diff --git a/src/script/sign.cpp b/src/script/sign.cpp index 5573dac94..84ca6d7b6 100644 --- a/src/script/sign.cpp +++ b/src/script/sign.cpp @@ -1,592 +1,600 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <script/sign.h> #include <key.h> #include <policy/policy.h> #include <primitives/transaction.h> #include <script/standard.h> #include <uint256.h> typedef std::vector<uint8_t> valtype; MutableTransactionSignatureCreator::MutableTransactionSignatureCreator( const CMutableTransaction *txToIn, unsigned int nInIn, const Amount &amountIn, SigHashType sigHashTypeIn) : txTo(txToIn), nIn(nInIn), amount(amountIn), sigHashType(sigHashTypeIn), checker(txTo, nIn, amountIn) {} bool MutableTransactionSignatureCreator::CreateSig( const SigningProvider &provider, std::vector<uint8_t> &vchSig, const CKeyID &address, const CScript &scriptCode) const { CKey key; if (!provider.GetKey(address, key)) { return false; } uint256 hash = SignatureHash(scriptCode, *txTo, nIn, sigHashType, amount); if (!key.SignECDSA(hash, vchSig)) { return false; } vchSig.push_back(uint8_t(sigHashType.getRawSigHashType())); return true; } static bool GetCScript(const SigningProvider &provider, const SignatureData &sigdata, const CScriptID &scriptid, CScript &script) { if (provider.GetCScript(scriptid, script)) { return true; } // Look for scripts in SignatureData if (CScriptID(sigdata.redeem_script) == scriptid) { script = sigdata.redeem_script; return true; } return false; } static bool GetPubKey(const SigningProvider &provider, SignatureData &sigdata, const CKeyID &address, CPubKey &pubkey) { if (provider.GetPubKey(address, pubkey)) { sigdata.misc_pubkeys.emplace(pubkey.GetID(), pubkey); return true; } // Look for pubkey in all partial sigs const auto it = sigdata.signatures.find(address); if (it != sigdata.signatures.end()) { pubkey = it->second.first; return true; } // Look for pubkey in pubkey list const auto &pk_it = sigdata.misc_pubkeys.find(address); if (pk_it != sigdata.misc_pubkeys.end()) { pubkey = pk_it->second; return true; } return false; } static bool CreateSig(const BaseSignatureCreator &creator, SignatureData &sigdata, const SigningProvider &provider, std::vector<uint8_t> &sig_out, const CKeyID &keyid, const CScript &scriptcode) { const auto it = sigdata.signatures.find(keyid); if (it != sigdata.signatures.end()) { sig_out = it->second.second; return true; } CPubKey pubkey; GetPubKey(provider, sigdata, keyid, pubkey); if (creator.CreateSig(provider, sig_out, keyid, scriptcode)) { auto i = sigdata.signatures.emplace(keyid, SigPair(pubkey, sig_out)); assert(i.second); return true; } return false; } /** * Sign scriptPubKey using signature made with creator. * Signatures are returned in scriptSigRet (or returns false if scriptPubKey * can't be signed), unless whichTypeRet is TX_SCRIPTHASH, in which case * scriptSigRet is the redemption script. * Returns false if scriptPubKey could not be completely satisfied. */ static bool SignStep(const SigningProvider &provider, const BaseSignatureCreator &creator, const CScript &scriptPubKey, std::vector<valtype> &ret, txnouttype &whichTypeRet, SignatureData &sigdata) { CScript scriptRet; uint160 h160; ret.clear(); std::vector<uint8_t> sig; std::vector<valtype> vSolutions; if (!Solver(scriptPubKey, whichTypeRet, vSolutions)) { return false; } switch (whichTypeRet) { case TX_NONSTANDARD: case TX_NULL_DATA: return false; case TX_PUBKEY: if (!CreateSig(creator, sigdata, provider, sig, CPubKey(vSolutions[0]).GetID(), scriptPubKey)) { return false; } ret.push_back(std::move(sig)); return true; case TX_PUBKEYHASH: { CKeyID keyID = CKeyID(uint160(vSolutions[0])); if (!CreateSig(creator, sigdata, provider, sig, keyID, scriptPubKey)) { return false; } ret.push_back(std::move(sig)); CPubKey pubkey; provider.GetPubKey(keyID, pubkey); ret.push_back(ToByteVector(pubkey)); return true; } case TX_SCRIPTHASH: if (GetCScript(provider, sigdata, uint160(vSolutions[0]), scriptRet)) { ret.push_back( std::vector<uint8_t>(scriptRet.begin(), scriptRet.end())); return true; } return false; case TX_MULTISIG: { size_t required = vSolutions.front()[0]; // workaround CHECKMULTISIG bug ret.push_back(valtype()); for (size_t i = 1; i < vSolutions.size() - 1; ++i) { CPubKey pubkey = CPubKey(vSolutions[i]); if (ret.size() < required + 1 && CreateSig(creator, sigdata, provider, sig, pubkey.GetID(), scriptPubKey)) { ret.push_back(std::move(sig)); } } bool ok = ret.size() == required + 1; for (size_t i = 0; i + ret.size() < required + 1; ++i) { ret.push_back(valtype()); } return ok; } default: return false; } } static CScript PushAll(const std::vector<valtype> &values) { CScript result; for (const valtype &v : values) { if (v.size() == 0) { result << OP_0; } else if (v.size() == 1 && v[0] >= 1 && v[0] <= 16) { result << CScript::EncodeOP_N(v[0]); } else { result << v; } } return result; } bool ProduceSignature(const SigningProvider &provider, const BaseSignatureCreator &creator, const CScript &fromPubKey, SignatureData &sigdata) { if (sigdata.complete) { return true; } std::vector<valtype> result; txnouttype whichType; bool solved = SignStep(provider, creator, fromPubKey, result, whichType, sigdata); CScript subscript; if (solved && whichType == TX_SCRIPTHASH) { // Solver returns the subscript that needs to be evaluated; the final // scriptSig is the signatures from that and then the serialized // subscript: subscript = CScript(result[0].begin(), result[0].end()); sigdata.redeem_script = subscript; solved = solved && SignStep(provider, creator, subscript, result, whichType, sigdata) && whichType != TX_SCRIPTHASH; result.push_back( std::vector<uint8_t>(subscript.begin(), subscript.end())); } sigdata.scriptSig = PushAll(result); // Test solution sigdata.complete = solved && VerifyScript(sigdata.scriptSig, fromPubKey, STANDARD_SCRIPT_VERIFY_FLAGS, creator.Checker()); return sigdata.complete; } bool SignPSBTInput(const SigningProvider &provider, const CMutableTransaction &tx, PSBTInput &input, SignatureData &sigdata, int index, SigHashType sighash) { // If this input has a final scriptsig, don't do anything with it. if (!input.final_script_sig.empty()) { return true; } // Fill SignatureData with input info input.FillSignatureData(sigdata); // Get UTXO CTxOut utxo; if (input.utxo.IsNull()) { return false; } utxo = input.utxo; MutableTransactionSignatureCreator creator(&tx, index, utxo.nValue, sighash); bool sig_complete = ProduceSignature(provider, creator, utxo.scriptPubKey, sigdata); input.FromSignatureData(sigdata); return sig_complete; } class SignatureExtractorChecker final : public BaseSignatureChecker { private: SignatureData &sigdata; BaseSignatureChecker &checker; public: SignatureExtractorChecker(SignatureData &sigdata_, BaseSignatureChecker &checker_) : sigdata(sigdata_), checker(checker_) {} bool CheckSig(const std::vector<uint8_t> &scriptSig, const std::vector<uint8_t> &vchPubKey, const CScript &scriptCode, uint32_t flags) const override; }; bool SignatureExtractorChecker::CheckSig(const std::vector<uint8_t> &scriptSig, const std::vector<uint8_t> &vchPubKey, const CScript &scriptCode, uint32_t flags) const { if (checker.CheckSig(scriptSig, vchPubKey, scriptCode, flags)) { CPubKey pubkey(vchPubKey); sigdata.signatures.emplace(pubkey.GetID(), SigPair(pubkey, scriptSig)); return true; } return false; } namespace { struct Stacks { std::vector<valtype> script; Stacks() {} explicit Stacks(const std::vector<valtype> &scriptSigStack_) : script(scriptSigStack_) {} explicit Stacks(const SignatureData &data) { EvalScript(script, data.scriptSig, MANDATORY_SCRIPT_VERIFY_FLAGS, BaseSignatureChecker()); } SignatureData Output() const { SignatureData result; result.scriptSig = PushAll(script); return result; } }; } // namespace // Extracts signatures and scripts from incomplete scriptSigs. Please do not // extend this, use PSBT instead SignatureData DataFromTransaction(const CMutableTransaction &tx, unsigned int nIn, const CTxOut &txout) { SignatureData data; assert(tx.vin.size() > nIn); data.scriptSig = tx.vin[nIn].scriptSig; Stacks stack(data); // Get signatures MutableTransactionSignatureChecker tx_checker(&tx, nIn, txout.nValue); SignatureExtractorChecker extractor_checker(data, tx_checker); if (VerifyScript(data.scriptSig, txout.scriptPubKey, STANDARD_SCRIPT_VERIFY_FLAGS, extractor_checker)) { data.complete = true; return data; } // Get scripts txnouttype script_type; std::vector<std::vector<uint8_t>> solutions; Solver(txout.scriptPubKey, script_type, solutions); CScript next_script = txout.scriptPubKey; if (script_type == TX_SCRIPTHASH && !stack.script.empty() && !stack.script.back().empty()) { // Get the redeemScript CScript redeem_script(stack.script.back().begin(), stack.script.back().end()); data.redeem_script = redeem_script; next_script = std::move(redeem_script); // Get redeemScript type Solver(next_script, script_type, solutions); stack.script.pop_back(); } if (script_type == TX_MULTISIG && !stack.script.empty()) { // Build a map of pubkey -> signature by matching sigs to pubkeys: assert(solutions.size() > 1); unsigned int num_pubkeys = solutions.size() - 2; unsigned int last_success_key = 0; for (const valtype &sig : stack.script) { for (unsigned int i = last_success_key; i < num_pubkeys; ++i) { const valtype &pubkey = solutions[i + 1]; // We either have a signature for this pubkey, or we have found // a signature and it is valid if (data.signatures.count(CPubKey(pubkey).GetID()) || extractor_checker.CheckSig(sig, pubkey, next_script, STANDARD_SCRIPT_VERIFY_FLAGS)) { last_success_key = i + 1; break; } } } } return data; } void UpdateInput(CTxIn &input, const SignatureData &data) { input.scriptSig = data.scriptSig; } void SignatureData::MergeSignatureData(SignatureData sigdata) { if (complete) { return; } if (sigdata.complete) { *this = std::move(sigdata); return; } if (redeem_script.empty() && !sigdata.redeem_script.empty()) { redeem_script = sigdata.redeem_script; } signatures.insert(std::make_move_iterator(sigdata.signatures.begin()), std::make_move_iterator(sigdata.signatures.end())); } bool SignSignature(const SigningProvider &provider, const CScript &fromPubKey, CMutableTransaction &txTo, unsigned int nIn, const Amount amount, SigHashType sigHashType) { assert(nIn < txTo.vin.size()); MutableTransactionSignatureCreator creator(&txTo, nIn, amount, sigHashType); SignatureData sigdata; bool ret = ProduceSignature(provider, creator, fromPubKey, sigdata); UpdateInput(txTo.vin.at(nIn), sigdata); return ret; } bool SignSignature(const SigningProvider &provider, const CTransaction &txFrom, CMutableTransaction &txTo, unsigned int nIn, SigHashType sigHashType) { assert(nIn < txTo.vin.size()); CTxIn &txin = txTo.vin[nIn]; assert(txin.prevout.GetN() < txFrom.vout.size()); const CTxOut &txout = txFrom.vout[txin.prevout.GetN()]; return SignSignature(provider, txout.scriptPubKey, txTo, nIn, txout.nValue, sigHashType); } namespace { /** Dummy signature checker which accepts all signatures. */ class DummySignatureChecker final : public BaseSignatureChecker { public: DummySignatureChecker() {} bool CheckSig(const std::vector<uint8_t> &scriptSig, const std::vector<uint8_t> &vchPubKey, const CScript &scriptCode, uint32_t flags) const override { return true; } }; const DummySignatureChecker DUMMY_CHECKER; class DummySignatureCreator final : public BaseSignatureCreator { +private: + char m_r_len = 32; + char m_s_len = 32; + public: - DummySignatureCreator() {} + DummySignatureCreator(char r_len, char s_len) + : m_r_len(r_len), m_s_len(s_len) {} const BaseSignatureChecker &Checker() const override { return DUMMY_CHECKER; } bool CreateSig(const SigningProvider &provider, std::vector<uint8_t> &vchSig, const CKeyID &keyid, const CScript &scriptCode) const override { // Create a dummy signature that is a valid DER-encoding - vchSig.assign(71, '\000'); + vchSig.assign(m_r_len + m_s_len + 7, '\000'); vchSig[0] = 0x30; - vchSig[1] = 68; + vchSig[1] = m_r_len + m_s_len + 4; vchSig[2] = 0x02; - vchSig[3] = 32; + vchSig[3] = m_r_len; vchSig[4] = 0x01; - vchSig[4 + 32] = 0x02; - vchSig[5 + 32] = 32; - vchSig[6 + 32] = 0x01; - vchSig[6 + 32 + 32] = SIGHASH_ALL | SIGHASH_FORKID; + vchSig[4 + m_r_len] = 0x02; + vchSig[5 + m_r_len] = m_s_len; + vchSig[6 + m_r_len] = 0x01; + vchSig[6 + m_r_len + m_s_len] = SIGHASH_ALL | SIGHASH_FORKID; return true; } }; template <typename M, typename K, typename V> bool LookupHelper(const M &map, const K &key, V &value) { auto it = map.find(key); if (it != map.end()) { value = it->second; return true; } return false; } } // namespace -const BaseSignatureCreator &DUMMY_SIGNATURE_CREATOR = DummySignatureCreator(); +const BaseSignatureCreator &DUMMY_SIGNATURE_CREATOR = + DummySignatureCreator(32, 32); +const BaseSignatureCreator &DUMMY_MAXIMUM_SIGNATURE_CREATOR = + DummySignatureCreator(33, 32); const SigningProvider &DUMMY_SIGNING_PROVIDER = SigningProvider(); bool PartiallySignedTransaction::IsNull() const { return !tx && inputs.empty() && outputs.empty() && unknown.empty(); } void PartiallySignedTransaction::Merge(const PartiallySignedTransaction &psbt) { for (size_t i = 0; i < inputs.size(); ++i) { inputs[i].Merge(psbt.inputs[i]); } for (size_t i = 0; i < outputs.size(); ++i) { outputs[i].Merge(psbt.outputs[i]); } unknown.insert(psbt.unknown.begin(), psbt.unknown.end()); } bool PartiallySignedTransaction::IsSane() const { for (PSBTInput input : inputs) { if (!input.IsSane()) { return false; } } return true; } bool PSBTInput::IsNull() const { return utxo.IsNull() && partial_sigs.empty() && unknown.empty() && hd_keypaths.empty() && redeem_script.empty(); } void PSBTInput::FillSignatureData(SignatureData &sigdata) const { if (!final_script_sig.empty()) { sigdata.scriptSig = final_script_sig; sigdata.complete = true; } if (sigdata.complete) { return; } sigdata.signatures.insert(partial_sigs.begin(), partial_sigs.end()); if (!redeem_script.empty()) { sigdata.redeem_script = redeem_script; } for (const auto &key_pair : hd_keypaths) { sigdata.misc_pubkeys.emplace(key_pair.first.GetID(), key_pair.first); } } void PSBTInput::FromSignatureData(const SignatureData &sigdata) { if (sigdata.complete) { partial_sigs.clear(); hd_keypaths.clear(); redeem_script.clear(); if (!sigdata.scriptSig.empty()) { final_script_sig = sigdata.scriptSig; } return; } partial_sigs.insert(sigdata.signatures.begin(), sigdata.signatures.end()); if (redeem_script.empty() && !sigdata.redeem_script.empty()) { redeem_script = sigdata.redeem_script; } } void PSBTInput::Merge(const PSBTInput &input) { if (utxo.IsNull() && !input.utxo.IsNull()) { utxo = input.utxo; } partial_sigs.insert(input.partial_sigs.begin(), input.partial_sigs.end()); hd_keypaths.insert(input.hd_keypaths.begin(), input.hd_keypaths.end()); unknown.insert(input.unknown.begin(), input.unknown.end()); if (redeem_script.empty() && !input.redeem_script.empty()) { redeem_script = input.redeem_script; } if (final_script_sig.empty() && !input.final_script_sig.empty()) { final_script_sig = input.final_script_sig; } } bool PSBTInput::IsSane() const { return true; } void PSBTOutput::FillSignatureData(SignatureData &sigdata) const { if (!redeem_script.empty()) { sigdata.redeem_script = redeem_script; } for (const auto &key_pair : hd_keypaths) { sigdata.misc_pubkeys.emplace(key_pair.first.GetID(), key_pair.first); } } void PSBTOutput::FromSignatureData(const SignatureData &sigdata) { if (redeem_script.empty() && !sigdata.redeem_script.empty()) { redeem_script = sigdata.redeem_script; } } bool PSBTOutput::IsNull() const { return redeem_script.empty() && hd_keypaths.empty() && unknown.empty(); } void PSBTOutput::Merge(const PSBTOutput &output) { hd_keypaths.insert(output.hd_keypaths.begin(), output.hd_keypaths.end()); unknown.insert(output.unknown.begin(), output.unknown.end()); if (redeem_script.empty() && !output.redeem_script.empty()) { redeem_script = output.redeem_script; } } bool PublicOnlySigningProvider::GetCScript(const CScriptID &scriptid, CScript &script) const { return m_provider->GetCScript(scriptid, script); } bool PublicOnlySigningProvider::GetPubKey(const CKeyID &address, CPubKey &pubkey) const { return m_provider->GetPubKey(address, pubkey); } bool FlatSigningProvider::GetCScript(const CScriptID &scriptid, CScript &script) const { return LookupHelper(scripts, scriptid, script); } bool FlatSigningProvider::GetPubKey(const CKeyID &keyid, CPubKey &pubkey) const { return LookupHelper(pubkeys, keyid, pubkey); } bool FlatSigningProvider::GetKey(const CKeyID &keyid, CKey &key) const { return LookupHelper(keys, keyid, key); } FlatSigningProvider Merge(const FlatSigningProvider &a, const FlatSigningProvider &b) { FlatSigningProvider ret; ret.scripts = a.scripts; ret.scripts.insert(b.scripts.begin(), b.scripts.end()); ret.pubkeys = a.pubkeys; ret.pubkeys.insert(b.pubkeys.begin(), b.pubkeys.end()); ret.keys = a.keys; ret.keys.insert(b.keys.begin(), b.keys.end()); return ret; } diff --git a/src/script/sign.h b/src/script/sign.h index 348b322ab..fc4afb9b8 100644 --- a/src/script/sign.h +++ b/src/script/sign.h @@ -1,682 +1,684 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SCRIPT_SIGN_H #define BITCOIN_SCRIPT_SIGN_H #include <hash.h> #include <pubkey.h> #include <script/interpreter.h> #include <script/sighashtype.h> #include <streams.h> #include <boost/optional.hpp> class CKey; class CKeyID; class CMutableTransaction; class CScript; class CScriptID; class CTransaction; /** An interface to be implemented by keystores that support signing. */ class SigningProvider { public: virtual ~SigningProvider() {} virtual bool GetCScript(const CScriptID &scriptid, CScript &script) const { return false; } virtual bool GetPubKey(const CKeyID &address, CPubKey &pubkey) const { return false; } virtual bool GetKey(const CKeyID &address, CKey &key) const { return false; } }; extern const SigningProvider &DUMMY_SIGNING_PROVIDER; class PublicOnlySigningProvider : public SigningProvider { private: const SigningProvider *m_provider; public: PublicOnlySigningProvider(const SigningProvider *provider) : m_provider(provider) {} bool GetCScript(const CScriptID &scriptid, CScript &script) const; bool GetPubKey(const CKeyID &address, CPubKey &pubkey) const; }; struct FlatSigningProvider final : public SigningProvider { std::map<CScriptID, CScript> scripts; std::map<CKeyID, CPubKey> pubkeys; std::map<CKeyID, CKey> keys; bool GetCScript(const CScriptID &scriptid, CScript &script) const override; bool GetPubKey(const CKeyID &keyid, CPubKey &pubkey) const override; bool GetKey(const CKeyID &keyid, CKey &key) const override; }; FlatSigningProvider Merge(const FlatSigningProvider &a, const FlatSigningProvider &b); /** Interface for signature creators. */ class BaseSignatureCreator { public: virtual ~BaseSignatureCreator() {} virtual const BaseSignatureChecker &Checker() const = 0; /** Create a singular (non-script) signature. */ virtual bool CreateSig(const SigningProvider &provider, std::vector<uint8_t> &vchSig, const CKeyID &keyid, const CScript &scriptCode) const = 0; }; /** A signature creator for transactions. */ class MutableTransactionSignatureCreator : public BaseSignatureCreator { const CMutableTransaction *txTo; unsigned int nIn; Amount amount; SigHashType sigHashType; const MutableTransactionSignatureChecker checker; public: MutableTransactionSignatureCreator( const CMutableTransaction *txToIn, unsigned int nInIn, const Amount &amountIn, SigHashType sigHashTypeIn = SigHashType()); const BaseSignatureChecker &Checker() const override { return checker; } bool CreateSig(const SigningProvider &provider, std::vector<uint8_t> &vchSig, const CKeyID &keyid, const CScript &scriptCode) const override; }; -/** A signature creator that just produces 72-byte empty signatures. */ +/** A signature creator that just produces 71-byte empty signatures. */ extern const BaseSignatureCreator &DUMMY_SIGNATURE_CREATOR; +/** A signature creator that just produces 72-byte empty signatures. */ +extern const BaseSignatureCreator &DUMMY_MAXIMUM_SIGNATURE_CREATOR; typedef std::pair<CPubKey, std::vector<uint8_t>> SigPair; // This struct contains information from a transaction input and also contains // signatures for that input. The information contained here can be used to // create a signature and is also filled by ProduceSignature in order to // construct final scriptSigs. struct SignatureData { /// Stores whether the scriptSig and scriptWitness are complete. bool complete = false; /// The scriptSig of an input. Contains complete signatures or the /// traditional partial signatures format. CScript scriptSig; /// The redeemScript (if any) for the input. CScript redeem_script; /// BIP 174 style partial signatures for the input. May contain all /// signatures necessary for producing a final scriptSig. std::map<CKeyID, SigPair> signatures; std::map<CKeyID, CPubKey> misc_pubkeys; SignatureData() {} explicit SignatureData(const CScript &script) : scriptSig(script) {} void MergeSignatureData(SignatureData sigdata); }; // Magic bytes static constexpr uint8_t PSBT_MAGIC_BYTES[5] = {'p', 's', 'b', 't', 0xff}; // Global types static constexpr uint8_t PSBT_GLOBAL_UNSIGNED_TX = 0x00; // Input types static constexpr uint8_t PSBT_IN_UTXO = 0x00; static constexpr uint8_t PSBT_IN_PARTIAL_SIG = 0x02; static constexpr uint8_t PSBT_IN_SIGHASH = 0x03; static constexpr uint8_t PSBT_IN_REDEEMSCRIPT = 0x04; static constexpr uint8_t PSBT_IN_BIP32_DERIVATION = 0x06; static constexpr uint8_t PSBT_IN_SCRIPTSIG = 0x07; // Output types static constexpr uint8_t PSBT_OUT_REDEEMSCRIPT = 0x00; static constexpr uint8_t PSBT_OUT_BIP32_DERIVATION = 0x02; // The separator is 0x00. Reading this in means that the unserializer can // interpret it as a 0 length key which indicates that this is the separator. // The separator has no value. static constexpr uint8_t PSBT_SEPARATOR = 0x00; // Takes a stream and multiple arguments and serializes them into a vector and // then into the stream. The resulting output into the stream has the total // serialized length of all of the objects followed by all objects concatenated // with each other. template <typename Stream, typename... X> void SerializeToVector(Stream &s, const X &... args) { std::vector<uint8_t> ret; CVectorWriter ss(SER_NETWORK, PROTOCOL_VERSION, ret, 0); SerializeMany(ss, args...); s << ret; } // Takes a stream and multiple arguments and unserializes them first as a vector // then each object individually in the order provided in the arguments template <typename Stream, typename... X> void UnserializeFromVector(Stream &s, X &... args) { std::vector<uint8_t> data; s >> data; CDataStream ss(data, SER_NETWORK, PROTOCOL_VERSION); UnserializeMany(ss, args...); if (!ss.eof()) { throw std::ios_base::failure("Size of value was not the stated size"); } } // Deserialize HD keypaths into a map template <typename Stream> void DeserializeHDKeypaths( Stream &s, const std::vector<uint8_t> &key, std::map<CPubKey, std::vector<uint32_t>> &hd_keypaths) { // Make sure that the key is the size of pubkey + 1 if (key.size() != CPubKey::PUBLIC_KEY_SIZE + 1 && key.size() != CPubKey::COMPRESSED_PUBLIC_KEY_SIZE + 1) { throw std::ios_base::failure( "Size of key was not the expected size for the type BIP32 keypath"); } // Read in the pubkey from key CPubKey pubkey(key.begin() + 1, key.end()); if (!pubkey.IsFullyValid()) { throw std::ios_base::failure("Invalid pubkey"); } if (hd_keypaths.count(pubkey) > 0) { throw std::ios_base::failure( "Duplicate Key, pubkey derivation path already provided"); } // Read in key path uint64_t value_len = ReadCompactSize(s); std::vector<uint32_t> keypath; for (uint64_t i = 0; i < value_len; i += sizeof(uint32_t)) { uint32_t index; s >> index; keypath.push_back(index); } // Add to map hd_keypaths.emplace(pubkey, keypath); } // Serialize HD keypaths to a stream from a map template <typename Stream> void SerializeHDKeypaths( Stream &s, const std::map<CPubKey, std::vector<uint32_t>> &hd_keypaths, uint8_t type) { for (auto keypath_pair : hd_keypaths) { SerializeToVector(s, type, MakeSpan(keypath_pair.first)); WriteCompactSize(s, keypath_pair.second.size() * sizeof(uint32_t)); for (auto &path : keypath_pair.second) { s << path; } } } /** A structure for PSBTs which contain per-input information */ struct PSBTInput { CTxOut utxo; CScript redeem_script; CScript final_script_sig; std::map<CPubKey, std::vector<uint32_t>> hd_keypaths; std::map<CKeyID, SigPair> partial_sigs; std::map<std::vector<uint8_t>, std::vector<uint8_t>> unknown; SigHashType sighash_type = SigHashType(0); bool IsNull() const; void FillSignatureData(SignatureData &sigdata) const; void FromSignatureData(const SignatureData &sigdata); void Merge(const PSBTInput &input); bool IsSane() const; PSBTInput() {} template <typename Stream> inline void Serialize(Stream &s) const { // Write the utxo if (!utxo.IsNull()) { SerializeToVector(s, PSBT_IN_UTXO); SerializeToVector(s, utxo); } if (final_script_sig.empty()) { // Write any partial signatures for (auto sig_pair : partial_sigs) { SerializeToVector(s, PSBT_IN_PARTIAL_SIG, MakeSpan(sig_pair.second.first)); s << sig_pair.second.second; } // Write the sighash type if (sighash_type.getRawSigHashType() != 0) { SerializeToVector(s, PSBT_IN_SIGHASH); SerializeToVector(s, sighash_type); } // Write the redeem script if (!redeem_script.empty()) { SerializeToVector(s, PSBT_IN_REDEEMSCRIPT); s << redeem_script; } // Write any hd keypaths SerializeHDKeypaths(s, hd_keypaths, PSBT_IN_BIP32_DERIVATION); } // Write script sig if (!final_script_sig.empty()) { SerializeToVector(s, PSBT_IN_SCRIPTSIG); s << final_script_sig; } // Write unknown things for (auto &entry : unknown) { s << entry.first; s << entry.second; } s << PSBT_SEPARATOR; } template <typename Stream> inline void Unserialize(Stream &s) { // Read loop while (!s.empty()) { // Read std::vector<uint8_t> key; s >> key; // the key is empty if that was actually a separator byte // This is a special case for key lengths 0 as those are not allowed // (except for separator) if (key.empty()) { return; } // First byte of key is the type uint8_t type = key[0]; // Do stuff based on type switch (type) { case PSBT_IN_UTXO: if (!utxo.IsNull()) { throw std::ios_base::failure( "Duplicate Key, input utxo already provided"); } else if (key.size() != 1) { throw std::ios_base::failure( "utxo key is more than one byte type"); } UnserializeFromVector(s, utxo); break; case PSBT_IN_PARTIAL_SIG: { // Make sure that the key is the size of pubkey + 1 if (key.size() != CPubKey::PUBLIC_KEY_SIZE + 1 && key.size() != CPubKey::COMPRESSED_PUBLIC_KEY_SIZE + 1) { throw std::ios_base::failure( "Size of key was not the expected size for the " "type partial signature pubkey"); } // Read in the pubkey from key CPubKey pubkey(key.begin() + 1, key.end()); if (!pubkey.IsFullyValid()) { throw std::ios_base::failure("Invalid pubkey"); } if (partial_sigs.count(pubkey.GetID()) > 0) { throw std::ios_base::failure( "Duplicate Key, input partial signature for pubkey " "already provided"); } // Read in the signature from value std::vector<uint8_t> sig; s >> sig; // Add to list partial_sigs.emplace(pubkey.GetID(), SigPair(pubkey, std::move(sig))); break; } case PSBT_IN_SIGHASH: if (sighash_type.getRawSigHashType() != 0) { throw std::ios_base::failure( "Duplicate Key, input sighash type already " "provided"); } else if (key.size() != 1) { throw std::ios_base::failure( "Sighash type key is more than one byte type"); } UnserializeFromVector(s, sighash_type); break; case PSBT_IN_REDEEMSCRIPT: { if (!redeem_script.empty()) { throw std::ios_base::failure( "Duplicate Key, input redeemScript already " "provided"); } else if (key.size() != 1) { throw std::ios_base::failure( "Input redeemScript key is more than one byte " "type"); } s >> redeem_script; break; } case PSBT_IN_BIP32_DERIVATION: { DeserializeHDKeypaths(s, key, hd_keypaths); break; } case PSBT_IN_SCRIPTSIG: { if (!final_script_sig.empty()) { throw std::ios_base::failure( "Duplicate Key, input final scriptSig already " "provided"); } else if (key.size() != 1) { throw std::ios_base::failure( "Final scriptSig key is more than one byte type"); } s >> final_script_sig; break; } // Unknown stuff default: if (unknown.count(key) > 0) { throw std::ios_base::failure( "Duplicate Key, key for unknown value already " "provided"); } // Read in the value std::vector<uint8_t> val_bytes; s >> val_bytes; unknown.emplace(std::move(key), std::move(val_bytes)); break; } } } template <typename Stream> PSBTInput(deserialize_type, Stream &s) { Unserialize(s); } }; /** A structure for PSBTs which contains per output information */ struct PSBTOutput { CScript redeem_script; std::map<CPubKey, std::vector<uint32_t>> hd_keypaths; std::map<std::vector<uint8_t>, std::vector<uint8_t>> unknown; bool IsNull() const; void FillSignatureData(SignatureData &sigdata) const; void FromSignatureData(const SignatureData &sigdata); void Merge(const PSBTOutput &output); bool IsSane() const; PSBTOutput() {} template <typename Stream> inline void Serialize(Stream &s) const { // Write the redeem script if (!redeem_script.empty()) { SerializeToVector(s, PSBT_OUT_REDEEMSCRIPT); s << redeem_script; } // Write any hd keypaths SerializeHDKeypaths(s, hd_keypaths, PSBT_OUT_BIP32_DERIVATION); // Write unknown things for (auto &entry : unknown) { s << entry.first; s << entry.second; } s << PSBT_SEPARATOR; } template <typename Stream> inline void Unserialize(Stream &s) { // Read loop while (!s.empty()) { // Read std::vector<uint8_t> key; s >> key; // the key is empty if that was actually a separator byte // This is a special case for key lengths 0 as those are not allowed // (except for separator) if (key.empty()) { return; } // First byte of key is the type uint8_t type = key[0]; // Do stuff based on type switch (type) { case PSBT_OUT_REDEEMSCRIPT: { if (!redeem_script.empty()) { throw std::ios_base::failure( "Duplicate Key, output redeemScript already " "provided"); } else if (key.size() != 1) { throw std::ios_base::failure( "Output redeemScript key is more than one byte " "type"); } s >> redeem_script; break; } case PSBT_OUT_BIP32_DERIVATION: { DeserializeHDKeypaths(s, key, hd_keypaths); break; } // Unknown stuff default: { if (unknown.count(key) > 0) { throw std::ios_base::failure( "Duplicate Key, key for unknown value already " "provided"); } // Read in the value std::vector<uint8_t> val_bytes; s >> val_bytes; unknown.emplace(std::move(key), std::move(val_bytes)); break; } } } } template <typename Stream> PSBTOutput(deserialize_type, Stream &s) { Unserialize(s); } }; /** * A version of CTransaction with the PSBT format. */ struct PartiallySignedTransaction { boost::optional<CMutableTransaction> tx; std::vector<PSBTInput> inputs; std::vector<PSBTOutput> outputs; std::map<std::vector<uint8_t>, std::vector<uint8_t>> unknown; bool IsNull() const; void Merge(const PartiallySignedTransaction &psbt); bool IsSane() const; PartiallySignedTransaction() {} PartiallySignedTransaction(const PartiallySignedTransaction &psbt_in) : tx(psbt_in.tx), inputs(psbt_in.inputs), outputs(psbt_in.outputs), unknown(psbt_in.unknown) {} // Only checks if they refer to the same transaction friend bool operator==(const PartiallySignedTransaction &a, const PartiallySignedTransaction &b) { return a.tx == b.tx; } friend bool operator!=(const PartiallySignedTransaction &a, const PartiallySignedTransaction &b) { return !(a == b); } template <typename Stream> inline void Serialize(Stream &s) const { // magic bytes s << PSBT_MAGIC_BYTES; // unsigned tx flag SerializeToVector(s, PSBT_GLOBAL_UNSIGNED_TX); // Write serialized tx to a stream SerializeToVector(s, *tx); // Write the unknown things for (auto &entry : unknown) { s << entry.first; s << entry.second; } // Separator s << PSBT_SEPARATOR; // Write inputs for (const PSBTInput &input : inputs) { s << input; } // Write outputs for (const PSBTOutput &output : outputs) { s << output; } } template <typename Stream> inline void Unserialize(Stream &s) { // Read the magic bytes uint8_t magic[5]; s >> magic; if (!std::equal(magic, magic + 5, PSBT_MAGIC_BYTES)) { throw std::ios_base::failure("Invalid PSBT magic bytes"); } // Read global data while (!s.empty()) { // Read std::vector<uint8_t> key; s >> key; // the key is empty if that was actually a separator byte // This is a special case for key lengths 0 as those are not allowed // (except for separator) if (key.empty()) { break; } // First byte of key is the type uint8_t type = key[0]; // Do stuff based on type switch (type) { case PSBT_GLOBAL_UNSIGNED_TX: { if (tx) { throw std::ios_base::failure( "Duplicate Key, unsigned tx already provided"); } else if (key.size() != 1) { throw std::ios_base::failure( "Global unsigned tx key is more than one byte " "type"); } CMutableTransaction mtx; UnserializeFromVector(s, mtx); tx = std::move(mtx); // Make sure that all scriptSigs are empty. for (const CTxIn &txin : tx->vin) { if (!txin.scriptSig.empty()) { throw std::ios_base::failure( "Unsigned tx does not have empty scriptSigs."); } } break; } // Unknown stuff default: { if (unknown.count(key) > 0) { throw std::ios_base::failure( "Duplicate Key, key for unknown value already " "provided"); } // Read in the value std::vector<uint8_t> val_bytes; s >> val_bytes; unknown.emplace(std::move(key), std::move(val_bytes)); } } } // Make sure that we got an unsigned tx if (!tx) { throw std::ios_base::failure( "No unsigned transcation was provided"); } // Read input data size_t i = 0; while (!s.empty() && i < tx->vin.size()) { PSBTInput input; s >> input; inputs.push_back(input); ++i; } // Make sure that the number of inputs matches the number of inputs in // the transaction if (inputs.size() != tx->vin.size()) { throw std::ios_base::failure("Inputs provided does not match the " "number of inputs in transaction."); } // Read output data i = 0; while (!s.empty() && i < tx->vout.size()) { PSBTOutput output; s >> output; outputs.push_back(output); ++i; } // Make sure that the number of outputs matches the number of outputs in // the transaction if (outputs.size() != tx->vout.size()) { throw std::ios_base::failure("Outputs provided does not match the " "number of outputs in transaction."); } // Sanity check if (!IsSane()) { throw std::ios_base::failure("PSBT is not sane."); } } template <typename Stream> PartiallySignedTransaction(deserialize_type, Stream &s) { Unserialize(s); } }; /** Produce a script signature using a generic signature creator. */ bool ProduceSignature(const SigningProvider &provider, const BaseSignatureCreator &creator, const CScript &scriptPubKey, SignatureData &sigdata); /** Produce a script signature for a transaction. */ bool SignSignature(const SigningProvider &provider, const CScript &fromPubKey, CMutableTransaction &txTo, unsigned int nIn, const Amount amount, SigHashType sigHashType); bool SignSignature(const SigningProvider &provider, const CTransaction &txFrom, CMutableTransaction &txTo, unsigned int nIn, SigHashType sigHashType); /** * Signs a PSBTInput, verifying that all provided data matches what is being * signed. */ bool SignPSBTInput(const SigningProvider &provider, const CMutableTransaction &tx, PSBTInput &input, SignatureData &sigdata, int index, SigHashType sighash = SigHashType()); /** Extract signature data from a transaction input, and insert it. */ SignatureData DataFromTransaction(const CMutableTransaction &tx, unsigned int nIn, const CTxOut &txout); void UpdateInput(CTxIn &input, const SignatureData &data); #endif // BITCOIN_SCRIPT_SIGN_H diff --git a/src/wallet/wallet.cpp b/src/wallet/wallet.cpp index 2f0677ae0..961043515 100644 --- a/src/wallet/wallet.cpp +++ b/src/wallet/wallet.cpp @@ -1,4829 +1,4837 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <wallet/wallet.h> #include <chain.h> #include <checkpoints.h> #include <config.h> #include <consensus/consensus.h> #include <consensus/validation.h> #include <fs.h> #include <key.h> #include <key_io.h> #include <keystore.h> #include <net.h> #include <policy/policy.h> #include <primitives/block.h> #include <primitives/transaction.h> #include <random.h> #include <script/script.h> #include <script/sighashtype.h> #include <script/sign.h> #include <shutdown.h> #include <timedata.h> #include <txmempool.h> #include <ui_interface.h> #include <util/moneystr.h> #include <util/system.h> #include <validation.h> #include <wallet/coincontrol.h> #include <wallet/coinselection.h> #include <wallet/fees.h> #include <wallet/finaltx.h> #include <wallet/walletutil.h> #include <boost/algorithm/string/replace.hpp> #include <algorithm> #include <cassert> #include <future> static CCriticalSection cs_wallets; static std::vector<std::shared_ptr<CWallet>> vpwallets GUARDED_BY(cs_wallets); bool AddWallet(const std::shared_ptr<CWallet> &wallet) { LOCK(cs_wallets); assert(wallet); std::vector<std::shared_ptr<CWallet>>::const_iterator i = std::find(vpwallets.begin(), vpwallets.end(), wallet); if (i != vpwallets.end()) { return false; } vpwallets.push_back(wallet); return true; } bool RemoveWallet(const std::shared_ptr<CWallet> &wallet) { LOCK(cs_wallets); assert(wallet); std::vector<std::shared_ptr<CWallet>>::iterator i = std::find(vpwallets.begin(), vpwallets.end(), wallet); if (i == vpwallets.end()) { return false; } vpwallets.erase(i); return true; } bool HasWallets() { LOCK(cs_wallets); return !vpwallets.empty(); } std::vector<std::shared_ptr<CWallet>> GetWallets() { LOCK(cs_wallets); return vpwallets; } std::shared_ptr<CWallet> GetWallet(const std::string &name) { LOCK(cs_wallets); for (const std::shared_ptr<CWallet> &wallet : vpwallets) { if (wallet->GetName() == name) { return wallet; } } return nullptr; } // Custom deleter for shared_ptr<CWallet>. static void ReleaseWallet(CWallet *wallet) { LogPrintf("Releasing wallet %s\n", wallet->GetName()); wallet->BlockUntilSyncedToCurrentChain(); wallet->Flush(); delete wallet; } static const size_t OUTPUT_GROUP_MAX_ENTRIES = 10; const uint32_t BIP32_HARDENED_KEY_LIMIT = 0x80000000; const uint256 CMerkleTx::ABANDON_HASH(uint256S( "0000000000000000000000000000000000000000000000000000000000000001")); /** @defgroup mapWallet * * @{ */ std::string COutput::ToString() const { return strprintf("COutput(%s, %d, %d) [%s]", tx->GetId().ToString(), i, nDepth, FormatMoney(tx->tx->vout[i].nValue)); } class CAffectedKeysVisitor : public boost::static_visitor<void> { private: const CKeyStore &keystore; std::vector<CKeyID> &vKeys; public: CAffectedKeysVisitor(const CKeyStore &keystoreIn, std::vector<CKeyID> &vKeysIn) : keystore(keystoreIn), vKeys(vKeysIn) {} void Process(const CScript &script) { txnouttype type; std::vector<CTxDestination> vDest; int nRequired; if (ExtractDestinations(script, type, vDest, nRequired)) { for (const CTxDestination &dest : vDest) { boost::apply_visitor(*this, dest); } } } void operator()(const CKeyID &keyId) { if (keystore.HaveKey(keyId)) { vKeys.push_back(keyId); } } void operator()(const CScriptID &scriptId) { CScript script; if (keystore.GetCScript(scriptId, script)) { Process(script); } } void operator()(const CNoDestination &none) {} }; const CWalletTx *CWallet::GetWalletTx(const TxId &txid) const { LOCK(cs_wallet); std::map<TxId, CWalletTx>::const_iterator it = mapWallet.find(txid); if (it == mapWallet.end()) { return nullptr; } return &(it->second); } CPubKey CWallet::GenerateNewKey(WalletBatch &batch, bool internal) { // mapKeyMetadata AssertLockHeld(cs_wallet); // default to compressed public keys if we want 0.6.0 wallets bool fCompressed = CanSupportFeature(FEATURE_COMPRPUBKEY); CKey secret; // Create new metadata int64_t nCreationTime = GetTime(); CKeyMetadata metadata(nCreationTime); // use HD key derivation if HD was enabled during wallet creation if (IsHDEnabled()) { DeriveNewChildKey( batch, metadata, secret, (CanSupportFeature(FEATURE_HD_SPLIT) ? internal : false)); } else { secret.MakeNewKey(fCompressed); } // Compressed public keys were introduced in version 0.6.0 if (fCompressed) { SetMinVersion(FEATURE_COMPRPUBKEY); } CPubKey pubkey = secret.GetPubKey(); assert(secret.VerifyPubKey(pubkey)); mapKeyMetadata[pubkey.GetID()] = metadata; UpdateTimeFirstKey(nCreationTime); if (!AddKeyPubKeyWithDB(batch, secret, pubkey)) { throw std::runtime_error(std::string(__func__) + ": AddKey failed"); } return pubkey; } void CWallet::DeriveNewChildKey(WalletBatch &batch, CKeyMetadata &metadata, CKey &secret, bool internal) { // for now we use a fixed keypath scheme of m/0'/0'/k // seed (256bit) CKey seed; // hd master key CExtKey masterKey; // key at m/0' CExtKey accountKey; // key at m/0'/0' (external) or m/0'/1' (internal) CExtKey chainChildKey; // key at m/0'/0'/<n>' CExtKey childKey; // try to get the seed if (!GetKey(hdChain.seed_id, seed)) { throw std::runtime_error(std::string(__func__) + ": seed not found"); } masterKey.SetSeed(seed.begin(), seed.size()); // derive m/0' // use hardened derivation (child keys >= 0x80000000 are hardened after // bip32) masterKey.Derive(accountKey, BIP32_HARDENED_KEY_LIMIT); // derive m/0'/0' (external chain) OR m/0'/1' (internal chain) assert(internal ? CanSupportFeature(FEATURE_HD_SPLIT) : true); accountKey.Derive(chainChildKey, BIP32_HARDENED_KEY_LIMIT + (internal ? 1 : 0)); // derive child key at next index, skip keys already known to the wallet do { // always derive hardened keys // childIndex | BIP32_HARDENED_KEY_LIMIT = derive childIndex in hardened // child-index-range // example: 1 | BIP32_HARDENED_KEY_LIMIT == 0x80000001 == 2147483649 if (internal) { chainChildKey.Derive(childKey, hdChain.nInternalChainCounter | BIP32_HARDENED_KEY_LIMIT); metadata.hdKeypath = "m/0'/1'/" + std::to_string(hdChain.nInternalChainCounter) + "'"; hdChain.nInternalChainCounter++; } else { chainChildKey.Derive(childKey, hdChain.nExternalChainCounter | BIP32_HARDENED_KEY_LIMIT); metadata.hdKeypath = "m/0'/0'/" + std::to_string(hdChain.nExternalChainCounter) + "'"; hdChain.nExternalChainCounter++; } } while (HaveKey(childKey.key.GetPubKey().GetID())); secret = childKey.key; metadata.hd_seed_id = hdChain.seed_id; // update the chain model in the database if (!batch.WriteHDChain(hdChain)) { throw std::runtime_error(std::string(__func__) + ": Writing HD chain model failed"); } } bool CWallet::AddKeyPubKeyWithDB(WalletBatch &batch, const CKey &secret, const CPubKey &pubkey) { // mapKeyMetadata AssertLockHeld(cs_wallet); // CCryptoKeyStore has no concept of wallet databases, but calls // AddCryptedKey // which is overridden below. To avoid flushes, the database handle is // tunneled through to it. bool needsDB = !encrypted_batch; if (needsDB) { encrypted_batch = &batch; } if (!CCryptoKeyStore::AddKeyPubKey(secret, pubkey)) { if (needsDB) { encrypted_batch = nullptr; } return false; } if (needsDB) { encrypted_batch = nullptr; } // Check if we need to remove from watch-only. CScript script; script = GetScriptForDestination(pubkey.GetID()); if (HaveWatchOnly(script)) { RemoveWatchOnly(script); } script = GetScriptForRawPubKey(pubkey); if (HaveWatchOnly(script)) { RemoveWatchOnly(script); } if (IsCrypted()) { return true; } return batch.WriteKey(pubkey, secret.GetPrivKey(), mapKeyMetadata[pubkey.GetID()]); } bool CWallet::AddKeyPubKey(const CKey &secret, const CPubKey &pubkey) { WalletBatch batch(*database); return CWallet::AddKeyPubKeyWithDB(batch, secret, pubkey); } bool CWallet::AddCryptedKey(const CPubKey &vchPubKey, const std::vector<uint8_t> &vchCryptedSecret) { if (!CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret)) { return false; } LOCK(cs_wallet); if (encrypted_batch) { return encrypted_batch->WriteCryptedKey( vchPubKey, vchCryptedSecret, mapKeyMetadata[vchPubKey.GetID()]); } return WalletBatch(*database).WriteCryptedKey( vchPubKey, vchCryptedSecret, mapKeyMetadata[vchPubKey.GetID()]); } void CWallet::LoadKeyMetadata(const CKeyID &keyID, const CKeyMetadata &meta) { // mapKeyMetadata AssertLockHeld(cs_wallet); UpdateTimeFirstKey(meta.nCreateTime); mapKeyMetadata[keyID] = meta; } void CWallet::LoadScriptMetadata(const CScriptID &script_id, const CKeyMetadata &meta) { // m_script_metadata AssertLockHeld(cs_wallet); UpdateTimeFirstKey(meta.nCreateTime); m_script_metadata[script_id] = meta; } bool CWallet::LoadCryptedKey(const CPubKey &vchPubKey, const std::vector<uint8_t> &vchCryptedSecret) { return CCryptoKeyStore::AddCryptedKey(vchPubKey, vchCryptedSecret); } /** * Update wallet first key creation time. This should be called whenever keys * are added to the wallet, with the oldest key creation time. */ void CWallet::UpdateTimeFirstKey(int64_t nCreateTime) { AssertLockHeld(cs_wallet); if (nCreateTime <= 1) { // Cannot determine birthday information, so set the wallet birthday to // the beginning of time. nTimeFirstKey = 1; } else if (!nTimeFirstKey || nCreateTime < nTimeFirstKey) { nTimeFirstKey = nCreateTime; } } bool CWallet::AddCScript(const CScript &redeemScript) { if (!CCryptoKeyStore::AddCScript(redeemScript)) { return false; } return WalletBatch(*database).WriteCScript(Hash160(redeemScript), redeemScript); } bool CWallet::LoadCScript(const CScript &redeemScript) { /** * A sanity check was added in pull #3843 to avoid adding redeemScripts that * never can be redeemed. However, old wallets may still contain these. Do * not add them to the wallet and warn. */ if (redeemScript.size() > MAX_SCRIPT_ELEMENT_SIZE) { std::string strAddr = EncodeDestination(CScriptID(redeemScript), GetConfig()); LogPrintf("%s: Warning: This wallet contains a redeemScript of size %i " "which exceeds maximum size %i thus can never be redeemed. " "Do not use address %s.\n", __func__, redeemScript.size(), MAX_SCRIPT_ELEMENT_SIZE, strAddr); return true; } return CCryptoKeyStore::AddCScript(redeemScript); } bool CWallet::AddWatchOnly(const CScript &dest) { if (!CCryptoKeyStore::AddWatchOnly(dest)) { return false; } const CKeyMetadata &meta = m_script_metadata[CScriptID(dest)]; UpdateTimeFirstKey(meta.nCreateTime); NotifyWatchonlyChanged(true); return WalletBatch(*database).WriteWatchOnly(dest, meta); } bool CWallet::AddWatchOnly(const CScript &dest, int64_t nCreateTime) { m_script_metadata[CScriptID(dest)].nCreateTime = nCreateTime; return AddWatchOnly(dest); } bool CWallet::RemoveWatchOnly(const CScript &dest) { AssertLockHeld(cs_wallet); if (!CCryptoKeyStore::RemoveWatchOnly(dest)) { return false; } if (!HaveWatchOnly()) { NotifyWatchonlyChanged(false); } return WalletBatch(*database).EraseWatchOnly(dest); } bool CWallet::LoadWatchOnly(const CScript &dest) { return CCryptoKeyStore::AddWatchOnly(dest); } bool CWallet::Unlock(const SecureString &strWalletPassphrase) { CCrypter crypter; CKeyingMaterial _vMasterKey; LOCK(cs_wallet); for (const MasterKeyMap::value_type &pMasterKey : mapMasterKeys) { if (!crypter.SetKeyFromPassphrase( strWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) { return false; } if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, _vMasterKey)) { // try another master key continue; } if (CCryptoKeyStore::Unlock(_vMasterKey)) { return true; } } return false; } bool CWallet::ChangeWalletPassphrase( const SecureString &strOldWalletPassphrase, const SecureString &strNewWalletPassphrase) { bool fWasLocked = IsLocked(); LOCK(cs_wallet); Lock(); CCrypter crypter; CKeyingMaterial _vMasterKey; for (MasterKeyMap::value_type &pMasterKey : mapMasterKeys) { if (!crypter.SetKeyFromPassphrase( strOldWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) { return false; } if (!crypter.Decrypt(pMasterKey.second.vchCryptedKey, _vMasterKey)) { return false; } if (CCryptoKeyStore::Unlock(_vMasterKey)) { int64_t nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod); pMasterKey.second.nDeriveIterations = static_cast<unsigned int>( pMasterKey.second.nDeriveIterations * (100 / ((double)(GetTimeMillis() - nStartTime)))); nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod); pMasterKey.second.nDeriveIterations = (pMasterKey.second.nDeriveIterations + static_cast<unsigned int>( pMasterKey.second.nDeriveIterations * 100 / double(GetTimeMillis() - nStartTime))) / 2; if (pMasterKey.second.nDeriveIterations < 25000) { pMasterKey.second.nDeriveIterations = 25000; } LogPrintf( "Wallet passphrase changed to an nDeriveIterations of %i\n", pMasterKey.second.nDeriveIterations); if (!crypter.SetKeyFromPassphrase( strNewWalletPassphrase, pMasterKey.second.vchSalt, pMasterKey.second.nDeriveIterations, pMasterKey.second.nDerivationMethod)) { return false; } if (!crypter.Encrypt(_vMasterKey, pMasterKey.second.vchCryptedKey)) { return false; } WalletBatch(*database).WriteMasterKey(pMasterKey.first, pMasterKey.second); if (fWasLocked) { Lock(); } return true; } } return false; } void CWallet::ChainStateFlushed(const CBlockLocator &loc) { WalletBatch batch(*database); batch.WriteBestBlock(loc); } void CWallet::SetMinVersion(enum WalletFeature nVersion, WalletBatch *batch_in, bool fExplicit) { // nWalletVersion LOCK(cs_wallet); if (nWalletVersion >= nVersion) { return; } // When doing an explicit upgrade, if we pass the max version permitted, // upgrade all the way. if (fExplicit && nVersion > nWalletMaxVersion) { nVersion = FEATURE_LATEST; } nWalletVersion = nVersion; if (nVersion > nWalletMaxVersion) { nWalletMaxVersion = nVersion; } WalletBatch *batch = batch_in ? batch_in : new WalletBatch(*database); if (nWalletVersion > 40000) { batch->WriteMinVersion(nWalletVersion); } if (!batch_in) { delete batch; } } bool CWallet::SetMaxVersion(int nVersion) { // nWalletVersion, nWalletMaxVersion LOCK(cs_wallet); // Cannot downgrade below current version if (nWalletVersion > nVersion) { return false; } nWalletMaxVersion = nVersion; return true; } std::set<TxId> CWallet::GetConflicts(const TxId &txid) const { std::set<TxId> result; AssertLockHeld(cs_wallet); std::map<TxId, CWalletTx>::const_iterator it = mapWallet.find(txid); if (it == mapWallet.end()) { return result; } const CWalletTx &wtx = it->second; std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range; for (const CTxIn &txin : wtx.tx->vin) { if (mapTxSpends.count(txin.prevout) <= 1) { // No conflict if zero or one spends. continue; } range = mapTxSpends.equal_range(txin.prevout); for (TxSpends::const_iterator _it = range.first; _it != range.second; ++_it) { result.insert(_it->second); } } return result; } bool CWallet::HasWalletSpend(const TxId &txid) const { AssertLockHeld(cs_wallet); auto iter = mapTxSpends.lower_bound(COutPoint(txid, 0)); return (iter != mapTxSpends.end() && iter->first.GetTxId() == txid); } void CWallet::Flush(bool shutdown) { database->Flush(shutdown); } void CWallet::SyncMetaData( std::pair<TxSpends::iterator, TxSpends::iterator> range) { // We want all the wallet transactions in range to have the same metadata as // the oldest (smallest nOrderPos). // So: find smallest nOrderPos: int nMinOrderPos = std::numeric_limits<int>::max(); const CWalletTx *copyFrom = nullptr; for (TxSpends::iterator it = range.first; it != range.second; ++it) { const CWalletTx *wtx = &mapWallet.at(it->second); if (wtx->nOrderPos < nMinOrderPos) { nMinOrderPos = wtx->nOrderPos; copyFrom = wtx; } } // Now copy data from copyFrom to rest: for (TxSpends::iterator it = range.first; it != range.second; ++it) { const TxId &txid = it->second; CWalletTx *copyTo = &mapWallet.at(txid); if (copyFrom == copyTo) { continue; } assert( copyFrom && "Oldest wallet transaction in range assumed to have been found."); if (!copyFrom->IsEquivalentTo(*copyTo)) { continue; } copyTo->mapValue = copyFrom->mapValue; copyTo->vOrderForm = copyFrom->vOrderForm; // fTimeReceivedIsTxTime not copied on purpose nTimeReceived not copied // on purpose. copyTo->nTimeSmart = copyFrom->nTimeSmart; copyTo->fFromMe = copyFrom->fFromMe; copyTo->strFromAccount = copyFrom->strFromAccount; // nOrderPos not copied on purpose cached members not copied on purpose. } } /** * Outpoint is spent if any non-conflicted transaction, spends it: */ bool CWallet::IsSpent(const COutPoint &outpoint) const { std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range = mapTxSpends.equal_range(outpoint); for (TxSpends::const_iterator it = range.first; it != range.second; ++it) { const TxId &wtxid = it->second; std::map<TxId, CWalletTx>::const_iterator mit = mapWallet.find(wtxid); if (mit != mapWallet.end()) { int depth = mit->second.GetDepthInMainChain(); if (depth > 0 || (depth == 0 && !mit->second.isAbandoned())) { // Spent return true; } } } return false; } void CWallet::AddToSpends(const COutPoint &outpoint, const TxId &wtxid) { mapTxSpends.insert(std::make_pair(outpoint, wtxid)); std::pair<TxSpends::iterator, TxSpends::iterator> range; range = mapTxSpends.equal_range(outpoint); SyncMetaData(range); } void CWallet::AddToSpends(const TxId &wtxid) { auto it = mapWallet.find(wtxid); assert(it != mapWallet.end()); CWalletTx &thisTx = it->second; // Coinbases don't spend anything! if (thisTx.IsCoinBase()) { return; } for (const CTxIn &txin : thisTx.tx->vin) { AddToSpends(txin.prevout, wtxid); } } bool CWallet::EncryptWallet(const SecureString &strWalletPassphrase) { if (IsCrypted()) { return false; } CKeyingMaterial _vMasterKey; _vMasterKey.resize(WALLET_CRYPTO_KEY_SIZE); GetStrongRandBytes(&_vMasterKey[0], WALLET_CRYPTO_KEY_SIZE); CMasterKey kMasterKey; kMasterKey.vchSalt.resize(WALLET_CRYPTO_SALT_SIZE); GetStrongRandBytes(&kMasterKey.vchSalt[0], WALLET_CRYPTO_SALT_SIZE); CCrypter crypter; int64_t nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, 25000, kMasterKey.nDerivationMethod); kMasterKey.nDeriveIterations = static_cast<unsigned int>( 2500000 / double(GetTimeMillis() - nStartTime)); nStartTime = GetTimeMillis(); crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod); kMasterKey.nDeriveIterations = (kMasterKey.nDeriveIterations + static_cast<unsigned int>(kMasterKey.nDeriveIterations * 100 / double(GetTimeMillis() - nStartTime))) / 2; if (kMasterKey.nDeriveIterations < 25000) { kMasterKey.nDeriveIterations = 25000; } LogPrintf("Encrypting Wallet with an nDeriveIterations of %i\n", kMasterKey.nDeriveIterations); if (!crypter.SetKeyFromPassphrase(strWalletPassphrase, kMasterKey.vchSalt, kMasterKey.nDeriveIterations, kMasterKey.nDerivationMethod)) { return false; } if (!crypter.Encrypt(_vMasterKey, kMasterKey.vchCryptedKey)) { return false; } { LOCK(cs_wallet); mapMasterKeys[++nMasterKeyMaxID] = kMasterKey; assert(!encrypted_batch); encrypted_batch = new WalletBatch(*database); if (!encrypted_batch->TxnBegin()) { delete encrypted_batch; encrypted_batch = nullptr; return false; } encrypted_batch->WriteMasterKey(nMasterKeyMaxID, kMasterKey); if (!EncryptKeys(_vMasterKey)) { encrypted_batch->TxnAbort(); delete encrypted_batch; // We now probably have half of our keys encrypted in memory, and // half not... die and let the user reload the unencrypted wallet. assert(false); } // Encryption was introduced in version 0.4.0 SetMinVersion(FEATURE_WALLETCRYPT, encrypted_batch, true); if (!encrypted_batch->TxnCommit()) { delete encrypted_batch; // We now have keys encrypted in memory, but not on disk... // die to avoid confusion and let the user reload the unencrypted // wallet. assert(false); } delete encrypted_batch; encrypted_batch = nullptr; Lock(); Unlock(strWalletPassphrase); // If we are using HD, replace the HD seed with a new one if (IsHDEnabled()) { SetHDSeed(GenerateNewSeed()); } NewKeyPool(); Lock(); // Need to completely rewrite the wallet file; if we don't, bdb might // keep bits of the unencrypted private key in slack space in the // database file. database->Rewrite(); } NotifyStatusChanged(this); return true; } DBErrors CWallet::ReorderTransactions() { LOCK(cs_wallet); WalletBatch batch(*database); // Old wallets didn't have any defined order for transactions. Probably a // bad idea to change the output of this. // First: get all CWalletTx and CAccountingEntry into a sorted-by-time // multimap. TxItems txByTime; for (auto &entry : mapWallet) { CWalletTx *wtx = &entry.second; txByTime.insert( std::make_pair(wtx->nTimeReceived, TxPair(wtx, nullptr))); } std::list<CAccountingEntry> acentries; batch.ListAccountCreditDebit("", acentries); for (CAccountingEntry &entry : acentries) { txByTime.insert(std::make_pair(entry.nTime, TxPair(nullptr, &entry))); } nOrderPosNext = 0; std::vector<int64_t> nOrderPosOffsets; for (TxItems::iterator it = txByTime.begin(); it != txByTime.end(); ++it) { CWalletTx *const pwtx = (*it).second.first; CAccountingEntry *const pacentry = (*it).second.second; int64_t &nOrderPos = (pwtx != nullptr) ? pwtx->nOrderPos : pacentry->nOrderPos; if (nOrderPos == -1) { nOrderPos = nOrderPosNext++; nOrderPosOffsets.push_back(nOrderPos); if (pwtx) { if (!batch.WriteTx(*pwtx)) { return DBErrors::LOAD_FAIL; } } else if (!batch.WriteAccountingEntry(pacentry->nEntryNo, *pacentry)) { return DBErrors::LOAD_FAIL; } } else { int64_t nOrderPosOff = 0; for (const int64_t &nOffsetStart : nOrderPosOffsets) { if (nOrderPos >= nOffsetStart) { ++nOrderPosOff; } } nOrderPos += nOrderPosOff; nOrderPosNext = std::max(nOrderPosNext, nOrderPos + 1); if (!nOrderPosOff) { continue; } // Since we're changing the order, write it back. if (pwtx) { if (!batch.WriteTx(*pwtx)) { return DBErrors::LOAD_FAIL; } } else if (!batch.WriteAccountingEntry(pacentry->nEntryNo, *pacentry)) { return DBErrors::LOAD_FAIL; } } } batch.WriteOrderPosNext(nOrderPosNext); return DBErrors::LOAD_OK; } int64_t CWallet::IncOrderPosNext(WalletBatch *batch) { // nOrderPosNext AssertLockHeld(cs_wallet); int64_t nRet = nOrderPosNext++; if (batch) { batch->WriteOrderPosNext(nOrderPosNext); } else { WalletBatch(*database).WriteOrderPosNext(nOrderPosNext); } return nRet; } bool CWallet::AccountMove(std::string strFrom, std::string strTo, const Amount nAmount, std::string strComment) { WalletBatch batch(*database); if (!batch.TxnBegin()) { return false; } int64_t nNow = GetAdjustedTime(); // Debit CAccountingEntry debit; debit.nOrderPos = IncOrderPosNext(&batch); debit.strAccount = strFrom; debit.nCreditDebit = -nAmount; debit.nTime = nNow; debit.strOtherAccount = strTo; debit.strComment = strComment; AddAccountingEntry(debit, &batch); // Credit CAccountingEntry credit; credit.nOrderPos = IncOrderPosNext(&batch); credit.strAccount = strTo; credit.nCreditDebit = nAmount; credit.nTime = nNow; credit.strOtherAccount = strFrom; credit.strComment = strComment; AddAccountingEntry(credit, &batch); return batch.TxnCommit(); } bool CWallet::GetLabelDestination(CTxDestination &dest, const std::string &label, bool bForceNew) { WalletBatch batch(*database); CAccount account; batch.ReadAccount(label, account); if (!bForceNew) { if (!account.vchPubKey.IsValid()) { bForceNew = true; } else { // Check if the current key has been used (TODO: check other // addresses with the same key) CScript scriptPubKey = GetScriptForDestination(GetDestinationForKey( account.vchPubKey, m_default_address_type)); for (std::map<TxId, CWalletTx>::iterator it = mapWallet.begin(); it != mapWallet.end() && account.vchPubKey.IsValid(); ++it) { for (const CTxOut &txout : (*it).second.tx->vout) { if (txout.scriptPubKey == scriptPubKey) { bForceNew = true; break; } } } } } // Generate a new key if (bForceNew) { if (!GetKeyFromPool(account.vchPubKey, false)) { return false; } LearnRelatedScripts(account.vchPubKey, m_default_address_type); dest = GetDestinationForKey(account.vchPubKey, m_default_address_type); SetAddressBook(dest, label, "receive"); batch.WriteAccount(label, account); } else { dest = GetDestinationForKey(account.vchPubKey, m_default_address_type); } return true; } void CWallet::MarkDirty() { LOCK(cs_wallet); for (std::pair<const TxId, CWalletTx> &item : mapWallet) { item.second.MarkDirty(); } } bool CWallet::AddToWallet(const CWalletTx &wtxIn, bool fFlushOnClose) { LOCK(cs_wallet); WalletBatch batch(*database, "r+", fFlushOnClose); const TxId &txid = wtxIn.GetId(); // Inserts only if not already there, returns tx inserted or tx found. std::pair<std::map<TxId, CWalletTx>::iterator, bool> ret = mapWallet.insert(std::make_pair(txid, wtxIn)); CWalletTx &wtx = (*ret.first).second; wtx.BindWallet(this); bool fInsertedNew = ret.second; if (fInsertedNew) { wtx.nTimeReceived = GetAdjustedTime(); wtx.nOrderPos = IncOrderPosNext(&batch); wtxOrdered.insert(std::make_pair(wtx.nOrderPos, TxPair(&wtx, nullptr))); wtx.nTimeSmart = ComputeTimeSmart(wtx); AddToSpends(txid); } bool fUpdated = false; if (!fInsertedNew) { // Merge if (!wtxIn.hashUnset() && wtxIn.hashBlock != wtx.hashBlock) { wtx.hashBlock = wtxIn.hashBlock; fUpdated = true; } // If no longer abandoned, update if (wtxIn.hashBlock.IsNull() && wtx.isAbandoned()) { wtx.hashBlock = wtxIn.hashBlock; fUpdated = true; } if (wtxIn.nIndex != -1 && (wtxIn.nIndex != wtx.nIndex)) { wtx.nIndex = wtxIn.nIndex; fUpdated = true; } if (wtxIn.fFromMe && wtxIn.fFromMe != wtx.fFromMe) { wtx.fFromMe = wtxIn.fFromMe; fUpdated = true; } } //// debug print LogPrintf("AddToWallet %s %s%s\n", wtxIn.GetId().ToString(), (fInsertedNew ? "new" : ""), (fUpdated ? "update" : "")); // Write to disk if ((fInsertedNew || fUpdated) && !batch.WriteTx(wtx)) { return false; } // Break debit/credit balance caches: wtx.MarkDirty(); // Notify UI of new or updated transaction. NotifyTransactionChanged(this, txid, fInsertedNew ? CT_NEW : CT_UPDATED); // Notify an external script when a wallet transaction comes in or is // updated. std::string strCmd = gArgs.GetArg("-walletnotify", ""); if (!strCmd.empty()) { boost::replace_all(strCmd, "%s", wtxIn.GetId().GetHex()); std::thread t(runCommand, strCmd); // Thread runs free. t.detach(); } return true; } void CWallet::LoadToWallet(const CWalletTx &wtxIn) { const TxId &txid = wtxIn.GetId(); CWalletTx &wtx = mapWallet.emplace(txid, wtxIn).first->second; wtx.BindWallet(this); wtxOrdered.insert(std::make_pair(wtx.nOrderPos, TxPair(&wtx, nullptr))); AddToSpends(txid); for (const CTxIn &txin : wtx.tx->vin) { auto it = mapWallet.find(txin.prevout.GetTxId()); if (it != mapWallet.end()) { CWalletTx &prevtx = it->second; if (prevtx.nIndex == -1 && !prevtx.hashUnset()) { MarkConflicted(prevtx.hashBlock, wtx.GetId()); } } } } /** * Add a transaction to the wallet, or update it. pIndex and posInBlock should * be set when the transaction was known to be included in a block. When pIndex * == nullptr, then wallet state is not updated in AddToWallet, but * notifications happen and cached balances are marked dirty. * * If fUpdate is true, existing transactions will be updated. * TODO: One exception to this is that the abandoned state is cleared under the * assumption that any further notification of a transaction that was considered * abandoned is an indication that it is not safe to be considered abandoned. * Abandoned state should probably be more carefully tracked via different * posInBlock signals or by checking mempool presence when necessary. */ bool CWallet::AddToWalletIfInvolvingMe(const CTransactionRef &ptx, const CBlockIndex *pIndex, int posInBlock, bool fUpdate) { const CTransaction &tx = *ptx; AssertLockHeld(cs_wallet); if (pIndex != nullptr) { for (const CTxIn &txin : tx.vin) { std::pair<TxSpends::const_iterator, TxSpends::const_iterator> range = mapTxSpends.equal_range(txin.prevout); while (range.first != range.second) { if (range.first->second != tx.GetId()) { LogPrintf("Transaction %s (in block %s) conflicts with " "wallet transaction %s (both spend %s:%i)\n", tx.GetId().ToString(), pIndex->GetBlockHash().ToString(), range.first->second.ToString(), range.first->first.GetTxId().ToString(), range.first->first.GetN()); MarkConflicted(pIndex->GetBlockHash(), range.first->second); } range.first++; } } } bool fExisted = mapWallet.count(tx.GetId()) != 0; if (fExisted && !fUpdate) { return false; } if (fExisted || IsMine(tx) || IsFromMe(tx)) { /** * Check if any keys in the wallet keypool that were supposed to be * unused have appeared in a new transaction. If so, remove those keys * from the keypool. This can happen when restoring an old wallet backup * that does not contain the mostly recently created transactions from * newer versions of the wallet. */ // loop though all outputs for (const CTxOut &txout : tx.vout) { // extract addresses and check if they match with an unused keypool // key std::vector<CKeyID> vAffected; CAffectedKeysVisitor(*this, vAffected).Process(txout.scriptPubKey); for (const CKeyID &keyid : vAffected) { std::map<CKeyID, int64_t>::const_iterator mi = m_pool_key_to_index.find(keyid); if (mi != m_pool_key_to_index.end()) { LogPrintf("%s: Detected a used keypool key, mark all " "keypool key up to this key as used\n", __func__); MarkReserveKeysAsUsed(mi->second); if (!TopUpKeyPool()) { LogPrintf( "%s: Topping up keypool failed (locked wallet)\n", __func__); } } } } CWalletTx wtx(this, ptx); // Get merkle branch if transaction was found in a block if (pIndex != nullptr) { wtx.SetMerkleBranch(pIndex, posInBlock); } return AddToWallet(wtx, false); } return false; } bool CWallet::TransactionCanBeAbandoned(const TxId &txid) const { LOCK2(cs_main, cs_wallet); const CWalletTx *wtx = GetWalletTx(txid); return wtx && !wtx->isAbandoned() && wtx->GetDepthInMainChain() == 0 && !wtx->InMempool(); } bool CWallet::AbandonTransaction(const TxId &txid) { LOCK2(cs_main, cs_wallet); WalletBatch batch(*database, "r+"); std::set<TxId> todo; std::set<TxId> done; // Can't mark abandoned if confirmed or in mempool auto it = mapWallet.find(txid); assert(it != mapWallet.end()); CWalletTx &origtx = it->second; if (origtx.GetDepthInMainChain() != 0 || origtx.InMempool()) { return false; } todo.insert(txid); while (!todo.empty()) { const TxId now = *todo.begin(); todo.erase(now); done.insert(now); it = mapWallet.find(now); assert(it != mapWallet.end()); CWalletTx &wtx = it->second; int currentconfirm = wtx.GetDepthInMainChain(); // If the orig tx was not in block, none of its spends can be. assert(currentconfirm <= 0); // If (currentconfirm < 0) {Tx and spends are already conflicted, no // need to abandon} if (currentconfirm == 0 && !wtx.isAbandoned()) { // If the orig tx was not in block/mempool, none of its spends can // be in mempool. assert(!wtx.InMempool()); wtx.nIndex = -1; wtx.setAbandoned(); wtx.MarkDirty(); batch.WriteTx(wtx); NotifyTransactionChanged(this, wtx.GetId(), CT_UPDATED); // Iterate over all its outputs, and mark transactions in the wallet // that spend them abandoned too. TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(now, 0)); while (iter != mapTxSpends.end() && iter->first.GetTxId() == now) { if (!done.count(iter->second)) { todo.insert(iter->second); } iter++; } // If a transaction changes 'conflicted' state, that changes the // balance available of the outputs it spends. So force those to be // recomputed. for (const CTxIn &txin : wtx.tx->vin) { auto it2 = mapWallet.find(txin.prevout.GetTxId()); if (it2 != mapWallet.end()) { it2->second.MarkDirty(); } } } } return true; } void CWallet::MarkConflicted(const uint256 &hashBlock, const TxId &txid) { LOCK2(cs_main, cs_wallet); int conflictconfirms = 0; CBlockIndex *pindex = LookupBlockIndex(hashBlock); if (pindex && chainActive.Contains(pindex)) { conflictconfirms = -(chainActive.Height() - pindex->nHeight + 1); } // If number of conflict confirms cannot be determined, this means that the // block is still unknown or not yet part of the main chain, for example // when loading the wallet during a reindex. Do nothing in that case. if (conflictconfirms >= 0) { return; } // Do not flush the wallet here for performance reasons. WalletBatch batch(*database, "r+", false); std::set<TxId> todo; std::set<TxId> done; todo.insert(txid); while (!todo.empty()) { const TxId now = *todo.begin(); todo.erase(now); done.insert(now); auto it = mapWallet.find(now); assert(it != mapWallet.end()); CWalletTx &wtx = it->second; int currentconfirm = wtx.GetDepthInMainChain(); if (conflictconfirms < currentconfirm) { // Block is 'more conflicted' than current confirm; update. // Mark transaction as conflicted with this block. wtx.nIndex = -1; wtx.hashBlock = hashBlock; wtx.MarkDirty(); batch.WriteTx(wtx); // Iterate over all its outputs, and mark transactions in the wallet // that spend them conflicted too. TxSpends::const_iterator iter = mapTxSpends.lower_bound(COutPoint(now, 0)); while (iter != mapTxSpends.end() && iter->first.GetTxId() == now) { if (!done.count(iter->second)) { todo.insert(iter->second); } iter++; } // If a transaction changes 'conflicted' state, that changes the // balance available of the outputs it spends. So force those to be // recomputed. for (const CTxIn &txin : wtx.tx->vin) { auto it2 = mapWallet.find(txin.prevout.GetTxId()); if (it2 != mapWallet.end()) { it2->second.MarkDirty(); } } } } } void CWallet::SyncTransaction(const CTransactionRef &ptx, const CBlockIndex *pindex, int posInBlock) { const CTransaction &tx = *ptx; if (!AddToWalletIfInvolvingMe(ptx, pindex, posInBlock, true)) { // Not one of ours return; } // If a transaction changes 'conflicted' state, that changes the balance // available of the outputs it spends. So force those to be // recomputed, also: for (const CTxIn &txin : tx.vin) { auto it = mapWallet.find(txin.prevout.GetTxId()); if (it != mapWallet.end()) { it->second.MarkDirty(); } } } void CWallet::TransactionAddedToMempool(const CTransactionRef &ptx) { LOCK2(cs_main, cs_wallet); SyncTransaction(ptx); auto it = mapWallet.find(ptx->GetId()); if (it != mapWallet.end()) { it->second.fInMempool = true; } } void CWallet::TransactionRemovedFromMempool(const CTransactionRef &ptx) { LOCK(cs_wallet); auto it = mapWallet.find(ptx->GetId()); if (it != mapWallet.end()) { it->second.fInMempool = false; } } void CWallet::BlockConnected( const std::shared_ptr<const CBlock> &pblock, const CBlockIndex *pindex, const std::vector<CTransactionRef> &vtxConflicted) { LOCK2(cs_main, cs_wallet); // TODO: Temporarily ensure that mempool removals are notified before // connected transactions. This shouldn't matter, but the abandoned state of // transactions in our wallet is currently cleared when we receive another // notification and there is a race condition where notification of a // connected conflict might cause an outside process to abandon a // transaction and then have it inadvertently cleared by the notification // that the conflicted transaction was evicted. for (const CTransactionRef &ptx : vtxConflicted) { SyncTransaction(ptx); TransactionRemovedFromMempool(ptx); } for (size_t i = 0; i < pblock->vtx.size(); i++) { SyncTransaction(pblock->vtx[i], pindex, i); TransactionRemovedFromMempool(pblock->vtx[i]); } m_last_block_processed = pindex; } void CWallet::BlockDisconnected(const std::shared_ptr<const CBlock> &pblock) { LOCK2(cs_main, cs_wallet); for (const CTransactionRef &ptx : pblock->vtx) { SyncTransaction(ptx); } } void CWallet::BlockUntilSyncedToCurrentChain() { AssertLockNotHeld(cs_main); AssertLockNotHeld(cs_wallet); { // Skip the queue-draining stuff if we know we're caught up with // chainActive.Tip()... // We could also take cs_wallet here, and call m_last_block_processed // protected by cs_wallet instead of cs_main, but as long as we need // cs_main here anyway, it's easier to just call it cs_main-protected. LOCK(cs_main); const CBlockIndex *initialChainTip = chainActive.Tip(); if (m_last_block_processed && m_last_block_processed->GetAncestor(initialChainTip->nHeight) == initialChainTip) { return; } } // ...otherwise put a callback in the validation interface queue and wait // for the queue to drain enough to execute it (indicating we are caught up // at least with the time we entered this function). SyncWithValidationInterfaceQueue(); } isminetype CWallet::IsMine(const CTxIn &txin) const { LOCK(cs_wallet); std::map<TxId, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.GetTxId()); if (mi != mapWallet.end()) { const CWalletTx &prev = (*mi).second; if (txin.prevout.GetN() < prev.tx->vout.size()) { return IsMine(prev.tx->vout[txin.prevout.GetN()]); } } return ISMINE_NO; } // Note that this function doesn't distinguish between a 0-valued input, and a // not-"is mine" (according to the filter) input. Amount CWallet::GetDebit(const CTxIn &txin, const isminefilter &filter) const { LOCK(cs_wallet); std::map<TxId, CWalletTx>::const_iterator mi = mapWallet.find(txin.prevout.GetTxId()); if (mi != mapWallet.end()) { const CWalletTx &prev = (*mi).second; if (txin.prevout.GetN() < prev.tx->vout.size()) { if (IsMine(prev.tx->vout[txin.prevout.GetN()]) & filter) { return prev.tx->vout[txin.prevout.GetN()].nValue; } } } return Amount::zero(); } isminetype CWallet::IsMine(const CTxOut &txout) const { return ::IsMine(*this, txout.scriptPubKey); } Amount CWallet::GetCredit(const CTxOut &txout, const isminefilter &filter) const { if (!MoneyRange(txout.nValue)) { throw std::runtime_error(std::string(__func__) + ": value out of range"); } return (IsMine(txout) & filter) ? txout.nValue : Amount::zero(); } bool CWallet::IsChange(const CTxOut &txout) const { // TODO: fix handling of 'change' outputs. The assumption is that any // payment to a script that is ours, but is not in the address book is // change. That assumption is likely to break when we implement // multisignature wallets that return change back into a // multi-signature-protected address; a better way of identifying which // outputs are 'the send' and which are 'the change' will need to be // implemented (maybe extend CWalletTx to remember which output, if any, was // change). if (::IsMine(*this, txout.scriptPubKey)) { CTxDestination address; if (!ExtractDestination(txout.scriptPubKey, address)) { return true; } LOCK(cs_wallet); if (!mapAddressBook.count(address)) { return true; } } return false; } Amount CWallet::GetChange(const CTxOut &txout) const { if (!MoneyRange(txout.nValue)) { throw std::runtime_error(std::string(__func__) + ": value out of range"); } return (IsChange(txout) ? txout.nValue : Amount::zero()); } bool CWallet::IsMine(const CTransaction &tx) const { for (const CTxOut &txout : tx.vout) { if (IsMine(txout)) { return true; } } return false; } bool CWallet::IsFromMe(const CTransaction &tx) const { return GetDebit(tx, ISMINE_ALL) > Amount::zero(); } Amount CWallet::GetDebit(const CTransaction &tx, const isminefilter &filter) const { Amount nDebit = Amount::zero(); for (const CTxIn &txin : tx.vin) { nDebit += GetDebit(txin, filter); if (!MoneyRange(nDebit)) { throw std::runtime_error(std::string(__func__) + ": value out of range"); } } return nDebit; } bool CWallet::IsAllFromMe(const CTransaction &tx, const isminefilter &filter) const { LOCK(cs_wallet); for (const CTxIn &txin : tx.vin) { auto mi = mapWallet.find(txin.prevout.GetTxId()); if (mi == mapWallet.end()) { // Any unknown inputs can't be from us. return false; } const CWalletTx &prev = (*mi).second; if (txin.prevout.GetN() >= prev.tx->vout.size()) { // Invalid input! return false; } if (!(IsMine(prev.tx->vout[txin.prevout.GetN()]) & filter)) { return false; } } return true; } Amount CWallet::GetCredit(const CTransaction &tx, const isminefilter &filter) const { Amount nCredit = Amount::zero(); for (const CTxOut &txout : tx.vout) { nCredit += GetCredit(txout, filter); if (!MoneyRange(nCredit)) { throw std::runtime_error(std::string(__func__) + ": value out of range"); } } return nCredit; } Amount CWallet::GetChange(const CTransaction &tx) const { Amount nChange = Amount::zero(); for (const CTxOut &txout : tx.vout) { nChange += GetChange(txout); if (!MoneyRange(nChange)) { throw std::runtime_error(std::string(__func__) + ": value out of range"); } } return nChange; } CPubKey CWallet::GenerateNewSeed() { CKey key; key.MakeNewKey(true); return DeriveNewSeed(key); } CPubKey CWallet::DeriveNewSeed(const CKey &key) { int64_t nCreationTime = GetTime(); CKeyMetadata metadata(nCreationTime); // Calculate the seed CPubKey seed = key.GetPubKey(); assert(key.VerifyPubKey(seed)); // Set the hd keypath to "s" -> Seed, refers the seed to itself metadata.hdKeypath = "s"; metadata.hd_seed_id = seed.GetID(); LOCK(cs_wallet); // mem store the metadata mapKeyMetadata[seed.GetID()] = metadata; // Write the key&metadata to the database if (!AddKeyPubKey(key, seed)) { throw std::runtime_error(std::string(__func__) + ": AddKeyPubKey failed"); } return seed; } void CWallet::SetHDSeed(const CPubKey &seed) { LOCK(cs_wallet); // Store the keyid (hash160) together with the child index counter in the // database as a hdchain object. CHDChain newHdChain; newHdChain.nVersion = CanSupportFeature(FEATURE_HD_SPLIT) ? CHDChain::VERSION_HD_CHAIN_SPLIT : CHDChain::VERSION_HD_BASE; newHdChain.seed_id = seed.GetID(); SetHDChain(newHdChain, false); } void CWallet::SetHDChain(const CHDChain &chain, bool memonly) { LOCK(cs_wallet); if (!memonly && !WalletBatch(*database).WriteHDChain(chain)) { throw std::runtime_error(std::string(__func__) + ": writing chain failed"); } hdChain = chain; } bool CWallet::IsHDEnabled() const { return !hdChain.seed_id.IsNull(); } int64_t CWalletTx::GetTxTime() const { int64_t n = nTimeSmart; return n ? n : nTimeReceived; } // Helper for producing a max-sized low-S low-R signature (eg 71 bytes) -bool CWallet::DummySignInput(CTxIn &tx_in, const CTxOut &txout) const { +// or a max-sized low-S signature (e.g. 72 bytes) if use_max_sig is true +bool CWallet::DummySignInput(CTxIn &tx_in, const CTxOut &txout, + bool use_max_sig) const { // Fill in dummy signatures for fee calculation. const CScript &scriptPubKey = txout.scriptPubKey; SignatureData sigdata; - if (!ProduceSignature(*this, DUMMY_SIGNATURE_CREATOR, scriptPubKey, - sigdata)) { + if (!ProduceSignature(*this, + use_max_sig ? DUMMY_MAXIMUM_SIGNATURE_CREATOR + : DUMMY_SIGNATURE_CREATOR, + scriptPubKey, sigdata)) { return false; } UpdateInput(tx_in, sigdata); return true; } // Helper for producing a bunch of max-sized low-S low-R signatures (eg 71 // bytes) bool CWallet::DummySignTx(CMutableTransaction &txNew, - const std::vector<CTxOut> &txouts) const { + const std::vector<CTxOut> &txouts, + bool use_max_sig) const { // Fill in dummy signatures for fee calculation. int nIn = 0; for (const auto &txout : txouts) { - if (!DummySignInput(txNew.vin[nIn], txout)) { + if (!DummySignInput(txNew.vin[nIn], txout, use_max_sig)) { return false; } nIn++; } return true; } int64_t CalculateMaximumSignedTxSize(const CTransaction &tx, - const CWallet *wallet) { + const CWallet *wallet, bool use_max_sig) { std::vector<CTxOut> txouts; // Look up the inputs. We should have already checked that this transaction // IsAllFromMe(ISMINE_SPENDABLE), so every input should already be in our // wallet, with a valid index into the vout array, and the ability to sign. for (auto &input : tx.vin) { const auto mi = wallet->mapWallet.find(input.prevout.GetTxId()); if (mi == wallet->mapWallet.end()) { return -1; } assert(input.prevout.GetN() < mi->second.tx->vout.size()); txouts.emplace_back(mi->second.tx->vout[input.prevout.GetN()]); } - return CalculateMaximumSignedTxSize(tx, wallet, txouts); + return CalculateMaximumSignedTxSize(tx, wallet, txouts, use_max_sig); } // txouts needs to be in the order of tx.vin int64_t CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, - const std::vector<CTxOut> &txouts) { + const std::vector<CTxOut> &txouts, + bool use_max_sig) { CMutableTransaction txNew(tx); - if (!wallet->DummySignTx(txNew, txouts)) { + if (!wallet->DummySignTx(txNew, txouts, use_max_sig)) { // This should never happen, because IsAllFromMe(ISMINE_SPENDABLE) // implies that we can sign for every input. return -1; } return GetVirtualTransactionSize(CTransaction(txNew)); } -int CalculateMaximumSignedInputSize(const CTxOut &txout, - const CWallet *wallet) { +int CalculateMaximumSignedInputSize(const CTxOut &txout, const CWallet *wallet, + bool use_max_sig) { CMutableTransaction txn; txn.vin.push_back(CTxIn(COutPoint())); - if (!wallet->DummySignInput(txn.vin[0], txout)) { + if (!wallet->DummySignInput(txn.vin[0], txout, use_max_sig)) { // This should never happen, because IsAllFromMe(ISMINE_SPENDABLE) // implies that we can sign for every input. return -1; } return GetVirtualTransactionInputSize(txn.vin[0]); } void CWalletTx::GetAmounts(std::list<COutputEntry> &listReceived, std::list<COutputEntry> &listSent, Amount &nFee, std::string &strSentAccount, const isminefilter &filter) const { nFee = Amount::zero(); listReceived.clear(); listSent.clear(); strSentAccount = strFromAccount; // Compute fee: Amount nDebit = GetDebit(filter); // debit>0 means we signed/sent this transaction. if (nDebit > Amount::zero()) { Amount nValueOut = tx->GetValueOut(); nFee = (nDebit - nValueOut); } // Sent/received. for (unsigned int i = 0; i < tx->vout.size(); ++i) { const CTxOut &txout = tx->vout[i]; isminetype fIsMine = pwallet->IsMine(txout); // Only need to handle txouts if AT LEAST one of these is true: // 1) they debit from us (sent) // 2) the output is to us (received) if (nDebit > Amount::zero()) { // Don't report 'change' txouts if (pwallet->IsChange(txout)) { continue; } } else if (!(fIsMine & filter)) { continue; } // In either case, we need to get the destination address. CTxDestination address; if (!ExtractDestination(txout.scriptPubKey, address) && !txout.scriptPubKey.IsUnspendable()) { LogPrintf("CWalletTx::GetAmounts: Unknown transaction type found, " "txid %s\n", this->GetId().ToString()); address = CNoDestination(); } COutputEntry output = {address, txout.nValue, (int)i}; // If we are debited by the transaction, add the output as a "sent" // entry. if (nDebit > Amount::zero()) { listSent.push_back(output); } // If we are receiving the output, add it as a "received" entry. if (fIsMine & filter) { listReceived.push_back(output); } } } /** * Scan active chain for relevant transactions after importing keys. This should * be called whenever new keys are added to the wallet, with the oldest key * creation time. * * @return Earliest timestamp that could be successfully scanned from. Timestamp * returned will be higher than startTime if relevant blocks could not be read. */ int64_t CWallet::RescanFromTime(int64_t startTime, const WalletRescanReserver &reserver, bool update) { // Find starting block. May be null if nCreateTime is greater than the // highest blockchain timestamp, in which case there is nothing that needs // to be scanned. CBlockIndex *startBlock = nullptr; { LOCK(cs_main); startBlock = chainActive.FindEarliestAtLeast(startTime - TIMESTAMP_WINDOW); LogPrintf("%s: Rescanning last %i blocks\n", __func__, startBlock ? chainActive.Height() - startBlock->nHeight + 1 : 0); } if (startBlock) { const CBlockIndex *const failedBlock = ScanForWalletTransactions(startBlock, nullptr, reserver, update); if (failedBlock) { return failedBlock->GetBlockTimeMax() + TIMESTAMP_WINDOW + 1; } } return startTime; } /** * Scan the block chain (starting in pindexStart) for transactions from or to * us. If fUpdate is true, found transactions that already exist in the wallet * will be updated. * * Returns null if scan was successful. Otherwise, if a complete rescan was not * possible (due to pruning or corruption), returns pointer to the most recent * block that could not be scanned. * * If pindexStop is not a nullptr, the scan will stop at the block-index * defined by pindexStop * * Caller needs to make sure pindexStop (and the optional pindexStart) are on * the main chain after to the addition of any new keys you want to detect * transactions for. */ CBlockIndex *CWallet::ScanForWalletTransactions( CBlockIndex *pindexStart, CBlockIndex *pindexStop, const WalletRescanReserver &reserver, bool fUpdate) { int64_t nNow = GetTime(); assert(reserver.isReserved()); if (pindexStop) { assert(pindexStop->nHeight >= pindexStart->nHeight); } CBlockIndex *pindex = pindexStart; CBlockIndex *ret = nullptr; if (pindex) { LogPrintf("Rescan started from block %d...\n", pindex->nHeight); } { fAbortRescan = false; // Show rescan progress in GUI as dialog or on splashscreen, if -rescan // on startup. ShowProgress(_("Rescanning..."), 0); CBlockIndex *tip = nullptr; double progress_begin; double progress_end; { LOCK(cs_main); progress_begin = GuessVerificationProgress(chainParams.TxData(), pindex); if (pindexStop == nullptr) { tip = chainActive.Tip(); progress_end = GuessVerificationProgress(chainParams.TxData(), tip); } else { progress_end = GuessVerificationProgress(chainParams.TxData(), pindexStop); } } double progress_current = progress_begin; while (pindex && !fAbortRescan && !ShutdownRequested()) { if (pindex->nHeight % 100 == 0 && progress_end - progress_begin > 0.0) { ShowProgress( _("Rescanning..."), std::max( 1, std::min(99, (int)((progress_current - progress_begin) / (progress_end - progress_begin) * 100)))); } if (GetTime() >= nNow + 60) { nNow = GetTime(); LogPrintf("Still rescanning. At block %d. Progress=%f\n", pindex->nHeight, progress_current); } CBlock block; if (ReadBlockFromDisk(block, pindex, chainParams.GetConsensus())) { LOCK2(cs_main, cs_wallet); if (pindex && !chainActive.Contains(pindex)) { // Abort scan if current block is no longer active, to // prevent marking transactions as coming from the wrong // block. ret = pindex; break; } for (size_t posInBlock = 0; posInBlock < block.vtx.size(); ++posInBlock) { AddToWalletIfInvolvingMe(block.vtx[posInBlock], pindex, posInBlock, fUpdate); } } else { ret = pindex; } if (pindex == pindexStop) { break; } { LOCK(cs_main); pindex = chainActive.Next(pindex); progress_current = GuessVerificationProgress(chainParams.TxData(), pindex); if (pindexStop == nullptr && tip != chainActive.Tip()) { tip = chainActive.Tip(); // in case the tip has changed, update progress max progress_end = GuessVerificationProgress(chainParams.TxData(), tip); } } } if (pindex && fAbortRescan) { LogPrintf("Rescan aborted at block %d. Progress=%f\n", pindex->nHeight, progress_current); } else if (pindex && ShutdownRequested()) { LogPrintf("Rescan interrupted by shutdown request at block %d. " "Progress=%f\n", pindex->nHeight, progress_current); } // Hide progress dialog in GUI. ShowProgress(_("Rescanning..."), 100); } return ret; } void CWallet::ReacceptWalletTransactions() { // If transactions aren't being broadcasted, don't let them into local // mempool either. if (!fBroadcastTransactions) { return; } LOCK2(cs_main, cs_wallet); std::map<int64_t, CWalletTx *> mapSorted; // Sort pending wallet transactions based on their initial wallet insertion // order. for (std::pair<const TxId, CWalletTx> &item : mapWallet) { const TxId &wtxid = item.first; CWalletTx &wtx = item.second; assert(wtx.GetId() == wtxid); int nDepth = wtx.GetDepthInMainChain(); if (!wtx.IsCoinBase() && (nDepth == 0 && !wtx.isAbandoned())) { mapSorted.insert(std::make_pair(wtx.nOrderPos, &wtx)); } } // Try to add wallet transactions to memory pool. for (const std::pair<const int64_t, CWalletTx *> &item : mapSorted) { CWalletTx &wtx = *(item.second); CValidationState state; wtx.AcceptToMemoryPool(maxTxFee, state); } } bool CWalletTx::RelayWalletTransaction(CConnman *connman) { assert(pwallet->GetBroadcastTransactions()); if (IsCoinBase() || isAbandoned() || GetDepthInMainChain() != 0) { return false; } CValidationState state; // GetDepthInMainChain already catches known conflicts. if (InMempool() || AcceptToMemoryPool(maxTxFee, state)) { LogPrintf("Relaying wtx %s\n", GetId().ToString()); if (connman) { CInv inv(MSG_TX, GetId()); connman->ForEachNode( [&inv](CNode *pnode) { pnode->PushInventory(inv); }); return true; } } return false; } std::set<TxId> CWalletTx::GetConflicts() const { std::set<TxId> result; if (pwallet != nullptr) { const TxId &txid = GetId(); result = pwallet->GetConflicts(txid); result.erase(txid); } return result; } Amount CWalletTx::GetDebit(const isminefilter &filter) const { if (tx->vin.empty()) { return Amount::zero(); } Amount debit = Amount::zero(); if (filter & ISMINE_SPENDABLE) { if (fDebitCached) { debit += nDebitCached; } else { nDebitCached = pwallet->GetDebit(*tx, ISMINE_SPENDABLE); fDebitCached = true; debit += nDebitCached; } } if (filter & ISMINE_WATCH_ONLY) { if (fWatchDebitCached) { debit += nWatchDebitCached; } else { nWatchDebitCached = pwallet->GetDebit(*tx, ISMINE_WATCH_ONLY); fWatchDebitCached = true; debit += Amount(nWatchDebitCached); } } return debit; } Amount CWalletTx::GetCredit(const isminefilter &filter) const { // Must wait until coinbase is safely deep enough in the chain before // valuing it. if (IsImmatureCoinBase()) { return Amount::zero(); } Amount credit = Amount::zero(); if (filter & ISMINE_SPENDABLE) { // GetBalance can assume transactions in mapWallet won't change. if (fCreditCached) { credit += nCreditCached; } else { nCreditCached = pwallet->GetCredit(*tx, ISMINE_SPENDABLE); fCreditCached = true; credit += nCreditCached; } } if (filter & ISMINE_WATCH_ONLY) { if (fWatchCreditCached) { credit += nWatchCreditCached; } else { nWatchCreditCached = pwallet->GetCredit(*tx, ISMINE_WATCH_ONLY); fWatchCreditCached = true; credit += nWatchCreditCached; } } return credit; } Amount CWalletTx::GetImmatureCredit(bool fUseCache) const { if (IsImmatureCoinBase() && IsInMainChain()) { if (fUseCache && fImmatureCreditCached) { return nImmatureCreditCached; } nImmatureCreditCached = pwallet->GetCredit(*tx, ISMINE_SPENDABLE); fImmatureCreditCached = true; return nImmatureCreditCached; } return Amount::zero(); } Amount CWalletTx::GetAvailableCredit(bool fUseCache) const { if (pwallet == nullptr) { return Amount::zero(); } // Must wait until coinbase is safely deep enough in the chain before // valuing it. if (IsImmatureCoinBase()) { return Amount::zero(); } if (fUseCache && fAvailableCreditCached) { return nAvailableCreditCached; } Amount nCredit = Amount::zero(); const TxId &txid = GetId(); for (uint32_t i = 0; i < tx->vout.size(); i++) { if (!pwallet->IsSpent(COutPoint(txid, i))) { const CTxOut &txout = tx->vout[i]; nCredit += pwallet->GetCredit(txout, ISMINE_SPENDABLE); if (!MoneyRange(nCredit)) { throw std::runtime_error(std::string(__func__) + " : value out of range"); } } } nAvailableCreditCached = nCredit; fAvailableCreditCached = true; return nCredit; } Amount CWalletTx::GetImmatureWatchOnlyCredit(const bool fUseCache) const { if (IsImmatureCoinBase() && IsInMainChain()) { if (fUseCache && fImmatureWatchCreditCached) { return nImmatureWatchCreditCached; } nImmatureWatchCreditCached = pwallet->GetCredit(*tx, ISMINE_WATCH_ONLY); fImmatureWatchCreditCached = true; return nImmatureWatchCreditCached; } return Amount::zero(); } Amount CWalletTx::GetAvailableWatchOnlyCredit(const bool fUseCache) const { if (pwallet == nullptr) { return Amount::zero(); } // Must wait until coinbase is safely deep enough in the chain before // valuing it. if (IsCoinBase() && GetBlocksToMaturity() > 0) { return Amount::zero(); } if (fUseCache && fAvailableWatchCreditCached) { return nAvailableWatchCreditCached; } Amount nCredit = Amount::zero(); const TxId &txid = GetId(); for (uint32_t i = 0; i < tx->vout.size(); i++) { if (!pwallet->IsSpent(COutPoint(txid, i))) { const CTxOut &txout = tx->vout[i]; nCredit += pwallet->GetCredit(txout, ISMINE_WATCH_ONLY); if (!MoneyRange(nCredit)) { throw std::runtime_error(std::string(__func__) + ": value out of range"); } } } nAvailableWatchCreditCached = nCredit; fAvailableWatchCreditCached = true; return nCredit; } Amount CWalletTx::GetChange() const { if (fChangeCached) { return nChangeCached; } nChangeCached = pwallet->GetChange(*tx); fChangeCached = true; return nChangeCached; } bool CWalletTx::InMempool() const { return fInMempool; } bool CWalletTx::IsTrusted() const { // Quick answer in most cases if (!CheckFinalTx(*tx)) { return false; } int nDepth = GetDepthInMainChain(); if (nDepth >= 1) { return true; } if (nDepth < 0) { return false; } // using wtx's cached debit if (!pwallet->m_spend_zero_conf_change || !IsFromMe(ISMINE_ALL)) { return false; } // Don't trust unconfirmed transactions from us unless they are in the // mempool. if (!InMempool()) { return false; } // Trusted if all inputs are from us and are in the mempool: for (const CTxIn &txin : tx->vin) { // Transactions not sent by us: not trusted const CWalletTx *parent = pwallet->GetWalletTx(txin.prevout.GetTxId()); if (parent == nullptr) { return false; } const CTxOut &parentOut = parent->tx->vout[txin.prevout.GetN()]; if (pwallet->IsMine(parentOut) != ISMINE_SPENDABLE) { return false; } } return true; } bool CWalletTx::IsEquivalentTo(const CWalletTx &_tx) const { CMutableTransaction tx1{*this->tx}; CMutableTransaction tx2{*_tx.tx}; for (auto &txin : tx1.vin) { txin.scriptSig = CScript(); } for (auto &txin : tx2.vin) { txin.scriptSig = CScript(); } return CTransaction(tx1) == CTransaction(tx2); } std::vector<uint256> CWallet::ResendWalletTransactionsBefore(int64_t nTime, CConnman *connman) { std::vector<uint256> result; LOCK(cs_wallet); // Sort them in chronological order std::multimap<unsigned int, CWalletTx *> mapSorted; for (std::pair<const TxId, CWalletTx> &item : mapWallet) { CWalletTx &wtx = item.second; // Don't rebroadcast if newer than nTime: if (wtx.nTimeReceived > nTime) { continue; } mapSorted.insert(std::make_pair(wtx.nTimeReceived, &wtx)); } for (const std::pair<const unsigned int, CWalletTx *> &item : mapSorted) { CWalletTx &wtx = *item.second; if (wtx.RelayWalletTransaction(connman)) { result.push_back(wtx.GetId()); } } return result; } void CWallet::ResendWalletTransactions(int64_t nBestBlockTime, CConnman *connman) { // Do this infrequently and randomly to avoid giving away that these are our // transactions. if (GetTime() < nNextResend || !fBroadcastTransactions) { return; } bool fFirst = (nNextResend == 0); nNextResend = GetTime() + GetRand(30 * 60); if (fFirst) { return; } // Only do it if there's been a new block since last time if (nBestBlockTime < nLastResend) { return; } nLastResend = GetTime(); // Rebroadcast unconfirmed txes older than 5 minutes before the last block // was found: std::vector<uint256> relayed = ResendWalletTransactionsBefore(nBestBlockTime - 5 * 60, connman); if (!relayed.empty()) { LogPrintf("%s: rebroadcast %u unconfirmed transactions\n", __func__, relayed.size()); } } /** @} */ // end of mapWallet /** * @defgroup Actions * * @{ */ Amount CWallet::GetBalance() const { LOCK2(cs_main, cs_wallet); Amount nTotal = Amount::zero(); for (const auto &entry : mapWallet) { const CWalletTx *pcoin = &entry.second; if (pcoin->IsTrusted()) { nTotal += pcoin->GetAvailableCredit(); } } return nTotal; } Amount CWallet::GetUnconfirmedBalance() const { LOCK2(cs_main, cs_wallet); Amount nTotal = Amount::zero(); for (const auto &entry : mapWallet) { const CWalletTx *pcoin = &entry.second; if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool()) { nTotal += pcoin->GetAvailableCredit(); } } return nTotal; } Amount CWallet::GetImmatureBalance() const { LOCK2(cs_main, cs_wallet); Amount nTotal = Amount::zero(); for (const auto &entry : mapWallet) { const CWalletTx *pcoin = &entry.second; nTotal += pcoin->GetImmatureCredit(); } return nTotal; } Amount CWallet::GetWatchOnlyBalance() const { LOCK2(cs_main, cs_wallet); Amount nTotal = Amount::zero(); for (const auto &entry : mapWallet) { const CWalletTx *pcoin = &entry.second; if (pcoin->IsTrusted()) { nTotal += pcoin->GetAvailableWatchOnlyCredit(); } } return nTotal; } Amount CWallet::GetUnconfirmedWatchOnlyBalance() const { LOCK2(cs_main, cs_wallet); Amount nTotal = Amount::zero(); for (const auto &entry : mapWallet) { const CWalletTx *pcoin = &entry.second; if (!pcoin->IsTrusted() && pcoin->GetDepthInMainChain() == 0 && pcoin->InMempool()) { nTotal += pcoin->GetAvailableWatchOnlyCredit(); } } return nTotal; } Amount CWallet::GetImmatureWatchOnlyBalance() const { LOCK2(cs_main, cs_wallet); Amount nTotal = Amount::zero(); for (const auto &entry : mapWallet) { const CWalletTx *pcoin = &entry.second; nTotal += pcoin->GetImmatureWatchOnlyCredit(); } return nTotal; } // Calculate total balance in a different way from GetBalance. The biggest // difference is that GetBalance sums up all unspent TxOuts paying to the // wallet, while this sums up both spent and unspent TxOuts paying to the // wallet, and then subtracts the values of TxIns spending from the wallet. This // also has fewer restrictions on which unconfirmed transactions are considered // trusted. Amount CWallet::GetLegacyBalance(const isminefilter &filter, int minDepth, const std::string *account) const { LOCK2(cs_main, cs_wallet); Amount balance = Amount::zero(); for (const auto &entry : mapWallet) { const CWalletTx &wtx = entry.second; const int depth = wtx.GetDepthInMainChain(); if (depth < 0 || !CheckFinalTx(*wtx.tx) || wtx.IsImmatureCoinBase()) { continue; } // Loop through tx outputs and add incoming payments. For outgoing txs, // treat change outputs specially, as part of the amount debited. Amount debit = wtx.GetDebit(filter); const bool outgoing = debit > Amount::zero(); for (const CTxOut &out : wtx.tx->vout) { if (outgoing && IsChange(out)) { debit -= out.nValue; } else if (IsMine(out) & filter && depth >= minDepth && (!account || *account == GetLabelName(out.scriptPubKey))) { balance += out.nValue; } } // For outgoing txs, subtract amount debited. if (outgoing && (!account || *account == wtx.strFromAccount)) { balance -= debit; } } if (account) { balance += WalletBatch(*database).GetAccountCreditDebit(*account); } return balance; } Amount CWallet::GetAvailableBalance(const CCoinControl *coinControl) const { LOCK2(cs_main, cs_wallet); Amount balance = Amount::zero(); std::vector<COutput> vCoins; AvailableCoins(vCoins, true, coinControl); for (const COutput &out : vCoins) { if (out.fSpendable) { balance += out.tx->tx->vout[out.i].nValue; } } return balance; } void CWallet::AvailableCoins(std::vector<COutput> &vCoins, bool fOnlySafe, const CCoinControl *coinControl, const Amount nMinimumAmount, const Amount nMaximumAmount, const Amount nMinimumSumAmount, const uint64_t nMaximumCount, const int nMinDepth, const int nMaxDepth) const { AssertLockHeld(cs_main); AssertLockHeld(cs_wallet); vCoins.clear(); Amount nTotal = Amount::zero(); for (const auto &entry : mapWallet) { const TxId &wtxid = entry.first; const CWalletTx *pcoin = &entry.second; if (!CheckFinalTx(*pcoin->tx)) { continue; } if (pcoin->IsImmatureCoinBase()) { continue; } int nDepth = pcoin->GetDepthInMainChain(); if (nDepth < 0) { continue; } // We should not consider coins which aren't at least in our mempool. // It's possible for these to be conflicted via ancestors which we may // never be able to detect. if (nDepth == 0 && !pcoin->InMempool()) { continue; } bool safeTx = pcoin->IsTrusted(); // Bitcoin-ABC: Removed check that prevents consideration of coins from // transactions that are replacing other transactions. This check based // on pcoin->mapValue.count("replaces_txid") which was not being set // anywhere. // Similarly, we should not consider coins from transactions that have // been replaced. In the example above, we would want to prevent // creation of a transaction A' spending an output of A, because if // transaction B were initially confirmed, conflicting with A and A', we // wouldn't want to the user to create a transaction D intending to // replace A', but potentially resulting in a scenario where A, A', and // D could all be accepted (instead of just B and D, or just A and A' // like the user would want). // Bitcoin-ABC: retained this check as 'replaced_by_txid' is still set // in the wallet code. if (nDepth == 0 && pcoin->mapValue.count("replaced_by_txid")) { safeTx = false; } if (fOnlySafe && !safeTx) { continue; } if (nDepth < nMinDepth || nDepth > nMaxDepth) { continue; } for (uint32_t i = 0; i < pcoin->tx->vout.size(); i++) { if (pcoin->tx->vout[i].nValue < nMinimumAmount || pcoin->tx->vout[i].nValue > nMaximumAmount) { continue; } const COutPoint outpoint(wtxid, i); if (coinControl && coinControl->HasSelected() && !coinControl->fAllowOtherInputs && !coinControl->IsSelected(outpoint)) { continue; } if (IsLockedCoin(outpoint)) { continue; } if (IsSpent(outpoint)) { continue; } isminetype mine = IsMine(pcoin->tx->vout[i]); if (mine == ISMINE_NO) { continue; } bool fSpendableIn = ((mine & ISMINE_SPENDABLE) != ISMINE_NO) || (coinControl && coinControl->fAllowWatchOnly && (mine & ISMINE_WATCH_SOLVABLE) != ISMINE_NO); bool fSolvableIn = (mine & (ISMINE_SPENDABLE | ISMINE_WATCH_SOLVABLE)) != ISMINE_NO; vCoins.push_back( - COutput(pcoin, i, nDepth, fSpendableIn, fSolvableIn, safeTx)); + COutput(pcoin, i, nDepth, fSpendableIn, fSolvableIn, safeTx, + (coinControl && coinControl->fAllowWatchOnly))); // Checks the sum amount of all UTXO's. if (nMinimumSumAmount != MAX_MONEY) { nTotal += pcoin->tx->vout[i].nValue; if (nTotal >= nMinimumSumAmount) { return; } } // Checks the maximum number of UTXO's. if (nMaximumCount > 0 && vCoins.size() >= nMaximumCount) { return; } } } } std::map<CTxDestination, std::vector<COutput>> CWallet::ListCoins() const { AssertLockHeld(cs_main); AssertLockHeld(cs_wallet); std::map<CTxDestination, std::vector<COutput>> result; std::vector<COutput> availableCoins; AvailableCoins(availableCoins); for (const auto &coin : availableCoins) { CTxDestination address; if (coin.fSpendable && ExtractDestination( FindNonChangeParentOutput(*coin.tx->tx, coin.i).scriptPubKey, address)) { result[address].emplace_back(std::move(coin)); } } std::vector<COutPoint> lockedCoins; ListLockedCoins(lockedCoins); for (const auto &output : lockedCoins) { auto it = mapWallet.find(output.GetTxId()); if (it != mapWallet.end()) { int depth = it->second.GetDepthInMainChain(); if (depth >= 0 && output.GetN() < it->second.tx->vout.size() && IsMine(it->second.tx->vout[output.GetN()]) == ISMINE_SPENDABLE) { CTxDestination address; if (ExtractDestination( FindNonChangeParentOutput(*it->second.tx, output.GetN()) .scriptPubKey, address)) { result[address].emplace_back( &it->second, output.GetN(), depth, true /* spendable */, true /* solvable */, false /* safe */); } } } } return result; } const CTxOut &CWallet::FindNonChangeParentOutput(const CTransaction &tx, int output) const { const CTransaction *ptx = &tx; int n = output; while (IsChange(ptx->vout[n]) && ptx->vin.size() > 0) { const COutPoint &prevout = ptx->vin[0].prevout; auto it = mapWallet.find(prevout.GetTxId()); if (it == mapWallet.end() || it->second.tx->vout.size() <= prevout.GetN() || !IsMine(it->second.tx->vout[prevout.GetN()])) { break; } ptx = it->second.tx.get(); n = prevout.GetN(); } return ptx->vout[n]; } bool CWallet::SelectCoinsMinConf( const Amount nTargetValue, const CoinEligibilityFilter &eligibility_filter, std::vector<OutputGroup> groups, std::set<CInputCoin> &setCoinsRet, Amount &nValueRet, const CoinSelectionParams &coin_selection_params, bool &bnb_used) const { setCoinsRet.clear(); nValueRet = Amount::zero(); std::vector<OutputGroup> utxo_pool; if (coin_selection_params.use_bnb) { // Get long term estimate CCoinControl temp; temp.m_confirm_target = 1008; CFeeRate long_term_feerate = GetMinimumFeeRate(*this, temp, g_mempool); // Calculate cost of change Amount cost_of_change = dustRelayFee.GetFee(coin_selection_params.change_spend_size) + coin_selection_params.effective_fee.GetFee( coin_selection_params.change_output_size); // Filter by the min conf specs and add to utxo_pool and calculate // effective value for (OutputGroup &group : groups) { if (!group.EligibleForSpending(eligibility_filter)) { continue; } group.fee = Amount::zero(); group.long_term_fee = Amount::zero(); group.effective_value = Amount::zero(); for (auto it = group.m_outputs.begin(); it != group.m_outputs.end();) { const CInputCoin &coin = *it; Amount effective_value = coin.txout.nValue - (coin.m_input_bytes < 0 ? Amount::zero() : coin_selection_params.effective_fee.GetFee( coin.m_input_bytes)); // Only include outputs that are positive effective value (i.e. // not dust) if (effective_value > Amount::zero()) { group.fee += coin.m_input_bytes < 0 ? Amount::zero() : coin_selection_params.effective_fee.GetFee( coin.m_input_bytes); group.long_term_fee += coin.m_input_bytes < 0 ? Amount::zero() : long_term_feerate.GetFee(coin.m_input_bytes); group.effective_value += effective_value; ++it; } else { it = group.Discard(coin); } } if (group.effective_value > Amount::zero()) { utxo_pool.push_back(group); } } // Calculate the fees for things that aren't inputs Amount not_input_fees = coin_selection_params.effective_fee.GetFee( coin_selection_params.tx_noinputs_size); bnb_used = true; return SelectCoinsBnB(utxo_pool, nTargetValue, cost_of_change, setCoinsRet, nValueRet, not_input_fees); } else { // Filter by the min conf specs and add to utxo_pool for (const OutputGroup &group : groups) { if (!group.EligibleForSpending(eligibility_filter)) { continue; } utxo_pool.push_back(group); } bnb_used = false; return KnapsackSolver(nTargetValue, utxo_pool, setCoinsRet, nValueRet); } } bool CWallet::SelectCoins(const std::vector<COutput> &vAvailableCoins, const Amount nTargetValue, std::set<CInputCoin> &setCoinsRet, Amount &nValueRet, const CCoinControl &coin_control, CoinSelectionParams &coin_selection_params, bool &bnb_used) const { std::vector<COutput> vCoins(vAvailableCoins); // coin control -> return all selected outputs (we want all selected to go // into the transaction for sure) if (coin_control.HasSelected() && !coin_control.fAllowOtherInputs) { // We didn't use BnB here, so set it to false. bnb_used = false; for (const COutput &out : vCoins) { if (!out.fSpendable) { continue; } nValueRet += out.tx->tx->vout[out.i].nValue; setCoinsRet.insert(out.GetInputCoin()); } return (nValueRet >= nTargetValue); } // Calculate value from preset inputs and store them. std::set<CInputCoin> setPresetCoins; Amount nValueFromPresetInputs = Amount::zero(); std::vector<COutPoint> vPresetInputs; coin_control.ListSelected(vPresetInputs); for (const COutPoint &outpoint : vPresetInputs) { // For now, don't use BnB if preset inputs are selected. TODO: Enable // this later bnb_used = false; coin_selection_params.use_bnb = false; std::map<TxId, CWalletTx>::const_iterator it = mapWallet.find(outpoint.GetTxId()); if (it == mapWallet.end()) { // TODO: Allow non-wallet inputs return false; } const CWalletTx *pcoin = &it->second; // Clearly invalid input, fail. if (pcoin->tx->vout.size() <= outpoint.GetN()) { return false; } // Just to calculate the marginal byte size nValueFromPresetInputs += pcoin->tx->vout[outpoint.GetN()].nValue; setPresetCoins.insert(CInputCoin(pcoin->tx, outpoint.GetN())); } // Remove preset inputs from vCoins for (std::vector<COutput>::iterator it = vCoins.begin(); it != vCoins.end() && coin_control.HasSelected();) { if (setPresetCoins.count(it->GetInputCoin())) { it = vCoins.erase(it); } else { ++it; } } // form groups from remaining coins; note that preset coins will not // automatically have their associated (same address) coins included if (coin_control.m_avoid_partial_spends && vCoins.size() > OUTPUT_GROUP_MAX_ENTRIES) { // Cases where we have 11+ outputs all pointing to the same destination // may result in privacy leaks as they will potentially be // deterministically sorted. We solve that by explicitly shuffling the // outputs before processing Shuffle(vCoins.begin(), vCoins.end(), FastRandomContext()); } std::vector<OutputGroup> groups = GroupOutputs(vCoins, !coin_control.m_avoid_partial_spends); size_t max_ancestors = std::max<size_t>( 1, gArgs.GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT)); size_t max_descendants = std::max<size_t>( 1, gArgs.GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT)); bool fRejectLongChains = gArgs.GetBoolArg( "-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS); bool res = nTargetValue <= nValueFromPresetInputs || SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(1, 6, 0), groups, setCoinsRet, nValueRet, coin_selection_params, bnb_used) || SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(1, 1, 0), groups, setCoinsRet, nValueRet, coin_selection_params, bnb_used) || (m_spend_zero_conf_change && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, 2), groups, setCoinsRet, nValueRet, coin_selection_params, bnb_used)) || (m_spend_zero_conf_change && SelectCoinsMinConf( nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, std::min<size_t>(4, max_ancestors / 3), std::min<size_t>(4, max_descendants / 3)), groups, setCoinsRet, nValueRet, coin_selection_params, bnb_used)) || (m_spend_zero_conf_change && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, max_ancestors / 2, max_descendants / 2), groups, setCoinsRet, nValueRet, coin_selection_params, bnb_used)) || (m_spend_zero_conf_change && SelectCoinsMinConf(nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, max_ancestors - 1, max_descendants - 1), groups, setCoinsRet, nValueRet, coin_selection_params, bnb_used)) || (m_spend_zero_conf_change && !fRejectLongChains && SelectCoinsMinConf( nTargetValue - nValueFromPresetInputs, CoinEligibilityFilter(0, 1, std::numeric_limits<uint64_t>::max()), groups, setCoinsRet, nValueRet, coin_selection_params, bnb_used)); // Because SelectCoinsMinConf clears the setCoinsRet, we now add the // possible inputs to the coinset. util::insert(setCoinsRet, setPresetCoins); // Add preset inputs to the total value selected. nValueRet += nValueFromPresetInputs; return res; } bool CWallet::SignTransaction(CMutableTransaction &tx) { // sign the new tx int nIn = 0; for (CTxIn &input : tx.vin) { auto mi = mapWallet.find(input.prevout.GetTxId()); if (mi == mapWallet.end() || input.prevout.GetN() >= mi->second.tx->vout.size()) { return false; } const CScript &scriptPubKey = mi->second.tx->vout[input.prevout.GetN()].scriptPubKey; const Amount amount = mi->second.tx->vout[input.prevout.GetN()].nValue; SignatureData sigdata; SigHashType sigHashType = SigHashType().withForkId(); if (!ProduceSignature(*this, MutableTransactionSignatureCreator( &tx, nIn, amount, sigHashType), scriptPubKey, sigdata)) { return false; } UpdateInput(input, sigdata); nIn++; } return true; } bool CWallet::FundTransaction(CMutableTransaction &tx, Amount &nFeeRet, int &nChangePosInOut, std::string &strFailReason, bool lockUnspents, const std::set<int> &setSubtractFeeFromOutputs, CCoinControl coinControl) { std::vector<CRecipient> vecSend; // Turn the txout set into a CRecipient vector. for (size_t idx = 0; idx < tx.vout.size(); idx++) { const CTxOut &txOut = tx.vout[idx]; CRecipient recipient = {txOut.scriptPubKey, txOut.nValue, setSubtractFeeFromOutputs.count(idx) == 1}; vecSend.push_back(recipient); } coinControl.fAllowOtherInputs = true; for (const CTxIn &txin : tx.vin) { coinControl.Select(txin.prevout); } // Acquire the locks to prevent races to the new locked unspents between the // CreateTransaction call and LockCoin calls (when lockUnspents is true). LOCK2(cs_main, cs_wallet); CReserveKey reservekey(this); CTransactionRef tx_new; if (!CreateTransaction(vecSend, tx_new, reservekey, nFeeRet, nChangePosInOut, strFailReason, coinControl, false)) { return false; } if (nChangePosInOut != -1) { tx.vout.insert(tx.vout.begin() + nChangePosInOut, tx_new->vout[nChangePosInOut]); // We don't have the normal Create/Commit cycle, and don't want to // risk reusing change, so just remove the key from the keypool // here. reservekey.KeepKey(); } // Copy output sizes from new transaction; they may have had the fee // subtracted from them. for (size_t idx = 0; idx < tx.vout.size(); idx++) { tx.vout[idx].nValue = tx_new->vout[idx].nValue; } // Add new txins (keeping original txin scriptSig/order) for (const CTxIn &txin : tx_new->vin) { if (!coinControl.IsSelected(txin.prevout)) { tx.vin.push_back(txin); if (lockUnspents) { LockCoin(txin.prevout); } } } return true; } OutputType CWallet::TransactionChangeType(OutputType change_type, const std::vector<CRecipient> &vecSend) { // If -changetype is specified, always use that change type. if (change_type != OutputType::CHANGE_AUTO) { return change_type; } // if m_default_address_type is legacy, use legacy address as change. if (m_default_address_type == OutputType::LEGACY) { return OutputType::LEGACY; } // else use m_default_address_type for change return m_default_address_type; } bool CWallet::CreateTransaction(const std::vector<CRecipient> &vecSend, CTransactionRef &tx, CReserveKey &reservekey, Amount &nFeeRet, int &nChangePosInOut, std::string &strFailReason, const CCoinControl &coinControl, bool sign) { Amount nValue = Amount::zero(); int nChangePosRequest = nChangePosInOut; unsigned int nSubtractFeeFromAmount = 0; for (const auto &recipient : vecSend) { if (nValue < Amount::zero() || recipient.nAmount < Amount::zero()) { strFailReason = _("Transaction amounts must not be negative"); return false; } nValue += recipient.nAmount; if (recipient.fSubtractFeeFromAmount) { nSubtractFeeFromAmount++; } } if (vecSend.empty()) { strFailReason = _("Transaction must have at least one recipient"); return false; } CMutableTransaction txNew; // Discourage fee sniping. // // For a large miner the value of the transactions in the best block and the // mempool can exceed the cost of deliberately attempting to mine two blocks // to orphan the current best block. By setting nLockTime such that only the // next block can include the transaction, we discourage this practice as // the height restricted and limited blocksize gives miners considering fee // sniping fewer options for pulling off this attack. // // A simple way to think about this is from the wallet's point of view we // always want the blockchain to move forward. By setting nLockTime this way // we're basically making the statement that we only want this transaction // to appear in the next block; we don't want to potentially encourage // reorgs by allowing transactions to appear at lower heights than the next // block in forks of the best chain. // // Of course, the subsidy is high enough, and transaction volume low enough, // that fee sniping isn't a problem yet, but by implementing a fix now we // ensure code won't be written that makes assumptions about nLockTime that // preclude a fix later. txNew.nLockTime = chainActive.Height(); // Secondly occasionally randomly pick a nLockTime even further back, so // that transactions that are delayed after signing for whatever reason, // e.g. high-latency mix networks and some CoinJoin implementations, have // better privacy. if (GetRandInt(10) == 0) { txNew.nLockTime = std::max(0, (int)txNew.nLockTime - GetRandInt(100)); } assert(txNew.nLockTime <= (unsigned int)chainActive.Height()); assert(txNew.nLockTime < LOCKTIME_THRESHOLD); { std::set<CInputCoin> setCoins; LOCK2(cs_main, cs_wallet); std::vector<COutput> vAvailableCoins; AvailableCoins(vAvailableCoins, true, &coinControl); // Parameters for coin selection, init with dummy CoinSelectionParams coin_selection_params; // Create change script that will be used if we need change // TODO: pass in scriptChange instead of reservekey so // change transaction isn't always pay-to-bitcoin-address CScript scriptChange; // coin control: send change to custom address if (!boost::get<CNoDestination>(&coinControl.destChange)) { scriptChange = GetScriptForDestination(coinControl.destChange); // no coin control: send change to newly generated address } else { // Note: We use a new key here to keep it from being obvious // which side is the change. // The drawback is that by not reusing a previous key, the // change may be lost if a backup is restored, if the backup // doesn't have the new private key for the change. If we // reused the old key, it would be possible to add code to look // for and rediscover unknown transactions that were written // with keys of ours to recover post-backup change. // Reserve a new key pair from key pool CPubKey vchPubKey; bool ret; ret = reservekey.GetReservedKey(vchPubKey, true); if (!ret) { strFailReason = _("Keypool ran out, please call keypoolrefill first"); return false; } const OutputType change_type = TransactionChangeType( coinControl.m_change_type ? *coinControl.m_change_type : m_default_change_type, vecSend); LearnRelatedScripts(vchPubKey, change_type); scriptChange = GetScriptForDestination( GetDestinationForKey(vchPubKey, change_type)); } CTxOut change_prototype_txout(Amount::zero(), scriptChange); coin_selection_params.change_output_size = GetSerializeSize(change_prototype_txout, SER_DISK, 0); // Get the fee rate to use effective values in coin selection CFeeRate nFeeRateNeeded = GetMinimumFeeRate(*this, coinControl, g_mempool); nFeeRet = Amount::zero(); bool pick_new_inputs = true; Amount nValueIn = Amount::zero(); // BnB selector is the only selector used when this is true. // That should only happen on the first pass through the loop. // If we are doing subtract fee from recipient, then don't use BnB coin_selection_params.use_bnb = nSubtractFeeFromAmount == 0; // Start with no fee and loop until there is enough fee while (true) { nChangePosInOut = nChangePosRequest; txNew.vin.clear(); txNew.vout.clear(); bool fFirst = true; Amount nValueToSelect = nValue; if (nSubtractFeeFromAmount == 0) { nValueToSelect += nFeeRet; } // Static vsize overhead + outputs vsize. 4 nVersion, 4 nLocktime, 1 // input count, 1 output count coin_selection_params.tx_noinputs_size = 10; // vouts to the payees for (const auto &recipient : vecSend) { CTxOut txout(recipient.nAmount, recipient.scriptPubKey); if (recipient.fSubtractFeeFromAmount) { assert(nSubtractFeeFromAmount != 0); // Subtract fee equally from each selected recipient. txout.nValue -= nFeeRet / int(nSubtractFeeFromAmount); // First receiver pays the remainder not divisible by output // count. if (fFirst) { fFirst = false; txout.nValue -= nFeeRet % int(nSubtractFeeFromAmount); } } // Include the fee cost for outputs. Note this is only used for // BnB right now coin_selection_params.tx_noinputs_size += ::GetSerializeSize(txout, SER_NETWORK, PROTOCOL_VERSION); if (IsDust(txout, dustRelayFee)) { if (recipient.fSubtractFeeFromAmount && nFeeRet > Amount::zero()) { if (txout.nValue < Amount::zero()) { strFailReason = _("The transaction amount is " "too small to pay the fee"); } else { strFailReason = _("The transaction amount is too small to " "send after the fee has been deducted"); } } else { strFailReason = _("Transaction amount too small"); } return false; } txNew.vout.push_back(txout); } // Choose coins to use bool bnb_used; if (pick_new_inputs) { nValueIn = Amount::zero(); setCoins.clear(); coin_selection_params.change_spend_size = CalculateMaximumSignedInputSize(change_prototype_txout, this); coin_selection_params.effective_fee = nFeeRateNeeded; if (!SelectCoins(vAvailableCoins, nValueToSelect, setCoins, nValueIn, coinControl, coin_selection_params, bnb_used)) { // If BnB was used, it was the first pass. No longer the // first pass and continue loop with knapsack. if (bnb_used) { coin_selection_params.use_bnb = false; continue; } else { strFailReason = _("Insufficient funds"); return false; } } } const Amount nChange = nValueIn - nValueToSelect; if (nChange > Amount::zero()) { // Fill a vout to ourself. CTxOut newTxOut(nChange, scriptChange); // Never create dust outputs; if we would, just add the dust to // the fee. // The nChange when BnB is used is always going to go to fees. if (IsDust(newTxOut, dustRelayFee) || bnb_used) { nChangePosInOut = -1; nFeeRet += nChange; } else { if (nChangePosInOut == -1) { // Insert change txn at random position: nChangePosInOut = GetRandInt(txNew.vout.size() + 1); } else if ((unsigned int)nChangePosInOut > txNew.vout.size()) { strFailReason = _("Change index out of range"); return false; } std::vector<CTxOut>::iterator position = txNew.vout.begin() + nChangePosInOut; txNew.vout.insert(position, newTxOut); } } else { nChangePosInOut = -1; } // Dummy fill vin for maximum size estimation // for (const auto &coin : setCoins) { txNew.vin.push_back(CTxIn(coin.outpoint, CScript())); } CTransaction txNewConst(txNew); - int nBytes = CalculateMaximumSignedTxSize(txNewConst, this); + int nBytes = CalculateMaximumSignedTxSize( + txNewConst, this, coinControl.fAllowWatchOnly); if (nBytes < 0) { strFailReason = _("Signing transaction failed"); return false; } Amount nFeeNeeded = GetMinimumFee(*this, nBytes, coinControl, g_mempool); // If we made it here and we aren't even able to meet the relay fee // on the next pass, give up because we must be at the maximum // allowed fee. if (nFeeNeeded < ::minRelayTxFee.GetFee(nBytes)) { strFailReason = _("Transaction too large for fee policy"); return false; } if (nFeeRet >= nFeeNeeded) { // Reduce fee to only the needed amount if possible. This // prevents potential overpayment in fees if the coins selected // to meet nFeeNeeded result in a transaction that requires less // fee than the prior iteration. // If we have no change and a big enough excess fee, then try to // construct transaction again only without picking new inputs. // We now know we only need the smaller fee (because of reduced // tx size) and so we should add a change output. Only try this // once. if (nChangePosInOut == -1 && nSubtractFeeFromAmount == 0 && pick_new_inputs) { // Add 2 as a buffer in case increasing # of outputs changes // compact size unsigned int tx_size_with_change = nBytes + coin_selection_params.change_output_size + 2; Amount fee_needed_with_change = GetMinimumFee( *this, tx_size_with_change, coinControl, g_mempool); Amount minimum_value_for_change = GetDustThreshold(change_prototype_txout, dustRelayFee); if (nFeeRet >= fee_needed_with_change + minimum_value_for_change) { pick_new_inputs = false; nFeeRet = fee_needed_with_change; continue; } } // If we have change output already, just increase it if (nFeeRet > nFeeNeeded && nChangePosInOut != -1 && nSubtractFeeFromAmount == 0) { Amount extraFeePaid = nFeeRet - nFeeNeeded; std::vector<CTxOut>::iterator change_position = txNew.vout.begin() + nChangePosInOut; change_position->nValue += extraFeePaid; nFeeRet -= extraFeePaid; } // Done, enough fee included. break; } else if (!pick_new_inputs) { // This shouldn't happen, we should have had enough excess fee // to pay for the new output and still meet nFeeNeeded. // Or we should have just subtracted fee from recipients and // nFeeNeeded should not have changed. strFailReason = _("Transaction fee and change calculation failed"); return false; } // Try to reduce change to include necessary fee. if (nChangePosInOut != -1 && nSubtractFeeFromAmount == 0) { Amount additionalFeeNeeded = nFeeNeeded - nFeeRet; std::vector<CTxOut>::iterator change_position = txNew.vout.begin() + nChangePosInOut; // Only reduce change if remaining amount is still a large // enough output. if (change_position->nValue >= MIN_FINAL_CHANGE + additionalFeeNeeded) { change_position->nValue -= additionalFeeNeeded; nFeeRet += additionalFeeNeeded; // Done, able to increase fee from change. break; } } // If subtracting fee from recipients, we now know what fee we // need to subtract, we have no reason to reselect inputs. if (nSubtractFeeFromAmount > 0) { pick_new_inputs = false; } // Include more fee and try again. nFeeRet = nFeeNeeded; coin_selection_params.use_bnb = false; continue; } if (nChangePosInOut == -1) { // Return any reserved key if we don't have change reservekey.ReturnKey(); } // Shuffle selected coins and fill in final vin txNew.vin.clear(); std::vector<CInputCoin> selected_coins(setCoins.begin(), setCoins.end()); Shuffle(selected_coins.begin(), selected_coins.end(), FastRandomContext()); // Note how the sequence number is set to non-maxint so that // the nLockTime set above actually works. for (const auto &coin : selected_coins) { txNew.vin.push_back( CTxIn(coin.outpoint, CScript(), std::numeric_limits<uint32_t>::max() - 1)); } if (sign) { SigHashType sigHashType = SigHashType().withForkId(); int nIn = 0; for (const auto &coin : selected_coins) { const CScript &scriptPubKey = coin.txout.scriptPubKey; SignatureData sigdata; if (!ProduceSignature( *this, MutableTransactionSignatureCreator( &txNew, nIn, coin.txout.nValue, sigHashType), scriptPubKey, sigdata)) { strFailReason = _("Signing transaction failed"); return false; } UpdateInput(txNew.vin.at(nIn), sigdata); nIn++; } } // Return the constructed transaction data. tx = MakeTransactionRef(std::move(txNew)); // Limit size. if (tx->GetTotalSize() >= MAX_STANDARD_TX_SIZE) { strFailReason = _("Transaction too large"); return false; } } if (gArgs.GetBoolArg("-walletrejectlongchains", DEFAULT_WALLET_REJECT_LONG_CHAINS)) { // Lastly, ensure this tx will pass the mempool's chain limits. LockPoints lp; CTxMemPoolEntry entry(tx, Amount::zero(), 0, 0, 0, Amount::zero(), false, 0, lp); CTxMemPool::setEntries setAncestors; size_t nLimitAncestors = gArgs.GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT); size_t nLimitAncestorSize = gArgs.GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT) * 1000; size_t nLimitDescendants = gArgs.GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT); size_t nLimitDescendantSize = gArgs.GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT) * 1000; std::string errString; LOCK(::g_mempool.cs); if (!g_mempool.CalculateMemPoolAncestors( entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) { strFailReason = _("Transaction has too long of a mempool chain"); return false; } } return true; } /** * Call after CreateTransaction unless you want to abort */ bool CWallet::CommitTransaction( CTransactionRef tx, mapValue_t mapValue, std::vector<std::pair<std::string, std::string>> orderForm, std::string fromAccount, CReserveKey &reservekey, CConnman *connman, CValidationState &state) { LOCK2(cs_main, cs_wallet); CWalletTx wtxNew(this, std::move(tx)); wtxNew.mapValue = std::move(mapValue); wtxNew.vOrderForm = std::move(orderForm); wtxNew.strFromAccount = std::move(fromAccount); wtxNew.fTimeReceivedIsTxTime = true; wtxNew.fFromMe = true; LogPrintfToBeContinued("CommitTransaction:\n%s", wtxNew.tx->ToString()); // Take key pair from key pool so it won't be used again. reservekey.KeepKey(); // Add tx to wallet, because if it has change it's also ours, otherwise just // for transaction history. AddToWallet(wtxNew); // Notify that old coins are spent. for (const CTxIn &txin : wtxNew.tx->vin) { CWalletTx &coin = mapWallet.at(txin.prevout.GetTxId()); coin.BindWallet(this); NotifyTransactionChanged(this, coin.GetId(), CT_UPDATED); } // Get the inserted-CWalletTx from mapWallet so that the // fInMempool flag is cached properly CWalletTx &wtx = mapWallet.at(wtxNew.GetId()); if (fBroadcastTransactions) { // Broadcast if (!wtx.AcceptToMemoryPool(maxTxFee, state)) { LogPrintf("CommitTransaction(): Transaction cannot be broadcast " "immediately, %s\n", FormatStateMessage(state)); // TODO: if we expect the failure to be long term or permanent, // instead delete wtx from the wallet and return failure. } else { wtx.RelayWalletTransaction(connman); } } return true; } void CWallet::ListAccountCreditDebit(const std::string &strAccount, std::list<CAccountingEntry> &entries) { WalletBatch batch(*database); return batch.ListAccountCreditDebit(strAccount, entries); } bool CWallet::AddAccountingEntry(const CAccountingEntry &acentry) { WalletBatch batch(*database); return AddAccountingEntry(acentry, &batch); } bool CWallet::AddAccountingEntry(const CAccountingEntry &acentry, WalletBatch *batch) { if (!batch->WriteAccountingEntry(++nAccountingEntryNumber, acentry)) { return false; } laccentries.push_back(acentry); CAccountingEntry &entry = laccentries.back(); wtxOrdered.insert(std::make_pair(entry.nOrderPos, TxPair(nullptr, &entry))); return true; } DBErrors CWallet::LoadWallet(bool &fFirstRunRet) { LOCK2(cs_main, cs_wallet); fFirstRunRet = false; DBErrors nLoadWalletRet = WalletBatch(*database, "cr+").LoadWallet(this); if (nLoadWalletRet == DBErrors::NEED_REWRITE) { if (database->Rewrite("\x04pool")) { setInternalKeyPool.clear(); setExternalKeyPool.clear(); m_pool_key_to_index.clear(); // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // that requires a new key. } } { LOCK(cs_KeyStore); // This wallet is in its first run if all of these are empty fFirstRunRet = mapKeys.empty() && mapCryptedKeys.empty() && mapWatchKeys.empty() && setWatchOnly.empty() && mapScripts.empty(); } if (nLoadWalletRet != DBErrors::LOAD_OK) { return nLoadWalletRet; } return DBErrors::LOAD_OK; } DBErrors CWallet::ZapSelectTx(std::vector<TxId> &txIdsIn, std::vector<TxId> &txIdsOut) { // mapWallet AssertLockHeld(cs_wallet); DBErrors nZapSelectTxRet = WalletBatch(*database, "cr+").ZapSelectTx(txIdsIn, txIdsOut); for (const TxId &txid : txIdsOut) { mapWallet.erase(txid); } if (nZapSelectTxRet == DBErrors::NEED_REWRITE) { if (database->Rewrite("\x04pool")) { setInternalKeyPool.clear(); setExternalKeyPool.clear(); m_pool_key_to_index.clear(); // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // that requires a new key. } } if (nZapSelectTxRet != DBErrors::LOAD_OK) { return nZapSelectTxRet; } MarkDirty(); return DBErrors::LOAD_OK; } DBErrors CWallet::ZapWalletTx(std::vector<CWalletTx> &vWtx) { DBErrors nZapWalletTxRet = WalletBatch(*database, "cr+").ZapWalletTx(vWtx); if (nZapWalletTxRet == DBErrors::NEED_REWRITE) { if (database->Rewrite("\x04pool")) { LOCK(cs_wallet); setInternalKeyPool.clear(); setExternalKeyPool.clear(); m_pool_key_to_index.clear(); // Note: can't top-up keypool here, because wallet is locked. // User will be prompted to unlock wallet the next operation // that requires a new key. } } if (nZapWalletTxRet != DBErrors::LOAD_OK) { return nZapWalletTxRet; } return DBErrors::LOAD_OK; } bool CWallet::SetAddressBook(const CTxDestination &address, const std::string &strName, const std::string &strPurpose) { bool fUpdated = false; { // mapAddressBook LOCK(cs_wallet); std::map<CTxDestination, CAddressBookData>::iterator mi = mapAddressBook.find(address); fUpdated = mi != mapAddressBook.end(); mapAddressBook[address].name = strName; // Update purpose only if requested. if (!strPurpose.empty()) { mapAddressBook[address].purpose = strPurpose; } } NotifyAddressBookChanged(this, address, strName, ::IsMine(*this, address) != ISMINE_NO, strPurpose, (fUpdated ? CT_UPDATED : CT_NEW)); if (!strPurpose.empty() && !WalletBatch(*database).WritePurpose(address, strPurpose)) { return false; } return WalletBatch(*database).WriteName(address, strName); } bool CWallet::DelAddressBook(const CTxDestination &address) { { // mapAddressBook LOCK(cs_wallet); // Delete destdata tuples associated with address. for (const std::pair<const std::string, std::string> &item : mapAddressBook[address].destdata) { WalletBatch(*database).EraseDestData(address, item.first); } mapAddressBook.erase(address); } NotifyAddressBookChanged(this, address, "", ::IsMine(*this, address) != ISMINE_NO, "", CT_DELETED); WalletBatch(*database).ErasePurpose(address); return WalletBatch(*database).EraseName(address); } const std::string &CWallet::GetLabelName(const CScript &scriptPubKey) const { CTxDestination address; if (ExtractDestination(scriptPubKey, address) && !scriptPubKey.IsUnspendable()) { auto mi = mapAddressBook.find(address); if (mi != mapAddressBook.end()) { return mi->second.name; } } // A scriptPubKey that doesn't have an entry in the address book is // associated with the default label (""). const static std::string DEFAULT_LABEL_NAME; return DEFAULT_LABEL_NAME; } /** * Mark old keypool keys as used, and generate all new keys. */ bool CWallet::NewKeyPool() { LOCK(cs_wallet); WalletBatch batch(*database); for (const int64_t nIndex : setInternalKeyPool) { batch.ErasePool(nIndex); } setInternalKeyPool.clear(); for (const int64_t nIndex : setExternalKeyPool) { batch.ErasePool(nIndex); } setExternalKeyPool.clear(); for (int64_t nIndex : set_pre_split_keypool) { batch.ErasePool(nIndex); } set_pre_split_keypool.clear(); m_pool_key_to_index.clear(); if (!TopUpKeyPool()) { return false; } LogPrintf("CWallet::NewKeyPool rewrote keypool\n"); return true; } size_t CWallet::KeypoolCountExternalKeys() { // setExternalKeyPool AssertLockHeld(cs_wallet); return setExternalKeyPool.size() + set_pre_split_keypool.size(); } void CWallet::LoadKeyPool(int64_t nIndex, const CKeyPool &keypool) { AssertLockHeld(cs_wallet); if (keypool.m_pre_split) { set_pre_split_keypool.insert(nIndex); } else if (keypool.fInternal) { setInternalKeyPool.insert(nIndex); } else { setExternalKeyPool.insert(nIndex); } m_max_keypool_index = std::max(m_max_keypool_index, nIndex); m_pool_key_to_index[keypool.vchPubKey.GetID()] = nIndex; // If no metadata exists yet, create a default with the pool key's // creation time. Note that this may be overwritten by actually // stored metadata for that key later, which is fine. CKeyID keyid = keypool.vchPubKey.GetID(); if (mapKeyMetadata.count(keyid) == 0) { mapKeyMetadata[keyid] = CKeyMetadata(keypool.nTime); } } bool CWallet::TopUpKeyPool(unsigned int kpSize) { LOCK(cs_wallet); if (IsLocked()) { return false; } // Top up key pool unsigned int nTargetSize; if (kpSize > 0) { nTargetSize = kpSize; } else { nTargetSize = std::max<int64_t>( gArgs.GetArg("-keypool", DEFAULT_KEYPOOL_SIZE), 0); } // count amount of available keys (internal, external) // make sure the keypool of external and internal keys fits the user // selected target (-keypool) int64_t missingExternal = std::max<int64_t>( std::max<int64_t>(nTargetSize, 1) - setExternalKeyPool.size(), 0); int64_t missingInternal = std::max<int64_t>( std::max<int64_t>(nTargetSize, 1) - setInternalKeyPool.size(), 0); if (!IsHDEnabled() || !CanSupportFeature(FEATURE_HD_SPLIT)) { // don't create extra internal keys missingInternal = 0; } bool internal = false; WalletBatch batch(*database); for (int64_t i = missingInternal + missingExternal; i--;) { if (i < missingInternal) { internal = true; } // How in the hell did you use so many keys? assert(m_max_keypool_index < std::numeric_limits<int64_t>::max()); int64_t index = ++m_max_keypool_index; CPubKey pubkey(GenerateNewKey(batch, internal)); if (!batch.WritePool(index, CKeyPool(pubkey, internal))) { throw std::runtime_error(std::string(__func__) + ": writing generated key failed"); } if (internal) { setInternalKeyPool.insert(index); } else { setExternalKeyPool.insert(index); } m_pool_key_to_index[pubkey.GetID()] = index; } if (missingInternal + missingExternal > 0) { LogPrintf( "keypool added %d keys (%d internal), size=%u (%u internal)\n", missingInternal + missingExternal, missingInternal, setInternalKeyPool.size() + setExternalKeyPool.size() + set_pre_split_keypool.size(), setInternalKeyPool.size()); } return true; } bool CWallet::ReserveKeyFromKeyPool(int64_t &nIndex, CKeyPool &keypool, bool fRequestedInternal) { nIndex = -1; keypool.vchPubKey = CPubKey(); LOCK(cs_wallet); if (!IsLocked()) { TopUpKeyPool(); } bool fReturningInternal = IsHDEnabled() && CanSupportFeature(FEATURE_HD_SPLIT) && fRequestedInternal; bool use_split_keypool = set_pre_split_keypool.empty(); std::set<int64_t> &setKeyPool = use_split_keypool ? (fReturningInternal ? setInternalKeyPool : setExternalKeyPool) : set_pre_split_keypool; // Get the oldest key if (setKeyPool.empty()) { return false; } WalletBatch batch(*database); auto it = setKeyPool.begin(); nIndex = *it; setKeyPool.erase(it); if (!batch.ReadPool(nIndex, keypool)) { throw std::runtime_error(std::string(__func__) + ": read failed"); } if (!HaveKey(keypool.vchPubKey.GetID())) { throw std::runtime_error(std::string(__func__) + ": unknown key in key pool"); } // If the key was pre-split keypool, we don't care about what type it is if (use_split_keypool && keypool.fInternal != fReturningInternal) { throw std::runtime_error(std::string(__func__) + ": keypool entry misclassified"); } if (!keypool.vchPubKey.IsValid()) { throw std::runtime_error(std::string(__func__) + ": keypool entry invalid"); } m_pool_key_to_index.erase(keypool.vchPubKey.GetID()); LogPrintf("keypool reserve %d\n", nIndex); return true; } void CWallet::KeepKey(int64_t nIndex) { // Remove from key pool. WalletBatch batch(*database); batch.ErasePool(nIndex); LogPrintf("keypool keep %d\n", nIndex); } void CWallet::ReturnKey(int64_t nIndex, bool fInternal, const CPubKey &pubkey) { // Return to key pool { LOCK(cs_wallet); if (fInternal) { setInternalKeyPool.insert(nIndex); } else if (!set_pre_split_keypool.empty()) { set_pre_split_keypool.insert(nIndex); } else { setExternalKeyPool.insert(nIndex); } m_pool_key_to_index[pubkey.GetID()] = nIndex; } LogPrintf("keypool return %d\n", nIndex); } bool CWallet::GetKeyFromPool(CPubKey &result, bool internal) { CKeyPool keypool; LOCK(cs_wallet); int64_t nIndex; if (!ReserveKeyFromKeyPool(nIndex, keypool, internal)) { if (IsLocked()) { return false; } WalletBatch batch(*database); result = GenerateNewKey(batch, internal); return true; } KeepKey(nIndex); result = keypool.vchPubKey; return true; } static int64_t GetOldestKeyTimeInPool(const std::set<int64_t> &setKeyPool, WalletBatch &batch) { if (setKeyPool.empty()) { return GetTime(); } CKeyPool keypool; int64_t nIndex = *(setKeyPool.begin()); if (!batch.ReadPool(nIndex, keypool)) { throw std::runtime_error(std::string(__func__) + ": read oldest key in keypool failed"); } assert(keypool.vchPubKey.IsValid()); return keypool.nTime; } int64_t CWallet::GetOldestKeyPoolTime() { LOCK(cs_wallet); WalletBatch batch(*database); // load oldest key from keypool, get time and return int64_t oldestKey = GetOldestKeyTimeInPool(setExternalKeyPool, batch); if (IsHDEnabled() && CanSupportFeature(FEATURE_HD_SPLIT)) { oldestKey = std::max(GetOldestKeyTimeInPool(setInternalKeyPool, batch), oldestKey); if (!set_pre_split_keypool.empty()) { oldestKey = std::max(GetOldestKeyTimeInPool(set_pre_split_keypool, batch), oldestKey); } } return oldestKey; } std::map<CTxDestination, Amount> CWallet::GetAddressBalances() { std::map<CTxDestination, Amount> balances; LOCK(cs_wallet); for (const auto &walletEntry : mapWallet) { const CWalletTx *pcoin = &walletEntry.second; if (!pcoin->IsTrusted()) { continue; } if (pcoin->IsImmatureCoinBase()) { continue; } int nDepth = pcoin->GetDepthInMainChain(); if (nDepth < (pcoin->IsFromMe(ISMINE_ALL) ? 0 : 1)) { continue; } for (uint32_t i = 0; i < pcoin->tx->vout.size(); i++) { CTxDestination addr; if (!IsMine(pcoin->tx->vout[i])) { continue; } if (!ExtractDestination(pcoin->tx->vout[i].scriptPubKey, addr)) { continue; } Amount n = IsSpent(COutPoint(walletEntry.first, i)) ? Amount::zero() : pcoin->tx->vout[i].nValue; if (!balances.count(addr)) { balances[addr] = Amount::zero(); } balances[addr] += n; } } return balances; } std::set<std::set<CTxDestination>> CWallet::GetAddressGroupings() { // mapWallet AssertLockHeld(cs_wallet); std::set<std::set<CTxDestination>> groupings; std::set<CTxDestination> grouping; for (const auto &walletEntry : mapWallet) { const CWalletTx *pcoin = &walletEntry.second; if (pcoin->tx->vin.size() > 0) { bool any_mine = false; // Group all input addresses with each other. for (const auto &txin : pcoin->tx->vin) { CTxDestination address; // If this input isn't mine, ignore it. if (!IsMine(txin)) { continue; } if (!ExtractDestination(mapWallet.at(txin.prevout.GetTxId()) .tx->vout[txin.prevout.GetN()] .scriptPubKey, address)) { continue; } grouping.insert(address); any_mine = true; } // Group change with input addresses. if (any_mine) { for (const auto &txout : pcoin->tx->vout) { if (IsChange(txout)) { CTxDestination txoutAddr; if (!ExtractDestination(txout.scriptPubKey, txoutAddr)) { continue; } grouping.insert(txoutAddr); } } } if (grouping.size() > 0) { groupings.insert(grouping); grouping.clear(); } } // Group lone addrs by themselves. for (const auto &txout : pcoin->tx->vout) { if (IsMine(txout)) { CTxDestination address; if (!ExtractDestination(txout.scriptPubKey, address)) { continue; } grouping.insert(address); groupings.insert(grouping); grouping.clear(); } } } // A set of pointers to groups of addresses. std::set<std::set<CTxDestination> *> uniqueGroupings; // Map addresses to the unique group containing it. std::map<CTxDestination, std::set<CTxDestination> *> setmap; for (std::set<CTxDestination> _grouping : groupings) { // Make a set of all the groups hit by this new group. std::set<std::set<CTxDestination> *> hits; std::map<CTxDestination, std::set<CTxDestination> *>::iterator it; for (const CTxDestination &address : _grouping) { if ((it = setmap.find(address)) != setmap.end()) { hits.insert((*it).second); } } // Merge all hit groups into a new single group and delete old groups. std::set<CTxDestination> *merged = new std::set<CTxDestination>(_grouping); for (std::set<CTxDestination> *hit : hits) { merged->insert(hit->begin(), hit->end()); uniqueGroupings.erase(hit); delete hit; } uniqueGroupings.insert(merged); // Update setmap. for (const CTxDestination &element : *merged) { setmap[element] = merged; } } std::set<std::set<CTxDestination>> ret; for (const std::set<CTxDestination> *uniqueGrouping : uniqueGroupings) { ret.insert(*uniqueGrouping); delete uniqueGrouping; } return ret; } std::set<CTxDestination> CWallet::GetLabelAddresses(const std::string &label) const { LOCK(cs_wallet); std::set<CTxDestination> result; for (const std::pair<const CTxDestination, CAddressBookData> &item : mapAddressBook) { const CTxDestination &address = item.first; const std::string &strName = item.second.name; if (strName == label) { result.insert(address); } } return result; } void CWallet::DeleteLabel(const std::string &label) { WalletBatch batch(*database); batch.EraseAccount(label); } bool CReserveKey::GetReservedKey(CPubKey &pubkey, bool internal) { if (nIndex == -1) { CKeyPool keypool; if (!pwallet->ReserveKeyFromKeyPool(nIndex, keypool, internal)) { return false; } vchPubKey = keypool.vchPubKey; fInternal = keypool.fInternal; } assert(vchPubKey.IsValid()); pubkey = vchPubKey; return true; } void CReserveKey::KeepKey() { if (nIndex != -1) { pwallet->KeepKey(nIndex); } nIndex = -1; vchPubKey = CPubKey(); } void CReserveKey::ReturnKey() { if (nIndex != -1) { pwallet->ReturnKey(nIndex, fInternal, vchPubKey); } nIndex = -1; vchPubKey = CPubKey(); } void CWallet::MarkReserveKeysAsUsed(int64_t keypool_id) { AssertLockHeld(cs_wallet); bool internal = setInternalKeyPool.count(keypool_id); if (!internal) { assert(setExternalKeyPool.count(keypool_id) || set_pre_split_keypool.count(keypool_id)); } std::set<int64_t> *setKeyPool = internal ? &setInternalKeyPool : (set_pre_split_keypool.empty() ? &setExternalKeyPool : &set_pre_split_keypool); auto it = setKeyPool->begin(); WalletBatch batch(*database); while (it != std::end(*setKeyPool)) { const int64_t &index = *(it); if (index > keypool_id) { // set*KeyPool is ordered break; } CKeyPool keypool; if (batch.ReadPool(index, keypool)) { // TODO: This should be unnecessary m_pool_key_to_index.erase(keypool.vchPubKey.GetID()); } LearnAllRelatedScripts(keypool.vchPubKey); batch.ErasePool(index); LogPrintf("keypool index %d removed\n", index); it = setKeyPool->erase(it); } } void CWallet::GetScriptForMining(std::shared_ptr<CReserveScript> &script) { std::shared_ptr<CReserveKey> rKey = std::make_shared<CReserveKey>(this); CPubKey pubkey; if (!rKey->GetReservedKey(pubkey)) { return; } script = rKey; script->reserveScript = CScript() << ToByteVector(pubkey) << OP_CHECKSIG; } void CWallet::LockCoin(const COutPoint &output) { // setLockedCoins AssertLockHeld(cs_wallet); setLockedCoins.insert(output); } void CWallet::UnlockCoin(const COutPoint &output) { // setLockedCoins AssertLockHeld(cs_wallet); setLockedCoins.erase(output); } void CWallet::UnlockAllCoins() { // setLockedCoins AssertLockHeld(cs_wallet); setLockedCoins.clear(); } bool CWallet::IsLockedCoin(const COutPoint &outpoint) const { // setLockedCoins AssertLockHeld(cs_wallet); return setLockedCoins.count(outpoint) > 0; } void CWallet::ListLockedCoins(std::vector<COutPoint> &vOutpts) const { // setLockedCoins AssertLockHeld(cs_wallet); for (COutPoint outpoint : setLockedCoins) { vOutpts.push_back(outpoint); } } /** @} */ // end of Actions void CWallet::GetKeyBirthTimes( std::map<CTxDestination, int64_t> &mapKeyBirth) const { // mapKeyMetadata AssertLockHeld(cs_wallet); mapKeyBirth.clear(); // Get birth times for keys with metadata. for (const auto &entry : mapKeyMetadata) { if (entry.second.nCreateTime) { mapKeyBirth[entry.first] = entry.second.nCreateTime; } } // Map in which we'll infer heights of other keys the tip can be // reorganized; use a 144-block safety margin. CBlockIndex *pindexMax = chainActive[std::max(0, chainActive.Height() - 144)]; std::map<CKeyID, CBlockIndex *> mapKeyFirstBlock; for (const CKeyID &keyid : GetKeys()) { if (mapKeyBirth.count(keyid) == 0) { mapKeyFirstBlock[keyid] = pindexMax; } } // If there are no such keys, we're done. if (mapKeyFirstBlock.empty()) { return; } // Find first block that affects those keys, if there are any left. std::vector<CKeyID> vAffected; for (const auto &entry : mapWallet) { // iterate over all wallet transactions... const CWalletTx &wtx = entry.second; CBlockIndex *pindex = LookupBlockIndex(wtx.hashBlock); if (pindex && chainActive.Contains(pindex)) { // ... which are already in a block int nHeight = pindex->nHeight; for (const CTxOut &txout : wtx.tx->vout) { // Iterate over all their outputs... CAffectedKeysVisitor(*this, vAffected) .Process(txout.scriptPubKey); for (const CKeyID &keyid : vAffected) { // ... and all their affected keys. std::map<CKeyID, CBlockIndex *>::iterator rit = mapKeyFirstBlock.find(keyid); if (rit != mapKeyFirstBlock.end() && nHeight < rit->second->nHeight) { rit->second = pindex; } } vAffected.clear(); } } } // Extract block timestamps for those keys. for (const auto &entry : mapKeyFirstBlock) { // block times can be 2h off mapKeyBirth[entry.first] = entry.second->GetBlockTime() - TIMESTAMP_WINDOW; } } /** * Compute smart timestamp for a transaction being added to the wallet. * * Logic: * - If sending a transaction, assign its timestamp to the current time. * - If receiving a transaction outside a block, assign its timestamp to the * current time. * - If receiving a block with a future timestamp, assign all its (not already * known) transactions' timestamps to the current time. * - If receiving a block with a past timestamp, before the most recent known * transaction (that we care about), assign all its (not already known) * transactions' timestamps to the same timestamp as that most-recent-known * transaction. * - If receiving a block with a past timestamp, but after the most recent known * transaction, assign all its (not already known) transactions' timestamps to * the block time. * * For more information see CWalletTx::nTimeSmart, * https://bitcointalk.org/?topic=54527, or * https://github.com/bitcoin/bitcoin/pull/1393. */ unsigned int CWallet::ComputeTimeSmart(const CWalletTx &wtx) const { unsigned int nTimeSmart = wtx.nTimeReceived; if (!wtx.hashUnset()) { if (const CBlockIndex *pindex = LookupBlockIndex(wtx.hashBlock)) { int64_t latestNow = wtx.nTimeReceived; int64_t latestEntry = 0; // Tolerate times up to the last timestamp in the wallet not more // than 5 minutes into the future int64_t latestTolerated = latestNow + 300; const TxItems &txOrdered = wtxOrdered; for (auto it = txOrdered.rbegin(); it != txOrdered.rend(); ++it) { CWalletTx *const pwtx = it->second.first; if (pwtx == &wtx) { continue; } CAccountingEntry *const pacentry = it->second.second; int64_t nSmartTime; if (pwtx) { nSmartTime = pwtx->nTimeSmart; if (!nSmartTime) { nSmartTime = pwtx->nTimeReceived; } } else { nSmartTime = pacentry->nTime; } if (nSmartTime <= latestTolerated) { latestEntry = nSmartTime; if (nSmartTime > latestNow) { latestNow = nSmartTime; } break; } } int64_t blocktime = pindex->GetBlockTime(); nTimeSmart = std::max(latestEntry, std::min(blocktime, latestNow)); } else { LogPrintf("%s: found %s in block %s not in index\n", __func__, wtx.GetId().ToString(), wtx.hashBlock.ToString()); } } return nTimeSmart; } bool CWallet::AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value) { if (boost::get<CNoDestination>(&dest)) { return false; } mapAddressBook[dest].destdata.insert(std::make_pair(key, value)); return WalletBatch(*database).WriteDestData(dest, key, value); } bool CWallet::EraseDestData(const CTxDestination &dest, const std::string &key) { if (!mapAddressBook[dest].destdata.erase(key)) { return false; } return WalletBatch(*database).EraseDestData(dest, key); } void CWallet::LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value) { mapAddressBook[dest].destdata.insert(std::make_pair(key, value)); } bool CWallet::GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const { std::map<CTxDestination, CAddressBookData>::const_iterator i = mapAddressBook.find(dest); if (i != mapAddressBook.end()) { CAddressBookData::StringMap::const_iterator j = i->second.destdata.find(key); if (j != i->second.destdata.end()) { if (value) { *value = j->second; } return true; } } return false; } std::vector<std::string> CWallet::GetDestValues(const std::string &prefix) const { LOCK(cs_wallet); std::vector<std::string> values; for (const auto &address : mapAddressBook) { for (const auto &data : address.second.destdata) { if (!data.first.compare(0, prefix.size(), prefix)) { values.emplace_back(data.second); } } } return values; } bool CWallet::Verify(const CChainParams &chainParams, std::string wallet_file, bool salvage_wallet, std::string &error_string, std::string &warning_string) { // Do some checking on wallet path. It should be either a: // // 1. Path where a directory can be created. // 2. Path to an existing directory. // 3. Path to a symlink to a directory. // 4. For backwards compatibility, the name of a data file in -walletdir. LOCK(cs_wallets); fs::path wallet_path = fs::absolute(wallet_file, GetWalletDir()); fs::file_type path_type = fs::symlink_status(wallet_path).type(); if (!(path_type == fs::file_not_found || path_type == fs::directory_file || (path_type == fs::symlink_file && fs::is_directory(wallet_path)) || (path_type == fs::regular_file && fs::path(wallet_file).filename() == wallet_file))) { error_string = strprintf("Invalid -wallet path '%s'. -wallet path should point to " "a directory where wallet.dat and " "database/log.?????????? files can be stored, a location " "where such a directory could be created, " "or (for backwards compatibility) the name of an " "existing data file in -walletdir (%s)", wallet_file, GetWalletDir()); return false; } // Make sure that the wallet path doesn't clash with an existing wallet path for (auto wallet : GetWallets()) { if (fs::absolute(wallet->GetName(), GetWalletDir()) == wallet_path) { error_string = strprintf("Error loading wallet %s. Duplicate " "-wallet filename specified.", wallet_file); return false; } } try { if (!WalletBatch::VerifyEnvironment(wallet_path, error_string)) { return false; } } catch (const fs::filesystem_error &e) { error_string = strprintf("Error loading wallet %s. %s", wallet_file, e.what()); return false; } if (salvage_wallet) { // Recover readable keypairs: CWallet dummyWallet(chainParams, "dummy", WalletDatabase::CreateDummy()); std::string backup_filename; if (!WalletBatch::Recover( wallet_path, static_cast<void *>(&dummyWallet), WalletBatch::RecoverKeysOnlyFilter, backup_filename)) { return false; } } return WalletBatch::VerifyDatabaseFile(wallet_path, warning_string, error_string); } void CWallet::MarkPreSplitKeys() { WalletBatch batch(*database); for (auto it = setExternalKeyPool.begin(); it != setExternalKeyPool.end();) { int64_t index = *it; CKeyPool keypool; if (!batch.ReadPool(index, keypool)) { throw std::runtime_error(std::string(__func__) + ": read keypool entry failed"); } keypool.m_pre_split = true; if (!batch.WritePool(index, keypool)) { throw std::runtime_error(std::string(__func__) + ": writing modified keypool entry failed"); } set_pre_split_keypool.insert(index); it = setExternalKeyPool.erase(it); } } std::shared_ptr<CWallet> CWallet::CreateWalletFromFile(const CChainParams &chainParams, const std::string &name, const fs::path &path) { const std::string &walletFile = name; // Needed to restore wallet transaction meta data after -zapwallettxes std::vector<CWalletTx> vWtx; if (gArgs.GetBoolArg("-zapwallettxes", false)) { uiInterface.InitMessage(_("Zapping all transactions from wallet...")); std::unique_ptr<CWallet> tempWallet = std::make_unique<CWallet>( chainParams, name, WalletDatabase::Create(path)); DBErrors nZapWalletRet = tempWallet->ZapWalletTx(vWtx); if (nZapWalletRet != DBErrors::LOAD_OK) { InitError( strprintf(_("Error loading %s: Wallet corrupted"), walletFile)); return nullptr; } } uiInterface.InitMessage(_("Loading wallet...")); int64_t nStart = GetTimeMillis(); bool fFirstRun = true; // TODO: Can't use std::make_shared because we need a custom deleter but // should be possible to use std::allocate_shared. std::shared_ptr<CWallet> walletInstance( new CWallet(chainParams, name, WalletDatabase::Create(path)), ReleaseWallet); DBErrors nLoadWalletRet = walletInstance->LoadWallet(fFirstRun); if (nLoadWalletRet != DBErrors::LOAD_OK) { if (nLoadWalletRet == DBErrors::CORRUPT) { InitError( strprintf(_("Error loading %s: Wallet corrupted"), walletFile)); return nullptr; } if (nLoadWalletRet == DBErrors::NONCRITICAL_ERROR) { InitWarning(strprintf( _("Error reading %s! All keys read correctly, but transaction " "data" " or address book entries might be missing or incorrect."), walletFile)); } else if (nLoadWalletRet == DBErrors::TOO_NEW) { InitError(strprintf( _("Error loading %s: Wallet requires newer version of %s"), walletFile, _(PACKAGE_NAME))); return nullptr; } else if (nLoadWalletRet == DBErrors::NEED_REWRITE) { InitError(strprintf( _("Wallet needed to be rewritten: restart %s to complete"), _(PACKAGE_NAME))); return nullptr; } else { InitError(strprintf(_("Error loading %s"), walletFile)); return nullptr; } } int prev_version = walletInstance->nWalletVersion; if (gArgs.GetBoolArg("-upgradewallet", fFirstRun)) { int nMaxVersion = gArgs.GetArg("-upgradewallet", 0); // The -upgradewallet without argument case if (nMaxVersion == 0) { LogPrintf("Performing wallet upgrade to %i\n", FEATURE_LATEST); nMaxVersion = CLIENT_VERSION; // permanently upgrade the wallet immediately walletInstance->SetMinVersion(FEATURE_LATEST); } else { LogPrintf("Allowing wallet upgrade up to %i\n", nMaxVersion); } if (nMaxVersion < walletInstance->GetVersion()) { InitError(_("Cannot downgrade wallet")); return nullptr; } walletInstance->SetMaxVersion(nMaxVersion); } // Upgrade to HD if explicit upgrade if (gArgs.GetBoolArg("-upgradewallet", false)) { LOCK(walletInstance->cs_wallet); // Do not upgrade versions to any version between HD_SPLIT and // FEATURE_PRE_SPLIT_KEYPOOL unless already supporting HD_SPLIT int max_version = walletInstance->nWalletVersion; if (!walletInstance->CanSupportFeature(FEATURE_HD_SPLIT) && max_version >= FEATURE_HD_SPLIT && max_version < FEATURE_PRE_SPLIT_KEYPOOL) { InitError( _("Cannot upgrade a non HD split wallet without upgrading to " "support pre split keypool. Please use -upgradewallet=200300 " "or -upgradewallet with no version specified.")); return nullptr; } bool hd_upgrade = false; bool split_upgrade = false; if (walletInstance->CanSupportFeature(FEATURE_HD) && !walletInstance->IsHDEnabled()) { LogPrintf("Upgrading wallet to HD\n"); walletInstance->SetMinVersion(FEATURE_HD); // generate a new master key CPubKey masterPubKey = walletInstance->GenerateNewSeed(); walletInstance->SetHDSeed(masterPubKey); hd_upgrade = true; } // Upgrade to HD chain split if necessary if (walletInstance->CanSupportFeature(FEATURE_HD_SPLIT)) { LogPrintf("Upgrading wallet to use HD chain split\n"); walletInstance->SetMinVersion(FEATURE_PRE_SPLIT_KEYPOOL); split_upgrade = FEATURE_HD_SPLIT > prev_version; } // Mark all keys currently in the keypool as pre-split if (split_upgrade) { walletInstance->MarkPreSplitKeys(); } // Regenerate the keypool if upgraded to HD if (hd_upgrade) { if (!walletInstance->TopUpKeyPool()) { InitError(_("Unable to generate keys") += "\n"); return nullptr; } } } if (fFirstRun) { // Ensure this wallet.dat can only be opened by clients supporting // HD with chain split and expects no default key. if (!gArgs.GetBoolArg("-usehd", true)) { InitError(strprintf(_("Error creating %s: You can't create non-HD " "wallets with this version."), walletFile)); return nullptr; } walletInstance->SetMinVersion(FEATURE_LATEST); // Generate a new seed CPubKey seed = walletInstance->GenerateNewSeed(); walletInstance->SetHDSeed(seed); // Top up the keypool if (!walletInstance->TopUpKeyPool()) { InitError(_("Unable to generate initial keys") += "\n"); return nullptr; } walletInstance->ChainStateFlushed(chainActive.GetLocator()); } else if (gArgs.IsArgSet("-usehd")) { bool useHD = gArgs.GetBoolArg("-usehd", true); if (walletInstance->IsHDEnabled() && !useHD) { InitError( strprintf(_("Error loading %s: You can't disable HD on an " "already existing HD wallet"), walletFile)); return nullptr; } if (!walletInstance->IsHDEnabled() && useHD) { InitError(strprintf(_("Error loading %s: You can't enable HD on an " "already existing non-HD wallet"), walletFile)); return nullptr; } } if (gArgs.IsArgSet("-mintxfee")) { Amount n = Amount::zero(); if (!ParseMoney(gArgs.GetArg("-mintxfee", ""), n) || n == Amount::zero()) { InitError(AmountErrMsg("mintxfee", gArgs.GetArg("-mintxfee", ""))); return nullptr; } if (n > HIGH_TX_FEE_PER_KB) { InitWarning(AmountHighWarn("-mintxfee") + " " + _("This is the minimum transaction fee you pay on " "every transaction.")); } walletInstance->m_min_fee = CFeeRate(n); } if (gArgs.IsArgSet("-fallbackfee")) { Amount nFeePerK = Amount::zero(); if (!ParseMoney(gArgs.GetArg("-fallbackfee", ""), nFeePerK)) { InitError( strprintf(_("Invalid amount for -fallbackfee=<amount>: '%s'"), gArgs.GetArg("-fallbackfee", ""))); return nullptr; } if (nFeePerK > HIGH_TX_FEE_PER_KB) { InitWarning(AmountHighWarn("-fallbackfee") + " " + _("This is the transaction fee you may pay when fee " "estimates are not available.")); } walletInstance->m_fallback_fee = CFeeRate(nFeePerK); // disable fallback fee in case value was set to 0, enable if non-null // value walletInstance->m_allow_fallback_fee = (nFeePerK != Amount::zero()); } if (gArgs.IsArgSet("-paytxfee")) { Amount nFeePerK = Amount::zero(); if (!ParseMoney(gArgs.GetArg("-paytxfee", ""), nFeePerK)) { InitError(AmountErrMsg("paytxfee", gArgs.GetArg("-paytxfee", ""))); return nullptr; } if (nFeePerK > HIGH_TX_FEE_PER_KB) { InitWarning(AmountHighWarn("-paytxfee") + " " + _("This is the transaction fee you will pay if you " "send a transaction.")); } walletInstance->m_pay_tx_fee = CFeeRate(nFeePerK, 1000); if (walletInstance->m_pay_tx_fee < ::minRelayTxFee) { InitError(strprintf(_("Invalid amount for -paytxfee=<amount>: '%s' " "(must be at least %s)"), gArgs.GetArg("-paytxfee", ""), ::minRelayTxFee.ToString())); return nullptr; } } walletInstance->m_spend_zero_conf_change = gArgs.GetBoolArg("-spendzeroconfchange", DEFAULT_SPEND_ZEROCONF_CHANGE); walletInstance->m_default_address_type = DEFAULT_ADDRESS_TYPE; walletInstance->m_default_change_type = DEFAULT_CHANGE_TYPE; LogPrintf(" wallet %15dms\n", GetTimeMillis() - nStart); // Try to top up keypool. No-op if the wallet is locked. walletInstance->TopUpKeyPool(); LOCK(cs_main); CBlockIndex *pindexRescan = chainActive.Genesis(); if (!gArgs.GetBoolArg("-rescan", false)) { WalletBatch batch(*walletInstance->database); CBlockLocator locator; if (batch.ReadBestBlock(locator)) { pindexRescan = FindForkInGlobalIndex(chainActive, locator); } } walletInstance->m_last_block_processed = chainActive.Tip(); if (chainActive.Tip() && chainActive.Tip() != pindexRescan) { // We can't rescan beyond non-pruned blocks, stop and throw an error. // This might happen if a user uses an old wallet within a pruned node // or if he ran -disablewallet for a longer time, then decided to // re-enable. if (fPruneMode) { CBlockIndex *block = chainActive.Tip(); while (block && block->pprev && block->pprev->nStatus.hasData() && block->pprev->nTx > 0 && pindexRescan != block) { block = block->pprev; } if (pindexRescan != block) { InitError(_("Prune: last wallet synchronisation goes beyond " "pruned data. You need to -reindex (download the " "whole blockchain again in case of pruned node)")); return nullptr; } } uiInterface.InitMessage(_("Rescanning...")); LogPrintf("Rescanning last %i blocks (from block %i)...\n", chainActive.Height() - pindexRescan->nHeight, pindexRescan->nHeight); // No need to read and scan block if block was created before our wallet // birthday (as adjusted for block time variability) while (pindexRescan && walletInstance->nTimeFirstKey && (pindexRescan->GetBlockTime() < (walletInstance->nTimeFirstKey - TIMESTAMP_WINDOW))) { pindexRescan = chainActive.Next(pindexRescan); } nStart = GetTimeMillis(); { WalletRescanReserver reserver(walletInstance.get()); if (!reserver.reserve()) { InitError( _("Failed to rescan the wallet during initialization")); return nullptr; } walletInstance->ScanForWalletTransactions(pindexRescan, nullptr, reserver, true); } LogPrintf(" rescan %15dms\n", GetTimeMillis() - nStart); walletInstance->ChainStateFlushed(chainActive.GetLocator()); walletInstance->database->IncrementUpdateCounter(); // Restore wallet transaction metadata after -zapwallettxes=1 if (gArgs.GetBoolArg("-zapwallettxes", false) && gArgs.GetArg("-zapwallettxes", "1") != "2") { WalletBatch batch(*walletInstance->database); for (const CWalletTx &wtxOld : vWtx) { const TxId txid = wtxOld.GetId(); std::map<TxId, CWalletTx>::iterator mi = walletInstance->mapWallet.find(txid); if (mi != walletInstance->mapWallet.end()) { const CWalletTx *copyFrom = &wtxOld; CWalletTx *copyTo = &mi->second; copyTo->mapValue = copyFrom->mapValue; copyTo->vOrderForm = copyFrom->vOrderForm; copyTo->nTimeReceived = copyFrom->nTimeReceived; copyTo->nTimeSmart = copyFrom->nTimeSmart; copyTo->fFromMe = copyFrom->fFromMe; copyTo->strFromAccount = copyFrom->strFromAccount; copyTo->nOrderPos = copyFrom->nOrderPos; batch.WriteTx(*copyTo); } } } } uiInterface.LoadWallet(walletInstance); // Register with the validation interface. It's ok to do this after rescan // since we're still holding cs_main. RegisterValidationInterface(walletInstance.get()); walletInstance->SetBroadcastTransactions( gArgs.GetBoolArg("-walletbroadcast", DEFAULT_WALLETBROADCAST)); LOCK(walletInstance->cs_wallet); LogPrintf("setKeyPool.size() = %u\n", walletInstance->GetKeyPoolSize()); LogPrintf("mapWallet.size() = %u\n", walletInstance->mapWallet.size()); LogPrintf("mapAddressBook.size() = %u\n", walletInstance->mapAddressBook.size()); return walletInstance; } void CWallet::postInitProcess() { // Add wallet transactions that aren't already in a block to mempool. // Do this here as mempool requires genesis block to be loaded. ReacceptWalletTransactions(); } bool CWallet::BackupWallet(const std::string &strDest) { return database->Backup(strDest); } CKeyPool::CKeyPool() { nTime = GetTime(); fInternal = false; m_pre_split = false; } CKeyPool::CKeyPool(const CPubKey &vchPubKeyIn, bool internalIn) { nTime = GetTime(); vchPubKey = vchPubKeyIn; fInternal = internalIn; m_pre_split = false; } CWalletKey::CWalletKey(int64_t nExpires) { nTimeCreated = (nExpires ? GetTime() : 0); nTimeExpires = nExpires; } void CMerkleTx::SetMerkleBranch(const CBlockIndex *pindex, int posInBlock) { // Update the tx's hashBlock hashBlock = pindex->GetBlockHash(); // Set the position of the transaction in the block. nIndex = posInBlock; } int CMerkleTx::GetDepthInMainChain() const { if (hashUnset()) { return 0; } AssertLockHeld(cs_main); // Find the block it claims to be in. CBlockIndex *pindex = LookupBlockIndex(hashBlock); if (!pindex || !chainActive.Contains(pindex)) { return 0; } return ((nIndex == -1) ? (-1) : 1) * (chainActive.Height() - pindex->nHeight + 1); } int CMerkleTx::GetBlocksToMaturity() const { if (!IsCoinBase()) { return 0; } return std::max(0, (COINBASE_MATURITY + 1) - GetDepthInMainChain()); } bool CMerkleTx::IsImmatureCoinBase() const { // note GetBlocksToMaturity is 0 for non-coinbase tx return GetBlocksToMaturity() > 0; } bool CWalletTx::AcceptToMemoryPool(const Amount nAbsurdFee, CValidationState &state) { // Quick check to avoid re-setting fInMempool to false if (g_mempool.exists(tx->GetId())) { return false; } // We must set fInMempool here - while it will be re-set to true by the // entered-mempool callback, if we did not there would be a race where a // user could call sendmoney in a loop and hit spurious out of funds errors // because we think that this newly generated transaction's change is // unavailable as we're not yet aware that it is in the mempool. bool ret = ::AcceptToMemoryPool( GetConfig(), g_mempool, state, tx, true /* fLimitFree */, nullptr /* pfMissingInputs */, false /* fOverrideMempoolLimit */, nAbsurdFee); fInMempool = ret; return ret; } void CWallet::LearnRelatedScripts(const CPubKey &key, OutputType type) { // Nothing to do... } void CWallet::LearnAllRelatedScripts(const CPubKey &key) { // Nothing to do... } std::vector<OutputGroup> CWallet::GroupOutputs(const std::vector<COutput> &outputs, bool single_coin) const { std::vector<OutputGroup> groups; std::map<CTxDestination, OutputGroup> gmap; CTxDestination dst; for (const auto &output : outputs) { if (output.fSpendable) { CInputCoin input_coin = output.GetInputCoin(); size_t ancestors, descendants; g_mempool.GetTransactionAncestry(output.tx->GetId(), ancestors, descendants); if (!single_coin && ExtractDestination(output.tx->tx->vout[output.i].scriptPubKey, dst)) { // Limit output groups to no more than 10 entries, to protect // against inadvertently creating a too-large transaction // when using -avoidpartialspends if (gmap[dst].m_outputs.size() >= OUTPUT_GROUP_MAX_ENTRIES) { groups.push_back(gmap[dst]); gmap.erase(dst); } gmap[dst].Insert(input_coin, output.nDepth, output.tx->IsFromMe(ISMINE_ALL), ancestors, descendants); } else { groups.emplace_back(input_coin, output.nDepth, output.tx->IsFromMe(ISMINE_ALL), ancestors, descendants); } } } if (!single_coin) { for (const auto &it : gmap) { groups.push_back(it.second); } } return groups; } diff --git a/src/wallet/wallet.h b/src/wallet/wallet.h index 68c29d8be..f5da8fcc6 100644 --- a/src/wallet/wallet.h +++ b/src/wallet/wallet.h @@ -1,1427 +1,1442 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Copyright (c) 2018 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_WALLET_WALLET_H #define BITCOIN_WALLET_WALLET_H #include <amount.h> #include <outputtype.h> #include <script/ismine.h> #include <script/sign.h> #include <streams.h> #include <tinyformat.h> #include <ui_interface.h> #include <util/strencodings.h> #include <util/system.h> #include <validationinterface.h> #include <wallet/coinselection.h> #include <wallet/crypter.h> #include <wallet/rpcwallet.h> #include <wallet/walletdb.h> #include <algorithm> #include <atomic> #include <cstdint> #include <map> #include <set> #include <stdexcept> #include <string> #include <utility> #include <vector> bool AddWallet(const std::shared_ptr<CWallet> &wallet); bool RemoveWallet(const std::shared_ptr<CWallet> &wallet); bool HasWallets(); std::vector<std::shared_ptr<CWallet>> GetWallets(); std::shared_ptr<CWallet> GetWallet(const std::string &name); //! Default for -keypool static const unsigned int DEFAULT_KEYPOOL_SIZE = 1000; //! -paytxfee default constexpr Amount DEFAULT_PAY_TX_FEE = Amount::zero(); //! -fallbackfee default static const Amount DEFAULT_FALLBACK_FEE(20000 * SATOSHI); //! -mintxfee default static const Amount DEFAULT_TRANSACTION_MINFEE_PER_KB = 1000 * SATOSHI; //! minimum recommended increment for BIP 125 replacement txs static const Amount WALLET_INCREMENTAL_RELAY_FEE(5000 * SATOSHI); //! Default for -spendzeroconfchange static const bool DEFAULT_SPEND_ZEROCONF_CHANGE = true; //! Default for -walletrejectlongchains static const bool DEFAULT_WALLET_REJECT_LONG_CHAINS = false; //! Default for -avoidpartialspends static const bool DEFAULT_AVOIDPARTIALSPENDS = false; static const bool DEFAULT_WALLETBROADCAST = true; static const bool DEFAULT_DISABLE_WALLET = false; class CBlockIndex; class CChainParams; class CCoinControl; class COutput; class CReserveKey; class CScript; class CTxMemPool; class CWalletTx; /** (client) version numbers for particular wallet features */ enum WalletFeature { // the earliest version new wallets supports (only useful for // getwalletinfo's clientversion output) FEATURE_BASE = 10500, // wallet encryption FEATURE_WALLETCRYPT = 40000, // compressed public keys FEATURE_COMPRPUBKEY = 60000, // Hierarchical key derivation after BIP32 (HD Wallet) FEATURE_HD = 130000, // Wallet with HD chain split (change outputs will use m/0'/1'/k) FEATURE_HD_SPLIT = 160300, // Wallet without a default key written FEATURE_NO_DEFAULT_KEY = 190700, // Upgraded to HD SPLIT and can have a pre-split keypool FEATURE_PRE_SPLIT_KEYPOOL = 200300, FEATURE_LATEST = FEATURE_PRE_SPLIT_KEYPOOL, }; //! Default for -addresstype constexpr OutputType DEFAULT_ADDRESS_TYPE{OutputType::LEGACY}; //! Default for -changetype constexpr OutputType DEFAULT_CHANGE_TYPE{OutputType::CHANGE_AUTO}; /** A key pool entry */ class CKeyPool { public: int64_t nTime; CPubKey vchPubKey; // for change outputs bool fInternal; // For keys generated before keypool split upgrade bool m_pre_split; CKeyPool(); CKeyPool(const CPubKey &vchPubKeyIn, bool internalIn); ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream &s, Operation ser_action) { int nVersion = s.GetVersion(); if (!(s.GetType() & SER_GETHASH)) { READWRITE(nVersion); } READWRITE(nTime); READWRITE(vchPubKey); if (ser_action.ForRead()) { try { READWRITE(fInternal); } catch (std::ios_base::failure &) { /** * flag as external address if we can't read the internal * boolean (this will be the case for any wallet before the HD * chain split version) */ fInternal = false; } try { READWRITE(m_pre_split); } catch (std::ios_base::failure &) { /** * flag as postsplit address if we can't read the m_pre_split * boolean (this will be the case for any wallet that upgrades * to HD chain split) */ m_pre_split = false; } } else { READWRITE(fInternal); READWRITE(m_pre_split); } } }; /** Address book data */ class CAddressBookData { public: std::string name; std::string purpose; CAddressBookData() : purpose("unknown") {} typedef std::map<std::string, std::string> StringMap; StringMap destdata; }; struct CRecipient { CScript scriptPubKey; Amount nAmount; bool fSubtractFeeFromAmount; }; typedef std::map<std::string, std::string> mapValue_t; static inline void ReadOrderPos(int64_t &nOrderPos, mapValue_t &mapValue) { if (!mapValue.count("n")) { // TODO: calculate elsewhere nOrderPos = -1; return; } nOrderPos = atoi64(mapValue["n"].c_str()); } static inline void WriteOrderPos(const int64_t &nOrderPos, mapValue_t &mapValue) { if (nOrderPos == -1) { return; } mapValue["n"] = i64tostr(nOrderPos); } struct COutputEntry { CTxDestination destination; Amount amount; int vout; }; /** A transaction with a merkle branch linking it to the block chain. */ class CMerkleTx { private: /** Constant used in hashBlock to indicate tx has been abandoned */ static const uint256 ABANDON_HASH; public: CTransactionRef tx; uint256 hashBlock; /** * An nIndex == -1 means that hashBlock (in nonzero) refers to the earliest * block in the chain we know this or any in-wallet dependency conflicts * with. Older clients interpret nIndex == -1 as unconfirmed for backward * compatibility. */ int nIndex; CMerkleTx() { SetTx(MakeTransactionRef()); Init(); } explicit CMerkleTx(CTransactionRef arg) { SetTx(std::move(arg)); Init(); } void Init() { hashBlock = uint256(); nIndex = -1; } void SetTx(CTransactionRef arg) { tx = std::move(arg); } ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream &s, Operation ser_action) { // For compatibility with older versions. std::vector<uint256> vMerkleBranch; READWRITE(tx); READWRITE(hashBlock); READWRITE(vMerkleBranch); READWRITE(nIndex); } void SetMerkleBranch(const CBlockIndex *pIndex, int posInBlock); /** * Return depth of transaction in blockchain: * <0 : conflicts with a transaction this deep in the blockchain * 0 : in memory pool, waiting to be included in a block * >=1 : this many blocks deep in the main chain */ int GetDepthInMainChain() const EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool IsInMainChain() const EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return GetDepthInMainChain() > 0; } /** * @return number of blocks to maturity for this transaction: * 0 : is not a coinbase transaction, or is a mature coinbase transaction * >0 : is a coinbase transaction which matures in this many blocks */ int GetBlocksToMaturity() const EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool hashUnset() const { return (hashBlock.IsNull() || hashBlock == ABANDON_HASH); } bool isAbandoned() const { return (hashBlock == ABANDON_HASH); } void setAbandoned() { hashBlock = ABANDON_HASH; } TxId GetId() const { return tx->GetId(); } bool IsCoinBase() const { return tx->IsCoinBase(); } bool IsImmatureCoinBase() const EXCLUSIVE_LOCKS_REQUIRED(cs_main); }; // Get the marginal bytes of spending the specified output -int CalculateMaximumSignedInputSize(const CTxOut &txout, - const CWallet *pwallet); +int CalculateMaximumSignedInputSize(const CTxOut &txout, const CWallet *pwallet, + bool use_max_sig = false); /** * A transaction with a bunch of additional info that only the owner cares * about. It includes any unrecorded transactions needed to link it back to the * block chain. */ class CWalletTx : public CMerkleTx { private: const CWallet *pwallet; public: /** * Key/value map with information about the transaction. * * The following keys can be read and written through the map and are * serialized in the wallet database: * * "comment", "to" - comment strings provided to sendtoaddress, * sendfrom, sendmany wallet RPCs * "replaces_txid" - txid (as HexStr) of transaction replaced by * bumpfee on transaction created by bumpfee * "replaced_by_txid" - txid (as HexStr) of transaction created by * bumpfee on transaction replaced by bumpfee * "from", "message" - obsolete fields that could be set in UI prior to * 2011 (removed in commit 4d9b223) * * The following keys are serialized in the wallet database, but shouldn't * be read or written through the map (they will be temporarily added and * removed from the map during serialization): * * "fromaccount" - serialized strFromAccount value * "n" - serialized nOrderPos value * "timesmart" - serialized nTimeSmart value * "spent" - serialized vfSpent value that existed prior to * 2014 (removed in commit 93a18a3) */ mapValue_t mapValue; std::vector<std::pair<std::string, std::string>> vOrderForm; unsigned int fTimeReceivedIsTxTime; //!< time received by this node unsigned int nTimeReceived; /** * Stable timestamp that never changes, and reflects the order a transaction * was added to the wallet. Timestamp is based on the block time for a * transaction added as part of a block, or else the time when the * transaction was received if it wasn't part of a block, with the timestamp * adjusted in both cases so timestamp order matches the order transactions * were added to the wallet. More details can be found in * CWallet::ComputeTimeSmart(). */ unsigned int nTimeSmart; /** * From me flag is set to 1 for transactions that were created by the wallet * on this bitcoin node, and set to 0 for transactions that were created * externally and came in through the network or sendrawtransaction RPC. */ char fFromMe; std::string strFromAccount; //!< position in ordered transaction list int64_t nOrderPos; // memory only mutable bool fDebitCached; mutable bool fCreditCached; mutable bool fImmatureCreditCached; mutable bool fAvailableCreditCached; mutable bool fWatchDebitCached; mutable bool fWatchCreditCached; mutable bool fImmatureWatchCreditCached; mutable bool fAvailableWatchCreditCached; mutable bool fChangeCached; mutable bool fInMempool; mutable Amount nDebitCached; mutable Amount nCreditCached; mutable Amount nImmatureCreditCached; mutable Amount nAvailableCreditCached; mutable Amount nWatchDebitCached; mutable Amount nWatchCreditCached; mutable Amount nImmatureWatchCreditCached; mutable Amount nAvailableWatchCreditCached; mutable Amount nChangeCached; CWalletTx(const CWallet *pwalletIn, CTransactionRef arg) : CMerkleTx(std::move(arg)) { Init(pwalletIn); } void Init(const CWallet *pwalletIn) { pwallet = pwalletIn; mapValue.clear(); vOrderForm.clear(); fTimeReceivedIsTxTime = false; nTimeReceived = 0; nTimeSmart = 0; fFromMe = false; strFromAccount.clear(); fDebitCached = false; fCreditCached = false; fImmatureCreditCached = false; fAvailableCreditCached = false; fWatchDebitCached = false; fWatchCreditCached = false; fImmatureWatchCreditCached = false; fAvailableWatchCreditCached = false; fChangeCached = false; fInMempool = false; nDebitCached = Amount::zero(); nCreditCached = Amount::zero(); nImmatureCreditCached = Amount::zero(); nAvailableCreditCached = Amount::zero(); nWatchDebitCached = Amount::zero(); nWatchCreditCached = Amount::zero(); nAvailableWatchCreditCached = Amount::zero(); nImmatureWatchCreditCached = Amount::zero(); nChangeCached = Amount::zero(); nOrderPos = -1; } template <typename Stream> void Serialize(Stream &s) const { char fSpent = false; mapValue_t mapValueCopy = mapValue; mapValueCopy["fromaccount"] = strFromAccount; WriteOrderPos(nOrderPos, mapValueCopy); if (nTimeSmart) { mapValueCopy["timesmart"] = strprintf("%u", nTimeSmart); } s << static_cast<const CMerkleTx &>(*this); //!< Used to be vtxPrev std::vector<CMerkleTx> vUnused; s << vUnused << mapValueCopy << vOrderForm << fTimeReceivedIsTxTime << nTimeReceived << fFromMe << fSpent; } template <typename Stream> void Unserialize(Stream &s) { Init(nullptr); char fSpent; s >> static_cast<CMerkleTx &>(*this); //!< Used to be vtxPrev std::vector<CMerkleTx> vUnused; s >> vUnused >> mapValue >> vOrderForm >> fTimeReceivedIsTxTime >> nTimeReceived >> fFromMe >> fSpent; strFromAccount = std::move(mapValue["fromaccount"]); ReadOrderPos(nOrderPos, mapValue); nTimeSmart = mapValue.count("timesmart") ? (unsigned int)atoi64(mapValue["timesmart"]) : 0; mapValue.erase("fromaccount"); mapValue.erase("spent"); mapValue.erase("n"); mapValue.erase("timesmart"); } //! make sure balances are recalculated void MarkDirty() { fCreditCached = false; fAvailableCreditCached = false; fImmatureCreditCached = false; fWatchDebitCached = false; fWatchCreditCached = false; fAvailableWatchCreditCached = false; fImmatureWatchCreditCached = false; fDebitCached = false; fChangeCached = false; } void BindWallet(CWallet *pwalletIn) { pwallet = pwalletIn; MarkDirty(); } //! filter decides which addresses will count towards the debit Amount GetDebit(const isminefilter &filter) const; Amount GetCredit(const isminefilter &filter) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); Amount GetImmatureCredit(bool fUseCache = true) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); Amount GetAvailableCredit(bool fUseCache = true) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); Amount GetImmatureWatchOnlyCredit(const bool fUseCache = true) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); Amount GetAvailableWatchOnlyCredit(const bool fUseCache = true) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); Amount GetChange() const; // Get the marginal bytes if spending the specified output from this // transaction - int GetSpendSize(unsigned int out) const { - return CalculateMaximumSignedInputSize(tx->vout[out], pwallet); + int GetSpendSize(unsigned int out, bool use_max_sig = false) const { + return CalculateMaximumSignedInputSize(tx->vout[out], pwallet, + use_max_sig); } void GetAmounts(std::list<COutputEntry> &listReceived, std::list<COutputEntry> &listSent, Amount &nFee, std::string &strSentAccount, const isminefilter &filter) const; bool IsFromMe(const isminefilter &filter) const { return GetDebit(filter) > Amount::zero(); } // True if only scriptSigs are different bool IsEquivalentTo(const CWalletTx &tx) const; bool InMempool() const; bool IsTrusted() const EXCLUSIVE_LOCKS_REQUIRED(cs_main); int64_t GetTxTime() const; // RelayWalletTransaction may only be called if fBroadcastTransactions! bool RelayWalletTransaction(CConnman *connman) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Pass this transaction to the mempool. Fails if absolute fee exceeds * absurd fee. */ bool AcceptToMemoryPool(const Amount nAbsurdFee, CValidationState &state) EXCLUSIVE_LOCKS_REQUIRED(cs_main); std::set<TxId> GetConflicts() const; }; class COutput { public: const CWalletTx *tx; int i; int nDepth; /** * Pre-computed estimated size of this output as a fully-signed input in a * transaction. Can be -1 if it could not be calculated. */ int nInputBytes; /** Whether we have the private keys to spend this output */ bool fSpendable; /** Whether we know how to spend this output, ignoring the lack of keys */ bool fSolvable; + /** + * Whether to use the maximum sized, 72 byte signature when calculating the + * size of the input spend. This should only be set when watch-only outputs + * are allowed. + */ + bool use_max_sig; + /** * Whether this output is considered safe to spend. Unconfirmed transactions * from outside keys are considered unsafe and will not be used to fund new * spending transactions. */ bool fSafe; COutput(const CWalletTx *txIn, int iIn, int nDepthIn, bool fSpendableIn, - bool fSolvableIn, bool fSafeIn) { + bool fSolvableIn, bool fSafeIn, bool use_max_sig_in = false) { tx = txIn; i = iIn; nDepth = nDepthIn; fSpendable = fSpendableIn; fSolvable = fSolvableIn; fSafe = fSafeIn; nInputBytes = -1; + use_max_sig = use_max_sig_in; // If known and signable by the given wallet, compute nInputBytes // Failure will keep this value -1 if (fSpendable && tx) { - nInputBytes = tx->GetSpendSize(i); + nInputBytes = tx->GetSpendSize(i, use_max_sig); } } std::string ToString() const; inline CInputCoin GetInputCoin() const { return CInputCoin(tx->tx, i, nInputBytes); } }; /** Private key that includes an expiration date in case it never gets used. */ class CWalletKey { public: CPrivKey vchPrivKey; int64_t nTimeCreated; int64_t nTimeExpires; std::string strComment; //! todo: add something to note what created it (user, getnewaddress, //! change) maybe should have a map<string, string> property map explicit CWalletKey(int64_t nExpires = 0); ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream &s, Operation ser_action) { int nVersion = s.GetVersion(); - if (!(s.GetType() & SER_GETHASH)) READWRITE(nVersion); + if (!(s.GetType() & SER_GETHASH)) { + READWRITE(nVersion); + } READWRITE(vchPrivKey); READWRITE(nTimeCreated); READWRITE(nTimeExpires); READWRITE(LIMITED_STRING(strComment, 65536)); } }; /** * DEPRECATED Internal transfers. * Database key is acentry<account><counter>. */ class CAccountingEntry { public: std::string strAccount; Amount nCreditDebit; int64_t nTime; std::string strOtherAccount; std::string strComment; mapValue_t mapValue; //!< position in ordered transaction list int64_t nOrderPos; uint64_t nEntryNo; CAccountingEntry() { SetNull(); } void SetNull() { nCreditDebit = Amount::zero(); nTime = 0; strAccount.clear(); strOtherAccount.clear(); strComment.clear(); nOrderPos = -1; nEntryNo = 0; } template <typename Stream> void Serialize(Stream &s) const { int nVersion = s.GetVersion(); if (!(s.GetType() & SER_GETHASH)) { s << nVersion; } //! Note: strAccount is serialized as part of the key, not here. s << nCreditDebit << nTime << strOtherAccount; mapValue_t mapValueCopy = mapValue; WriteOrderPos(nOrderPos, mapValueCopy); std::string strCommentCopy = strComment; if (!mapValueCopy.empty() || !_ssExtra.empty()) { CDataStream ss(s.GetType(), s.GetVersion()); ss.insert(ss.begin(), '\0'); ss << mapValueCopy; ss.insert(ss.end(), _ssExtra.begin(), _ssExtra.end()); strCommentCopy.append(ss.str()); } s << strCommentCopy; } template <typename Stream> void Unserialize(Stream &s) { int nVersion = s.GetVersion(); if (!(s.GetType() & SER_GETHASH)) { s >> nVersion; } //! Note: strAccount is serialized as part of the key, not here. s >> nCreditDebit >> nTime >> LIMITED_STRING(strOtherAccount, 65536) >> LIMITED_STRING(strComment, 65536); size_t nSepPos = strComment.find('\0'); mapValue.clear(); if (std::string::npos != nSepPos) { CDataStream ss(std::vector<char>(strComment.begin() + nSepPos + 1, strComment.end()), s.GetType(), s.GetVersion()); ss >> mapValue; _ssExtra = std::vector<char>(ss.begin(), ss.end()); } ReadOrderPos(nOrderPos, mapValue); if (std::string::npos != nSepPos) { strComment.erase(nSepPos); } mapValue.erase("n"); } private: std::vector<char> _ssExtra; }; struct CoinSelectionParams { bool use_bnb = true; size_t change_output_size = 0; size_t change_spend_size = 0; CFeeRate effective_fee = CFeeRate(Amount::zero()); size_t tx_noinputs_size = 0; CoinSelectionParams(bool use_bnb_, size_t change_output_size_, size_t change_spend_size_, CFeeRate effective_fee_, size_t tx_noinputs_size_) : use_bnb(use_bnb_), change_output_size(change_output_size_), change_spend_size(change_spend_size_), effective_fee(effective_fee_), tx_noinputs_size(tx_noinputs_size_) {} CoinSelectionParams() {} }; // forward declarations for ScanForWalletTransactions/RescanFromTime class WalletRescanReserver; /** * A CWallet is an extension of a keystore, which also maintains a set of * transactions and balances, and provides the ability to create new * transactions. */ class CWallet final : public CCryptoKeyStore, public CValidationInterface { private: static std::atomic<bool> fFlushScheduled; std::atomic<bool> fAbortRescan{false}; // controlled by WalletRescanReserver std::atomic<bool> fScanningWallet{false}; std::mutex mutexScanning; friend class WalletRescanReserver; WalletBatch *encrypted_batch = nullptr; //! the current wallet version: clients below this version are not able to //! load the wallet int nWalletVersion = FEATURE_BASE; //! the maximum wallet format version: memory-only variable that specifies //! to what version this wallet may be upgraded int nWalletMaxVersion = FEATURE_BASE; int64_t nNextResend = 0; int64_t nLastResend = 0; bool fBroadcastTransactions = false; /** * Used to keep track of spent outpoints, and detect and report conflicts * (double-spends or mutated transactions where the mutant gets mined). */ typedef std::multimap<COutPoint, TxId> TxSpends; TxSpends mapTxSpends; void AddToSpends(const COutPoint &outpoint, const TxId &wtxid); void AddToSpends(const TxId &wtxid); /** * Mark a transaction (and its in-wallet descendants) as conflicting with a * particular block. */ void MarkConflicted(const uint256 &hashBlock, const TxId &txid); void SyncMetaData(std::pair<TxSpends::iterator, TxSpends::iterator>); /** * Used by TransactionAddedToMemorypool/BlockConnected/Disconnected. * Should be called with pindexBlock and posInBlock if this is for a * transaction that is included in a block. */ void SyncTransaction(const CTransactionRef &tx, const CBlockIndex *pindex = nullptr, int posInBlock = 0) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); /* the HD chain data model (external chain counters) */ CHDChain hdChain; /* HD derive new child key (on internal or external chain) */ void DeriveNewChildKey(WalletBatch &batch, CKeyMetadata &metadata, CKey &secret, bool internal = false) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); std::set<int64_t> setInternalKeyPool; std::set<int64_t> setExternalKeyPool; std::set<int64_t> set_pre_split_keypool; int64_t m_max_keypool_index = 0; std::map<CKeyID, int64_t> m_pool_key_to_index; int64_t nTimeFirstKey = 0; /** * Private version of AddWatchOnly method which does not accept a timestamp, * and which will reset the wallet's nTimeFirstKey value to 1 if the watch * key did not previously have a timestamp associated with it. Because this * is an inherited virtual method, it is accessible despite being marked * private, but it is marked private anyway to encourage use of the other * AddWatchOnly which accepts a timestamp and sets nTimeFirstKey more * intelligently for more efficient rescans. */ bool AddWatchOnly(const CScript &dest) override EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); /** * Wallet filename from wallet=<path> command line or config option. * Used in debug logs and to send RPCs to the right wallet instance when * more than one wallet is loaded. */ std::string m_name; /** Internal database handle. */ std::unique_ptr<WalletDatabase> database; /** * The following is used to keep track of how far behind the wallet is * from the chain sync, and to allow clients to block on us being caught up. * * Note that this is *not* how far we've processed, we may need some rescan * to have seen all transactions in the chain, but is only used to track * live BlockConnected callbacks. * * Protected by cs_main (see BlockUntilSyncedToCurrentChain) */ const CBlockIndex *m_last_block_processed = nullptr; public: const CChainParams &chainParams; /* * Main wallet lock. * This lock protects all the fields added by CWallet. */ mutable CCriticalSection cs_wallet; /** * Get database handle used by this wallet. Ideally this function would not * be necessary. */ WalletDatabase &GetDBHandle() { return *database; } /** * Select a set of coins such that nValueRet >= nTargetValue and at least * all coins from coinControl are selected; Never select unconfirmed coins * if they are not ours. */ bool SelectCoins(const std::vector<COutput> &vAvailableCoins, const Amount nTargetValue, std::set<CInputCoin> &setCoinsRet, Amount &nValueRet, const CCoinControl &coin_control, CoinSelectionParams &coin_selection_params, bool &bnb_used) const; /** * Get a name for this wallet for logging/debugging purposes. */ std::string GetName() const { return m_name; } void LoadKeyPool(int64_t nIndex, const CKeyPool &keypool) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); void MarkPreSplitKeys(); // Map from Key ID to key metadata. std::map<CKeyID, CKeyMetadata> mapKeyMetadata; // Map from Script ID to key metadata (for watch-only keys). std::map<CScriptID, CKeyMetadata> m_script_metadata; typedef std::map<unsigned int, CMasterKey> MasterKeyMap; MasterKeyMap mapMasterKeys; unsigned int nMasterKeyMaxID = 0; /** Construct wallet with specified name and database implementation. */ CWallet(const CChainParams &chainParamsIn, std::string name, std::unique_ptr<WalletDatabase> databaseIn) : m_name(std::move(name)), database(std::move(databaseIn)), chainParams(chainParamsIn) {} ~CWallet() { delete encrypted_batch; encrypted_batch = nullptr; } std::map<TxId, CWalletTx> mapWallet; std::list<CAccountingEntry> laccentries; typedef std::pair<CWalletTx *, CAccountingEntry *> TxPair; typedef std::multimap<int64_t, TxPair> TxItems; TxItems wtxOrdered; int64_t nOrderPosNext = 0; uint64_t nAccountingEntryNumber = 0; std::map<CTxDestination, CAddressBookData> mapAddressBook; std::set<COutPoint> setLockedCoins; const CWalletTx *GetWalletTx(const TxId &txid) const; //! check whether we are allowed to upgrade (or already support) to the //! named feature bool CanSupportFeature(enum WalletFeature wf) const EXCLUSIVE_LOCKS_REQUIRED(cs_wallet) { AssertLockHeld(cs_wallet); return nWalletMaxVersion >= wf; } /** * populate vCoins with vector of available COutputs. */ void AvailableCoins(std::vector<COutput> &vCoins, bool fOnlySafe = true, const CCoinControl *coinControl = nullptr, const Amount nMinimumAmount = SATOSHI, const Amount nMaximumAmount = MAX_MONEY, const Amount nMinimumSumAmount = MAX_MONEY, const uint64_t nMaximumCount = 0, const int nMinDepth = 0, const int nMaxDepth = 9999999) const EXCLUSIVE_LOCKS_REQUIRED(cs_main, cs_wallet); /** * Return list of available coins and locked coins grouped by non-change * output address. */ std::map<CTxDestination, std::vector<COutput>> ListCoins() const EXCLUSIVE_LOCKS_REQUIRED(cs_main, cs_wallet); /** * Find non-change parent output. */ const CTxOut &FindNonChangeParentOutput(const CTransaction &tx, int output) const; /** * Shuffle and select coins until nTargetValue is reached while avoiding * small change; This method is stochastic for some inputs and upon * completion the coin set and corresponding actual target value is * assembled. */ bool SelectCoinsMinConf(const Amount nTargetValue, const CoinEligibilityFilter &eligibility_filter, std::vector<OutputGroup> groups, std::set<CInputCoin> &setCoinsRet, Amount &nValueRet, const CoinSelectionParams &coin_selection_params, bool &bnb_used) const; bool IsSpent(const COutPoint &outpoint) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); std::vector<OutputGroup> GroupOutputs(const std::vector<COutput> &outputs, bool single_coin) const; bool IsLockedCoin(const COutPoint &outpoint) const EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); void LockCoin(const COutPoint &output) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); void UnlockCoin(const COutPoint &output) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); void UnlockAllCoins() EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); void ListLockedCoins(std::vector<COutPoint> &vOutpts) const EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); /* * Rescan abort properties */ void AbortRescan() { fAbortRescan = true; } bool IsAbortingRescan() { return fAbortRescan; } bool IsScanning() { return fScanningWallet; } /** * keystore implementation * Generate a new key */ CPubKey GenerateNewKey(WalletBatch &batch, bool internal = false) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); //! Adds a key to the store, and saves it to disk. bool AddKeyPubKey(const CKey &key, const CPubKey &pubkey) override EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); bool AddKeyPubKeyWithDB(WalletBatch &batch, const CKey &key, const CPubKey &pubkey) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); //! Adds a key to the store, without saving it to disk (used by LoadWallet) bool LoadKey(const CKey &key, const CPubKey &pubkey) { return CCryptoKeyStore::AddKeyPubKey(key, pubkey); } //! Load metadata (used by LoadWallet) void LoadKeyMetadata(const CKeyID &keyID, const CKeyMetadata &metadata) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); void LoadScriptMetadata(const CScriptID &script_id, const CKeyMetadata &metadata) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); bool LoadMinVersion(int nVersion) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet) { AssertLockHeld(cs_wallet); nWalletVersion = nVersion; nWalletMaxVersion = std::max(nWalletMaxVersion, nVersion); return true; } void UpdateTimeFirstKey(int64_t nCreateTime) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); //! Adds an encrypted key to the store, and saves it to disk. bool AddCryptedKey(const CPubKey &vchPubKey, const std::vector<uint8_t> &vchCryptedSecret) override; //! Adds an encrypted key to the store, without saving it to disk (used by //! LoadWallet) bool LoadCryptedKey(const CPubKey &vchPubKey, const std::vector<uint8_t> &vchCryptedSecret); bool AddCScript(const CScript &redeemScript) override; bool LoadCScript(const CScript &redeemScript); //! Adds a destination data tuple to the store, and saves it to disk bool AddDestData(const CTxDestination &dest, const std::string &key, const std::string &value); //! Erases a destination data tuple in the store and on disk bool EraseDestData(const CTxDestination &dest, const std::string &key); //! Adds a destination data tuple to the store, without saving it to disk void LoadDestData(const CTxDestination &dest, const std::string &key, const std::string &value); //! Look up a destination data tuple in the store, return true if found //! false otherwise bool GetDestData(const CTxDestination &dest, const std::string &key, std::string *value) const; //! Get all destination values matching a prefix. std::vector<std::string> GetDestValues(const std::string &prefix) const; //! Adds a watch-only address to the store, and saves it to disk. bool AddWatchOnly(const CScript &dest, int64_t nCreateTime) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); bool RemoveWatchOnly(const CScript &dest) override EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); //! Adds a watch-only address to the store, without saving it to disk (used //! by LoadWallet) bool LoadWatchOnly(const CScript &dest); //! Holds a timestamp at which point the wallet is scheduled (externally) to //! be relocked. Caller must arrange for actual relocking to occur via //! Lock(). int64_t nRelockTime = 0; bool Unlock(const SecureString &strWalletPassphrase); bool ChangeWalletPassphrase(const SecureString &strOldWalletPassphrase, const SecureString &strNewWalletPassphrase); bool EncryptWallet(const SecureString &strWalletPassphrase); void GetKeyBirthTimes(std::map<CTxDestination, int64_t> &mapKeyBirth) const EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); unsigned int ComputeTimeSmart(const CWalletTx &wtx) const; /** * Increment the next transaction order id * @return next transaction order id */ int64_t IncOrderPosNext(WalletBatch *batch = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); DBErrors ReorderTransactions(); bool AccountMove(std::string strFrom, std::string strTo, const Amount nAmount, std::string strComment = "") EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); bool GetLabelDestination(CTxDestination &dest, const std::string &label, bool bForceNew = false); void MarkDirty(); bool AddToWallet(const CWalletTx &wtxIn, bool fFlushOnClose = true); void LoadToWallet(const CWalletTx &wtxIn); void TransactionAddedToMempool(const CTransactionRef &tx) override; void BlockConnected(const std::shared_ptr<const CBlock> &pblock, const CBlockIndex *pindex, const std::vector<CTransactionRef> &vtxConflicted) override; void BlockDisconnected(const std::shared_ptr<const CBlock> &pblock) override; bool AddToWalletIfInvolvingMe(const CTransactionRef &tx, const CBlockIndex *pIndex, int posInBlock, bool fUpdate) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); int64_t RescanFromTime(int64_t startTime, const WalletRescanReserver &reserver, bool update); CBlockIndex *ScanForWalletTransactions(CBlockIndex *pindexStart, CBlockIndex *pindexStop, const WalletRescanReserver &reserver, bool fUpdate = false); void TransactionRemovedFromMempool(const CTransactionRef &ptx) override; void ReacceptWalletTransactions(); void ResendWalletTransactions(int64_t nBestBlockTime, CConnman *connman) override EXCLUSIVE_LOCKS_REQUIRED(cs_main); // ResendWalletTransactionsBefore may only be called if // fBroadcastTransactions! std::vector<uint256> ResendWalletTransactionsBefore(int64_t nTime, CConnman *connman) EXCLUSIVE_LOCKS_REQUIRED(cs_main); Amount GetBalance() const; Amount GetUnconfirmedBalance() const; Amount GetImmatureBalance() const; Amount GetWatchOnlyBalance() const; Amount GetUnconfirmedWatchOnlyBalance() const; Amount GetImmatureWatchOnlyBalance() const; Amount GetLegacyBalance(const isminefilter &filter, int minDepth, const std::string *account) const; Amount GetAvailableBalance(const CCoinControl *coinControl = nullptr) const; OutputType TransactionChangeType(OutputType change_type, const std::vector<CRecipient> &vecSend); /** * Insert additional inputs into the transaction by calling * CreateTransaction(); */ bool FundTransaction(CMutableTransaction &tx, Amount &nFeeRet, int &nChangePosInOut, std::string &strFailReason, bool lockUnspents, const std::set<int> &setSubtractFeeFromOutputs, CCoinControl coinControl); bool SignTransaction(CMutableTransaction &tx) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); /** * Create a new transaction paying the recipients with a set of coins * selected by SelectCoins(); Also create the change output, when needed * @note passing nChangePosInOut as -1 will result in setting a random * position */ bool CreateTransaction(const std::vector<CRecipient> &vecSend, CTransactionRef &tx, CReserveKey &reservekey, Amount &nFeeRet, int &nChangePosInOut, std::string &strFailReason, const CCoinControl &coin_control, bool sign = true); bool CommitTransaction( CTransactionRef tx, mapValue_t mapValue, std::vector<std::pair<std::string, std::string>> orderForm, std::string fromAccount, CReserveKey &reservekey, CConnman *connman, CValidationState &state); void ListAccountCreditDebit(const std::string &strAccount, std::list<CAccountingEntry> &entries); bool AddAccountingEntry(const CAccountingEntry &); bool AddAccountingEntry(const CAccountingEntry &, WalletBatch *batch); - bool DummySignTx(CMutableTransaction &txNew, - const std::set<CTxOut> &txouts) const { + bool DummySignTx(CMutableTransaction &txNew, const std::set<CTxOut> &txouts, + bool use_max_sig = false) const { std::vector<CTxOut> v_txouts(txouts.size()); std::copy(txouts.begin(), txouts.end(), v_txouts.begin()); - return DummySignTx(txNew, v_txouts); + return DummySignTx(txNew, v_txouts, use_max_sig); } bool DummySignTx(CMutableTransaction &txNew, - const std::vector<CTxOut> &txouts) const; - bool DummySignInput(CTxIn &tx_in, const CTxOut &txout) const; + const std::vector<CTxOut> &txouts, + bool use_max_sig = false) const; + bool DummySignInput(CTxIn &tx_in, const CTxOut &txout, + bool use_max_sig = false) const; CFeeRate m_pay_tx_fee{DEFAULT_PAY_TX_FEE}; bool m_spend_zero_conf_change{DEFAULT_SPEND_ZEROCONF_CHANGE}; // will be defined via chainparams bool m_allow_fallback_fee{true}; // Override with -mintxfee CFeeRate m_min_fee{DEFAULT_TRANSACTION_MINFEE_PER_KB}; /** * If fee estimation does not have enough data to provide estimates, use * this fee instead. Has no effect if not using fee estimation Override with * -fallbackfee */ CFeeRate m_fallback_fee{DEFAULT_FALLBACK_FEE}; OutputType m_default_address_type{DEFAULT_ADDRESS_TYPE}; OutputType m_default_change_type{DEFAULT_CHANGE_TYPE}; bool NewKeyPool(); size_t KeypoolCountExternalKeys() EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); bool TopUpKeyPool(unsigned int kpSize = 0); /** * Reserves a key from the keypool and sets nIndex to its index * * @param[out] nIndex the index of the key in keypool * @param[out] keypool the keypool the key was drawn from, which could be * the the pre-split pool if present, or the internal or external pool * @param fRequestedInternal true if the caller would like the key drawn * from the internal keypool, false if external is preferred * * @return true if succeeded, false if failed due to empty keypool * @throws std::runtime_error if keypool read failed, key was invalid, * was not found in the wallet, or was misclassified in the internal * or external keypool */ bool ReserveKeyFromKeyPool(int64_t &nIndex, CKeyPool &keypool, bool fRequestedInternal); void KeepKey(int64_t nIndex); void ReturnKey(int64_t nIndex, bool fInternal, const CPubKey &pubkey); bool GetKeyFromPool(CPubKey &key, bool internal = false); int64_t GetOldestKeyPoolTime(); /** * Marks all keys in the keypool up to and including reserve_key as used. */ void MarkReserveKeysAsUsed(int64_t keypool_id) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); const std::map<CKeyID, int64_t> &GetAllReserveKeys() const { return m_pool_key_to_index; } std::set<std::set<CTxDestination>> GetAddressGroupings() EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); std::map<CTxDestination, Amount> GetAddressBalances() EXCLUSIVE_LOCKS_REQUIRED(cs_main); std::set<CTxDestination> GetLabelAddresses(const std::string &label) const; void DeleteLabel(const std::string &label); isminetype IsMine(const CTxIn &txin) const; /** * Returns amount of debit if the input matches the filter, otherwise * returns 0 */ Amount GetDebit(const CTxIn &txin, const isminefilter &filter) const; isminetype IsMine(const CTxOut &txout) const; Amount GetCredit(const CTxOut &txout, const isminefilter &filter) const; bool IsChange(const CTxOut &txout) const; Amount GetChange(const CTxOut &txout) const; bool IsMine(const CTransaction &tx) const; /** should probably be renamed to IsRelevantToMe */ bool IsFromMe(const CTransaction &tx) const; Amount GetDebit(const CTransaction &tx, const isminefilter &filter) const; /** Returns whether all of the inputs match the filter */ bool IsAllFromMe(const CTransaction &tx, const isminefilter &filter) const; Amount GetCredit(const CTransaction &tx, const isminefilter &filter) const; Amount GetChange(const CTransaction &tx) const; void ChainStateFlushed(const CBlockLocator &loc) override; DBErrors LoadWallet(bool &fFirstRunRet); DBErrors ZapWalletTx(std::vector<CWalletTx> &vWtx); DBErrors ZapSelectTx(std::vector<TxId> &txIdsIn, std::vector<TxId> &txIdsOut) EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); bool SetAddressBook(const CTxDestination &address, const std::string &strName, const std::string &purpose); bool DelAddressBook(const CTxDestination &address); const std::string &GetLabelName(const CScript &scriptPubKey) const; void GetScriptForMining(std::shared_ptr<CReserveScript> &script); unsigned int GetKeyPoolSize() EXCLUSIVE_LOCKS_REQUIRED(cs_wallet) { // set{Ex,In}ternalKeyPool AssertLockHeld(cs_wallet); return setInternalKeyPool.size() + setExternalKeyPool.size(); } //! signify that a particular wallet feature is now used. this may change //! nWalletVersion and nWalletMaxVersion if those are lower void SetMinVersion(enum WalletFeature, WalletBatch *batch_in = nullptr, bool fExplicit = false); //! change which version we're allowed to upgrade to (note that this does //! not immediately imply upgrading to that format) bool SetMaxVersion(int nVersion); //! get the current wallet format (the oldest client version guaranteed to //! understand this wallet) int GetVersion() { LOCK(cs_wallet); return nWalletVersion; } //! Get wallet transactions that conflict with given transaction (spend same //! outputs) std::set<TxId> GetConflicts(const TxId &txid) const; //! Check if a given transaction has any of its outputs spent by another //! transaction in the wallet bool HasWalletSpend(const TxId &txid) const EXCLUSIVE_LOCKS_REQUIRED(cs_wallet); //! Flush wallet (bitdb flush) void Flush(bool shutdown = false); /** Wallet is about to be unloaded */ boost::signals2::signal<void()> NotifyUnload; /** * Address book entry changed. * @note called with lock cs_wallet held. */ boost::signals2::signal<void(CWallet *wallet, const CTxDestination &address, const std::string &label, bool isMine, const std::string &purpose, ChangeType status)> NotifyAddressBookChanged; /** * Wallet transaction added, removed or updated. * @note called with lock cs_wallet held. */ boost::signals2::signal<void(CWallet *wallet, const TxId &txid, ChangeType status)> NotifyTransactionChanged; /** Show progress e.g. for rescan */ boost::signals2::signal<void(const std::string &title, int nProgress)> ShowProgress; /** Watch-only address added */ boost::signals2::signal<void(bool fHaveWatchOnly)> NotifyWatchonlyChanged; /** Inquire whether this wallet broadcasts transactions. */ bool GetBroadcastTransactions() const { return fBroadcastTransactions; } /** Set whether this wallet broadcasts transactions. */ void SetBroadcastTransactions(bool broadcast) { fBroadcastTransactions = broadcast; } /** Return whether transaction can be abandoned */ bool TransactionCanBeAbandoned(const TxId &txid) const; /** * Mark a transaction (and it in-wallet descendants) as abandoned so its * inputs may be respent. */ bool AbandonTransaction(const TxId &txid); //! Verify wallet naming and perform salvage on the wallet if required static bool Verify(const CChainParams &chainParams, std::string wallet_file, bool salvage_wallet, std::string &error_string, std::string &warning_string); /** * Initializes the wallet, returns a new CWallet instance or a null pointer * in case of an error. */ static std::shared_ptr<CWallet> CreateWalletFromFile(const CChainParams &chainParams, const std::string &name, const fs::path &path); /** * Wallet post-init setup * Gives the wallet a chance to register repetitive tasks and complete * post-init tasks */ void postInitProcess(); bool BackupWallet(const std::string &strDest); /* Set the HD chain model (chain child index counters) */ void SetHDChain(const CHDChain &chain, bool memonly); const CHDChain &GetHDChain() const { return hdChain; } /* Returns true if HD is enabled */ bool IsHDEnabled() const; /* Generates a new HD seed (will not be activated) */ CPubKey GenerateNewSeed(); /** * Derives a new HD seed (will not be activated) */ CPubKey DeriveNewSeed(const CKey &key); /** * Set the current HD seed (will reset the chain child index counters) * Sets the seed's version based on the current wallet version (so the * caller must ensure the current wallet version is correct before calling * this function). */ void SetHDSeed(const CPubKey &key); /** * Blocks until the wallet state is up-to-date to /at least/ the current * chain at the time this function is entered. * Obviously holding cs_main/cs_wallet when going into this call may cause * deadlock */ void BlockUntilSyncedToCurrentChain() LOCKS_EXCLUDED(cs_main, cs_wallet); /** * Explicitly make the wallet learn the related scripts for outputs to the * given key. This is purely to make the wallet file compatible with older * software, as CBasicKeyStore automatically does this implicitly for all * keys now. */ void LearnRelatedScripts(const CPubKey &key, OutputType); /** * Same as LearnRelatedScripts, but when the OutputType is not known (and * could be anything). */ void LearnAllRelatedScripts(const CPubKey &key); }; /** A key allocated from the key pool. */ class CReserveKey final : public CReserveScript { protected: CWallet *pwallet; int64_t nIndex{-1}; CPubKey vchPubKey; bool fInternal{false}; public: explicit CReserveKey(CWallet *pwalletIn) { pwallet = pwalletIn; } CReserveKey(const CReserveKey &) = delete; CReserveKey &operator=(const CReserveKey &) = delete; ~CReserveKey() { ReturnKey(); } void ReturnKey(); bool GetReservedKey(CPubKey &pubkey, bool internal = false); void KeepKey(); void KeepScript() override { KeepKey(); } }; /** * DEPRECATED Account information. * Stored in wallet with key "acc"+string account name. */ class CAccount { public: CPubKey vchPubKey; CAccount() { SetNull(); } void SetNull() { vchPubKey = CPubKey(); } ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream &s, Operation ser_action) { int nVersion = s.GetVersion(); if (!(s.GetType() & SER_GETHASH)) { READWRITE(nVersion); } READWRITE(vchPubKey); } }; /** RAII object to check and reserve a wallet rescan */ class WalletRescanReserver { private: CWallet *m_wallet; bool m_could_reserve; public: explicit WalletRescanReserver(CWallet *w) : m_wallet(w), m_could_reserve(false) {} bool reserve() { assert(!m_could_reserve); std::lock_guard<std::mutex> lock(m_wallet->mutexScanning); if (m_wallet->fScanningWallet) { return false; } m_wallet->fScanningWallet = true; m_could_reserve = true; return true; } bool isReserved() const { return (m_could_reserve && m_wallet->fScanningWallet); } ~WalletRescanReserver() { std::lock_guard<std::mutex> lock(m_wallet->mutexScanning); if (m_could_reserve) { m_wallet->fScanningWallet = false; } } }; // Calculate the size of the transaction assuming all signatures are max size // Use DummySignatureCreator, which inserts 71 byte signatures everywhere. // NOTE: this requires that all inputs must be in mapWallet (eg the tx should // be IsAllFromMe). int64_t CalculateMaximumSignedTxSize(const CTransaction &tx, - const CWallet *wallet); + const CWallet *wallet, + bool use_max_sig = false); int64_t CalculateMaximumSignedTxSize(const CTransaction &tx, const CWallet *wallet, - const std::vector<CTxOut> &txouts); + const std::vector<CTxOut> &txouts, + bool use_max_sig = false); #endif // BITCOIN_WALLET_WALLET_H