diff --git a/test/functional/test_framework/messages.py b/test/functional/test_framework/messages.py index 867fdcc49..5b3160d1f 100755 --- a/test/functional/test_framework/messages.py +++ b/test/functional/test_framework/messages.py @@ -1,1531 +1,1526 @@ #!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Bitcoin test framework primitive and message structures CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: data structures that should map to corresponding structures in bitcoin/primitives msg_block, msg_tx, msg_headers, etc.: data structures that represent network messages ser_*, deser_*: functions that handle serialization/deserialization. Classes use __slots__ to ensure extraneous attributes aren't accidentally added by tests, compromising their intended effect. """ from codecs import encode import copy import hashlib from io import BytesIO import random import socket import struct import time from test_framework.siphash import siphash256 from test_framework.util import hex_str_to_bytes, assert_equal MIN_VERSION_SUPPORTED = 60001 # past bip-31 for ping/pong MY_VERSION = 70014 MY_SUBVERSION = b"/python-mininode-tester:0.0.3/" # from version 70001 onwards, fRelay should be appended to version # messages (BIP37) MY_RELAY = 1 MAX_LOCATOR_SZ = 101 MAX_BLOCK_BASE_SIZE = 1000000 # 1 BCH in satoshis COIN = 100000000 NODE_NETWORK = (1 << 0) NODE_GETUTXO = (1 << 1) NODE_BLOOM = (1 << 2) # NODE_WITNESS = (1 << 3) NODE_XTHIN = (1 << 4) NODE_BITCOIN_CASH = (1 << 5) NODE_NETWORK_LIMITED = (1 << 10) NODE_AVALANCHE = (1 << 24) MSG_TX = 1 MSG_BLOCK = 2 MSG_FILTERED_BLOCK = 3 MSG_CMPCTBLOCK = 4 MSG_TYPE_MASK = 0xffffffff >> 2 -# Serialization/deserialization tools +# Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def hash256(s): return sha256(sha256(s)) def ser_compact_size(size): r = b"" if size < 253: r = struct.pack("B", size) elif size < 0x10000: r = struct.pack("<BH", 253, size) elif size < 0x100000000: r = struct.pack("<BI", 254, size) else: r = struct.pack("<BQ", 255, size) return r def deser_compact_size(f): nit = struct.unpack("<B", f.read(1))[0] if nit == 253: nit = struct.unpack("<H", f.read(2))[0] elif nit == 254: nit = struct.unpack("<I", f.read(4))[0] elif nit == 255: nit = struct.unpack("<Q", f.read(8))[0] return nit def deser_string(f): nit = deser_compact_size(f) return f.read(nit) def ser_string(s): return ser_compact_size(len(s)) + s def deser_uint256(f): r = 0 for i in range(8): t = struct.unpack("<I", f.read(4))[0] r += t << (i * 32) return r def ser_uint256(u): rs = b"" for i in range(8): rs += struct.pack("<I", u & 0xFFFFFFFF) u >>= 32 return rs def uint256_from_str(s): r = 0 t = struct.unpack("<IIIIIIII", s[:32]) for i in range(8): r += t[i] << (i * 32) return r def uint256_from_compact(c): nbytes = (c >> 24) & 0xFF v = (c & 0xFFFFFF) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = deser_compact_size(f) r = [] for i in range(nit): t = c() t.deserialize(f) r.append(t) return r # ser_function_name: Allow for an alternate serialization function on the # entries in the vector. def ser_vector(v, ser_function_name=None): r = ser_compact_size(len(v)) for i in v: if ser_function_name: r += getattr(i, ser_function_name)() else: r += i.serialize() return r def deser_uint256_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(v): r = ser_compact_size(len(v)) for i in v: r += ser_uint256(i) return r def deser_string_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(v): r = ser_compact_size(len(v)) for sv in v: r += ser_string(sv) return r -# Deserialize from a hex string representation (eg from RPC) - - def FromHex(obj, hex_string): + """Deserialize from a hex string representation (eg from RPC)""" obj.deserialize(BytesIO(hex_str_to_bytes(hex_string))) return obj -# Convert a binary-serializable object to hex (eg for submission via RPC) - def ToHex(obj): + """Convert a binary-serializable object to hex + (eg for submission via RPC)""" return obj.serialize().hex() -# Objects that map to bitcoind objects, which can be serialized/deserialized +# Objects that map to bitcoind objects, which can be serialized/deserialized class CAddress: __slots__ = ("ip", "nServices", "pchReserved", "port", "time") def __init__(self): self.time = 0 self.nServices = 1 self.pchReserved = b"\x00" * 10 + b"\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f, with_time=True): if with_time: self.time = struct.unpack("<i", f.read(4))[0] self.nServices = struct.unpack("<Q", f.read(8))[0] self.pchReserved = f.read(12) self.ip = socket.inet_ntoa(f.read(4)) self.port = struct.unpack(">H", f.read(2))[0] def serialize(self, with_time=True): r = b"" if with_time: r += struct.pack("<i", self.time) r += struct.pack("<Q", self.nServices) r += self.pchReserved r += socket.inet_aton(self.ip) r += struct.pack(">H", self.port) return r def __repr__(self): return "CAddress(nServices={} ip={} port={})".format( self.nServices, self.ip, self.port) class CInv: __slots__ = ("hash", "type") typemap = { 0: "Error", MSG_TX: "TX", MSG_BLOCK: "Block", MSG_FILTERED_BLOCK: "filtered Block", MSG_CMPCTBLOCK: "CompactBlock" } def __init__(self, t=0, h=0): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack("<i", f.read(4))[0] self.hash = deser_uint256(f) def serialize(self): r = b"" r += struct.pack("<i", self.type) r += ser_uint256(self.hash) return r def __repr__(self): return "CInv(type={} hash={:064x})".format( self.typemap[self.type], self.hash) class CBlockLocator: __slots__ = ("nVersion", "vHave") def __init__(self): self.nVersion = MY_VERSION self.vHave = [] def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vHave = deser_uint256_vector(f) def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256_vector(self.vHave) return r def __repr__(self): return "CBlockLocator(nVersion={} vHave={})".format( self.nVersion, repr(self.vHave)) class COutPoint: __slots__ = ("hash", "n") def __init__(self, hash=0, n=0): self.hash = hash self.n = n def deserialize(self, f): self.hash = deser_uint256(f) self.n = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += ser_uint256(self.hash) r += struct.pack("<I", self.n) return r def __repr__(self): return "COutPoint(hash={:064x} n={})".format(self.hash, self.n) class CTxIn: __slots__ = ("nSequence", "prevout", "scriptSig") def __init__(self, outpoint=None, scriptSig=b"", nSequence=0): if outpoint is None: self.prevout = COutPoint() else: self.prevout = outpoint self.scriptSig = scriptSig self.nSequence = nSequence def deserialize(self, f): self.prevout = COutPoint() self.prevout.deserialize(f) self.scriptSig = deser_string(f) self.nSequence = struct.unpack("<I", f.read(4))[0] def serialize(self): r = b"" r += self.prevout.serialize() r += ser_string(self.scriptSig) r += struct.pack("<I", self.nSequence) return r def __repr__(self): return "CTxIn(prevout={} scriptSig={} nSequence={})".format( repr(self.prevout), self.scriptSig.hex(), self.nSequence) class CTxOut: __slots__ = ("nValue", "scriptPubKey") def __init__(self, nValue=0, scriptPubKey=b""): self.nValue = nValue self.scriptPubKey = scriptPubKey def deserialize(self, f): self.nValue = struct.unpack("<q", f.read(8))[0] self.scriptPubKey = deser_string(f) def serialize(self): r = b"" r += struct.pack("<q", self.nValue) r += ser_string(self.scriptPubKey) return r def __repr__(self): return "CTxOut(nValue={}.{:08d} scriptPubKey={})".format( self.nValue // COIN, self.nValue % COIN, self.scriptPubKey.hex()) class CTransaction: __slots__ = ("hash", "nLockTime", "nVersion", "sha256", "vin", "vout") def __init__(self, tx=None): if tx is None: self.nVersion = 1 self.vin = [] self.vout = [] self.nLockTime = 0 self.sha256 = None self.hash = None else: self.nVersion = tx.nVersion self.vin = copy.deepcopy(tx.vin) self.vout = copy.deepcopy(tx.vout) self.nLockTime = tx.nLockTime self.sha256 = tx.sha256 self.hash = tx.hash def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.vin = deser_vector(f, CTxIn) self.vout = deser_vector(f, CTxOut) self.nLockTime = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def billable_size(self): """ Returns the size used for billing the against the transaction """ return len(self.serialize()) def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_vector(self.vin) r += ser_vector(self.vout) r += struct.pack("<I", self.nLockTime) return r # Recalculate the txid def rehash(self): self.sha256 = None self.calc_sha256() return self.hash # self.sha256 and self.hash -- those are expected to be the txid. def calc_sha256(self): if self.sha256 is None: self.sha256 = uint256_from_str(hash256(self.serialize())) self.hash = encode( hash256(self.serialize())[::-1], 'hex_codec').decode('ascii') def get_id(self): # For now, just forward the hash. self.calc_sha256() return self.hash def is_valid(self): self.calc_sha256() for tout in self.vout: if tout.nValue < 0 or tout.nValue > 21000000 * COIN: return False return True def __repr__(self): return "CTransaction(nVersion={} vin={} vout={} nLockTime={})".format( self.nVersion, repr(self.vin), repr(self.vout), self.nLockTime) class CBlockHeader: __slots__ = ("hash", "hashMerkleRoot", "hashPrevBlock", "nBits", "nNonce", "nTime", "nVersion", "sha256") def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.hashPrevBlock = deser_uint256(f) self.hashMerkleRoot = deser_uint256(f) self.nTime = struct.unpack("<I", f.read(4))[0] self.nBits = struct.unpack("<I", f.read(4))[0] self.nNonce = struct.unpack("<I", f.read(4))[0] self.sha256 = None self.hash = None def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) return r def calc_sha256(self): if self.sha256 is None: r = b"" r += struct.pack("<i", self.nVersion) r += ser_uint256(self.hashPrevBlock) r += ser_uint256(self.hashMerkleRoot) r += struct.pack("<I", self.nTime) r += struct.pack("<I", self.nBits) r += struct.pack("<I", self.nNonce) self.sha256 = uint256_from_str(hash256(r)) self.hash = encode(hash256(r)[::-1], 'hex_codec').decode('ascii') def rehash(self): self.sha256 = None self.calc_sha256() return self.sha256 def __repr__(self): return "CBlockHeader(nVersion={} hashPrevBlock={:064x} hashMerkleRoot={:064x} nTime={} nBits={:08x} nNonce={:08x})".format( self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, self.nTime, self.nBits, self.nNonce) BLOCK_HEADER_SIZE = len(CBlockHeader().serialize()) assert_equal(BLOCK_HEADER_SIZE, 80) class CBlock(CBlockHeader): __slots__ = ("vtx",) def __init__(self, header=None): super(CBlock, self).__init__(header) self.vtx = [] def deserialize(self, f): super(CBlock, self).deserialize(f) self.vtx = deser_vector(f, CTransaction) def serialize(self): r = b"" r += super(CBlock, self).serialize() r += ser_vector(self.vtx) return r # Calculate the merkle root given a vector of transaction hashes def get_merkle_root(self, hashes): while len(hashes) > 1: newhashes = [] for i in range(0, len(hashes), 2): i2 = min(i + 1, len(hashes) - 1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) return self.get_merkle_root(hashes) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion={} hashPrevBlock={:064x} hashMerkleRoot={:064x} nTime={} nBits={:08x} nNonce={:08x} vtx={})".format( self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, self.nTime, self.nBits, self.nNonce, repr(self.vtx)) class PrefilledTransaction: __slots__ = ("index", "tx") def __init__(self, index=0, tx=None): self.index = index self.tx = tx def deserialize(self, f): self.index = deser_compact_size(f) self.tx = CTransaction() self.tx.deserialize(f) def serialize(self): r = b"" r += ser_compact_size(self.index) r += self.tx.serialize() return r def __repr__(self): return "PrefilledTransaction(index={}, tx={})".format( self.index, repr(self.tx)) # This is what we send on the wire, in a cmpctblock message. class P2PHeaderAndShortIDs: __slots__ = ("header", "nonce", "prefilled_txn", "prefilled_txn_length", "shortids", "shortids_length") def __init__(self): self.header = CBlockHeader() self.nonce = 0 self.shortids_length = 0 self.shortids = [] self.prefilled_txn_length = 0 self.prefilled_txn = [] def deserialize(self, f): self.header.deserialize(f) self.nonce = struct.unpack("<Q", f.read(8))[0] self.shortids_length = deser_compact_size(f) for i in range(self.shortids_length): # shortids are defined to be 6 bytes in the spec, so append # two zero bytes and read it in as an 8-byte number self.shortids.append( struct.unpack("<Q", f.read(6) + b'\x00\x00')[0]) self.prefilled_txn = deser_vector(f, PrefilledTransaction) self.prefilled_txn_length = len(self.prefilled_txn) def serialize(self): r = b"" r += self.header.serialize() r += struct.pack("<Q", self.nonce) r += ser_compact_size(self.shortids_length) for x in self.shortids: # We only want the first 6 bytes r += struct.pack("<Q", x)[0:6] r += ser_vector(self.prefilled_txn) return r def __repr__(self): return "P2PHeaderAndShortIDs(header={}, nonce={}, shortids_length={}, shortids={}, prefilled_txn_length={}, prefilledtxn={}".format( repr(self.header), self.nonce, self.shortids_length, repr(self.shortids), self.prefilled_txn_length, repr(self.prefilled_txn)) -# Calculate the BIP 152-compact blocks shortid for a given transaction hash - def calculate_shortid(k0, k1, tx_hash): + """Calculate the BIP 152-compact blocks shortid for a given + transaction hash""" expected_shortid = siphash256(k0, k1, tx_hash) expected_shortid &= 0x0000ffffffffffff return expected_shortid # This version gets rid of the array lengths, and reinterprets the differential # encoding into indices that can be used for lookup. class HeaderAndShortIDs: __slots__ = ("header", "nonce", "prefilled_txn", "shortids") def __init__(self, p2pheaders_and_shortids=None): self.header = CBlockHeader() self.nonce = 0 self.shortids = [] self.prefilled_txn = [] if p2pheaders_and_shortids is not None: self.header = p2pheaders_and_shortids.header self.nonce = p2pheaders_and_shortids.nonce self.shortids = p2pheaders_and_shortids.shortids last_index = -1 for x in p2pheaders_and_shortids.prefilled_txn: self.prefilled_txn.append( PrefilledTransaction(x.index + last_index + 1, x.tx)) last_index = self.prefilled_txn[-1].index def to_p2p(self): ret = P2PHeaderAndShortIDs() ret.header = self.header ret.nonce = self.nonce ret.shortids_length = len(self.shortids) ret.shortids = self.shortids ret.prefilled_txn_length = len(self.prefilled_txn) ret.prefilled_txn = [] last_index = -1 for x in self.prefilled_txn: ret.prefilled_txn.append( PrefilledTransaction(x.index - last_index - 1, x.tx)) last_index = x.index return ret def get_siphash_keys(self): header_nonce = self.header.serialize() header_nonce += struct.pack("<Q", self.nonce) hash_header_nonce_as_str = sha256(header_nonce) key0 = struct.unpack("<Q", hash_header_nonce_as_str[0:8])[0] key1 = struct.unpack("<Q", hash_header_nonce_as_str[8:16])[0] return [key0, key1] # Version 2 compact blocks use wtxid in shortids (rather than txid) def initialize_from_block(self, block, nonce=0, prefill_list=None): if prefill_list is None: prefill_list = [0] self.header = CBlockHeader(block) self.nonce = nonce self.prefilled_txn = [PrefilledTransaction(i, block.vtx[i]) for i in prefill_list] self.shortids = [] [k0, k1] = self.get_siphash_keys() for i in range(len(block.vtx)): if i not in prefill_list: tx_hash = block.vtx[i].sha256 self.shortids.append(calculate_shortid(k0, k1, tx_hash)) def __repr__(self): return "HeaderAndShortIDs(header={}, nonce={}, shortids={}, prefilledtxn={}".format( repr(self.header), self.nonce, repr(self.shortids), repr(self.prefilled_txn)) class BlockTransactionsRequest: __slots__ = ("blockhash", "indexes") def __init__(self, blockhash=0, indexes=None): self.blockhash = blockhash self.indexes = indexes if indexes is not None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) indexes_length = deser_compact_size(f) for i in range(indexes_length): self.indexes.append(deser_compact_size(f)) def serialize(self): r = b"" r += ser_uint256(self.blockhash) r += ser_compact_size(len(self.indexes)) for x in self.indexes: r += ser_compact_size(x) return r # helper to set the differentially encoded indexes from absolute ones def from_absolute(self, absolute_indexes): self.indexes = [] last_index = -1 for x in absolute_indexes: self.indexes.append(x - last_index - 1) last_index = x def to_absolute(self): absolute_indexes = [] last_index = -1 for x in self.indexes: absolute_indexes.append(x + last_index + 1) last_index = absolute_indexes[-1] return absolute_indexes def __repr__(self): return "BlockTransactionsRequest(hash={:064x} indexes={})".format( self.blockhash, repr(self.indexes)) class BlockTransactions: __slots__ = ("blockhash", "transactions") def __init__(self, blockhash=0, transactions=None): self.blockhash = blockhash self.transactions = transactions if transactions is not None else [] def deserialize(self, f): self.blockhash = deser_uint256(f) self.transactions = deser_vector(f, CTransaction) def serialize(self): r = b"" r += ser_uint256(self.blockhash) r += ser_vector(self.transactions) return r def __repr__(self): return "BlockTransactions(hash={:064x} transactions={})".format( self.blockhash, repr(self.transactions)) class AvalanchePoll(): __slots__ = ("round", "invs") def __init__(self, round=0, invs=None): self.round = round self.invs = invs if invs is not None else [] def deserialize(self, f): self.round = struct.unpack("<q", f.read(8))[0] self.invs = deser_vector(f, CInv) def serialize(self): r = b"" r += struct.pack("<q", self.round) r += ser_vector(self.invs) return r def __repr__(self): return "AvalanchePoll(round={}, invs={})".format( self.round, repr(self.invs)) class AvalancheVote(): __slots__ = ("error", "hash") def __init__(self, e=0, h=0): self.error = e self.hash = h def deserialize(self, f): self.error = struct.unpack("<i", f.read(4))[0] self.hash = deser_uint256(f) def serialize(self): r = b"" r += struct.pack("<i", self.error) r += ser_uint256(self.hash) return r def __repr__(self): return "AvalancheVote(error={}, hash={:064x})".format( self.error, self.hash) class AvalancheResponse(): __slots__ = ("round", "cooldown", "votes") def __init__(self, round=0, cooldown=0, votes=None): self.round = round self.cooldown = cooldown self.votes = votes if votes is not None else [] def deserialize(self, f): self.round = struct.unpack("<q", f.read(8))[0] self.cooldown = struct.unpack("<i", f.read(4))[0] self.votes = deser_vector(f, AvalancheVote) def serialize(self): r = b"" r += struct.pack("<q", self.round) r += struct.pack("<i", self.cooldown) r += ser_vector(self.votes) return r def get_hash(self): return hash256(self.serialize()) def __repr__(self): return "AvalancheResponse(round={}, cooldown={}, votes={})".format( self.round, self.cooldown, repr(self.votes)) class TCPAvalancheResponse(): __slots__ = ("response", "sig") def __init__(self, response=AvalancheResponse(), sig=b"\0" * 64): self.response = response self.sig = sig def deserialize(self, f): self.response.deserialize(f) self.sig = f.read(64) def serialize(self): r = b"" r += self.response.serialize() r += self.sig return r def __repr__(self): return "TCPAvalancheResponse(response={}, sig={})".format( repr(self.response), self.sig) class CPartialMerkleTree: __slots__ = ("nTransactions", "vBits", "vHash") def __init__(self): self.nTransactions = 0 self.vHash = [] self.vBits = [] def deserialize(self, f): self.nTransactions = struct.unpack("<i", f.read(4))[0] self.vHash = deser_uint256_vector(f) vBytes = deser_string(f) self.vBits = [] for i in range(len(vBytes) * 8): self.vBits.append(vBytes[i // 8] & (1 << (i % 8)) != 0) def serialize(self): r = b"" r += struct.pack("<i", self.nTransactions) r += ser_uint256_vector(self.vHash) vBytesArray = bytearray([0x00] * ((len(self.vBits) + 7) // 8)) for i in range(len(self.vBits)): vBytesArray[i // 8] |= self.vBits[i] << (i % 8) r += ser_string(bytes(vBytesArray)) return r def __repr__(self): return "CPartialMerkleTree(nTransactions={}, vHash={}, vBits={})".format( self.nTransactions, repr(self.vHash), repr(self.vBits)) class CMerkleBlock: __slots__ = ("header", "txn") def __init__(self): self.header = CBlockHeader() self.txn = CPartialMerkleTree() def deserialize(self, f): self.header.deserialize(f) self.txn.deserialize(f) def serialize(self): r = b"" r += self.header.serialize() r += self.txn.serialize() return r def __repr__(self): return "CMerkleBlock(header={}, txn={})".format( repr(self.header), repr(self.txn)) # Objects that correspond to messages on the wire - class msg_version: __slots__ = ("addrFrom", "addrTo", "nNonce", "nRelay", "nServices", "nStartingHeight", "nTime", "nVersion", "strSubVer") command = b"version" def __init__(self): self.nVersion = MY_VERSION self.nServices = 1 self.nTime = int(time.time()) self.addrTo = CAddress() self.addrFrom = CAddress() self.nNonce = random.getrandbits(64) self.strSubVer = MY_SUBVERSION self.nStartingHeight = -1 self.nRelay = MY_RELAY def deserialize(self, f): self.nVersion = struct.unpack("<i", f.read(4))[0] self.nServices = struct.unpack("<Q", f.read(8))[0] self.nTime = struct.unpack("<q", f.read(8))[0] self.addrTo = CAddress() self.addrTo.deserialize(f, False) self.addrFrom = CAddress() self.addrFrom.deserialize(f, False) self.nNonce = struct.unpack("<Q", f.read(8))[0] self.strSubVer = deser_string(f) self.nStartingHeight = struct.unpack("<i", f.read(4))[0] if self.nVersion >= 70001: # Relay field is optional for version 70001 onwards try: self.nRelay = struct.unpack("<b", f.read(1))[0] except Exception: self.nRelay = 0 else: self.nRelay = 0 def serialize(self): r = b"" r += struct.pack("<i", self.nVersion) r += struct.pack("<Q", self.nServices) r += struct.pack("<q", self.nTime) r += self.addrTo.serialize(False) r += self.addrFrom.serialize(False) r += struct.pack("<Q", self.nNonce) r += ser_string(self.strSubVer) r += struct.pack("<i", self.nStartingHeight) r += struct.pack("<b", self.nRelay) return r def __repr__(self): return 'msg_version(nVersion={} nServices={} nTime={} addrTo={} addrFrom={} nNonce=0x{:016X} strSubVer={} nStartingHeight={} nRelay={})'.format( self.nVersion, self.nServices, self.nTime, repr(self.addrTo), repr(self.addrFrom), self.nNonce, self.strSubVer, self.nStartingHeight, self.nRelay) class msg_verack: __slots__ = () command = b"verack" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_verack()" class msg_addr: __slots__ = ("addrs",) command = b"addr" def __init__(self): self.addrs = [] def deserialize(self, f): self.addrs = deser_vector(f, CAddress) def serialize(self): return ser_vector(self.addrs) def __repr__(self): return "msg_addr(addrs={})".format(repr(self.addrs)) class msg_inv: __slots__ = ("inv",) command = b"inv" def __init__(self, inv=None): if inv is None: self.inv = [] else: self.inv = inv def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_inv(inv={})".format(repr(self.inv)) class msg_getdata: __slots__ = ("inv",) command = b"getdata" def __init__(self, inv=None): self.inv = inv if inv is not None else [] def deserialize(self, f): self.inv = deser_vector(f, CInv) def serialize(self): return ser_vector(self.inv) def __repr__(self): return "msg_getdata(inv={})".format(repr(self.inv)) class msg_getblocks: __slots__ = ("locator", "hashstop") command = b"getblocks" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getblocks(locator={} hashstop={:064x})".format( repr(self.locator), self.hashstop) class msg_tx: __slots__ = ("tx",) command = b"tx" def __init__(self, tx=CTransaction()): self.tx = tx def deserialize(self, f): self.tx.deserialize(f) def serialize(self): return self.tx.serialize() def __repr__(self): return "msg_tx(tx={})".format(repr(self.tx)) class msg_block: __slots__ = ("block",) command = b"block" def __init__(self, block=None): if block is None: self.block = CBlock() else: self.block = block def deserialize(self, f): self.block.deserialize(f) def serialize(self): return self.block.serialize() def __repr__(self): return "msg_block(block={})".format(repr(self.block)) # for cases where a user needs tighter control over what is sent over the wire # note that the user must supply the name of the command, and the data - - class msg_generic: __slots__ = ("command", "data") def __init__(self, command, data=None): self.command = command self.data = data def serialize(self): return self.data def __repr__(self): return "msg_generic()" class msg_getaddr: __slots__ = () command = b"getaddr" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_getaddr()" class msg_ping: __slots__ = ("nonce",) command = b"ping" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_ping(nonce={:08x})".format(self.nonce) class msg_pong: __slots__ = ("nonce",) command = b"pong" def __init__(self, nonce=0): self.nonce = nonce def deserialize(self, f): self.nonce = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.nonce) return r def __repr__(self): return "msg_pong(nonce={:08x})".format(self.nonce) class msg_mempool: __slots__ = () command = b"mempool" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_mempool()" class msg_notfound: __slots__ = ("vec", ) command = b"notfound" def __init__(self, vec=None): self.vec = vec or [] def deserialize(self, f): self.vec = deser_vector(f, CInv) def serialize(self): return ser_vector(self.vec) def __repr__(self): return "msg_notfound(vec={})".format(repr(self.vec)) class msg_sendheaders: __slots__ = () command = b"sendheaders" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_sendheaders()" # getheaders message has # number of entries # vector of hashes # hash_stop (hash of last desired block header, 0 to get as many as possible) class msg_getheaders: __slots__ = ("hashstop", "locator",) command = b"getheaders" def __init__(self): self.locator = CBlockLocator() self.hashstop = 0 def deserialize(self, f): self.locator = CBlockLocator() self.locator.deserialize(f) self.hashstop = deser_uint256(f) def serialize(self): r = b"" r += self.locator.serialize() r += ser_uint256(self.hashstop) return r def __repr__(self): return "msg_getheaders(locator={}, stop={:064x})".format( repr(self.locator), self.hashstop) # headers message has # <count> <vector of block headers> class msg_headers: __slots__ = ("headers",) command = b"headers" def __init__(self, headers=None): self.headers = headers if headers is not None else [] def deserialize(self, f): # comment in bitcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers={})".format(repr(self.headers)) class msg_merkleblock: __slots__ = ("merkleblock",) command = b"merkleblock" def __init__(self, merkleblock=None): if merkleblock is None: self.merkleblock = CMerkleBlock() else: self.merkleblock = merkleblock def deserialize(self, f): self.merkleblock.deserialize(f) def serialize(self): return self.merkleblock.serialize() def __repr__(self): return "msg_merkleblock(merkleblock={})".format(repr(self.merkleblock)) class msg_filterload: __slots__ = ("data", "nHashFuncs", "nTweak", "nFlags") command = b"filterload" def __init__(self, data=b'00', nHashFuncs=0, nTweak=0, nFlags=0): self.data = data self.nHashFuncs = nHashFuncs self.nTweak = nTweak self.nFlags = nFlags def deserialize(self, f): self.data = deser_string(f) self.nHashFuncs = struct.unpack("<I", f.read(4))[0] self.nTweak = struct.unpack("<I", f.read(4))[0] self.nFlags = struct.unpack("<B", f.read(1))[0] def serialize(self): r = b"" r += ser_string(self.data) r += struct.pack("<I", self.nHashFuncs) r += struct.pack("<I", self.nTweak) r += struct.pack("<B", self.nFlags) return r def __repr__(self): return "msg_filterload(data={}, nHashFuncs={}, nTweak={}, nFlags={})".format( self.data, self.nHashFuncs, self.nTweak, self.nFlags) class msg_filteradd: __slots__ = ("data") command = b"filteradd" def __init__(self, data): self.data = data def deserialize(self, f): self.data = deser_string(f) def serialize(self): r = b"" r += ser_string(self.data) return r def __repr__(self): return "msg_filteradd(data={})".format(self.data) class msg_filterclear: __slots__ = () command = b"filterclear" def __init__(self): pass def deserialize(self, f): pass def serialize(self): return b"" def __repr__(self): return "msg_filterclear()" class msg_feefilter: __slots__ = ("feerate",) command = b"feefilter" def __init__(self, feerate=0): self.feerate = feerate def deserialize(self, f): self.feerate = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<Q", self.feerate) return r def __repr__(self): return "msg_feefilter(feerate={:08x})".format(self.feerate) class msg_sendcmpct: __slots__ = ("announce", "version") command = b"sendcmpct" def __init__(self): self.announce = False self.version = 1 def deserialize(self, f): self.announce = struct.unpack("<?", f.read(1))[0] self.version = struct.unpack("<Q", f.read(8))[0] def serialize(self): r = b"" r += struct.pack("<?", self.announce) r += struct.pack("<Q", self.version) return r def __repr__(self): return "msg_sendcmpct(announce={}, version={})".format( self.announce, self.version) class msg_cmpctblock: __slots__ = ("header_and_shortids",) command = b"cmpctblock" def __init__(self, header_and_shortids=None): self.header_and_shortids = header_and_shortids def deserialize(self, f): self.header_and_shortids = P2PHeaderAndShortIDs() self.header_and_shortids.deserialize(f) def serialize(self): r = b"" r += self.header_and_shortids.serialize() return r def __repr__(self): return "msg_cmpctblock(HeaderAndShortIDs={})".format( repr(self.header_and_shortids)) class msg_getblocktxn: __slots__ = ("block_txn_request",) command = b"getblocktxn" def __init__(self): self.block_txn_request = None def deserialize(self, f): self.block_txn_request = BlockTransactionsRequest() self.block_txn_request.deserialize(f) def serialize(self): r = b"" r += self.block_txn_request.serialize() return r def __repr__(self): return "msg_getblocktxn(block_txn_request={})".format( repr(self.block_txn_request)) class msg_blocktxn: __slots__ = ("block_transactions",) command = b"blocktxn" def __init__(self): self.block_transactions = BlockTransactions() def deserialize(self, f): self.block_transactions.deserialize(f) def serialize(self): r = b"" r += self.block_transactions.serialize() return r def __repr__(self): return "msg_blocktxn(block_transactions={})".format( repr(self.block_transactions)) class msg_avapoll(): __slots__ = ("poll",) command = b"avapoll" def __init__(self): self.poll = AvalanchePoll() def deserialize(self, f): self.poll.deserialize(f) def serialize(self): r = b"" r += self.poll.serialize() return r def __repr__(self): return "msg_avapoll(poll={})".format(repr(self.poll)) class msg_avaresponse(): __slots__ = ("response",) command = b"avaresponse" def __init__(self): self.response = AvalancheResponse() def deserialize(self, f): self.response.deserialize(f) def serialize(self): r = b"" r += self.response.serialize() return r def __repr__(self): return "msg_avaresponse(response={})".format(repr(self.response)) class msg_tcpavaresponse(): __slots__ = ("response",) command = b"avaresponse" def __init__(self): self.response = TCPAvalancheResponse() def deserialize(self, f): self.response.deserialize(f) def serialize(self): r = b"" r += self.response.serialize() return r def __repr__(self): return "msg_tcpavaresponse(response={})".format(repr(self.response))