diff --git a/src/script/script.cpp b/src/script/script.cpp index 78d48afdd..dfb7cf777 100644 --- a/src/script/script.cpp +++ b/src/script/script.cpp @@ -1,579 +1,582 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <script/script.h> #include <script/script_flags.h> #include <tinyformat.h> #include <util/strencodings.h> #include <algorithm> const char *GetOpName(opcodetype opcode) { switch (opcode) { // push value case OP_0: return "0"; case OP_PUSHDATA1: return "OP_PUSHDATA1"; case OP_PUSHDATA2: return "OP_PUSHDATA2"; case OP_PUSHDATA4: return "OP_PUSHDATA4"; case OP_1NEGATE: return "-1"; case OP_RESERVED: return "OP_RESERVED"; case OP_1: return "1"; case OP_2: return "2"; case OP_3: return "3"; case OP_4: return "4"; case OP_5: return "5"; case OP_6: return "6"; case OP_7: return "7"; case OP_8: return "8"; case OP_9: return "9"; case OP_10: return "10"; case OP_11: return "11"; case OP_12: return "12"; case OP_13: return "13"; case OP_14: return "14"; case OP_15: return "15"; case OP_16: return "16"; // control case OP_NOP: return "OP_NOP"; case OP_VER: return "OP_VER"; case OP_IF: return "OP_IF"; case OP_NOTIF: return "OP_NOTIF"; case OP_VERIF: return "OP_VERIF"; case OP_VERNOTIF: return "OP_VERNOTIF"; case OP_ELSE: return "OP_ELSE"; case OP_ENDIF: return "OP_ENDIF"; case OP_VERIFY: return "OP_VERIFY"; case OP_RETURN: return "OP_RETURN"; // stack ops case OP_TOALTSTACK: return "OP_TOALTSTACK"; case OP_FROMALTSTACK: return "OP_FROMALTSTACK"; case OP_2DROP: return "OP_2DROP"; case OP_2DUP: return "OP_2DUP"; case OP_3DUP: return "OP_3DUP"; case OP_2OVER: return "OP_2OVER"; case OP_2ROT: return "OP_2ROT"; case OP_2SWAP: return "OP_2SWAP"; case OP_IFDUP: return "OP_IFDUP"; case OP_DEPTH: return "OP_DEPTH"; case OP_DROP: return "OP_DROP"; case OP_DUP: return "OP_DUP"; case OP_NIP: return "OP_NIP"; case OP_OVER: return "OP_OVER"; case OP_PICK: return "OP_PICK"; case OP_ROLL: return "OP_ROLL"; case OP_ROT: return "OP_ROT"; case OP_SWAP: return "OP_SWAP"; case OP_TUCK: return "OP_TUCK"; // splice ops case OP_CAT: return "OP_CAT"; case OP_SPLIT: return "OP_SPLIT"; case OP_NUM2BIN: return "OP_NUM2BIN"; case OP_BIN2NUM: return "OP_BIN2NUM"; case OP_SIZE: return "OP_SIZE"; // bit logic case OP_INVERT: return "OP_INVERT"; case OP_AND: return "OP_AND"; case OP_OR: return "OP_OR"; case OP_XOR: return "OP_XOR"; case OP_EQUAL: return "OP_EQUAL"; case OP_EQUALVERIFY: return "OP_EQUALVERIFY"; case OP_RESERVED1: return "OP_RESERVED1"; case OP_RESERVED2: return "OP_RESERVED2"; // numeric case OP_1ADD: return "OP_1ADD"; case OP_1SUB: return "OP_1SUB"; case OP_2MUL: return "OP_2MUL"; case OP_2DIV: return "OP_2DIV"; case OP_NEGATE: return "OP_NEGATE"; case OP_ABS: return "OP_ABS"; case OP_NOT: return "OP_NOT"; case OP_0NOTEQUAL: return "OP_0NOTEQUAL"; case OP_ADD: return "OP_ADD"; case OP_SUB: return "OP_SUB"; case OP_MUL: return "OP_MUL"; case OP_DIV: return "OP_DIV"; case OP_MOD: return "OP_MOD"; case OP_LSHIFT: return "OP_LSHIFT"; case OP_RSHIFT: return "OP_RSHIFT"; case OP_BOOLAND: return "OP_BOOLAND"; case OP_BOOLOR: return "OP_BOOLOR"; case OP_NUMEQUAL: return "OP_NUMEQUAL"; case OP_NUMEQUALVERIFY: return "OP_NUMEQUALVERIFY"; case OP_NUMNOTEQUAL: return "OP_NUMNOTEQUAL"; case OP_LESSTHAN: return "OP_LESSTHAN"; case OP_GREATERTHAN: return "OP_GREATERTHAN"; case OP_LESSTHANOREQUAL: return "OP_LESSTHANOREQUAL"; case OP_GREATERTHANOREQUAL: return "OP_GREATERTHANOREQUAL"; case OP_MIN: return "OP_MIN"; case OP_MAX: return "OP_MAX"; case OP_WITHIN: return "OP_WITHIN"; // crypto case OP_RIPEMD160: return "OP_RIPEMD160"; case OP_SHA1: return "OP_SHA1"; case OP_SHA256: return "OP_SHA256"; case OP_HASH160: return "OP_HASH160"; case OP_HASH256: return "OP_HASH256"; case OP_CODESEPARATOR: return "OP_CODESEPARATOR"; case OP_CHECKSIG: return "OP_CHECKSIG"; case OP_CHECKSIGVERIFY: return "OP_CHECKSIGVERIFY"; case OP_CHECKMULTISIG: return "OP_CHECKMULTISIG"; case OP_CHECKMULTISIGVERIFY: return "OP_CHECKMULTISIGVERIFY"; case OP_CHECKDATASIG: return "OP_CHECKDATASIG"; case OP_CHECKDATASIGVERIFY: return "OP_CHECKDATASIGVERIFY"; case OP_REVERSEBYTES: return "OP_REVERSEBYTES"; // expansion case OP_NOP1: return "OP_NOP1"; case OP_CHECKLOCKTIMEVERIFY: return "OP_CHECKLOCKTIMEVERIFY"; case OP_CHECKSEQUENCEVERIFY: return "OP_CHECKSEQUENCEVERIFY"; case OP_NOP4: return "OP_NOP4"; case OP_NOP5: return "OP_NOP5"; case OP_NOP6: return "OP_NOP6"; case OP_NOP7: return "OP_NOP7"; case OP_NOP8: return "OP_NOP8"; case OP_NOP9: return "OP_NOP9"; case OP_NOP10: return "OP_NOP10"; case OP_INVALIDOPCODE: return "OP_INVALIDOPCODE"; default: return "OP_UNKNOWN"; } } bool CheckMinimalPush(const std::vector<uint8_t> &data, opcodetype opcode) { // Excludes OP_1NEGATE, OP_1-16 since they are by definition minimal assert(0 <= opcode && opcode <= OP_PUSHDATA4); if (data.size() == 0) { // Should have used OP_0. return opcode == OP_0; } if (data.size() == 1 && data[0] >= 1 && data[0] <= 16) { // Should have used OP_1 .. OP_16. return false; } if (data.size() == 1 && data[0] == 0x81) { // Should have used OP_1NEGATE. return false; } if (data.size() <= 75) { // Must have used a direct push (opcode indicating number of bytes // pushed + those bytes). return opcode == data.size(); } if (data.size() <= 255) { // Must have used OP_PUSHDATA. return opcode == OP_PUSHDATA1; } if (data.size() <= 65535) { // Must have used OP_PUSHDATA2. return opcode == OP_PUSHDATA2; } return true; } bool CScriptNum::IsMinimallyEncoded(const std::vector<uint8_t> &vch, const size_t nMaxNumSize) { if (vch.size() > nMaxNumSize) { return false; } if (vch.size() > 0) { // Check that the number is encoded with the minimum possible number // of bytes. // // If the most-significant-byte - excluding the sign bit - is zero // then we're not minimal. Note how this test also rejects the // negative-zero encoding, 0x80. if ((vch.back() & 0x7f) == 0) { // One exception: if there's more than one byte and the most // significant bit of the second-most-significant-byte is set it // would conflict with the sign bit. An example of this case is // +-255, which encode to 0xff00 and 0xff80 respectively. // (big-endian). if (vch.size() <= 1 || (vch[vch.size() - 2] & 0x80) == 0) { return false; } } } return true; } bool CScriptNum::MinimallyEncode(std::vector<uint8_t> &data) { if (data.size() == 0) { return false; } // If the last byte is not 0x00 or 0x80, we are minimally encoded. uint8_t last = data.back(); if (last & 0x7f) { return false; } // If the script is one byte long, then we have a zero, which encodes as an // empty array. if (data.size() == 1) { data = {}; return true; } // If the next byte has it sign bit set, then we are minimaly encoded. if (data[data.size() - 2] & 0x80) { return false; } // We are not minimally encoded, we need to figure out how much to trim. for (size_t i = data.size() - 1; i > 0; i--) { // We found a non zero byte, time to encode. if (data[i - 1] != 0) { if (data[i - 1] & 0x80) { // We found a byte with it sign bit set so we need one more // byte. data[i++] = last; } else { // the sign bit is clear, we can use it. data[i - 1] |= last; } data.resize(i); return true; } } // If we the whole thing is zeros, then we have a zero. data = {}; return true; } uint32_t CScript::GetSigOpCount(uint32_t flags, bool fAccurate) const { + if (flags & SCRIPT_ZERO_SIGOPS) { + return 0; + } uint32_t n = 0; const_iterator pc = begin(); opcodetype lastOpcode = OP_INVALIDOPCODE; while (pc < end()) { opcodetype opcode; if (!GetOp(pc, opcode)) { break; } switch (opcode) { case OP_CHECKSIG: case OP_CHECKSIGVERIFY: n++; break; case OP_CHECKDATASIG: case OP_CHECKDATASIGVERIFY: if (flags & SCRIPT_VERIFY_CHECKDATASIG_SIGOPS) { n++; } break; case OP_CHECKMULTISIG: case OP_CHECKMULTISIGVERIFY: if (fAccurate && lastOpcode >= OP_1 && lastOpcode <= OP_16) { n += DecodeOP_N(lastOpcode); } else { n += MAX_PUBKEYS_PER_MULTISIG; } break; default: break; } lastOpcode = opcode; } return n; } uint32_t CScript::GetSigOpCount(uint32_t flags, const CScript &scriptSig) const { if ((flags & SCRIPT_VERIFY_P2SH) == 0 || !IsPayToScriptHash()) { return GetSigOpCount(flags, true); } // This is a pay-to-script-hash scriptPubKey; // get the last item that the scriptSig // pushes onto the stack: const_iterator pc = scriptSig.begin(); std::vector<uint8_t> vData; while (pc < scriptSig.end()) { opcodetype opcode; if (!scriptSig.GetOp(pc, opcode, vData)) { return 0; } if (opcode > OP_16) { return 0; } } /// ... and return its opcount: CScript subscript(vData.begin(), vData.end()); return subscript.GetSigOpCount(flags, true); } bool CScript::IsPayToScriptHash() const { // Extra-fast test for pay-to-script-hash CScripts: return (this->size() == 23 && (*this)[0] == OP_HASH160 && (*this)[1] == 0x14 && (*this)[22] == OP_EQUAL); } bool CScript::IsCommitment(const std::vector<uint8_t> &data) const { // To ensure we have an immediate push, we limit the commitment size to 64 // bytes. In addition to the data themselves, we have 2 extra bytes: // OP_RETURN and the push opcode itself. if (data.size() > 64 || this->size() != data.size() + 2) { return false; } if ((*this)[0] != OP_RETURN || (*this)[1] != data.size()) { return false; } for (size_t i = 0; i < data.size(); i++) { if ((*this)[i + 2] != data[i]) { return false; } } return true; } // A witness program is any valid CScript that consists of a 1-byte push opcode // followed by a data push between 2 and 40 bytes. bool CScript::IsWitnessProgram(int &version, std::vector<uint8_t> &program) const { if (this->size() < 4 || this->size() > 42) { return false; } if ((*this)[0] != OP_0 && ((*this)[0] < OP_1 || (*this)[0] > OP_16)) { return false; } if (size_t((*this)[1] + 2) == this->size()) { version = DecodeOP_N((opcodetype)(*this)[0]); program = std::vector<uint8_t>(this->begin() + 2, this->end()); return true; } return false; } // Wrapper returning only the predicate bool CScript::IsWitnessProgram() const { int version; std::vector<uint8_t> program; return IsWitnessProgram(version, program); } bool CScript::IsPushOnly(const_iterator pc) const { while (pc < end()) { opcodetype opcode; if (!GetOp(pc, opcode)) { return false; } // Note that IsPushOnly() *does* consider OP_RESERVED to be a push-type // opcode, however execution of OP_RESERVED fails, so it's not relevant // to P2SH/BIP62 as the scriptSig would fail prior to the P2SH special // validation code being executed. if (opcode > OP_16) { return false; } } return true; } bool CScript::IsPushOnly() const { return this->IsPushOnly(begin()); } bool GetScriptOp(CScriptBase::const_iterator &pc, CScriptBase::const_iterator end, opcodetype &opcodeRet, std::vector<uint8_t> *pvchRet) { opcodeRet = OP_INVALIDOPCODE; if (pvchRet) { pvchRet->clear(); } if (pc >= end) { return false; } // Read instruction if (end - pc < 1) { return false; } uint32_t opcode = *pc++; // Immediate operand if (opcode <= OP_PUSHDATA4) { uint32_t nSize = 0; if (opcode < OP_PUSHDATA1) { nSize = opcode; } else if (opcode == OP_PUSHDATA1) { if (end - pc < 1) { return false; } nSize = *pc++; } else if (opcode == OP_PUSHDATA2) { if (end - pc < 2) { return false; } nSize = ReadLE16(&pc[0]); pc += 2; } else if (opcode == OP_PUSHDATA4) { if (end - pc < 4) { return false; } nSize = ReadLE32(&pc[0]); pc += 4; } if (end - pc < 0 || uint32_t(end - pc) < nSize) { return false; } if (pvchRet) { pvchRet->assign(pc, pc + nSize); } pc += nSize; } opcodeRet = static_cast<opcodetype>(opcode); return true; } bool CScript::HasValidOps() const { CScript::const_iterator it = begin(); while (it < end()) { opcodetype opcode; std::vector<uint8_t> item; if (!GetOp(it, opcode, item) || opcode > MAX_OPCODE || item.size() > MAX_SCRIPT_ELEMENT_SIZE) { return false; } } return true; } diff --git a/src/script/script_flags.h b/src/script/script_flags.h index bfd42c8d4..189b392ce 100644 --- a/src/script/script_flags.h +++ b/src/script/script_flags.h @@ -1,121 +1,125 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Copyright (c) 2017-2020 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SCRIPT_SCRIPT_FLAGS_H #define BITCOIN_SCRIPT_SCRIPT_FLAGS_H /** Script verification flags */ enum { SCRIPT_VERIFY_NONE = 0, // Evaluate P2SH subscripts (softfork safe, BIP16). // Note: The Segwit Recovery feature is an exception to P2SH SCRIPT_VERIFY_P2SH = (1U << 0), // Passing a non-strict-DER signature or one with undefined hashtype to a // checksig operation causes script failure. Evaluating a pubkey that is not // (0x04 + 64 bytes) or (0x02 or 0x03 + 32 bytes) by checksig causes script // failure. SCRIPT_VERIFY_STRICTENC = (1U << 1), // Passing a non-strict-DER signature to a checksig operation causes script // failure (BIP62 rule 1) SCRIPT_VERIFY_DERSIG = (1U << 2), // Passing a non-strict-DER signature or one with S > order/2 to a checksig // operation causes script failure // (BIP62 rule 5). SCRIPT_VERIFY_LOW_S = (1U << 3), // Using a non-push operator in the scriptSig causes script failure // (BIP62 rule 2). SCRIPT_VERIFY_SIGPUSHONLY = (1U << 5), // Require minimal encodings for all push operations (OP_0... OP_16, // OP_1NEGATE where possible, direct pushes up to 75 bytes, OP_PUSHDATA up // to 255 bytes, OP_PUSHDATA2 for anything larger). Evaluating any other // push causes the script to fail (BIP62 rule 3). In addition, whenever a // stack element is interpreted as a number, it must be of minimal length // (BIP62 rule 4). SCRIPT_VERIFY_MINIMALDATA = (1U << 6), // Discourage use of NOPs reserved for upgrades (NOP1-10) // // Provided so that nodes can avoid accepting or mining transactions // containing executed NOP's whose meaning may change after a soft-fork, // thus rendering the script invalid; with this flag set executing // discouraged NOPs fails the script. This verification flag will never be a // mandatory flag applied to scripts in a block. NOPs that are not executed, // e.g. within an unexecuted IF ENDIF block, are *not* rejected. SCRIPT_VERIFY_DISCOURAGE_UPGRADABLE_NOPS = (1U << 7), // Require that only a single stack element remains after evaluation. This // changes the success criterion from "At least one stack element must // remain, and when interpreted as a boolean, it must be true" to "Exactly // one stack element must remain, and when interpreted as a boolean, it must // be true". // (BIP62 rule 6) // Note: CLEANSTACK should never be used without P2SH. // Note: The Segwit Recovery feature is an exception to CLEANSTACK SCRIPT_VERIFY_CLEANSTACK = (1U << 8), // Verify CHECKLOCKTIMEVERIFY // // See BIP65 for details. SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY = (1U << 9), // support CHECKSEQUENCEVERIFY opcode // // See BIP112 for details SCRIPT_VERIFY_CHECKSEQUENCEVERIFY = (1U << 10), // Require the argument of OP_IF/NOTIF to be exactly 0x01 or empty vector // SCRIPT_VERIFY_MINIMALIF = (1U << 13), // Signature(s) must be empty vector if an CHECK(MULTI)SIG operation failed // SCRIPT_VERIFY_NULLFAIL = (1U << 14), // Do we accept signature using SIGHASH_FORKID // SCRIPT_ENABLE_SIGHASH_FORKID = (1U << 16), // Do we accept activate replay protection using a different fork id. // SCRIPT_ENABLE_REPLAY_PROTECTION = (1U << 17), // Count sigops for OP_CHECKDATASIG and variant. The interpreter treats - // OP_CHECKDATASIG(VERIFY) as always valid, this flag only affects sigops - // counting. - // + // OP_CHECKDATASIG(VERIFY) as always valid. This flag only affects sigops + // counting, and will be removed during cleanup of the SigChecks upgrade. SCRIPT_VERIFY_CHECKDATASIG_SIGOPS = (1U << 18), // The exception to CLEANSTACK and P2SH for the recovery of coins sent // to p2sh segwit addresses is not allowed. SCRIPT_DISALLOW_SEGWIT_RECOVERY = (1U << 20), // Whether to allow new OP_CHECKMULTISIG logic to trigger. (new multisig // logic verifies faster, and only allows Schnorr signatures) SCRIPT_ENABLE_SCHNORR_MULTISIG = (1U << 21), // Require the number of sigchecks in an input to satisfy a specific // bound, defined by scriptSig length. // Note: The Segwit Recovery feature is a (currently moot) exception to // VERIFY_INPUT_SIGCHECKS SCRIPT_VERIFY_INPUT_SIGCHECKS = (1U << 22), // Whether the new OP_REVERSEBYTES opcode can be used. SCRIPT_ENABLE_OP_REVERSEBYTES = (1U << 23), + // Setting this flag zeroes sigops counting and thus results in the removal + // of all sigop limits. This flag only affects sigops counting, and will be + // removed during cleanup of the SigChecks upgrade. + SCRIPT_ZERO_SIGOPS = (1U << 30), + // A utility flag to decide whether VerifyScript should output the correct // sigchecks value or to report zero. // This has no effect on script success / failure, and will be removed // after cleanup of the SigChecks upgrade. SCRIPT_REPORT_SIGCHECKS = (1U << 31), }; #endif // BITCOIN_SCRIPT_SCRIPT_FLAGS_H diff --git a/src/validation.cpp b/src/validation.cpp index 75b3395b5..6b0822bcd 100644 --- a/src/validation.cpp +++ b/src/validation.cpp @@ -1,5819 +1,5820 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2018 The Bitcoin Core developers // Copyright (c) 2017-2020 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <validation.h> #include <arith_uint256.h> #include <blockindexworkcomparator.h> #include <blockvalidity.h> #include <chainparams.h> #include <checkpoints.h> #include <checkqueue.h> #include <config.h> #include <consensus/activation.h> #include <consensus/consensus.h> #include <consensus/merkle.h> #include <consensus/tx_verify.h> #include <consensus/validation.h> #include <flatfile.h> #include <fs.h> #include <hash.h> #include <index/txindex.h> #include <policy/fees.h> #include <policy/mempool.h> #include <policy/policy.h> #include <pow.h> #include <primitives/block.h> #include <primitives/transaction.h> #include <random.h> #include <reverse_iterator.h> #include <script/script.h> #include <script/scriptcache.h> #include <script/sigcache.h> #include <script/standard.h> #include <shutdown.h> #include <timedata.h> #include <tinyformat.h> #include <txdb.h> #include <txmempool.h> #include <ui_interface.h> #include <undo.h> #include <util/moneystr.h> #include <util/strencodings.h> #include <util/system.h> #include <validationinterface.h> #include <warnings.h> #include <boost/algorithm/string/replace.hpp> #include <boost/thread.hpp> // boost::this_thread::interruption_point() (mingw) #include <atomic> #include <future> #include <sstream> #include <thread> #define MICRO 0.000001 #define MILLI 0.001 class ConnectTrace; /** * CChainState stores and provides an API to update our local knowledge of the * current best chain and header tree. * * It generally provides access to the current block tree, as well as functions * to provide new data, which it will appropriately validate and incorporate in * its state as necessary. * * Eventually, the API here is targeted at being exposed externally as a * consumable libconsensus library, so any functions added must only call * other class member functions, pure functions in other parts of the consensus * library, callbacks via the validation interface, or read/write-to-disk * functions (eventually this will also be via callbacks). */ class CChainState { private: /** * The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS (for * itself and all ancestors) and as good as our current tip or better. * Entries may be failed or parked though, and pruning nodes may be missing * the data for the block; these will get cleaned during FindMostWorkChain. */ std::set<CBlockIndex *, CBlockIndexWorkComparator> setBlockIndexCandidates; /** * the ChainState CriticalSection * A lock that must be held when modifying this ChainState - held in * ActivateBestChain() */ CCriticalSection m_cs_chainstate; /** * Every received block is assigned a unique and increasing identifier, so * we know which one to give priority in case of a fork. * Blocks loaded from disk are assigned id 0, so start the counter at 1. */ std::atomic<int32_t> nBlockSequenceId{1}; /** Decreasing counter (used by subsequent preciousblock calls). */ int32_t nBlockReverseSequenceId = -1; /** chainwork for the last block that preciousblock has been applied to. */ arith_uint256 nLastPreciousChainwork = 0; /** * In order to efficiently track invalidity of headers, we keep the set of * blocks which we tried to connect and found to be invalid here (ie which * were set to BLOCK_FAILED_VALID since the last restart). We can then * walk this set and check if a new header is a descendant of something in * this set, preventing us from having to walk mapBlockIndex when we try * to connect a bad block and fail. * * While this is more complicated than marking everything which descends * from an invalid block as invalid at the time we discover it to be * invalid, doing so would require walking all of mapBlockIndex to find all * descendants. Since this case should be very rare, keeping track of all * BLOCK_FAILED_VALID blocks in a set should be just fine and work just as * well. * * Because we already walk mapBlockIndex in height-order at startup, we go * ahead and mark descendants of invalid blocks as FAILED_CHILD at that * time, instead of putting things in this set. */ std::set<CBlockIndex *> m_failed_blocks; public: CChain chainActive; BlockMap mapBlockIndex GUARDED_BY(cs_main); std::multimap<CBlockIndex *, CBlockIndex *> mapBlocksUnlinked; CBlockIndex *pindexBestInvalid = nullptr; CBlockIndex *pindexBestParked = nullptr; CBlockIndex const *pindexFinalized = nullptr; bool LoadBlockIndex(const Config &config, CBlockTreeDB &blocktree) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool ActivateBestChain( const Config &config, CValidationState &state, std::shared_ptr<const CBlock> pblock = std::shared_ptr<const CBlock>()); /** * If a block header hasn't already been seen, call CheckBlockHeader on it, * ensure that it doesn't descend from an invalid block, and then add it to * mapBlockIndex. */ bool AcceptBlockHeader(const Config &config, const CBlockHeader &block, CValidationState &state, CBlockIndex **ppindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool AcceptBlock(const Config &config, const std::shared_ptr<const CBlock> &pblock, CValidationState &state, bool fRequested, const FlatFilePos *dbp, bool *fNewBlock) EXCLUSIVE_LOCKS_REQUIRED(cs_main); // Block (dis)connection on a given view: DisconnectResult DisconnectBlock(const CBlock &block, const CBlockIndex *pindex, CCoinsViewCache &view); bool ConnectBlock(const CBlock &block, CValidationState &state, CBlockIndex *pindex, CCoinsViewCache &view, const CChainParams ¶ms, BlockValidationOptions options, bool fJustCheck = false) EXCLUSIVE_LOCKS_REQUIRED(cs_main); // Block disconnection on our pcoinsTip: bool DisconnectTip(const Config &config, CValidationState &state, DisconnectedBlockTransactions *disconnectpool) EXCLUSIVE_LOCKS_REQUIRED(cs_main); // Manual block validity manipulation: bool PreciousBlock(const Config &config, CValidationState &state, CBlockIndex *pindex) LOCKS_EXCLUDED(cs_main); bool UnwindBlock(const Config &config, CValidationState &state, CBlockIndex *pindex, bool invalidate); void ResetBlockFailureFlags(CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main); template <typename F> void UpdateFlagsForBlock(CBlockIndex *pindexBase, CBlockIndex *pindex, F f) EXCLUSIVE_LOCKS_REQUIRED(cs_main); template <typename F, typename C> void UpdateFlags(CBlockIndex *pindex, F f, C fchild) EXCLUSIVE_LOCKS_REQUIRED(cs_main); template <typename F> void UpdateFlags(CBlockIndex *pindex, F f) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Remove parked status from a block and its descendants. */ void UnparkBlockImpl(CBlockIndex *pindex, bool fClearChildren) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool ReplayBlocks(const Consensus::Params ¶ms, CCoinsView *view); bool LoadGenesisBlock(const CChainParams &chainparams); void PruneBlockIndexCandidates(); void UnloadBlockIndex(); private: bool ActivateBestChainStep(const Config &config, CValidationState &state, CBlockIndex *pindexMostWork, const std::shared_ptr<const CBlock> &pblock, bool &fInvalidFound, ConnectTrace &connectTrace) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool ConnectTip(const Config &config, CValidationState &state, CBlockIndex *pindexNew, const std::shared_ptr<const CBlock> &pblock, ConnectTrace &connectTrace, DisconnectedBlockTransactions &disconnectpool) EXCLUSIVE_LOCKS_REQUIRED(cs_main); CBlockIndex *AddToBlockIndex(const CBlockHeader &block) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Create a new block index entry for a given block hash */ CBlockIndex *InsertBlockIndex(const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Make various assertions about the state of the block index. * * By default this only executes fully when using the Regtest chain; see: * fCheckBlockIndex. */ void CheckBlockIndex(const Consensus::Params &consensusParams); void InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) EXCLUSIVE_LOCKS_REQUIRED(cs_main); CBlockIndex *FindMostWorkChain() EXCLUSIVE_LOCKS_REQUIRED(cs_main); void ReceivedBlockTransactions(const CBlock &block, CBlockIndex *pindexNew, const FlatFilePos &pos) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool RollforwardBlock(const CBlockIndex *pindex, CCoinsViewCache &inputs, const Consensus::Params ¶ms) EXCLUSIVE_LOCKS_REQUIRED(cs_main); } g_chainstate; /** * Global state * * Mutex to guard access to validation specific variables, such as reading * or changing the chainstate. * * This may also need to be locked when updating the transaction pool, e.g. on * AcceptToMemoryPool. See CTxMemPool::cs comment for details. * * The transaction pool has a separate lock to allow reading from it and the * chainstate at the same time. */ RecursiveMutex cs_main; BlockMap &mapBlockIndex = g_chainstate.mapBlockIndex; CChain &chainActive = g_chainstate.chainActive; CBlockIndex *pindexBestHeader = nullptr; Mutex g_best_block_mutex; std::condition_variable g_best_block_cv; uint256 g_best_block; int nScriptCheckThreads = 0; std::atomic_bool fImporting(false); std::atomic_bool fReindex(false); bool fHavePruned = false; bool fPruneMode = false; bool fIsBareMultisigStd = DEFAULT_PERMIT_BAREMULTISIG; bool fRequireStandard = true; bool fCheckBlockIndex = false; bool fCheckpointsEnabled = DEFAULT_CHECKPOINTS_ENABLED; size_t nCoinCacheUsage = 5000 * 300; uint64_t nPruneTarget = 0; int64_t nMaxTipAge = DEFAULT_MAX_TIP_AGE; BlockHash hashAssumeValid; arith_uint256 nMinimumChainWork; CFeeRate minRelayTxFee = CFeeRate(DEFAULT_MIN_RELAY_TX_FEE_PER_KB); Amount maxTxFee = DEFAULT_TRANSACTION_MAXFEE; CTxMemPool g_mempool; /** Constant stuff for coinbase transactions we create: */ CScript COINBASE_FLAGS; const std::string strMessageMagic = "Bitcoin Signed Message:\n"; // Internal stuff namespace { CBlockIndex *&pindexBestInvalid = g_chainstate.pindexBestInvalid; CBlockIndex *&pindexBestParked = g_chainstate.pindexBestParked; /** * The best finalized block. * This block cannot be reorged in any way, shape or form. */ CBlockIndex const *&pindexFinalized = g_chainstate.pindexFinalized; /** * All pairs A->B, where A (or one of its ancestors) misses transactions, but B * has transactions. Pruned nodes may have entries where B is missing data. */ std::multimap<CBlockIndex *, CBlockIndex *> &mapBlocksUnlinked = g_chainstate.mapBlocksUnlinked; CCriticalSection cs_LastBlockFile; std::vector<CBlockFileInfo> vinfoBlockFile; int nLastBlockFile = 0; /** * Global flag to indicate we should check to see if there are block/undo files * that should be deleted. Set on startup or if we allocate more file space when * we're in prune mode. */ bool fCheckForPruning = false; /** Dirty block index entries. */ std::set<const CBlockIndex *> setDirtyBlockIndex; /** Dirty block file entries. */ std::set<int> setDirtyFileInfo; } // namespace BlockValidationOptions::BlockValidationOptions(const Config &config) : excessiveBlockSize(config.GetMaxBlockSize()), checkPoW(true), checkMerkleRoot(true) {} CBlockIndex *FindForkInGlobalIndex(const CChain &chain, const CBlockLocator &locator) { AssertLockHeld(cs_main); // Find the first block the caller has in the main chain for (const BlockHash &hash : locator.vHave) { CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex) { if (chain.Contains(pindex)) { return pindex; } if (pindex->GetAncestor(chain.Height()) == chain.Tip()) { return chain.Tip(); } } } return chain.Genesis(); } std::unique_ptr<CCoinsViewDB> pcoinsdbview; std::unique_ptr<CCoinsViewCache> pcoinsTip; std::unique_ptr<CBlockTreeDB> pblocktree; enum class FlushStateMode { NONE, IF_NEEDED, PERIODIC, ALWAYS }; // See definition for documentation static bool FlushStateToDisk(const CChainParams &chainParams, CValidationState &state, FlushStateMode mode, int nManualPruneHeight = 0); static void FindFilesToPruneManual(std::set<int> &setFilesToPrune, int nManualPruneHeight); static void FindFilesToPrune(std::set<int> &setFilesToPrune, uint64_t nPruneAfterHeight); static FILE *OpenUndoFile(const FlatFilePos &pos, bool fReadOnly = false); static FlatFileSeq BlockFileSeq(); static FlatFileSeq UndoFileSeq(); static uint32_t GetNextBlockScriptFlags(const Consensus::Params ¶ms, const CBlockIndex *pindex); bool TestLockPointValidity(const LockPoints *lp) { AssertLockHeld(cs_main); assert(lp); // If there are relative lock times then the maxInputBlock will be set // If there are no relative lock times, the LockPoints don't depend on the // chain if (lp->maxInputBlock) { // Check whether chainActive is an extension of the block at which the // LockPoints calculation was valid. If not LockPoints are no longer // valid. if (!chainActive.Contains(lp->maxInputBlock)) { return false; } } // LockPoints still valid return true; } bool CheckSequenceLocks(const CTxMemPool &pool, const CTransaction &tx, int flags, LockPoints *lp, bool useExistingLockPoints) { AssertLockHeld(cs_main); AssertLockHeld(pool.cs); CBlockIndex *tip = chainActive.Tip(); assert(tip != nullptr); CBlockIndex index; index.pprev = tip; // CheckSequenceLocks() uses chainActive.Height()+1 to evaluate height based // locks because when SequenceLocks() is called within ConnectBlock(), the // height of the block *being* evaluated is what is used. Thus if we want to // know if a transaction can be part of the *next* block, we need to use one // more than chainActive.Height() index.nHeight = tip->nHeight + 1; std::pair<int, int64_t> lockPair; if (useExistingLockPoints) { assert(lp); lockPair.first = lp->height; lockPair.second = lp->time; } else { // pcoinsTip contains the UTXO set for chainActive.Tip() CCoinsViewMemPool viewMemPool(pcoinsTip.get(), pool); std::vector<int> prevheights; prevheights.resize(tx.vin.size()); for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) { const CTxIn &txin = tx.vin[txinIndex]; Coin coin; if (!viewMemPool.GetCoin(txin.prevout, coin)) { return error("%s: Missing input", __func__); } if (coin.GetHeight() == MEMPOOL_HEIGHT) { // Assume all mempool transaction confirm in the next block prevheights[txinIndex] = tip->nHeight + 1; } else { prevheights[txinIndex] = coin.GetHeight(); } } lockPair = CalculateSequenceLocks(tx, flags, &prevheights, index); if (lp) { lp->height = lockPair.first; lp->time = lockPair.second; // Also store the hash of the block with the highest height of all // the blocks which have sequence locked prevouts. This hash needs // to still be on the chain for these LockPoint calculations to be // valid. // Note: It is impossible to correctly calculate a maxInputBlock if // any of the sequence locked inputs depend on unconfirmed txs, // except in the special case where the relative lock time/height is // 0, which is equivalent to no sequence lock. Since we assume input // height of tip+1 for mempool txs and test the resulting lockPair // from CalculateSequenceLocks against tip+1. We know // EvaluateSequenceLocks will fail if there was a non-zero sequence // lock on a mempool input, so we can use the return value of // CheckSequenceLocks to indicate the LockPoints validity. int maxInputHeight = 0; for (const int height : prevheights) { // Can ignore mempool inputs since we'll fail if they had // non-zero locks. if (height != tip->nHeight + 1) { maxInputHeight = std::max(maxInputHeight, height); } } lp->maxInputBlock = tip->GetAncestor(maxInputHeight); } } return EvaluateSequenceLocks(index, lockPair); } /** Convert CValidationState to a human-readable message for logging */ std::string FormatStateMessage(const CValidationState &state) { return strprintf( "%s%s (code %i)", state.GetRejectReason(), state.GetDebugMessage().empty() ? "" : ", " + state.GetDebugMessage(), state.GetRejectCode()); } // Command-line argument "-replayprotectionactivationtime=<timestamp>" will // cause the node to switch to replay protected SigHash ForkID value when the // median timestamp of the previous 11 blocks is greater than or equal to // <timestamp>. Defaults to the pre-defined timestamp when not set. static bool IsReplayProtectionEnabled(const Consensus::Params ¶ms, int64_t nMedianTimePast) { return nMedianTimePast >= gArgs.GetArg("-replayprotectionactivationtime", params.phononActivationTime); } static bool IsReplayProtectionEnabled(const Consensus::Params ¶ms, const CBlockIndex *pindexPrev) { if (pindexPrev == nullptr) { return false; } return IsReplayProtectionEnabled(params, pindexPrev->GetMedianTimePast()); } // Returns the script flags which should be checked for mempool admission when // the tip is at the given block. static uint32_t GetStandardScriptFlags(const Consensus::Params ¶ms, const CBlockIndex *pindexTip) { // Use the consensus flags for the next block as a basis, and mix in the // declared-standard flags. uint32_t flags = GetNextBlockScriptFlags(params, pindexTip) | STANDARD_SCRIPT_VERIFY_FLAGS; // Disable input sigchecks limit for mempool admission, prior to its // proper activation. flags &= ~SCRIPT_VERIFY_INPUT_SIGCHECKS; if (IsPhononEnabled(params, pindexTip)) { flags |= SCRIPT_VERIFY_INPUT_SIGCHECKS; } return flags; } // Used to avoid mempool polluting consensus critical paths if CCoinsViewMempool // were somehow broken and returning the wrong scriptPubKeys static bool CheckInputsFromMempoolAndCache( const CTransaction &tx, CValidationState &state, const CCoinsViewCache &view, const CTxMemPool &pool, const uint32_t flags, bool cacheSigStore, PrecomputedTransactionData &txdata, int &nSigChecksOut) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); // pool.cs should be locked already, but go ahead and re-take the lock here // to enforce that mempool doesn't change between when we check the view and // when we actually call through to CheckInputs LOCK(pool.cs); assert(!tx.IsCoinBase()); for (const CTxIn &txin : tx.vin) { const Coin &coin = view.AccessCoin(txin.prevout); // At this point we haven't actually checked if the coins are all // available (or shouldn't assume we have, since CheckInputs does). So // we just return failure if the inputs are not available here, and then // only have to check equivalence for available inputs. if (coin.IsSpent()) { return false; } const CTransactionRef &txFrom = pool.get(txin.prevout.GetTxId()); if (txFrom) { assert(txFrom->GetId() == txin.prevout.GetTxId()); assert(txFrom->vout.size() > txin.prevout.GetN()); assert(txFrom->vout[txin.prevout.GetN()] == coin.GetTxOut()); } else { const Coin &coinFromDisk = pcoinsTip->AccessCoin(txin.prevout); assert(!coinFromDisk.IsSpent()); assert(coinFromDisk.GetTxOut() == coin.GetTxOut()); } } return CheckInputs(tx, state, view, true, flags, cacheSigStore, true, txdata, nSigChecksOut); } static bool AcceptToMemoryPoolWorker(const Config &config, CTxMemPool &pool, CValidationState &state, const CTransactionRef &ptx, bool *pfMissingInputs, int64_t nAcceptTime, bool bypass_limits, const Amount nAbsurdFee, std::vector<COutPoint> &coins_to_uncache, bool test_accept) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); const CTransaction &tx = *ptx; const TxId txid = tx.GetId(); // mempool "read lock" (held through // GetMainSignals().TransactionAddedToMempool()) LOCK(pool.cs); if (pfMissingInputs) { *pfMissingInputs = false; } // Coinbase is only valid in a block, not as a loose transaction. if (!CheckRegularTransaction(tx, state)) { // state filled in by CheckRegularTransaction. return false; } // Rather not work on nonstandard transactions (unless -testnet/-regtest) std::string reason; if (fRequireStandard && !IsStandardTx(tx, reason)) { return state.DoS(0, false, REJECT_NONSTANDARD, reason); } // Only accept nLockTime-using transactions that can be mined in the next // block; we don't want our mempool filled up with transactions that can't // be mined yet. CValidationState ctxState; if (!ContextualCheckTransactionForCurrentBlock( consensusParams, tx, ctxState, STANDARD_LOCKTIME_VERIFY_FLAGS)) { // We copy the state from a dummy to ensure we don't increase the // ban score of peer for transaction that could be valid in the future. return state.DoS( 0, false, REJECT_NONSTANDARD, ctxState.GetRejectReason(), ctxState.CorruptionPossible(), ctxState.GetDebugMessage()); } // Is it already in the memory pool? if (pool.exists(txid)) { return state.Invalid(false, REJECT_DUPLICATE, "txn-already-in-mempool"); } // Check for conflicts with in-memory transactions for (const CTxIn &txin : tx.vin) { auto itConflicting = pool.mapNextTx.find(txin.prevout); if (itConflicting != pool.mapNextTx.end()) { // Disable replacement feature for good return state.Invalid(false, REJECT_DUPLICATE, "txn-mempool-conflict"); } } { CCoinsView dummy; CCoinsViewCache view(&dummy); LockPoints lp; CCoinsViewMemPool viewMemPool(pcoinsTip.get(), pool); view.SetBackend(viewMemPool); // Do all inputs exist? for (const CTxIn &txin : tx.vin) { if (!pcoinsTip->HaveCoinInCache(txin.prevout)) { coins_to_uncache.push_back(txin.prevout); } if (!view.HaveCoin(txin.prevout)) { // Are inputs missing because we already have the tx? for (size_t out = 0; out < tx.vout.size(); out++) { // Optimistically just do efficient check of cache for // outputs. if (pcoinsTip->HaveCoinInCache(COutPoint(txid, out))) { return state.Invalid(false, REJECT_DUPLICATE, "txn-already-known"); } } // Otherwise assume this might be an orphan tx for which we just // haven't seen parents yet. if (pfMissingInputs) { *pfMissingInputs = true; } // fMissingInputs and !state.IsInvalid() is used to detect this // condition, don't set state.Invalid() return false; } } // Are the actual inputs available? if (!view.HaveInputs(tx)) { return state.Invalid(false, REJECT_DUPLICATE, "bad-txns-inputs-spent"); } // Bring the best block into scope. view.GetBestBlock(); // We have all inputs cached now, so switch back to dummy, so we don't // need to keep lock on mempool. view.SetBackend(dummy); // Only accept BIP68 sequence locked transactions that can be mined in // the next block; we don't want our mempool filled up with transactions // that can't be mined yet. Must keep pool.cs for this unless we change // CheckSequenceLocks to take a CoinsViewCache instead of create its // own. if (!CheckSequenceLocks(pool, tx, STANDARD_LOCKTIME_VERIFY_FLAGS, &lp)) { return state.DoS(0, false, REJECT_NONSTANDARD, "non-BIP68-final"); } Amount nFees = Amount::zero(); if (!Consensus::CheckTxInputs(tx, state, view, GetSpendHeight(view), nFees)) { return error("%s: Consensus::CheckTxInputs: %s, %s", __func__, tx.GetId().ToString(), FormatStateMessage(state)); } const uint32_t nextBlockScriptVerifyFlags = GetNextBlockScriptFlags(consensusParams, chainActive.Tip()); // Check for non-standard pay-to-script-hash in inputs if (fRequireStandard && !AreInputsStandard(tx, view, nextBlockScriptVerifyFlags)) { return state.Invalid(false, REJECT_NONSTANDARD, "bad-txns-nonstandard-inputs"); } // nModifiedFees includes any fee deltas from PrioritiseTransaction Amount nModifiedFees = nFees; pool.ApplyDelta(txid, nModifiedFees); // Keep track of transactions that spend a coinbase, which we re-scan // during reorgs to ensure COINBASE_MATURITY is still met. bool fSpendsCoinbase = false; for (const CTxIn &txin : tx.vin) { const Coin &coin = view.AccessCoin(txin.prevout); if (coin.IsCoinBase()) { fSpendsCoinbase = true; break; } } auto nSigOpsCount = GetTransactionSigOpCount(tx, view, nextBlockScriptVerifyFlags); // Check that the transaction doesn't have an excessive number of // sigops. static_assert(MAX_STANDARD_TX_SIGOPS <= MAX_TX_SIGOPS_COUNT, "we don't want transactions we can't even mine"); if (nSigOpsCount > MAX_STANDARD_TX_SIGOPS) { return state.DoS(0, false, REJECT_NONSTANDARD, "bad-txns-too-many-sigops", false, strprintf("%d", nSigOpsCount)); } unsigned int nSize = tx.GetTotalSize(); // No transactions are allowed below minRelayTxFee except from // disconnected blocks. // Do not change this to use virtualsize without coordinating a network // policy upgrade. if (!bypass_limits && nModifiedFees < minRelayTxFee.GetFee(nSize)) { return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "min relay fee not met"); } if (nAbsurdFee != Amount::zero() && nFees > nAbsurdFee) { return state.Invalid(false, REJECT_HIGHFEE, "absurdly-high-fee", strprintf("%d > %d", nFees, nAbsurdFee)); } // Validate input scripts against standard script flags. const uint32_t scriptVerifyFlags = GetStandardScriptFlags(consensusParams, chainActive.Tip()); PrecomputedTransactionData txdata(tx); int nSigChecksStandard; if (!CheckInputs(tx, state, view, true, scriptVerifyFlags, true, false, txdata, nSigChecksStandard)) { // State filled in by CheckInputs. return false; } CTxMemPoolEntry entry(ptx, nFees, nAcceptTime, chainActive.Height(), fSpendsCoinbase, nSigOpsCount, lp); unsigned int nVirtualSize = entry.GetTxVirtualSize(); Amount mempoolRejectFee = pool.GetMinFee( gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000) .GetFee(nVirtualSize); if (!bypass_limits && mempoolRejectFee > Amount::zero() && nModifiedFees < mempoolRejectFee) { return state.DoS( 0, false, REJECT_INSUFFICIENTFEE, "mempool min fee not met", false, strprintf("%d < %d", nModifiedFees, mempoolRejectFee)); } // Calculate in-mempool ancestors, up to a limit. CTxMemPool::setEntries setAncestors; size_t nLimitAncestors = gArgs.GetArg( "-limitancestorcount", GetDefaultAncestorLimit(consensusParams, chainActive.Tip())); size_t nLimitAncestorSize = gArgs.GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT) * 1000; size_t nLimitDescendants = gArgs.GetArg( "-limitdescendantcount", GetDefaultDescendantLimit(consensusParams, chainActive.Tip())); size_t nLimitDescendantSize = gArgs.GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT) * 1000; std::string errString; if (!pool.CalculateMemPoolAncestors( entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) { return state.DoS(0, false, REJECT_NONSTANDARD, "too-long-mempool-chain", false, errString); } // Check again against the next block's script verification flags // to cache our script execution flags. // // This is also useful in case of bugs in the standard flags that cause // transactions to pass as valid when they're actually invalid. For // instance the STRICTENC flag was incorrectly allowing certain CHECKSIG // NOT scripts to pass, even though they were invalid. // // There is a similar check in CreateNewBlock() to prevent creating // invalid blocks (using TestBlockValidity), however allowing such // transactions into the mempool can be exploited as a DoS attack. int nSigChecksConsensus; if (!CheckInputsFromMempoolAndCache(tx, state, view, pool, nextBlockScriptVerifyFlags, true, txdata, nSigChecksConsensus)) { // This can occur under some circumstances, if the node receives an // unrequested tx which is invalid due to new consensus rules not // being activated yet (during IBD). return error("%s: BUG! PLEASE REPORT THIS! CheckInputs failed " "against next-block but not STANDARD flags %s, %s", __func__, txid.ToString(), FormatStateMessage(state)); } if (test_accept) { // Tx was accepted, but not added return true; } // Store transaction in memory. pool.addUnchecked(entry, setAncestors); // Trim mempool and check if tx was trimmed. if (!bypass_limits) { pool.LimitSize( gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, gArgs.GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60); if (!pool.exists(txid)) { return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool full"); } } } GetMainSignals().TransactionAddedToMempool(ptx); return true; } /** * (try to) add transaction to memory pool with a specified acceptance time. */ static bool AcceptToMemoryPoolWithTime(const Config &config, CTxMemPool &pool, CValidationState &state, const CTransactionRef &tx, bool *pfMissingInputs, int64_t nAcceptTime, bool bypass_limits, const Amount nAbsurdFee, bool test_accept) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); std::vector<COutPoint> coins_to_uncache; bool res = AcceptToMemoryPoolWorker( config, pool, state, tx, pfMissingInputs, nAcceptTime, bypass_limits, nAbsurdFee, coins_to_uncache, test_accept); if (!res) { for (const COutPoint &outpoint : coins_to_uncache) { pcoinsTip->Uncache(outpoint); } } // After we've (potentially) uncached entries, ensure our coins cache is // still within its size limits CValidationState stateDummy; FlushStateToDisk(config.GetChainParams(), stateDummy, FlushStateMode::PERIODIC); return res; } bool AcceptToMemoryPool(const Config &config, CTxMemPool &pool, CValidationState &state, const CTransactionRef &tx, bool *pfMissingInputs, bool bypass_limits, const Amount nAbsurdFee, bool test_accept) { return AcceptToMemoryPoolWithTime(config, pool, state, tx, pfMissingInputs, GetTime(), bypass_limits, nAbsurdFee, test_accept); } /** * Return transaction in txOut, and if it was found inside a block, its hash is * placed in hashBlock. If blockIndex is provided, the transaction is fetched * from the corresponding block. */ bool GetTransaction(const TxId &txid, CTransactionRef &txOut, const Consensus::Params ¶ms, BlockHash &hashBlock, bool fAllowSlow, const CBlockIndex *const blockIndex) { CBlockIndex const *pindexSlow = blockIndex; LOCK(cs_main); if (!blockIndex) { CTransactionRef ptx = g_mempool.get(txid); if (ptx) { txOut = ptx; return true; } if (g_txindex) { return g_txindex->FindTx(txid, hashBlock, txOut); } // use coin database to locate block that contains transaction, and scan // it if (fAllowSlow) { const Coin &coin = AccessByTxid(*pcoinsTip, txid); if (!coin.IsSpent()) { pindexSlow = chainActive[coin.GetHeight()]; } } } if (pindexSlow) { CBlock block; if (ReadBlockFromDisk(block, pindexSlow, params)) { for (const auto &tx : block.vtx) { if (tx->GetId() == txid) { txOut = tx; hashBlock = pindexSlow->GetBlockHash(); return true; } } } } return false; } ////////////////////////////////////////////////////////////////////////////// // // CBlock and CBlockIndex // static bool WriteBlockToDisk(const CBlock &block, FlatFilePos &pos, const CMessageHeader::MessageMagic &messageStart) { // Open history file to append CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) { return error("WriteBlockToDisk: OpenBlockFile failed"); } // Write index header unsigned int nSize = GetSerializeSize(block, fileout.GetVersion()); fileout << messageStart << nSize; // Write block long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) { return error("WriteBlockToDisk: ftell failed"); } pos.nPos = (unsigned int)fileOutPos; fileout << block; return true; } bool ReadBlockFromDisk(CBlock &block, const FlatFilePos &pos, const Consensus::Params ¶ms) { block.SetNull(); // Open history file to read CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) { return error("ReadBlockFromDisk: OpenBlockFile failed for %s", pos.ToString()); } // Read block try { filein >> block; } catch (const std::exception &e) { return error("%s: Deserialize or I/O error - %s at %s", __func__, e.what(), pos.ToString()); } // Check the header if (!CheckProofOfWork(block.GetHash(), block.nBits, params)) { return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString()); } return true; } bool ReadBlockFromDisk(CBlock &block, const CBlockIndex *pindex, const Consensus::Params ¶ms) { FlatFilePos blockPos; { LOCK(cs_main); blockPos = pindex->GetBlockPos(); } if (!ReadBlockFromDisk(block, blockPos, params)) { return false; } if (block.GetHash() != pindex->GetBlockHash()) { return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() " "doesn't match index for %s at %s", pindex->ToString(), pindex->GetBlockPos().ToString()); } return true; } Amount GetBlockSubsidy(int nHeight, const Consensus::Params &consensusParams) { int halvings = nHeight / consensusParams.nSubsidyHalvingInterval; // Force block reward to zero when right shift is undefined. if (halvings >= 64) { return Amount::zero(); } Amount nSubsidy = 50 * COIN; // Subsidy is cut in half every 210,000 blocks which will occur // approximately every 4 years. return ((nSubsidy / SATOSHI) >> halvings) * SATOSHI; } bool IsInitialBlockDownload() { // Once this function has returned false, it must remain false. static std::atomic<bool> latchToFalse{false}; // Optimization: pre-test latch before taking the lock. if (latchToFalse.load(std::memory_order_relaxed)) { return false; } LOCK(cs_main); if (latchToFalse.load(std::memory_order_relaxed)) { return false; } if (fImporting || fReindex) { return true; } if (chainActive.Tip() == nullptr) { return true; } if (chainActive.Tip()->nChainWork < nMinimumChainWork) { return true; } if (chainActive.Tip()->GetBlockTime() < (GetTime() - nMaxTipAge)) { return true; } LogPrintf("Leaving InitialBlockDownload (latching to false)\n"); latchToFalse.store(true, std::memory_order_relaxed); return false; } CBlockIndex const *pindexBestForkTip = nullptr; CBlockIndex const *pindexBestForkBase = nullptr; static void AlertNotify(const std::string &strMessage) { uiInterface.NotifyAlertChanged(); std::string strCmd = gArgs.GetArg("-alertnotify", ""); if (strCmd.empty()) { return; } // Alert text should be plain ascii coming from a trusted source, but to be // safe we first strip anything not in safeChars, then add single quotes // around the whole string before passing it to the shell: std::string singleQuote("'"); std::string safeStatus = SanitizeString(strMessage); safeStatus = singleQuote + safeStatus + singleQuote; boost::replace_all(strCmd, "%s", safeStatus); std::thread t(runCommand, strCmd); // thread runs free t.detach(); } static void CheckForkWarningConditions() EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); // Before we get past initial download, we cannot reliably alert about forks // (we assume we don't get stuck on a fork before finishing our initial // sync) if (IsInitialBlockDownload()) { return; } // If our best fork is no longer within 72 blocks (+/- 12 hours if no one // mines it) of our head, drop it if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72) { pindexBestForkTip = nullptr; } if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (GetBlockProof(*chainActive.Tip()) * 6))) { if (!GetfLargeWorkForkFound() && pindexBestForkBase) { std::string warning = std::string("'Warning: Large-work fork detected, forking after " "block ") + pindexBestForkBase->phashBlock->ToString() + std::string("'"); AlertNotify(warning); } if (pindexBestForkTip && pindexBestForkBase) { LogPrintf("%s: Warning: Large fork found\n forking the " "chain at height %d (%s)\n lasting to height %d " "(%s).\nChain state database corruption likely.\n", __func__, pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(), pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString()); SetfLargeWorkForkFound(true); } else { LogPrintf("%s: Warning: Found invalid chain at least ~6 blocks " "longer than our best chain.\nChain state database " "corruption likely.\n", __func__); SetfLargeWorkInvalidChainFound(true); } } else { SetfLargeWorkForkFound(false); SetfLargeWorkInvalidChainFound(false); } } static void CheckForkWarningConditionsOnNewFork(CBlockIndex *pindexNewForkTip) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); // If we are on a fork that is sufficiently large, set a warning flag. const CBlockIndex *pfork = chainActive.FindFork(pindexNewForkTip); // We define a condition where we should warn the user about as a fork of at // least 7 blocks with a tip within 72 blocks (+/- 12 hours if no one mines // it) of ours. We use 7 blocks rather arbitrarily as it represents just // under 10% of sustained network hash rate operating on the fork, or a // chain that is entirely longer than ours and invalid (note that this // should be detected by both). We define it this way because it allows us // to only store the highest fork tip (+ base) which meets the 7-block // condition and from this always have the most-likely-to-cause-warning fork if (pfork && (!pindexBestForkTip || pindexNewForkTip->nHeight > pindexBestForkTip->nHeight) && pindexNewForkTip->nChainWork - pfork->nChainWork > (GetBlockProof(*pfork) * 7) && chainActive.Height() - pindexNewForkTip->nHeight < 72) { pindexBestForkTip = pindexNewForkTip; pindexBestForkBase = pfork; } CheckForkWarningConditions(); } static void InvalidChainFound(CBlockIndex *pindexNew) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork) { pindexBestInvalid = pindexNew; } // If the invalid chain found is supposed to be finalized, we need to move // back the finalization point. if (IsBlockFinalized(pindexNew)) { pindexFinalized = pindexNew->pprev; } LogPrintf("%s: invalid block=%s height=%d log2_work=%.8g date=%s\n", __func__, pindexNew->GetBlockHash().ToString(), pindexNew->nHeight, log(pindexNew->nChainWork.getdouble()) / log(2.0), FormatISO8601DateTime(pindexNew->GetBlockTime())); CBlockIndex *tip = chainActive.Tip(); assert(tip); LogPrintf("%s: current best=%s height=%d log2_work=%.8g date=%s\n", __func__, tip->GetBlockHash().ToString(), chainActive.Height(), log(tip->nChainWork.getdouble()) / log(2.0), FormatISO8601DateTime(tip->GetBlockTime())); } void CChainState::InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) { if (!state.CorruptionPossible()) { pindex->nStatus = pindex->nStatus.withFailed(); m_failed_blocks.insert(pindex); setDirtyBlockIndex.insert(pindex); InvalidChainFound(pindex); } } void SpendCoins(CCoinsViewCache &view, const CTransaction &tx, CTxUndo &txundo, int nHeight) { // Mark inputs spent. if (tx.IsCoinBase()) { return; } txundo.vprevout.reserve(tx.vin.size()); for (const CTxIn &txin : tx.vin) { txundo.vprevout.emplace_back(); bool is_spent = view.SpendCoin(txin.prevout, &txundo.vprevout.back()); assert(is_spent); } } void UpdateCoins(CCoinsViewCache &view, const CTransaction &tx, CTxUndo &txundo, int nHeight) { SpendCoins(view, tx, txundo, nHeight); AddCoins(view, tx, nHeight); } void UpdateCoins(CCoinsViewCache &view, const CTransaction &tx, int nHeight) { // Mark inputs spent. if (!tx.IsCoinBase()) { for (const CTxIn &txin : tx.vin) { bool is_spent = view.SpendCoin(txin.prevout); assert(is_spent); } } // Add outputs. AddCoins(view, tx, nHeight); } bool CScriptCheck::operator()() { const CScript &scriptSig = ptxTo->vin[nIn].scriptSig; if (!VerifyScript(scriptSig, scriptPubKey, nFlags, CachingTransactionSignatureChecker(ptxTo, nIn, amount, cacheStore, txdata), metrics, &error)) { return false; } if (pLimitSigChecks && !pLimitSigChecks->consume_and_check(metrics.nSigChecks)) { // we can't assign a meaningful script error (since the script // succeeded), but remove the ScriptError::OK which could be // misinterpreted. error = ScriptError::SIGCHECKS_LIMIT_EXCEEDED; return false; } return true; } int GetSpendHeight(const CCoinsViewCache &inputs) { LOCK(cs_main); CBlockIndex *pindexPrev = LookupBlockIndex(inputs.GetBestBlock()); return pindexPrev->nHeight + 1; } bool CheckInputs(const CTransaction &tx, CValidationState &state, const CCoinsViewCache &inputs, bool fScriptChecks, const uint32_t flags, bool sigCacheStore, bool scriptCacheStore, const PrecomputedTransactionData &txdata, int &nSigChecksOut, std::vector<CScriptCheck> *pvChecks /*= nullptr*/, CheckInputsLimiter *pLimitSigChecks /*= nullptr*/) { AssertLockHeld(cs_main); assert(!tx.IsCoinBase()); if (pvChecks) { pvChecks->reserve(tx.vin.size()); } // Skip script verification when connecting blocks under the assumevalid // block. Assuming the assumevalid block is valid this is safe because // block merkle hashes are still computed and checked, of course, if an // assumed valid block is invalid due to false scriptSigs this optimization // would allow an invalid chain to be accepted. if (!fScriptChecks) { return true; } // First check if script executions have been cached with the same flags. // Note that this assumes that the inputs provided are correct (ie that the // transaction hash which is in tx's prevouts properly commits to the // scriptPubKey in the inputs view of that transaction). ScriptCacheKey hashCacheEntry(tx, flags); if (IsKeyInScriptCache(hashCacheEntry, !scriptCacheStore, nSigChecksOut)) { if (pLimitSigChecks && !pLimitSigChecks->consume_and_check(nSigChecksOut)) { return state.Invalid(false, REJECT_NONSTANDARD, strprintf("too-many-sigchecks")); } return true; } int nSigChecksTotal = 0; for (size_t i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const Coin &coin = inputs.AccessCoin(prevout); assert(!coin.IsSpent()); // We very carefully only pass in things to CScriptCheck which are // clearly committed to by tx's hash. This provides a sanity // check that our caching is not introducing consensus failures through // additional data in, eg, the coins being spent being checked as a part // of CScriptCheck. const CScript &scriptPubKey = coin.GetTxOut().scriptPubKey; const Amount amount = coin.GetTxOut().nValue; // Verify signature CScriptCheck check(scriptPubKey, amount, tx, i, flags, sigCacheStore, txdata, pLimitSigChecks); if (pvChecks) { pvChecks->push_back(std::move(check)); } else if (!check()) { if (pLimitSigChecks && !pLimitSigChecks->check()) { // It's not a script error to overrun the limit, and we just // reject it as nonstandard. return state.Invalid(false, REJECT_NONSTANDARD, strprintf("too-many-sigchecks")); } ScriptError scriptError = check.GetScriptError(); // Compute flags without the optional standardness flags. // This differs from MANDATORY_SCRIPT_VERIFY_FLAGS as it contains // additional upgrade flags (see AcceptToMemoryPoolWorker variable // extraFlags). uint32_t mandatoryFlags = flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS; if (flags != mandatoryFlags) { // Check whether the failure was caused by a non-mandatory // script verification check. If so, don't trigger DoS // protection to avoid splitting the network on the basis of // relay policy disagreements. CScriptCheck check2(scriptPubKey, amount, tx, i, mandatoryFlags, sigCacheStore, txdata); if (check2()) { return state.Invalid( false, REJECT_NONSTANDARD, strprintf("non-mandatory-script-verify-flag (%s)", ScriptErrorString(scriptError))); } // update the error message to reflect the mandatory violation. scriptError = check2.GetScriptError(); } // Before banning, we need to check whether the transaction would // be valid on the other side of the upgrade, so as to avoid // splitting the network between upgraded and non-upgraded nodes. // Note that this will create strange error messages like // "upgrade-conditional-script-failure (Opcode missing or not // understood)". CScriptCheck check3(scriptPubKey, amount, tx, i, mandatoryFlags ^ SCRIPT_ENABLE_OP_REVERSEBYTES, sigCacheStore, txdata); if (check3()) { return state.Invalid( false, REJECT_INVALID, strprintf("upgrade-conditional-script-failure (%s)", ScriptErrorString(check.GetScriptError()))); } // Failures of other flags indicate a transaction that is invalid in // new blocks, e.g. a invalid P2SH. We DoS ban such nodes as they // are not following the protocol. That said during an upgrade // careful thought should be taken as to the correct behavior - we // may want to continue peering with non-upgraded nodes even after // soft-fork super-majority signaling has occurred. return state.DoS( 100, false, REJECT_INVALID, strprintf("mandatory-script-verify-flag-failed (%s)", ScriptErrorString(scriptError))); } nSigChecksTotal += check.GetScriptExecutionMetrics().nSigChecks; } nSigChecksOut = nSigChecksTotal; if (scriptCacheStore && !pvChecks) { // We executed all of the provided scripts, and were told to cache the // result. Do so now. AddKeyInScriptCache(hashCacheEntry, nSigChecksTotal); } return true; } namespace { bool UndoWriteToDisk(const CBlockUndo &blockundo, FlatFilePos &pos, const uint256 &hashBlock, const CMessageHeader::MessageMagic &messageStart) { // Open history file to append CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) { return error("%s: OpenUndoFile failed", __func__); } // Write index header unsigned int nSize = GetSerializeSize(blockundo, fileout.GetVersion()); fileout << messageStart << nSize; // Write undo data long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) { return error("%s: ftell failed", __func__); } pos.nPos = (unsigned int)fileOutPos; fileout << blockundo; // calculate & write checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << blockundo; fileout << hasher.GetHash(); return true; } static bool UndoReadFromDisk(CBlockUndo &blockundo, const CBlockIndex *pindex) { FlatFilePos pos = pindex->GetUndoPos(); if (pos.IsNull()) { return error("%s: no undo data available", __func__); } // Open history file to read CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) { return error("%s: OpenUndoFile failed", __func__); } // Read block uint256 hashChecksum; // We need a CHashVerifier as reserializing may lose data CHashVerifier<CAutoFile> verifier(&filein); try { verifier << pindex->pprev->GetBlockHash(); verifier >> blockundo; filein >> hashChecksum; } catch (const std::exception &e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } // Verify checksum if (hashChecksum != verifier.GetHash()) { return error("%s: Checksum mismatch", __func__); } return true; } /** Abort with a message */ static bool AbortNode(const std::string &strMessage, const std::string &userMessage = "") { SetMiscWarning(strMessage); LogPrintf("*** %s\n", strMessage); uiInterface.ThreadSafeMessageBox( userMessage.empty() ? _("Error: A fatal internal error occurred, see " "debug.log for details") : userMessage, "", CClientUIInterface::MSG_ERROR); StartShutdown(); return false; } static bool AbortNode(CValidationState &state, const std::string &strMessage, const std::string &userMessage = "") { AbortNode(strMessage, userMessage); return state.Error(strMessage); } } // namespace /** Restore the UTXO in a Coin at a given COutPoint. */ DisconnectResult UndoCoinSpend(const Coin &undo, CCoinsViewCache &view, const COutPoint &out) { bool fClean = true; if (view.HaveCoin(out)) { // Overwriting transaction output. fClean = false; } if (undo.GetHeight() == 0) { // Missing undo metadata (height and coinbase). Older versions included // this information only in undo records for the last spend of a // transactions' outputs. This implies that it must be present for some // other output of the same tx. const Coin &alternate = AccessByTxid(view, out.GetTxId()); if (alternate.IsSpent()) { // Adding output for transaction without known metadata return DISCONNECT_FAILED; } // This is somewhat ugly, but hopefully utility is limited. This is only // useful when working from legacy on disck data. In any case, putting // the correct information in there doesn't hurt. const_cast<Coin &>(undo) = Coin(undo.GetTxOut(), alternate.GetHeight(), alternate.IsCoinBase()); } // The potential_overwrite parameter to AddCoin is only allowed to be false // if we know for sure that the coin did not already exist in the cache. As // we have queried for that above using HaveCoin, we don't need to guess. // When fClean is false, a coin already existed and it is an overwrite. view.AddCoin(out, std::move(undo), !fClean); return fClean ? DISCONNECT_OK : DISCONNECT_UNCLEAN; } /** * Undo the effects of this block (with given index) on the UTXO set represented * by coins. When FAILED is returned, view is left in an indeterminate state. */ DisconnectResult CChainState::DisconnectBlock(const CBlock &block, const CBlockIndex *pindex, CCoinsViewCache &view) { CBlockUndo blockUndo; if (!UndoReadFromDisk(blockUndo, pindex)) { error("DisconnectBlock(): failure reading undo data"); return DISCONNECT_FAILED; } return ApplyBlockUndo(blockUndo, block, pindex, view); } DisconnectResult ApplyBlockUndo(const CBlockUndo &blockUndo, const CBlock &block, const CBlockIndex *pindex, CCoinsViewCache &view) { bool fClean = true; if (blockUndo.vtxundo.size() + 1 != block.vtx.size()) { error("DisconnectBlock(): block and undo data inconsistent"); return DISCONNECT_FAILED; } // First, restore inputs. for (size_t i = 1; i < block.vtx.size(); i++) { const CTransaction &tx = *(block.vtx[i]); const CTxUndo &txundo = blockUndo.vtxundo[i - 1]; if (txundo.vprevout.size() != tx.vin.size()) { error("DisconnectBlock(): transaction and undo data inconsistent"); return DISCONNECT_FAILED; } for (size_t j = 0; j < tx.vin.size(); j++) { const COutPoint &out = tx.vin[j].prevout; const Coin &undo = txundo.vprevout[j]; DisconnectResult res = UndoCoinSpend(undo, view, out); if (res == DISCONNECT_FAILED) { return DISCONNECT_FAILED; } fClean = fClean && res != DISCONNECT_UNCLEAN; } } // Second, revert created outputs. for (const auto &ptx : block.vtx) { const CTransaction &tx = *ptx; const TxId &txid = tx.GetId(); const bool is_coinbase = tx.IsCoinBase(); // Check that all outputs are available and match the outputs in the // block itself exactly. for (size_t o = 0; o < tx.vout.size(); o++) { if (tx.vout[o].scriptPubKey.IsUnspendable()) { continue; } COutPoint out(txid, o); Coin coin; bool is_spent = view.SpendCoin(out, &coin); if (!is_spent || tx.vout[o] != coin.GetTxOut() || uint32_t(pindex->nHeight) != coin.GetHeight() || is_coinbase != coin.IsCoinBase()) { // transaction output mismatch fClean = false; } } } // Move best block pointer to previous block. view.SetBestBlock(block.hashPrevBlock); return fClean ? DISCONNECT_OK : DISCONNECT_UNCLEAN; } static void FlushBlockFile(bool fFinalize = false) { LOCK(cs_LastBlockFile); FlatFilePos block_pos_old(nLastBlockFile, vinfoBlockFile[nLastBlockFile].nSize); FlatFilePos undo_pos_old(nLastBlockFile, vinfoBlockFile[nLastBlockFile].nUndoSize); bool status = true; status &= BlockFileSeq().Flush(block_pos_old, fFinalize); status &= UndoFileSeq().Flush(undo_pos_old, fFinalize); if (!status) { AbortNode("Flushing block file to disk failed. This is likely the " "result of an I/O error."); } } static bool FindUndoPos(CValidationState &state, int nFile, FlatFilePos &pos, unsigned int nAddSize); static bool WriteUndoDataForBlock(const CBlockUndo &blockundo, CValidationState &state, CBlockIndex *pindex, const CChainParams &chainparams) { // Write undo information to disk if (pindex->GetUndoPos().IsNull()) { FlatFilePos _pos; if (!FindUndoPos(state, pindex->nFile, _pos, ::GetSerializeSize(blockundo, CLIENT_VERSION) + 40)) { return error("ConnectBlock(): FindUndoPos failed"); } if (!UndoWriteToDisk(blockundo, _pos, pindex->pprev->GetBlockHash(), chainparams.DiskMagic())) { return AbortNode(state, "Failed to write undo data"); } // update nUndoPos in block index pindex->nUndoPos = _pos.nPos; pindex->nStatus = pindex->nStatus.withUndo(); setDirtyBlockIndex.insert(pindex); } return true; } static CCheckQueue<CScriptCheck> scriptcheckqueue(128); void ThreadScriptCheck() { RenameThread("bitcoin-scriptch"); scriptcheckqueue.Thread(); } VersionBitsCache versionbitscache GUARDED_BY(cs_main); int32_t ComputeBlockVersion(const CBlockIndex *pindexPrev, const Consensus::Params ¶ms) { LOCK(cs_main); int32_t nVersion = VERSIONBITS_TOP_BITS; for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) { ThresholdState state = VersionBitsState( pindexPrev, params, static_cast<Consensus::DeploymentPos>(i), versionbitscache); if (state == ThresholdState::LOCKED_IN || state == ThresholdState::STARTED) { nVersion |= VersionBitsMask( params, static_cast<Consensus::DeploymentPos>(i)); } } return nVersion; } // Returns the script flags which should be checked for the block after // the given block. static uint32_t GetNextBlockScriptFlags(const Consensus::Params ¶ms, const CBlockIndex *pindex) { uint32_t flags = SCRIPT_VERIFY_NONE; // Start enforcing P2SH (BIP16) if ((pindex->nHeight + 1) >= params.BIP16Height) { flags |= SCRIPT_VERIFY_P2SH; } // Start enforcing the DERSIG (BIP66) rule. if ((pindex->nHeight + 1) >= params.BIP66Height) { flags |= SCRIPT_VERIFY_DERSIG; } // Start enforcing CHECKLOCKTIMEVERIFY (BIP65) rule. if ((pindex->nHeight + 1) >= params.BIP65Height) { flags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY; } // Start enforcing CSV (BIP68, BIP112 and BIP113) rule. if ((pindex->nHeight + 1) >= params.CSVHeight) { flags |= SCRIPT_VERIFY_CHECKSEQUENCEVERIFY; } // If the UAHF is enabled, we start accepting replay protected txns if (IsUAHFenabled(params, pindex)) { flags |= SCRIPT_VERIFY_STRICTENC; flags |= SCRIPT_ENABLE_SIGHASH_FORKID; } // If the DAA HF is enabled, we start rejecting transaction that use a high // s in their signature. We also make sure that signature that are supposed // to fail (for instance in multisig or other forms of smart contracts) are // null. if (IsDAAEnabled(params, pindex)) { flags |= SCRIPT_VERIFY_LOW_S; flags |= SCRIPT_VERIFY_NULLFAIL; } // When the magnetic anomaly fork is enabled, we start accepting // transactions using the OP_CHECKDATASIG opcode and it's verify // alternative. We also start enforcing push only signatures and // clean stack. if (IsMagneticAnomalyEnabled(params, pindex)) { flags |= SCRIPT_VERIFY_CHECKDATASIG_SIGOPS; flags |= SCRIPT_VERIFY_SIGPUSHONLY; flags |= SCRIPT_VERIFY_CLEANSTACK; } if (IsGravitonEnabled(params, pindex)) { flags |= SCRIPT_ENABLE_SCHNORR_MULTISIG; flags |= SCRIPT_VERIFY_MINIMALDATA; } if (IsPhononEnabled(params, pindex)) { flags |= SCRIPT_ENABLE_OP_REVERSEBYTES; + flags |= SCRIPT_ZERO_SIGOPS; } // We make sure this node will have replay protection during the next hard // fork. if (IsReplayProtectionEnabled(params, pindex)) { flags |= SCRIPT_ENABLE_REPLAY_PROTECTION; } return flags; } static int64_t nTimeCheck = 0; static int64_t nTimeForks = 0; static int64_t nTimeVerify = 0; static int64_t nTimeConnect = 0; static int64_t nTimeIndex = 0; static int64_t nTimeCallbacks = 0; static int64_t nTimeTotal = 0; static int64_t nBlocksTotal = 0; /** * Apply the effects of this block (with given index) on the UTXO set * represented by coins. Validity checks that depend on the UTXO set are also * done; ConnectBlock() can fail if those validity checks fail (among other * reasons). */ bool CChainState::ConnectBlock(const CBlock &block, CValidationState &state, CBlockIndex *pindex, CCoinsViewCache &view, const CChainParams ¶ms, BlockValidationOptions options, bool fJustCheck) { AssertLockHeld(cs_main); assert(pindex); assert(*pindex->phashBlock == block.GetHash()); int64_t nTimeStart = GetTimeMicros(); const Consensus::Params &consensusParams = params.GetConsensus(); // Check it again in case a previous version let a bad block in // NOTE: We don't currently (re-)invoke ContextualCheckBlock() or // ContextualCheckBlockHeader() here. This means that if we add a new // consensus rule that is enforced in one of those two functions, then we // may have let in a block that violates the rule prior to updating the // software, and we would NOT be enforcing the rule here. Fully solving // upgrade from one software version to the next after a consensus rule // change is potentially tricky and issue-specific. // Also, currently the rule against blocks more than 2 hours in the future // is enforced in ContextualCheckBlockHeader(); we wouldn't want to // re-enforce that rule here (at least until we make it impossible for // GetAdjustedTime() to go backward). if (!CheckBlock(block, state, consensusParams, options.withCheckPoW(!fJustCheck) .withCheckMerkleRoot(!fJustCheck))) { if (state.CorruptionPossible()) { // We don't write down blocks to disk if they may have been // corrupted, so this should be impossible unless we're having // hardware problems. return AbortNode(state, "Corrupt block found indicating potential " "hardware failure; shutting down"); } return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state)); } // Verify that the view's current state corresponds to the previous block BlockHash hashPrevBlock = pindex->pprev == nullptr ? BlockHash() : pindex->pprev->GetBlockHash(); assert(hashPrevBlock == view.GetBestBlock()); // Special case for the genesis block, skipping connection of its // transactions (its coinbase is unspendable) if (block.GetHash() == consensusParams.hashGenesisBlock) { if (!fJustCheck) { view.SetBestBlock(pindex->GetBlockHash()); } return true; } nBlocksTotal++; bool fScriptChecks = true; if (!hashAssumeValid.IsNull()) { // We've been configured with the hash of a block which has been // externally verified to have a valid history. A suitable default value // is included with the software and updated from time to time. Because // validity relative to a piece of software is an objective fact these // defaults can be easily reviewed. This setting doesn't force the // selection of any particular chain but makes validating some faster by // effectively caching the result of part of the verification. BlockMap::const_iterator it = mapBlockIndex.find(hashAssumeValid); if (it != mapBlockIndex.end()) { if (it->second->GetAncestor(pindex->nHeight) == pindex && pindexBestHeader->GetAncestor(pindex->nHeight) == pindex && pindexBestHeader->nChainWork >= nMinimumChainWork) { // This block is a member of the assumed verified chain and an // ancestor of the best header. The equivalent time check // discourages hash power from extorting the network via DOS // attack into accepting an invalid block through telling users // they must manually set assumevalid. Requiring a software // change or burying the invalid block, regardless of the // setting, makes it hard to hide the implication of the demand. // This also avoids having release candidates that are hardly // doing any signature verification at all in testing without // having to artificially set the default assumed verified block // further back. The test against nMinimumChainWork prevents the // skipping when denied access to any chain at least as good as // the expected chain. fScriptChecks = (GetBlockProofEquivalentTime( *pindexBestHeader, *pindex, *pindexBestHeader, consensusParams) <= 60 * 60 * 24 * 7 * 2); } } } int64_t nTime1 = GetTimeMicros(); nTimeCheck += nTime1 - nTimeStart; LogPrint(BCLog::BENCH, " - Sanity checks: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime1 - nTimeStart), nTimeCheck * MICRO, nTimeCheck * MILLI / nBlocksTotal); // Do not allow blocks that contain transactions which 'overwrite' older // transactions, unless those are already completely spent. If such // overwrites are allowed, coinbases and transactions depending upon those // can be duplicated to remove the ability to spend the first instance -- // even after being sent to another address. See BIP30 and // http://r6.ca/blog/20120206T005236Z.html for more information. This logic // is not necessary for memory pool transactions, as AcceptToMemoryPool // already refuses previously-known transaction ids entirely. This rule was // originally applied to all blocks with a timestamp after March 15, 2012, // 0:00 UTC. Now that the whole chain is irreversibly beyond that time it is // applied to all blocks except the two in the chain that violate it. This // prevents exploiting the issue against nodes during their initial block // download. bool fEnforceBIP30 = !((pindex->nHeight == 91842 && pindex->GetBlockHash() == uint256S("0x00000000000a4d0a398161ffc163c503763" "b1f4360639393e0e4c8e300e0caec")) || (pindex->nHeight == 91880 && pindex->GetBlockHash() == uint256S("0x00000000000743f190a18c5577a3c2d2a1f" "610ae9601ac046a38084ccb7cd721"))); // Once BIP34 activated it was not possible to create new duplicate // coinbases and thus other than starting with the 2 existing duplicate // coinbase pairs, not possible to create overwriting txs. But by the time // BIP34 activated, in each of the existing pairs the duplicate coinbase had // overwritten the first before the first had been spent. Since those // coinbases are sufficiently buried it's no longer possible to create // further duplicate transactions descending from the known pairs either. If // we're on the known chain at height greater than where BIP34 activated, we // can save the db accesses needed for the BIP30 check. assert(pindex->pprev); CBlockIndex *pindexBIP34height = pindex->pprev->GetAncestor(consensusParams.BIP34Height); // Only continue to enforce if we're below BIP34 activation height or the // block hash at that height doesn't correspond. fEnforceBIP30 = fEnforceBIP30 && (!pindexBIP34height || !(pindexBIP34height->GetBlockHash() == consensusParams.BIP34Hash)); if (fEnforceBIP30) { for (const auto &tx : block.vtx) { for (size_t o = 0; o < tx->vout.size(); o++) { if (view.HaveCoin(COutPoint(tx->GetId(), o))) { return state.DoS( 100, error("ConnectBlock(): tried to overwrite transaction"), REJECT_INVALID, "bad-txns-BIP30"); } } } } // Start enforcing BIP68 (sequence locks). int nLockTimeFlags = 0; if (pindex->nHeight >= consensusParams.CSVHeight) { nLockTimeFlags |= LOCKTIME_VERIFY_SEQUENCE; } const uint32_t flags = GetNextBlockScriptFlags(consensusParams, pindex->pprev); int64_t nTime2 = GetTimeMicros(); nTimeForks += nTime2 - nTime1; LogPrint(BCLog::BENCH, " - Fork checks: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime2 - nTime1), nTimeForks * MICRO, nTimeForks * MILLI / nBlocksTotal); CBlockUndo blockundo; CCheckQueueControl<CScriptCheck> control(fScriptChecks ? &scriptcheckqueue : nullptr); std::vector<int> prevheights; Amount nFees = Amount::zero(); int nInputs = 0; // Sigops counting. We need to do it again because of P2SH. uint64_t nSigOpsCount = 0; const uint64_t currentBlockSize = ::GetSerializeSize(block, PROTOCOL_VERSION); const uint64_t nMaxSigOpsCount = GetMaxBlockSigOpsCount(currentBlockSize); blockundo.vtxundo.reserve(block.vtx.size() - 1); // Add all outputs try { for (const auto &ptx : block.vtx) { AddCoins(view, *ptx, pindex->nHeight); } } catch (const std::logic_error &e) { // This error will be thrown from AddCoin if we try to connect a block // containing duplicate transactions. Such a thing should normally be // caught early nowadays (due to ContextualCheckBlock's CTOR // enforcement) however some edge cases can escape that: // - ContextualCheckBlock does not get re-run after saving the block to // disk, and older versions may have saved a weird block. // - its checks are not applied to pre-CTOR chains, which we might visit // with checkpointing off. return state.DoS( 100, error("ConnectBlock(): tried to overwrite transaction"), REJECT_INVALID, "tx-duplicate"); } for (const auto &ptx : block.vtx) { const CTransaction &tx = *ptx; const bool isCoinBase = tx.IsCoinBase(); nInputs += tx.vin.size(); Amount txfee = Amount::zero(); if (!isCoinBase && !Consensus::CheckTxInputs(tx, state, view, pindex->nHeight, txfee)) { return error("%s: Consensus::CheckTxInputs: %s, %s", __func__, tx.GetId().ToString(), FormatStateMessage(state)); } nFees += txfee; if (!MoneyRange(nFees)) { return state.DoS( 100, error("%s: accumulated fee in the block out of range.", __func__), REJECT_INVALID, "bad-txns-accumulated-fee-outofrange"); } // GetTransactionSigOpCount counts 2 types of sigops: // * legacy (always) // * p2sh (when P2SH enabled in flags and excludes coinbase) auto txSigOpsCount = GetTransactionSigOpCount(tx, view, flags); if (txSigOpsCount > MAX_TX_SIGOPS_COUNT) { return state.DoS(100, false, REJECT_INVALID, "bad-txn-sigops"); } nSigOpsCount += txSigOpsCount; if (nSigOpsCount > nMaxSigOpsCount) { return state.DoS(100, error("ConnectBlock(): too many sigops"), REJECT_INVALID, "bad-blk-sigops"); } // The following checks do not apply to the coinbase. if (isCoinBase) { continue; } // Check that transaction is BIP68 final BIP68 lock checks (as // opposed to nLockTime checks) must be in ConnectBlock because they // require the UTXO set. prevheights.resize(tx.vin.size()); for (size_t j = 0; j < tx.vin.size(); j++) { prevheights[j] = view.AccessCoin(tx.vin[j].prevout).GetHeight(); } if (!SequenceLocks(tx, nLockTimeFlags, &prevheights, *pindex)) { return state.DoS( 100, error("%s: contains a non-BIP68-final transaction", __func__), REJECT_INVALID, "bad-txns-nonfinal"); } // Don't cache results if we're actually connecting blocks (still // consult the cache, though). bool fCacheResults = fJustCheck; std::vector<CScriptCheck> vChecks; // nSigChecksRet may be accurate (found in cache) or 0 (checks were // deferred into vChecks). int nSigChecksRet; if (!CheckInputs(tx, state, view, fScriptChecks, flags, fCacheResults, fCacheResults, PrecomputedTransactionData(tx), nSigChecksRet, &vChecks)) { return error("ConnectBlock(): CheckInputs on %s failed with %s", tx.GetId().ToString(), FormatStateMessage(state)); } control.Add(vChecks); blockundo.vtxundo.push_back(CTxUndo()); // Note: this must execute in the same iteration as CheckTxInputs (not // in a separate loop) in order to detect double spends. However, // this does not prevent double-spending by duplicated transaction // inputs in the same transaction (cf. CVE-2018-17144) -- that check is // done in CheckBlock (CheckRegularTransaction). SpendCoins(view, tx, blockundo.vtxundo.back(), pindex->nHeight); } int64_t nTime3 = GetTimeMicros(); nTimeConnect += nTime3 - nTime2; LogPrint(BCLog::BENCH, " - Connect %u transactions: %.2fms (%.3fms/tx, %.3fms/txin) " "[%.2fs (%.2fms/blk)]\n", (unsigned)block.vtx.size(), MILLI * (nTime3 - nTime2), MILLI * (nTime3 - nTime2) / block.vtx.size(), nInputs <= 1 ? 0 : MILLI * (nTime3 - nTime2) / (nInputs - 1), nTimeConnect * MICRO, nTimeConnect * MILLI / nBlocksTotal); Amount blockReward = nFees + GetBlockSubsidy(pindex->nHeight, consensusParams); if (block.vtx[0]->GetValueOut() > blockReward) { return state.DoS(100, error("ConnectBlock(): coinbase pays too much " "(actual=%d vs limit=%d)", block.vtx[0]->GetValueOut(), blockReward), REJECT_INVALID, "bad-cb-amount"); } if (!control.Wait()) { return state.DoS(100, false, REJECT_INVALID, "blk-bad-inputs", false, "parallel script check failed"); } int64_t nTime4 = GetTimeMicros(); nTimeVerify += nTime4 - nTime2; LogPrint( BCLog::BENCH, " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs (%.2fms/blk)]\n", nInputs - 1, MILLI * (nTime4 - nTime2), nInputs <= 1 ? 0 : MILLI * (nTime4 - nTime2) / (nInputs - 1), nTimeVerify * MICRO, nTimeVerify * MILLI / nBlocksTotal); if (fJustCheck) { return true; } if (!WriteUndoDataForBlock(blockundo, state, pindex, params)) { return false; } if (!pindex->IsValid(BlockValidity::SCRIPTS)) { pindex->RaiseValidity(BlockValidity::SCRIPTS); setDirtyBlockIndex.insert(pindex); } assert(pindex->phashBlock); // add this block to the view's block chain view.SetBestBlock(pindex->GetBlockHash()); int64_t nTime5 = GetTimeMicros(); nTimeIndex += nTime5 - nTime4; LogPrint(BCLog::BENCH, " - Index writing: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime5 - nTime4), nTimeIndex * MICRO, nTimeIndex * MILLI / nBlocksTotal); int64_t nTime6 = GetTimeMicros(); nTimeCallbacks += nTime6 - nTime5; LogPrint(BCLog::BENCH, " - Callbacks: %.2fms [%.2fs (%.2fms/blk)]\n", MILLI * (nTime6 - nTime5), nTimeCallbacks * MICRO, nTimeCallbacks * MILLI / nBlocksTotal); return true; } /** * Update the on-disk chain state. * The caches and indexes are flushed depending on the mode we're called with if * they're too large, if it's been a while since the last write, or always and * in all cases if we're in prune mode and are deleting files. * * If FlushStateMode::NONE is used, then FlushStateToDisk(...) won't do anything * besides checking if we need to prune. */ static bool FlushStateToDisk(const CChainParams &chainparams, CValidationState &state, FlushStateMode mode, int nManualPruneHeight) { int64_t nMempoolUsage = g_mempool.DynamicMemoryUsage(); LOCK(cs_main); static int64_t nLastWrite = 0; static int64_t nLastFlush = 0; std::set<int> setFilesToPrune; bool full_flush_completed = false; try { { bool fFlushForPrune = false; bool fDoFullFlush = false; LOCK(cs_LastBlockFile); if (fPruneMode && (fCheckForPruning || nManualPruneHeight > 0) && !fReindex) { if (nManualPruneHeight > 0) { FindFilesToPruneManual(setFilesToPrune, nManualPruneHeight); } else { FindFilesToPrune(setFilesToPrune, chainparams.PruneAfterHeight()); fCheckForPruning = false; } if (!setFilesToPrune.empty()) { fFlushForPrune = true; if (!fHavePruned) { pblocktree->WriteFlag("prunedblockfiles", true); fHavePruned = true; } } } int64_t nNow = GetTimeMicros(); // Avoid writing/flushing immediately after startup. if (nLastWrite == 0) { nLastWrite = nNow; } if (nLastFlush == 0) { nLastFlush = nNow; } int64_t nMempoolSizeMax = gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000; int64_t cacheSize = pcoinsTip->DynamicMemoryUsage(); int64_t nTotalSpace = nCoinCacheUsage + std::max<int64_t>(nMempoolSizeMax - nMempoolUsage, 0); // The cache is large and we're within 10% and 10 MiB of the limit, // but we have time now (not in the middle of a block processing). bool fCacheLarge = mode == FlushStateMode::PERIODIC && cacheSize > std::max((9 * nTotalSpace) / 10, nTotalSpace - MAX_BLOCK_COINSDB_USAGE * 1024 * 1024); // The cache is over the limit, we have to write now. bool fCacheCritical = mode == FlushStateMode::IF_NEEDED && cacheSize > nTotalSpace; // It's been a while since we wrote the block index to disk. Do this // frequently, so we don't need to redownload after a crash. bool fPeriodicWrite = mode == FlushStateMode::PERIODIC && nNow > nLastWrite + (int64_t)DATABASE_WRITE_INTERVAL * 1000000; // It's been very long since we flushed the cache. Do this // infrequently, to optimize cache usage. bool fPeriodicFlush = mode == FlushStateMode::PERIODIC && nNow > nLastFlush + (int64_t)DATABASE_FLUSH_INTERVAL * 1000000; // Combine all conditions that result in a full cache flush. fDoFullFlush = (mode == FlushStateMode::ALWAYS) || fCacheLarge || fCacheCritical || fPeriodicFlush || fFlushForPrune; // Write blocks and block index to disk. if (fDoFullFlush || fPeriodicWrite) { // Depend on nMinDiskSpace to ensure we can write block index if (!CheckDiskSpace(GetBlocksDir())) { return AbortNode(state, "Disk space is low!", _("Error: Disk space is low!")); } // First make sure all block and undo data is flushed to disk. FlushBlockFile(); // Then update all block file information (which may refer to // block and undo files). { std::vector<std::pair<int, const CBlockFileInfo *>> vFiles; vFiles.reserve(setDirtyFileInfo.size()); for (int i : setDirtyFileInfo) { vFiles.push_back(std::make_pair(i, &vinfoBlockFile[i])); } setDirtyFileInfo.clear(); std::vector<const CBlockIndex *> vBlocks; vBlocks.reserve(setDirtyBlockIndex.size()); for (const CBlockIndex *cbi : setDirtyBlockIndex) { vBlocks.push_back(cbi); } setDirtyBlockIndex.clear(); if (!pblocktree->WriteBatchSync(vFiles, nLastBlockFile, vBlocks)) { return AbortNode( state, "Failed to write to block index database"); } } // Finally remove any pruned files if (fFlushForPrune) { UnlinkPrunedFiles(setFilesToPrune); } nLastWrite = nNow; } // Flush best chain related state. This can only be done if the // blocks / block index write was also done. if (fDoFullFlush && !pcoinsTip->GetBestBlock().IsNull()) { // Typical Coin structures on disk are around 48 bytes in size. // Pushing a new one to the database can cause it to be written // twice (once in the log, and once in the tables). This is // already an overestimation, as most will delete an existing // entry or overwrite one. Still, use a conservative safety // factor of 2. if (!CheckDiskSpace(GetDataDir(), 48 * 2 * 2 * pcoinsTip->GetCacheSize())) { return AbortNode(state, "Disk space is low!", _("Error: Disk space is low!")); } // Flush the chainstate (which may refer to block index // entries). if (!pcoinsTip->Flush()) { return AbortNode(state, "Failed to write to coin database"); } nLastFlush = nNow; full_flush_completed = true; } } if (full_flush_completed) { // Update best block in wallet (so we can detect restored wallets). GetMainSignals().ChainStateFlushed(chainActive.GetLocator()); } } catch (const std::runtime_error &e) { return AbortNode(state, std::string("System error while flushing: ") + e.what()); } return true; } void FlushStateToDisk() { CValidationState state; const CChainParams &chainparams = Params(); if (!FlushStateToDisk(chainparams, state, FlushStateMode::ALWAYS)) { LogPrintf("%s: failed to flush state (%s)\n", __func__, FormatStateMessage(state)); } } void PruneAndFlush() { CValidationState state; fCheckForPruning = true; const CChainParams &chainparams = Params(); if (!FlushStateToDisk(chainparams, state, FlushStateMode::NONE)) { LogPrintf("%s: failed to flush state (%s)\n", __func__, FormatStateMessage(state)); } } /** Check warning conditions and do some notifications on new chain tip set. */ static void UpdateTip(const Config &config, CBlockIndex *pindexNew) { // New best block g_mempool.AddTransactionsUpdated(1); { LOCK(g_best_block_mutex); g_best_block = pindexNew->GetBlockHash(); g_best_block_cv.notify_all(); } LogPrintf( "%s: new best=%s height=%d version=0x%08x log2_work=%.8g tx=%lu " "date='%s' progress=%f cache=%.1fMiB(%utxo)\n", __func__, pindexNew->GetBlockHash().ToString(), pindexNew->nHeight, pindexNew->nVersion, log(pindexNew->nChainWork.getdouble()) / log(2.0), (unsigned long)pindexNew->nChainTx, FormatISO8601DateTime(pindexNew->GetBlockTime()), GuessVerificationProgress(config.GetChainParams().TxData(), pindexNew), pcoinsTip->DynamicMemoryUsage() * (1.0 / (1 << 20)), pcoinsTip->GetCacheSize()); } /** * Disconnect chainActive's tip. * After calling, the mempool will be in an inconsistent state, with * transactions from disconnected blocks being added to disconnectpool. You * should make the mempool consistent again by calling updateMempoolForReorg. * with cs_main held. * * If disconnectpool is nullptr, then no disconnected transactions are added to * disconnectpool (note that the caller is responsible for mempool consistency * in any case). */ bool CChainState::DisconnectTip(const Config &config, CValidationState &state, DisconnectedBlockTransactions *disconnectpool) { AssertLockHeld(cs_main); CBlockIndex *pindexDelete = chainActive.Tip(); const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); assert(pindexDelete); // Read block from disk. std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>(); CBlock &block = *pblock; if (!ReadBlockFromDisk(block, pindexDelete, consensusParams)) { return AbortNode(state, "Failed to read block"); } // Apply the block atomically to the chain state. int64_t nStart = GetTimeMicros(); { CCoinsViewCache view(pcoinsTip.get()); assert(view.GetBestBlock() == pindexDelete->GetBlockHash()); if (DisconnectBlock(block, pindexDelete, view) != DISCONNECT_OK) { return error("DisconnectTip(): DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString()); } bool flushed = view.Flush(); assert(flushed); } LogPrint(BCLog::BENCH, "- Disconnect block: %.2fms\n", (GetTimeMicros() - nStart) * MILLI); // Write the chain state to disk, if necessary. if (!FlushStateToDisk(config.GetChainParams(), state, FlushStateMode::IF_NEEDED)) { return false; } // If this block is deactivating a fork, we move all mempool transactions // in front of disconnectpool for reprocessing in a future // updateMempoolForReorg call if (pindexDelete->pprev != nullptr && GetNextBlockScriptFlags(consensusParams, pindexDelete) != GetNextBlockScriptFlags(consensusParams, pindexDelete->pprev)) { LogPrint(BCLog::MEMPOOL, "Disconnecting mempool due to rewind of upgrade block\n"); if (disconnectpool) { disconnectpool->importMempool(g_mempool); } g_mempool.clear(); } if (disconnectpool) { disconnectpool->addForBlock(block.vtx); } // If the tip is finalized, then undo it. if (pindexFinalized == pindexDelete) { pindexFinalized = pindexDelete->pprev; } chainActive.SetTip(pindexDelete->pprev); // Update chainActive and related variables. UpdateTip(config, pindexDelete->pprev); // Let wallets know transactions went from 1-confirmed to // 0-confirmed or conflicted: GetMainSignals().BlockDisconnected(pblock); return true; } static int64_t nTimeReadFromDisk = 0; static int64_t nTimeConnectTotal = 0; static int64_t nTimeFlush = 0; static int64_t nTimeChainState = 0; static int64_t nTimePostConnect = 0; struct PerBlockConnectTrace { CBlockIndex *pindex = nullptr; std::shared_ptr<const CBlock> pblock; std::shared_ptr<std::vector<CTransactionRef>> conflictedTxs; PerBlockConnectTrace() : conflictedTxs(std::make_shared<std::vector<CTransactionRef>>()) {} }; /** * Used to track blocks whose transactions were applied to the UTXO state as a * part of a single ActivateBestChainStep call. * * This class also tracks transactions that are removed from the mempool as * conflicts (per block) and can be used to pass all those transactions through * SyncTransaction. * * This class assumes (and asserts) that the conflicted transactions for a given * block are added via mempool callbacks prior to the BlockConnected() * associated with those transactions. If any transactions are marked * conflicted, it is assumed that an associated block will always be added. * * This class is single-use, once you call GetBlocksConnected() you have to * throw it away and make a new one. */ class ConnectTrace { private: std::vector<PerBlockConnectTrace> blocksConnected; CTxMemPool &pool; boost::signals2::scoped_connection m_connNotifyEntryRemoved; public: explicit ConnectTrace(CTxMemPool &_pool) : blocksConnected(1), pool(_pool) { m_connNotifyEntryRemoved = pool.NotifyEntryRemoved.connect( std::bind(&ConnectTrace::NotifyEntryRemoved, this, std::placeholders::_1, std::placeholders::_2)); } void BlockConnected(CBlockIndex *pindex, std::shared_ptr<const CBlock> pblock) { assert(!blocksConnected.back().pindex); assert(pindex); assert(pblock); blocksConnected.back().pindex = pindex; blocksConnected.back().pblock = std::move(pblock); blocksConnected.emplace_back(); } std::vector<PerBlockConnectTrace> &GetBlocksConnected() { // We always keep one extra block at the end of our list because blocks // are added after all the conflicted transactions have been filled in. // Thus, the last entry should always be an empty one waiting for the // transactions from the next block. We pop the last entry here to make // sure the list we return is sane. assert(!blocksConnected.back().pindex); assert(blocksConnected.back().conflictedTxs->empty()); blocksConnected.pop_back(); return blocksConnected; } void NotifyEntryRemoved(CTransactionRef txRemoved, MemPoolRemovalReason reason) { assert(!blocksConnected.back().pindex); if (reason == MemPoolRemovalReason::CONFLICT) { blocksConnected.back().conflictedTxs->emplace_back( std::move(txRemoved)); } } }; static bool FinalizeBlockInternal(const Config &config, CValidationState &state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); if (pindex->nStatus.isInvalid()) { // We try to finalize an invalid block. return state.DoS(100, error("%s: Trying to finalize invalid block %s", __func__, pindex->GetBlockHash().ToString()), REJECT_INVALID, "finalize-invalid-block"); } // Check that the request is consistent with current finalization. if (pindexFinalized && !AreOnTheSameFork(pindex, pindexFinalized)) { return state.DoS( 20, error("%s: Trying to finalize block %s which conflicts " "with already finalized block", __func__, pindex->GetBlockHash().ToString()), REJECT_AGAINST_FINALIZED, "bad-fork-prior-finalized"); } if (IsBlockFinalized(pindex)) { // The block is already finalized. return true; } // We have a new block to finalize. pindexFinalized = pindex; return true; } static const CBlockIndex *FindBlockToFinalize(const Config &config, CBlockIndex *pindexNew) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); const int32_t maxreorgdepth = gArgs.GetArg("-maxreorgdepth", DEFAULT_MAX_REORG_DEPTH); const int64_t finalizationdelay = gArgs.GetArg("-finalizationdelay", DEFAULT_MIN_FINALIZATION_DELAY); // Find our candidate. // If maxreorgdepth is < 0 pindex will be null and auto finalization // disabled const CBlockIndex *pindex = pindexNew->GetAncestor(pindexNew->nHeight - maxreorgdepth); int64_t now = GetTime(); // If the finalization delay is not expired since the startup time, // finalization should be avoided. Header receive time is not saved to disk // and so cannot be anterior to startup time. if (now < (GetStartupTime() + finalizationdelay)) { return nullptr; } // While our candidate is not eligible (finalization delay not expired), try // the previous one. while (pindex && (pindex != pindexFinalized)) { // Check that the block to finalize is known for a long enough time. // This test will ensure that an attacker could not cause a block to // finalize by forking the chain with a depth > maxreorgdepth. // If the block is loaded from disk, header receive time is 0 and the // block will be finalized. This is safe because the delay since the // node startup is already expired. auto headerReceivedTime = pindex->GetHeaderReceivedTime(); // If finalization delay is <= 0, finalization always occurs immediately if (now >= (headerReceivedTime + finalizationdelay)) { return pindex; } pindex = pindex->pprev; } return nullptr; } /** * Connect a new block to chainActive. pblock is either nullptr or a pointer to * a CBlock corresponding to pindexNew, to bypass loading it again from disk. * * The block is always added to connectTrace (either after loading from disk or * by copying pblock) - if that is not intended, care must be taken to remove * the last entry in blocksConnected in case of failure. */ bool CChainState::ConnectTip(const Config &config, CValidationState &state, CBlockIndex *pindexNew, const std::shared_ptr<const CBlock> &pblock, ConnectTrace &connectTrace, DisconnectedBlockTransactions &disconnectpool) { AssertLockHeld(cs_main); const CChainParams ¶ms = config.GetChainParams(); const Consensus::Params &consensusParams = params.GetConsensus(); assert(pindexNew->pprev == chainActive.Tip()); // Read block from disk. int64_t nTime1 = GetTimeMicros(); std::shared_ptr<const CBlock> pthisBlock; if (!pblock) { std::shared_ptr<CBlock> pblockNew = std::make_shared<CBlock>(); if (!ReadBlockFromDisk(*pblockNew, pindexNew, consensusParams)) { return AbortNode(state, "Failed to read block"); } pthisBlock = pblockNew; } else { pthisBlock = pblock; } const CBlock &blockConnecting = *pthisBlock; // Apply the block atomically to the chain state. int64_t nTime2 = GetTimeMicros(); nTimeReadFromDisk += nTime2 - nTime1; int64_t nTime3; LogPrint(BCLog::BENCH, " - Load block from disk: %.2fms [%.2fs]\n", (nTime2 - nTime1) * MILLI, nTimeReadFromDisk * MICRO); { CCoinsViewCache view(pcoinsTip.get()); bool rv = ConnectBlock(blockConnecting, state, pindexNew, view, params, BlockValidationOptions(config)); GetMainSignals().BlockChecked(blockConnecting, state); if (!rv) { if (state.IsInvalid()) { InvalidBlockFound(pindexNew, state); } return error("ConnectTip(): ConnectBlock %s failed (%s)", pindexNew->GetBlockHash().ToString(), FormatStateMessage(state)); } // Update the finalized block. const CBlockIndex *pindexToFinalize = FindBlockToFinalize(config, pindexNew); if (pindexToFinalize && !FinalizeBlockInternal(config, state, pindexToFinalize)) { state.SetCorruptionPossible(); return error("ConnectTip(): FinalizeBlock %s failed (%s)", pindexNew->GetBlockHash().ToString(), FormatStateMessage(state)); } nTime3 = GetTimeMicros(); nTimeConnectTotal += nTime3 - nTime2; LogPrint(BCLog::BENCH, " - Connect total: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime3 - nTime2) * MILLI, nTimeConnectTotal * MICRO, nTimeConnectTotal * MILLI / nBlocksTotal); bool flushed = view.Flush(); assert(flushed); } int64_t nTime4 = GetTimeMicros(); nTimeFlush += nTime4 - nTime3; LogPrint(BCLog::BENCH, " - Flush: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime4 - nTime3) * MILLI, nTimeFlush * MICRO, nTimeFlush * MILLI / nBlocksTotal); // Write the chain state to disk, if necessary. if (!FlushStateToDisk(config.GetChainParams(), state, FlushStateMode::IF_NEEDED)) { return false; } int64_t nTime5 = GetTimeMicros(); nTimeChainState += nTime5 - nTime4; LogPrint(BCLog::BENCH, " - Writing chainstate: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime5 - nTime4) * MILLI, nTimeChainState * MICRO, nTimeChainState * MILLI / nBlocksTotal); // Remove conflicting transactions from the mempool.; g_mempool.removeForBlock(blockConnecting.vtx, pindexNew->nHeight); disconnectpool.removeForBlock(blockConnecting.vtx); // If this block is activating a fork, we move all mempool transactions // in front of disconnectpool for reprocessing in a future // updateMempoolForReorg call if (pindexNew->pprev != nullptr && GetNextBlockScriptFlags(consensusParams, pindexNew) != GetNextBlockScriptFlags(consensusParams, pindexNew->pprev)) { LogPrint(BCLog::MEMPOOL, "Disconnecting mempool due to acceptance of upgrade block\n"); disconnectpool.importMempool(g_mempool); } // Update chainActive & related variables. chainActive.SetTip(pindexNew); UpdateTip(config, pindexNew); int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5; nTimeTotal += nTime6 - nTime1; LogPrint(BCLog::BENCH, " - Connect postprocess: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime6 - nTime5) * MILLI, nTimePostConnect * MICRO, nTimePostConnect * MILLI / nBlocksTotal); LogPrint(BCLog::BENCH, "- Connect block: %.2fms [%.2fs (%.2fms/blk)]\n", (nTime6 - nTime1) * MILLI, nTimeTotal * MICRO, nTimeTotal * MILLI / nBlocksTotal); connectTrace.BlockConnected(pindexNew, std::move(pthisBlock)); return true; } /** * Return the tip of the chain with the most work in it, that isn't known to be * invalid (it's however far from certain to be valid). */ CBlockIndex *CChainState::FindMostWorkChain() { AssertLockHeld(cs_main); do { CBlockIndex *pindexNew = nullptr; // Find the best candidate header. { std::set<CBlockIndex *, CBlockIndexWorkComparator>::reverse_iterator it = setBlockIndexCandidates.rbegin(); if (it == setBlockIndexCandidates.rend()) { return nullptr; } pindexNew = *it; } // If this block will cause a finalized block to be reorged, then we // mark it as invalid. if (pindexFinalized && !AreOnTheSameFork(pindexNew, pindexFinalized)) { LogPrintf("Mark block %s invalid because it forks prior to the " "finalization point %d.\n", pindexNew->GetBlockHash().ToString(), pindexFinalized->nHeight); pindexNew->nStatus = pindexNew->nStatus.withFailed(); InvalidChainFound(pindexNew); } const CBlockIndex *pindexFork = chainActive.FindFork(pindexNew); // Check whether all blocks on the path between the currently active // chain and the candidate are valid. Just going until the active chain // is an optimization, as we know all blocks in it are valid already. CBlockIndex *pindexTest = pindexNew; bool hasValidAncestor = true; while (hasValidAncestor && pindexTest && pindexTest != pindexFork) { assert(pindexTest->HaveTxsDownloaded() || pindexTest->nHeight == 0); // If this is a parked chain, but it has enough PoW, clear the park // state. bool fParkedChain = pindexTest->nStatus.isOnParkedChain(); if (fParkedChain && gArgs.GetBoolArg("-automaticunparking", true)) { const CBlockIndex *pindexTip = chainActive.Tip(); // During initialization, pindexTip and/or pindexFork may be // null. In this case, we just ignore the fact that the chain is // parked. if (!pindexTip || !pindexFork) { UnparkBlock(pindexTest); continue; } // A parked chain can be unparked if it has twice as much PoW // accumulated as the main chain has since the fork block. CBlockIndex const *pindexExtraPow = pindexTip; arith_uint256 requiredWork = pindexTip->nChainWork; switch (pindexTip->nHeight - pindexFork->nHeight) { // Limit the penality for depth 1, 2 and 3 to half a block // worth of work to ensure we don't fork accidentally. case 3: case 2: pindexExtraPow = pindexExtraPow->pprev; // FALLTHROUGH case 1: { const arith_uint256 deltaWork = pindexExtraPow->nChainWork - pindexFork->nChainWork; requiredWork += (deltaWork >> 1); break; } default: requiredWork += pindexExtraPow->nChainWork - pindexFork->nChainWork; break; } if (pindexNew->nChainWork > requiredWork) { // We have enough, clear the parked state. LogPrintf("Unpark chain up to block %s as it has " "accumulated enough PoW.\n", pindexNew->GetBlockHash().ToString()); fParkedChain = false; UnparkBlock(pindexTest); } } // Pruned nodes may have entries in setBlockIndexCandidates for // which block files have been deleted. Remove those as candidates // for the most work chain if we come across them; we can't switch // to a chain unless we have all the non-active-chain parent blocks. bool fInvalidChain = pindexTest->nStatus.isInvalid(); bool fMissingData = !pindexTest->nStatus.hasData(); if (!(fInvalidChain || fParkedChain || fMissingData)) { // The current block is acceptable, move to the parent, up to // the fork point. pindexTest = pindexTest->pprev; continue; } // Candidate chain is not usable (either invalid or parked or // missing data) hasValidAncestor = false; setBlockIndexCandidates.erase(pindexTest); if (fInvalidChain && (pindexBestInvalid == nullptr || pindexNew->nChainWork > pindexBestInvalid->nChainWork)) { pindexBestInvalid = pindexNew; } if (fParkedChain && (pindexBestParked == nullptr || pindexNew->nChainWork > pindexBestParked->nChainWork)) { pindexBestParked = pindexNew; } LogPrintf("Considered switching to better tip %s but that chain " "contains a%s%s%s block.\n", pindexNew->GetBlockHash().ToString(), fInvalidChain ? "n invalid" : "", fParkedChain ? " parked" : "", fMissingData ? " missing-data" : ""); CBlockIndex *pindexFailed = pindexNew; // Remove the entire chain from the set. while (pindexTest != pindexFailed) { if (fInvalidChain || fParkedChain) { pindexFailed->nStatus = pindexFailed->nStatus.withFailedParent(fInvalidChain) .withParkedParent(fParkedChain); } else if (fMissingData) { // If we're missing data, then add back to // mapBlocksUnlinked, so that if the block arrives in the // future we can try adding to setBlockIndexCandidates // again. mapBlocksUnlinked.insert( std::make_pair(pindexFailed->pprev, pindexFailed)); } setBlockIndexCandidates.erase(pindexFailed); pindexFailed = pindexFailed->pprev; } if (fInvalidChain || fParkedChain) { // We discovered a new chain tip that is either parked or // invalid, we may want to warn. CheckForkWarningConditionsOnNewFork(pindexNew); } } // We found a candidate that has valid ancestors. This is our guy. if (hasValidAncestor) { return pindexNew; } } while (true); } /** * Delete all entries in setBlockIndexCandidates that are worse than the current * tip. */ void CChainState::PruneBlockIndexCandidates() { // Note that we can't delete the current block itself, as we may need to // return to it later in case a reorganization to a better block fails. auto it = setBlockIndexCandidates.begin(); while (it != setBlockIndexCandidates.end() && setBlockIndexCandidates.value_comp()(*it, chainActive.Tip())) { setBlockIndexCandidates.erase(it++); } // Either the current tip or a successor of it we're working towards is left // in setBlockIndexCandidates. assert(!setBlockIndexCandidates.empty()); } /** * Try to make some progress towards making pindexMostWork the active block. * pblock is either nullptr or a pointer to a CBlock corresponding to * pindexMostWork. */ bool CChainState::ActivateBestChainStep( const Config &config, CValidationState &state, CBlockIndex *pindexMostWork, const std::shared_ptr<const CBlock> &pblock, bool &fInvalidFound, ConnectTrace &connectTrace) { AssertLockHeld(cs_main); const CBlockIndex *pindexOldTip = chainActive.Tip(); const CBlockIndex *pindexFork = chainActive.FindFork(pindexMostWork); // Disconnect active blocks which are no longer in the best chain. bool fBlocksDisconnected = false; DisconnectedBlockTransactions disconnectpool; while (chainActive.Tip() && chainActive.Tip() != pindexFork) { if (!DisconnectTip(config, state, &disconnectpool)) { // This is likely a fatal error, but keep the mempool consistent, // just in case. Only remove from the mempool in this case. disconnectpool.updateMempoolForReorg(config, false); return false; } fBlocksDisconnected = true; } // Build list of new blocks to connect. std::vector<CBlockIndex *> vpindexToConnect; bool fContinue = true; int nHeight = pindexFork ? pindexFork->nHeight : -1; while (fContinue && nHeight != pindexMostWork->nHeight) { // Don't iterate the entire list of potential improvements toward the // best tip, as we likely only need a few blocks along the way. int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight); vpindexToConnect.clear(); vpindexToConnect.reserve(nTargetHeight - nHeight); CBlockIndex *pindexIter = pindexMostWork->GetAncestor(nTargetHeight); while (pindexIter && pindexIter->nHeight != nHeight) { vpindexToConnect.push_back(pindexIter); pindexIter = pindexIter->pprev; } nHeight = nTargetHeight; // Connect new blocks. for (CBlockIndex *pindexConnect : reverse_iterate(vpindexToConnect)) { if (!ConnectTip(config, state, pindexConnect, pindexConnect == pindexMostWork ? pblock : std::shared_ptr<const CBlock>(), connectTrace, disconnectpool)) { if (state.IsInvalid()) { // The block violates a consensus rule. if (!state.CorruptionPossible()) { InvalidChainFound(vpindexToConnect.back()); } state = CValidationState(); fInvalidFound = true; fContinue = false; break; } // A system error occurred (disk space, database error, ...). // Make the mempool consistent with the current tip, just in // case any observers try to use it before shutdown. disconnectpool.updateMempoolForReorg(config, false); return false; } else { PruneBlockIndexCandidates(); if (!pindexOldTip || chainActive.Tip()->nChainWork > pindexOldTip->nChainWork) { // We're in a better position than we were. Return // temporarily to release the lock. fContinue = false; break; } } } } if (fBlocksDisconnected || !disconnectpool.isEmpty()) { // If any blocks were disconnected, we need to update the mempool even // if disconnectpool is empty. The disconnectpool may also be non-empty // if the mempool was imported due to new validation rules being in // effect. LogPrint(BCLog::MEMPOOL, "Updating mempool due to reorganization or " "rules upgrade/downgrade\n"); disconnectpool.updateMempoolForReorg(config, true); } g_mempool.check(pcoinsTip.get()); // Callbacks/notifications for a new best chain. if (fInvalidFound) { CheckForkWarningConditionsOnNewFork(pindexMostWork); } else { CheckForkWarningConditions(); } return true; } static void NotifyHeaderTip() LOCKS_EXCLUDED(cs_main) { bool fNotify = false; bool fInitialBlockDownload = false; static CBlockIndex *pindexHeaderOld = nullptr; CBlockIndex *pindexHeader = nullptr; { LOCK(cs_main); pindexHeader = pindexBestHeader; if (pindexHeader != pindexHeaderOld) { fNotify = true; fInitialBlockDownload = IsInitialBlockDownload(); pindexHeaderOld = pindexHeader; } } // Send block tip changed notifications without cs_main if (fNotify) { uiInterface.NotifyHeaderTip(fInitialBlockDownload, pindexHeader); } } /** * Make the best chain active, in multiple steps. The result is either failure * or an activated best chain. pblock is either nullptr or a pointer to a block * that is already loaded (to avoid loading it again from disk). * * ActivateBestChain is split into steps (see ActivateBestChainStep) so that * we avoid holding cs_main for an extended period of time; the length of this * call may be quite long during reindexing or a substantial reorg. */ bool CChainState::ActivateBestChain(const Config &config, CValidationState &state, std::shared_ptr<const CBlock> pblock) { // Note that while we're often called here from ProcessNewBlock, this is // far from a guarantee. Things in the P2P/RPC will often end up calling // us in the middle of ProcessNewBlock - do not assume pblock is set // sanely for performance or correctness! AssertLockNotHeld(cs_main); const CChainParams ¶ms = config.GetChainParams(); // ABC maintains a fair degree of expensive-to-calculate internal state // because this function periodically releases cs_main so that it does not // lock up other threads for too long during large connects - and to allow // for e.g. the callback queue to drain we use m_cs_chainstate to enforce // mutual exclusion so that only one caller may execute this function at a // time LOCK(m_cs_chainstate); CBlockIndex *pindexMostWork = nullptr; CBlockIndex *pindexNewTip = nullptr; int nStopAtHeight = gArgs.GetArg("-stopatheight", DEFAULT_STOPATHEIGHT); do { boost::this_thread::interruption_point(); if (GetMainSignals().CallbacksPending() > 10) { // Block until the validation queue drains. This should largely // never happen in normal operation, however may happen during // reindex, causing memory blowup if we run too far ahead. // Note that if a validationinterface callback ends up calling // ActivateBestChain this may lead to a deadlock! We should // probably have a DEBUG_LOCKORDER test for this in the future. SyncWithValidationInterfaceQueue(); } { LOCK(cs_main); CBlockIndex *starting_tip = chainActive.Tip(); bool blocks_connected = false; do { // We absolutely may not unlock cs_main until we've made forward // progress (with the exception of shutdown due to hardware // issues, low disk space, etc). // Destructed before cs_main is unlocked ConnectTrace connectTrace(g_mempool); if (pindexMostWork == nullptr) { pindexMostWork = FindMostWorkChain(); } // Whether we have anything to do at all. if (pindexMostWork == nullptr || pindexMostWork == chainActive.Tip()) { break; } bool fInvalidFound = false; std::shared_ptr<const CBlock> nullBlockPtr; if (!ActivateBestChainStep( config, state, pindexMostWork, pblock && pblock->GetHash() == pindexMostWork->GetBlockHash() ? pblock : nullBlockPtr, fInvalidFound, connectTrace)) { return false; } blocks_connected = true; if (fInvalidFound) { // Wipe cache, we may need another branch now. pindexMostWork = nullptr; } pindexNewTip = chainActive.Tip(); for (const PerBlockConnectTrace &trace : connectTrace.GetBlocksConnected()) { assert(trace.pblock && trace.pindex); GetMainSignals().BlockConnected(trace.pblock, trace.pindex, trace.conflictedTxs); } } while (!chainActive.Tip() || (starting_tip && CBlockIndexWorkComparator()( chainActive.Tip(), starting_tip))); // Check the index once we're done with the above loop, since // we're going to release cs_main soon. If the index is in a bad // state now, then it's better to know immediately rather than // randomly have it cause a problem in a race. CheckBlockIndex(params.GetConsensus()); if (!blocks_connected) { return true; } const CBlockIndex *pindexFork = chainActive.FindFork(starting_tip); bool fInitialDownload = IsInitialBlockDownload(); // Notify external listeners about the new tip. // Enqueue while holding cs_main to ensure that UpdatedBlockTip is // called in the order in which blocks are connected if (pindexFork != pindexNewTip) { // Notify ValidationInterface subscribers GetMainSignals().UpdatedBlockTip(pindexNewTip, pindexFork, fInitialDownload); // Always notify the UI if a new block tip was connected uiInterface.NotifyBlockTip(fInitialDownload, pindexNewTip); } } // When we reach this point, we switched to a new tip (stored in // pindexNewTip). if (nStopAtHeight && pindexNewTip && pindexNewTip->nHeight >= nStopAtHeight) { StartShutdown(); } // We check shutdown only after giving ActivateBestChainStep a chance to // run once so that we never shutdown before connecting the genesis // block during LoadChainTip(). Previously this caused an assert() // failure during shutdown in such cases as the UTXO DB flushing checks // that the best block hash is non-null. if (ShutdownRequested()) { break; } } while (pindexNewTip != pindexMostWork); // Write changes periodically to disk, after relay. if (!FlushStateToDisk(params, state, FlushStateMode::PERIODIC)) { return false; } return true; } bool ActivateBestChain(const Config &config, CValidationState &state, std::shared_ptr<const CBlock> pblock) { return g_chainstate.ActivateBestChain(config, state, std::move(pblock)); } bool CChainState::PreciousBlock(const Config &config, CValidationState &state, CBlockIndex *pindex) { { LOCK(cs_main); if (pindex->nChainWork < chainActive.Tip()->nChainWork) { // Nothing to do, this block is not at the tip. return true; } if (chainActive.Tip()->nChainWork > nLastPreciousChainwork) { // The chain has been extended since the last call, reset the // counter. nBlockReverseSequenceId = -1; } nLastPreciousChainwork = chainActive.Tip()->nChainWork; setBlockIndexCandidates.erase(pindex); pindex->nSequenceId = nBlockReverseSequenceId; if (nBlockReverseSequenceId > std::numeric_limits<int32_t>::min()) { // We can't keep reducing the counter if somebody really wants to // call preciousblock 2**31-1 times on the same set of tips... nBlockReverseSequenceId--; } // In case this was parked, unpark it. UnparkBlock(pindex); // Make sure it is added to the candidate list if appropriate. if (pindex->IsValid(BlockValidity::TRANSACTIONS) && pindex->HaveTxsDownloaded()) { setBlockIndexCandidates.insert(pindex); PruneBlockIndexCandidates(); } } return ActivateBestChain(config, state); } bool PreciousBlock(const Config &config, CValidationState &state, CBlockIndex *pindex) { return g_chainstate.PreciousBlock(config, state, pindex); } bool CChainState::UnwindBlock(const Config &config, CValidationState &state, CBlockIndex *pindex, bool invalidate) { CBlockIndex *to_mark_failed_or_parked = pindex; bool pindex_was_in_chain = false; int disconnected = 0; // Disconnect (descendants of) pindex, and mark them invalid. while (true) { if (ShutdownRequested()) { break; } LOCK(cs_main); if (!chainActive.Contains(pindex)) { break; } pindex_was_in_chain = true; CBlockIndex *invalid_walk_tip = chainActive.Tip(); // ActivateBestChain considers blocks already in chainActive // unconditionally valid already, so force disconnect away from it. DisconnectedBlockTransactions disconnectpool; bool ret = DisconnectTip(config, state, &disconnectpool); // DisconnectTip will add transactions to disconnectpool. // Adjust the mempool to be consistent with the new tip, adding // transactions back to the mempool if disconnecting was successful, // and we're not doing a very deep invalidation (in which case // keeping the mempool up to date is probably futile anyway). disconnectpool.updateMempoolForReorg( config, /* fAddToMempool = */ (++disconnected <= 10) && ret); if (!ret) { return false; } assert(invalid_walk_tip->pprev == chainActive.Tip()); // We immediately mark the disconnected blocks as invalid. // This prevents a case where pruned nodes may fail to invalidateblock // and be left unable to start as they have no tip candidates (as there // are no blocks that meet the "have data and are not invalid per // nStatus" criteria for inclusion in setBlockIndexCandidates). invalid_walk_tip->nStatus = invalidate ? invalid_walk_tip->nStatus.withFailed() : invalid_walk_tip->nStatus.withParked(); setDirtyBlockIndex.insert(invalid_walk_tip); setBlockIndexCandidates.insert(invalid_walk_tip->pprev); if (invalid_walk_tip == to_mark_failed_or_parked->pprev && (invalidate ? to_mark_failed_or_parked->nStatus.hasFailed() : to_mark_failed_or_parked->nStatus.isParked())) { // We only want to mark the last disconnected block as // Failed (or Parked); its children need to be FailedParent (or // ParkedParent) instead. to_mark_failed_or_parked->nStatus = (invalidate ? to_mark_failed_or_parked->nStatus.withFailed(false) .withFailedParent() : to_mark_failed_or_parked->nStatus.withParked(false) .withParkedParent()); setDirtyBlockIndex.insert(to_mark_failed_or_parked); } // Track the last disconnected block, so we can correct its // FailedParent (or ParkedParent) status in future iterations, or, if // it's the last one, call InvalidChainFound on it. to_mark_failed_or_parked = invalid_walk_tip; } { LOCK(cs_main); if (chainActive.Contains(to_mark_failed_or_parked)) { // If the to-be-marked invalid block is in the active chain, // something is interfering and we can't proceed. return false; } // Mark pindex (or the last disconnected block) as invalid (or parked), // even when it never was in the main chain. to_mark_failed_or_parked->nStatus = invalidate ? to_mark_failed_or_parked->nStatus.withFailed() : to_mark_failed_or_parked->nStatus.withParked(); setDirtyBlockIndex.insert(to_mark_failed_or_parked); if (invalidate) { m_failed_blocks.insert(to_mark_failed_or_parked); } // The resulting new best tip may not be in setBlockIndexCandidates // anymore, so add it again. for (const std::pair<const BlockHash, CBlockIndex *> &it : mapBlockIndex) { CBlockIndex *i = it.second; if (i->IsValid(BlockValidity::TRANSACTIONS) && i->HaveTxsDownloaded() && !setBlockIndexCandidates.value_comp()(i, chainActive.Tip())) { setBlockIndexCandidates.insert(i); } } if (invalidate) { InvalidChainFound(to_mark_failed_or_parked); } } // Only notify about a new block tip if the active chain was modified. if (pindex_was_in_chain) { uiInterface.NotifyBlockTip(IsInitialBlockDownload(), to_mark_failed_or_parked->pprev); } return true; } bool FinalizeBlockAndInvalidate(const Config &config, CValidationState &state, CBlockIndex *pindex) { AssertLockHeld(cs_main); if (!FinalizeBlockInternal(config, state, pindex)) { // state is set by FinalizeBlockInternal. return false; } // We have a valid candidate, make sure it is not parked. if (pindex->nStatus.isOnParkedChain()) { UnparkBlock(pindex); } // If the finalized block is not on the active chain, we may need to rewind. if (!chainActive.Contains(pindex)) { const CBlockIndex *pindexFork = chainActive.FindFork(pindex); CBlockIndex *pindexToInvalidate = chainActive.Next(pindexFork); if (pindexToInvalidate) { return InvalidateBlock(config, state, pindexToInvalidate); } } return true; } bool InvalidateBlock(const Config &config, CValidationState &state, CBlockIndex *pindex) { return g_chainstate.UnwindBlock(config, state, pindex, true); } bool ParkBlock(const Config &config, CValidationState &state, CBlockIndex *pindex) { return g_chainstate.UnwindBlock(config, state, pindex, false); } template <typename F> void CChainState::UpdateFlagsForBlock(CBlockIndex *pindexBase, CBlockIndex *pindex, F f) { BlockStatus newStatus = f(pindex->nStatus); if (pindex->nStatus != newStatus && (!pindexBase || pindex->GetAncestor(pindexBase->nHeight) == pindexBase)) { pindex->nStatus = newStatus; setDirtyBlockIndex.insert(pindex); if (newStatus.isValid()) { m_failed_blocks.erase(pindex); } if (pindex->IsValid(BlockValidity::TRANSACTIONS) && pindex->HaveTxsDownloaded() && setBlockIndexCandidates.value_comp()(chainActive.Tip(), pindex)) { setBlockIndexCandidates.insert(pindex); } } } template <typename F, typename C> void CChainState::UpdateFlags(CBlockIndex *pindex, F f, C fchild) { AssertLockHeld(cs_main); // Update the current block. UpdateFlagsForBlock(pindex, pindex, f); // Update the flags from this block and all its descendants. BlockMap::iterator it = mapBlockIndex.begin(); while (it != mapBlockIndex.end()) { UpdateFlagsForBlock(pindex, it->second, fchild); it++; } // Update the flags from all ancestors too. while (pindex != nullptr) { UpdateFlagsForBlock(nullptr, pindex, f); pindex = pindex->pprev; } } template <typename F> void CChainState::UpdateFlags(CBlockIndex *pindex, F f) { // Handy shorthand. UpdateFlags(pindex, f, f); } void CChainState::ResetBlockFailureFlags(CBlockIndex *pindex) { AssertLockHeld(cs_main); if (pindexBestInvalid && (pindexBestInvalid->GetAncestor(pindex->nHeight) == pindex || pindex->GetAncestor(pindexBestInvalid->nHeight) == pindexBestInvalid)) { // Reset the invalid block marker if it is about to be cleared. pindexBestInvalid = nullptr; } // In case we are reconsidering something before the finalization point, // move the finalization point to the last common ancestor. if (pindexFinalized) { pindexFinalized = LastCommonAncestor(pindex, pindexFinalized); } UpdateFlags(pindex, [](const BlockStatus status) { return status.withClearedFailureFlags(); }); } void ResetBlockFailureFlags(CBlockIndex *pindex) { return g_chainstate.ResetBlockFailureFlags(pindex); } void CChainState::UnparkBlockImpl(CBlockIndex *pindex, bool fClearChildren) { AssertLockHeld(cs_main); if (pindexBestParked && (pindexBestParked->GetAncestor(pindex->nHeight) == pindex || pindex->GetAncestor(pindexBestParked->nHeight) == pindexBestParked)) { // Reset the parked block marker if it is about to be cleared. pindexBestParked = nullptr; } UpdateFlags( pindex, [](const BlockStatus status) { return status.withClearedParkedFlags(); }, [fClearChildren](const BlockStatus status) { return fClearChildren ? status.withClearedParkedFlags() : status.withParkedParent(false); }); } void UnparkBlockAndChildren(CBlockIndex *pindex) { return g_chainstate.UnparkBlockImpl(pindex, true); } void UnparkBlock(CBlockIndex *pindex) { return g_chainstate.UnparkBlockImpl(pindex, false); } const CBlockIndex *GetFinalizedBlock() { AssertLockHeld(cs_main); return pindexFinalized; } bool IsBlockFinalized(const CBlockIndex *pindex) { AssertLockHeld(cs_main); return pindexFinalized && pindexFinalized->GetAncestor(pindex->nHeight) == pindex; } CBlockIndex *CChainState::AddToBlockIndex(const CBlockHeader &block) { AssertLockHeld(cs_main); // Check for duplicate BlockHash hash = block.GetHash(); BlockMap::iterator it = mapBlockIndex.find(hash); if (it != mapBlockIndex.end()) { return it->second; } // Construct new block index object CBlockIndex *pindexNew = new CBlockIndex(block); // We assign the sequence id to blocks only when the full data is available, // to avoid miners withholding blocks but broadcasting headers, to get a // competitive advantage. pindexNew->nSequenceId = 0; BlockMap::iterator mi = mapBlockIndex.insert(std::make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); BlockMap::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock); if (miPrev != mapBlockIndex.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; pindexNew->BuildSkip(); } pindexNew->nTimeReceived = GetTime(); pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime); pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew); pindexNew->RaiseValidity(BlockValidity::TREE); if (pindexBestHeader == nullptr || pindexBestHeader->nChainWork < pindexNew->nChainWork) { pindexBestHeader = pindexNew; } setDirtyBlockIndex.insert(pindexNew); return pindexNew; } /** * Mark a block as having its data received and checked (up to * BLOCK_VALID_TRANSACTIONS). */ void CChainState::ReceivedBlockTransactions(const CBlock &block, CBlockIndex *pindexNew, const FlatFilePos &pos) { pindexNew->nTx = block.vtx.size(); pindexNew->nChainTx = 0; pindexNew->nFile = pos.nFile; pindexNew->nDataPos = pos.nPos; pindexNew->nUndoPos = 0; pindexNew->nStatus = pindexNew->nStatus.withData(); pindexNew->RaiseValidity(BlockValidity::TRANSACTIONS); setDirtyBlockIndex.insert(pindexNew); if (pindexNew->pprev == nullptr || pindexNew->pprev->HaveTxsDownloaded()) { // If pindexNew is the genesis block or all parents are // BLOCK_VALID_TRANSACTIONS. std::deque<CBlockIndex *> queue; queue.push_back(pindexNew); // Recursively process any descendant blocks that now may be eligible to // be connected. while (!queue.empty()) { CBlockIndex *pindex = queue.front(); queue.pop_front(); pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx; if (pindex->nSequenceId == 0) { // We assign a sequence is when transaction are received to // prevent a miner from being able to broadcast a block but not // its content. However, a sequence id may have been set // manually, for instance via PreciousBlock, in which case, we // don't need to assign one. pindex->nSequenceId = nBlockSequenceId++; } if (chainActive.Tip() == nullptr || !setBlockIndexCandidates.value_comp()(pindex, chainActive.Tip())) { setBlockIndexCandidates.insert(pindex); } std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator, std::multimap<CBlockIndex *, CBlockIndex *>::iterator> range = mapBlocksUnlinked.equal_range(pindex); while (range.first != range.second) { std::multimap<CBlockIndex *, CBlockIndex *>::iterator it = range.first; queue.push_back(it->second); range.first++; mapBlocksUnlinked.erase(it); } } } else if (pindexNew->pprev && pindexNew->pprev->IsValid(BlockValidity::TREE)) { mapBlocksUnlinked.insert(std::make_pair(pindexNew->pprev, pindexNew)); } } static bool FindBlockPos(FlatFilePos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false) { LOCK(cs_LastBlockFile); unsigned int nFile = fKnown ? pos.nFile : nLastBlockFile; if (vinfoBlockFile.size() <= nFile) { vinfoBlockFile.resize(nFile + 1); } if (!fKnown) { while (vinfoBlockFile[nFile].nSize + nAddSize >= MAX_BLOCKFILE_SIZE) { nFile++; if (vinfoBlockFile.size() <= nFile) { vinfoBlockFile.resize(nFile + 1); } } pos.nFile = nFile; pos.nPos = vinfoBlockFile[nFile].nSize; } if ((int)nFile != nLastBlockFile) { if (!fKnown) { LogPrintf("Leaving block file %i: %s\n", nLastBlockFile, vinfoBlockFile[nLastBlockFile].ToString()); } FlushBlockFile(!fKnown); nLastBlockFile = nFile; } vinfoBlockFile[nFile].AddBlock(nHeight, nTime); if (fKnown) { vinfoBlockFile[nFile].nSize = std::max(pos.nPos + nAddSize, vinfoBlockFile[nFile].nSize); } else { vinfoBlockFile[nFile].nSize += nAddSize; } if (!fKnown) { bool out_of_space; size_t bytes_allocated = BlockFileSeq().Allocate(pos, nAddSize, out_of_space); if (out_of_space) { return AbortNode("Disk space is low!", _("Error: Disk space is low!")); } if (bytes_allocated != 0 && fPruneMode) { fCheckForPruning = true; } } setDirtyFileInfo.insert(nFile); return true; } static bool FindUndoPos(CValidationState &state, int nFile, FlatFilePos &pos, unsigned int nAddSize) { pos.nFile = nFile; LOCK(cs_LastBlockFile); pos.nPos = vinfoBlockFile[nFile].nUndoSize; vinfoBlockFile[nFile].nUndoSize += nAddSize; setDirtyFileInfo.insert(nFile); bool out_of_space; size_t bytes_allocated = UndoFileSeq().Allocate(pos, nAddSize, out_of_space); if (out_of_space) { return AbortNode(state, "Disk space is low!", _("Error: Disk space is low!")); } if (bytes_allocated != 0 && fPruneMode) { fCheckForPruning = true; } return true; } /** * Return true if the provided block header is valid. * Only verify PoW if blockValidationOptions is configured to do so. * This allows validation of headers on which the PoW hasn't been done. * For example: to validate template handed to mining software. * Do not call this for any check that depends on the context. * For context-dependent calls, see ContextualCheckBlockHeader. */ static bool CheckBlockHeader(const CBlockHeader &block, CValidationState &state, const Consensus::Params ¶ms, BlockValidationOptions validationOptions) { // Check proof of work matches claimed amount if (validationOptions.shouldValidatePoW() && !CheckProofOfWork(block.GetHash(), block.nBits, params)) { return state.DoS(50, false, REJECT_INVALID, "high-hash", false, "proof of work failed"); } return true; } bool CheckBlock(const CBlock &block, CValidationState &state, const Consensus::Params ¶ms, BlockValidationOptions validationOptions) { // These are checks that are independent of context. if (block.fChecked) { return true; } // Check that the header is valid (particularly PoW). This is mostly // redundant with the call in AcceptBlockHeader. if (!CheckBlockHeader(block, state, params, validationOptions)) { return false; } // Check the merkle root. if (validationOptions.shouldValidateMerkleRoot()) { bool mutated; uint256 hashMerkleRoot2 = BlockMerkleRoot(block, &mutated); if (block.hashMerkleRoot != hashMerkleRoot2) { return state.DoS(100, false, REJECT_INVALID, "bad-txnmrklroot", true, "hashMerkleRoot mismatch"); } // Check for merkle tree malleability (CVE-2012-2459): repeating // sequences of transactions in a block without affecting the merkle // root of a block, while still invalidating it. if (mutated) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-duplicate", true, "duplicate transaction"); } } // All potential-corruption validation must be done before we do any // transaction validation, as otherwise we may mark the header as invalid // because we receive the wrong transactions for it. // First transaction must be coinbase. if (block.vtx.empty()) { return state.DoS(100, false, REJECT_INVALID, "bad-cb-missing", false, "first tx is not coinbase"); } // Size limits. auto nMaxBlockSize = validationOptions.getExcessiveBlockSize(); // Bail early if there is no way this block is of reasonable size. if ((block.vtx.size() * MIN_TRANSACTION_SIZE) > nMaxBlockSize) { return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false, "size limits failed"); } auto currentBlockSize = ::GetSerializeSize(block, PROTOCOL_VERSION); if (currentBlockSize > nMaxBlockSize) { return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false, "size limits failed"); } // And a valid coinbase. if (!CheckCoinbase(*block.vtx[0], state)) { return state.Invalid(false, state.GetRejectCode(), state.GetRejectReason(), strprintf("Coinbase check failed (txid %s) %s", block.vtx[0]->GetId().ToString(), state.GetDebugMessage())); } // Check transactions for regularity, skipping the first. Note that this // is the first time we check that all after the first are !IsCoinBase. for (size_t i = 1; i < block.vtx.size(); i++) { auto *tx = block.vtx[i].get(); if (!CheckRegularTransaction(*tx, state)) { return state.Invalid( false, state.GetRejectCode(), state.GetRejectReason(), strprintf("Transaction check failed (txid %s) %s", tx->GetId().ToString(), state.GetDebugMessage())); } } if (validationOptions.shouldValidatePoW() && validationOptions.shouldValidateMerkleRoot()) { block.fChecked = true; } return true; } /** * Context-dependent validity checks. * By "context", we mean only the previous block headers, but not the UTXO * set; UTXO-related validity checks are done in ConnectBlock(). * NOTE: This function is not currently invoked by ConnectBlock(), so we * should consider upgrade issues if we change which consensus rules are * enforced in this function (eg by adding a new consensus rule). See comment * in ConnectBlock(). * Note that -reindex-chainstate skips the validation that happens here! */ static bool ContextualCheckBlockHeader(const CChainParams ¶ms, const CBlockHeader &block, CValidationState &state, const CBlockIndex *pindexPrev, int64_t nAdjustedTime) { assert(pindexPrev != nullptr); const int nHeight = pindexPrev->nHeight + 1; // Check proof of work const Consensus::Params &consensusParams = params.GetConsensus(); if (block.nBits != GetNextWorkRequired(pindexPrev, &block, consensusParams)) { LogPrintf("bad bits after height: %d\n", pindexPrev->nHeight); return state.DoS(100, false, REJECT_INVALID, "bad-diffbits", false, "incorrect proof of work"); } // Check against checkpoints if (fCheckpointsEnabled) { const CCheckpointData &checkpoints = params.Checkpoints(); // Check that the block chain matches the known block chain up to a // checkpoint. if (!Checkpoints::CheckBlock(checkpoints, nHeight, block.GetHash())) { return state.DoS(100, error("%s: rejected by checkpoint lock-in at %d", __func__, nHeight), REJECT_CHECKPOINT, "checkpoint mismatch"); } // Don't accept any forks from the main chain prior to last checkpoint. // GetLastCheckpoint finds the last checkpoint in MapCheckpoints that's // in our MapBlockIndex. CBlockIndex *pcheckpoint = Checkpoints::GetLastCheckpoint(checkpoints); if (pcheckpoint && nHeight < pcheckpoint->nHeight) { return state.DoS( 100, error("%s: forked chain older than last checkpoint (height %d)", __func__, nHeight), REJECT_CHECKPOINT, "bad-fork-prior-to-checkpoint"); } } // Check timestamp against prev if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast()) { return state.Invalid(false, REJECT_INVALID, "time-too-old", "block's timestamp is too early"); } // Check timestamp if (block.GetBlockTime() > nAdjustedTime + MAX_FUTURE_BLOCK_TIME) { return state.Invalid(false, REJECT_INVALID, "time-too-new", "block timestamp too far in the future"); } // Reject outdated version blocks when 95% (75% on testnet) of the network // has upgraded: // check for version 2, 3 and 4 upgrades if ((block.nVersion < 2 && nHeight >= consensusParams.BIP34Height) || (block.nVersion < 3 && nHeight >= consensusParams.BIP66Height) || (block.nVersion < 4 && nHeight >= consensusParams.BIP65Height)) { return state.Invalid( false, REJECT_OBSOLETE, strprintf("bad-version(0x%08x)", block.nVersion), strprintf("rejected nVersion=0x%08x block", block.nVersion)); } return true; } bool ContextualCheckTransactionForCurrentBlock(const Consensus::Params ¶ms, const CTransaction &tx, CValidationState &state, int flags) { AssertLockHeld(cs_main); // By convention a negative value for flags indicates that the current // network-enforced consensus rules should be used. In a future soft-fork // scenario that would mean checking which rules would be enforced for the // next block and setting the appropriate flags. At the present time no // soft-forks are scheduled, so no flags are set. flags = std::max(flags, 0); // ContextualCheckTransactionForCurrentBlock() uses chainActive.Height()+1 // to evaluate nLockTime because when IsFinalTx() is called within // CBlock::AcceptBlock(), the height of the block *being* evaluated is what // is used. Thus if we want to know if a transaction can be part of the // *next* block, we need to call ContextualCheckTransaction() with one more // than chainActive.Height(). const int nBlockHeight = chainActive.Height() + 1; // BIP113 will require that time-locked transactions have nLockTime set to // less than the median time of the previous block they're contained in. // When the next block is created its previous block will be the current // chain tip, so we use that to calculate the median time passed to // ContextualCheckTransaction() if LOCKTIME_MEDIAN_TIME_PAST is set. const int64_t nMedianTimePast = chainActive.Tip() == nullptr ? 0 : chainActive.Tip()->GetMedianTimePast(); const int64_t nLockTimeCutoff = (flags & LOCKTIME_MEDIAN_TIME_PAST) ? nMedianTimePast : GetAdjustedTime(); return ContextualCheckTransaction(params, tx, state, nBlockHeight, nLockTimeCutoff, nMedianTimePast); } /** * NOTE: This function is not currently invoked by ConnectBlock(), so we * should consider upgrade issues if we change which consensus rules are * enforced in this function (eg by adding a new consensus rule). See comment * in ConnectBlock(). * Note that -reindex-chainstate skips the validation that happens here! */ static bool ContextualCheckBlock(const CBlock &block, CValidationState &state, const Consensus::Params ¶ms, const CBlockIndex *pindexPrev) { const int nHeight = pindexPrev == nullptr ? 0 : pindexPrev->nHeight + 1; // Start enforcing BIP113 (Median Time Past). int nLockTimeFlags = 0; if (nHeight >= params.CSVHeight) { assert(pindexPrev != nullptr); nLockTimeFlags |= LOCKTIME_MEDIAN_TIME_PAST; } const int64_t nMedianTimePast = pindexPrev == nullptr ? 0 : pindexPrev->GetMedianTimePast(); const int64_t nLockTimeCutoff = (nLockTimeFlags & LOCKTIME_MEDIAN_TIME_PAST) ? nMedianTimePast : block.GetBlockTime(); const bool fIsMagneticAnomalyEnabled = IsMagneticAnomalyEnabled(params, pindexPrev); // Keep track of the sigops count. uint64_t nSigOps = 0; const auto currentBlockSize = ::GetSerializeSize(block, PROTOCOL_VERSION); auto nMaxSigOpsCount = GetMaxBlockSigOpsCount(currentBlockSize); // Note that pindexPrev may be null if reindexing genesis block. const auto scriptFlags = pindexPrev ? GetNextBlockScriptFlags(params, pindexPrev) : SCRIPT_VERIFY_NONE; // Check transactions: // - canonical ordering // - ensure they are finalized // - perform a preliminary block-sigops count (they will be recounted more // strictly during ConnectBlock). // - perform a transaction-sigops check (again, a more strict check will // happen in ConnectBlock). const CTransaction *prevTx = nullptr; for (const auto &ptx : block.vtx) { const CTransaction &tx = *ptx; if (fIsMagneticAnomalyEnabled) { if (prevTx && (tx.GetId() <= prevTx->GetId())) { if (tx.GetId() == prevTx->GetId()) { return state.DoS(100, false, REJECT_INVALID, "tx-duplicate", false, strprintf("Duplicated transaction %s", tx.GetId().ToString())); } return state.DoS( 100, false, REJECT_INVALID, "tx-ordering", false, strprintf("Transaction order is invalid (%s < %s)", tx.GetId().ToString(), prevTx->GetId().ToString())); } if (prevTx || !tx.IsCoinBase()) { prevTx = &tx; } } // Count the sigops for the current transaction. If the tx or total // sigops counts are too high, then the block is invalid. const auto txSigOps = GetSigOpCountWithoutP2SH(tx, scriptFlags); if (txSigOps > MAX_TX_SIGOPS_COUNT) { return state.DoS(100, false, REJECT_INVALID, "bad-txn-sigops", false, "out-of-bounds SigOpCount"); } nSigOps += txSigOps; if (nSigOps > nMaxSigOpsCount) { return state.DoS(100, false, REJECT_INVALID, "bad-blk-sigops", false, "out-of-bounds SigOpCount"); } if (!ContextualCheckTransaction(params, tx, state, nHeight, nLockTimeCutoff, nMedianTimePast)) { // state set by ContextualCheckTransaction. return false; } } // Enforce rule that the coinbase starts with serialized block height if (nHeight >= params.BIP34Height) { CScript expect = CScript() << nHeight; if (block.vtx[0]->vin[0].scriptSig.size() < expect.size() || !std::equal(expect.begin(), expect.end(), block.vtx[0]->vin[0].scriptSig.begin())) { return state.DoS(100, false, REJECT_INVALID, "bad-cb-height", false, "block height mismatch in coinbase"); } } return true; } /** * If the provided block header is valid, add it to the block index. * * Returns true if the block is successfully added to the block index. */ bool CChainState::AcceptBlockHeader(const Config &config, const CBlockHeader &block, CValidationState &state, CBlockIndex **ppindex) { AssertLockHeld(cs_main); const CChainParams &chainparams = config.GetChainParams(); // Check for duplicate BlockHash hash = block.GetHash(); BlockMap::iterator miSelf = mapBlockIndex.find(hash); CBlockIndex *pindex = nullptr; if (hash != chainparams.GetConsensus().hashGenesisBlock) { if (miSelf != mapBlockIndex.end()) { // Block header is already known. pindex = miSelf->second; if (ppindex) { *ppindex = pindex; } if (pindex->nStatus.isInvalid()) { return state.Invalid(error("%s: block %s is marked invalid", __func__, hash.ToString()), 0, "duplicate"); } return true; } if (!CheckBlockHeader(block, state, chainparams.GetConsensus(), BlockValidationOptions(config))) { return error("%s: Consensus::CheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state)); } // Get prev block index BlockMap::iterator mi = mapBlockIndex.find(block.hashPrevBlock); if (mi == mapBlockIndex.end()) { return state.DoS(10, error("%s: prev block not found", __func__), 0, "prev-blk-not-found"); } CBlockIndex *pindexPrev = (*mi).second; assert(pindexPrev); if (pindexPrev->nStatus.isInvalid()) { return state.DoS(100, error("%s: prev block invalid", __func__), REJECT_INVALID, "bad-prevblk"); } if (!ContextualCheckBlockHeader(chainparams, block, state, pindexPrev, GetAdjustedTime())) { return error("%s: Consensus::ContextualCheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state)); } /* Determine if this block descends from any block which has been found * invalid (m_failed_blocks), then mark pindexPrev and any blocks * between them as failed. For example: * * D3 * / * B2 - C2 * / \ * A D2 - E2 - F2 * \ * B1 - C1 - D1 - E1 * * In the case that we attempted to reorg from E1 to F2, only to find * C2 to be invalid, we would mark D2, E2, and F2 as BLOCK_FAILED_CHILD * but NOT D3 (it was not in any of our candidate sets at the time). * * In any case D3 will also be marked as BLOCK_FAILED_CHILD at restart * in LoadBlockIndex. */ if (!pindexPrev->IsValid(BlockValidity::SCRIPTS)) { // The above does not mean "invalid": it checks if the previous // block hasn't been validated up to BLOCK_VALID_SCRIPTS. This is a // performance optimization, in the common case of adding a new // block to the tip, we don't need to iterate over the failed blocks // list. for (const CBlockIndex *failedit : m_failed_blocks) { if (pindexPrev->GetAncestor(failedit->nHeight) == failedit) { assert(failedit->nStatus.hasFailed()); CBlockIndex *invalid_walk = pindexPrev; while (invalid_walk != failedit) { invalid_walk->nStatus = invalid_walk->nStatus.withFailedParent(); setDirtyBlockIndex.insert(invalid_walk); invalid_walk = invalid_walk->pprev; } return state.DoS(100, error("%s: prev block invalid", __func__), REJECT_INVALID, "bad-prevblk"); } } } } if (pindex == nullptr) { pindex = AddToBlockIndex(block); } if (ppindex) { *ppindex = pindex; } CheckBlockIndex(chainparams.GetConsensus()); return true; } // Exposed wrapper for AcceptBlockHeader bool ProcessNewBlockHeaders(const Config &config, const std::vector<CBlockHeader> &headers, CValidationState &state, const CBlockIndex **ppindex, CBlockHeader *first_invalid) { if (first_invalid != nullptr) { first_invalid->SetNull(); } { LOCK(cs_main); for (const CBlockHeader &header : headers) { // Use a temp pindex instead of ppindex to avoid a const_cast CBlockIndex *pindex = nullptr; if (!g_chainstate.AcceptBlockHeader(config, header, state, &pindex)) { if (first_invalid) { *first_invalid = header; } return false; } if (ppindex) { *ppindex = pindex; } } } NotifyHeaderTip(); return true; } /** * Store block on disk. If dbp is non-nullptr, the file is known to already * reside on disk. */ static FlatFilePos SaveBlockToDisk(const CBlock &block, int nHeight, const CChainParams &chainparams, const FlatFilePos *dbp) { unsigned int nBlockSize = ::GetSerializeSize(block, CLIENT_VERSION); FlatFilePos blockPos; if (dbp != nullptr) { blockPos = *dbp; } if (!FindBlockPos(blockPos, nBlockSize + 8, nHeight, block.GetBlockTime(), dbp != nullptr)) { error("%s: FindBlockPos failed", __func__); return FlatFilePos(); } if (dbp == nullptr) { if (!WriteBlockToDisk(block, blockPos, chainparams.DiskMagic())) { AbortNode("Failed to write block"); return FlatFilePos(); } } return blockPos; } /** * Store a block on disk. * * @param[in] config The global config. * @param[in-out] pblock The block we want to accept. * @param[in] fRequested A boolean to indicate if this block was requested * from our peers. * @param[in] dbp If non-null, the disk position of the block. * @param[in-out] fNewBlock True if block was first received via this call. * @return True if the block is accepted as a valid block and written to disk. */ bool CChainState::AcceptBlock(const Config &config, const std::shared_ptr<const CBlock> &pblock, CValidationState &state, bool fRequested, const FlatFilePos *dbp, bool *fNewBlock) { AssertLockHeld(cs_main); const CBlock &block = *pblock; if (fNewBlock) { *fNewBlock = false; } CBlockIndex *pindex = nullptr; if (!AcceptBlockHeader(config, block, state, &pindex)) { return false; } // Try to process all requested blocks that we don't have, but only // process an unrequested block if it's new and has enough work to // advance our tip, and isn't too many blocks ahead. bool fAlreadyHave = pindex->nStatus.hasData(); // TODO: deal better with return value and error conditions for duplicate // and unrequested blocks. if (fAlreadyHave) { return true; } // Compare block header timestamps and received times of the block and the // chaintip. If they have the same chain height, use these diffs as a // tie-breaker, attempting to pick the more honestly-mined block. int64_t newBlockTimeDiff = std::llabs(pindex->GetReceivedTimeDiff()); int64_t chainTipTimeDiff = chainActive.Tip() ? std::llabs(chainActive.Tip()->GetReceivedTimeDiff()) : 0; bool isSameHeight = chainActive.Tip() && (pindex->nChainWork == chainActive.Tip()->nChainWork); if (isSameHeight) { LogPrintf("Chain tip timestamp-to-received-time difference: hash=%s, " "diff=%d\n", chainActive.Tip()->GetBlockHash().ToString(), chainTipTimeDiff); LogPrintf("New block timestamp-to-received-time difference: hash=%s, " "diff=%d\n", pindex->GetBlockHash().ToString(), newBlockTimeDiff); } bool fHasMoreOrSameWork = (chainActive.Tip() ? pindex->nChainWork >= chainActive.Tip()->nChainWork : true); // Blocks that are too out-of-order needlessly limit the effectiveness of // pruning, because pruning will not delete block files that contain any // blocks which are too close in height to the tip. Apply this test // regardless of whether pruning is enabled; it should generally be safe to // not process unrequested blocks. bool fTooFarAhead = (pindex->nHeight > int(chainActive.Height() + MIN_BLOCKS_TO_KEEP)); // TODO: Decouple this function from the block download logic by removing // fRequested // This requires some new chain data structure to efficiently look up if a // block is in a chain leading to a candidate for best tip, despite not // being such a candidate itself. // If we didn't ask for it: if (!fRequested) { // This is a previously-processed block that was pruned. if (pindex->nTx != 0) { return true; } // Don't process less-work chains. if (!fHasMoreOrSameWork) { return true; } // Block height is too high. if (fTooFarAhead) { return true; } // Protect against DoS attacks from low-work chains. // If our tip is behind, a peer could try to send us // low-work blocks on a fake chain that we would never // request; don't process these. if (pindex->nChainWork < nMinimumChainWork) { return true; } } const CChainParams &chainparams = config.GetChainParams(); const Consensus::Params &consensusParams = chainparams.GetConsensus(); if (!CheckBlock(block, state, consensusParams, BlockValidationOptions(config)) || !ContextualCheckBlock(block, state, consensusParams, pindex->pprev)) { if (state.IsInvalid() && !state.CorruptionPossible()) { pindex->nStatus = pindex->nStatus.withFailed(); setDirtyBlockIndex.insert(pindex); } return error("%s: %s (block %s)", __func__, FormatStateMessage(state), block.GetHash().ToString()); } // If this is a deep reorg (a regorg of more than one block), preemptively // mark the chain as parked. If it has enough work, it'll unpark // automatically. We mark the block as parked at the very last minute so we // can make sure everything is ready to be reorged if needed. if (gArgs.GetBoolArg("-parkdeepreorg", true)) { const CBlockIndex *pindexFork = chainActive.FindFork(pindex); if (pindexFork && pindexFork->nHeight + 1 < pindex->nHeight) { LogPrintf("Park block %s as it would cause a deep reorg.\n", pindex->GetBlockHash().ToString()); pindex->nStatus = pindex->nStatus.withParked(); setDirtyBlockIndex.insert(pindex); } } // Header is valid/has work and the merkle tree is good. // Relay now, but if it does not build on our best tip, let the // SendMessages loop relay it. if (!IsInitialBlockDownload() && chainActive.Tip() == pindex->pprev) { GetMainSignals().NewPoWValidBlock(pindex, pblock); } // Write block to history file if (fNewBlock) { *fNewBlock = true; } try { FlatFilePos blockPos = SaveBlockToDisk(block, pindex->nHeight, chainparams, dbp); if (blockPos.IsNull()) { state.Error(strprintf( "%s: Failed to find position to write new block to disk", __func__)); return false; } ReceivedBlockTransactions(block, pindex, blockPos); } catch (const std::runtime_error &e) { return AbortNode(state, std::string("System error: ") + e.what()); } FlushStateToDisk(chainparams, state, FlushStateMode::NONE); CheckBlockIndex(consensusParams); return true; } bool ProcessNewBlock(const Config &config, const std::shared_ptr<const CBlock> pblock, bool fForceProcessing, bool *fNewBlock) { AssertLockNotHeld(cs_main); { if (fNewBlock) { *fNewBlock = false; } CValidationState state; // CheckBlock() does not support multi-threaded block validation // because CBlock::fChecked can cause data race. // Therefore, the following critical section must include the // CheckBlock() call as well. LOCK(cs_main); // Ensure that CheckBlock() passes before calling AcceptBlock, as // belt-and-suspenders. bool ret = CheckBlock(*pblock, state, config.GetChainParams().GetConsensus(), BlockValidationOptions(config)); if (ret) { // Store to disk ret = g_chainstate.AcceptBlock( config, pblock, state, fForceProcessing, nullptr, fNewBlock); } if (!ret) { GetMainSignals().BlockChecked(*pblock, state); return error("%s: AcceptBlock FAILED (%s)", __func__, FormatStateMessage(state)); } } NotifyHeaderTip(); // Only used to report errors, not invalidity - ignore it CValidationState state; if (!g_chainstate.ActivateBestChain(config, state, pblock)) { return error("%s: ActivateBestChain failed (%s)", __func__, FormatStateMessage(state)); } return true; } bool TestBlockValidity(CValidationState &state, const CChainParams ¶ms, const CBlock &block, CBlockIndex *pindexPrev, BlockValidationOptions validationOptions) { AssertLockHeld(cs_main); assert(pindexPrev && pindexPrev == chainActive.Tip()); CCoinsViewCache viewNew(pcoinsTip.get()); BlockHash block_hash(block.GetHash()); CBlockIndex indexDummy(block); indexDummy.pprev = pindexPrev; indexDummy.nHeight = pindexPrev->nHeight + 1; indexDummy.phashBlock = &block_hash; // NOTE: CheckBlockHeader is called by CheckBlock if (!ContextualCheckBlockHeader(params, block, state, pindexPrev, GetAdjustedTime())) { return error("%s: Consensus::ContextualCheckBlockHeader: %s", __func__, FormatStateMessage(state)); } if (!CheckBlock(block, state, params.GetConsensus(), validationOptions)) { return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state)); } if (!ContextualCheckBlock(block, state, params.GetConsensus(), pindexPrev)) { return error("%s: Consensus::ContextualCheckBlock: %s", __func__, FormatStateMessage(state)); } if (!g_chainstate.ConnectBlock(block, state, &indexDummy, viewNew, params, validationOptions, true)) { return false; } assert(state.IsValid()); return true; } /** * BLOCK PRUNING CODE */ /** * Calculate the amount of disk space the block & undo files currently use. */ uint64_t CalculateCurrentUsage() { LOCK(cs_LastBlockFile); uint64_t retval = 0; for (const CBlockFileInfo &file : vinfoBlockFile) { retval += file.nSize + file.nUndoSize; } return retval; } /** * Prune a block file (modify associated database entries) */ void PruneOneBlockFile(const int fileNumber) { LOCK(cs_LastBlockFile); for (const auto &entry : mapBlockIndex) { CBlockIndex *pindex = entry.second; if (pindex->nFile == fileNumber) { pindex->nStatus = pindex->nStatus.withData(false).withUndo(false); pindex->nFile = 0; pindex->nDataPos = 0; pindex->nUndoPos = 0; setDirtyBlockIndex.insert(pindex); // Prune from mapBlocksUnlinked -- any block we prune would have // to be downloaded again in order to consider its chain, at which // point it would be considered as a candidate for // mapBlocksUnlinked or setBlockIndexCandidates. std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator, std::multimap<CBlockIndex *, CBlockIndex *>::iterator> range = mapBlocksUnlinked.equal_range(pindex->pprev); while (range.first != range.second) { std::multimap<CBlockIndex *, CBlockIndex *>::iterator _it = range.first; range.first++; if (_it->second == pindex) { mapBlocksUnlinked.erase(_it); } } } } vinfoBlockFile[fileNumber].SetNull(); setDirtyFileInfo.insert(fileNumber); } void UnlinkPrunedFiles(const std::set<int> &setFilesToPrune) { for (const int i : setFilesToPrune) { FlatFilePos pos(i, 0); fs::remove(BlockFileSeq().FileName(pos)); fs::remove(UndoFileSeq().FileName(pos)); LogPrintf("Prune: %s deleted blk/rev (%05u)\n", __func__, i); } } /** * Calculate the block/rev files to delete based on height specified by user * with RPC command pruneblockchain */ static void FindFilesToPruneManual(std::set<int> &setFilesToPrune, int nManualPruneHeight) { assert(fPruneMode && nManualPruneHeight > 0); LOCK2(cs_main, cs_LastBlockFile); if (chainActive.Tip() == nullptr) { return; } // last block to prune is the lesser of (user-specified height, // MIN_BLOCKS_TO_KEEP from the tip) unsigned int nLastBlockWeCanPrune = std::min((unsigned)nManualPruneHeight, chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP); int count = 0; for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) { if (vinfoBlockFile[fileNumber].nSize == 0 || vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) { continue; } PruneOneBlockFile(fileNumber); setFilesToPrune.insert(fileNumber); count++; } LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n", nLastBlockWeCanPrune, count); } /* This function is called from the RPC code for pruneblockchain */ void PruneBlockFilesManual(int nManualPruneHeight) { CValidationState state; const CChainParams &chainparams = Params(); if (!FlushStateToDisk(chainparams, state, FlushStateMode::NONE, nManualPruneHeight)) { LogPrintf("%s: failed to flush state (%s)\n", __func__, FormatStateMessage(state)); } } /** * Prune block and undo files (blk???.dat and undo???.dat) so that the disk * space used is less than a user-defined target. The user sets the target (in * MB) on the command line or in config file. This will be run on startup and * whenever new space is allocated in a block or undo file, staying below the * target. Changing back to unpruned requires a reindex (which in this case * means the blockchain must be re-downloaded.) * * Pruning functions are called from FlushStateToDisk when the global * fCheckForPruning flag has been set. Block and undo files are deleted in * lock-step (when blk00003.dat is deleted, so is rev00003.dat.). Pruning cannot * take place until the longest chain is at least a certain length (100000 on * mainnet, 1000 on testnet, 1000 on regtest). Pruning will never delete a block * within a defined distance (currently 288) from the active chain's tip. The * block index is updated by unsetting HAVE_DATA and HAVE_UNDO for any blocks * that were stored in the deleted files. A db flag records the fact that at * least some block files have been pruned. * * @param[out] setFilesToPrune The set of file indices that can be unlinked * will be returned */ static void FindFilesToPrune(std::set<int> &setFilesToPrune, uint64_t nPruneAfterHeight) { LOCK2(cs_main, cs_LastBlockFile); if (chainActive.Tip() == nullptr || nPruneTarget == 0) { return; } if (uint64_t(chainActive.Tip()->nHeight) <= nPruneAfterHeight) { return; } unsigned int nLastBlockWeCanPrune = chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP; uint64_t nCurrentUsage = CalculateCurrentUsage(); // We don't check to prune until after we've allocated new space for files, // so we should leave a buffer under our target to account for another // allocation before the next pruning. uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE; uint64_t nBytesToPrune; int count = 0; if (nCurrentUsage + nBuffer >= nPruneTarget) { // On a prune event, the chainstate DB is flushed. // To avoid excessive prune events negating the benefit of high dbcache // values, we should not prune too rapidly. // So when pruning in IBD, increase the buffer a bit to avoid a re-prune // too soon. if (IsInitialBlockDownload()) { // Since this is only relevant during IBD, we use a fixed 10% nBuffer += nPruneTarget / 10; } for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) { nBytesToPrune = vinfoBlockFile[fileNumber].nSize + vinfoBlockFile[fileNumber].nUndoSize; if (vinfoBlockFile[fileNumber].nSize == 0) { continue; } // are we below our target? if (nCurrentUsage + nBuffer < nPruneTarget) { break; } // don't prune files that could have a block within // MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) { continue; } PruneOneBlockFile(fileNumber); // Queue up the files for removal setFilesToPrune.insert(fileNumber); nCurrentUsage -= nBytesToPrune; count++; } } LogPrint(BCLog::PRUNE, "Prune: target=%dMiB actual=%dMiB diff=%dMiB " "max_prune_height=%d removed %d blk/rev pairs\n", nPruneTarget / 1024 / 1024, nCurrentUsage / 1024 / 1024, ((int64_t)nPruneTarget - (int64_t)nCurrentUsage) / 1024 / 1024, nLastBlockWeCanPrune, count); } static FlatFileSeq BlockFileSeq() { return FlatFileSeq(GetBlocksDir(), "blk", BLOCKFILE_CHUNK_SIZE); } static FlatFileSeq UndoFileSeq() { return FlatFileSeq(GetBlocksDir(), "rev", UNDOFILE_CHUNK_SIZE); } FILE *OpenBlockFile(const FlatFilePos &pos, bool fReadOnly) { return BlockFileSeq().Open(pos, fReadOnly); } /** Open an undo file (rev?????.dat) */ static FILE *OpenUndoFile(const FlatFilePos &pos, bool fReadOnly) { return UndoFileSeq().Open(pos, fReadOnly); } fs::path GetBlockPosFilename(const FlatFilePos &pos) { return BlockFileSeq().FileName(pos); } CBlockIndex *CChainState::InsertBlockIndex(const BlockHash &hash) { AssertLockHeld(cs_main); if (hash.IsNull()) { return nullptr; } // Return existing BlockMap::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { return (*mi).second; } // Create new CBlockIndex *pindexNew = new CBlockIndex(); mi = mapBlockIndex.insert(std::make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); return pindexNew; } bool CChainState::LoadBlockIndex(const Config &config, CBlockTreeDB &blocktree) { AssertLockHeld(cs_main); if (!blocktree.LoadBlockIndexGuts( config.GetChainParams().GetConsensus(), [this](const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return this->InsertBlockIndex(hash); })) { return false; } // Calculate nChainWork std::vector<std::pair<int, CBlockIndex *>> vSortedByHeight; vSortedByHeight.reserve(mapBlockIndex.size()); for (const std::pair<const BlockHash, CBlockIndex *> &item : mapBlockIndex) { CBlockIndex *pindex = item.second; vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex)); } sort(vSortedByHeight.begin(), vSortedByHeight.end()); for (const std::pair<int, CBlockIndex *> &item : vSortedByHeight) { CBlockIndex *pindex = item.second; pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex); pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime); // We can link the chain of blocks for which we've received transactions // at some point. Pruned nodes may have deleted the block. if (pindex->nTx > 0) { if (pindex->pprev) { if (pindex->pprev->HaveTxsDownloaded()) { pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx; } else { pindex->nChainTx = 0; mapBlocksUnlinked.insert( std::make_pair(pindex->pprev, pindex)); } } else { pindex->nChainTx = pindex->nTx; } } if (!pindex->nStatus.hasFailed() && pindex->pprev && pindex->pprev->nStatus.hasFailed()) { pindex->nStatus = pindex->nStatus.withFailedParent(); setDirtyBlockIndex.insert(pindex); } if (pindex->IsValid(BlockValidity::TRANSACTIONS) && (pindex->HaveTxsDownloaded() || pindex->pprev == nullptr)) { setBlockIndexCandidates.insert(pindex); } if (pindex->nStatus.isInvalid() && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork)) { pindexBestInvalid = pindex; } if (pindex->nStatus.isOnParkedChain() && (!pindexBestParked || pindex->nChainWork > pindexBestParked->nChainWork)) { pindexBestParked = pindex; } if (pindex->pprev) { pindex->BuildSkip(); } if (pindex->IsValid(BlockValidity::TREE) && (pindexBestHeader == nullptr || CBlockIndexWorkComparator()(pindexBestHeader, pindex))) { pindexBestHeader = pindex; } } return true; } static bool LoadBlockIndexDB(const Config &config) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (!g_chainstate.LoadBlockIndex(config, *pblocktree)) { return false; } // Load block file info pblocktree->ReadLastBlockFile(nLastBlockFile); vinfoBlockFile.resize(nLastBlockFile + 1); LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile); for (int nFile = 0; nFile <= nLastBlockFile; nFile++) { pblocktree->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]); } LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString()); for (int nFile = nLastBlockFile + 1; true; nFile++) { CBlockFileInfo info; if (pblocktree->ReadBlockFileInfo(nFile, info)) { vinfoBlockFile.push_back(info); } else { break; } } // Check presence of blk files LogPrintf("Checking all blk files are present...\n"); std::set<int> setBlkDataFiles; for (const std::pair<const BlockHash, CBlockIndex *> &item : mapBlockIndex) { CBlockIndex *pindex = item.second; if (pindex->nStatus.hasData()) { setBlkDataFiles.insert(pindex->nFile); } } for (const int i : setBlkDataFiles) { FlatFilePos pos(i, 0); if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION) .IsNull()) { return false; } } // Check whether we have ever pruned block & undo files pblocktree->ReadFlag("prunedblockfiles", fHavePruned); if (fHavePruned) { LogPrintf( "LoadBlockIndexDB(): Block files have previously been pruned\n"); } // Check whether we need to continue reindexing bool fReindexing = false; pblocktree->ReadReindexing(fReindexing); if (fReindexing) { fReindex = true; } return true; } bool LoadChainTip(const Config &config) { AssertLockHeld(cs_main); if (chainActive.Tip() && chainActive.Tip()->GetBlockHash() == pcoinsTip->GetBestBlock()) { return true; } if (pcoinsTip->GetBestBlock().IsNull() && mapBlockIndex.size() == 1) { // In case we just added the genesis block, connect it now, so // that we always have a chainActive.Tip() when we return. LogPrintf("%s: Connecting genesis block...\n", __func__); CValidationState state; if (!ActivateBestChain(config, state)) { LogPrintf("%s: failed to activate chain (%s)\n", __func__, FormatStateMessage(state)); return false; } } // Load pointer to end of best chain CBlockIndex *pindex = LookupBlockIndex(pcoinsTip->GetBestBlock()); if (!pindex) { return false; } chainActive.SetTip(pindex); g_chainstate.PruneBlockIndexCandidates(); LogPrintf( "Loaded best chain: hashBestChain=%s height=%d date=%s progress=%f\n", chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), FormatISO8601DateTime(chainActive.Tip()->GetBlockTime()), GuessVerificationProgress(config.GetChainParams().TxData(), chainActive.Tip())); return true; } CVerifyDB::CVerifyDB() { uiInterface.ShowProgress(_("Verifying blocks..."), 0, false); } CVerifyDB::~CVerifyDB() { uiInterface.ShowProgress("", 100, false); } bool CVerifyDB::VerifyDB(const Config &config, CCoinsView *coinsview, int nCheckLevel, int nCheckDepth) { LOCK(cs_main); const CChainParams ¶ms = config.GetChainParams(); const Consensus::Params &consensusParams = params.GetConsensus(); if (chainActive.Tip() == nullptr || chainActive.Tip()->pprev == nullptr) { return true; } // Verify blocks in the best chain if (nCheckDepth <= 0 || nCheckDepth > chainActive.Height()) { nCheckDepth = chainActive.Height(); } nCheckLevel = std::max(0, std::min(4, nCheckLevel)); LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel); CCoinsViewCache coins(coinsview); CBlockIndex *pindex; CBlockIndex *pindexFailure = nullptr; int nGoodTransactions = 0; CValidationState state; int reportDone = 0; LogPrintfToBeContinued("[0%%]..."); for (pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev) { boost::this_thread::interruption_point(); int percentageDone = std::max( 1, std::min( 99, (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100)))); if (reportDone < percentageDone / 10) { // report every 10% step LogPrintfToBeContinued("[%d%%]...", percentageDone); reportDone = percentageDone / 10; } uiInterface.ShowProgress(_("Verifying blocks..."), percentageDone, false); if (pindex->nHeight <= chainActive.Height() - nCheckDepth) { break; } if (fPruneMode && !pindex->nStatus.hasData()) { // If pruning, only go back as far as we have data. LogPrintf("VerifyDB(): block verification stopping at height %d " "(pruning, no data)\n", pindex->nHeight); break; } CBlock block; // check level 0: read from disk if (!ReadBlockFromDisk(block, pindex, consensusParams)) { return error( "VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } // check level 1: verify block validity if (nCheckLevel >= 1 && !CheckBlock(block, state, consensusParams, BlockValidationOptions(config))) { return error("%s: *** found bad block at %d, hash=%s (%s)\n", __func__, pindex->nHeight, pindex->GetBlockHash().ToString(), FormatStateMessage(state)); } // check level 2: verify undo validity if (nCheckLevel >= 2 && pindex) { CBlockUndo undo; if (!pindex->GetUndoPos().IsNull()) { if (!UndoReadFromDisk(undo, pindex)) { return error( "VerifyDB(): *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); } } } // check level 3: check for inconsistencies during memory-only // disconnect of tip blocks if (nCheckLevel >= 3 && (coins.DynamicMemoryUsage() + pcoinsTip->DynamicMemoryUsage()) <= nCoinCacheUsage) { assert(coins.GetBestBlock() == pindex->GetBlockHash()); DisconnectResult res = g_chainstate.DisconnectBlock(block, pindex, coins); if (res == DISCONNECT_FAILED) { return error("VerifyDB(): *** irrecoverable inconsistency in " "block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } if (res == DISCONNECT_UNCLEAN) { nGoodTransactions = 0; pindexFailure = pindex; } else { nGoodTransactions += block.vtx.size(); } } if (ShutdownRequested()) { return true; } } if (pindexFailure) { return error("VerifyDB(): *** coin database inconsistencies found " "(last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions); } // store block count as we move pindex at check level >= 4 int block_count = chainActive.Height() - pindex->nHeight; // check level 4: try reconnecting blocks if (nCheckLevel >= 4) { while (pindex != chainActive.Tip()) { boost::this_thread::interruption_point(); uiInterface.ShowProgress( _("Verifying blocks..."), std::max( 1, std::min(99, 100 - (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * 50))), false); pindex = chainActive.Next(pindex); CBlock block; if (!ReadBlockFromDisk(block, pindex, consensusParams)) { return error( "VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } if (!g_chainstate.ConnectBlock(block, state, pindex, coins, params, BlockValidationOptions(config))) { return error("VerifyDB(): *** found unconnectable block at %d, " "hash=%s (%s)", pindex->nHeight, pindex->GetBlockHash().ToString(), FormatStateMessage(state)); } } } LogPrintf("[DONE].\n"); LogPrintf("No coin database inconsistencies in last %i blocks (%i " "transactions)\n", block_count, nGoodTransactions); return true; } /** * Apply the effects of a block on the utxo cache, ignoring that it may already * have been applied. */ bool CChainState::RollforwardBlock(const CBlockIndex *pindex, CCoinsViewCache &view, const Consensus::Params ¶ms) { // TODO: merge with ConnectBlock CBlock block; if (!ReadBlockFromDisk(block, pindex, params)) { return error("ReplayBlock(): ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } for (const CTransactionRef &tx : block.vtx) { // Pass check = true as every addition may be an overwrite. AddCoins(view, *tx, pindex->nHeight, true); } for (const CTransactionRef &tx : block.vtx) { if (tx->IsCoinBase()) { continue; } for (const CTxIn &txin : tx->vin) { view.SpendCoin(txin.prevout); } } return true; } bool CChainState::ReplayBlocks(const Consensus::Params ¶ms, CCoinsView *view) { LOCK(cs_main); CCoinsViewCache cache(view); std::vector<BlockHash> hashHeads = view->GetHeadBlocks(); if (hashHeads.empty()) { // We're already in a consistent state. return true; } if (hashHeads.size() != 2) { return error("ReplayBlocks(): unknown inconsistent state"); } uiInterface.ShowProgress(_("Replaying blocks..."), 0, false); LogPrintf("Replaying blocks\n"); // Old tip during the interrupted flush. const CBlockIndex *pindexOld = nullptr; // New tip during the interrupted flush. const CBlockIndex *pindexNew; // Latest block common to both the old and the new tip. const CBlockIndex *pindexFork = nullptr; if (mapBlockIndex.count(hashHeads[0]) == 0) { return error( "ReplayBlocks(): reorganization to unknown block requested"); } pindexNew = mapBlockIndex[hashHeads[0]]; if (!hashHeads[1].IsNull()) { // The old tip is allowed to be 0, indicating it's the first flush. if (mapBlockIndex.count(hashHeads[1]) == 0) { return error( "ReplayBlocks(): reorganization from unknown block requested"); } pindexOld = mapBlockIndex[hashHeads[1]]; pindexFork = LastCommonAncestor(pindexOld, pindexNew); assert(pindexFork != nullptr); } // Rollback along the old branch. while (pindexOld != pindexFork) { if (pindexOld->nHeight > 0) { // Never disconnect the genesis block. CBlock block; if (!ReadBlockFromDisk(block, pindexOld, params)) { return error("RollbackBlock(): ReadBlockFromDisk() failed at " "%d, hash=%s", pindexOld->nHeight, pindexOld->GetBlockHash().ToString()); } LogPrintf("Rolling back %s (%i)\n", pindexOld->GetBlockHash().ToString(), pindexOld->nHeight); DisconnectResult res = DisconnectBlock(block, pindexOld, cache); if (res == DISCONNECT_FAILED) { return error( "RollbackBlock(): DisconnectBlock failed at %d, hash=%s", pindexOld->nHeight, pindexOld->GetBlockHash().ToString()); } // If DISCONNECT_UNCLEAN is returned, it means a non-existing UTXO // was deleted, or an existing UTXO was overwritten. It corresponds // to cases where the block-to-be-disconnect never had all its // operations applied to the UTXO set. However, as both writing a // UTXO and deleting a UTXO are idempotent operations, the result is // still a version of the UTXO set with the effects of that block // undone. } pindexOld = pindexOld->pprev; } // Roll forward from the forking point to the new tip. int nForkHeight = pindexFork ? pindexFork->nHeight : 0; for (int nHeight = nForkHeight + 1; nHeight <= pindexNew->nHeight; ++nHeight) { const CBlockIndex *pindex = pindexNew->GetAncestor(nHeight); LogPrintf("Rolling forward %s (%i)\n", pindex->GetBlockHash().ToString(), nHeight); if (!RollforwardBlock(pindex, cache, params)) { return false; } } cache.SetBestBlock(pindexNew->GetBlockHash()); cache.Flush(); uiInterface.ShowProgress("", 100, false); return true; } bool ReplayBlocks(const Consensus::Params ¶ms, CCoinsView *view) { return g_chainstate.ReplayBlocks(params, view); } // May NOT be used after any connections are up as much of the peer-processing // logic assumes a consistent block index state void CChainState::UnloadBlockIndex() { nBlockSequenceId = 1; m_failed_blocks.clear(); setBlockIndexCandidates.clear(); } // May NOT be used after any connections are up as much // of the peer-processing logic assumes a consistent // block index state void UnloadBlockIndex() { LOCK(cs_main); chainActive.SetTip(nullptr); pindexFinalized = nullptr; pindexBestInvalid = nullptr; pindexBestParked = nullptr; pindexBestHeader = nullptr; pindexBestForkTip = nullptr; pindexBestForkBase = nullptr; g_mempool.clear(); mapBlocksUnlinked.clear(); vinfoBlockFile.clear(); nLastBlockFile = 0; setDirtyBlockIndex.clear(); setDirtyFileInfo.clear(); for (const BlockMap::value_type &entry : mapBlockIndex) { delete entry.second; } mapBlockIndex.clear(); fHavePruned = false; g_chainstate.UnloadBlockIndex(); } bool LoadBlockIndex(const Config &config) { // Load block index from databases bool needs_init = fReindex; if (!fReindex) { bool ret = LoadBlockIndexDB(config); if (!ret) { return false; } needs_init = mapBlockIndex.empty(); } if (needs_init) { // Everything here is for *new* reindex/DBs. Thus, though // LoadBlockIndexDB may have set fReindex if we shut down // mid-reindex previously, we don't check fReindex and // instead only check it prior to LoadBlockIndexDB to set // needs_init. LogPrintf("Initializing databases...\n"); } return true; } bool CChainState::LoadGenesisBlock(const CChainParams &chainparams) { LOCK(cs_main); // Check whether we're already initialized by checking for genesis in // mapBlockIndex. Note that we can't use chainActive here, since it is // set based on the coins db, not the block index db, which is the only // thing loaded at this point. if (mapBlockIndex.count(chainparams.GenesisBlock().GetHash())) { return true; } try { const CBlock &block = chainparams.GenesisBlock(); FlatFilePos blockPos = SaveBlockToDisk(block, 0, chainparams, nullptr); if (blockPos.IsNull()) { return error("%s: writing genesis block to disk failed", __func__); } CBlockIndex *pindex = AddToBlockIndex(block); ReceivedBlockTransactions(block, pindex, blockPos); } catch (const std::runtime_error &e) { return error("%s: failed to write genesis block: %s", __func__, e.what()); } return true; } bool LoadGenesisBlock(const CChainParams &chainparams) { return g_chainstate.LoadGenesisBlock(chainparams); } bool LoadExternalBlockFile(const Config &config, FILE *fileIn, FlatFilePos *dbp) { // Map of disk positions for blocks with unknown parent (only used for // reindex) static std::multimap<uint256, FlatFilePos> mapBlocksUnknownParent; int64_t nStart = GetTimeMillis(); const CChainParams &chainparams = config.GetChainParams(); int nLoaded = 0; try { // This takes over fileIn and calls fclose() on it in the CBufferedFile // destructor. Make sure we have at least 2*MAX_TX_SIZE space in there // so any transaction can fit in the buffer. CBufferedFile blkdat(fileIn, 2 * MAX_TX_SIZE, MAX_TX_SIZE + 8, SER_DISK, CLIENT_VERSION); uint64_t nRewind = blkdat.GetPos(); while (!blkdat.eof()) { boost::this_thread::interruption_point(); blkdat.SetPos(nRewind); // Start one byte further next time, in case of failure. nRewind++; // Remove former limit. blkdat.SetLimit(); unsigned int nSize = 0; try { // Locate a header. uint8_t buf[CMessageHeader::MESSAGE_START_SIZE]; blkdat.FindByte(chainparams.DiskMagic()[0]); nRewind = blkdat.GetPos() + 1; blkdat >> buf; if (memcmp(buf, chainparams.DiskMagic().data(), CMessageHeader::MESSAGE_START_SIZE)) { continue; } // Read size. blkdat >> nSize; if (nSize < 80) { continue; } } catch (const std::exception &) { // No valid block header found; don't complain. break; } try { // read block uint64_t nBlockPos = blkdat.GetPos(); if (dbp) { dbp->nPos = nBlockPos; } blkdat.SetLimit(nBlockPos + nSize); blkdat.SetPos(nBlockPos); std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>(); CBlock &block = *pblock; blkdat >> block; nRewind = blkdat.GetPos(); const BlockHash hash = block.GetHash(); { LOCK(cs_main); // detect out of order blocks, and store them for later if (hash != chainparams.GetConsensus().hashGenesisBlock && !LookupBlockIndex(block.hashPrevBlock)) { LogPrint( BCLog::REINDEX, "%s: Out of order block %s, parent %s not known\n", __func__, hash.ToString(), block.hashPrevBlock.ToString()); if (dbp) { mapBlocksUnknownParent.insert( std::make_pair(block.hashPrevBlock, *dbp)); } continue; } // process in case the block isn't known yet CBlockIndex *pindex = LookupBlockIndex(hash); if (!pindex || !pindex->nStatus.hasData()) { CValidationState state; if (g_chainstate.AcceptBlock(config, pblock, state, true, dbp, nullptr)) { nLoaded++; } if (state.IsError()) { break; } } else if (hash != chainparams.GetConsensus() .hashGenesisBlock && pindex->nHeight % 1000 == 0) { LogPrint( BCLog::REINDEX, "Block Import: already had block %s at height %d\n", hash.ToString(), pindex->nHeight); } } // Activate the genesis block so normal node progress can // continue if (hash == chainparams.GetConsensus().hashGenesisBlock) { CValidationState state; if (!ActivateBestChain(config, state)) { break; } } NotifyHeaderTip(); // Recursively process earlier encountered successors of this // block std::deque<uint256> queue; queue.push_back(hash); while (!queue.empty()) { uint256 head = queue.front(); queue.pop_front(); std::pair<std::multimap<uint256, FlatFilePos>::iterator, std::multimap<uint256, FlatFilePos>::iterator> range = mapBlocksUnknownParent.equal_range(head); while (range.first != range.second) { std::multimap<uint256, FlatFilePos>::iterator it = range.first; std::shared_ptr<CBlock> pblockrecursive = std::make_shared<CBlock>(); if (ReadBlockFromDisk(*pblockrecursive, it->second, chainparams.GetConsensus())) { LogPrint( BCLog::REINDEX, "%s: Processing out of order child %s of %s\n", __func__, pblockrecursive->GetHash().ToString(), head.ToString()); LOCK(cs_main); CValidationState dummy; if (g_chainstate.AcceptBlock( config, pblockrecursive, dummy, true, &it->second, nullptr)) { nLoaded++; queue.push_back(pblockrecursive->GetHash()); } } range.first++; mapBlocksUnknownParent.erase(it); NotifyHeaderTip(); } } } catch (const std::exception &e) { LogPrintf("%s: Deserialize or I/O error - %s\n", __func__, e.what()); } } } catch (const std::runtime_error &e) { AbortNode(std::string("System error: ") + e.what()); } if (nLoaded > 0) { LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart); } return nLoaded > 0; } void CChainState::CheckBlockIndex(const Consensus::Params &consensusParams) { if (!fCheckBlockIndex) { return; } LOCK(cs_main); // During a reindex, we read the genesis block and call CheckBlockIndex // before ActivateBestChain, so we have the genesis block in mapBlockIndex // but no active chain. (A few of the tests when iterating the block tree // require that chainActive has been initialized.) if (chainActive.Height() < 0) { assert(mapBlockIndex.size() <= 1); return; } // Build forward-pointing map of the entire block tree. std::multimap<CBlockIndex *, CBlockIndex *> forward; for (const auto &entry : mapBlockIndex) { forward.emplace(entry.second->pprev, entry.second); } assert(forward.size() == mapBlockIndex.size()); std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator, std::multimap<CBlockIndex *, CBlockIndex *>::iterator> rangeGenesis = forward.equal_range(nullptr); CBlockIndex *pindex = rangeGenesis.first->second; rangeGenesis.first++; // There is only one index entry with parent nullptr. assert(rangeGenesis.first == rangeGenesis.second); // Iterate over the entire block tree, using depth-first search. // Along the way, remember whether there are blocks on the path from genesis // block being explored which are the first to have certain properties. size_t nNodes = 0; int nHeight = 0; // Oldest ancestor of pindex which is invalid. CBlockIndex *pindexFirstInvalid = nullptr; // Oldest ancestor of pindex which is parked. CBlockIndex *pindexFirstParked = nullptr; // Oldest ancestor of pindex which does not have data available. CBlockIndex *pindexFirstMissing = nullptr; // Oldest ancestor of pindex for which nTx == 0. CBlockIndex *pindexFirstNeverProcessed = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_TREE // (regardless of being valid or not). CBlockIndex *pindexFirstNotTreeValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_TRANSACTIONS // (regardless of being valid or not). CBlockIndex *pindexFirstNotTransactionsValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_CHAIN // (regardless of being valid or not). CBlockIndex *pindexFirstNotChainValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_SCRIPTS // (regardless of being valid or not). CBlockIndex *pindexFirstNotScriptsValid = nullptr; while (pindex != nullptr) { nNodes++; if (pindexFirstInvalid == nullptr && pindex->nStatus.hasFailed()) { pindexFirstInvalid = pindex; } if (pindexFirstParked == nullptr && pindex->nStatus.isParked()) { pindexFirstParked = pindex; } if (pindexFirstMissing == nullptr && !pindex->nStatus.hasData()) { pindexFirstMissing = pindex; } if (pindexFirstNeverProcessed == nullptr && pindex->nTx == 0) { pindexFirstNeverProcessed = pindex; } if (pindex->pprev != nullptr && pindexFirstNotTreeValid == nullptr && pindex->nStatus.getValidity() < BlockValidity::TREE) { pindexFirstNotTreeValid = pindex; } if (pindex->pprev != nullptr && pindexFirstNotTransactionsValid == nullptr && pindex->nStatus.getValidity() < BlockValidity::TRANSACTIONS) { pindexFirstNotTransactionsValid = pindex; } if (pindex->pprev != nullptr && pindexFirstNotChainValid == nullptr && pindex->nStatus.getValidity() < BlockValidity::CHAIN) { pindexFirstNotChainValid = pindex; } if (pindex->pprev != nullptr && pindexFirstNotScriptsValid == nullptr && pindex->nStatus.getValidity() < BlockValidity::SCRIPTS) { pindexFirstNotScriptsValid = pindex; } // Begin: actual consistency checks. if (pindex->pprev == nullptr) { // Genesis block checks. // Genesis block's hash must match. assert(pindex->GetBlockHash() == consensusParams.hashGenesisBlock); // The current active chain's genesis block must be this block. assert(pindex == chainActive.Genesis()); } if (!pindex->HaveTxsDownloaded()) { // nSequenceId can't be set positive for blocks that aren't linked // (negative is used for preciousblock) assert(pindex->nSequenceId <= 0); } // VALID_TRANSACTIONS is equivalent to nTx > 0 for all nodes (whether or // not pruning has occurred). HAVE_DATA is only equivalent to nTx > 0 // (or VALID_TRANSACTIONS) if no pruning has occurred. if (!fHavePruned) { // If we've never pruned, then HAVE_DATA should be equivalent to nTx // > 0 assert(pindex->nStatus.hasData() == (pindex->nTx > 0)); assert(pindexFirstMissing == pindexFirstNeverProcessed); } else if (pindex->nStatus.hasData()) { // If we have pruned, then we can only say that HAVE_DATA implies // nTx > 0 assert(pindex->nTx > 0); } if (pindex->nStatus.hasUndo()) { assert(pindex->nStatus.hasData()); } // This is pruning-independent. assert((pindex->nStatus.getValidity() >= BlockValidity::TRANSACTIONS) == (pindex->nTx > 0)); // All parents having had data (at some point) is equivalent to all // parents being VALID_TRANSACTIONS, which is equivalent to // HaveTxsDownloaded(). All parents having had data (at some point) is // equivalent to all parents being VALID_TRANSACTIONS, which is // equivalent to HaveTxsDownloaded(). assert((pindexFirstNeverProcessed == nullptr) == (pindex->HaveTxsDownloaded())); assert((pindexFirstNotTransactionsValid == nullptr) == (pindex->HaveTxsDownloaded())); // nHeight must be consistent. assert(pindex->nHeight == nHeight); // For every block except the genesis block, the chainwork must be // larger than the parent's. assert(pindex->pprev == nullptr || pindex->nChainWork >= pindex->pprev->nChainWork); // The pskip pointer must point back for all but the first 2 blocks. assert(nHeight < 2 || (pindex->pskip && (pindex->pskip->nHeight < nHeight))); // All mapBlockIndex entries must at least be TREE valid assert(pindexFirstNotTreeValid == nullptr); if (pindex->nStatus.getValidity() >= BlockValidity::TREE) { // TREE valid implies all parents are TREE valid assert(pindexFirstNotTreeValid == nullptr); } if (pindex->nStatus.getValidity() >= BlockValidity::CHAIN) { // CHAIN valid implies all parents are CHAIN valid assert(pindexFirstNotChainValid == nullptr); } if (pindex->nStatus.getValidity() >= BlockValidity::SCRIPTS) { // SCRIPTS valid implies all parents are SCRIPTS valid assert(pindexFirstNotScriptsValid == nullptr); } if (pindexFirstInvalid == nullptr) { // Checks for not-invalid blocks. // The failed mask cannot be set for blocks without invalid parents. assert(!pindex->nStatus.isInvalid()); } if (pindexFirstParked == nullptr) { // Checks for not-parked blocks. // The parked mask cannot be set for blocks without parked parents. // (i.e., hasParkedParent only if an ancestor is properly parked). assert(!pindex->nStatus.isOnParkedChain()); } if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && pindexFirstNeverProcessed == nullptr) { if (pindexFirstInvalid == nullptr) { // If this block sorts at least as good as the current tip and // is valid and we have all data for its parents, it must be in // setBlockIndexCandidates or be parked. if (pindexFirstMissing == nullptr) { assert(pindex->nStatus.isOnParkedChain() || setBlockIndexCandidates.count(pindex)); } // chainActive.Tip() must also be there even if some data has // been pruned. if (pindex == chainActive.Tip()) { assert(setBlockIndexCandidates.count(pindex)); } // If some parent is missing, then it could be that this block // was in setBlockIndexCandidates but had to be removed because // of the missing data. In this case it must be in // mapBlocksUnlinked -- see test below. } } else { // If this block sorts worse than the current tip or some ancestor's // block has never been seen, it cannot be in // setBlockIndexCandidates. assert(setBlockIndexCandidates.count(pindex) == 0); } // Check whether this block is in mapBlocksUnlinked. std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator, std::multimap<CBlockIndex *, CBlockIndex *>::iterator> rangeUnlinked = mapBlocksUnlinked.equal_range(pindex->pprev); bool foundInUnlinked = false; while (rangeUnlinked.first != rangeUnlinked.second) { assert(rangeUnlinked.first->first == pindex->pprev); if (rangeUnlinked.first->second == pindex) { foundInUnlinked = true; break; } rangeUnlinked.first++; } if (pindex->pprev && pindex->nStatus.hasData() && pindexFirstNeverProcessed != nullptr && pindexFirstInvalid == nullptr) { // If this block has block data available, some parent was never // received, and has no invalid parents, it must be in // mapBlocksUnlinked. assert(foundInUnlinked); } if (!pindex->nStatus.hasData()) { // Can't be in mapBlocksUnlinked if we don't HAVE_DATA assert(!foundInUnlinked); } if (pindexFirstMissing == nullptr) { // We aren't missing data for any parent -- cannot be in // mapBlocksUnlinked. assert(!foundInUnlinked); } if (pindex->pprev && pindex->nStatus.hasData() && pindexFirstNeverProcessed == nullptr && pindexFirstMissing != nullptr) { // We HAVE_DATA for this block, have received data for all parents // at some point, but we're currently missing data for some parent. // We must have pruned. assert(fHavePruned); // This block may have entered mapBlocksUnlinked if: // - it has a descendant that at some point had more work than the // tip, and // - we tried switching to that descendant but were missing // data for some intermediate block between chainActive and the // tip. // So if this block is itself better than chainActive.Tip() and it // wasn't in // setBlockIndexCandidates, then it must be in mapBlocksUnlinked. if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && setBlockIndexCandidates.count(pindex) == 0) { if (pindexFirstInvalid == nullptr) { assert(foundInUnlinked); } } } // Perhaps too slow // assert(pindex->GetBlockHash() == pindex->GetBlockHeader().GetHash()); // End: actual consistency checks. // Try descending into the first subnode. std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator, std::multimap<CBlockIndex *, CBlockIndex *>::iterator> range = forward.equal_range(pindex); if (range.first != range.second) { // A subnode was found. pindex = range.first->second; nHeight++; continue; } // This is a leaf node. Move upwards until we reach a node of which we // have not yet visited the last child. while (pindex) { // We are going to either move to a parent or a sibling of pindex. // If pindex was the first with a certain property, unset the // corresponding variable. if (pindex == pindexFirstInvalid) { pindexFirstInvalid = nullptr; } if (pindex == pindexFirstParked) { pindexFirstParked = nullptr; } if (pindex == pindexFirstMissing) { pindexFirstMissing = nullptr; } if (pindex == pindexFirstNeverProcessed) { pindexFirstNeverProcessed = nullptr; } if (pindex == pindexFirstNotTreeValid) { pindexFirstNotTreeValid = nullptr; } if (pindex == pindexFirstNotTransactionsValid) { pindexFirstNotTransactionsValid = nullptr; } if (pindex == pindexFirstNotChainValid) { pindexFirstNotChainValid = nullptr; } if (pindex == pindexFirstNotScriptsValid) { pindexFirstNotScriptsValid = nullptr; } // Find our parent. CBlockIndex *pindexPar = pindex->pprev; // Find which child we just visited. std::pair<std::multimap<CBlockIndex *, CBlockIndex *>::iterator, std::multimap<CBlockIndex *, CBlockIndex *>::iterator> rangePar = forward.equal_range(pindexPar); while (rangePar.first->second != pindex) { // Our parent must have at least the node we're coming from as // child. assert(rangePar.first != rangePar.second); rangePar.first++; } // Proceed to the next one. rangePar.first++; if (rangePar.first != rangePar.second) { // Move to the sibling. pindex = rangePar.first->second; break; } else { // Move up further. pindex = pindexPar; nHeight--; continue; } } } // Check that we actually traversed the entire map. assert(nNodes == forward.size()); } std::string CBlockFileInfo::ToString() const { return strprintf( "CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, FormatISO8601DateTime(nTimeFirst), FormatISO8601DateTime(nTimeLast)); } CBlockFileInfo *GetBlockFileInfo(size_t n) { LOCK(cs_LastBlockFile); return &vinfoBlockFile.at(n); } ThresholdState VersionBitsTipState(const Consensus::Params ¶ms, Consensus::DeploymentPos pos) { LOCK(cs_main); return VersionBitsState(chainActive.Tip(), params, pos, versionbitscache); } BIP9Stats VersionBitsTipStatistics(const Consensus::Params ¶ms, Consensus::DeploymentPos pos) { LOCK(cs_main); return VersionBitsStatistics(chainActive.Tip(), params, pos); } int VersionBitsTipStateSinceHeight(const Consensus::Params ¶ms, Consensus::DeploymentPos pos) { LOCK(cs_main); return VersionBitsStateSinceHeight(chainActive.Tip(), params, pos, versionbitscache); } static const uint64_t MEMPOOL_DUMP_VERSION = 1; bool LoadMempool(const Config &config, CTxMemPool &pool) { int64_t nExpiryTimeout = gArgs.GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60; FILE *filestr = fsbridge::fopen(GetDataDir() / "mempool.dat", "rb"); CAutoFile file(filestr, SER_DISK, CLIENT_VERSION); if (file.IsNull()) { LogPrintf( "Failed to open mempool file from disk. Continuing anyway.\n"); return false; } int64_t count = 0; int64_t expired = 0; int64_t failed = 0; int64_t already_there = 0; int64_t nNow = GetTime(); try { uint64_t version; file >> version; if (version != MEMPOOL_DUMP_VERSION) { return false; } uint64_t num; file >> num; while (num--) { CTransactionRef tx; int64_t nTime; int64_t nFeeDelta; file >> tx; file >> nTime; file >> nFeeDelta; Amount amountdelta = nFeeDelta * SATOSHI; if (amountdelta != Amount::zero()) { pool.PrioritiseTransaction(tx->GetId(), amountdelta); } CValidationState state; if (nTime + nExpiryTimeout > nNow) { LOCK(cs_main); AcceptToMemoryPoolWithTime( config, pool, state, tx, nullptr /* pfMissingInputs */, nTime, false /* bypass_limits */, Amount::zero() /* nAbsurdFee */, false /* test_accept */); if (state.IsValid()) { ++count; } else { // mempool may contain the transaction already, e.g. from // wallet(s) having loaded it while we were processing // mempool transactions; consider these as valid, instead of // failed, but mark them as 'already there' if (pool.exists(tx->GetId())) { ++already_there; } else { ++failed; } } } else { ++expired; } if (ShutdownRequested()) { return false; } } std::map<TxId, Amount> mapDeltas; file >> mapDeltas; for (const auto &i : mapDeltas) { pool.PrioritiseTransaction(i.first, i.second); } } catch (const std::exception &e) { LogPrintf("Failed to deserialize mempool data on disk: %s. Continuing " "anyway.\n", e.what()); return false; } LogPrintf("Imported mempool transactions from disk: %i succeeded, %i " "failed, %i expired, %i already there\n", count, failed, expired, already_there); return true; } bool DumpMempool(const CTxMemPool &pool) { int64_t start = GetTimeMicros(); std::map<uint256, Amount> mapDeltas; std::vector<TxMempoolInfo> vinfo; static Mutex dump_mutex; LOCK(dump_mutex); { LOCK(pool.cs); for (const auto &i : pool.mapDeltas) { mapDeltas[i.first] = i.second; } vinfo = pool.infoAll(); } int64_t mid = GetTimeMicros(); try { FILE *filestr = fsbridge::fopen(GetDataDir() / "mempool.dat.new", "wb"); if (!filestr) { return false; } CAutoFile file(filestr, SER_DISK, CLIENT_VERSION); uint64_t version = MEMPOOL_DUMP_VERSION; file << version; file << uint64_t(vinfo.size()); for (const auto &i : vinfo) { file << *(i.tx); file << int64_t(i.nTime); file << i.nFeeDelta; mapDeltas.erase(i.tx->GetId()); } file << mapDeltas; if (!FileCommit(file.Get())) { throw std::runtime_error("FileCommit failed"); } file.fclose(); RenameOver(GetDataDir() / "mempool.dat.new", GetDataDir() / "mempool.dat"); int64_t last = GetTimeMicros(); LogPrintf("Dumped mempool: %gs to copy, %gs to dump\n", (mid - start) * MICRO, (last - mid) * MICRO); } catch (const std::exception &e) { LogPrintf("Failed to dump mempool: %s. Continuing anyway.\n", e.what()); return false; } return true; } bool IsBlockPruned(const CBlockIndex *pblockindex) { return (fHavePruned && !pblockindex->nStatus.hasData() && pblockindex->nTx > 0); } //! Guess how far we are in the verification process at the given block index //! require cs_main if pindex has not been validated yet (because nChainTx might //! be unset) //! This conditional lock requirement might be confusing, see: //! https://github.com/bitcoin/bitcoin/issues/15994 double GuessVerificationProgress(const ChainTxData &data, const CBlockIndex *pindex) { if (pindex == nullptr) { return 0.0; } int64_t nNow = time(nullptr); double fTxTotal; if (pindex->nChainTx <= data.nTxCount) { fTxTotal = data.nTxCount + (nNow - data.nTime) * data.dTxRate; } else { fTxTotal = pindex->nChainTx + (nNow - pindex->GetBlockTime()) * data.dTxRate; } return pindex->nChainTx / fTxTotal; } class CMainCleanup { public: CMainCleanup() {} ~CMainCleanup() { // block headers for (const std::pair<const BlockHash, CBlockIndex *> &it : mapBlockIndex) { delete it.second; } mapBlockIndex.clear(); } } instance_of_cmaincleanup; diff --git a/test/functional/abc-magnetic-anomaly-mining.py b/test/functional/abc-magnetic-anomaly-mining.py index 5801966f5..c49fd9d81 100755 --- a/test/functional/abc-magnetic-anomaly-mining.py +++ b/test/functional/abc-magnetic-anomaly-mining.py @@ -1,121 +1,125 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Test that mining RPC continues to supply correct transaction metadata after the Nov 2018 protocol upgrade which engages canonical transaction ordering """ import decimal import random import time from test_framework.test_framework import BitcoinTestFramework +# Set test to run with sigops deactivation far in the future. +SIGOPS_DEACTIVATION_TIME = 2000000000 + class CTORMiningTest(BitcoinTestFramework): def set_test_params(self): # Setup two nodes so we can getblocktemplate # it errors out if it is not connected to other nodes self.num_nodes = 2 self.setup_clean_chain = True self.block_heights = {} self.tip = None self.blocks = {} self.mocktime = int(time.time()) - 600 * 100 - extra_arg = ['-spendzeroconfchange=0', '-whitelist=127.0.0.1'] + extra_arg = ['-spendzeroconfchange=0', '-whitelist=127.0.0.1', + '-phononactivationtime={}'.format(SIGOPS_DEACTIVATION_TIME)] self.extra_args = [extra_arg, extra_arg] def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): mining_node = self.nodes[0] # Helper for updating the times def update_time(): mining_node.setmocktime(self.mocktime) self.mocktime = self.mocktime + 600 mining_node.getnewaddress() # Generate some unspent utxos and also # activate magnetic anomaly for x in range(150): update_time() mining_node.generate(1) update_time() unspent = mining_node.listunspent() transactions = {} # Spend all our coinbases while len(unspent): inputs = [] # Grab a random number of inputs for _ in range(random.randrange(1, 5)): txin = unspent.pop() inputs.append({ 'txid': txin['txid'], 'vout': 0 # This is a coinbase }) if len(unspent) == 0: break outputs = {} # Calculate a unique fee for this transaction fee = decimal.Decimal(random.randint( 1000, 2000)) / decimal.Decimal(1e8) # Spend to the same number of outputs as inputs, so we can leave # the amounts unchanged and avoid rounding errors. # # NOTE: There will be 1 sigop per output (which equals the number # of inputs now). We need this randomization to ensure the # numbers are properly following the transactions in the block # template metadata addr = "" for _ in range(len(inputs)): addr = mining_node.getnewaddress() output = { # 50 BCH per coinbase addr: decimal.Decimal(50) } outputs.update(output) # Take the fee off the last output to avoid rounding errors we # need the exact fee later for assertions outputs[addr] -= fee rawtx = mining_node.createrawtransaction(inputs, outputs) signedtx = mining_node.signrawtransactionwithwallet(rawtx) txid = mining_node.sendrawtransaction(signedtx['hex']) # number of outputs is the same as the number of sigops in this # case transactions.update({txid: {'fee': fee, 'sigops': len(outputs)}}) tmpl = mining_node.getblocktemplate() assert 'proposal' in tmpl['capabilities'] assert 'coinbasetxn' not in tmpl # Check the template transaction metadata and ordering last_txid = 0 for txn in tmpl['transactions'][1:]: txid = txn['txid'] txnMetadata = transactions[txid] expectedFeeSats = int(txnMetadata['fee'] * 10**8) expectedSigOps = txnMetadata['sigops'] txid_decoded = int(txid, 16) # Assert we got the expected metadata assert expectedFeeSats == txn['fee'] assert expectedSigOps == txn['sigops'] # Assert transaction ids are in order assert last_txid == 0 or last_txid < txid_decoded last_txid = txid_decoded if __name__ == '__main__': CTORMiningTest().main() diff --git a/test/functional/abc-mempool-accept-txn.py b/test/functional/abc-mempool-accept-txn.py index 3162074fd..a371e7a35 100755 --- a/test/functional/abc-mempool-accept-txn.py +++ b/test/functional/abc-mempool-accept-txn.py @@ -1,272 +1,277 @@ #!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ This test checks acceptance of transactions by the mempool It is derived from the much more complex p2p-fullblocktest. """ import time from test_framework.blocktools import ( create_block, create_coinbase, create_tx_with_script, ) from test_framework.cdefs import MAX_STANDARD_TX_SIGOPS from test_framework.key import CECKey from test_framework.messages import ( COutPoint, CTransaction, CTxIn, CTxOut, ToHex, ) from test_framework.mininode import ( P2PDataStore, ) from test_framework.script import ( CScript, hash160, OP_2DUP, OP_CHECKSIG, OP_CHECKSIGVERIFY, OP_DROP, OP_EQUAL, OP_HASH160, OP_TRUE, SIGHASH_ALL, SIGHASH_FORKID, SignatureHashForkId, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error # Error for too many sigops in one TX RPC_TXNS_TOO_MANY_SIGOPS_ERROR = "bad-txns-too-many-sigops" +# Set test to run with sigops deactivation far in the future. +SIGOPS_DEACTIVATION_TIME = 2000000000 + class PreviousSpendableOutput(): def __init__(self, tx=CTransaction(), n=-1): self.tx = tx # The output we're spending self.n = n class FullBlockTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.block_heights = {} self.coinbase_key = CECKey() self.coinbase_key.set_secretbytes(b"horsebattery") self.coinbase_pubkey = self.coinbase_key.get_pubkey() self.tip = None self.blocks = {} + self.extra_args = [ + ['-phononactivationtime={}'.format(SIGOPS_DEACTIVATION_TIME)]] def add_options(self, parser): super().add_options(parser) parser.add_argument( "--runbarelyexpensive", dest="runbarelyexpensive", default=True) def add_transactions_to_block(self, block, tx_list): [tx.rehash() for tx in tx_list] block.vtx.extend(tx_list) block.vtx = [block.vtx[0]] + \ sorted(block.vtx[1:], key=lambda tx: tx.get_id()) # this is a little handier to use than the version in blocktools.py def create_tx(self, spend_tx, n, value, script=CScript([OP_TRUE])): tx = create_tx_with_script(spend_tx, n, b"", value, script) return tx # sign a transaction, using the key we know about # this signs input 0 in tx, which is assumed to be spending output n in # spend_tx def sign_tx(self, tx, spend_tx, n): scriptPubKey = bytearray(spend_tx.vout[n].scriptPubKey) if (scriptPubKey[0] == OP_TRUE): # an anyone-can-spend tx.vin[0].scriptSig = CScript() return sighash = SignatureHashForkId( spend_tx.vout[n].scriptPubKey, tx, 0, SIGHASH_ALL | SIGHASH_FORKID, spend_tx.vout[n].nValue) tx.vin[0].scriptSig = CScript( [self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL | SIGHASH_FORKID]))]) def create_and_sign_transaction( self, spend_tx, n, value, script=CScript([OP_TRUE])): tx = self.create_tx(spend_tx, n, value, script) self.sign_tx(tx, spend_tx, n) tx.rehash() return tx def next_block(self, number, spend=None, additional_coinbase_value=0, script=CScript([OP_TRUE])): if self.tip is None: base_block_hash = self.genesis_hash block_time = int(time.time()) + 1 else: base_block_hash = self.tip.sha256 block_time = self.tip.nTime + 1 # First create the coinbase height = self.block_heights[base_block_hash] + 1 coinbase = create_coinbase(height, self.coinbase_pubkey) coinbase.vout[0].nValue += additional_coinbase_value coinbase.rehash() if spend is None: block = create_block(base_block_hash, coinbase, block_time) else: # all but one satoshi to fees coinbase.vout[0].nValue += spend.tx.vout[ spend.n].nValue - 1 coinbase.rehash() block = create_block(base_block_hash, coinbase, block_time) # spend 1 satoshi tx = create_tx_with_script(spend.tx, spend.n, b"", 1, script) self.sign_tx(tx, spend.tx, spend.n) self.add_transactions_to_block(block, [tx]) block.hashMerkleRoot = block.calc_merkle_root() # Do PoW, which is very inexpensive on regnet block.solve() self.tip = block self.block_heights[block.sha256] = height assert number not in self.blocks self.blocks[number] = block return block def run_test(self): node = self.nodes[0] node.add_p2p_connection(P2PDataStore()) self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) self.block_heights[self.genesis_hash] = 0 spendable_outputs = [] # save the current tip so it can be spent by a later block def save_spendable_output(): spendable_outputs.append(self.tip) # get an output that we previously marked as spendable def get_spendable_output(): return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0) # move the tip back to a previous block def tip(number): self.tip = self.blocks[number] # adds transactions to the block and updates state def update_block(block_number, new_transactions): block = self.blocks[block_number] self.add_transactions_to_block(block, new_transactions) old_sha256 = block.sha256 block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Update the internal state just like in next_block self.tip = block if block.sha256 != old_sha256: self.block_heights[ block.sha256] = self.block_heights[old_sha256] del self.block_heights[old_sha256] self.blocks[block_number] = block return block # shorthand for functions block = self.next_block # Create a new block block(0) save_spendable_output() node.p2p.send_blocks_and_test([self.tip], node) # Now we need that block to mature so we can spend the coinbase. maturity_blocks = [] for i in range(99): block(5000 + i) maturity_blocks.append(self.tip) save_spendable_output() node.p2p.send_blocks_and_test(maturity_blocks, node) # Collect spendable outputs now to avoid cluttering the code later on out = [] for i in range(33): out.append(get_spendable_output()) # P2SH # Build the redeem script, hash it, use hash to create the p2sh script # Pad with extra bytes to make sure that the scriptsig length will be # >= 198 after signature is added, even if it's a schnorr sig; this # ensures a not-too-high density of sigchecks. redeem_script = CScript([b'X' * 51, OP_DROP, self.coinbase_pubkey] + [ OP_2DUP, OP_CHECKSIGVERIFY] * 5 + [OP_CHECKSIG]) # should be this length since coinbase_pubkey is uncompressed. assert_equal(len(redeem_script), 130) redeem_script_hash = hash160(redeem_script) p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL]) # Creates a new transaction using a p2sh transaction as input def spend_p2sh_tx(p2sh_tx_to_spend, output_script=CScript([OP_TRUE])): # Create the transaction spent_p2sh_tx = CTransaction() spent_p2sh_tx.vin.append( CTxIn(COutPoint(p2sh_tx_to_spend.sha256, 0), b'')) spent_p2sh_tx.vout.append(CTxOut(1000, output_script)) # Sign the transaction using the redeem script sighash = SignatureHashForkId( redeem_script, spent_p2sh_tx, 0, SIGHASH_ALL | SIGHASH_FORKID, p2sh_tx_to_spend.vout[0].nValue) sig = self.coinbase_key.sign( sighash) + bytes(bytearray([SIGHASH_ALL | SIGHASH_FORKID])) spent_p2sh_tx.vin[0].scriptSig = CScript([sig, redeem_script]) assert len( spent_p2sh_tx.vin[0].scriptSig) >= 198, "needs to pass input sigchecks limit" spent_p2sh_tx.rehash() return spent_p2sh_tx # P2SH tests # Create a p2sh transaction p2sh_tx = self.create_and_sign_transaction( out[0].tx, out[0].n, 10000, p2sh_script) # Add the transaction to the block block(1) update_block(1, [p2sh_tx]) node.p2p.send_blocks_and_test([self.tip], node) # Sigops p2sh limit for the mempool test p2sh_sigops_limit_mempool = MAX_STANDARD_TX_SIGOPS - \ redeem_script.GetSigOpCount(True) # Too many sigops in one p2sh script too_many_p2sh_sigops_mempool = CScript( [OP_CHECKSIG] * (p2sh_sigops_limit_mempool + 1)) # A transaction with this output script can't get into the mempool assert_raises_rpc_error(-26, RPC_TXNS_TOO_MANY_SIGOPS_ERROR, node.sendrawtransaction, ToHex(spend_p2sh_tx(p2sh_tx, too_many_p2sh_sigops_mempool))) # The transaction is rejected, so the mempool should still be empty assert_equal(set(node.getrawmempool()), set()) # Max sigops in one p2sh txn max_p2sh_sigops_mempool = CScript( [OP_CHECKSIG] * (p2sh_sigops_limit_mempool)) # A transaction with this output script can get into the mempool max_p2sh_sigops_txn = spend_p2sh_tx(p2sh_tx, max_p2sh_sigops_mempool) max_p2sh_sigops_txn_id = node.sendrawtransaction( ToHex(max_p2sh_sigops_txn)) assert_equal(set(node.getrawmempool()), {max_p2sh_sigops_txn_id}) # Mine the transaction block(2, spend=out[1]) update_block(2, [max_p2sh_sigops_txn]) node.p2p.send_blocks_and_test([self.tip], node) # The transaction has been mined, it's not in the mempool anymore assert_equal(set(node.getrawmempool()), set()) if __name__ == '__main__': FullBlockTest().main() diff --git a/test/functional/abc-p2p-fullblocktest-sigops.py b/test/functional/abc-p2p-fullblocktest-sigops.py index 9820b1174..df9718caa 100755 --- a/test/functional/abc-p2p-fullblocktest-sigops.py +++ b/test/functional/abc-p2p-fullblocktest-sigops.py @@ -1,416 +1,419 @@ #!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Copyright (c) 2017 The Bitcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ This test checks simple acceptance of bigger blocks via p2p. It is derived from the much more complex p2p-fullblocktest. The intention is that small tests can be derived from this one, or this one can be extended, to cover the checks done for bigger blocks (e.g. sigops limits). """ from collections import deque import random import time from test_framework.blocktools import ( create_block, create_coinbase, create_tx_with_script, make_conform_to_ctor, ) from test_framework.cdefs import ( MAX_BLOCK_SIGOPS_PER_MB, MAX_TX_SIGOPS_COUNT, ONE_MEGABYTE, ) from test_framework.key import CECKey from test_framework.messages import ( COutPoint, CTransaction, CTxIn, CTxOut, ser_compact_size, ) from test_framework.mininode import P2PDataStore from test_framework.script import ( CScript, hash160, OP_2DUP, OP_CHECKDATASIG, OP_CHECKMULTISIG, OP_CHECKSIG, OP_CHECKSIGVERIFY, OP_EQUAL, OP_HASH160, OP_RETURN, OP_TRUE, SIGHASH_ALL, SIGHASH_FORKID, SignatureHashForkId, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal +# Set test to run with sigops deactivation far in the future. +SIGOPS_DEACTIVATION_TIME = 2000000000 + class PreviousSpendableOutput(): def __init__(self, tx=CTransaction(), n=-1): self.tx = tx # the output we're spending self.n = n class FullBlockTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.block_heights = {} self.tip = None self.blocks = {} self.excessive_block_size = 100 * ONE_MEGABYTE self.extra_args = [['-whitelist=127.0.0.1', - "-excessiveblocksize={}".format(self.excessive_block_size)]] + "-excessiveblocksize={}".format(self.excessive_block_size), '-phononactivationtime={}'.format(SIGOPS_DEACTIVATION_TIME)]] def add_options(self, parser): super().add_options(parser) parser.add_argument( "--runbarelyexpensive", dest="runbarelyexpensive", default=True) def add_transactions_to_block(self, block, tx_list): [tx.rehash() for tx in tx_list] block.vtx.extend(tx_list) # this is a little handier to use than the version in blocktools.py def create_tx(self, spend, value, script=CScript([OP_TRUE])): tx = create_tx_with_script(spend.tx, spend.n, b"", value, script) return tx def next_block(self, number, spend=None, script=CScript( [OP_TRUE]), block_size=0, extra_sigops=0): if self.tip is None: base_block_hash = self.genesis_hash block_time = int(time.time()) + 1 else: base_block_hash = self.tip.sha256 block_time = self.tip.nTime + 1 # First create the coinbase height = self.block_heights[base_block_hash] + 1 coinbase = create_coinbase(height) coinbase.rehash() if spend is None: # We need to have something to spend to fill the block. assert_equal(block_size, 0) block = create_block(base_block_hash, coinbase, block_time) else: # all but one satoshi to fees coinbase.vout[0].nValue += spend.tx.vout[spend.n].nValue - 1 coinbase.rehash() block = create_block(base_block_hash, coinbase, block_time) # Make sure we have plenty engough to spend going forward. spendable_outputs = deque([spend]) def get_base_transaction(): # Create the new transaction tx = CTransaction() # Spend from one of the spendable outputs spend = spendable_outputs.popleft() tx.vin.append(CTxIn(COutPoint(spend.tx.sha256, spend.n))) # Add spendable outputs for i in range(4): tx.vout.append(CTxOut(0, CScript([OP_TRUE]))) spendable_outputs.append(PreviousSpendableOutput(tx, i)) return tx tx = get_base_transaction() # Make it the same format as transaction added for padding and save the size. # It's missing the padding output, so we add a constant to account # for it. tx.rehash() base_tx_size = len(tx.serialize()) + 18 # If a specific script is required, add it. if script is not None: tx.vout.append(CTxOut(1, script)) # Put some random data into the first transaction of the chain to # randomize ids. tx.vout.append( CTxOut(0, CScript([random.randint(0, 256), OP_RETURN]))) # Add the transaction to the block self.add_transactions_to_block(block, [tx]) # If we have a block size requirement, just fill # the block until we get there current_block_size = len(block.serialize()) while current_block_size < block_size: # We will add a new transaction. That means the size of # the field enumerating how many transaction go in the block # may change. current_block_size -= len(ser_compact_size(len(block.vtx))) current_block_size += len(ser_compact_size(len(block.vtx) + 1)) # Create the new transaction tx = get_base_transaction() # Add padding to fill the block. script_length = block_size - current_block_size - base_tx_size if script_length > 510000: if script_length < 1000000: # Make sure we don't find ourselves in a position where we # need to generate a transaction smaller than what we # expected. script_length = script_length // 2 else: script_length = 500000 tx_sigops = min(extra_sigops, script_length, MAX_TX_SIGOPS_COUNT) extra_sigops -= tx_sigops script_pad_len = script_length - tx_sigops script_output = CScript( [b'\x00' * script_pad_len] + [OP_CHECKSIG] * tx_sigops) tx.vout.append(CTxOut(0, script_output)) # Add the tx to the list of transactions to be included # in the block. self.add_transactions_to_block(block, [tx]) current_block_size += len(tx.serialize()) # Now that we added a bunch of transaction, we need to recompute # the merkle root. make_conform_to_ctor(block) block.hashMerkleRoot = block.calc_merkle_root() # Check that the block size is what's expected if block_size > 0: assert_equal(len(block.serialize()), block_size) # Do PoW, which is cheap on regnet block.solve() self.tip = block self.block_heights[block.sha256] = height assert number not in self.blocks self.blocks[number] = block return block def run_test(self): node = self.nodes[0] node.add_p2p_connection(P2PDataStore()) # Set the blocksize to 2MB as initial condition node.setexcessiveblock(self.excessive_block_size) self.genesis_hash = int(node.getbestblockhash(), 16) self.block_heights[self.genesis_hash] = 0 spendable_outputs = [] # save the current tip so it can be spent by a later block def save_spendable_output(): spendable_outputs.append(self.tip) # get an output that we previously marked as spendable def get_spendable_output(): return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0) # move the tip back to a previous block def tip(number): self.tip = self.blocks[number] # adds transactions to the block and updates state def update_block(block_number, new_transactions): block = self.blocks[block_number] self.add_transactions_to_block(block, new_transactions) old_sha256 = block.sha256 make_conform_to_ctor(block) block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Update the internal state just like in next_block self.tip = block if block.sha256 != old_sha256: self.block_heights[ block.sha256] = self.block_heights[old_sha256] del self.block_heights[old_sha256] self.blocks[block_number] = block return block # shorthand for functions block = self.next_block # Create a new block block(0) save_spendable_output() node.p2p.send_blocks_and_test([self.tip], node) # Now we need that block to mature so we can spend the coinbase. maturity_blocks = [] for i in range(105): block(5000 + i) maturity_blocks.append(self.tip) save_spendable_output() node.p2p.send_blocks_and_test(maturity_blocks, node) # collect spendable outputs now to avoid cluttering the code later on out = [] for i in range(100): out.append(get_spendable_output()) # Accept many sigops lots_of_checksigs = CScript( [OP_CHECKSIG] * MAX_BLOCK_SIGOPS_PER_MB) block(19, spend=out[0], script=lots_of_checksigs, block_size=ONE_MEGABYTE) node.p2p.send_blocks_and_test([self.tip], node) block(20, spend=out[1], script=lots_of_checksigs, block_size=ONE_MEGABYTE, extra_sigops=1) node.p2p.send_blocks_and_test( [self.tip], node, success=False, reject_reason='bad-blk-sigops') # Rewind bad block tip(19) # Accept 40k sigops per block > 1MB and <= 2MB block(21, spend=out[1], script=lots_of_checksigs, extra_sigops=MAX_BLOCK_SIGOPS_PER_MB, block_size=ONE_MEGABYTE + 1) node.p2p.send_blocks_and_test([self.tip], node) # Accept 40k sigops per block > 1MB and <= 2MB block(22, spend=out[2], script=lots_of_checksigs, extra_sigops=MAX_BLOCK_SIGOPS_PER_MB, block_size=2 * ONE_MEGABYTE) node.p2p.send_blocks_and_test([self.tip], node) # Reject more than 40k sigops per block > 1MB and <= 2MB. block(23, spend=out[3], script=lots_of_checksigs, extra_sigops=MAX_BLOCK_SIGOPS_PER_MB + 1, block_size=ONE_MEGABYTE + 1) node.p2p.send_blocks_and_test( [self.tip], node, success=False, reject_reason='bad-blk-sigops') # Rewind bad block tip(22) # Reject more than 40k sigops per block > 1MB and <= 2MB. block(24, spend=out[3], script=lots_of_checksigs, extra_sigops=MAX_BLOCK_SIGOPS_PER_MB + 1, block_size=2 * ONE_MEGABYTE) node.p2p.send_blocks_and_test( [self.tip], node, success=False, reject_reason='bad-blk-sigops') # Rewind bad block tip(22) # Accept 60k sigops per block > 2MB and <= 3MB block(25, spend=out[3], script=lots_of_checksigs, extra_sigops=2 * MAX_BLOCK_SIGOPS_PER_MB, block_size=2 * ONE_MEGABYTE + 1) node.p2p.send_blocks_and_test([self.tip], node) # Accept 60k sigops per block > 2MB and <= 3MB block(26, spend=out[4], script=lots_of_checksigs, extra_sigops=2 * MAX_BLOCK_SIGOPS_PER_MB, block_size=3 * ONE_MEGABYTE) node.p2p.send_blocks_and_test([self.tip], node) # Reject more than 40k sigops per block > 1MB and <= 2MB. block(27, spend=out[5], script=lots_of_checksigs, extra_sigops=2 * MAX_BLOCK_SIGOPS_PER_MB + 1, block_size=2 * ONE_MEGABYTE + 1) node.p2p.send_blocks_and_test( [self.tip], node, success=False, reject_reason='bad-blk-sigops') # Rewind bad block tip(26) # Reject more than 40k sigops per block > 1MB and <= 2MB. block(28, spend=out[5], script=lots_of_checksigs, extra_sigops=2 * MAX_BLOCK_SIGOPS_PER_MB + 1, block_size=3 * ONE_MEGABYTE) node.p2p.send_blocks_and_test( [self.tip], node, success=False, reject_reason='bad-blk-sigops') # Rewind bad block tip(26) # Too many sigops in one txn too_many_tx_checksigs = CScript( [OP_CHECKSIG] * (MAX_BLOCK_SIGOPS_PER_MB + 1)) block( 29, spend=out[6], script=too_many_tx_checksigs, block_size=ONE_MEGABYTE + 1) node.p2p.send_blocks_and_test( [self.tip], node, success=False, reject_reason='bad-txn-sigops') # Rewind bad block tip(26) # Generate a key pair to test P2SH sigops count private_key = CECKey() private_key.set_secretbytes(b"fatstacks") public_key = private_key.get_pubkey() # P2SH # Build the redeem script, hash it, use hash to create the p2sh script redeem_script = CScript( [public_key] + [OP_2DUP, OP_CHECKSIGVERIFY] * 5 + [OP_CHECKSIG]) redeem_script_hash = hash160(redeem_script) p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL]) # Create a p2sh transaction p2sh_tx = self.create_tx(out[6], 1, p2sh_script) # Add the transaction to the block block(30) update_block(30, [p2sh_tx]) node.p2p.send_blocks_and_test([self.tip], node) # Creates a new transaction using the p2sh transaction included in the # last block def spend_p2sh_tx(output_script=CScript([OP_TRUE])): # Create the transaction spent_p2sh_tx = CTransaction() spent_p2sh_tx.vin.append(CTxIn(COutPoint(p2sh_tx.sha256, 0), b'')) spent_p2sh_tx.vout.append(CTxOut(1, output_script)) # Sign the transaction using the redeem script sighash = SignatureHashForkId( redeem_script, spent_p2sh_tx, 0, SIGHASH_ALL | SIGHASH_FORKID, p2sh_tx.vout[0].nValue) sig = private_key.sign(sighash) + \ bytes(bytearray([SIGHASH_ALL | SIGHASH_FORKID])) spent_p2sh_tx.vin[0].scriptSig = CScript([sig, redeem_script]) spent_p2sh_tx.rehash() return spent_p2sh_tx # Sigops p2sh limit p2sh_sigops_limit = MAX_BLOCK_SIGOPS_PER_MB - \ redeem_script.GetSigOpCount(True) # Too many sigops in one p2sh txn too_many_p2sh_sigops = CScript([OP_CHECKSIG] * (p2sh_sigops_limit + 1)) block(31, spend=out[7], block_size=ONE_MEGABYTE + 1) update_block(31, [spend_p2sh_tx(too_many_p2sh_sigops)]) node.p2p.send_blocks_and_test( [self.tip], node, success=False, reject_reason='bad-txn-sigops') # Rewind bad block tip(30) # Max sigops in one p2sh txn max_p2sh_sigops = CScript([OP_CHECKSIG] * (p2sh_sigops_limit)) block(32, spend=out[8], block_size=ONE_MEGABYTE + 1) update_block(32, [spend_p2sh_tx(max_p2sh_sigops)]) node.p2p.send_blocks_and_test([self.tip], node) # Ensure that a coinbase with too many sigops is forbidden, even if it # doesn't push the total block count over the limit. b33 = block(33, spend=out[9], block_size=2 * ONE_MEGABYTE) # 20001 sigops b33.vtx[0].vout.append( CTxOut(0, CScript([OP_CHECKMULTISIG] * 1000 + [OP_CHECKDATASIG]))) update_block(33, []) node.p2p.send_blocks_and_test( [b33], node, success=False, reject_reason='bad-txn-sigops') # 20000 sigops b33.vtx[0].vout[-1].scriptPubKey = CScript([OP_CHECKMULTISIG] * 1000) update_block(33, []) node.p2p.send_blocks_and_test([b33], node) if __name__ == '__main__': FullBlockTest().main() diff --git a/test/functional/abc-sigops-deactivation.py b/test/functional/abc-sigops-deactivation.py new file mode 100755 index 000000000..45ee4bb5d --- /dev/null +++ b/test/functional/abc-sigops-deactivation.py @@ -0,0 +1,359 @@ +#!/usr/bin/env python3 +# Copyright (c) 2020 The Bitcoin Developers +# Distributed under the MIT software license, see the accompanying +# file COPYING or http://www.opensource.org/licenses/mit-license.php. +""" +Test deactivation of sigops counting + +based on abc-schnorrmultisig-activation.py (D3736). +""" + +from test_framework.blocktools import ( + create_block, + create_coinbase, + make_conform_to_ctor, +) +from test_framework.cdefs import ( + ONE_MEGABYTE, +) +from test_framework.messages import ( + CBlock, + COutPoint, + CTransaction, + CTxIn, + CTxOut, + FromHex, + ToHex, +) +from test_framework.mininode import ( + P2PDataStore, +) +from test_framework.script import ( + CScript, + hash160, + OP_CHECKMULTISIG, + OP_CHECKDATASIG, + OP_ENDIF, + OP_EQUAL, + OP_FALSE, + OP_HASH160, + OP_IF, + OP_RETURN, + OP_TRUE, +) +from test_framework.test_framework import BitcoinTestFramework +from test_framework.txtools import pad_tx +from test_framework.util import ( + assert_equal, + assert_raises_rpc_error, + sync_blocks, +) +from decimal import Decimal +from collections import deque + +SATOSHI = Decimal('0.00000001') + +# Set test to run with sigops deactivation far in the future. +SIGOPS_DEACTIVATION_TIME = 2000000000 + +# If we don't do this, autoreplay protection will activate before graviton and +# all our sigs will mysteriously fail. +REPLAY_PROTECTION_START_TIME = SIGOPS_DEACTIVATION_TIME * 2 + +# Transactions for mempool with too many sigops give this error: +MEMPOOL_TXSIGOPS_ERROR = 'bad-txns-too-many-sigops' +MEMPOOL_P2SH_SIGOPS_ERROR = 'bad-txns-nonstandard-inputs' +# Blocks that have single txes with too many sigops give this error: +BLOCK_TXSIGOPS_ERROR = 'bad-txn-sigops' +# Blocks with too many sigops give this error: +BLOCK_TOTALSIGOPS_ERROR = 'bad-blk-sigops' + + +def create_transaction(spendfrom, custom_script, amount=None): + # Fund and sign a transaction to a given output. + # spendfrom should be a CTransaction with first output to OP_TRUE. + + # custom output will go on position 1, after position 0 which will be + # OP_TRUE (so it can be reused). + customout = CTxOut(0, bytes(custom_script)) + # set output amount to required dust if not given + customout.nValue = amount or (len(customout.serialize()) + 148) * 3 + + ctx = CTransaction() + ctx.vin.append(CTxIn(COutPoint(spendfrom.sha256, 0), b'')) + ctx.vout.append( + CTxOut(0, bytes([OP_TRUE]))) + ctx.vout.append(customout) + pad_tx(ctx) + + fee = len(ctx.serialize()) + ctx.vout[0].nValue = spendfrom.vout[0].nValue - customout.nValue - fee + ctx.rehash() + + return ctx + + +def check_for_ban_on_rejected_tx(node, tx, reject_reason=None): + """Check we are disconnected when sending a txn that the node rejects, + then reconnect after. + + (Can't actually get banned, since bitcoind won't ban local peers.)""" + node.p2p.send_txs_and_test( + [tx], node, success=False, expect_disconnect=True, reject_reason=reject_reason) + node.disconnect_p2ps() + node.add_p2p_connection(P2PDataStore()) + + +def check_for_ban_on_rejected_block(node, block, reject_reason=None): + """Check we are disconnected when sending a block that the node rejects, + then reconnect after. + + (Can't actually get banned, since bitcoind won't ban local peers.)""" + node.p2p.send_blocks_and_test( + [block], node, success=False, reject_reason=reject_reason, expect_disconnect=True) + node.disconnect_p2ps() + node.add_p2p_connection(P2PDataStore()) + + +def check_for_no_ban_on_rejected_tx(node, tx, reject_reason=None): + """Check we are not disconnected when sending a txn that the node rejects.""" + node.p2p.send_txs_and_test( + [tx], node, success=False, reject_reason=reject_reason) + + +class SigopsDeactivationTest(BitcoinTestFramework): + + def set_test_params(self): + self.setup_clean_chain = True + self.num_nodes = 2 + self.block_heights = {} + timeargs = ["-phononactivationtime={}".format( + SIGOPS_DEACTIVATION_TIME), + "-replayprotectionactivationtime={}".format( + REPLAY_PROTECTION_START_TIME)] + # many standardness rules are actually enforced on regtest, except for + # P2SH sigops. + self.extra_args = [timeargs, timeargs + ['-acceptnonstdtxn=0']] + + def getbestblock(self, node): + """Get the best block. Register its height so we can use build_block.""" + block_height = node.getblockcount() + blockhash = node.getblockhash(block_height) + block = FromHex(CBlock(), node.getblock(blockhash, 0)) + block.calc_sha256() + self.block_heights[block.sha256] = block_height + return block + + def build_block(self, parent, transactions=(), + nTime=None, cbextrascript=None): + """Make a new block with an OP_1 coinbase output. + + Requires parent to have its height registered.""" + parent.calc_sha256() + block_height = self.block_heights[parent.sha256] + 1 + block_time = (parent.nTime + 1) if nTime is None else nTime + + block = create_block( + parent.sha256, create_coinbase(block_height), block_time) + if cbextrascript is not None: + block.vtx[0].vout.append(CTxOut(0, cbextrascript)) + block.vtx[0].rehash() + block.vtx.extend(transactions) + make_conform_to_ctor(block) + block.hashMerkleRoot = block.calc_merkle_root() + block.solve() + self.block_heights[block.sha256] = block_height + return block + + def run_test(self): + (node, std_node) = self.nodes + node.add_p2p_connection(P2PDataStore()) + std_node.add_p2p_connection(P2PDataStore()) + # Get out of IBD + node.generatetoaddress(1, node.get_deterministic_priv_key().address) + + tip = self.getbestblock(node) + + self.log.info("Create some blocks with OP_1 coinbase for spending.") + blocks = [] + for _ in range(20): + tip = self.build_block(tip) + blocks.append(tip) + node.p2p.send_blocks_and_test(blocks, node, success=True) + self.spendable_outputs = deque(block.vtx[0] for block in blocks) + + self.log.info("Mature the blocks.") + node.generatetoaddress(100, node.get_deterministic_priv_key().address) + + tip = self.getbestblock(node) + + self.log.info("Generating some high-sigop transactions.") + + # Tx with 4001 sigops (valid but non standard) + tx_4001 = create_transaction(self.spendable_outputs.popleft(), [ + OP_CHECKMULTISIG] * 200 + [OP_CHECKDATASIG]) + + # Tx with 20001 sigops (consensus-invalid) + tx_20001 = create_transaction(self.spendable_outputs.popleft(), [ + OP_CHECKMULTISIG] * 1000 + [OP_CHECKDATASIG]) + + # P2SH tx with too many sigops (valid but nonstandard for std_node) + redeem_script = bytes( + [OP_IF, OP_CHECKMULTISIG, OP_ENDIF, OP_TRUE]) + p2sh_script = CScript([OP_HASH160, hash160(redeem_script), OP_EQUAL]) + tx_fundp2sh = create_transaction( + self.spendable_outputs.popleft(), p2sh_script) + tx_spendp2sh = CTransaction() + tx_spendp2sh.vin.append( + CTxIn(COutPoint(tx_fundp2sh.sha256, 1), CScript([OP_FALSE, redeem_script]))) + tx_spendp2sh.vout.append( + CTxOut(0, CScript([OP_RETURN, b'pad' * 20]))) + tx_spendp2sh.rehash() + + # Chain of 10 txes with 2000 sigops each. + txes_10x2000_sigops = [] + tx = self.spendable_outputs.popleft() + for _ in range(10): + tx = create_transaction(tx, [OP_CHECKMULTISIG] * 100) + txes_10x2000_sigops.append(tx) + + def make_hightotalsigop_block(): + # 20001 total sigops + return self.build_block( + tip, txes_10x2000_sigops, cbextrascript=bytes([OP_CHECKDATASIG])) + + def make_highsigop_coinbase_block(): + # 60000 sigops in the coinbase + return self.build_block( + tip, cbextrascript=bytes([OP_CHECKMULTISIG] * 3000)) + + self.log.info( + "Try various high-sigop transactions in blocks / mempool before upgrade") + + # mempool refuses over 4001. + check_for_no_ban_on_rejected_tx(node, tx_4001, MEMPOOL_TXSIGOPS_ERROR) + # it used to be that exceeding 20000 would cause a ban, but it's + # important that this causes no ban: we want that upgraded nodes + # can't get themselves banned by relaying huge-sigops transactions. + check_for_no_ban_on_rejected_tx(node, tx_20001, MEMPOOL_TXSIGOPS_ERROR) + + # the 20001 tx can't be mined + check_for_ban_on_rejected_block(node, self.build_block( + tip, [tx_20001]), BLOCK_TXSIGOPS_ERROR) + + self.log.info( + "The P2SH script has too many sigops (20 > 15) for a standard node.") + # Mine the P2SH funding first because it's nonstandard. + tip = self.build_block(tip, [tx_fundp2sh]) + std_node.p2p.send_blocks_and_test([tip], node) + assert_raises_rpc_error(-26, MEMPOOL_P2SH_SIGOPS_ERROR, + std_node.sendrawtransaction, ToHex(tx_spendp2sh)) + + self.log.info( + "A bunch of 2000-sigops txes can be put in mempool but not mined all at once.") + # Send the 2000-sigop transactions, which are acceptable. + for tx in txes_10x2000_sigops: + node.sendrawtransaction(ToHex(tx)) + + # They can't be mined all at once if the coinbase has a single sigop + # (total 20001) + check_for_ban_on_rejected_block( + node, make_hightotalsigop_block(), BLOCK_TOTALSIGOPS_ERROR) + + # Activation tests + + self.log.info("Approach to just before upgrade activation") + # Move our clock to the uprade time so we will accept such + # future-timestamped blocks. + node.setmocktime(SIGOPS_DEACTIVATION_TIME) + std_node.setmocktime(SIGOPS_DEACTIVATION_TIME) + # Mine six blocks with timestamp starting at SIGOPS_DEACTIVATION_TIME-1 + blocks = [] + for i in range(-1, 5): + tip = self.build_block(tip, nTime=SIGOPS_DEACTIVATION_TIME + i) + blocks.append(tip) + node.p2p.send_blocks_and_test(blocks, node) + assert_equal(node.getblockchaininfo()[ + 'mediantime'], SIGOPS_DEACTIVATION_TIME - 1) + + self.log.info( + "The next block will activate, but the activation block itself must follow old rules") + + check_for_ban_on_rejected_block(node, self.build_block( + tip, [tx_20001]), BLOCK_TXSIGOPS_ERROR) + check_for_ban_on_rejected_block( + node, make_hightotalsigop_block(), BLOCK_TOTALSIGOPS_ERROR) + check_for_ban_on_rejected_block( + node, make_highsigop_coinbase_block(), BLOCK_TXSIGOPS_ERROR) + + self.log.info("Mine the activation block itself") + tip = self.build_block(tip) + node.p2p.send_blocks_and_test([tip], node) + sync_blocks(self.nodes) + + self.log.info("We have activated!") + assert_equal(node.getblockchaininfo()[ + 'mediantime'], SIGOPS_DEACTIVATION_TIME) + assert_equal(std_node.getblockchaininfo()[ + 'mediantime'], SIGOPS_DEACTIVATION_TIME) + + # save this tip for later + upgrade_block = tip + + self.log.info( + "The mempool is now a free-for-all, and we can get all the high-sigops transactions in") + std_node.sendrawtransaction(ToHex(tx_spendp2sh)) + node.sendrawtransaction(ToHex(tx_spendp2sh)) + node.sendrawtransaction(ToHex(tx_4001)) + node.sendrawtransaction(ToHex(tx_20001)) + # resend the 2000-sigop transactions, which will have expired due to + # setmocktime. + for tx in txes_10x2000_sigops: + node.sendrawtransaction(ToHex(tx)) + + alltxes = set(tx.hash for tx in [ + tx_spendp2sh, tx_4001, tx_20001] + txes_10x2000_sigops) + assert_equal(set(node.getrawmempool()), alltxes) + + self.log.info( + "The miner will include all the high-sigops transactions at once, without issue.") + node.generatetoaddress(1, node.get_deterministic_priv_key().address) + tip = self.getbestblock(node) + assert_equal(set(tx.rehash() for tx in tip.vtx[1:]), alltxes) + # even though it is far smaller than one megabyte, we got in something + # like 44000 sigops + assert len(tip.serialize()) < ONE_MEGABYTE + + # save this tip for later + postupgrade_block = tip + + # Deactivation tests + + self.log.info( + "Invalidating the post-upgrade block returns the transactions to mempool") + node.invalidateblock(postupgrade_block.hash) + assert_equal(set(node.getrawmempool()), alltxes) + + self.log.info("Test some weird alternative blocks") + tip = upgrade_block + self.log.info("A 40000-sigop coinbase is acceptable now") + tip = make_highsigop_coinbase_block() + node.p2p.send_blocks_and_test([tip], node) + self.log.info("We can get in our 20001 sigop total block") + tip = make_hightotalsigop_block() + node.p2p.send_blocks_and_test([tip], node) + + self.log.info( + "Invalidating the upgrade block evicts the bad txes") + goodtxes = alltxes - {tx_4001.hash, tx_20001.hash} + # loose-rules node just evicts the too-many-sigops transactions + node.invalidateblock(upgrade_block.hash) + assert_equal(set(node.getrawmempool()), goodtxes) + # std_node evicts everything as either nonstandard scriptpubkey or p2sh + # too-many-sigops. + std_node.invalidateblock(upgrade_block.hash) + assert_equal(std_node.getrawmempool(), []) + + +if __name__ == '__main__': + SigopsDeactivationTest().main() diff --git a/test/functional/abc-sigops-mempool-mining.py b/test/functional/abc-sigops-mempool-mining.py index 01b79ae47..08a7c1bc3 100755 --- a/test/functional/abc-sigops-mempool-mining.py +++ b/test/functional/abc-sigops-mempool-mining.py @@ -1,325 +1,329 @@ #!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ Test mempool and mining priorities using high-sigops transactions, probing how the virtualsize mechanism behaves. This test assumes: -bytespersigop default is 50 -blockmintxfee default is 1000 -minrelaytxfee default is 1000 -MEMPOOL_FULL_FEE_INCREMENT is 1000 based on mempool_limit.py """ from test_framework.blocktools import ( create_block, create_coinbase, make_conform_to_ctor, ) from test_framework.messages import ( CBlock, COutPoint, CTransaction, CTxIn, CTxOut, FromHex, ToHex, ) from test_framework.mininode import ( P2PDataStore, ) from test_framework.script import ( OP_CHECKMULTISIG, OP_RETURN, OP_TRUE, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, JSONRPCException ) from decimal import Decimal from collections import deque SATOSHI = Decimal('0.00000001') +# Set test to run with sigops deactivation far in the future. +SIGOPS_DEACTIVATION_TIME = 2000000000 + def create_var_transaction(spendfrom, custom_script, size_bytes, fee_sats): # Fund and sign a transaction to a given output, padding it to exactly # size = size_bytes and providing the given fee. # spendfrom should be a CTransaction with first output to OP_TRUE. customout = CTxOut(0, custom_script) # set output amount to required dust customout.nValue = (len(customout.serialize()) + 148) * 3 ctx = CTransaction() ctx.vin.append(CTxIn(COutPoint(spendfrom.sha256, 0), b'')) ctx.vout.append( CTxOut(spendfrom.vout[0].nValue - customout.nValue - fee_sats, bytes([OP_TRUE]))) ctx.vout.append(customout) # two padding outputs ctx.vout.append(CTxOut(0, b'')) ctx.vout.append(CTxOut(0, b'')) size_without_padding = len(ctx.serialize()) padding_needed = size_bytes - size_without_padding assert padding_needed >= 0, (size_bytes, size_without_padding) # Now insert padding. We need to be careful due to the flexible # var_int size. if padding_needed > 0xFFFF + 4: # We can fit all padding in one script. # 4 extra bytes will be used for var_int ctx.vout[2].scriptPubKey = bytes( [OP_RETURN]) * (padding_needed - 4) padding_needed = 0 elif padding_needed >= 0xFD + 2: # We can pad most (probably all) using a script that is between # 253 and 65535 in length. Probably fit everything in one script. # 2 extra bytes will be used for var_int scriptsize = min(padding_needed - 2, 0xFFFF) ctx.vout[2].scriptPubKey = bytes([OP_RETURN]) * scriptsize padding_needed -= scriptsize + 2 elif padding_needed >= 0xFD: # 0xFD or 0xFD+1. We can't pad with just one script, so just # take off some. ctx.vout[2].scriptPubKey = bytes([OP_RETURN]) * 50 padding_needed -= 50 # extra padding on another output is needed if original padding_needed # was <= 0xfd+1, or was 0xffff+3 or 0xffff+4 . assert padding_needed < 0xfd ctx.vout[3].scriptPubKey = bytes([OP_RETURN]) * padding_needed ctx.calc_sha256() assert_equal(len(ctx.serialize()), size_bytes) return ctx class MempoolLimitSigopsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 - self.extra_args = [["-maxmempool=5"]] + self.extra_args = [ + ["-maxmempool=5", '-phononactivationtime={}'.format(SIGOPS_DEACTIVATION_TIME)]] self.block_heights = {} def skip_test_if_missing_module(self): self.skip_if_no_wallet() def getbestblock(self, node): """Get the best block. Register its height so we can use build_block.""" block_height = node.getblockcount() blockhash = node.getblockhash(block_height) block = FromHex(CBlock(), node.getblock(blockhash, 0)) block.calc_sha256() self.block_heights[block.sha256] = block_height return block def build_block(self, parent, transactions=(), nTime=None): """Make a new block with an OP_1 coinbase output. Requires parent to have its height registered.""" parent.calc_sha256() block_height = self.block_heights[parent.sha256] + 1 block_time = (parent.nTime + 1) if nTime is None else nTime block = create_block( parent.sha256, create_coinbase(block_height), block_time) block.nVersion = 4 block.vtx.extend(transactions) make_conform_to_ctor(block) block.hashMerkleRoot = block.calc_merkle_root() block.solve() self.block_heights[block.sha256] = block_height return block def run_test(self): (node,) = self.nodes node.add_p2p_connection(P2PDataStore()) tip = self.getbestblock(node) self.log.info("Create some blocks with OP_1 coinbase for spending.") blocks = [] for _ in range(600): tip = self.build_block(tip) blocks.append(tip) node.p2p.send_blocks_and_test(blocks, node, success=True) self.spendable_outputs = deque(block.vtx[0] for block in blocks) self.log.info( "Mature the blocks and get out of IBD; also make some coinbases for the node wallet.") node.generate(120) tip = self.getbestblock(node) self.log.info( 'PART 1: testing of priority under congestion (mempool eviction priority and mining priority).') self.log.info( "Put a regular transaction in mempool at 1 sat/byte.") txid1 = node.sendtoaddress(node.getnewaddress(), 0.001) self.log.info( "Mempool accepts 1 sat/byte txes even with very many sigops") script_4000_sigops = bytes([OP_CHECKMULTISIG] * 200) # vsize = 200000, so 0.0015 sat/vbyte. ctx = create_var_transaction( self.spendable_outputs.popleft(), script_4000_sigops, 300, 300) txid_parent = node.sendrawtransaction(ToHex(ctx)) self.log.info( "Create a 1 sat/byte compensating child of a high-sigop parent") # package vsize = 200000, so 0.5015 sat/vbyte. ctx_child = create_var_transaction( ctx, b'', 100000, 100000) txid_child = node.sendrawtransaction(ToHex(ctx_child)) # make one with 270 sat/byte, but only 0.4 sat/vbyte. ctx = create_var_transaction( self.spendable_outputs.popleft(), script_4000_sigops, 300, 80000) txid_highsigops = node.sendrawtransaction(ToHex(ctx)) self.log.info( "Flood the mempool with 10-kB transactions @ 9.9 sat/byte and 0.495 sat/vbyte, until it is full") # About 500 should fill up our 5 MB mempool. # Note that even starting from an empty pool, somewhat fewer than 500 # would be accepted depending on mempool data structure sizes. for i in range(500): spendfrom = self.spendable_outputs.popleft() ctx = create_var_transaction( spendfrom, script_4000_sigops, 10000, 99000) try: node.sendrawtransaction(ToHex(ctx)) except JSONRPCException as e: if 'mempool full' in e.error['message'] or 'mempool min fee not met' in e.error['message']: self.log.info( "Mempool filled after {} transactions".format(i,)) break raise else: raise RuntimeError("didn't fill mempool") self.log.info( 'The flooding only caused eviction of lower low sat/vbyte packages') mempool_txids = set(node.getrawmempool()) # The 9.9 sat/byte txes caused the 270 sat/byte tx to get evicted, because # the latter was more dense in sigops. assert txid_highsigops not in mempool_txids # Other txes did get kept, including txid_parent which had ultralow # virtual feerate (but its child supplied enough fee). settxids = set([txid1, txid_parent, txid_child]) assert_equal(settxids.difference(mempool_txids), set()) self.log.info('Mempool fee floor has jumped to 1.495 sat/vbyte') # The removed txes have feerate 495 sat/kvbyte and the fee floor jumps by # 1000 sat/kbyte (MEMPOOL_FULL_FEE_INCREMENT) on top of that: assert_equal(node.getmempoolinfo()[ 'mempoolminfee'], Decimal('0.00001495')) self.log.info( 'Broadcasting a regular tx still works, because wallet knows what fee to use.') txid2 = node.sendtoaddress(node.getnewaddress(), 0.001) settxids.add(txid2) self.log.info( "But, a regular 1 sat/byte transaction can't get in now.") spendfrom = self.spendable_outputs.popleft() assert_raises_rpc_error(-26, "mempool min fee not met", node.sendrawtransaction, ToHex(create_var_transaction(spendfrom, b'', 500, 500))) self.log.info( "Broadcasting regular transactions will push out the high-sigops txns.") # We can broadcast a bunch of regular txes. They need to pay a bit more # fee (1.5 sat/vbyte) than the floor. for i in range(15): spendfrom = self.spendable_outputs.popleft() ctx = create_var_transaction(spendfrom, b'', 100000, 150000) settxids.add(node.sendrawtransaction(ToHex(ctx))) self.log.info("Mining picks all the 'good' txes first") # These slightly higher-fee transactions also have more priority. [lastblockhash, ] = node.generate(1) blocktxes = set(node.getblock(lastblockhash, 1)['tx']) assert_equal(settxids.difference(blocktxes), set()) # there are still hundreds of the flooded txes left in mempool. assert len(node.getrawmempool()) > 200 self.log.info( 'PART 2: The following tests focus on mineability according to blockmintxfee.') self.log.info('Clear the mempool by mining out everything.') node.generate(100) assert_equal(node.getrawmempool(), []) self.log.info( 'Reset the mempool fee floor (currently, restarting the node achieves this).') # could also be done by setting mocktime in future (the floor decays # over a period of hours) self.restart_node(0, self.extra_args[0]) (node,) = self.nodes node.add_p2p_connection(P2PDataStore()) assert_equal(node.getmempoolinfo()[ 'mempoolminfee'], Decimal('0.00001000')) self.log.info( 'Get a 0.998 sat/byte transaction into mempool by having it mined then reorged out.') self.log.info(node.getbestblockhash()) tip = self.getbestblock(node) self.log.info(tip.hash) ctx = create_var_transaction( self.spendable_outputs.popleft(), b'', 1000, 998) stucktxid = ctx.hash # check that indeed it can't get in normally: assert_raises_rpc_error(-26, "min relay fee not met", node.sendrawtransaction, ToHex(ctx)) block = self.build_block(tip, [ctx]) node.p2p.send_blocks_and_test([block], node, success=True) node.invalidateblock(block.hash) assert stucktxid in node.getrawmempool(), "should be returned to pool" self.log.info( "Since blockmintxfee is 1 sat/byte, that 0.998 sat/byte tx won't get mined by default, and is stuck permanently.") node.generate(1) assert stucktxid in node.getrawmempool(), "should be stuck" self.log.info( 'Get wallet to make an normal tx sending money to 12 people, which is just under 1 sat/vbyte.') txid = node.sendmany( "", {node.getnewaddress(): 0.01 for _ in range(12)}) # analyze the constructed tx just to make sure it's as expected ctx = FromHex(CTransaction(), node.getrawtransaction(txid)) assert len(ctx.vin) == 1, "only a single input should be needed" assert len(ctx.vout) == 13, "12 recipients and 1 change" # tx size should be ~ 599 bytes and fees should be 599 sats. # 13 sigops and 50 sigops / byte = 650 vbytes. txsize = len(ctx.serialize()) txvsize = max(txsize, 50 * len(ctx.vout)) assert txvsize > txsize, "transactions is dense-sigops" fee_sats = node.getmempoolentry(txid)['fee'] / SATOSHI assert_equal(fee_sats, 599) assert fee_sats / txsize >= 1.0, "just over 1 sat/byte" assert fee_sats / txvsize < 0.95, "just under 1 sat/vbyte" self.log.info( "Even though another transaction is stuck permanently, it should not prevent a normal tx from being mined.") [bhash, ] = node.generate(1) blocktxes = set(node.getblock(bhash, 1)['tx']) assert txid in blocktxes, "normal tx is not stuck" assert stucktxid not in blocktxes, "lowfee tx is still stuck" if __name__ == '__main__': MempoolLimitSigopsTest().main() diff --git a/test/functional/feature_block_sigops.py b/test/functional/feature_block_sigops.py index eaa77dfcf..4629387ea 100755 --- a/test/functional/feature_block_sigops.py +++ b/test/functional/feature_block_sigops.py @@ -1,527 +1,531 @@ #!/usr/bin/env python3 # Copyright (c) 2015-2017 The Bitcoin Core developers # Copyright (c) 2017 The Bitcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test block processing of sigops. Split out from feature_block.py . This tests a variety of funky corner cases of sigops handling. """ import time from test_framework.blocktools import ( create_block, create_coinbase, create_tx_with_script, get_legacy_sigopcount_block, make_conform_to_ctor, ) from test_framework.cdefs import LEGACY_MAX_BLOCK_SIZE, MAX_BLOCK_SIGOPS_PER_MB from test_framework.key import CECKey from test_framework.messages import ( COutPoint, CTransaction, CTxIn, CTxOut, ) from test_framework.mininode import P2PDataStore from test_framework.script import ( CScript, hash160, MAX_SCRIPT_ELEMENT_SIZE, OP_2DUP, OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY, OP_CHECKSIG, OP_CHECKSIGVERIFY, OP_EQUAL, OP_HASH160, OP_TRUE, SIGHASH_ALL, SIGHASH_FORKID, SignatureHashForkId, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.txtools import pad_tx from test_framework.util import assert_equal +# Set test to run with sigops deactivation far in the future. +SIGOPS_DEACTIVATION_TIME = 2000000000 + class FullBlockSigOpsTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True - self.extra_args = [['-noparkdeepreorg', '-maxreorgdepth=-1']] + self.extra_args = [['-noparkdeepreorg', '-maxreorgdepth=-1', + '-phononactivationtime={}'.format(SIGOPS_DEACTIVATION_TIME)]] def run_test(self): self.bootstrap_p2p() # Add one p2p connection to the node self.block_heights = {} self.coinbase_key = CECKey() self.coinbase_key.set_secretbytes(b"horsebattery") self.coinbase_pubkey = self.coinbase_key.get_pubkey() self.tip = None self.blocks = {} self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) self.block_heights[self.genesis_hash] = 0 self.spendable_outputs = [] # Create a new block b0 = self.next_block(0) self.save_spendable_output() self.sync_blocks([b0]) # Allow the block to mature blocks = [] for i in range(129): blocks.append(self.next_block(5000 + i)) self.save_spendable_output() self.sync_blocks(blocks) # collect spendable outputs now to avoid cluttering the code later on out = [] for i in range(33): out.append(self.get_spendable_output()) # Start by building a block on top. # setup -> b13 (0) b13 = self.next_block(13, spend=out[0]) self.save_spendable_output() self.sync_blocks([b13]) # Add a block with MAX_BLOCK_SIGOPS_PER_MB and one with one more sigop # setup -> b13 (0) -> b15 (5) -> b16 (6) self.log.info("Accept a block with lots of checksigs") lots_of_checksigs = CScript( [OP_CHECKSIG] * (MAX_BLOCK_SIGOPS_PER_MB - 1)) self.move_tip(13) b15 = self.next_block(15, spend=out[5], script=lots_of_checksigs) self.save_spendable_output() self.sync_blocks([b15], True) self.log.info("Reject a block with too many checksigs") too_many_checksigs = CScript([OP_CHECKSIG] * (MAX_BLOCK_SIGOPS_PER_MB)) b16 = self.next_block(16, spend=out[6], script=too_many_checksigs) self.sync_blocks([b16], success=False, reject_reason='bad-blk-sigops', reconnect=True) self.move_tip(15) # ... skipped feature_block tests ... # b31 - b35 - check sigops of OP_CHECKMULTISIG / OP_CHECKMULTISIGVERIFY / OP_CHECKSIGVERIFY # # setup -> ... b15 (5) -> b31 (8) -> b33 (9) -> b35 (10) # \-> b36 (11) # \-> b34 (10) # \-> b32 (9) # # MULTISIG: each op code counts as 20 sigops. To create the edge case, # pack another 19 sigops at the end. self.log.info( "Accept a block with the max number of OP_CHECKMULTISIG sigops") lots_of_multisigs = CScript( [OP_CHECKMULTISIG] * ((MAX_BLOCK_SIGOPS_PER_MB - 1) // 20) + [OP_CHECKSIG] * 19) b31 = self.next_block(31, spend=out[8], script=lots_of_multisigs) assert_equal(get_legacy_sigopcount_block(b31), MAX_BLOCK_SIGOPS_PER_MB) self.sync_blocks([b31], True) self.save_spendable_output() # this goes over the limit because the coinbase has one sigop self.log.info("Reject a block with too many OP_CHECKMULTISIG sigops") too_many_multisigs = CScript( [OP_CHECKMULTISIG] * (MAX_BLOCK_SIGOPS_PER_MB // 20)) b32 = self.next_block(32, spend=out[9], script=too_many_multisigs) assert_equal(get_legacy_sigopcount_block( b32), MAX_BLOCK_SIGOPS_PER_MB + 1) self.sync_blocks([b32], success=False, reject_reason='bad-blk-sigops', reconnect=True) # CHECKMULTISIGVERIFY self.log.info( "Accept a block with the max number of OP_CHECKMULTISIGVERIFY sigops") self.move_tip(31) lots_of_multisigs = CScript( [OP_CHECKMULTISIGVERIFY] * ((MAX_BLOCK_SIGOPS_PER_MB - 1) // 20) + [OP_CHECKSIG] * 19) b33 = self.next_block(33, spend=out[9], script=lots_of_multisigs) self.sync_blocks([b33], True) self.save_spendable_output() self.log.info( "Reject a block with too many OP_CHECKMULTISIGVERIFY sigops") too_many_multisigs = CScript( [OP_CHECKMULTISIGVERIFY] * (MAX_BLOCK_SIGOPS_PER_MB // 20)) b34 = self.next_block(34, spend=out[10], script=too_many_multisigs) self.sync_blocks([b34], success=False, reject_reason='bad-blk-sigops', reconnect=True) # CHECKSIGVERIFY self.log.info( "Accept a block with the max number of OP_CHECKSIGVERIFY sigops") self.move_tip(33) lots_of_checksigs = CScript( [OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS_PER_MB - 1)) b35 = self.next_block(35, spend=out[10], script=lots_of_checksigs) self.sync_blocks([b35], True) self.save_spendable_output() self.log.info("Reject a block with too many OP_CHECKSIGVERIFY sigops") too_many_checksigs = CScript( [OP_CHECKSIGVERIFY] * (MAX_BLOCK_SIGOPS_PER_MB)) b36 = self.next_block(36, spend=out[11], script=too_many_checksigs) self.sync_blocks([b36], success=False, reject_reason='bad-blk-sigops', reconnect=True) # ... skipped feature_block tests ... # Check P2SH SigOp counting # # # ... -> b31 (8) -> b33 (9) -> b35 (10) -> b39 (11) -> b41 (12) # \-> b40 (12) # # b39 - create some P2SH outputs that will require 6 sigops to spend: # # redeem_script = COINBASE_PUBKEY, (OP_2DUP+OP_CHECKSIGVERIFY) * 5, OP_CHECKSIG # p2sh_script = OP_HASH160, ripemd160(sha256(script)), OP_EQUAL # self.log.info("Check P2SH SIGOPS are correctly counted") self.move_tip(35) b39 = self.next_block(39) b39_outputs = 0 b39_sigops_per_output = 6 # Build the redeem script, hash it, use hash to create the p2sh script redeem_script = CScript([self.coinbase_pubkey] + [ OP_2DUP, OP_CHECKSIGVERIFY] * 5 + [OP_CHECKSIG]) redeem_script_hash = hash160(redeem_script) p2sh_script = CScript([OP_HASH160, redeem_script_hash, OP_EQUAL]) # Create a transaction that spends one satoshi to the p2sh_script, the rest to OP_TRUE # This must be signed because it is spending a coinbase spend = out[11] tx = self.create_tx(spend, 0, 1, p2sh_script) tx.vout.append(CTxOut(spend.vout[0].nValue - 1, CScript([OP_TRUE]))) self.sign_tx(tx, spend) tx.rehash() b39 = self.update_block(39, [tx]) b39_outputs += 1 # Until block is full, add tx's with 1 satoshi to p2sh_script, the rest # to OP_TRUE tx_new = None tx_last = tx tx_last_n = len(tx.vout) - 1 total_size = len(b39.serialize()) while(total_size < LEGACY_MAX_BLOCK_SIZE): tx_new = self.create_tx(tx_last, tx_last_n, 1, p2sh_script) tx_new.vout.append( CTxOut(tx_last.vout[tx_last_n].nValue - 1, CScript([OP_TRUE]))) tx_new.rehash() total_size += len(tx_new.serialize()) if total_size >= LEGACY_MAX_BLOCK_SIZE: break b39.vtx.append(tx_new) # add tx to block tx_last = tx_new tx_last_n = len(tx_new.vout) - 1 b39_outputs += 1 b39 = self.update_block(39, []) self.sync_blocks([b39], True) self.save_spendable_output() # Test sigops in P2SH redeem scripts # # b40 creates 3333 tx's spending the 6-sigop P2SH outputs from b39 for a total of 19998 sigops. # The first tx has one sigop and then at the end we add 2 more to put us just over the max. # # b41 does the same, less one, so it has the maximum sigops permitted. # self.log.info("Reject a block with too many P2SH sigops") self.move_tip(39) b40 = self.next_block(40, spend=out[12]) sigops = get_legacy_sigopcount_block(b40) numTxs = (MAX_BLOCK_SIGOPS_PER_MB - sigops) // b39_sigops_per_output assert_equal(numTxs <= b39_outputs, True) lastOutpoint = COutPoint(b40.vtx[1].sha256, 0) lastAmount = b40.vtx[1].vout[0].nValue new_txs = [] for i in range(1, numTxs + 1): tx = CTransaction() tx.vout.append(CTxOut(1, CScript([OP_TRUE]))) tx.vin.append(CTxIn(lastOutpoint, b'')) # second input is corresponding P2SH output from b39 tx.vin.append(CTxIn(COutPoint(b39.vtx[i].sha256, 0), b'')) # Note: must pass the redeem_script (not p2sh_script) to the # signature hash function sighash = SignatureHashForkId( redeem_script, tx, 1, SIGHASH_ALL | SIGHASH_FORKID, lastAmount) sig = self.coinbase_key.sign( sighash) + bytes(bytearray([SIGHASH_ALL | SIGHASH_FORKID])) scriptSig = CScript([sig, redeem_script]) tx.vin[1].scriptSig = scriptSig pad_tx(tx) tx.rehash() new_txs.append(tx) lastOutpoint = COutPoint(tx.sha256, 0) lastAmount = tx.vout[0].nValue b40_sigops_to_fill = MAX_BLOCK_SIGOPS_PER_MB - \ (numTxs * b39_sigops_per_output + sigops) + 1 tx = CTransaction() tx.vin.append(CTxIn(lastOutpoint, b'')) tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b40_sigops_to_fill))) pad_tx(tx) tx.rehash() new_txs.append(tx) self.update_block(40, new_txs) self.sync_blocks([b40], success=False, reject_reason='bad-blk-sigops', reconnect=True) # same as b40, but one less sigop self.log.info("Accept a block with the max number of P2SH sigops") self.move_tip(39) b41 = self.next_block(41, spend=None) self.update_block(41, [b40tx for b40tx in b40.vtx[1:] if b40tx != tx]) b41_sigops_to_fill = b40_sigops_to_fill - 1 tx = CTransaction() tx.vin.append(CTxIn(lastOutpoint, b'')) tx.vout.append(CTxOut(1, CScript([OP_CHECKSIG] * b41_sigops_to_fill))) pad_tx(tx) self.update_block(41, [tx]) self.sync_blocks([b41], True) # ... skipped feature_block tests ... b72 = self.next_block(72) self.save_spendable_output() self.sync_blocks([b72]) # Test some invalid scripts and MAX_BLOCK_SIGOPS_PER_MB # # ..... -> b72 # \-> b** (22) # # b73 - tx with excessive sigops that are placed after an excessively large script element. # The purpose of the test is to make sure those sigops are counted. # # script is a bytearray of size 20,526 # # bytearray[0-19,998] : OP_CHECKSIG # bytearray[19,999] : OP_PUSHDATA4 # bytearray[20,000-20,003]: 521 (max_script_element_size+1, in little-endian format) # bytearray[20,004-20,525]: unread data (script_element) # bytearray[20,526] : OP_CHECKSIG (this puts us over the limit) self.log.info( "Reject a block containing too many sigops after a large script element") self.move_tip(72) b73 = self.next_block(73) size = MAX_BLOCK_SIGOPS_PER_MB - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 + 1 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS_PER_MB - 1] = int("4e", 16) # OP_PUSHDATA4 element_size = MAX_SCRIPT_ELEMENT_SIZE + 1 a[MAX_BLOCK_SIGOPS_PER_MB] = element_size % 256 a[MAX_BLOCK_SIGOPS_PER_MB + 1] = element_size // 256 a[MAX_BLOCK_SIGOPS_PER_MB + 2] = 0 a[MAX_BLOCK_SIGOPS_PER_MB + 3] = 0 tx = self.create_and_sign_transaction(out[22], 1, CScript(a)) b73 = self.update_block(73, [tx]) assert_equal(get_legacy_sigopcount_block( b73), MAX_BLOCK_SIGOPS_PER_MB + 1) self.sync_blocks([b73], success=False, reject_reason='bad-blk-sigops', reconnect=True) # b74/75 - if we push an invalid script element, all prevous sigops are counted, # but sigops after the element are not counted. # # The invalid script element is that the push_data indicates that # there will be a large amount of data (0xffffff bytes), but we only # provide a much smaller number. These bytes are CHECKSIGS so they would # cause b75 to fail for excessive sigops, if those bytes were counted. # # b74 fails because we put MAX_BLOCK_SIGOPS_PER_MB+1 before the element # b75 succeeds because we put MAX_BLOCK_SIGOPS_PER_MB before the # element self.log.info( "Check sigops are counted correctly after an invalid script element") self.move_tip(72) b74 = self.next_block(74) size = MAX_BLOCK_SIGOPS_PER_MB - 1 + \ MAX_SCRIPT_ELEMENT_SIZE + 42 # total = 20,561 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS_PER_MB] = 0x4e a[MAX_BLOCK_SIGOPS_PER_MB + 1] = 0xfe a[MAX_BLOCK_SIGOPS_PER_MB + 2] = 0xff a[MAX_BLOCK_SIGOPS_PER_MB + 3] = 0xff a[MAX_BLOCK_SIGOPS_PER_MB + 4] = 0xff tx = self.create_and_sign_transaction(out[22], 1, CScript(a)) b74 = self.update_block(74, [tx]) self.sync_blocks([b74], success=False, reject_reason='bad-blk-sigops', reconnect=True) self.move_tip(72) b75 = self.next_block(75) size = MAX_BLOCK_SIGOPS_PER_MB - 1 + MAX_SCRIPT_ELEMENT_SIZE + 42 a = bytearray([OP_CHECKSIG] * size) a[MAX_BLOCK_SIGOPS_PER_MB - 1] = 0x4e a[MAX_BLOCK_SIGOPS_PER_MB] = 0xff a[MAX_BLOCK_SIGOPS_PER_MB + 1] = 0xff a[MAX_BLOCK_SIGOPS_PER_MB + 2] = 0xff a[MAX_BLOCK_SIGOPS_PER_MB + 3] = 0xff tx = self.create_and_sign_transaction(out[22], 1, CScript(a)) b75 = self.update_block(75, [tx]) self.sync_blocks([b75], True) self.save_spendable_output() # Check that if we push an element filled with CHECKSIGs, they are not # counted self.move_tip(75) b76 = self.next_block(76) size = MAX_BLOCK_SIGOPS_PER_MB - 1 + MAX_SCRIPT_ELEMENT_SIZE + 1 + 5 a = bytearray([OP_CHECKSIG] * size) # PUSHDATA4, but leave the following bytes as just checksigs a[MAX_BLOCK_SIGOPS_PER_MB - 1] = 0x4e tx = self.create_and_sign_transaction(out[23], 1, CScript(a)) b76 = self.update_block(76, [tx]) self.sync_blocks([b76], True) self.save_spendable_output() # Helper methods ################ def add_transactions_to_block(self, block, tx_list): [tx.rehash() for tx in tx_list] block.vtx.extend(tx_list) # this is a little handier to use than the version in blocktools.py def create_tx(self, spend_tx, n, value, script=CScript([OP_TRUE])): return create_tx_with_script( spend_tx, n, amount=value, script_pub_key=script) # sign a transaction, using the key we know about # this signs input 0 in tx, which is assumed to be spending output n in # spend_tx def sign_tx(self, tx, spend_tx): scriptPubKey = bytearray(spend_tx.vout[0].scriptPubKey) if (scriptPubKey[0] == OP_TRUE): # an anyone-can-spend tx.vin[0].scriptSig = CScript() return sighash = SignatureHashForkId( spend_tx.vout[0].scriptPubKey, tx, 0, SIGHASH_ALL | SIGHASH_FORKID, spend_tx.vout[0].nValue) tx.vin[0].scriptSig = CScript( [self.coinbase_key.sign(sighash) + bytes(bytearray([SIGHASH_ALL | SIGHASH_FORKID]))]) def create_and_sign_transaction( self, spend_tx, value, script=CScript([OP_TRUE])): tx = self.create_tx(spend_tx, 0, value, script) self.sign_tx(tx, spend_tx) tx.rehash() return tx def next_block(self, number, spend=None, additional_coinbase_value=0, script=CScript([OP_TRUE]), solve=True): if self.tip is None: base_block_hash = self.genesis_hash block_time = int(time.time()) + 1 else: base_block_hash = self.tip.sha256 block_time = self.tip.nTime + 1 # First create the coinbase height = self.block_heights[base_block_hash] + 1 coinbase = create_coinbase(height, self.coinbase_pubkey) coinbase.vout[0].nValue += additional_coinbase_value coinbase.rehash() if spend is None: block = create_block(base_block_hash, coinbase, block_time) else: # all but one satoshi to fees coinbase.vout[0].nValue += spend.vout[0].nValue - 1 coinbase.rehash() block = create_block(base_block_hash, coinbase, block_time) # spend 1 satoshi tx = self.create_tx(spend, 0, 1, script) self.sign_tx(tx, spend) self.add_transactions_to_block(block, [tx]) block.hashMerkleRoot = block.calc_merkle_root() if solve: block.solve() self.tip = block self.block_heights[block.sha256] = height assert number not in self.blocks self.blocks[number] = block return block # save the current tip so it can be spent by a later block def save_spendable_output(self): self.log.debug("saving spendable output {}".format(self.tip.vtx[0])) self.spendable_outputs.append(self.tip) # get an output that we previously marked as spendable def get_spendable_output(self): self.log.debug("getting spendable output {}".format( self.spendable_outputs[0].vtx[0])) return self.spendable_outputs.pop(0).vtx[0] # move the tip back to a previous block def move_tip(self, number): self.tip = self.blocks[number] # adds transactions to the block and updates state def update_block(self, block_number, new_transactions, reorder=True): block = self.blocks[block_number] self.add_transactions_to_block(block, new_transactions) old_sha256 = block.sha256 if reorder: make_conform_to_ctor(block) block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Update the internal state just like in next_block self.tip = block if block.sha256 != old_sha256: self.block_heights[block.sha256] = self.block_heights[old_sha256] del self.block_heights[old_sha256] self.blocks[block_number] = block return block def bootstrap_p2p(self): """Add a P2P connection to the node. Helper to connect and wait for version handshake.""" self.nodes[0].add_p2p_connection(P2PDataStore()) # We need to wait for the initial getheaders from the peer before we # start populating our blockstore. If we don't, then we may run ahead # to the next subtest before we receive the getheaders. We'd then send # an INV for the next block and receive two getheaders - one for the # IBD and one for the INV. We'd respond to both and could get # unexpectedly disconnected if the DoS score for that error is 50. self.nodes[0].p2p.wait_for_getheaders(timeout=5) def reconnect_p2p(self): """Tear down and bootstrap the P2P connection to the node. The node gets disconnected several times in this test. This helper method reconnects the p2p and restarts the network thread.""" self.nodes[0].disconnect_p2ps() self.bootstrap_p2p() def sync_blocks(self, blocks, success=True, reject_reason=None, request_block=True, reconnect=False, timeout=60): """Sends blocks to test node. Syncs and verifies that tip has advanced to most recent block. Call with success = False if the tip shouldn't advance to the most recent block.""" self.nodes[0].p2p.send_blocks_and_test(blocks, self.nodes[0], success=success, reject_reason=reject_reason, request_block=request_block, timeout=timeout, expect_disconnect=reconnect) if reconnect: self.reconnect_p2p() if __name__ == '__main__': FullBlockSigOpsTest().main()