::estimateFee() const {
LOCK(cs);
uint64_t maxMempoolSize =
gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000;
// minerPolicy uses recent blocks to figure out a reasonable fee. This
// may disagree with the rollingMinimumFeerate under certain scenarios
// where the mempool increases rapidly, or blocks are being mined which
// do not contain propagated transactions.
return std::max(::minRelayTxFee, GetMinFee(maxMempoolSize));
}
void CTxMemPool::PrioritiseTransaction(const TxId &txid,
const Amount nFeeDelta) {
{
LOCK(cs);
Amount &delta = mapDeltas[txid];
delta += nFeeDelta;
txiter it = mapTx.find(txid);
if (it != mapTx.end()) {
mapTx.modify(it, update_fee_delta(delta));
// Now update all ancestors' modified fees with descendants
setEntries setAncestors;
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
CalculateMemPoolAncestors(*it, setAncestors, nNoLimit, nNoLimit,
nNoLimit, nNoLimit, dummy, false);
for (txiter ancestorIt : setAncestors) {
mapTx.modify(ancestorIt,
update_descendant_state(0, nFeeDelta, 0, 0));
}
// Now update all descendants' modified fees with ancestors
setEntries setDescendants;
CalculateDescendants(it, setDescendants);
setDescendants.erase(it);
for (txiter descendantIt : setDescendants) {
mapTx.modify(descendantIt,
update_ancestor_state(0, nFeeDelta, 0, 0));
}
++nTransactionsUpdated;
}
}
LogPrintf("PrioritiseTransaction: %s fee += %s\n", txid.ToString(),
FormatMoney(nFeeDelta));
}
void CTxMemPool::ApplyDelta(const TxId &txid, Amount &nFeeDelta) const {
LOCK(cs);
std::map<TxId, Amount>::const_iterator pos = mapDeltas.find(txid);
if (pos == mapDeltas.end()) {
return;
}
nFeeDelta += pos->second;
}
void CTxMemPool::ClearPrioritisation(const TxId &txid) {
LOCK(cs);
mapDeltas.erase(txid);
}
const CTransaction *CTxMemPool::GetConflictTx(const COutPoint &prevout) const {
const auto it = mapNextTx.find(prevout);
return it == mapNextTx.end() ? nullptr : it->second;
}
boost::optional<CTxMemPool::txiter>
CTxMemPool::GetIter(const TxId &txid) const {
auto it = mapTx.find(txid);
if (it != mapTx.end()) {
return it;
}
return boost::optional<txiter>{};
}
CTxMemPool::setEntries
CTxMemPool::GetIterSet(const std::set<TxId> &txids) const {
CTxMemPool::setEntries ret;
for (const auto &txid : txids) {
const auto mi = GetIter(txid);
if (mi) {
ret.insert(*mi);
}
}
return ret;
}
bool CTxMemPool::HasNoInputsOf(const CTransaction &tx) const {
for (const CTxIn &in : tx.vin) {
if (exists(in.prevout.GetTxId())) {
return false;
}
}
return true;
}
CCoinsViewMemPool::CCoinsViewMemPool(CCoinsView *baseIn,
const CTxMemPool &mempoolIn)
: CCoinsViewBacked(baseIn), mempool(mempoolIn) {}
bool CCoinsViewMemPool::GetCoin(const COutPoint &outpoint, Coin &coin) const {
// If an entry in the mempool exists, always return that one, as it's
// guaranteed to never conflict with the underlying cache, and it cannot
// have pruned entries (as it contains full) transactions. First checking
// the underlying cache risks returning a pruned entry instead.
CTransactionRef ptx = mempool.get(outpoint.GetTxId());
if (ptx) {
if (outpoint.GetN() < ptx->vout.size()) {
coin = Coin(ptx->vout[outpoint.GetN()], MEMPOOL_HEIGHT, false);
return true;
}
return false;
}
return base->GetCoin(outpoint, coin);
}
size_t CTxMemPool::DynamicMemoryUsage() const {
LOCK(cs);
// Estimate the overhead of mapTx to be 12 pointers + an allocation, as no
// exact formula for boost::multi_index_contained is implemented.
return memusage::MallocUsage(sizeof(CTxMemPoolEntry) +
12 * sizeof(void *)) *
mapTx.size() +
memusage::DynamicUsage(mapNextTx) +
memusage::DynamicUsage(mapDeltas) +
memusage::DynamicUsage(mapLinks) +
memusage::DynamicUsage(vTxHashes) + cachedInnerUsage;
}
void CTxMemPool::RemoveStaged(setEntries &stage, bool updateDescendants,
MemPoolRemovalReason reason) {
AssertLockHeld(cs);
UpdateForRemoveFromMempool(stage, updateDescendants);
for (txiter it : stage) {
removeUnchecked(it, reason);
}
}
int CTxMemPool::Expire(int64_t time) {
LOCK(cs);
indexed_transaction_set::index<entry_time>::type::iterator it =
mapTx.get<entry_time>().begin();
setEntries toremove;
while (it != mapTx.get<entry_time>().end() && it->GetTime() < time) {
toremove.insert(mapTx.project<0>(it));
it++;
}
setEntries stage;
for (txiter removeit : toremove) {
CalculateDescendants(removeit, stage);
}
RemoveStaged(stage, false, MemPoolRemovalReason::EXPIRY);
return stage.size();
}
void CTxMemPool::LimitSize(size_t limit, unsigned long age) {
int expired = Expire(GetTime() - age);
if (expired != 0) {
LogPrint(BCLog::MEMPOOL,
"Expired %i transactions from the memory pool\n", expired);
}
std::vector<COutPoint> vNoSpendsRemaining;
TrimToSize(limit, &vNoSpendsRemaining);
for (const COutPoint &removed : vNoSpendsRemaining) {
pcoinsTip->Uncache(removed);
}
}
void CTxMemPool::addUnchecked(const CTxMemPoolEntry &entry) {
setEntries setAncestors;
uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
std::string dummy;
CalculateMemPoolAncestors(entry, setAncestors, nNoLimit, nNoLimit, nNoLimit,
nNoLimit, dummy);
return addUnchecked(entry, setAncestors);
}
void CTxMemPool::UpdateChild(txiter entry, txiter child, bool add) {
setEntries s;
if (add && mapLinks[entry].children.insert(child).second) {
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
} else if (!add && mapLinks[entry].children.erase(child)) {
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
}
}
void CTxMemPool::UpdateParent(txiter entry, txiter parent, bool add) {
setEntries s;
if (add && mapLinks[entry].parents.insert(parent).second) {
cachedInnerUsage += memusage::IncrementalDynamicUsage(s);
} else if (!add && mapLinks[entry].parents.erase(parent)) {
cachedInnerUsage -= memusage::IncrementalDynamicUsage(s);
}
}
const CTxMemPool::setEntries &
CTxMemPool::GetMemPoolParents(txiter entry) const {
assert(entry != mapTx.end());
txlinksMap::const_iterator it = mapLinks.find(entry);
assert(it != mapLinks.end());
return it->second.parents;
}
const CTxMemPool::setEntries &
CTxMemPool::GetMemPoolChildren(txiter entry) const {
assert(entry != mapTx.end());
txlinksMap::const_iterator it = mapLinks.find(entry);
assert(it != mapLinks.end());
return it->second.children;
}
CFeeRate CTxMemPool::GetMinFee(size_t sizelimit) const {
LOCK(cs);
if (!blockSinceLastRollingFeeBump || rollingMinimumFeeRate == 0) {
return CFeeRate(int64_t(ceill(rollingMinimumFeeRate)) * SATOSHI);
}
int64_t time = GetTime();
if (time > lastRollingFeeUpdate + 10) {
double halflife = ROLLING_FEE_HALFLIFE;
if (DynamicMemoryUsage() < sizelimit / 4) {
halflife /= 4;
} else if (DynamicMemoryUsage() < sizelimit / 2) {
halflife /= 2;
}
rollingMinimumFeeRate =
rollingMinimumFeeRate /
pow(2.0, (time - lastRollingFeeUpdate) / halflife);
lastRollingFeeUpdate = time;
}
return CFeeRate(int64_t(ceill(rollingMinimumFeeRate)) * SATOSHI);
}
void CTxMemPool::trackPackageRemoved(const CFeeRate &rate) {
AssertLockHeld(cs);
if ((rate.GetFeePerK() / SATOSHI) > rollingMinimumFeeRate) {
rollingMinimumFeeRate = rate.GetFeePerK() / SATOSHI;
blockSinceLastRollingFeeBump = false;
}
}
void CTxMemPool::TrimToSize(size_t sizelimit,
std::vector<COutPoint> *pvNoSpendsRemaining) {
LOCK(cs);
unsigned nTxnRemoved = 0;
CFeeRate maxFeeRateRemoved(Amount::zero());
while (!mapTx.empty() && DynamicMemoryUsage() > sizelimit) {
indexed_transaction_set::index<descendant_score>::type::iterator it =
mapTx.get<descendant_score>().begin();
// We set the new mempool min fee to the feerate of the removed set,
// plus the "minimum reasonable fee rate" (ie some value under which we
// consider txn to have 0 fee). This way, we don't allow txn to enter
// mempool with feerate equal to txn which were removed with no block in
// between.
CFeeRate removed(it->GetModFeesWithDescendants(),
it->GetVirtualSizeWithDescendants());
removed += MEMPOOL_FULL_FEE_INCREMENT;
trackPackageRemoved(removed);
maxFeeRateRemoved = std::max(maxFeeRateRemoved, removed);
setEntries stage;
CalculateDescendants(mapTx.project<0>(it), stage);
nTxnRemoved += stage.size();
std::vector<CTransaction> txn;
if (pvNoSpendsRemaining) {
txn.reserve(stage.size());
for (txiter iter : stage) {
txn.push_back(iter->GetTx());
}
}
RemoveStaged(stage, false, MemPoolRemovalReason::SIZELIMIT);
if (pvNoSpendsRemaining) {
for (const CTransaction &tx : txn) {
for (const CTxIn &txin : tx.vin) {
if (exists(txin.prevout.GetTxId())) {
continue;
}
pvNoSpendsRemaining->push_back(txin.prevout);
}
}
}
}
if (maxFeeRateRemoved > CFeeRate(Amount::zero())) {
LogPrint(BCLog::MEMPOOL,
"Removed %u txn, rolling minimum fee bumped to %s\n",
nTxnRemoved, maxFeeRateRemoved.ToString());
}
}
uint64_t CTxMemPool::CalculateDescendantMaximum(txiter entry) const {
// find parent with highest descendant count
std::vector<txiter> candidates;
setEntries counted;
candidates.push_back(entry);
uint64_t maximum = 0;
while (candidates.size()) {
txiter candidate = candidates.back();
candidates.pop_back();
if (!counted.insert(candidate).second) {
continue;
}
const setEntries &parents = GetMemPoolParents(candidate);
if (parents.size() == 0) {
maximum = std::max(maximum, candidate->GetCountWithDescendants());
} else {
for (txiter i : parents) {
candidates.push_back(i);
}
}
}
return maximum;
}
void CTxMemPool::GetTransactionAncestry(const TxId &txid, size_t &ancestors,
size_t &descendants) const {
LOCK(cs);
auto it = mapTx.find(txid);
ancestors = descendants = 0;
if (it != mapTx.end()) {
ancestors = it->GetCountWithAncestors();
descendants = CalculateDescendantMaximum(it);
}
}
bool CTxMemPool::IsLoaded() const {
LOCK(cs);
return m_is_loaded;
}
void CTxMemPool::SetIsLoaded(bool loaded) {
LOCK(cs);
m_is_loaded = loaded;
}
SaltedTxidHasher::SaltedTxidHasher()
: k0(GetRand(std::numeric_limits<uint64_t>::max())),
k1(GetRand(std::numeric_limits<uint64_t>::max())) {}
/** Maximum bytes for transactions to store for processing during reorg */
static const size_t MAX_DISCONNECTED_TX_POOL_SIZE = 20 * DEFAULT_MAX_BLOCK_SIZE;
void DisconnectedBlockTransactions::addForBlock(
const std::vector<CTransactionRef> &vtx) {
for (const auto &tx : reverse_iterate(vtx)) {
// If we already added it, just skip.
auto it = queuedTx.find(tx->GetId());
if (it != queuedTx.end()) {
continue;
}
// Insert the transaction into the pool.
addTransaction(tx);
// Fill in the set of parents.
std::unordered_set<TxId, SaltedTxidHasher> parents;
for (const CTxIn &in : tx->vin) {
parents.insert(in.prevout.GetTxId());
}
// In order to make sure we keep things in topological order, we check
// if we already know of the parent of the current transaction. If so,
// we remove them from the set and then add them back.
while (parents.size() > 0) {
std::unordered_set<TxId, SaltedTxidHasher> worklist(
std::move(parents));
parents.clear();
for (const TxId &txid : worklist) {
// If we do not have that txid in the set, nothing needs to be
// done.
auto pit = queuedTx.find(txid);
if (pit == queuedTx.end()) {
continue;
}
// We have parent in our set, we reinsert them at the right
// position.
const CTransactionRef ptx = *pit;
queuedTx.erase(pit);
queuedTx.insert(ptx);
// And we make sure ancestors are covered.
for (const CTxIn &in : ptx->vin) {
parents.insert(in.prevout.GetTxId());
}
}
}
}
// Keep the size under control.
while (DynamicMemoryUsage() > MAX_DISCONNECTED_TX_POOL_SIZE) {
// Drop the earliest entry, and remove its children from the
// mempool.
auto it = queuedTx.get<insertion_order>().begin();
g_mempool.removeRecursive(**it, MemPoolRemovalReason::REORG);
removeEntry(it);
}
}
void DisconnectedBlockTransactions::importMempool(CTxMemPool &pool) {
// addForBlock's algorithm sorts a vector of transactions back into
// topological order. We use it in a separate object to create a valid
// ordering of all mempool transactions, which we then splice in front of
// the current queuedTx. This results in a valid sequence of transactions to
// be reprocessed in updateMempoolForReorg.
// We create vtx in order of the entry_time index to facilitate for
// addForBlocks (which iterates in reverse order), as vtx probably end in
// the correct ordering for queuedTx.
std::vector<CTransactionRef> vtx;
{
LOCK(pool.cs);
vtx.reserve(pool.mapTx.size());
for (const CTxMemPoolEntry &e : pool.mapTx.get<entry_time>()) {
vtx.push_back(e.GetSharedTx());
}
pool.clear();
}
// Use addForBlocks to sort the transactions and then splice them in front
// of queuedTx
DisconnectedBlockTransactions orderedTxnPool;
orderedTxnPool.addForBlock(vtx);
cachedInnerUsage += orderedTxnPool.cachedInnerUsage;
queuedTx.get<insertion_order>().splice(
queuedTx.get<insertion_order>().begin(),
orderedTxnPool.queuedTx.get<insertion_order>());
// We limit memory usage because we can't know if more blocks will be
// disconnected
while (DynamicMemoryUsage() > MAX_DISCONNECTED_TX_POOL_SIZE) {
// Drop the earliest entry which, by definition, has no children
removeEntry(queuedTx.get<insertion_order>().begin());
}
}
void DisconnectedBlockTransactions::updateMempoolForReorg(const Config &config,
bool fAddToMempool) {
AssertLockHeld(cs_main);
std::vector<TxId> txidsUpdate;
// disconnectpool's insertion_order index sorts the entries from oldest to
// newest, but the oldest entry will be the last tx from the latest mined
// block that was disconnected.
// Iterate disconnectpool in reverse, so that we add transactions back to
// the mempool starting with the earliest transaction that had been
// previously seen in a block.
for (const CTransactionRef &tx :
reverse_iterate(queuedTx.get<insertion_order>())) {
// ignore validation errors in resurrected transactions
CValidationState stateDummy;
if (!fAddToMempool || tx->IsCoinBase() ||
!AcceptToMemoryPool(config, g_mempool, stateDummy, tx,
nullptr /* pfMissingInputs */,
true /* bypass_limits */,
Amount::zero() /* nAbsurdFee */)) {
// If the transaction doesn't make it in to the mempool, remove any
// transactions that depend on it (which would now be orphans).
g_mempool.removeRecursive(*tx, MemPoolRemovalReason::REORG);
} else if (g_mempool.exists(tx->GetId())) {
txidsUpdate.push_back(tx->GetId());
}
}
queuedTx.clear();
// AcceptToMemoryPool/addUnchecked all assume that new mempool entries have
// no in-mempool children, which is generally not true when adding
// previously-confirmed transactions back to the mempool.
// UpdateTransactionsFromBlock finds descendants of any transactions in the
// disconnectpool that were added back and cleans up the mempool state.
g_mempool.UpdateTransactionsFromBlock(txidsUpdate);
// We also need to remove any now-immature transactions
g_mempool.removeForReorg(config, pcoinsTip.get(),
::ChainActive().Tip()->nHeight + 1,
STANDARD_LOCKTIME_VERIFY_FLAGS);
// Re-limit mempool size, in case we added any transactions
g_mempool.LimitSize(
gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000,
gArgs.GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60);
}

File Metadata

Mime Type
text/x-c
Expires
Sun, Dec 29, 19:39 (1 d, 7 h)
Storage Engine
blob
Storage Format
Raw Data
Storage Handle
4844979
Default Alt Text
txmempool.cpp (52 KB)

Event Timeline