diff --git a/src/chain.h b/src/chain.h index 4b8860d1a..8f6a9c379 100644 --- a/src/chain.h +++ b/src/chain.h @@ -1,522 +1,524 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CHAIN_H #define BITCOIN_CHAIN_H #include "arith_uint256.h" #include "consensus/params.h" #include "pow.h" #include "primitives/block.h" #include "tinyformat.h" #include "uint256.h" #include #include class CBlockFileInfo { public: //!< number of blocks stored in file unsigned int nBlocks; //!< number of used bytes of block file unsigned int nSize; //!< number of used bytes in the undo file unsigned int nUndoSize; //!< lowest height of block in file unsigned int nHeightFirst; //!< highest height of block in file unsigned int nHeightLast; //!< earliest time of block in file uint64_t nTimeFirst; //!< latest time of block in file uint64_t nTimeLast; ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(VARINT(nBlocks)); READWRITE(VARINT(nSize)); READWRITE(VARINT(nUndoSize)); READWRITE(VARINT(nHeightFirst)); READWRITE(VARINT(nHeightLast)); READWRITE(VARINT(nTimeFirst)); READWRITE(VARINT(nTimeLast)); } void SetNull() { nBlocks = 0; nSize = 0; nUndoSize = 0; nHeightFirst = 0; nHeightLast = 0; nTimeFirst = 0; nTimeLast = 0; } CBlockFileInfo() { SetNull(); } std::string ToString() const; /** update statistics (does not update nSize) */ void AddBlock(unsigned int nHeightIn, uint64_t nTimeIn) { if (nBlocks == 0 || nHeightFirst > nHeightIn) { nHeightFirst = nHeightIn; } if (nBlocks == 0 || nTimeFirst > nTimeIn) { nTimeFirst = nTimeIn; } nBlocks++; if (nHeightIn > nHeightLast) { nHeightLast = nHeightIn; } if (nTimeIn > nTimeLast) { nTimeLast = nTimeIn; } } }; struct CDiskBlockPos { int nFile; unsigned int nPos; ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(VARINT(nFile)); READWRITE(VARINT(nPos)); } CDiskBlockPos() { SetNull(); } CDiskBlockPos(int nFileIn, unsigned int nPosIn) { nFile = nFileIn; nPos = nPosIn; } friend bool operator==(const CDiskBlockPos &a, const CDiskBlockPos &b) { return (a.nFile == b.nFile && a.nPos == b.nPos); } friend bool operator!=(const CDiskBlockPos &a, const CDiskBlockPos &b) { return !(a == b); } void SetNull() { nFile = -1; nPos = 0; } bool IsNull() const { return (nFile == -1); } std::string ToString() const { return strprintf("CBlockDiskPos(nFile=%i, nPos=%i)", nFile, nPos); } }; enum BlockStatus : uint32_t { //! Unused. BLOCK_VALID_UNKNOWN = 0, //! Parsed, version ok, hash satisfies claimed PoW, 1 <= vtx count <= max, //! timestamp not in future BLOCK_VALID_HEADER = 1, //! All parent headers found, difficulty matches, timestamp >= median //! previous, checkpoint. Implies all parents are also at least TREE. BLOCK_VALID_TREE = 2, /** * Only first tx is coinbase, 2 <= coinbase input script length <= 100, * transactions valid, no duplicate txids, sigops, size, merkle root. * Implies all parents are at least TREE but not necessarily TRANSACTIONS. * When all parent blocks also have TRANSACTIONS, CBlockIndex::nChainTx will * be set. */ BLOCK_VALID_TRANSACTIONS = 3, //! Outputs do not overspend inputs, no double spends, coinbase output ok, //! no immature coinbase spends, BIP30. //! Implies all parents are also at least CHAIN. BLOCK_VALID_CHAIN = 4, //! Scripts & signatures ok. Implies all parents are also at least SCRIPTS. BLOCK_VALID_SCRIPTS = 5, //! All validity bits. BLOCK_VALID_MASK = BLOCK_VALID_HEADER | BLOCK_VALID_TREE | BLOCK_VALID_TRANSACTIONS | BLOCK_VALID_CHAIN | BLOCK_VALID_SCRIPTS, //!< full block available in blk*.dat BLOCK_HAVE_DATA = 8, //!< undo data available in rev*.dat BLOCK_HAVE_UNDO = 16, BLOCK_HAVE_MASK = BLOCK_HAVE_DATA | BLOCK_HAVE_UNDO, //!< stage after last reached validness failed BLOCK_FAILED_VALID = 32, //!< descends from failed block BLOCK_FAILED_CHILD = 64, BLOCK_FAILED_MASK = BLOCK_FAILED_VALID | BLOCK_FAILED_CHILD, }; /** * The block chain is a tree shaped structure starting with the genesis block at * the root, with each block potentially having multiple candidates to be the * next block. A blockindex may have multiple pprev pointing to it, but at most * one of them can be part of the currently active branch. */ class CBlockIndex { public: //! pointer to the hash of the block, if any. Memory is owned by this //! CBlockIndex const uint256 *phashBlock; //! pointer to the index of the predecessor of this block CBlockIndex *pprev; //! pointer to the index of some further predecessor of this block CBlockIndex *pskip; //! height of the entry in the chain. The genesis block has height 0 int nHeight; //! Which # file this block is stored in (blk?????.dat) int nFile; //! Byte offset within blk?????.dat where this block's data is stored unsigned int nDataPos; //! Byte offset within rev?????.dat where this block's undo data is stored unsigned int nUndoPos; //! (memory only) Total amount of work (expected number of hashes) in the //! chain up to and including this block arith_uint256 nChainWork; //! Number of transactions in this block. //! Note: in a potential headers-first mode, this number cannot be relied //! upon unsigned int nTx; //! (memory only) Number of transactions in the chain up to and including //! this block. //! This value will be non-zero only if and only if transactions for this //! block and all its parents are available. Change to 64-bit type when //! necessary; won't happen before 2030 unsigned int nChainTx; //! Verification status of this block. See enum BlockStatus uint32_t nStatus; //! block header int32_t nVersion; uint256 hashMerkleRoot; uint32_t nTime; uint32_t nBits; uint32_t nNonce; //! (memory only) Sequential id assigned to distinguish order in which //! blocks are received. int32_t nSequenceId; //! (memory only) Maximum nTime in the chain upto and including this block. unsigned int nTimeMax; void SetNull() { phashBlock = nullptr; pprev = nullptr; pskip = nullptr; nHeight = 0; nFile = 0; nDataPos = 0; nUndoPos = 0; nChainWork = arith_uint256(); nTx = 0; nChainTx = 0; nStatus = 0; nSequenceId = 0; nTimeMax = 0; nVersion = 0; hashMerkleRoot = uint256(); nTime = 0; nBits = 0; nNonce = 0; } CBlockIndex() { SetNull(); } CBlockIndex(const CBlockHeader &block) { SetNull(); nVersion = block.nVersion; hashMerkleRoot = block.hashMerkleRoot; nTime = block.nTime; nBits = block.nBits; nNonce = block.nNonce; } CDiskBlockPos GetBlockPos() const { CDiskBlockPos ret; if (nStatus & BLOCK_HAVE_DATA) { ret.nFile = nFile; ret.nPos = nDataPos; } return ret; } CDiskBlockPos GetUndoPos() const { CDiskBlockPos ret; if (nStatus & BLOCK_HAVE_UNDO) { ret.nFile = nFile; ret.nPos = nUndoPos; } return ret; } CBlockHeader GetBlockHeader() const { CBlockHeader block; block.nVersion = nVersion; if (pprev) { block.hashPrevBlock = pprev->GetBlockHash(); } block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block; } uint256 GetBlockHash() const { return *phashBlock; } - int64_t GetBlockTime() const { return (int64_t)nTime; } + int64_t GetBlockTime() const { return int64_t(nTime); } - int64_t GetBlockTimeMax() const { return (int64_t)nTimeMax; } + int64_t GetBlockTimeMax() const { return int64_t(nTimeMax); } enum { nMedianTimeSpan = 11 }; int64_t GetMedianTimePast() const { int64_t pmedian[nMedianTimeSpan]; int64_t *pbegin = &pmedian[nMedianTimeSpan]; int64_t *pend = &pmedian[nMedianTimeSpan]; const CBlockIndex *pindex = this; for (int i = 0; i < nMedianTimeSpan && pindex; i++, pindex = pindex->pprev) { *(--pbegin) = pindex->GetBlockTime(); } std::sort(pbegin, pend); return pbegin[(pend - pbegin) / 2]; } std::string ToString() const { return strprintf( "CBlockIndex(pprev=%p, nHeight=%d, merkle=%s, hashBlock=%s)", pprev, nHeight, hashMerkleRoot.ToString(), GetBlockHash().ToString()); } //! Check whether this block index entry is valid up to the passed validity //! level. bool IsValid(enum BlockStatus nUpTo = BLOCK_VALID_TRANSACTIONS) const { // Only validity flags allowed. assert(!(nUpTo & ~BLOCK_VALID_MASK)); if (nStatus & BLOCK_FAILED_MASK) { return false; } return ((nStatus & BLOCK_VALID_MASK) >= nUpTo); } //! Raise the validity level of this block index entry. //! Returns true if the validity was changed. bool RaiseValidity(enum BlockStatus nUpTo) { // Only validity flags allowed. assert(!(nUpTo & ~BLOCK_VALID_MASK)); if (nStatus & BLOCK_FAILED_MASK) { return false; } if ((nStatus & BLOCK_VALID_MASK) < nUpTo) { nStatus = (nStatus & ~BLOCK_VALID_MASK) | nUpTo; return true; } return false; } //! Build the skiplist pointer for this entry. void BuildSkip(); //! Efficiently find an ancestor of this block. CBlockIndex *GetAncestor(int height); const CBlockIndex *GetAncestor(int height) const; }; /** * Maintain a map of CBlockIndex for all known headers. */ struct BlockHasher { size_t operator()(const uint256 &hash) const { return hash.GetCheapHash(); } }; typedef std::unordered_map BlockMap; extern BlockMap mapBlockIndex; arith_uint256 GetBlockProof(const CBlockIndex &block); /** * Return the time it would take to redo the work difference between from and * to, assuming the current hashrate corresponds to the difficulty at tip, in * seconds. */ int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &); /** Used to marshal pointers into hashes for db storage. */ class CDiskBlockIndex : public CBlockIndex { public: uint256 hashPrev; CDiskBlockIndex() { hashPrev = uint256(); } explicit CDiskBlockIndex(const CBlockIndex *pindex) : CBlockIndex(*pindex) { hashPrev = (pprev ? pprev->GetBlockHash() : uint256()); } ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { int nVersion = s.GetVersion(); if (!(s.GetType() & SER_GETHASH)) { READWRITE(VARINT(nVersion)); } READWRITE(VARINT(nHeight)); READWRITE(VARINT(nStatus)); READWRITE(VARINT(nTx)); if (nStatus & (BLOCK_HAVE_DATA | BLOCK_HAVE_UNDO)) { READWRITE(VARINT(nFile)); } if (nStatus & BLOCK_HAVE_DATA) { READWRITE(VARINT(nDataPos)); } if (nStatus & BLOCK_HAVE_UNDO) { READWRITE(VARINT(nUndoPos)); } // block header READWRITE(this->nVersion); READWRITE(hashPrev); READWRITE(hashMerkleRoot); READWRITE(nTime); READWRITE(nBits); READWRITE(nNonce); } uint256 GetBlockHash() const { CBlockHeader block; block.nVersion = nVersion; block.hashPrevBlock = hashPrev; block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block.GetHash(); } std::string ToString() const { std::string str = "CDiskBlockIndex("; str += CBlockIndex::ToString(); str += strprintf("\n hashBlock=%s, hashPrev=%s)", GetBlockHash().ToString(), hashPrev.ToString()); return str; } }; -/** An in-memory indexed chain of blocks. */ +/** + * An in-memory indexed chain of blocks. + */ class CChain { private: std::vector vChain; public: /** * Returns the index entry for the genesis block of this chain, or nullptr * if none. */ CBlockIndex *Genesis() const { return vChain.size() > 0 ? vChain[0] : nullptr; } /** * Returns the index entry for the tip of this chain, or nullptr if none. */ CBlockIndex *Tip() const { return vChain.size() > 0 ? vChain[vChain.size() - 1] : nullptr; } /** * Returns the index entry at a particular height in this chain, or nullptr * if no such height exists. */ CBlockIndex *operator[](int nHeight) const { if (nHeight < 0 || nHeight >= (int)vChain.size()) { return nullptr; } return vChain[nHeight]; } /** Compare two chains efficiently. */ friend bool operator==(const CChain &a, const CChain &b) { return a.vChain.size() == b.vChain.size() && a.vChain[a.vChain.size() - 1] == b.vChain[b.vChain.size() - 1]; } /** Efficiently check whether a block is present in this chain. */ bool Contains(const CBlockIndex *pindex) const { return (*this)[pindex->nHeight] == pindex; } /** * Find the successor of a block in this chain, or nullptr if the given * index is not found or is the tip. */ CBlockIndex *Next(const CBlockIndex *pindex) const { if (!Contains(pindex)) { return nullptr; } return (*this)[pindex->nHeight + 1]; } /** * Return the maximal height in the chain. Is equal to chain.Tip() ? * chain.Tip()->nHeight : -1. */ int Height() const { return vChain.size() - 1; } /** Set/initialize a chain with a given tip. */ void SetTip(CBlockIndex *pindex); /** * Return a CBlockLocator that refers to a block in this chain (by default * the tip). */ CBlockLocator GetLocator(const CBlockIndex *pindex = nullptr) const; /** * Find the last common block between this chain and a block index entry. */ const CBlockIndex *FindFork(const CBlockIndex *pindex) const; /** * Find the earliest block with timestamp equal or greater than the given. */ CBlockIndex *FindEarliestAtLeast(int64_t nTime) const; }; #endif // BITCOIN_CHAIN_H diff --git a/src/primitives/transaction.cpp b/src/primitives/transaction.cpp index 4b447b2cf..56ea1bb0d 100644 --- a/src/primitives/transaction.cpp +++ b/src/primitives/transaction.cpp @@ -1,143 +1,145 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "primitives/transaction.h" #include "hash.h" #include "tinyformat.h" #include "utilstrencodings.h" std::string COutPoint::ToString() const { return strprintf("COutPoint(%s, %u)", hash.ToString().substr(0, 10), n); } CTxIn::CTxIn(COutPoint prevoutIn, CScript scriptSigIn, uint32_t nSequenceIn) { prevout = prevoutIn; scriptSig = scriptSigIn; nSequence = nSequenceIn; } CTxIn::CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn, uint32_t nSequenceIn) { prevout = COutPoint(hashPrevTx, nOut); scriptSig = scriptSigIn; nSequence = nSequenceIn; } std::string CTxIn::ToString() const { std::string str; str += "CTxIn("; str += prevout.ToString(); - if (prevout.IsNull()) + if (prevout.IsNull()) { str += strprintf(", coinbase %s", HexStr(scriptSig)); - else + } else { str += strprintf(", scriptSig=%s", HexStr(scriptSig).substr(0, 24)); - if (nSequence != SEQUENCE_FINAL) + } + if (nSequence != SEQUENCE_FINAL) { str += strprintf(", nSequence=%u", nSequence); + } str += ")"; return str; } CTxOut::CTxOut(const Amount &nValueIn, CScript scriptPubKeyIn) { nValue = nValueIn; scriptPubKey = scriptPubKeyIn; } std::string CTxOut::ToString() const { return strprintf("CTxOut(nValue=%d.%08d, scriptPubKey=%s)", nValue.GetSatoshis() / COIN.GetSatoshis(), nValue.GetSatoshis() % COIN.GetSatoshis(), HexStr(scriptPubKey).substr(0, 30)); } CMutableTransaction::CMutableTransaction() : nVersion(CTransaction::CURRENT_VERSION), nLockTime(0) {} CMutableTransaction::CMutableTransaction(const CTransaction &tx) : nVersion(tx.nVersion), vin(tx.vin), vout(tx.vout), nLockTime(tx.nLockTime) {} uint256 CMutableTransaction::GetId() const { return SerializeHash(*this, SER_GETHASH, 0); } uint256 CTransaction::ComputeHash() const { return SerializeHash(*this, SER_GETHASH, 0); } uint256 CTransaction::GetHash() const { return GetId(); } /** * For backward compatibility, the hash is initialized to 0. * TODO: remove the need for this default constructor entirely. */ CTransaction::CTransaction() : nVersion(CTransaction::CURRENT_VERSION), vin(), vout(), nLockTime(0), hash() {} CTransaction::CTransaction(const CMutableTransaction &tx) : nVersion(tx.nVersion), vin(tx.vin), vout(tx.vout), nLockTime(tx.nLockTime), hash(ComputeHash()) {} CTransaction::CTransaction(CMutableTransaction &&tx) : nVersion(tx.nVersion), vin(std::move(tx.vin)), vout(std::move(tx.vout)), nLockTime(tx.nLockTime), hash(ComputeHash()) {} Amount CTransaction::GetValueOut() const { Amount nValueOut(0); for (std::vector::const_iterator it(vout.begin()); it != vout.end(); ++it) { nValueOut += it->nValue; if (!MoneyRange(it->nValue) || !MoneyRange(nValueOut)) throw std::runtime_error(std::string(__func__) + ": value out of range"); } return nValueOut; } double CTransaction::ComputePriority(double dPriorityInputs, unsigned int nTxSize) const { nTxSize = CalculateModifiedSize(nTxSize); if (nTxSize == 0) return 0.0; return dPriorityInputs / nTxSize; } unsigned int CTransaction::CalculateModifiedSize(unsigned int nTxSize) const { // In order to avoid disincentivizing cleaning up the UTXO set we don't // count the constant overhead for each txin and up to 110 bytes of // scriptSig (which is enough to cover a compressed pubkey p2sh redemption) // for priority. Providing any more cleanup incentive than making additional // inputs free would risk encouraging people to create junk outputs to // redeem later. if (nTxSize == 0) nTxSize = GetTransactionSize(*this); for (std::vector::const_iterator it(vin.begin()); it != vin.end(); ++it) { unsigned int offset = 41U + std::min(110U, (unsigned int)it->scriptSig.size()); if (nTxSize > offset) nTxSize -= offset; } return nTxSize; } unsigned int CTransaction::GetTotalSize() const { return ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION); } std::string CTransaction::ToString() const { std::string str; str += strprintf("CTransaction(txid=%s, ver=%d, vin.size=%u, vout.size=%u, " "nLockTime=%u)\n", GetId().ToString().substr(0, 10), nVersion, vin.size(), vout.size(), nLockTime); for (unsigned int i = 0; i < vin.size(); i++) str += " " + vin[i].ToString() + "\n"; for (unsigned int i = 0; i < vout.size(); i++) str += " " + vout[i].ToString() + "\n"; return str; } int64_t GetTransactionSize(const CTransaction &tx) { return ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); } diff --git a/src/primitives/transaction.h b/src/primitives/transaction.h index 853e52f4b..0ca28fa42 100644 --- a/src/primitives/transaction.h +++ b/src/primitives/transaction.h @@ -1,368 +1,386 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_PRIMITIVES_TRANSACTION_H #define BITCOIN_PRIMITIVES_TRANSACTION_H #include "amount.h" #include "script/script.h" #include "serialize.h" #include "uint256.h" static const int SERIALIZE_TRANSACTION = 0x00; -/** An outpoint - a combination of a transaction hash and an index n into its - * vout */ +/** + * An outpoint - a combination of a transaction hash and an index n into its + * vout. + */ class COutPoint { public: uint256 hash; uint32_t n; COutPoint() { SetNull(); } COutPoint(uint256 hashIn, uint32_t nIn) { hash = hashIn; n = nIn; } ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(hash); READWRITE(n); } void SetNull() { hash.SetNull(); n = (uint32_t)-1; } bool IsNull() const { return (hash.IsNull() && n == (uint32_t)-1); } friend bool operator<(const COutPoint &a, const COutPoint &b) { int cmp = a.hash.Compare(b.hash); return cmp < 0 || (cmp == 0 && a.n < b.n); } friend bool operator==(const COutPoint &a, const COutPoint &b) { return (a.hash == b.hash && a.n == b.n); } friend bool operator!=(const COutPoint &a, const COutPoint &b) { return !(a == b); } std::string ToString() const; }; -/** An input of a transaction. It contains the location of the previous - * transaction's output that it claims and a signature that matches the - * output's public key. +/** + * An input of a transaction. It contains the location of the previous + * transaction's output that it claims and a signature that matches the output's + * public key. */ class CTxIn { public: COutPoint prevout; CScript scriptSig; uint32_t nSequence; - /* Setting nSequence to this value for every input in a transaction - * disables nLockTime. */ + /** + * Setting nSequence to this value for every input in a transaction disables + * nLockTime. + */ static const uint32_t SEQUENCE_FINAL = 0xffffffff; /* Below flags apply in the context of BIP 68*/ - /* If this flag set, CTxIn::nSequence is NOT interpreted as a - * relative lock-time. */ + /** + * If this flag set, CTxIn::nSequence is NOT interpreted as a relative + * lock-time. + */ static const uint32_t SEQUENCE_LOCKTIME_DISABLE_FLAG = (1 << 31); - /* If CTxIn::nSequence encodes a relative lock-time and this flag - * is set, the relative lock-time has units of 512 seconds, - * otherwise it specifies blocks with a granularity of 1. */ + /** + * If CTxIn::nSequence encodes a relative lock-time and this flag is set, + * the relative lock-time has units of 512 seconds, otherwise it specifies + * blocks with a granularity of 1. + */ static const uint32_t SEQUENCE_LOCKTIME_TYPE_FLAG = (1 << 22); - /* If CTxIn::nSequence encodes a relative lock-time, this mask is - * applied to extract that lock-time from the sequence field. */ + /** + * If CTxIn::nSequence encodes a relative lock-time, this mask is applied to + * extract that lock-time from the sequence field. + */ static const uint32_t SEQUENCE_LOCKTIME_MASK = 0x0000ffff; - /* In order to use the same number of bits to encode roughly the - * same wall-clock duration, and because blocks are naturally - * limited to occur every 600s on average, the minimum granularity - * for time-based relative lock-time is fixed at 512 seconds. - * Converting from CTxIn::nSequence to seconds is performed by - * multiplying by 512 = 2^9, or equivalently shifting up by - * 9 bits. */ + /** + * In order to use the same number of bits to encode roughly the same + * wall-clock duration, and because blocks are naturally limited to occur + * every 600s on average, the minimum granularity for time-based relative + * lock-time is fixed at 512 seconds. Converting from CTxIn::nSequence to + * seconds is performed by multiplying by 512 = 2^9, or equivalently + * shifting up by 9 bits. + */ static const int SEQUENCE_LOCKTIME_GRANULARITY = 9; CTxIn() { nSequence = SEQUENCE_FINAL; } explicit CTxIn(COutPoint prevoutIn, CScript scriptSigIn = CScript(), uint32_t nSequenceIn = SEQUENCE_FINAL); CTxIn(uint256 hashPrevTx, uint32_t nOut, CScript scriptSigIn = CScript(), uint32_t nSequenceIn = SEQUENCE_FINAL); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(prevout); READWRITE(*(CScriptBase *)(&scriptSig)); READWRITE(nSequence); } friend bool operator==(const CTxIn &a, const CTxIn &b) { return (a.prevout == b.prevout && a.scriptSig == b.scriptSig && a.nSequence == b.nSequence); } friend bool operator!=(const CTxIn &a, const CTxIn &b) { return !(a == b); } std::string ToString() const; }; /** * An output of a transaction. It contains the public key that the next input * must be able to sign with to claim it. */ class CTxOut { public: Amount nValue; CScript scriptPubKey; CTxOut() { SetNull(); } CTxOut(const Amount &nValueIn, CScript scriptPubKeyIn); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(nValue); READWRITE(*(CScriptBase *)(&scriptPubKey)); } void SetNull() { nValue = Amount(-1); scriptPubKey.clear(); } bool IsNull() const { return (nValue == Amount(-1)); } Amount GetDustThreshold(const CFeeRate &minRelayTxFee) const { - // "Dust" is defined in terms of CTransaction::minRelayTxFee, which has - // units satoshis-per-kilobyte. If you'd pay more than 1/3 in fees to - // spend something, then we consider it dust. A typical spendable - // non-segwit txout is 34 bytes big, and will need a CTxIn of at least - // 148 bytes to spend: so dust is a spendable txout less than - // 546*minRelayTxFee/1000 (in satoshis). A typical spendable segwit - // txout is 31 bytes big, and will need a CTxIn of at least 67 bytes to - // spend: so dust is a spendable txout less than 294*minRelayTxFee/1000 - // (in satoshis). + /** + * "Dust" is defined in terms of CTransaction::minRelayTxFee, which has + * units satoshis-per-kilobyte. If you'd pay more than 1/3 in fees to + * spend something, then we consider it dust. A typical spendable + * non-segwit txout is 34 bytes big, and will need a CTxIn of at least + * 148 bytes to spend: so dust is a spendable txout less than + * 546*minRelayTxFee/1000 (in satoshis). A typical spendable segwit + * txout is 31 bytes big, and will need a CTxIn of at least 67 bytes to + * spend: so dust is a spendable txout less than 294*minRelayTxFee/1000 + * (in satoshis). + */ if (scriptPubKey.IsUnspendable()) return Amount(0); size_t nSize = GetSerializeSize(*this, SER_DISK, 0); // the 148 mentioned above nSize += (32 + 4 + 1 + 107 + 4); return 3 * minRelayTxFee.GetFee(nSize); } bool IsDust(const CFeeRate &minRelayTxFee) const { return (nValue < GetDustThreshold(minRelayTxFee)); } friend bool operator==(const CTxOut &a, const CTxOut &b) { return (a.nValue == b.nValue && a.scriptPubKey == b.scriptPubKey); } friend bool operator!=(const CTxOut &a, const CTxOut &b) { return !(a == b); } std::string ToString() const; }; class CMutableTransaction; /** * Basic transaction serialization format: * - int32_t nVersion * - std::vector vin * - std::vector vout * - uint32_t nLockTime */ template inline void UnserializeTransaction(TxType &tx, Stream &s) { s >> tx.nVersion; tx.vin.clear(); tx.vout.clear(); /* Try to read the vin. In case the dummy is there, this will be read as an * empty vector. */ s >> tx.vin; /* We read a non-empty vin. Assume a normal vout follows. */ s >> tx.vout; s >> tx.nLockTime; } template inline void SerializeTransaction(const TxType &tx, Stream &s) { s << tx.nVersion; s << tx.vin; s << tx.vout; s << tx.nLockTime; } -/** The basic transaction that is broadcasted on the network and contained in - * blocks. A transaction can contain multiple inputs and outputs. +/** + * The basic transaction that is broadcasted on the network and contained in + * blocks. A transaction can contain multiple inputs and outputs. */ class CTransaction { public: // Default transaction version. static const int32_t CURRENT_VERSION = 2; // Changing the default transaction version requires a two step process: // first adapting relay policy by bumping MAX_STANDARD_VERSION, and then // later date bumping the default CURRENT_VERSION at which point both // CURRENT_VERSION and MAX_STANDARD_VERSION will be equal. static const int32_t MAX_STANDARD_VERSION = 2; // The local variables are made const to prevent unintended modification // without updating the cached hash value. However, CTransaction is not // actually immutable; deserialization and assignment are implemented, // and bypass the constness. This is safe, as they update the entire // structure, including the hash. const int32_t nVersion; const std::vector vin; const std::vector vout; const uint32_t nLockTime; private: /** Memory only. */ const uint256 hash; uint256 ComputeHash() const; public: /** Construct a CTransaction that qualifies as IsNull() */ CTransaction(); /** Convert a CMutableTransaction into a CTransaction. */ CTransaction(const CMutableTransaction &tx); CTransaction(CMutableTransaction &&tx); template inline void Serialize(Stream &s) const { SerializeTransaction(*this, s); } - /** This deserializing constructor is provided instead of an Unserialize + /** + * This deserializing constructor is provided instead of an Unserialize * method. Unserialize is not possible, since it would require overwriting - * const fields. */ + * const fields. + */ template CTransaction(deserialize_type, Stream &s) : CTransaction(CMutableTransaction(deserialize, s)) {} bool IsNull() const { return vin.empty() && vout.empty(); } const uint256 &GetId() const { return hash; } // Compute a hash that includes both transaction and witness data uint256 GetHash() const; // Return sum of txouts. Amount GetValueOut() const; // GetValueIn() is a method on CCoinsViewCache, because // inputs must be known to compute value in. // Compute priority, given priority of inputs and (optionally) tx size double ComputePriority(double dPriorityInputs, unsigned int nTxSize = 0) const; // Compute modified tx size for priority calculation (optionally given tx // size) unsigned int CalculateModifiedSize(unsigned int nTxSize = 0) const; /** * Get the total transaction size in bytes. * @return Total transaction size in bytes */ unsigned int GetTotalSize() const; bool IsCoinBase() const { return (vin.size() == 1 && vin[0].prevout.IsNull()); } friend bool operator==(const CTransaction &a, const CTransaction &b) { return a.hash == b.hash; } friend bool operator!=(const CTransaction &a, const CTransaction &b) { return a.hash != b.hash; } std::string ToString() const; }; /** * A mutable version of CTransaction. */ class CMutableTransaction { public: int32_t nVersion; std::vector vin; std::vector vout; uint32_t nLockTime; CMutableTransaction(); CMutableTransaction(const CTransaction &tx); template inline void Serialize(Stream &s) const { SerializeTransaction(*this, s); } template inline void Unserialize(Stream &s) { UnserializeTransaction(*this, s); } template CMutableTransaction(deserialize_type, Stream &s) { Unserialize(s); } - /** Compute the hash of this CMutableTransaction. This is computed on the + /** + * Compute the hash of this CMutableTransaction. This is computed on the * fly, as opposed to GetId() in CTransaction, which uses a cached result. */ uint256 GetId() const; friend bool operator==(const CMutableTransaction &a, const CMutableTransaction &b) { return a.GetId() == b.GetId(); } }; typedef std::shared_ptr CTransactionRef; static inline CTransactionRef MakeTransactionRef() { return std::make_shared(); } template static inline CTransactionRef MakeTransactionRef(Tx &&txIn) { return std::make_shared(std::forward(txIn)); } /** Compute the size of a transaction */ int64_t GetTransactionSize(const CTransaction &tx); /** Precompute sighash midstate to avoid quadratic hashing */ struct PrecomputedTransactionData { uint256 hashPrevouts, hashSequence, hashOutputs; PrecomputedTransactionData() : hashPrevouts(), hashSequence(), hashOutputs() {} PrecomputedTransactionData(const PrecomputedTransactionData &txdata) : hashPrevouts(txdata.hashPrevouts), hashSequence(txdata.hashSequence), hashOutputs(txdata.hashOutputs) {} PrecomputedTransactionData(const CTransaction &tx); }; #endif // BITCOIN_PRIMITIVES_TRANSACTION_H diff --git a/src/protocol.cpp b/src/protocol.cpp index 23004b36a..9dbb98aae 100644 --- a/src/protocol.cpp +++ b/src/protocol.cpp @@ -1,174 +1,175 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "protocol.h" #include "util.h" #include "utilstrencodings.h" #ifndef WIN32 #include #endif namespace NetMsgType { const char *VERSION = "version"; const char *VERACK = "verack"; const char *ADDR = "addr"; const char *INV = "inv"; const char *GETDATA = "getdata"; const char *MERKLEBLOCK = "merkleblock"; const char *GETBLOCKS = "getblocks"; const char *GETHEADERS = "getheaders"; const char *TX = "tx"; const char *HEADERS = "headers"; const char *BLOCK = "block"; const char *GETADDR = "getaddr"; const char *MEMPOOL = "mempool"; const char *PING = "ping"; const char *PONG = "pong"; const char *NOTFOUND = "notfound"; const char *FILTERLOAD = "filterload"; const char *FILTERADD = "filteradd"; const char *FILTERCLEAR = "filterclear"; const char *REJECT = "reject"; const char *SENDHEADERS = "sendheaders"; const char *FEEFILTER = "feefilter"; const char *SENDCMPCT = "sendcmpct"; const char *CMPCTBLOCK = "cmpctblock"; const char *GETBLOCKTXN = "getblocktxn"; const char *BLOCKTXN = "blocktxn"; }; -/** All known message types. Keep this in the same order as the list of - * messages above and in protocol.h. +/** + * All known message types. Keep this in the same order as the list of messages + * above and in protocol.h. */ static const std::string allNetMessageTypes[] = { NetMsgType::VERSION, NetMsgType::VERACK, NetMsgType::ADDR, NetMsgType::INV, NetMsgType::GETDATA, NetMsgType::MERKLEBLOCK, NetMsgType::GETBLOCKS, NetMsgType::GETHEADERS, NetMsgType::TX, NetMsgType::HEADERS, NetMsgType::BLOCK, NetMsgType::GETADDR, NetMsgType::MEMPOOL, NetMsgType::PING, NetMsgType::PONG, NetMsgType::NOTFOUND, NetMsgType::FILTERLOAD, NetMsgType::FILTERADD, NetMsgType::FILTERCLEAR, NetMsgType::REJECT, NetMsgType::SENDHEADERS, NetMsgType::FEEFILTER, NetMsgType::SENDCMPCT, NetMsgType::CMPCTBLOCK, NetMsgType::GETBLOCKTXN, NetMsgType::BLOCKTXN, }; static const std::vector allNetMessageTypesVec(allNetMessageTypes, allNetMessageTypes + ARRAYLEN(allNetMessageTypes)); CMessageHeader::CMessageHeader(const MessageMagic &pchMessageStartIn) { memcpy(std::begin(pchMessageStart), std::begin(pchMessageStartIn), MESSAGE_START_SIZE); memset(pchCommand, 0, sizeof(pchCommand)); nMessageSize = -1; memset(pchChecksum, 0, CHECKSUM_SIZE); } CMessageHeader::CMessageHeader(const MessageMagic &pchMessageStartIn, const char *pszCommand, unsigned int nMessageSizeIn) { memcpy(std::begin(pchMessageStart), std::begin(pchMessageStartIn), MESSAGE_START_SIZE); memset(pchCommand, 0, sizeof(pchCommand)); strncpy(pchCommand, pszCommand, COMMAND_SIZE); nMessageSize = nMessageSizeIn; memset(pchChecksum, 0, CHECKSUM_SIZE); } std::string CMessageHeader::GetCommand() const { return std::string(pchCommand, pchCommand + strnlen(pchCommand, COMMAND_SIZE)); } bool CMessageHeader::IsValid(const MessageMagic &pchMessageStartIn) const { // Check start string if (memcmp(std::begin(pchMessageStart), std::begin(pchMessageStartIn), MESSAGE_START_SIZE) != 0) { return false; } // Check the command string for errors for (const char *p1 = pchCommand; p1 < pchCommand + COMMAND_SIZE; p1++) { if (*p1 == 0) { // Must be all zeros after the first zero for (; p1 < pchCommand + COMMAND_SIZE; p1++) { if (*p1 != 0) { return false; } } } else if (*p1 < ' ' || *p1 > 0x7E) { return false; } } // Message size if (nMessageSize > MAX_SIZE) { LogPrintf("CMessageHeader::IsValid(): (%s, %u bytes) nMessageSize > " "MAX_SIZE\n", GetCommand(), nMessageSize); return false; } return true; } CAddress::CAddress() : CService() { Init(); } CAddress::CAddress(CService ipIn, ServiceFlags nServicesIn) : CService(ipIn) { Init(); nServices = nServicesIn; } void CAddress::Init() { nServices = NODE_NONE; nTime = 100000000; } CInv::CInv() { type = 0; hash.SetNull(); } CInv::CInv(int typeIn, const uint256 &hashIn) { type = typeIn; hash = hashIn; } bool operator<(const CInv &a, const CInv &b) { return (a.type < b.type || (a.type == b.type && a.hash < b.hash)); } std::string CInv::GetCommand() const { std::string cmd; if (type & MSG_EXT_FLAG) cmd.append("extblk-"); switch (GetKind()) { case MSG_TX: return cmd.append(NetMsgType::TX); case MSG_BLOCK: return cmd.append(NetMsgType::BLOCK); case MSG_FILTERED_BLOCK: return cmd.append(NetMsgType::MERKLEBLOCK); case MSG_CMPCT_BLOCK: return cmd.append(NetMsgType::CMPCTBLOCK); default: throw std::out_of_range( strprintf("CInv::GetCommand(): type=%d unknown type", type)); } } std::string CInv::ToString() const { try { return strprintf("%s %s", GetCommand(), hash.ToString()); } catch (const std::out_of_range &) { return strprintf("0x%08x %s", type, hash.ToString()); } } const std::vector &getAllNetMessageTypes() { return allNetMessageTypesVec; } diff --git a/src/validation.cpp b/src/validation.cpp index 9d7a6d64c..b7428bf0b 100644 --- a/src/validation.cpp +++ b/src/validation.cpp @@ -1,5071 +1,5072 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Copyright (c) 2017 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "validation.h" #include "arith_uint256.h" #include "chainparams.h" #include "checkpoints.h" #include "checkqueue.h" #include "config.h" #include "consensus/consensus.h" #include "consensus/merkle.h" #include "consensus/validation.h" #include "hash.h" #include "init.h" #include "policy/fees.h" #include "policy/policy.h" #include "pow.h" #include "primitives/block.h" #include "primitives/transaction.h" #include "random.h" #include "script/script.h" #include "script/scriptcache.h" #include "script/sigcache.h" #include "script/standard.h" #include "timedata.h" #include "tinyformat.h" #include "txdb.h" #include "txmempool.h" #include "ui_interface.h" #include "undo.h" #include "util.h" #include "utilmoneystr.h" #include "utilstrencodings.h" #include "validationinterface.h" #include "versionbits.h" #include "warnings.h" #include #include #include #include #include #include #include #include #include #if defined(NDEBUG) #error "Bitcoin cannot be compiled without assertions." #endif /** * Global state */ CCriticalSection cs_main; BlockMap mapBlockIndex; CChain chainActive; CBlockIndex *pindexBestHeader = nullptr; CWaitableCriticalSection csBestBlock; CConditionVariable cvBlockChange; int nScriptCheckThreads = 0; std::atomic_bool fImporting(false); bool fReindex = false; bool fTxIndex = false; bool fHavePruned = false; bool fPruneMode = false; bool fIsBareMultisigStd = DEFAULT_PERMIT_BAREMULTISIG; bool fRequireStandard = true; bool fCheckBlockIndex = false; bool fCheckpointsEnabled = DEFAULT_CHECKPOINTS_ENABLED; size_t nCoinCacheUsage = 5000 * 300; uint64_t nPruneTarget = 0; int64_t nMaxTipAge = DEFAULT_MAX_TIP_AGE; uint256 hashAssumeValid; CFeeRate minRelayTxFee = CFeeRate(DEFAULT_MIN_RELAY_TX_FEE); Amount maxTxFee = DEFAULT_TRANSACTION_MAXFEE; CTxMemPool mempool(::minRelayTxFee); static void CheckBlockIndex(const Consensus::Params &consensusParams); /** Constant stuff for coinbase transactions we create: */ CScript COINBASE_FLAGS; const std::string strMessageMagic = "Bitcoin Signed Message:\n"; // Internal stuff namespace { struct CBlockIndexWorkComparator { bool operator()(CBlockIndex *pa, CBlockIndex *pb) const { // First sort by most total work, ... if (pa->nChainWork > pb->nChainWork) return false; if (pa->nChainWork < pb->nChainWork) return true; // ... then by earliest time received, ... if (pa->nSequenceId < pb->nSequenceId) return false; if (pa->nSequenceId > pb->nSequenceId) return true; // Use pointer address as tie breaker (should only happen with blocks // loaded from disk, as those all have id 0). if (pa < pb) return false; if (pa > pb) return true; // Identical blocks. return false; } }; CBlockIndex *pindexBestInvalid; /** * The set of all CBlockIndex entries with BLOCK_VALID_TRANSACTIONS (for itself * and all ancestors) and as good as our current tip or better. Entries may be * failed, though, and pruning nodes may be missing the data for the block. */ std::set setBlockIndexCandidates; /** * All pairs A->B, where A (or one of its ancestors) misses transactions, but B * has transactions. Pruned nodes may have entries where B is missing data. */ std::multimap mapBlocksUnlinked; CCriticalSection cs_LastBlockFile; std::vector vinfoBlockFile; int nLastBlockFile = 0; /** * Global flag to indicate we should check to see if there are block/undo files * that should be deleted. Set on startup or if we allocate more file space when * we're in prune mode. */ bool fCheckForPruning = false; /** * Every received block is assigned a unique and increasing identifier, so we * know which one to give priority in case of a fork. */ CCriticalSection cs_nBlockSequenceId; /** Blocks loaded from disk are assigned id 0, so start the counter at 1. */ int32_t nBlockSequenceId = 1; /** Decreasing counter (used by subsequent preciousblock calls). */ int32_t nBlockReverseSequenceId = -1; /** chainwork for the last block that preciousblock has been applied to. */ arith_uint256 nLastPreciousChainwork = 0; /** Dirty block index entries. */ std::set setDirtyBlockIndex; /** Dirty block file entries. */ std::set setDirtyFileInfo; } // namespace -/* Use this class to start tracking transactions that are removed from the +/** + * Use this class to start tracking transactions that are removed from the * mempool and pass all those transactions through SyncTransaction when the * object goes out of scope. This is currently only used to call SyncTransaction - * on conflicts removed from the mempool during block connection. Applied in + * on conflicts removed from the mempool during block connection. Applied in * ActivateBestChain around ActivateBestStep which in turn calls: * ConnectTip->removeForBlock->removeConflicts */ class MemPoolConflictRemovalTracker { private: std::vector conflictedTxs; CTxMemPool &pool; public: MemPoolConflictRemovalTracker(CTxMemPool &_pool) : pool(_pool) { pool.NotifyEntryRemoved.connect(boost::bind( &MemPoolConflictRemovalTracker::NotifyEntryRemoved, this, _1, _2)); } void NotifyEntryRemoved(CTransactionRef txRemoved, MemPoolRemovalReason reason) { if (reason == MemPoolRemovalReason::CONFLICT) { conflictedTxs.push_back(txRemoved); } } ~MemPoolConflictRemovalTracker() { pool.NotifyEntryRemoved.disconnect(boost::bind( &MemPoolConflictRemovalTracker::NotifyEntryRemoved, this, _1, _2)); for (const auto &tx : conflictedTxs) { GetMainSignals().SyncTransaction( *tx, nullptr, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK); } conflictedTxs.clear(); } }; CBlockIndex *FindForkInGlobalIndex(const CChain &chain, const CBlockLocator &locator) { // Find the first block the caller has in the main chain for (const uint256 &hash : locator.vHave) { BlockMap::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) { CBlockIndex *pindex = (*mi).second; if (chain.Contains(pindex)) return pindex; if (pindex->GetAncestor(chain.Height()) == chain.Tip()) { return chain.Tip(); } } } return chain.Genesis(); } CCoinsViewCache *pcoinsTip = nullptr; CBlockTreeDB *pblocktree = nullptr; enum FlushStateMode { FLUSH_STATE_NONE, FLUSH_STATE_IF_NEEDED, FLUSH_STATE_PERIODIC, FLUSH_STATE_ALWAYS }; // See definition for documentation static bool FlushStateToDisk(CValidationState &state, FlushStateMode mode, int nManualPruneHeight = 0); static void FindFilesToPruneManual(std::set &setFilesToPrune, int nManualPruneHeight); static uint32_t GetBlockScriptFlags(const CBlockIndex *pindex, const Config &config); static bool IsFinalTx(const CTransaction &tx, int nBlockHeight, int64_t nBlockTime) { if (tx.nLockTime == 0) { return true; } int64_t lockTime = tx.nLockTime; int64_t lockTimeLimit = (lockTime < LOCKTIME_THRESHOLD) ? nBlockHeight : nBlockTime; if (lockTime < lockTimeLimit) { return true; } for (const auto &txin : tx.vin) { if (txin.nSequence != CTxIn::SEQUENCE_FINAL) { return false; } } return true; } /** * Calculates the block height and previous block's median time past at * which the transaction will be considered final in the context of BIP 68. * Also removes from the vector of input heights any entries which did not * correspond to sequence locked inputs as they do not affect the calculation. */ static std::pair CalculateSequenceLocks(const CTransaction &tx, int flags, std::vector *prevHeights, const CBlockIndex &block) { assert(prevHeights->size() == tx.vin.size()); // Will be set to the equivalent height- and time-based nLockTime // values that would be necessary to satisfy all relative lock- // time constraints given our view of block chain history. // The semantics of nLockTime are the last invalid height/time, so // use -1 to have the effect of any height or time being valid. int nMinHeight = -1; int64_t nMinTime = -1; // tx.nVersion is signed integer so requires cast to unsigned otherwise // we would be doing a signed comparison and half the range of nVersion // wouldn't support BIP 68. bool fEnforceBIP68 = static_cast(tx.nVersion) >= 2 && flags & LOCKTIME_VERIFY_SEQUENCE; // Do not enforce sequence numbers as a relative lock time // unless we have been instructed to if (!fEnforceBIP68) { return std::make_pair(nMinHeight, nMinTime); } for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) { const CTxIn &txin = tx.vin[txinIndex]; // Sequence numbers with the most significant bit set are not // treated as relative lock-times, nor are they given any // consensus-enforced meaning at this point. if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_DISABLE_FLAG) { // The height of this input is not relevant for sequence locks (*prevHeights)[txinIndex] = 0; continue; } int nCoinHeight = (*prevHeights)[txinIndex]; if (txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG) { int64_t nCoinTime = block.GetAncestor(std::max(nCoinHeight - 1, 0)) ->GetMedianTimePast(); // NOTE: Subtract 1 to maintain nLockTime semantics. // BIP 68 relative lock times have the semantics of calculating the // first block or time at which the transaction would be valid. When // calculating the effective block time or height for the entire // transaction, we switch to using the semantics of nLockTime which // is the last invalid block time or height. Thus we subtract 1 from // the calculated time or height. // Time-based relative lock-times are measured from the smallest // allowed timestamp of the block containing the txout being spent, // which is the median time past of the block prior. nMinTime = std::max( nMinTime, nCoinTime + (int64_t)((txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) << CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) - 1); } else { nMinHeight = std::max( nMinHeight, nCoinHeight + (int)(txin.nSequence & CTxIn::SEQUENCE_LOCKTIME_MASK) - 1); } } return std::make_pair(nMinHeight, nMinTime); } static bool EvaluateSequenceLocks(const CBlockIndex &block, std::pair lockPair) { assert(block.pprev); int64_t nBlockTime = block.pprev->GetMedianTimePast(); if (lockPair.first >= block.nHeight || lockPair.second >= nBlockTime) return false; return true; } bool SequenceLocks(const CTransaction &tx, int flags, std::vector *prevHeights, const CBlockIndex &block) { return EvaluateSequenceLocks( block, CalculateSequenceLocks(tx, flags, prevHeights, block)); } bool TestLockPointValidity(const LockPoints *lp) { AssertLockHeld(cs_main); assert(lp); // If there are relative lock times then the maxInputBlock will be set // If there are no relative lock times, the LockPoints don't depend on the // chain if (lp->maxInputBlock) { // Check whether chainActive is an extension of the block at which the // LockPoints // calculation was valid. If not LockPoints are no longer valid if (!chainActive.Contains(lp->maxInputBlock)) { return false; } } // LockPoints still valid return true; } bool CheckSequenceLocks(const CTransaction &tx, int flags, LockPoints *lp, bool useExistingLockPoints) { AssertLockHeld(cs_main); AssertLockHeld(mempool.cs); CBlockIndex *tip = chainActive.Tip(); CBlockIndex index; index.pprev = tip; // CheckSequenceLocks() uses chainActive.Height()+1 to evaluate height based // locks because when SequenceLocks() is called within ConnectBlock(), the // height of the block *being* evaluated is what is used. Thus if we want to // know if a transaction can be part of the *next* block, we need to use one // more than chainActive.Height() index.nHeight = tip->nHeight + 1; std::pair lockPair; if (useExistingLockPoints) { assert(lp); lockPair.first = lp->height; lockPair.second = lp->time; } else { // pcoinsTip contains the UTXO set for chainActive.Tip() CCoinsViewMemPool viewMemPool(pcoinsTip, mempool); std::vector prevheights; prevheights.resize(tx.vin.size()); for (size_t txinIndex = 0; txinIndex < tx.vin.size(); txinIndex++) { const CTxIn &txin = tx.vin[txinIndex]; Coin coin; if (!viewMemPool.GetCoin(txin.prevout, coin)) { return error("%s: Missing input", __func__); } if (coin.GetHeight() == MEMPOOL_HEIGHT) { // Assume all mempool transaction confirm in the next block prevheights[txinIndex] = tip->nHeight + 1; } else { prevheights[txinIndex] = coin.GetHeight(); } } lockPair = CalculateSequenceLocks(tx, flags, &prevheights, index); if (lp) { lp->height = lockPair.first; lp->time = lockPair.second; // Also store the hash of the block with the highest height of all // the blocks which have sequence locked prevouts. This hash needs // to still be on the chain for these LockPoint calculations to be // valid. // Note: It is impossible to correctly calculate a maxInputBlock if // any of the sequence locked inputs depend on unconfirmed txs, // except in the special case where the relative lock time/height is // 0, which is equivalent to no sequence lock. Since we assume input // height of tip+1 for mempool txs and test the resulting lockPair // from CalculateSequenceLocks against tip+1. We know // EvaluateSequenceLocks will fail if there was a non-zero sequence // lock on a mempool input, so we can use the return value of // CheckSequenceLocks to indicate the LockPoints validity int maxInputHeight = 0; for (int height : prevheights) { // Can ignore mempool inputs since we'll fail if they had // non-zero locks if (height != tip->nHeight + 1) { maxInputHeight = std::max(maxInputHeight, height); } } lp->maxInputBlock = tip->GetAncestor(maxInputHeight); } } return EvaluateSequenceLocks(index, lockPair); } uint64_t GetSigOpCountWithoutP2SH(const CTransaction &tx) { uint64_t nSigOps = 0; for (const auto &txin : tx.vin) { nSigOps += txin.scriptSig.GetSigOpCount(false); } for (const auto &txout : tx.vout) { nSigOps += txout.scriptPubKey.GetSigOpCount(false); } return nSigOps; } uint64_t GetP2SHSigOpCount(const CTransaction &tx, const CCoinsViewCache &inputs) { if (tx.IsCoinBase()) { return 0; } uint64_t nSigOps = 0; for (auto &i : tx.vin) { const CTxOut &prevout = inputs.GetOutputFor(i); if (prevout.scriptPubKey.IsPayToScriptHash()) { nSigOps += prevout.scriptPubKey.GetSigOpCount(i.scriptSig); } } return nSigOps; } uint64_t GetTransactionSigOpCount(const CTransaction &tx, const CCoinsViewCache &inputs, int flags) { uint64_t nSigOps = GetSigOpCountWithoutP2SH(tx); if (tx.IsCoinBase()) { return nSigOps; } if (flags & SCRIPT_VERIFY_P2SH) { nSigOps += GetP2SHSigOpCount(tx, inputs); } return nSigOps; } static bool CheckTransactionCommon(const CTransaction &tx, CValidationState &state, bool fCheckDuplicateInputs) { // Basic checks that don't depend on any context if (tx.vin.empty()) { return state.DoS(10, false, REJECT_INVALID, "bad-txns-vin-empty"); } if (tx.vout.empty()) { return state.DoS(10, false, REJECT_INVALID, "bad-txns-vout-empty"); } // Size limit if (::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION) > MAX_TX_SIZE) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-oversize"); } // Check for negative or overflow output values Amount nValueOut(0); for (const auto &txout : tx.vout) { if (txout.nValue < Amount(0)) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-negative"); } if (txout.nValue > MAX_MONEY) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-vout-toolarge"); } nValueOut += txout.nValue; if (!MoneyRange(nValueOut)) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-txouttotal-toolarge"); } } if (GetSigOpCountWithoutP2SH(tx) > MAX_TX_SIGOPS_COUNT) { return state.DoS(100, false, REJECT_INVALID, "bad-txn-sigops"); } // Check for duplicate inputs - note that this check is slow so we skip it // in CheckBlock if (fCheckDuplicateInputs) { std::set vInOutPoints; for (const auto &txin : tx.vin) { if (!vInOutPoints.insert(txin.prevout).second) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputs-duplicate"); } } } return true; } bool CheckCoinbase(const CTransaction &tx, CValidationState &state, bool fCheckDuplicateInputs) { if (!tx.IsCoinBase()) { return state.DoS(100, false, REJECT_INVALID, "bad-cb-missing", false, "first tx is not coinbase"); } if (!CheckTransactionCommon(tx, state, fCheckDuplicateInputs)) { // CheckTransactionCommon fill in the state. return false; } if (tx.vin[0].scriptSig.size() < 2 || tx.vin[0].scriptSig.size() > 100) { return state.DoS(100, false, REJECT_INVALID, "bad-cb-length"); } return true; } bool CheckRegularTransaction(const CTransaction &tx, CValidationState &state, bool fCheckDuplicateInputs) { if (tx.IsCoinBase()) { return state.DoS(100, false, REJECT_INVALID, "bad-tx-coinbase"); } if (!CheckTransactionCommon(tx, state, fCheckDuplicateInputs)) { // CheckTransactionCommon fill in the state. return false; } for (const auto &txin : tx.vin) { if (txin.prevout.IsNull()) { return state.DoS(10, false, REJECT_INVALID, "bad-txns-prevout-null"); } } return true; } void LimitMempoolSize(CTxMemPool &pool, size_t limit, unsigned long age) { int expired = pool.Expire(GetTime() - age); if (expired != 0) { LogPrint("mempool", "Expired %i transactions from the memory pool\n", expired); } std::vector vNoSpendsRemaining; pool.TrimToSize(limit, &vNoSpendsRemaining); for (const COutPoint &removed : vNoSpendsRemaining) { pcoinsTip->Uncache(removed); } } /** Convert CValidationState to a human-readable message for logging */ std::string FormatStateMessage(const CValidationState &state) { return strprintf( "%s%s (code %i)", state.GetRejectReason(), state.GetDebugMessage().empty() ? "" : ", " + state.GetDebugMessage(), state.GetRejectCode()); } static bool IsCurrentForFeeEstimation() { AssertLockHeld(cs_main); if (IsInitialBlockDownload()) { return false; } if (chainActive.Tip()->GetBlockTime() < (GetTime() - MAX_FEE_ESTIMATION_TIP_AGE)) { return false; } if (chainActive.Height() < pindexBestHeader->nHeight - 1) { return false; } return true; } static bool IsUAHFenabled(const Config &config, int nHeight) { return nHeight >= config.GetChainParams().GetConsensus().uahfHeight; } bool IsUAHFenabled(const Config &config, const CBlockIndex *pindexPrev) { if (pindexPrev == nullptr) { return false; } return IsUAHFenabled(config, pindexPrev->nHeight); } static bool IsDAAEnabled(const Config &config, int nHeight) { return nHeight >= config.GetChainParams().GetConsensus().daaHeight; } bool IsDAAEnabled(const Config &config, const CBlockIndex *pindexPrev) { if (pindexPrev == nullptr) { return false; } return IsDAAEnabled(config, pindexPrev->nHeight); } // Used to avoid mempool polluting consensus critical paths if CCoinsViewMempool // were somehow broken and returning the wrong scriptPubKeys static bool CheckInputsFromMempoolAndCache(const CTransaction &tx, CValidationState &state, const CCoinsViewCache &view, CTxMemPool &pool, uint32_t flags, bool cacheSigStore, PrecomputedTransactionData &txdata) { AssertLockHeld(cs_main); // pool.cs should be locked already, but go ahead and re-take the lock here // to enforce that mempool doesn't change between when we check the view and // when we actually call through to CheckInputs LOCK(pool.cs); assert(!tx.IsCoinBase()); for (const CTxIn &txin : tx.vin) { const Coin &coin = view.AccessCoin(txin.prevout); // At this point we haven't actually checked if the coins are all // available (or shouldn't assume we have, since CheckInputs does). So // we just return failure if the inputs are not available here, and then // only have to check equivalence for available inputs. if (coin.IsSpent()) { return false; } const CTransactionRef &txFrom = pool.get(txin.prevout.hash); if (txFrom) { assert(txFrom->GetHash() == txin.prevout.hash); assert(txFrom->vout.size() > txin.prevout.n); assert(txFrom->vout[txin.prevout.n] == coin.GetTxOut()); } else { const Coin &coinFromDisk = pcoinsTip->AccessCoin(txin.prevout); assert(!coinFromDisk.IsSpent()); assert(coinFromDisk.GetTxOut() == coin.GetTxOut()); } } return CheckInputs(tx, state, view, true, flags, cacheSigStore, true, txdata); } static bool AcceptToMemoryPoolWorker( const Config &config, CTxMemPool &pool, CValidationState &state, const CTransactionRef &ptx, bool fLimitFree, bool *pfMissingInputs, int64_t nAcceptTime, std::list *plTxnReplaced, bool fOverrideMempoolLimit, const Amount nAbsurdFee, std::vector &coins_to_uncache) { AssertLockHeld(cs_main); const CTransaction &tx = *ptx; const uint256 txid = tx.GetId(); if (pfMissingInputs) { *pfMissingInputs = false; } // Coinbase is only valid in a block, not as a loose transaction. if (!CheckRegularTransaction(tx, state, true)) { // state filled in by CheckRegularTransaction. return false; } // Rather not work on nonstandard transactions (unless -testnet/-regtest) std::string reason; if (fRequireStandard && !IsStandardTx(tx, reason)) { return state.DoS(0, false, REJECT_NONSTANDARD, reason); } // Only accept nLockTime-using transactions that can be mined in the next // block; we don't want our mempool filled up with transactions that can't // be mined yet. CValidationState ctxState; if (!ContextualCheckTransactionForCurrentBlock( config, tx, ctxState, STANDARD_LOCKTIME_VERIFY_FLAGS)) { // We copy the state from a dummy to ensure we don't increase the // ban score of peer for transaction that could be valid in the future. return state.DoS( 0, false, REJECT_NONSTANDARD, ctxState.GetRejectReason(), ctxState.CorruptionPossible(), ctxState.GetDebugMessage()); } // Is it already in the memory pool? if (pool.exists(txid)) { return state.Invalid(false, REJECT_ALREADY_KNOWN, "txn-already-in-mempool"); } // Check for conflicts with in-memory transactions { // Protect pool.mapNextTx LOCK(pool.cs); for (const CTxIn &txin : tx.vin) { auto itConflicting = pool.mapNextTx.find(txin.prevout); if (itConflicting != pool.mapNextTx.end()) { // Disable replacement feature for good return state.Invalid(false, REJECT_CONFLICT, "txn-mempool-conflict"); } } } { CCoinsView dummy; CCoinsViewCache view(&dummy); Amount nValueIn(0); LockPoints lp; { LOCK(pool.cs); CCoinsViewMemPool viewMemPool(pcoinsTip, pool); view.SetBackend(viewMemPool); // Do we already have it? for (size_t out = 0; out < tx.vout.size(); out++) { COutPoint outpoint(txid, out); bool had_coin_in_cache = pcoinsTip->HaveCoinInCache(outpoint); if (view.HaveCoin(outpoint)) { if (!had_coin_in_cache) { coins_to_uncache.push_back(outpoint); } return state.Invalid(false, REJECT_ALREADY_KNOWN, "txn-already-known"); } } // Do all inputs exist? for (const CTxIn txin : tx.vin) { if (!pcoinsTip->HaveCoinInCache(txin.prevout)) { coins_to_uncache.push_back(txin.prevout); } if (!view.HaveCoin(txin.prevout)) { if (pfMissingInputs) { *pfMissingInputs = true; } // fMissingInputs and !state.IsInvalid() is used to detect // this condition, don't set state.Invalid() return false; } } // Are the actual inputs available? if (!view.HaveInputs(tx)) { return state.Invalid(false, REJECT_DUPLICATE, "bad-txns-inputs-spent"); } // Bring the best block into scope. view.GetBestBlock(); nValueIn = view.GetValueIn(tx); // We have all inputs cached now, so switch back to dummy, so we // don't need to keep lock on mempool. view.SetBackend(dummy); // Only accept BIP68 sequence locked transactions that can be mined // in the next block; we don't want our mempool filled up with // transactions that can't be mined yet. Must keep pool.cs for this // unless we change CheckSequenceLocks to take a CoinsViewCache // instead of create its own. if (!CheckSequenceLocks(tx, STANDARD_LOCKTIME_VERIFY_FLAGS, &lp)) { return state.DoS(0, false, REJECT_NONSTANDARD, "non-BIP68-final"); } } // Check for non-standard pay-to-script-hash in inputs if (fRequireStandard && !AreInputsStandard(tx, view)) { return state.Invalid(false, REJECT_NONSTANDARD, "bad-txns-nonstandard-inputs"); } int64_t nSigOpsCount = GetTransactionSigOpCount(tx, view, STANDARD_SCRIPT_VERIFY_FLAGS); Amount nValueOut = tx.GetValueOut(); Amount nFees = nValueIn - nValueOut; // nModifiedFees includes any fee deltas from PrioritiseTransaction Amount nModifiedFees = nFees; double nPriorityDummy = 0; pool.ApplyDeltas(txid, nPriorityDummy, nModifiedFees); Amount inChainInputValue; double dPriority = view.GetPriority(tx, chainActive.Height(), inChainInputValue); // Keep track of transactions that spend a coinbase, which we re-scan // during reorgs to ensure COINBASE_MATURITY is still met. bool fSpendsCoinbase = false; for (const CTxIn &txin : tx.vin) { const Coin &coin = view.AccessCoin(txin.prevout); if (coin.IsCoinBase()) { fSpendsCoinbase = true; break; } } CTxMemPoolEntry entry(ptx, nFees, nAcceptTime, dPriority, chainActive.Height(), inChainInputValue, fSpendsCoinbase, nSigOpsCount, lp); unsigned int nSize = entry.GetTxSize(); // Check that the transaction doesn't have an excessive number of // sigops, making it impossible to mine. Since the coinbase transaction // itself can contain sigops MAX_STANDARD_TX_SIGOPS is less than // MAX_BLOCK_SIGOPS_PER_MB; we still consider this an invalid rather // than merely non-standard transaction. if (nSigOpsCount > MAX_STANDARD_TX_SIGOPS) { return state.DoS(0, false, REJECT_NONSTANDARD, "bad-txns-too-many-sigops", false, strprintf("%d", nSigOpsCount)); } Amount mempoolRejectFee = pool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000) .GetFee(nSize); if (mempoolRejectFee > Amount(0) && nModifiedFees < mempoolRejectFee) { return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool min fee not met", false, strprintf("%d < %d", nFees, mempoolRejectFee)); } if (GetBoolArg("-relaypriority", DEFAULT_RELAYPRIORITY) && nModifiedFees < ::minRelayTxFee.GetFee(nSize) && !AllowFree(entry.GetPriority(chainActive.Height() + 1))) { // Require that free transactions have sufficient priority to be // mined in the next block. return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "insufficient priority"); } // Continuously rate-limit free (really, very-low-fee) transactions. // This mitigates 'penny-flooding' -- sending thousands of free // transactions just to be annoying or make others' transactions take // longer to confirm. if (fLimitFree && nModifiedFees < ::minRelayTxFee.GetFee(nSize)) { static CCriticalSection csFreeLimiter; static double dFreeCount; static int64_t nLastTime; int64_t nNow = GetTime(); LOCK(csFreeLimiter); // Use an exponentially decaying ~10-minute window: dFreeCount *= pow(1.0 - 1.0 / 600.0, double(nNow - nLastTime)); nLastTime = nNow; // -limitfreerelay unit is thousand-bytes-per-minute // At default rate it would take over a month to fill 1GB if (dFreeCount + nSize >= GetArg("-limitfreerelay", DEFAULT_LIMITFREERELAY) * 10 * 1000) { return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "rate limited free transaction"); } LogPrint("mempool", "Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount + nSize); dFreeCount += nSize; } if (nAbsurdFee != Amount(0) && nFees > nAbsurdFee) { return state.Invalid(false, REJECT_HIGHFEE, "absurdly-high-fee", strprintf("%d > %d", nFees, nAbsurdFee)); } // Calculate in-mempool ancestors, up to a limit. CTxMemPool::setEntries setAncestors; size_t nLimitAncestors = GetArg("-limitancestorcount", DEFAULT_ANCESTOR_LIMIT); size_t nLimitAncestorSize = GetArg("-limitancestorsize", DEFAULT_ANCESTOR_SIZE_LIMIT) * 1000; size_t nLimitDescendants = GetArg("-limitdescendantcount", DEFAULT_DESCENDANT_LIMIT); size_t nLimitDescendantSize = GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT) * 1000; std::string errString; if (!pool.CalculateMemPoolAncestors( entry, setAncestors, nLimitAncestors, nLimitAncestorSize, nLimitDescendants, nLimitDescendantSize, errString)) { return state.DoS(0, false, REJECT_NONSTANDARD, "too-long-mempool-chain", false, errString); } uint32_t scriptVerifyFlags = STANDARD_SCRIPT_VERIFY_FLAGS; if (!Params().RequireStandard()) { scriptVerifyFlags = GetArg("-promiscuousmempoolflags", scriptVerifyFlags); } // Check against previous transactions. This is done last to help // prevent CPU exhaustion denial-of-service attacks. PrecomputedTransactionData txdata(tx); if (!CheckInputs(tx, state, view, true, scriptVerifyFlags, true, false, txdata)) { // State filled in by CheckInputs. return false; } // Check again against the current block tip's script verification flags // to cache our script execution flags. This is, of course, useless if // the next block has different script flags from the previous one, but // because the cache tracks script flags for us it will auto-invalidate // and we'll just have a few blocks of extra misses on soft-fork // activation. // // This is also useful in case of bugs in the standard flags that cause // transactions to pass as valid when they're actually invalid. For // instance the STRICTENC flag was incorrectly allowing certain CHECKSIG // NOT scripts to pass, even though they were invalid. // // There is a similar check in CreateNewBlock() to prevent creating // invalid blocks (using TestBlockValidity), however allowing such // transactions into the mempool can be exploited as a DoS attack. uint32_t currentBlockScriptVerifyFlags = GetBlockScriptFlags(chainActive.Tip(), config); if (!CheckInputsFromMempoolAndCache(tx, state, view, pool, currentBlockScriptVerifyFlags, true, txdata)) { // If we're using promiscuousmempoolflags, we may hit this normally. // Check if current block has some flags that scriptVerifyFlags does // not before printing an ominous warning. if (!(~scriptVerifyFlags & currentBlockScriptVerifyFlags)) { return error( "%s: BUG! PLEASE REPORT THIS! ConnectInputs failed against " "MANDATORY but not STANDARD flags %s, %s", __func__, txid.ToString(), FormatStateMessage(state)); } if (!CheckInputs(tx, state, view, true, MANDATORY_SCRIPT_VERIFY_FLAGS, true, false, txdata)) { return error( "%s: ConnectInputs failed against MANDATORY but not " "STANDARD flags due to promiscuous mempool %s, %s", __func__, txid.ToString(), FormatStateMessage(state)); } LogPrintf("Warning: -promiscuousmempool flags set to not include " "currently enforced soft forks, this may break mining or " "otherwise cause instability!\n"); } // This transaction should only count for fee estimation if // the node is not behind and it is not dependent on any other // transactions in the mempool. bool validForFeeEstimation = IsCurrentForFeeEstimation() && pool.HasNoInputsOf(tx); // Store transaction in memory. pool.addUnchecked(txid, entry, setAncestors, validForFeeEstimation); // Trim mempool and check if tx was trimmed. if (!fOverrideMempoolLimit) { LimitMempoolSize( pool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60); if (!pool.exists(txid)) { return state.DoS(0, false, REJECT_INSUFFICIENTFEE, "mempool full"); } } } GetMainSignals().SyncTransaction( tx, nullptr, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK); return true; } static bool AcceptToMemoryPoolWithTime( const Config &config, CTxMemPool &pool, CValidationState &state, const CTransactionRef &tx, bool fLimitFree, bool *pfMissingInputs, int64_t nAcceptTime, std::list *plTxnReplaced = nullptr, bool fOverrideMempoolLimit = false, const Amount nAbsurdFee = Amount(0)) { std::vector coins_to_uncache; bool res = AcceptToMemoryPoolWorker( config, pool, state, tx, fLimitFree, pfMissingInputs, nAcceptTime, plTxnReplaced, fOverrideMempoolLimit, nAbsurdFee, coins_to_uncache); if (!res) { for (const COutPoint &outpoint : coins_to_uncache) { pcoinsTip->Uncache(outpoint); } } // After we've (potentially) uncached entries, ensure our coins cache is // still within its size limits CValidationState stateDummy; FlushStateToDisk(stateDummy, FLUSH_STATE_PERIODIC); return res; } bool AcceptToMemoryPool(const Config &config, CTxMemPool &pool, CValidationState &state, const CTransactionRef &tx, bool fLimitFree, bool *pfMissingInputs, std::list *plTxnReplaced, bool fOverrideMempoolLimit, const Amount nAbsurdFee) { return AcceptToMemoryPoolWithTime(config, pool, state, tx, fLimitFree, pfMissingInputs, GetTime(), plTxnReplaced, fOverrideMempoolLimit, nAbsurdFee); } /** Return transaction in txOut, and if it was found inside a block, its hash is * placed in hashBlock */ bool GetTransaction(const Config &config, const uint256 &txid, CTransactionRef &txOut, uint256 &hashBlock, bool fAllowSlow) { CBlockIndex *pindexSlow = nullptr; LOCK(cs_main); CTransactionRef ptx = mempool.get(txid); if (ptx) { txOut = ptx; return true; } if (fTxIndex) { CDiskTxPos postx; if (pblocktree->ReadTxIndex(txid, postx)) { CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION); if (file.IsNull()) return error("%s: OpenBlockFile failed", __func__); CBlockHeader header; try { file >> header; fseek(file.Get(), postx.nTxOffset, SEEK_CUR); file >> txOut; } catch (const std::exception &e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } hashBlock = header.GetHash(); if (txOut->GetId() != txid) return error("%s: txid mismatch", __func__); return true; } } // use coin database to locate block that contains transaction, and scan it if (fAllowSlow) { const Coin &coin = AccessByTxid(*pcoinsTip, txid); if (!coin.IsSpent()) { pindexSlow = chainActive[coin.GetHeight()]; } } if (pindexSlow) { CBlock block; if (ReadBlockFromDisk(block, pindexSlow, config)) { for (const auto &tx : block.vtx) { if (tx->GetId() == txid) { txOut = tx; hashBlock = pindexSlow->GetBlockHash(); return true; } } } } return false; } ////////////////////////////////////////////////////////////////////////////// // // CBlock and CBlockIndex // bool WriteBlockToDisk(const CBlock &block, CDiskBlockPos &pos, const CMessageHeader::MessageMagic &messageStart) { // Open history file to append CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) { return error("WriteBlockToDisk: OpenBlockFile failed"); } // Write index header unsigned int nSize = GetSerializeSize(fileout, block); fileout << FLATDATA(messageStart) << nSize; // Write block long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) { return error("WriteBlockToDisk: ftell failed"); } pos.nPos = (unsigned int)fileOutPos; fileout << block; return true; } bool ReadBlockFromDisk(CBlock &block, const CDiskBlockPos &pos, const Config &config) { block.SetNull(); // Open history file to read CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) { return error("ReadBlockFromDisk: OpenBlockFile failed for %s", pos.ToString()); } // Read block try { filein >> block; } catch (const std::exception &e) { return error("%s: Deserialize or I/O error - %s at %s", __func__, e.what(), pos.ToString()); } // Check the header if (!CheckProofOfWork(block.GetHash(), block.nBits, config)) { return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString()); } return true; } bool ReadBlockFromDisk(CBlock &block, const CBlockIndex *pindex, const Config &config) { if (!ReadBlockFromDisk(block, pindex->GetBlockPos(), config)) { return false; } if (block.GetHash() != pindex->GetBlockHash()) { return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() " "doesn't match index for %s at %s", pindex->ToString(), pindex->GetBlockPos().ToString()); } return true; } Amount GetBlockSubsidy(int nHeight, const Consensus::Params &consensusParams) { int halvings = nHeight / consensusParams.nSubsidyHalvingInterval; // Force block reward to zero when right shift is undefined. if (halvings >= 64) return Amount(0); Amount nSubsidy = 50 * COIN; // Subsidy is cut in half every 210,000 blocks which will occur // approximately every 4 years. return Amount(nSubsidy.GetSatoshis() >> halvings); } bool IsInitialBlockDownload() { const CChainParams &chainParams = Params(); // Once this function has returned false, it must remain false. static std::atomic latchToFalse{false}; // Optimization: pre-test latch before taking the lock. if (latchToFalse.load(std::memory_order_relaxed)) return false; LOCK(cs_main); if (latchToFalse.load(std::memory_order_relaxed)) return false; if (fImporting || fReindex) return true; if (chainActive.Tip() == nullptr) return true; if (chainActive.Tip()->nChainWork < UintToArith256(chainParams.GetConsensus().nMinimumChainWork)) return true; if (chainActive.Tip()->GetBlockTime() < (GetTime() - nMaxTipAge)) return true; latchToFalse.store(true, std::memory_order_relaxed); return false; } CBlockIndex *pindexBestForkTip = nullptr, *pindexBestForkBase = nullptr; static void AlertNotify(const std::string &strMessage) { uiInterface.NotifyAlertChanged(); std::string strCmd = GetArg("-alertnotify", ""); if (strCmd.empty()) return; // Alert text should be plain ascii coming from a trusted source, but to be // safe we first strip anything not in safeChars, then add single quotes // around the whole string before passing it to the shell: std::string singleQuote("'"); std::string safeStatus = SanitizeString(strMessage); safeStatus = singleQuote + safeStatus + singleQuote; boost::replace_all(strCmd, "%s", safeStatus); boost::thread t(runCommand, strCmd); // thread runs free } void CheckForkWarningConditions() { AssertLockHeld(cs_main); // Before we get past initial download, we cannot reliably alert about forks // (we assume we don't get stuck on a fork before finishing our initial // sync) if (IsInitialBlockDownload()) return; // If our best fork is no longer within 72 blocks (+/- 12 hours if no one // mines it) of our head, drop it if (pindexBestForkTip && chainActive.Height() - pindexBestForkTip->nHeight >= 72) pindexBestForkTip = nullptr; if (pindexBestForkTip || (pindexBestInvalid && pindexBestInvalid->nChainWork > chainActive.Tip()->nChainWork + (GetBlockProof(*chainActive.Tip()) * 6))) { if (!GetfLargeWorkForkFound() && pindexBestForkBase) { std::string warning = std::string("'Warning: Large-work fork detected, forking after " "block ") + pindexBestForkBase->phashBlock->ToString() + std::string("'"); AlertNotify(warning); } if (pindexBestForkTip && pindexBestForkBase) { LogPrintf("%s: Warning: Large valid fork found\n forking the " "chain at height %d (%s)\n lasting to height %d " "(%s).\nChain state database corruption likely.\n", __func__, pindexBestForkBase->nHeight, pindexBestForkBase->phashBlock->ToString(), pindexBestForkTip->nHeight, pindexBestForkTip->phashBlock->ToString()); SetfLargeWorkForkFound(true); } else { LogPrintf("%s: Warning: Found invalid chain at least ~6 blocks " "longer than our best chain.\nChain state database " "corruption likely.\n", __func__); SetfLargeWorkInvalidChainFound(true); } } else { SetfLargeWorkForkFound(false); SetfLargeWorkInvalidChainFound(false); } } void CheckForkWarningConditionsOnNewFork(CBlockIndex *pindexNewForkTip) { AssertLockHeld(cs_main); // If we are on a fork that is sufficiently large, set a warning flag CBlockIndex *pfork = pindexNewForkTip; CBlockIndex *plonger = chainActive.Tip(); while (pfork && pfork != plonger) { while (plonger && plonger->nHeight > pfork->nHeight) plonger = plonger->pprev; if (pfork == plonger) break; pfork = pfork->pprev; } // We define a condition where we should warn the user about as a fork of at // least 7 blocks with a tip within 72 blocks (+/- 12 hours if no one mines // it) of ours. We use 7 blocks rather arbitrarily as it represents just // under 10% of sustained network hash rate operating on the fork, or a // chain that is entirely longer than ours and invalid (note that this // should be detected by both). We define it this way because it allows us // to only store the highest fork tip (+ base) which meets the 7-block // condition and from this always have the most-likely-to-cause-warning fork if (pfork && (!pindexBestForkTip || (pindexBestForkTip && pindexNewForkTip->nHeight > pindexBestForkTip->nHeight)) && pindexNewForkTip->nChainWork - pfork->nChainWork > (GetBlockProof(*pfork) * 7) && chainActive.Height() - pindexNewForkTip->nHeight < 72) { pindexBestForkTip = pindexNewForkTip; pindexBestForkBase = pfork; } CheckForkWarningConditions(); } static void InvalidChainFound(CBlockIndex *pindexNew) { if (!pindexBestInvalid || pindexNew->nChainWork > pindexBestInvalid->nChainWork) pindexBestInvalid = pindexNew; LogPrintf( "%s: invalid block=%s height=%d log2_work=%.8g date=%s\n", __func__, pindexNew->GetBlockHash().ToString(), pindexNew->nHeight, log(pindexNew->nChainWork.getdouble()) / log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", pindexNew->GetBlockTime())); CBlockIndex *tip = chainActive.Tip(); assert(tip); LogPrintf("%s: current best=%s height=%d log2_work=%.8g date=%s\n", __func__, tip->GetBlockHash().ToString(), chainActive.Height(), log(tip->nChainWork.getdouble()) / log(2.0), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", tip->GetBlockTime())); CheckForkWarningConditions(); } static void InvalidBlockFound(CBlockIndex *pindex, const CValidationState &state) { if (!state.CorruptionPossible()) { pindex->nStatus |= BLOCK_FAILED_VALID; setDirtyBlockIndex.insert(pindex); setBlockIndexCandidates.erase(pindex); InvalidChainFound(pindex); } } void UpdateCoins(const CTransaction &tx, CCoinsViewCache &inputs, CTxUndo &txundo, int nHeight) { // Mark inputs spent. if (!tx.IsCoinBase()) { txundo.vprevout.reserve(tx.vin.size()); for (const CTxIn &txin : tx.vin) { txundo.vprevout.emplace_back(); bool is_spent = inputs.SpendCoin(txin.prevout, &txundo.vprevout.back()); assert(is_spent); } } // Add outputs. AddCoins(inputs, tx, nHeight); } void UpdateCoins(const CTransaction &tx, CCoinsViewCache &inputs, int nHeight) { CTxUndo txundo; UpdateCoins(tx, inputs, txundo, nHeight); } bool CScriptCheck::operator()() { const CScript &scriptSig = ptxTo->vin[nIn].scriptSig; if (!VerifyScript(scriptSig, scriptPubKey, nFlags, CachingTransactionSignatureChecker(ptxTo, nIn, amount, cacheStore, txdata), &error)) { return false; } return true; } int GetSpendHeight(const CCoinsViewCache &inputs) { LOCK(cs_main); CBlockIndex *pindexPrev = mapBlockIndex.find(inputs.GetBestBlock())->second; return pindexPrev->nHeight + 1; } namespace Consensus { bool CheckTxInputs(const CTransaction &tx, CValidationState &state, const CCoinsViewCache &inputs, int nSpendHeight) { // This doesn't trigger the DoS code on purpose; if it did, it would make it // easier for an attacker to attempt to split the network. if (!inputs.HaveInputs(tx)) { return state.Invalid(false, 0, "", "Inputs unavailable"); } Amount nValueIn(0); Amount nFees(0); for (size_t i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const Coin &coin = inputs.AccessCoin(prevout); assert(!coin.IsSpent()); // If prev is coinbase, check that it's matured if (coin.IsCoinBase()) { if (nSpendHeight - coin.GetHeight() < COINBASE_MATURITY) { return state.Invalid( false, REJECT_INVALID, "bad-txns-premature-spend-of-coinbase", strprintf("tried to spend coinbase at depth %d", nSpendHeight - coin.GetHeight())); } } // Check for negative or overflow input values nValueIn += coin.GetTxOut().nValue; if (!MoneyRange(coin.GetTxOut().nValue) || !MoneyRange(nValueIn)) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-inputvalues-outofrange"); } } if (nValueIn < tx.GetValueOut()) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-in-belowout", false, strprintf("value in (%s) < value out (%s)", FormatMoney(nValueIn), FormatMoney(tx.GetValueOut()))); } // Tally transaction fees Amount nTxFee = nValueIn - tx.GetValueOut(); if (nTxFee < Amount(0)) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-negative"); } nFees += nTxFee; if (!MoneyRange(nFees)) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-fee-outofrange"); } return true; } } // namespace Consensus bool CheckInputs(const CTransaction &tx, CValidationState &state, const CCoinsViewCache &inputs, bool fScriptChecks, uint32_t flags, bool sigCacheStore, bool scriptCacheStore, const PrecomputedTransactionData &txdata, std::vector *pvChecks) { assert(!tx.IsCoinBase()); if (!Consensus::CheckTxInputs(tx, state, inputs, GetSpendHeight(inputs))) { return false; } if (pvChecks) { pvChecks->reserve(tx.vin.size()); } // The first loop above does all the inexpensive checks. Only if ALL inputs // pass do we perform expensive ECDSA signature checks. Helps prevent CPU // exhaustion attacks. // Skip script verification when connecting blocks under the assumedvalid // block. Assuming the assumedvalid block is valid this is safe because // block merkle hashes are still computed and checked, of course, if an // assumed valid block is invalid due to false scriptSigs this optimization // would allow an invalid chain to be accepted. if (!fScriptChecks) { return true; } // First check if script executions have been cached with the same flags. // Note that this assumes that the inputs provided are correct (ie that the // transaction hash which is in tx's prevouts properly commits to the // scriptPubKey in the inputs view of that transaction). uint256 hashCacheEntry = GetScriptCacheKey(tx, flags); if (IsKeyInScriptCache(hashCacheEntry, !scriptCacheStore)) { return true; } for (size_t i = 0; i < tx.vin.size(); i++) { const COutPoint &prevout = tx.vin[i].prevout; const Coin &coin = inputs.AccessCoin(prevout); assert(!coin.IsSpent()); // We very carefully only pass in things to CScriptCheck which are // clearly committed to by tx' witness hash. This provides a sanity // check that our caching is not introducing consensus failures through // additional data in, eg, the coins being spent being checked as a part // of CScriptCheck. const CScript &scriptPubKey = coin.GetTxOut().scriptPubKey; const Amount amount = coin.GetTxOut().nValue; // Verify signature CScriptCheck check(scriptPubKey, amount, tx, i, flags, sigCacheStore, txdata); if (pvChecks) { pvChecks->push_back(std::move(check)); } else if (!check()) { if (flags & STANDARD_NOT_MANDATORY_VERIFY_FLAGS) { // Check whether the failure was caused by a non-mandatory // script verification check, such as non-standard DER encodings // or non-null dummy arguments; if so, don't trigger DoS // protection to avoid splitting the network between upgraded // and non-upgraded nodes. CScriptCheck check2(scriptPubKey, amount, tx, i, flags & ~STANDARD_NOT_MANDATORY_VERIFY_FLAGS, sigCacheStore, txdata); if (check2()) { return state.Invalid( false, REJECT_NONSTANDARD, strprintf("non-mandatory-script-verify-flag (%s)", ScriptErrorString(check.GetScriptError()))); } } // Failures of other flags indicate a transaction that is invalid in // new blocks, e.g. a invalid P2SH. We DoS ban such nodes as they // are not following the protocol. That said during an upgrade // careful thought should be taken as to the correct behavior - we // may want to continue peering with non-upgraded nodes even after // soft-fork super-majority signaling has occurred. return state.DoS( 100, false, REJECT_INVALID, strprintf("mandatory-script-verify-flag-failed (%s)", ScriptErrorString(check.GetScriptError()))); } } if (scriptCacheStore && !pvChecks) { // We executed all of the provided scripts, and were told to cache the // result. Do so now. AddKeyInScriptCache(hashCacheEntry); } return true; } namespace { bool UndoWriteToDisk(const CBlockUndo &blockundo, CDiskBlockPos &pos, const uint256 &hashBlock, const CMessageHeader::MessageMagic &messageStart) { // Open history file to append CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) return error("%s: OpenUndoFile failed", __func__); // Write index header unsigned int nSize = GetSerializeSize(fileout, blockundo); fileout << FLATDATA(messageStart) << nSize; // Write undo data long fileOutPos = ftell(fileout.Get()); if (fileOutPos < 0) return error("%s: ftell failed", __func__); pos.nPos = (unsigned int)fileOutPos; fileout << blockundo; // calculate & write checksum CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION); hasher << hashBlock; hasher << blockundo; fileout << hasher.GetHash(); return true; } bool UndoReadFromDisk(CBlockUndo &blockundo, const CDiskBlockPos &pos, const uint256 &hashBlock) { // Open history file to read CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION); if (filein.IsNull()) { return error("%s: OpenUndoFile failed", __func__); } // Read block uint256 hashChecksum; // We need a CHashVerifier as reserializing may lose data CHashVerifier verifier(&filein); try { verifier << hashBlock; verifier >> blockundo; filein >> hashChecksum; } catch (const std::exception &e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } // Verify checksum if (hashChecksum != verifier.GetHash()) { return error("%s: Checksum mismatch", __func__); } return true; } /** Abort with a message */ bool AbortNode(const std::string &strMessage, const std::string &userMessage = "") { SetMiscWarning(strMessage); LogPrintf("*** %s\n", strMessage); uiInterface.ThreadSafeMessageBox( userMessage.empty() ? _("Error: A fatal internal error occurred, see " "debug.log for details") : userMessage, "", CClientUIInterface::MSG_ERROR); StartShutdown(); return false; } bool AbortNode(CValidationState &state, const std::string &strMessage, const std::string &userMessage = "") { AbortNode(strMessage, userMessage); return state.Error(strMessage); } } // namespace /** Restore the UTXO in a Coin at a given COutPoint. */ DisconnectResult UndoCoinSpend(const Coin &undo, CCoinsViewCache &view, const COutPoint &out) { bool fClean = true; if (view.HaveCoin(out)) { // Overwriting transaction output. fClean = false; } if (undo.GetHeight() == 0) { // Missing undo metadata (height and coinbase). Older versions included // this information only in undo records for the last spend of a // transactions' outputs. This implies that it must be present for some // other output of the same tx. const Coin &alternate = AccessByTxid(view, out.hash); if (alternate.IsSpent()) { // Adding output for transaction without known metadata return DISCONNECT_FAILED; } // This is somewhat ugly, but hopefully utility is limited. This is only // useful when working from legacy on disck data. In any case, putting // the correct information in there doesn't hurt. const_cast(undo) = Coin(undo.GetTxOut(), alternate.GetHeight(), alternate.IsCoinBase()); } view.AddCoin(out, undo, undo.IsCoinBase()); return fClean ? DISCONNECT_OK : DISCONNECT_UNCLEAN; } /** * Undo the effects of this block (with given index) on the UTXO set represented * by coins. When UNCLEAN or FAILED is returned, view is left in an * indeterminate state. */ static DisconnectResult DisconnectBlock(const CBlock &block, const CBlockIndex *pindex, CCoinsViewCache &view) { assert(pindex->GetBlockHash() == view.GetBestBlock()); CBlockUndo blockUndo; CDiskBlockPos pos = pindex->GetUndoPos(); if (pos.IsNull()) { error("DisconnectBlock(): no undo data available"); return DISCONNECT_FAILED; } if (!UndoReadFromDisk(blockUndo, pos, pindex->pprev->GetBlockHash())) { error("DisconnectBlock(): failure reading undo data"); return DISCONNECT_FAILED; } return ApplyBlockUndo(blockUndo, block, pindex, view); } DisconnectResult ApplyBlockUndo(const CBlockUndo &blockUndo, const CBlock &block, const CBlockIndex *pindex, CCoinsViewCache &view) { bool fClean = true; if (blockUndo.vtxundo.size() + 1 != block.vtx.size()) { error("DisconnectBlock(): block and undo data inconsistent"); return DISCONNECT_FAILED; } // Undo transactions in reverse order. size_t i = block.vtx.size(); while (i-- > 0) { const CTransaction &tx = *(block.vtx[i]); uint256 txid = tx.GetId(); // Check that all outputs are available and match the outputs in the // block itself exactly. for (size_t o = 0; o < tx.vout.size(); o++) { if (tx.vout[o].scriptPubKey.IsUnspendable()) { continue; } COutPoint out(txid, o); Coin coin; bool is_spent = view.SpendCoin(out, &coin); if (!is_spent || tx.vout[o] != coin.GetTxOut()) { // transaction output mismatch fClean = false; } } // Restore inputs. if (i < 1) { // Skip the coinbase. continue; } const CTxUndo &txundo = blockUndo.vtxundo[i - 1]; if (txundo.vprevout.size() != tx.vin.size()) { error("DisconnectBlock(): transaction and undo data inconsistent"); return DISCONNECT_FAILED; } for (size_t j = tx.vin.size(); j-- > 0;) { const COutPoint &out = tx.vin[j].prevout; const Coin &undo = txundo.vprevout[j]; DisconnectResult res = UndoCoinSpend(undo, view, out); if (res == DISCONNECT_FAILED) { return DISCONNECT_FAILED; } fClean = fClean && res != DISCONNECT_UNCLEAN; } } // Move best block pointer to previous block. view.SetBestBlock(block.hashPrevBlock); return fClean ? DISCONNECT_OK : DISCONNECT_UNCLEAN; } static void FlushBlockFile(bool fFinalize = false) { LOCK(cs_LastBlockFile); CDiskBlockPos posOld(nLastBlockFile, 0); FILE *fileOld = OpenBlockFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nSize); FileCommit(fileOld); fclose(fileOld); } fileOld = OpenUndoFile(posOld); if (fileOld) { if (fFinalize) TruncateFile(fileOld, vinfoBlockFile[nLastBlockFile].nUndoSize); FileCommit(fileOld); fclose(fileOld); } } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize); static CCheckQueue scriptcheckqueue(128); void ThreadScriptCheck() { RenameThread("bitcoin-scriptch"); scriptcheckqueue.Thread(); } // Protected by cs_main VersionBitsCache versionbitscache; int32_t ComputeBlockVersion(const CBlockIndex *pindexPrev, const Consensus::Params ¶ms) { LOCK(cs_main); int32_t nVersion = VERSIONBITS_TOP_BITS; for (int i = 0; i < (int)Consensus::MAX_VERSION_BITS_DEPLOYMENTS; i++) { ThresholdState state = VersionBitsState( pindexPrev, params, (Consensus::DeploymentPos)i, versionbitscache); if (state == THRESHOLD_LOCKED_IN || state == THRESHOLD_STARTED) { nVersion |= VersionBitsMask(params, (Consensus::DeploymentPos)i); } } return nVersion; } /** * Threshold condition checker that triggers when unknown versionbits are seen * on the network. */ class WarningBitsConditionChecker : public AbstractThresholdConditionChecker { private: int bit; public: WarningBitsConditionChecker(int bitIn) : bit(bitIn) {} int64_t BeginTime(const Consensus::Params ¶ms) const { return 0; } int64_t EndTime(const Consensus::Params ¶ms) const { return std::numeric_limits::max(); } int Period(const Consensus::Params ¶ms) const { return params.nMinerConfirmationWindow; } int Threshold(const Consensus::Params ¶ms) const { return params.nRuleChangeActivationThreshold; } bool Condition(const CBlockIndex *pindex, const Consensus::Params ¶ms) const { return ((pindex->nVersion & VERSIONBITS_TOP_MASK) == VERSIONBITS_TOP_BITS) && ((pindex->nVersion >> bit) & 1) != 0 && ((ComputeBlockVersion(pindex->pprev, params) >> bit) & 1) == 0; } }; // Protected by cs_main static ThresholdConditionCache warningcache[VERSIONBITS_NUM_BITS]; // Returns the script flags which should be checked for a given block static uint32_t GetBlockScriptFlags(const CBlockIndex *pindex, const Config &config) { AssertLockHeld(cs_main); const Consensus::Params &consensusparams = config.GetChainParams().GetConsensus(); // BIP16 didn't become active until Apr 1 2012 int64_t nBIP16SwitchTime = 1333238400; bool fStrictPayToScriptHash = (pindex->GetBlockTime() >= nBIP16SwitchTime); uint32_t flags = fStrictPayToScriptHash ? SCRIPT_VERIFY_P2SH : SCRIPT_VERIFY_NONE; // Start enforcing the DERSIG (BIP66) rule if (pindex->nHeight >= consensusparams.BIP66Height) { flags |= SCRIPT_VERIFY_DERSIG; } // Start enforcing CHECKLOCKTIMEVERIFY (BIP65) rule if (pindex->nHeight >= consensusparams.BIP65Height) { flags |= SCRIPT_VERIFY_CHECKLOCKTIMEVERIFY; } // Start enforcing BIP112 (CHECKSEQUENCEVERIFY) using versionbits logic. if (VersionBitsState(pindex->pprev, consensusparams, Consensus::DEPLOYMENT_CSV, versionbitscache) == THRESHOLD_ACTIVE) { flags |= SCRIPT_VERIFY_CHECKSEQUENCEVERIFY; } // If the UAHF is enabled, we start accepting replay protected txns if (IsUAHFenabled(config, pindex->pprev)) { flags |= SCRIPT_VERIFY_STRICTENC; flags |= SCRIPT_ENABLE_SIGHASH_FORKID; } // If the DAA HF is enabled, we start rejecting transaction that use a high // s in their signature. We also make sure that signature that are supposed // to fail (for instance in multisig or other forms of smart contracts) are // null. if (IsDAAEnabled(config, pindex->pprev)) { flags |= SCRIPT_VERIFY_LOW_S; flags |= SCRIPT_VERIFY_NULLFAIL; } return flags; } static int64_t nTimeCheck = 0; static int64_t nTimeForks = 0; static int64_t nTimeVerify = 0; static int64_t nTimeConnect = 0; static int64_t nTimeIndex = 0; static int64_t nTimeCallbacks = 0; static int64_t nTimeTotal = 0; /** * Apply the effects of this block (with given index) on the UTXO set * represented by coins. Validity checks that depend on the UTXO set are also * done; ConnectBlock() can fail if those validity checks fail (among other * reasons). */ static bool ConnectBlock(const Config &config, const CBlock &block, CValidationState &state, CBlockIndex *pindex, CCoinsViewCache &view, const CChainParams &chainparams, bool fJustCheck = false) { AssertLockHeld(cs_main); int64_t nTimeStart = GetTimeMicros(); // Check it again in case a previous version let a bad block in if (!CheckBlock(config, block, state, !fJustCheck, !fJustCheck)) { return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state)); } // Verify that the view's current state corresponds to the previous block uint256 hashPrevBlock = pindex->pprev == nullptr ? uint256() : pindex->pprev->GetBlockHash(); assert(hashPrevBlock == view.GetBestBlock()); // Special case for the genesis block, skipping connection of its // transactions (its coinbase is unspendable) if (block.GetHash() == chainparams.GetConsensus().hashGenesisBlock) { if (!fJustCheck) { view.SetBestBlock(pindex->GetBlockHash()); } return true; } bool fScriptChecks = true; if (!hashAssumeValid.IsNull()) { // We've been configured with the hash of a block which has been // externally verified to have a valid history. A suitable default value // is included with the software and updated from time to time. Because // validity relative to a piece of software is an objective fact these // defaults can be easily reviewed. This setting doesn't force the // selection of any particular chain but makes validating some faster by // effectively caching the result of part of the verification. BlockMap::const_iterator it = mapBlockIndex.find(hashAssumeValid); if (it != mapBlockIndex.end()) { if (it->second->GetAncestor(pindex->nHeight) == pindex && pindexBestHeader->GetAncestor(pindex->nHeight) == pindex && pindexBestHeader->nChainWork >= UintToArith256( chainparams.GetConsensus().nMinimumChainWork)) { // This block is a member of the assumed verified chain and an // ancestor of the best header. The equivalent time check // discourages hashpower from extorting the network via DOS // attack into accepting an invalid block through telling users // they must manually set assumevalid. Requiring a software // change or burying the invalid block, regardless of the // setting, makes it hard to hide the implication of the demand. // This also avoids having release candidates that are hardly // doing any signature verification at all in testing without // having to artificially set the default assumed verified block // further back. The test against nMinimumChainWork prevents the // skipping when denied access to any chain at least as good as // the expected chain. fScriptChecks = (GetBlockProofEquivalentTime( *pindexBestHeader, *pindex, *pindexBestHeader, chainparams.GetConsensus()) <= 60 * 60 * 24 * 7 * 2); } } } int64_t nTime1 = GetTimeMicros(); nTimeCheck += nTime1 - nTimeStart; LogPrint("bench", " - Sanity checks: %.2fms [%.2fs]\n", 0.001 * (nTime1 - nTimeStart), nTimeCheck * 0.000001); // Do not allow blocks that contain transactions which 'overwrite' older // transactions, unless those are already completely spent. If such // overwrites are allowed, coinbases and transactions depending upon those // can be duplicated to remove the ability to spend the first instance -- // even after being sent to another address. See BIP30 and // http://r6.ca/blog/20120206T005236Z.html for more information. This logic // is not necessary for memory pool transactions, as AcceptToMemoryPool // already refuses previously-known transaction ids entirely. This rule was // originally applied to all blocks with a timestamp after March 15, 2012, // 0:00 UTC. Now that the whole chain is irreversibly beyond that time it is // applied to all blocks except the two in the chain that violate it. This // prevents exploiting the issue against nodes during their initial block // download. bool fEnforceBIP30 = (!pindex->phashBlock) || // Enforce on CreateNewBlock // invocations which don't // have a hash. !((pindex->nHeight == 91842 && pindex->GetBlockHash() == uint256S("0x00000000000a4d0a398161ffc163c503763" "b1f4360639393e0e4c8e300e0caec")) || (pindex->nHeight == 91880 && pindex->GetBlockHash() == uint256S("0x00000000000743f190a18c5577a3c2d2a1f" "610ae9601ac046a38084ccb7cd721"))); // Once BIP34 activated it was not possible to create new duplicate // coinbases and thus other than starting with the 2 existing duplicate // coinbase pairs, not possible to create overwriting txs. But by the time // BIP34 activated, in each of the existing pairs the duplicate coinbase had // overwritten the first before the first had been spent. Since those // coinbases are sufficiently buried its no longer possible to create // further duplicate transactions descending from the known pairs either. If // we're on the known chain at height greater than where BIP34 activated, we // can save the db accesses needed for the BIP30 check. CBlockIndex *pindexBIP34height = pindex->pprev->GetAncestor(chainparams.GetConsensus().BIP34Height); // Only continue to enforce if we're below BIP34 activation height or the // block hash at that height doesn't correspond. fEnforceBIP30 = fEnforceBIP30 && (!pindexBIP34height || !(pindexBIP34height->GetBlockHash() == chainparams.GetConsensus().BIP34Hash)); if (fEnforceBIP30) { for (const auto &tx : block.vtx) { for (size_t o = 0; o < tx->vout.size(); o++) { if (view.HaveCoin(COutPoint(tx->GetHash(), o))) { return state.DoS( 100, error("ConnectBlock(): tried to overwrite transaction"), REJECT_INVALID, "bad-txns-BIP30"); } } } } // Start enforcing BIP68 (sequence locks) using versionbits logic. int nLockTimeFlags = 0; if (VersionBitsState(pindex->pprev, chainparams.GetConsensus(), Consensus::DEPLOYMENT_CSV, versionbitscache) == THRESHOLD_ACTIVE) { nLockTimeFlags |= LOCKTIME_VERIFY_SEQUENCE; } uint32_t flags = GetBlockScriptFlags(pindex, config); int64_t nTime2 = GetTimeMicros(); nTimeForks += nTime2 - nTime1; LogPrint("bench", " - Fork checks: %.2fms [%.2fs]\n", 0.001 * (nTime2 - nTime1), nTimeForks * 0.000001); CBlockUndo blockundo; CCheckQueueControl control(fScriptChecks ? &scriptcheckqueue : nullptr); std::vector prevheights; Amount nFees(0); int nInputs = 0; // Sigops counting. We need to do it again because of P2SH. uint64_t nSigOpsCount = 0; const uint64_t currentBlockSize = ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION); const uint64_t nMaxSigOpsCount = GetMaxBlockSigOpsCount(currentBlockSize); CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size())); std::vector> vPos; vPos.reserve(block.vtx.size()); blockundo.vtxundo.reserve(block.vtx.size() - 1); for (size_t i = 0; i < block.vtx.size(); i++) { const CTransaction &tx = *(block.vtx[i]); nInputs += tx.vin.size(); if (!tx.IsCoinBase()) { if (!view.HaveInputs(tx)) { return state.DoS( 100, error("ConnectBlock(): inputs missing/spent"), REJECT_INVALID, "bad-txns-inputs-missingorspent"); } // Check that transaction is BIP68 final BIP68 lock checks (as // opposed to nLockTime checks) must be in ConnectBlock because they // require the UTXO set. prevheights.resize(tx.vin.size()); for (size_t j = 0; j < tx.vin.size(); j++) { prevheights[j] = view.AccessCoin(tx.vin[j].prevout).GetHeight(); } if (!SequenceLocks(tx, nLockTimeFlags, &prevheights, *pindex)) { return state.DoS( 100, error("%s: contains a non-BIP68-final transaction", __func__), REJECT_INVALID, "bad-txns-nonfinal"); } } // GetTransactionSigOpCount counts 2 types of sigops: // * legacy (always) // * p2sh (when P2SH enabled in flags and excludes coinbase) auto txSigOpsCount = GetTransactionSigOpCount(tx, view, flags); if (txSigOpsCount > MAX_TX_SIGOPS_COUNT) { return state.DoS(100, false, REJECT_INVALID, "bad-txn-sigops"); } nSigOpsCount += txSigOpsCount; if (nSigOpsCount > nMaxSigOpsCount) { return state.DoS(100, error("ConnectBlock(): too many sigops"), REJECT_INVALID, "bad-blk-sigops"); } if (!tx.IsCoinBase()) { Amount fee = view.GetValueIn(tx) - tx.GetValueOut(); nFees += fee; // Don't cache results if we're actually connecting blocks (still // consult the cache, though). bool fCacheResults = fJustCheck; std::vector vChecks; if (!CheckInputs(tx, state, view, fScriptChecks, flags, fCacheResults, fCacheResults, PrecomputedTransactionData(tx), &vChecks)) { return error("ConnectBlock(): CheckInputs on %s failed with %s", tx.GetId().ToString(), FormatStateMessage(state)); } control.Add(vChecks); } CTxUndo undoDummy; if (i > 0) { blockundo.vtxundo.push_back(CTxUndo()); } UpdateCoins(tx, view, i == 0 ? undoDummy : blockundo.vtxundo.back(), pindex->nHeight); vPos.push_back(std::make_pair(tx.GetId(), pos)); pos.nTxOffset += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION); } int64_t nTime3 = GetTimeMicros(); nTimeConnect += nTime3 - nTime2; LogPrint("bench", " - Connect %u transactions: %.2fms (%.3fms/tx, " "%.3fms/txin) [%.2fs]\n", (unsigned)block.vtx.size(), 0.001 * (nTime3 - nTime2), 0.001 * (nTime3 - nTime2) / block.vtx.size(), nInputs <= 1 ? 0 : 0.001 * (nTime3 - nTime2) / (nInputs - 1), nTimeConnect * 0.000001); Amount blockReward = nFees + GetBlockSubsidy(pindex->nHeight, chainparams.GetConsensus()); if (block.vtx[0]->GetValueOut() > blockReward) { return state.DoS(100, error("ConnectBlock(): coinbase pays too much " "(actual=%d vs limit=%d)", block.vtx[0]->GetValueOut(), blockReward), REJECT_INVALID, "bad-cb-amount"); } if (!control.Wait()) { return state.DoS(100, false, REJECT_INVALID, "blk-bad-inputs", false, "parallel script check failed"); } int64_t nTime4 = GetTimeMicros(); nTimeVerify += nTime4 - nTime2; LogPrint("bench", " - Verify %u txins: %.2fms (%.3fms/txin) [%.2fs]\n", nInputs - 1, 0.001 * (nTime4 - nTime2), nInputs <= 1 ? 0 : 0.001 * (nTime4 - nTime2) / (nInputs - 1), nTimeVerify * 0.000001); if (fJustCheck) { return true; } // Write undo information to disk if (pindex->GetUndoPos().IsNull() || !pindex->IsValid(BLOCK_VALID_SCRIPTS)) { if (pindex->GetUndoPos().IsNull()) { CDiskBlockPos _pos; if (!FindUndoPos( state, pindex->nFile, _pos, ::GetSerializeSize(blockundo, SER_DISK, CLIENT_VERSION) + 40)) { return error("ConnectBlock(): FindUndoPos failed"); } if (!UndoWriteToDisk(blockundo, _pos, pindex->pprev->GetBlockHash(), chainparams.DiskMagic())) { return AbortNode(state, "Failed to write undo data"); } // update nUndoPos in block index pindex->nUndoPos = _pos.nPos; pindex->nStatus |= BLOCK_HAVE_UNDO; } pindex->RaiseValidity(BLOCK_VALID_SCRIPTS); setDirtyBlockIndex.insert(pindex); } if (fTxIndex && !pblocktree->WriteTxIndex(vPos)) { return AbortNode(state, "Failed to write transaction index"); } // add this block to the view's block chain view.SetBestBlock(pindex->GetBlockHash()); int64_t nTime5 = GetTimeMicros(); nTimeIndex += nTime5 - nTime4; LogPrint("bench", " - Index writing: %.2fms [%.2fs]\n", 0.001 * (nTime5 - nTime4), nTimeIndex * 0.000001); // Watch for changes to the previous coinbase transaction. static uint256 hashPrevBestCoinBase; GetMainSignals().UpdatedTransaction(hashPrevBestCoinBase); hashPrevBestCoinBase = block.vtx[0]->GetId(); int64_t nTime6 = GetTimeMicros(); nTimeCallbacks += nTime6 - nTime5; LogPrint("bench", " - Callbacks: %.2fms [%.2fs]\n", 0.001 * (nTime6 - nTime5), nTimeCallbacks * 0.000001); return true; } /** * Update the on-disk chain state. * The caches and indexes are flushed depending on the mode we're called with if * they're too large, if it's been a while since the last write, or always and * in all cases if we're in prune mode and are deleting files. */ static bool FlushStateToDisk(CValidationState &state, FlushStateMode mode, int nManualPruneHeight) { int64_t nMempoolUsage = mempool.DynamicMemoryUsage(); const CChainParams &chainparams = Params(); LOCK2(cs_main, cs_LastBlockFile); static int64_t nLastWrite = 0; static int64_t nLastFlush = 0; static int64_t nLastSetChain = 0; std::set setFilesToPrune; bool fFlushForPrune = false; try { if (fPruneMode && (fCheckForPruning || nManualPruneHeight > 0) && !fReindex) { if (nManualPruneHeight > 0) { FindFilesToPruneManual(setFilesToPrune, nManualPruneHeight); } else { FindFilesToPrune(setFilesToPrune, chainparams.PruneAfterHeight()); fCheckForPruning = false; } if (!setFilesToPrune.empty()) { fFlushForPrune = true; if (!fHavePruned) { pblocktree->WriteFlag("prunedblockfiles", true); fHavePruned = true; } } } int64_t nNow = GetTimeMicros(); // Avoid writing/flushing immediately after startup. if (nLastWrite == 0) { nLastWrite = nNow; } if (nLastFlush == 0) { nLastFlush = nNow; } if (nLastSetChain == 0) { nLastSetChain = nNow; } int64_t nMempoolSizeMax = GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000; int64_t cacheSize = pcoinsTip->DynamicMemoryUsage() * DB_PEAK_USAGE_FACTOR; int64_t nTotalSpace = nCoinCacheUsage + std::max(nMempoolSizeMax - nMempoolUsage, 0); // The cache is large and we're within 10% and 200 MiB or 50% and 50MiB // of the limit, but we have time now (not in the middle of a block // processing). bool fCacheLarge = mode == FLUSH_STATE_PERIODIC && cacheSize > std::min(std::max(nTotalSpace / 2, nTotalSpace - MIN_BLOCK_COINSDB_USAGE * 1024 * 1024), std::max((9 * nTotalSpace) / 10, nTotalSpace - MAX_BLOCK_COINSDB_USAGE * 1024 * 1024)); // The cache is over the limit, we have to write now. bool fCacheCritical = mode == FLUSH_STATE_IF_NEEDED && cacheSize > nTotalSpace; // It's been a while since we wrote the block index to disk. Do this // frequently, so we don't need to redownload after a crash. bool fPeriodicWrite = mode == FLUSH_STATE_PERIODIC && nNow > nLastWrite + (int64_t)DATABASE_WRITE_INTERVAL * 1000000; // It's been very long since we flushed the cache. Do this infrequently, // to optimize cache usage. bool fPeriodicFlush = mode == FLUSH_STATE_PERIODIC && nNow > nLastFlush + (int64_t)DATABASE_FLUSH_INTERVAL * 1000000; // Combine all conditions that result in a full cache flush. bool fDoFullFlush = (mode == FLUSH_STATE_ALWAYS) || fCacheLarge || fCacheCritical || fPeriodicFlush || fFlushForPrune; // Write blocks and block index to disk. if (fDoFullFlush || fPeriodicWrite) { // Depend on nMinDiskSpace to ensure we can write block index if (!CheckDiskSpace(0)) return state.Error("out of disk space"); // First make sure all block and undo data is flushed to disk. FlushBlockFile(); // Then update all block file information (which may refer to block // and undo files). { std::vector> vFiles; vFiles.reserve(setDirtyFileInfo.size()); for (std::set::iterator it = setDirtyFileInfo.begin(); it != setDirtyFileInfo.end();) { vFiles.push_back(std::make_pair(*it, &vinfoBlockFile[*it])); setDirtyFileInfo.erase(it++); } std::vector vBlocks; vBlocks.reserve(setDirtyBlockIndex.size()); for (std::set::iterator it = setDirtyBlockIndex.begin(); it != setDirtyBlockIndex.end();) { vBlocks.push_back(*it); setDirtyBlockIndex.erase(it++); } if (!pblocktree->WriteBatchSync(vFiles, nLastBlockFile, vBlocks)) { return AbortNode(state, "Failed to write to block index database"); } } // Finally remove any pruned files if (fFlushForPrune) UnlinkPrunedFiles(setFilesToPrune); nLastWrite = nNow; } // Flush best chain related state. This can only be done if the blocks / // block index write was also done. if (fDoFullFlush) { // Typical Coin structures on disk are around 48 bytes in size. // Pushing a new one to the database can cause it to be written // twice (once in the log, and once in the tables). This is already // an overestimation, as most will delete an existing entry or // overwrite one. Still, use a conservative safety factor of 2. if (!CheckDiskSpace(48 * 2 * 2 * pcoinsTip->GetCacheSize())) { return state.Error("out of disk space"); } // Flush the chainstate (which may refer to block index entries). if (!pcoinsTip->Flush()) { return AbortNode(state, "Failed to write to coin database"); } nLastFlush = nNow; } if (fDoFullFlush || ((mode == FLUSH_STATE_ALWAYS || mode == FLUSH_STATE_PERIODIC) && nNow > nLastSetChain + (int64_t)DATABASE_WRITE_INTERVAL * 1000000)) { // Update best block in wallet (so we can detect restored wallets). GetMainSignals().SetBestChain(chainActive.GetLocator()); nLastSetChain = nNow; } } catch (const std::runtime_error &e) { return AbortNode(state, std::string("System error while flushing: ") + e.what()); } return true; } void FlushStateToDisk() { CValidationState state; FlushStateToDisk(state, FLUSH_STATE_ALWAYS); } void PruneAndFlush() { CValidationState state; fCheckForPruning = true; FlushStateToDisk(state, FLUSH_STATE_NONE); } /** Update chainActive and related internal data structures. */ static void UpdateTip(const Config &config, CBlockIndex *pindexNew) { const CChainParams &chainParams = config.GetChainParams(); chainActive.SetTip(pindexNew); // New best block mempool.AddTransactionsUpdated(1); cvBlockChange.notify_all(); static bool fWarned = false; std::vector warningMessages; if (!IsInitialBlockDownload()) { int nUpgraded = 0; const CBlockIndex *pindex = chainActive.Tip(); for (int bit = 0; bit < VERSIONBITS_NUM_BITS; bit++) { WarningBitsConditionChecker checker(bit); ThresholdState state = checker.GetStateFor( pindex, chainParams.GetConsensus(), warningcache[bit]); if (state == THRESHOLD_ACTIVE || state == THRESHOLD_LOCKED_IN) { if (state == THRESHOLD_ACTIVE) { std::string strWarning = strprintf(_("Warning: unknown new rules activated " "(versionbit %i)"), bit); SetMiscWarning(strWarning); if (!fWarned) { AlertNotify(strWarning); fWarned = true; } } else { warningMessages.push_back( strprintf("unknown new rules are about to activate " "(versionbit %i)", bit)); } } } // Check the version of the last 100 blocks to see if we need to // upgrade: for (int i = 0; i < 100 && pindex != nullptr; i++) { int32_t nExpectedVersion = ComputeBlockVersion(pindex->pprev, chainParams.GetConsensus()); if (pindex->nVersion > VERSIONBITS_LAST_OLD_BLOCK_VERSION && (pindex->nVersion & ~nExpectedVersion) != 0) ++nUpgraded; pindex = pindex->pprev; } if (nUpgraded > 0) warningMessages.push_back(strprintf( "%d of last 100 blocks have unexpected version", nUpgraded)); if (nUpgraded > 100 / 2) { std::string strWarning = _("Warning: Unknown block versions being mined! It's possible " "unknown rules are in effect"); // notify GetWarnings(), called by Qt and the JSON-RPC code to warn // the user: SetMiscWarning(strWarning); if (!fWarned) { AlertNotify(strWarning); fWarned = true; } } } LogPrintf( "%s: new best=%s height=%d version=0x%08x log2_work=%.8g tx=%lu " "date='%s' progress=%f cache=%.1fMiB(%utxo)", __func__, chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), chainActive.Tip()->nVersion, log(chainActive.Tip()->nChainWork.getdouble()) / log(2.0), (unsigned long)chainActive.Tip()->nChainTx, DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()), GuessVerificationProgress(chainParams.TxData(), chainActive.Tip()), pcoinsTip->DynamicMemoryUsage() * (1.0 / (1 << 20)), pcoinsTip->GetCacheSize()); if (!warningMessages.empty()) LogPrintf(" warning='%s'", boost::algorithm::join(warningMessages, ", ")); LogPrintf("\n"); } /** * Disconnect chainActive's tip. You probably want to call * mempool.removeForReorg and manually re-limit mempool size after this, with * cs_main held. */ static bool DisconnectTip(const Config &config, CValidationState &state, bool fBare = false) { CBlockIndex *pindexDelete = chainActive.Tip(); assert(pindexDelete); // Read block from disk. CBlock block; if (!ReadBlockFromDisk(block, pindexDelete, config)) { return AbortNode(state, "Failed to read block"); } // Apply the block atomically to the chain state. int64_t nStart = GetTimeMicros(); { CCoinsViewCache view(pcoinsTip); if (DisconnectBlock(block, pindexDelete, view) != DISCONNECT_OK) { return error("DisconnectTip(): DisconnectBlock %s failed", pindexDelete->GetBlockHash().ToString()); } bool flushed = view.Flush(); assert(flushed); } LogPrint("bench", "- Disconnect block: %.2fms\n", (GetTimeMicros() - nStart) * 0.001); // Write the chain state to disk, if necessary. if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED)) { return false; } if (!fBare) { // Resurrect mempool transactions from the disconnected block. std::vector vHashUpdate; for (const auto &it : block.vtx) { const CTransaction &tx = *it; // ignore validation errors in resurrected transactions CValidationState stateDummy; if (tx.IsCoinBase() || !AcceptToMemoryPool(config, mempool, stateDummy, it, false, nullptr, nullptr, true)) { mempool.removeRecursive(tx, MemPoolRemovalReason::REORG); } else if (mempool.exists(tx.GetId())) { vHashUpdate.push_back(tx.GetId()); } } // AcceptToMemoryPool/addUnchecked all assume that new mempool entries // have no in-mempool children, which is generally not true when adding // previously-confirmed transactions back to the mempool. // UpdateTransactionsFromBlock finds descendants of any transactions in // this block that were added back and cleans up the mempool state. mempool.UpdateTransactionsFromBlock(vHashUpdate); } // Update chainActive and related variables. UpdateTip(config, pindexDelete->pprev); // Let wallets know transactions went from 1-confirmed to // 0-confirmed or conflicted: for (const auto &tx : block.vtx) { GetMainSignals().SyncTransaction( *tx, pindexDelete->pprev, CMainSignals::SYNC_TRANSACTION_NOT_IN_BLOCK); } return true; } static int64_t nTimeReadFromDisk = 0; static int64_t nTimeConnectTotal = 0; static int64_t nTimeFlush = 0; static int64_t nTimeChainState = 0; static int64_t nTimePostConnect = 0; /** * Used to track blocks whose transactions were applied to the UTXO state as a * part of a single ActivateBestChainStep call. */ struct ConnectTrace { std::vector>> blocksConnected; }; /** * Connect a new block to chainActive. pblock is either nullptr or a pointer to * a CBlock corresponding to pindexNew, to bypass loading it again from disk. * * The block is always added to connectTrace (either after loading from disk or * by copying pblock) - if that is not intended, care must be taken to remove * the last entry in blocksConnected in case of failure. */ static bool ConnectTip(const Config &config, CValidationState &state, CBlockIndex *pindexNew, const std::shared_ptr &pblock, ConnectTrace &connectTrace) { const CChainParams &chainparams = config.GetChainParams(); assert(pindexNew->pprev == chainActive.Tip()); // Read block from disk. int64_t nTime1 = GetTimeMicros(); if (!pblock) { std::shared_ptr pblockNew = std::make_shared(); connectTrace.blocksConnected.emplace_back(pindexNew, pblockNew); if (!ReadBlockFromDisk(*pblockNew, pindexNew, config)) { return AbortNode(state, "Failed to read block"); } } else { connectTrace.blocksConnected.emplace_back(pindexNew, pblock); } const CBlock &blockConnecting = *connectTrace.blocksConnected.back().second; // Apply the block atomically to the chain state. int64_t nTime2 = GetTimeMicros(); nTimeReadFromDisk += nTime2 - nTime1; int64_t nTime3; LogPrint("bench", " - Load block from disk: %.2fms [%.2fs]\n", (nTime2 - nTime1) * 0.001, nTimeReadFromDisk * 0.000001); { CCoinsViewCache view(pcoinsTip); bool rv = ConnectBlock(config, blockConnecting, state, pindexNew, view, chainparams); GetMainSignals().BlockChecked(blockConnecting, state); if (!rv) { if (state.IsInvalid()) { InvalidBlockFound(pindexNew, state); } return error("ConnectTip(): ConnectBlock %s failed", pindexNew->GetBlockHash().ToString()); } nTime3 = GetTimeMicros(); nTimeConnectTotal += nTime3 - nTime2; LogPrint("bench", " - Connect total: %.2fms [%.2fs]\n", (nTime3 - nTime2) * 0.001, nTimeConnectTotal * 0.000001); bool flushed = view.Flush(); assert(flushed); } int64_t nTime4 = GetTimeMicros(); nTimeFlush += nTime4 - nTime3; LogPrint("bench", " - Flush: %.2fms [%.2fs]\n", (nTime4 - nTime3) * 0.001, nTimeFlush * 0.000001); // Write the chain state to disk, if necessary. if (!FlushStateToDisk(state, FLUSH_STATE_IF_NEEDED)) return false; int64_t nTime5 = GetTimeMicros(); nTimeChainState += nTime5 - nTime4; LogPrint("bench", " - Writing chainstate: %.2fms [%.2fs]\n", (nTime5 - nTime4) * 0.001, nTimeChainState * 0.000001); // Remove conflicting transactions from the mempool.; mempool.removeForBlock(blockConnecting.vtx, pindexNew->nHeight); // Update chainActive & related variables. UpdateTip(config, pindexNew); int64_t nTime6 = GetTimeMicros(); nTimePostConnect += nTime6 - nTime5; nTimeTotal += nTime6 - nTime1; LogPrint("bench", " - Connect postprocess: %.2fms [%.2fs]\n", (nTime6 - nTime5) * 0.001, nTimePostConnect * 0.000001); LogPrint("bench", "- Connect block: %.2fms [%.2fs]\n", (nTime6 - nTime1) * 0.001, nTimeTotal * 0.000001); return true; } /** * Return the tip of the chain with the most work in it, that isn't known to be * invalid (it's however far from certain to be valid). */ static CBlockIndex *FindMostWorkChain() { do { CBlockIndex *pindexNew = nullptr; // Find the best candidate header. { std::set::reverse_iterator it = setBlockIndexCandidates.rbegin(); if (it == setBlockIndexCandidates.rend()) return nullptr; pindexNew = *it; } // Check whether all blocks on the path between the currently active // chain and the candidate are valid. Just going until the active chain // is an optimization, as we know all blocks in it are valid already. CBlockIndex *pindexTest = pindexNew; bool fInvalidAncestor = false; while (pindexTest && !chainActive.Contains(pindexTest)) { assert(pindexTest->nChainTx || pindexTest->nHeight == 0); // Pruned nodes may have entries in setBlockIndexCandidates for // which block files have been deleted. Remove those as candidates // for the most work chain if we come across them; we can't switch // to a chain unless we have all the non-active-chain parent blocks. bool fFailedChain = pindexTest->nStatus & BLOCK_FAILED_MASK; bool fMissingData = !(pindexTest->nStatus & BLOCK_HAVE_DATA); if (fFailedChain || fMissingData) { // Candidate chain is not usable (either invalid or missing // data) if (fFailedChain && (pindexBestInvalid == nullptr || pindexNew->nChainWork > pindexBestInvalid->nChainWork)) pindexBestInvalid = pindexNew; CBlockIndex *pindexFailed = pindexNew; // Remove the entire chain from the set. while (pindexTest != pindexFailed) { if (fFailedChain) { pindexFailed->nStatus |= BLOCK_FAILED_CHILD; } else if (fMissingData) { // If we're missing data, then add back to // mapBlocksUnlinked, so that if the block arrives in // the future we can try adding to // setBlockIndexCandidates again. mapBlocksUnlinked.insert( std::make_pair(pindexFailed->pprev, pindexFailed)); } setBlockIndexCandidates.erase(pindexFailed); pindexFailed = pindexFailed->pprev; } setBlockIndexCandidates.erase(pindexTest); fInvalidAncestor = true; break; } pindexTest = pindexTest->pprev; } if (!fInvalidAncestor) return pindexNew; } while (true); } /** Delete all entries in setBlockIndexCandidates that are worse than the * current tip. */ static void PruneBlockIndexCandidates() { // Note that we can't delete the current block itself, as we may need to // return to it later in case a reorganization to a better block fails. std::set::iterator it = setBlockIndexCandidates.begin(); while (it != setBlockIndexCandidates.end() && setBlockIndexCandidates.value_comp()(*it, chainActive.Tip())) { setBlockIndexCandidates.erase(it++); } // Either the current tip or a successor of it we're working towards is left // in setBlockIndexCandidates. assert(!setBlockIndexCandidates.empty()); } /** * Try to make some progress towards making pindexMostWork the active block. * pblock is either nullptr or a pointer to a CBlock corresponding to * pindexMostWork. */ static bool ActivateBestChainStep(const Config &config, CValidationState &state, CBlockIndex *pindexMostWork, const std::shared_ptr &pblock, bool &fInvalidFound, ConnectTrace &connectTrace) { AssertLockHeld(cs_main); const CBlockIndex *pindexOldTip = chainActive.Tip(); const CBlockIndex *pindexFork = chainActive.FindFork(pindexMostWork); // Disconnect active blocks which are no longer in the best chain. bool fBlocksDisconnected = false; while (chainActive.Tip() && chainActive.Tip() != pindexFork) { if (!DisconnectTip(config, state)) return false; fBlocksDisconnected = true; } // Build list of new blocks to connect. std::vector vpindexToConnect; bool fContinue = true; int nHeight = pindexFork ? pindexFork->nHeight : -1; while (fContinue && nHeight != pindexMostWork->nHeight) { // Don't iterate the entire list of potential improvements toward the // best tip, as we likely only need a few blocks along the way. int nTargetHeight = std::min(nHeight + 32, pindexMostWork->nHeight); vpindexToConnect.clear(); vpindexToConnect.reserve(nTargetHeight - nHeight); CBlockIndex *pindexIter = pindexMostWork->GetAncestor(nTargetHeight); while (pindexIter && pindexIter->nHeight != nHeight) { vpindexToConnect.push_back(pindexIter); pindexIter = pindexIter->pprev; } nHeight = nTargetHeight; // Connect new blocks. for (CBlockIndex *pindexConnect : boost::adaptors::reverse(vpindexToConnect)) { if (!ConnectTip(config, state, pindexConnect, pindexConnect == pindexMostWork ? pblock : std::shared_ptr(), connectTrace)) { if (state.IsInvalid()) { // The block violates a consensus rule. if (!state.CorruptionPossible()) InvalidChainFound(vpindexToConnect.back()); state = CValidationState(); fInvalidFound = true; fContinue = false; // If we didn't actually connect the block, don't notify // listeners about it connectTrace.blocksConnected.pop_back(); break; } else { // A system error occurred (disk space, database error, // ...). return false; } } else { PruneBlockIndexCandidates(); if (!pindexOldTip || chainActive.Tip()->nChainWork > pindexOldTip->nChainWork) { // We're in a better position than we were. Return // temporarily to release the lock. fContinue = false; break; } } } } if (fBlocksDisconnected) { mempool.removeForReorg(config, pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS); LimitMempoolSize( mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60); } mempool.check(pcoinsTip); // Callbacks/notifications for a new best chain. if (fInvalidFound) CheckForkWarningConditionsOnNewFork(vpindexToConnect.back()); else CheckForkWarningConditions(); return true; } static void NotifyHeaderTip() { bool fNotify = false; bool fInitialBlockDownload = false; static CBlockIndex *pindexHeaderOld = nullptr; CBlockIndex *pindexHeader = nullptr; { LOCK(cs_main); pindexHeader = pindexBestHeader; if (pindexHeader != pindexHeaderOld) { fNotify = true; fInitialBlockDownload = IsInitialBlockDownload(); pindexHeaderOld = pindexHeader; } } // Send block tip changed notifications without cs_main if (fNotify) { uiInterface.NotifyHeaderTip(fInitialBlockDownload, pindexHeader); } } /** * Make the best chain active, in multiple steps. The result is either failure * or an activated best chain. pblock is either nullptr or a pointer to a block * that is already loaded (to avoid loading it again from disk). */ bool ActivateBestChain(const Config &config, CValidationState &state, std::shared_ptr pblock) { // Note that while we're often called here from ProcessNewBlock, this is // far from a guarantee. Things in the P2P/RPC will often end up calling // us in the middle of ProcessNewBlock - do not assume pblock is set // sanely for performance or correctness! CBlockIndex *pindexMostWork = nullptr; CBlockIndex *pindexNewTip = nullptr; do { boost::this_thread::interruption_point(); if (ShutdownRequested()) break; const CBlockIndex *pindexFork; ConnectTrace connectTrace; bool fInitialDownload; { LOCK(cs_main); { // TODO: Tempoarily ensure that mempool removals are notified // before connected transactions. This shouldn't matter, but the // abandoned state of transactions in our wallet is currently // cleared when we receive another notification and there is a // race condition where notification of a connected conflict // might cause an outside process to abandon a transaction and // then have it inadvertantly cleared by the notification that // the conflicted transaction was evicted. MemPoolConflictRemovalTracker mrt(mempool); CBlockIndex *pindexOldTip = chainActive.Tip(); if (pindexMostWork == nullptr) { pindexMostWork = FindMostWorkChain(); } // Whether we have anything to do at all. if (pindexMostWork == nullptr || pindexMostWork == chainActive.Tip()) return true; bool fInvalidFound = false; std::shared_ptr nullBlockPtr; if (!ActivateBestChainStep( config, state, pindexMostWork, pblock && pblock->GetHash() == pindexMostWork->GetBlockHash() ? pblock : nullBlockPtr, fInvalidFound, connectTrace)) return false; if (fInvalidFound) { // Wipe cache, we may need another branch now. pindexMostWork = nullptr; } pindexNewTip = chainActive.Tip(); pindexFork = chainActive.FindFork(pindexOldTip); fInitialDownload = IsInitialBlockDownload(); // throw all transactions though the signal-interface } // MemPoolConflictRemovalTracker destroyed and conflict evictions // are notified // Transactions in the connnected block are notified for (const auto &pair : connectTrace.blocksConnected) { assert(pair.second); const CBlock &block = *(pair.second); for (unsigned int i = 0; i < block.vtx.size(); i++) GetMainSignals().SyncTransaction(*block.vtx[i], pair.first, i); } } // When we reach this point, we switched to a new tip (stored in // pindexNewTip). // Notifications/callbacks that can run without cs_main // Notify external listeners about the new tip. GetMainSignals().UpdatedBlockTip(pindexNewTip, pindexFork, fInitialDownload); // Always notify the UI if a new block tip was connected if (pindexFork != pindexNewTip) { uiInterface.NotifyBlockTip(fInitialDownload, pindexNewTip); } } while (pindexNewTip != pindexMostWork); CheckBlockIndex(config.GetChainParams().GetConsensus()); // Write changes periodically to disk, after relay. if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC)) { return false; } return true; } bool PreciousBlock(const Config &config, CValidationState &state, CBlockIndex *pindex) { { LOCK(cs_main); if (pindex->nChainWork < chainActive.Tip()->nChainWork) { // Nothing to do, this block is not at the tip. return true; } if (chainActive.Tip()->nChainWork > nLastPreciousChainwork) { // The chain has been extended since the last call, reset the // counter. nBlockReverseSequenceId = -1; } nLastPreciousChainwork = chainActive.Tip()->nChainWork; setBlockIndexCandidates.erase(pindex); pindex->nSequenceId = nBlockReverseSequenceId; if (nBlockReverseSequenceId > std::numeric_limits::min()) { // We can't keep reducing the counter if somebody really wants to // call preciousblock 2**31-1 times on the same set of tips... nBlockReverseSequenceId--; } if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && pindex->nChainTx) { setBlockIndexCandidates.insert(pindex); PruneBlockIndexCandidates(); } } return ActivateBestChain(config, state); } bool InvalidateBlock(const Config &config, CValidationState &state, CBlockIndex *pindex) { AssertLockHeld(cs_main); // Mark the block itself as invalid. pindex->nStatus |= BLOCK_FAILED_VALID; setDirtyBlockIndex.insert(pindex); setBlockIndexCandidates.erase(pindex); while (chainActive.Contains(pindex)) { CBlockIndex *pindexWalk = chainActive.Tip(); pindexWalk->nStatus |= BLOCK_FAILED_CHILD; setDirtyBlockIndex.insert(pindexWalk); setBlockIndexCandidates.erase(pindexWalk); // ActivateBestChain considers blocks already in chainActive // unconditionally valid already, so force disconnect away from it. if (!DisconnectTip(config, state)) { mempool.removeForReorg(config, pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS); return false; } } LimitMempoolSize( mempool, GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000, GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60); // The resulting new best tip may not be in setBlockIndexCandidates anymore, // so add it again. BlockMap::iterator it = mapBlockIndex.begin(); while (it != mapBlockIndex.end()) { if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && !setBlockIndexCandidates.value_comp()(it->second, chainActive.Tip())) { setBlockIndexCandidates.insert(it->second); } it++; } InvalidChainFound(pindex); mempool.removeForReorg(config, pcoinsTip, chainActive.Tip()->nHeight + 1, STANDARD_LOCKTIME_VERIFY_FLAGS); uiInterface.NotifyBlockTip(IsInitialBlockDownload(), pindex->pprev); return true; } bool ResetBlockFailureFlags(CBlockIndex *pindex) { AssertLockHeld(cs_main); int nHeight = pindex->nHeight; // Remove the invalidity flag from this block and all its descendants. BlockMap::iterator it = mapBlockIndex.begin(); while (it != mapBlockIndex.end()) { if (!it->second->IsValid() && it->second->GetAncestor(nHeight) == pindex) { it->second->nStatus &= ~BLOCK_FAILED_MASK; setDirtyBlockIndex.insert(it->second); if (it->second->IsValid(BLOCK_VALID_TRANSACTIONS) && it->second->nChainTx && setBlockIndexCandidates.value_comp()(chainActive.Tip(), it->second)) { setBlockIndexCandidates.insert(it->second); } if (it->second == pindexBestInvalid) { // Reset invalid block marker if it was pointing to one of // those. pindexBestInvalid = nullptr; } } it++; } // Remove the invalidity flag from all ancestors too. while (pindex != nullptr) { if (pindex->nStatus & BLOCK_FAILED_MASK) { pindex->nStatus &= ~BLOCK_FAILED_MASK; setDirtyBlockIndex.insert(pindex); } pindex = pindex->pprev; } return true; } CBlockIndex *AddToBlockIndex(const CBlockHeader &block) { // Check for duplicate uint256 hash = block.GetHash(); BlockMap::iterator it = mapBlockIndex.find(hash); if (it != mapBlockIndex.end()) return it->second; // Construct new block index object CBlockIndex *pindexNew = new CBlockIndex(block); assert(pindexNew); // We assign the sequence id to blocks only when the full data is available, // to avoid miners withholding blocks but broadcasting headers, to get a // competitive advantage. pindexNew->nSequenceId = 0; BlockMap::iterator mi = mapBlockIndex.insert(std::make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); BlockMap::iterator miPrev = mapBlockIndex.find(block.hashPrevBlock); if (miPrev != mapBlockIndex.end()) { pindexNew->pprev = (*miPrev).second; pindexNew->nHeight = pindexNew->pprev->nHeight + 1; pindexNew->BuildSkip(); } pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime); pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew); pindexNew->RaiseValidity(BLOCK_VALID_TREE); if (pindexBestHeader == nullptr || pindexBestHeader->nChainWork < pindexNew->nChainWork) { pindexBestHeader = pindexNew; } setDirtyBlockIndex.insert(pindexNew); return pindexNew; } /** * Mark a block as having its data received and checked (up to * BLOCK_VALID_TRANSACTIONS). */ bool ReceivedBlockTransactions(const CBlock &block, CValidationState &state, CBlockIndex *pindexNew, const CDiskBlockPos &pos) { pindexNew->nTx = block.vtx.size(); pindexNew->nChainTx = 0; pindexNew->nFile = pos.nFile; pindexNew->nDataPos = pos.nPos; pindexNew->nUndoPos = 0; pindexNew->nStatus |= BLOCK_HAVE_DATA; pindexNew->RaiseValidity(BLOCK_VALID_TRANSACTIONS); setDirtyBlockIndex.insert(pindexNew); if (pindexNew->pprev == nullptr || pindexNew->pprev->nChainTx) { // If pindexNew is the genesis block or all parents are // BLOCK_VALID_TRANSACTIONS. std::deque queue; queue.push_back(pindexNew); // Recursively process any descendant blocks that now may be eligible to // be connected. while (!queue.empty()) { CBlockIndex *pindex = queue.front(); queue.pop_front(); pindex->nChainTx = (pindex->pprev ? pindex->pprev->nChainTx : 0) + pindex->nTx; { LOCK(cs_nBlockSequenceId); pindex->nSequenceId = nBlockSequenceId++; } if (chainActive.Tip() == nullptr || !setBlockIndexCandidates.value_comp()(pindex, chainActive.Tip())) { setBlockIndexCandidates.insert(pindex); } std::pair::iterator, std::multimap::iterator> range = mapBlocksUnlinked.equal_range(pindex); while (range.first != range.second) { std::multimap::iterator it = range.first; queue.push_back(it->second); range.first++; mapBlocksUnlinked.erase(it); } } } else { if (pindexNew->pprev && pindexNew->pprev->IsValid(BLOCK_VALID_TREE)) { mapBlocksUnlinked.insert( std::make_pair(pindexNew->pprev, pindexNew)); } } return true; } bool FindBlockPos(CValidationState &state, CDiskBlockPos &pos, unsigned int nAddSize, unsigned int nHeight, uint64_t nTime, bool fKnown = false) { LOCK(cs_LastBlockFile); unsigned int nFile = fKnown ? pos.nFile : nLastBlockFile; if (vinfoBlockFile.size() <= nFile) { vinfoBlockFile.resize(nFile + 1); } if (!fKnown) { while (vinfoBlockFile[nFile].nSize + nAddSize >= MAX_BLOCKFILE_SIZE) { nFile++; if (vinfoBlockFile.size() <= nFile) { vinfoBlockFile.resize(nFile + 1); } } pos.nFile = nFile; pos.nPos = vinfoBlockFile[nFile].nSize; } if ((int)nFile != nLastBlockFile) { if (!fKnown) { LogPrintf("Leaving block file %i: %s\n", nLastBlockFile, vinfoBlockFile[nLastBlockFile].ToString()); } FlushBlockFile(!fKnown); nLastBlockFile = nFile; } vinfoBlockFile[nFile].AddBlock(nHeight, nTime); if (fKnown) vinfoBlockFile[nFile].nSize = std::max(pos.nPos + nAddSize, vinfoBlockFile[nFile].nSize); else vinfoBlockFile[nFile].nSize += nAddSize; if (!fKnown) { unsigned int nOldChunks = (pos.nPos + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; unsigned int nNewChunks = (vinfoBlockFile[nFile].nSize + BLOCKFILE_CHUNK_SIZE - 1) / BLOCKFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (fPruneMode) fCheckForPruning = true; if (CheckDiskSpace(nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenBlockFile(pos); if (file) { LogPrintf( "Pre-allocating up to position 0x%x in blk%05u.dat\n", nNewChunks * BLOCKFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * BLOCKFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error("out of disk space"); } } setDirtyFileInfo.insert(nFile); return true; } bool FindUndoPos(CValidationState &state, int nFile, CDiskBlockPos &pos, unsigned int nAddSize) { pos.nFile = nFile; LOCK(cs_LastBlockFile); unsigned int nNewSize; pos.nPos = vinfoBlockFile[nFile].nUndoSize; nNewSize = vinfoBlockFile[nFile].nUndoSize += nAddSize; setDirtyFileInfo.insert(nFile); unsigned int nOldChunks = (pos.nPos + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; unsigned int nNewChunks = (nNewSize + UNDOFILE_CHUNK_SIZE - 1) / UNDOFILE_CHUNK_SIZE; if (nNewChunks > nOldChunks) { if (fPruneMode) fCheckForPruning = true; if (CheckDiskSpace(nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos)) { FILE *file = OpenUndoFile(pos); if (file) { LogPrintf("Pre-allocating up to position 0x%x in rev%05u.dat\n", nNewChunks * UNDOFILE_CHUNK_SIZE, pos.nFile); AllocateFileRange(file, pos.nPos, nNewChunks * UNDOFILE_CHUNK_SIZE - pos.nPos); fclose(file); } } else return state.Error("out of disk space"); } return true; } static bool CheckBlockHeader(const Config &config, const CBlockHeader &block, CValidationState &state, bool fCheckPOW = true) { // Check proof of work matches claimed amount if (fCheckPOW && !CheckProofOfWork(block.GetHash(), block.nBits, config)) { return state.DoS(50, false, REJECT_INVALID, "high-hash", false, "proof of work failed"); } return true; } bool CheckBlock(const Config &config, const CBlock &block, CValidationState &state, bool fCheckPOW, bool fCheckMerkleRoot) { // These are checks that are independent of context. if (block.fChecked) { return true; } // Check that the header is valid (particularly PoW). This is mostly // redundant with the call in AcceptBlockHeader. if (!CheckBlockHeader(config, block, state, fCheckPOW)) { return false; } // Check the merkle root. if (fCheckMerkleRoot) { bool mutated; uint256 hashMerkleRoot2 = BlockMerkleRoot(block, &mutated); if (block.hashMerkleRoot != hashMerkleRoot2) { return state.DoS(100, false, REJECT_INVALID, "bad-txnmrklroot", true, "hashMerkleRoot mismatch"); } // Check for merkle tree malleability (CVE-2012-2459): repeating // sequences of transactions in a block without affecting the merkle // root of a block, while still invalidating it. if (mutated) { return state.DoS(100, false, REJECT_INVALID, "bad-txns-duplicate", true, "duplicate transaction"); } } // All potential-corruption validation must be done before we do any // transaction validation, as otherwise we may mark the header as invalid // because we receive the wrong transactions for it. // First transaction must be coinbase. if (block.vtx.empty()) { return state.DoS(100, false, REJECT_INVALID, "bad-cb-missing", false, "first tx is not coinbase"); } // Size limits. auto nMaxBlockSize = config.GetMaxBlockSize(); // Bail early if there is no way this block is of reasonable size. if ((block.vtx.size() * MIN_TRANSACTION_SIZE) > nMaxBlockSize) { return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false, "size limits failed"); } auto currentBlockSize = ::GetSerializeSize(block, SER_NETWORK, PROTOCOL_VERSION); if (currentBlockSize > nMaxBlockSize) { return state.DoS(100, false, REJECT_INVALID, "bad-blk-length", false, "size limits failed"); } // And a valid coinbase. if (!CheckCoinbase(*block.vtx[0], state, false)) { return state.Invalid(false, state.GetRejectCode(), state.GetRejectReason(), strprintf("Coinbase check failed (txid %s) %s", block.vtx[0]->GetId().ToString(), state.GetDebugMessage())); } // Keep track of the sigops count. uint64_t nSigOps = 0; auto nMaxSigOpsCount = GetMaxBlockSigOpsCount(currentBlockSize); // Check transactions auto txCount = block.vtx.size(); auto *tx = block.vtx[0].get(); size_t i = 0; while (true) { // Count the sigops for the current transaction. If the total sigops // count is too high, the the block is invalid. nSigOps += GetSigOpCountWithoutP2SH(*tx); if (nSigOps > nMaxSigOpsCount) { return state.DoS(100, false, REJECT_INVALID, "bad-blk-sigops", false, "out-of-bounds SigOpCount"); } // Go to the next transaction. i++; // We reached the end of the block, success. if (i >= txCount) { break; } // Check that the transaction is valid. because this check differs for // the coinbase, the loos is arranged such as this only runs after at // least one increment. tx = block.vtx[i].get(); if (!CheckRegularTransaction(*tx, state, false)) { return state.Invalid( false, state.GetRejectCode(), state.GetRejectReason(), strprintf("Transaction check failed (txid %s) %s", tx->GetId().ToString(), state.GetDebugMessage())); } } if (fCheckPOW && fCheckMerkleRoot) { block.fChecked = true; } return true; } static bool CheckIndexAgainstCheckpoint(const CBlockIndex *pindexPrev, CValidationState &state, const CChainParams &chainparams, const uint256 &hash) { if (*pindexPrev->phashBlock == chainparams.GetConsensus().hashGenesisBlock) { return true; } int nHeight = pindexPrev->nHeight + 1; // Don't accept any forks from the main chain prior to last checkpoint CBlockIndex *pcheckpoint = Checkpoints::GetLastCheckpoint(chainparams.Checkpoints()); if (pcheckpoint && nHeight < pcheckpoint->nHeight) { return state.DoS( 100, error("%s: forked chain older than last checkpoint (height %d)", __func__, nHeight)); } return true; } static bool ContextualCheckBlockHeader(const Config &config, const CBlockHeader &block, CValidationState &state, const CBlockIndex *pindexPrev, int64_t nAdjustedTime) { const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); const int nHeight = pindexPrev == nullptr ? 0 : pindexPrev->nHeight + 1; // Check proof of work if (block.nBits != GetNextWorkRequired(pindexPrev, &block, config)) { LogPrintf("bad bits after height: %d\n", pindexPrev->nHeight); return state.DoS(100, false, REJECT_INVALID, "bad-diffbits", false, "incorrect proof of work"); } // Check timestamp against prev if (block.GetBlockTime() <= pindexPrev->GetMedianTimePast()) { return state.Invalid(false, REJECT_INVALID, "time-too-old", "block's timestamp is too early"); } // Check timestamp if (block.GetBlockTime() > nAdjustedTime + 2 * 60 * 60) { return state.Invalid(false, REJECT_INVALID, "time-too-new", "block timestamp too far in the future"); } // Reject outdated version blocks when 95% (75% on testnet) of the network // has upgraded: // check for version 2, 3 and 4 upgrades if ((block.nVersion < 2 && nHeight >= consensusParams.BIP34Height) || (block.nVersion < 3 && nHeight >= consensusParams.BIP66Height) || (block.nVersion < 4 && nHeight >= consensusParams.BIP65Height)) { return state.Invalid( false, REJECT_OBSOLETE, strprintf("bad-version(0x%08x)", block.nVersion), strprintf("rejected nVersion=0x%08x block", block.nVersion)); } return true; } bool ContextualCheckTransaction(const Config &config, const CTransaction &tx, CValidationState &state, int nHeight, int64_t nLockTimeCutoff) { if (!IsFinalTx(tx, nHeight, nLockTimeCutoff)) { // While this is only one transaction, we use txns in the error to // ensure continuity with other clients. return state.DoS(10, false, REJECT_INVALID, "bad-txns-nonfinal", false, "non-final transaction"); } const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); if (IsUAHFenabled(config, nHeight) && nHeight <= consensusParams.antiReplayOpReturnSunsetHeight) { for (const CTxOut &o : tx.vout) { if (o.scriptPubKey.IsCommitment( consensusParams.antiReplayOpReturnCommitment)) { return state.DoS(10, false, REJECT_INVALID, "bad-txn-replay", false, "non playable transaction"); } } } return true; } bool ContextualCheckTransactionForCurrentBlock(const Config &config, const CTransaction &tx, CValidationState &state, int flags) { AssertLockHeld(cs_main); // By convention a negative value for flags indicates that the current // network-enforced consensus rules should be used. In a future soft-fork // scenario that would mean checking which rules would be enforced for the // next block and setting the appropriate flags. At the present time no // soft-forks are scheduled, so no flags are set. flags = std::max(flags, 0); // ContextualCheckTransactionForCurrentBlock() uses chainActive.Height()+1 // to evaluate nLockTime because when IsFinalTx() is called within // CBlock::AcceptBlock(), the height of the block *being* evaluated is what // is used. Thus if we want to know if a transaction can be part of the // *next* block, we need to call ContextualCheckTransaction() with one more // than chainActive.Height(). const int nBlockHeight = chainActive.Height() + 1; // BIP113 will require that time-locked transactions have nLockTime set to // less than the median time of the previous block they're contained in. // When the next block is created its previous block will be the current // chain tip, so we use that to calculate the median time passed to // ContextualCheckTransaction() if LOCKTIME_MEDIAN_TIME_PAST is set. const int64_t nLockTimeCutoff = (flags & LOCKTIME_MEDIAN_TIME_PAST) ? chainActive.Tip()->GetMedianTimePast() : GetAdjustedTime(); return ContextualCheckTransaction(config, tx, state, nBlockHeight, nLockTimeCutoff); } bool ContextualCheckBlock(const Config &config, const CBlock &block, CValidationState &state, const Consensus::Params &consensusParams, const CBlockIndex *pindexPrev) { const int nHeight = pindexPrev == nullptr ? 0 : pindexPrev->nHeight + 1; // Start enforcing BIP113 (Median Time Past) using versionbits logic. int nLockTimeFlags = 0; if (VersionBitsState(pindexPrev, consensusParams, Consensus::DEPLOYMENT_CSV, versionbitscache) == THRESHOLD_ACTIVE) { nLockTimeFlags |= LOCKTIME_MEDIAN_TIME_PAST; } const int64_t nMedianTimePast = pindexPrev == nullptr ? 0 : pindexPrev->GetMedianTimePast(); const int64_t nLockTimeCutoff = (nLockTimeFlags & LOCKTIME_MEDIAN_TIME_PAST) ? nMedianTimePast : block.GetBlockTime(); // Check that all transactions are finalized for (const auto &tx : block.vtx) { if (!ContextualCheckTransaction(config, *tx, state, nHeight, nLockTimeCutoff)) { // state set by ContextualCheckTransaction. return false; } } // Enforce rule that the coinbase starts with serialized block height if (nHeight >= consensusParams.BIP34Height) { CScript expect = CScript() << nHeight; if (block.vtx[0]->vin[0].scriptSig.size() < expect.size() || !std::equal(expect.begin(), expect.end(), block.vtx[0]->vin[0].scriptSig.begin())) { return state.DoS(100, false, REJECT_INVALID, "bad-cb-height", false, "block height mismatch in coinbase"); } } return true; } static bool AcceptBlockHeader(const Config &config, const CBlockHeader &block, CValidationState &state, CBlockIndex **ppindex) { AssertLockHeld(cs_main); const CChainParams &chainparams = config.GetChainParams(); // Check for duplicate uint256 hash = block.GetHash(); BlockMap::iterator miSelf = mapBlockIndex.find(hash); CBlockIndex *pindex = nullptr; if (hash != chainparams.GetConsensus().hashGenesisBlock) { if (miSelf != mapBlockIndex.end()) { // Block header is already known. pindex = miSelf->second; if (ppindex) { *ppindex = pindex; } if (pindex->nStatus & BLOCK_FAILED_MASK) { return state.Invalid(error("%s: block %s is marked invalid", __func__, hash.ToString()), 0, "duplicate"); } return true; } if (!CheckBlockHeader(config, block, state)) { return error("%s: Consensus::CheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state)); } // Get prev block index CBlockIndex *pindexPrev = nullptr; BlockMap::iterator mi = mapBlockIndex.find(block.hashPrevBlock); if (mi == mapBlockIndex.end()) { return state.DoS(10, error("%s: prev block not found", __func__), 0, "bad-prevblk"); } pindexPrev = (*mi).second; if (pindexPrev->nStatus & BLOCK_FAILED_MASK) { return state.DoS(100, error("%s: prev block invalid", __func__), REJECT_INVALID, "bad-prevblk"); } assert(pindexPrev); if (fCheckpointsEnabled && !CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams, hash)) { return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__, state.GetRejectReason().c_str()); } if (!ContextualCheckBlockHeader(config, block, state, pindexPrev, GetAdjustedTime())) { return error("%s: Consensus::ContextualCheckBlockHeader: %s, %s", __func__, hash.ToString(), FormatStateMessage(state)); } } if (pindex == nullptr) { pindex = AddToBlockIndex(block); } if (ppindex) { *ppindex = pindex; } CheckBlockIndex(chainparams.GetConsensus()); return true; } // Exposed wrapper for AcceptBlockHeader bool ProcessNewBlockHeaders(const Config &config, const std::vector &headers, CValidationState &state, const CBlockIndex **ppindex) { { LOCK(cs_main); for (const CBlockHeader &header : headers) { // Use a temp pindex instead of ppindex to avoid a const_cast CBlockIndex *pindex = nullptr; if (!AcceptBlockHeader(config, header, state, &pindex)) { return false; } if (ppindex) { *ppindex = pindex; } } } NotifyHeaderTip(); return true; } /** * Store block on disk. If dbp is non-null, the file is known to already reside * on disk. */ static bool AcceptBlock(const Config &config, const std::shared_ptr &pblock, CValidationState &state, CBlockIndex **ppindex, bool fRequested, const CDiskBlockPos *dbp, bool *fNewBlock) { AssertLockHeld(cs_main); const CBlock &block = *pblock; if (fNewBlock) { *fNewBlock = false; } CBlockIndex *pindexDummy = nullptr; CBlockIndex *&pindex = ppindex ? *ppindex : pindexDummy; if (!AcceptBlockHeader(config, block, state, &pindex)) { return false; } // Try to process all requested blocks that we don't have, but only // process an unrequested block if it's new and has enough work to // advance our tip, and isn't too many blocks ahead. bool fAlreadyHave = pindex->nStatus & BLOCK_HAVE_DATA; bool fHasMoreWork = (chainActive.Tip() ? pindex->nChainWork > chainActive.Tip()->nChainWork : true); // Blocks that are too out-of-order needlessly limit the effectiveness of // pruning, because pruning will not delete block files that contain any // blocks which are too close in height to the tip. Apply this test // regardless of whether pruning is enabled; it should generally be safe to // not process unrequested blocks. bool fTooFarAhead = (pindex->nHeight > int(chainActive.Height() + MIN_BLOCKS_TO_KEEP)); // TODO: Decouple this function from the block download logic by removing // fRequested // This requires some new chain datastructure to efficiently look up if a // block is in a chain leading to a candidate for best tip, despite not // being such a candidate itself. // TODO: deal better with return value and error conditions for duplicate // and unrequested blocks. if (fAlreadyHave) { return true; } // If we didn't ask for it: if (!fRequested) { // This is a previously-processed block that was pruned. if (pindex->nTx != 0) { return true; } // Don't process less-work chains. if (!fHasMoreWork) { return true; } // Block height is too high. if (fTooFarAhead) { return true; } } if (fNewBlock) { *fNewBlock = true; } const CChainParams &chainparams = config.GetChainParams(); if (!CheckBlock(config, block, state) || !ContextualCheckBlock(config, block, state, chainparams.GetConsensus(), pindex->pprev)) { if (state.IsInvalid() && !state.CorruptionPossible()) { pindex->nStatus |= BLOCK_FAILED_VALID; setDirtyBlockIndex.insert(pindex); } return error("%s: %s (block %s)", __func__, FormatStateMessage(state), block.GetHash().ToString()); } // Header is valid/has work, merkle tree and segwit merkle tree are // good...RELAY NOW (but if it does not build on our best tip, let the // SendMessages loop relay it) if (!IsInitialBlockDownload() && chainActive.Tip() == pindex->pprev) { GetMainSignals().NewPoWValidBlock(pindex, pblock); } int nHeight = pindex->nHeight; // Write block to history file try { unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; if (dbp != nullptr) { blockPos = *dbp; } if (!FindBlockPos(state, blockPos, nBlockSize + 8, nHeight, block.GetBlockTime(), dbp != nullptr)) { return error("AcceptBlock(): FindBlockPos failed"); } if (dbp == nullptr) { if (!WriteBlockToDisk(block, blockPos, chainparams.DiskMagic())) { AbortNode(state, "Failed to write block"); } } if (!ReceivedBlockTransactions(block, state, pindex, blockPos)) { return error("AcceptBlock(): ReceivedBlockTransactions failed"); } } catch (const std::runtime_error &e) { return AbortNode(state, std::string("System error: ") + e.what()); } if (fCheckForPruning) { // we just allocated more disk space for block files. FlushStateToDisk(state, FLUSH_STATE_NONE); } return true; } bool ProcessNewBlock(const Config &config, const std::shared_ptr pblock, bool fForceProcessing, bool *fNewBlock) { { CBlockIndex *pindex = nullptr; if (fNewBlock) *fNewBlock = false; const CChainParams &chainparams = config.GetChainParams(); CValidationState state; // Ensure that CheckBlock() passes before calling AcceptBlock, as // belt-and-suspenders. bool ret = CheckBlock(config, *pblock, state); LOCK(cs_main); if (ret) { // Store to disk ret = AcceptBlock(config, pblock, state, &pindex, fForceProcessing, nullptr, fNewBlock); } CheckBlockIndex(chainparams.GetConsensus()); if (!ret) { GetMainSignals().BlockChecked(*pblock, state); return error("%s: AcceptBlock FAILED", __func__); } } NotifyHeaderTip(); // Only used to report errors, not invalidity - ignore it CValidationState state; if (!ActivateBestChain(config, state, pblock)) return error("%s: ActivateBestChain failed", __func__); return true; } bool TestBlockValidity(const Config &config, CValidationState &state, const CBlock &block, CBlockIndex *pindexPrev, bool fCheckPOW, bool fCheckMerkleRoot) { AssertLockHeld(cs_main); const CChainParams &chainparams = config.GetChainParams(); assert(pindexPrev && pindexPrev == chainActive.Tip()); if (fCheckpointsEnabled && !CheckIndexAgainstCheckpoint(pindexPrev, state, chainparams, block.GetHash())) { return error("%s: CheckIndexAgainstCheckpoint(): %s", __func__, state.GetRejectReason().c_str()); } CCoinsViewCache viewNew(pcoinsTip); CBlockIndex indexDummy(block); indexDummy.pprev = pindexPrev; indexDummy.nHeight = pindexPrev->nHeight + 1; // NOTE: CheckBlockHeader is called by CheckBlock if (!ContextualCheckBlockHeader(config, block, state, pindexPrev, GetAdjustedTime())) { return error("%s: Consensus::ContextualCheckBlockHeader: %s", __func__, FormatStateMessage(state)); } if (!CheckBlock(config, block, state, fCheckPOW, fCheckMerkleRoot)) { return error("%s: Consensus::CheckBlock: %s", __func__, FormatStateMessage(state)); } if (!ContextualCheckBlock(config, block, state, chainparams.GetConsensus(), pindexPrev)) { return error("%s: Consensus::ContextualCheckBlock: %s", __func__, FormatStateMessage(state)); } if (!ConnectBlock(config, block, state, &indexDummy, viewNew, chainparams, true)) { return false; } assert(state.IsValid()); return true; } /** * BLOCK PRUNING CODE */ /* Calculate the amount of disk space the block & undo files currently use */ uint64_t CalculateCurrentUsage() { uint64_t retval = 0; for (const CBlockFileInfo &file : vinfoBlockFile) { retval += file.nSize + file.nUndoSize; } return retval; } /* Prune a block file (modify associated database entries)*/ void PruneOneBlockFile(const int fileNumber) { for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); ++it) { CBlockIndex *pindex = it->second; if (pindex->nFile == fileNumber) { pindex->nStatus &= ~BLOCK_HAVE_DATA; pindex->nStatus &= ~BLOCK_HAVE_UNDO; pindex->nFile = 0; pindex->nDataPos = 0; pindex->nUndoPos = 0; setDirtyBlockIndex.insert(pindex); // Prune from mapBlocksUnlinked -- any block we prune would have // to be downloaded again in order to consider its chain, at which // point it would be considered as a candidate for // mapBlocksUnlinked or setBlockIndexCandidates. std::pair::iterator, std::multimap::iterator> range = mapBlocksUnlinked.equal_range(pindex->pprev); while (range.first != range.second) { std::multimap::iterator _it = range.first; range.first++; if (_it->second == pindex) { mapBlocksUnlinked.erase(_it); } } } } vinfoBlockFile[fileNumber].SetNull(); setDirtyFileInfo.insert(fileNumber); } void UnlinkPrunedFiles(const std::set &setFilesToPrune) { for (std::set::iterator it = setFilesToPrune.begin(); it != setFilesToPrune.end(); ++it) { CDiskBlockPos pos(*it, 0); boost::filesystem::remove(GetBlockPosFilename(pos, "blk")); boost::filesystem::remove(GetBlockPosFilename(pos, "rev")); LogPrintf("Prune: %s deleted blk/rev (%05u)\n", __func__, *it); } } /** * Calculate the block/rev files to delete based on height specified by user * with RPC command pruneblockchain. */ static void FindFilesToPruneManual(std::set &setFilesToPrune, int nManualPruneHeight) { assert(fPruneMode && nManualPruneHeight > 0); LOCK2(cs_main, cs_LastBlockFile); if (chainActive.Tip() == nullptr) { return; } // last block to prune is the lesser of (user-specified height, // MIN_BLOCKS_TO_KEEP from the tip) unsigned int nLastBlockWeCanPrune = std::min((unsigned)nManualPruneHeight, chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP); int count = 0; for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) { if (vinfoBlockFile[fileNumber].nSize == 0 || vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) { continue; } PruneOneBlockFile(fileNumber); setFilesToPrune.insert(fileNumber); count++; } LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n", nLastBlockWeCanPrune, count); } /* This function is called from the RPC code for pruneblockchain */ void PruneBlockFilesManual(int nManualPruneHeight) { CValidationState state; FlushStateToDisk(state, FLUSH_STATE_NONE, nManualPruneHeight); } /* Calculate the block/rev files that should be deleted to remain under target*/ void FindFilesToPrune(std::set &setFilesToPrune, uint64_t nPruneAfterHeight) { LOCK2(cs_main, cs_LastBlockFile); if (chainActive.Tip() == nullptr || nPruneTarget == 0) { return; } if (uint64_t(chainActive.Tip()->nHeight) <= nPruneAfterHeight) { return; } unsigned int nLastBlockWeCanPrune = chainActive.Tip()->nHeight - MIN_BLOCKS_TO_KEEP; uint64_t nCurrentUsage = CalculateCurrentUsage(); // We don't check to prune until after we've allocated new space for files, // so we should leave a buffer under our target to account for another // allocation before the next pruning. uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE; uint64_t nBytesToPrune; int count = 0; if (nCurrentUsage + nBuffer >= nPruneTarget) { for (int fileNumber = 0; fileNumber < nLastBlockFile; fileNumber++) { nBytesToPrune = vinfoBlockFile[fileNumber].nSize + vinfoBlockFile[fileNumber].nUndoSize; if (vinfoBlockFile[fileNumber].nSize == 0) { continue; } // are we below our target? if (nCurrentUsage + nBuffer < nPruneTarget) { break; } // don't prune files that could have a block within // MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning if (vinfoBlockFile[fileNumber].nHeightLast > nLastBlockWeCanPrune) { continue; } PruneOneBlockFile(fileNumber); // Queue up the files for removal setFilesToPrune.insert(fileNumber); nCurrentUsage -= nBytesToPrune; count++; } } LogPrint("prune", "Prune: target=%dMiB actual=%dMiB diff=%dMiB " "max_prune_height=%d removed %d blk/rev pairs\n", nPruneTarget / 1024 / 1024, nCurrentUsage / 1024 / 1024, ((int64_t)nPruneTarget - (int64_t)nCurrentUsage) / 1024 / 1024, nLastBlockWeCanPrune, count); } bool CheckDiskSpace(uint64_t nAdditionalBytes) { uint64_t nFreeBytesAvailable = boost::filesystem::space(GetDataDir()).available; // Check for nMinDiskSpace bytes (currently 50MB) if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes) return AbortNode("Disk space is low!", _("Error: Disk space is low!")); return true; } FILE *OpenDiskFile(const CDiskBlockPos &pos, const char *prefix, bool fReadOnly) { if (pos.IsNull()) return nullptr; boost::filesystem::path path = GetBlockPosFilename(pos, prefix); boost::filesystem::create_directories(path.parent_path()); FILE *file = fopen(path.string().c_str(), "rb+"); if (!file && !fReadOnly) file = fopen(path.string().c_str(), "wb+"); if (!file) { LogPrintf("Unable to open file %s\n", path.string()); return nullptr; } if (pos.nPos) { if (fseek(file, pos.nPos, SEEK_SET)) { LogPrintf("Unable to seek to position %u of %s\n", pos.nPos, path.string()); fclose(file); return nullptr; } } return file; } FILE *OpenBlockFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "blk", fReadOnly); } FILE *OpenUndoFile(const CDiskBlockPos &pos, bool fReadOnly) { return OpenDiskFile(pos, "rev", fReadOnly); } boost::filesystem::path GetBlockPosFilename(const CDiskBlockPos &pos, const char *prefix) { return GetDataDir() / "blocks" / strprintf("%s%05u.dat", prefix, pos.nFile); } CBlockIndex *InsertBlockIndex(uint256 hash) { if (hash.IsNull()) return nullptr; // Return existing BlockMap::iterator mi = mapBlockIndex.find(hash); if (mi != mapBlockIndex.end()) return (*mi).second; // Create new CBlockIndex *pindexNew = new CBlockIndex(); if (!pindexNew) throw std::runtime_error(std::string(__func__) + ": new CBlockIndex failed"); mi = mapBlockIndex.insert(std::make_pair(hash, pindexNew)).first; pindexNew->phashBlock = &((*mi).first); return pindexNew; } static bool LoadBlockIndexDB(const CChainParams &chainparams) { if (!pblocktree->LoadBlockIndexGuts(InsertBlockIndex)) return false; boost::this_thread::interruption_point(); // Calculate nChainWork std::vector> vSortedByHeight; vSortedByHeight.reserve(mapBlockIndex.size()); for (const std::pair &item : mapBlockIndex) { CBlockIndex *pindex = item.second; vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex)); } sort(vSortedByHeight.begin(), vSortedByHeight.end()); for (const std::pair &item : vSortedByHeight) { CBlockIndex *pindex = item.second; pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex); pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime); // We can link the chain of blocks for which we've received transactions // at some point. Pruned nodes may have deleted the block. if (pindex->nTx > 0) { if (pindex->pprev) { if (pindex->pprev->nChainTx) { pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx; } else { pindex->nChainTx = 0; mapBlocksUnlinked.insert( std::make_pair(pindex->pprev, pindex)); } } else { pindex->nChainTx = pindex->nTx; } } if (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) && (pindex->nChainTx || pindex->pprev == nullptr)) { setBlockIndexCandidates.insert(pindex); } if (pindex->nStatus & BLOCK_FAILED_MASK && (!pindexBestInvalid || pindex->nChainWork > pindexBestInvalid->nChainWork)) { pindexBestInvalid = pindex; } if (pindex->pprev) { pindex->BuildSkip(); } if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == nullptr || CBlockIndexWorkComparator()(pindexBestHeader, pindex))) { pindexBestHeader = pindex; } } // Load block file info pblocktree->ReadLastBlockFile(nLastBlockFile); vinfoBlockFile.resize(nLastBlockFile + 1); LogPrintf("%s: last block file = %i\n", __func__, nLastBlockFile); for (int nFile = 0; nFile <= nLastBlockFile; nFile++) { pblocktree->ReadBlockFileInfo(nFile, vinfoBlockFile[nFile]); } LogPrintf("%s: last block file info: %s\n", __func__, vinfoBlockFile[nLastBlockFile].ToString()); for (int nFile = nLastBlockFile + 1; true; nFile++) { CBlockFileInfo info; if (pblocktree->ReadBlockFileInfo(nFile, info)) { vinfoBlockFile.push_back(info); } else { break; } } // Check presence of blk files LogPrintf("Checking all blk files are present...\n"); std::set setBlkDataFiles; for (const std::pair &item : mapBlockIndex) { CBlockIndex *pindex = item.second; if (pindex->nStatus & BLOCK_HAVE_DATA) { setBlkDataFiles.insert(pindex->nFile); } } for (std::set::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++) { CDiskBlockPos pos(*it, 0); if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION) .IsNull()) { return false; } } // Check whether we have ever pruned block & undo files pblocktree->ReadFlag("prunedblockfiles", fHavePruned); if (fHavePruned) { LogPrintf( "LoadBlockIndexDB(): Block files have previously been pruned\n"); } // Check whether we need to continue reindexing bool fReindexing = false; pblocktree->ReadReindexing(fReindexing); fReindex |= fReindexing; // Check whether we have a transaction index pblocktree->ReadFlag("txindex", fTxIndex); LogPrintf("%s: transaction index %s\n", __func__, fTxIndex ? "enabled" : "disabled"); // Load pointer to end of best chain BlockMap::iterator it = mapBlockIndex.find(pcoinsTip->GetBestBlock()); if (it == mapBlockIndex.end()) { return true; } chainActive.SetTip(it->second); PruneBlockIndexCandidates(); LogPrintf( "%s: hashBestChain=%s height=%d date=%s progress=%f\n", __func__, chainActive.Tip()->GetBlockHash().ToString(), chainActive.Height(), DateTimeStrFormat("%Y-%m-%d %H:%M:%S", chainActive.Tip()->GetBlockTime()), GuessVerificationProgress(chainparams.TxData(), chainActive.Tip())); return true; } CVerifyDB::CVerifyDB() { uiInterface.ShowProgress(_("Verifying blocks..."), 0); } CVerifyDB::~CVerifyDB() { uiInterface.ShowProgress("", 100); } bool CVerifyDB::VerifyDB(const Config &config, CCoinsView *coinsview, int nCheckLevel, int nCheckDepth) { LOCK(cs_main); if (chainActive.Tip() == nullptr || chainActive.Tip()->pprev == nullptr) { return true; } // Verify blocks in the best chain if (nCheckDepth <= 0) { // suffices until the year 19000 nCheckDepth = 1000000000; } if (nCheckDepth > chainActive.Height()) { nCheckDepth = chainActive.Height(); } nCheckLevel = std::max(0, std::min(4, nCheckLevel)); LogPrintf("Verifying last %i blocks at level %i\n", nCheckDepth, nCheckLevel); const CChainParams &chainparams = config.GetChainParams(); CCoinsViewCache coins(coinsview); CBlockIndex *pindexState = chainActive.Tip(); CBlockIndex *pindexFailure = nullptr; int nGoodTransactions = 0; CValidationState state; int reportDone = 0; LogPrintf("[0%%]..."); for (CBlockIndex *pindex = chainActive.Tip(); pindex && pindex->pprev; pindex = pindex->pprev) { boost::this_thread::interruption_point(); int percentageDone = std::max( 1, std::min( 99, (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * (nCheckLevel >= 4 ? 50 : 100)))); if (reportDone < percentageDone / 10) { // report every 10% step LogPrintf("[%d%%]...", percentageDone); reportDone = percentageDone / 10; } uiInterface.ShowProgress(_("Verifying blocks..."), percentageDone); if (pindex->nHeight < chainActive.Height() - nCheckDepth) { break; } if (fPruneMode && !(pindex->nStatus & BLOCK_HAVE_DATA)) { // If pruning, only go back as far as we have data. LogPrintf("VerifyDB(): block verification stopping at height %d " "(pruning, no data)\n", pindex->nHeight); break; } CBlock block; // check level 0: read from disk if (!ReadBlockFromDisk(block, pindex, config)) { return error( "VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } // check level 1: verify block validity if (nCheckLevel >= 1 && !CheckBlock(config, block, state)) { return error("%s: *** found bad block at %d, hash=%s (%s)\n", __func__, pindex->nHeight, pindex->GetBlockHash().ToString(), FormatStateMessage(state)); } // check level 2: verify undo validity if (nCheckLevel >= 2 && pindex) { CBlockUndo undo; CDiskBlockPos pos = pindex->GetUndoPos(); if (!pos.IsNull()) { if (!UndoReadFromDisk(undo, pos, pindex->pprev->GetBlockHash())) { return error( "VerifyDB(): *** found bad undo data at %d, hash=%s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); } } } // check level 3: check for inconsistencies during memory-only // disconnect of tip blocks if (nCheckLevel >= 3 && pindex == pindexState && (coins.DynamicMemoryUsage() + pcoinsTip->DynamicMemoryUsage()) <= nCoinCacheUsage) { DisconnectResult res = DisconnectBlock(block, pindex, coins); if (res == DISCONNECT_FAILED) { return error("VerifyDB(): *** irrecoverable inconsistency in " "block data at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } pindexState = pindex->pprev; if (res == DISCONNECT_UNCLEAN) { nGoodTransactions = 0; pindexFailure = pindex; } else { nGoodTransactions += block.vtx.size(); } } if (ShutdownRequested()) { return true; } } if (pindexFailure) { return error("VerifyDB(): *** coin database inconsistencies found " "(last %i blocks, %i good transactions before that)\n", chainActive.Height() - pindexFailure->nHeight + 1, nGoodTransactions); } // check level 4: try reconnecting blocks if (nCheckLevel >= 4) { CBlockIndex *pindex = pindexState; while (pindex != chainActive.Tip()) { boost::this_thread::interruption_point(); uiInterface.ShowProgress( _("Verifying blocks..."), std::max( 1, std::min(99, 100 - (int)(((double)(chainActive.Height() - pindex->nHeight)) / (double)nCheckDepth * 50)))); pindex = chainActive.Next(pindex); CBlock block; if (!ReadBlockFromDisk(block, pindex, config)) { return error( "VerifyDB(): *** ReadBlockFromDisk failed at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } if (!ConnectBlock(config, block, state, pindex, coins, chainparams)) { return error( "VerifyDB(): *** found unconnectable block at %d, hash=%s", pindex->nHeight, pindex->GetBlockHash().ToString()); } } } LogPrintf("[DONE].\n"); LogPrintf("No coin database inconsistencies in last %i blocks (%i " "transactions)\n", chainActive.Height() - pindexState->nHeight, nGoodTransactions); return true; } bool RewindBlockIndex(const Config &config) { LOCK(cs_main); int nHeight = chainActive.Height() + 1; // nHeight is now the height of the first insufficiently-validated block, or // tipheight + 1 CValidationState state; CBlockIndex *pindex = chainActive.Tip(); while (chainActive.Height() >= nHeight) { if (fPruneMode && !(chainActive.Tip()->nStatus & BLOCK_HAVE_DATA)) { // If pruning, don't try rewinding past the HAVE_DATA point; since // older blocks can't be served anyway, there's no need to walk // further, and trying to DisconnectTip() will fail (and require a // needless reindex/redownload of the blockchain). break; } if (!DisconnectTip(config, state, true)) { return error( "RewindBlockIndex: unable to disconnect block at height %i", pindex->nHeight); } // Occasionally flush state to disk. if (!FlushStateToDisk(state, FLUSH_STATE_PERIODIC)) { return false; } } // Reduce validity flag and have-data flags. // We do this after actual disconnecting, otherwise we'll end up writing the // lack of data to disk before writing the chainstate, resulting in a // failure to continue if interrupted. for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); it++) { CBlockIndex *pindexIter = it->second; if (pindexIter->IsValid(BLOCK_VALID_TRANSACTIONS) && pindexIter->nChainTx) { setBlockIndexCandidates.insert(pindexIter); } } PruneBlockIndexCandidates(); CheckBlockIndex(config.GetChainParams().GetConsensus()); if (!FlushStateToDisk(state, FLUSH_STATE_ALWAYS)) { return false; } return true; } // May NOT be used after any connections are up as much of the peer-processing // logic assumes a consistent block index state void UnloadBlockIndex() { LOCK(cs_main); setBlockIndexCandidates.clear(); chainActive.SetTip(nullptr); pindexBestInvalid = nullptr; pindexBestHeader = nullptr; mempool.clear(); mapBlocksUnlinked.clear(); vinfoBlockFile.clear(); nLastBlockFile = 0; nBlockSequenceId = 1; setDirtyBlockIndex.clear(); setDirtyFileInfo.clear(); versionbitscache.Clear(); for (int b = 0; b < VERSIONBITS_NUM_BITS; b++) { warningcache[b].clear(); } for (BlockMap::value_type &entry : mapBlockIndex) { delete entry.second; } mapBlockIndex.clear(); fHavePruned = false; } bool LoadBlockIndex(const CChainParams &chainparams) { // Load block index from databases if (!fReindex && !LoadBlockIndexDB(chainparams)) { return false; } return true; } bool InitBlockIndex(const Config &config) { LOCK(cs_main); // Check whether we're already initialized if (chainActive.Genesis() != nullptr) { return true; } // Use the provided setting for -txindex in the new database fTxIndex = GetBoolArg("-txindex", DEFAULT_TXINDEX); pblocktree->WriteFlag("txindex", fTxIndex); LogPrintf("Initializing databases...\n"); // Only add the genesis block if not reindexing (in which case we reuse the // one already on disk) if (!fReindex) { try { const CChainParams &chainparams = config.GetChainParams(); CBlock &block = const_cast(chainparams.GenesisBlock()); // Start new block file unsigned int nBlockSize = ::GetSerializeSize(block, SER_DISK, CLIENT_VERSION); CDiskBlockPos blockPos; CValidationState state; if (!FindBlockPos(state, blockPos, nBlockSize + 8, 0, block.GetBlockTime())) { return error("LoadBlockIndex(): FindBlockPos failed"); } if (!WriteBlockToDisk(block, blockPos, chainparams.DiskMagic())) { return error( "LoadBlockIndex(): writing genesis block to disk failed"); } CBlockIndex *pindex = AddToBlockIndex(block); if (!ReceivedBlockTransactions(block, state, pindex, blockPos)) { return error("LoadBlockIndex(): genesis block not accepted"); } // Force a chainstate write so that when we VerifyDB in a moment, it // doesn't check stale data return FlushStateToDisk(state, FLUSH_STATE_ALWAYS); } catch (const std::runtime_error &e) { return error( "LoadBlockIndex(): failed to initialize block database: %s", e.what()); } } return true; } bool LoadExternalBlockFile(const Config &config, FILE *fileIn, CDiskBlockPos *dbp) { // Map of disk positions for blocks with unknown parent (only used for // reindex) static std::multimap mapBlocksUnknownParent; int64_t nStart = GetTimeMillis(); const CChainParams &chainparams = config.GetChainParams(); int nLoaded = 0; try { // This takes over fileIn and calls fclose() on it in the CBufferedFile // destructor. Make sure we have at least 2*MAX_TX_SIZE space in there // so any transaction can fit in the buffer. CBufferedFile blkdat(fileIn, 2 * MAX_TX_SIZE, MAX_TX_SIZE + 8, SER_DISK, CLIENT_VERSION); uint64_t nRewind = blkdat.GetPos(); while (!blkdat.eof()) { boost::this_thread::interruption_point(); blkdat.SetPos(nRewind); // Start one byte further next time, in case of failure. nRewind++; // Remove former limit. blkdat.SetLimit(); unsigned int nSize = 0; try { // Locate a header. uint8_t buf[CMessageHeader::MESSAGE_START_SIZE]; blkdat.FindByte(chainparams.DiskMagic()[0]); nRewind = blkdat.GetPos() + 1; blkdat >> FLATDATA(buf); if (memcmp(buf, std::begin(chainparams.DiskMagic()), CMessageHeader::MESSAGE_START_SIZE)) { continue; } // Read size. blkdat >> nSize; if (nSize < 80) { continue; } } catch (const std::exception &) { // No valid block header found; don't complain. break; } try { // read block uint64_t nBlockPos = blkdat.GetPos(); if (dbp) { dbp->nPos = nBlockPos; } blkdat.SetLimit(nBlockPos + nSize); blkdat.SetPos(nBlockPos); std::shared_ptr pblock = std::make_shared(); CBlock &block = *pblock; blkdat >> block; nRewind = blkdat.GetPos(); // detect out of order blocks, and store them for later uint256 hash = block.GetHash(); if (hash != chainparams.GetConsensus().hashGenesisBlock && mapBlockIndex.find(block.hashPrevBlock) == mapBlockIndex.end()) { LogPrint("reindex", "%s: Out of order block %s, parent %s not known\n", __func__, hash.ToString(), block.hashPrevBlock.ToString()); if (dbp) { mapBlocksUnknownParent.insert( std::make_pair(block.hashPrevBlock, *dbp)); } continue; } // process in case the block isn't known yet if (mapBlockIndex.count(hash) == 0 || (mapBlockIndex[hash]->nStatus & BLOCK_HAVE_DATA) == 0) { LOCK(cs_main); CValidationState state; if (AcceptBlock(config, pblock, state, nullptr, true, dbp, nullptr)) { nLoaded++; } if (state.IsError()) { break; } } else if (hash != chainparams.GetConsensus().hashGenesisBlock && mapBlockIndex[hash]->nHeight % 1000 == 0) { LogPrint( "reindex", "Block Import: already had block %s at height %d\n", hash.ToString(), mapBlockIndex[hash]->nHeight); } // Activate the genesis block so normal node progress can // continue if (hash == chainparams.GetConsensus().hashGenesisBlock) { CValidationState state; if (!ActivateBestChain(config, state)) { break; } } NotifyHeaderTip(); // Recursively process earlier encountered successors of this // block std::deque queue; queue.push_back(hash); while (!queue.empty()) { uint256 head = queue.front(); queue.pop_front(); std::pair::iterator, std::multimap::iterator> range = mapBlocksUnknownParent.equal_range(head); while (range.first != range.second) { std::multimap::iterator it = range.first; std::shared_ptr pblockrecursive = std::make_shared(); if (ReadBlockFromDisk(*pblockrecursive, it->second, config)) { LogPrint( "reindex", "%s: Processing out of order child %s of %s\n", __func__, pblockrecursive->GetHash().ToString(), head.ToString()); LOCK(cs_main); CValidationState dummy; if (AcceptBlock(config, pblockrecursive, dummy, nullptr, true, &it->second, nullptr)) { nLoaded++; queue.push_back(pblockrecursive->GetHash()); } } range.first++; mapBlocksUnknownParent.erase(it); NotifyHeaderTip(); } } } catch (const std::exception &e) { LogPrintf("%s: Deserialize or I/O error - %s\n", __func__, e.what()); } } } catch (const std::runtime_error &e) { AbortNode(std::string("System error: ") + e.what()); } if (nLoaded > 0) { LogPrintf("Loaded %i blocks from external file in %dms\n", nLoaded, GetTimeMillis() - nStart); } return nLoaded > 0; } static void CheckBlockIndex(const Consensus::Params &consensusParams) { if (!fCheckBlockIndex) { return; } LOCK(cs_main); // During a reindex, we read the genesis block and call CheckBlockIndex // before ActivateBestChain, so we have the genesis block in mapBlockIndex // but no active chain. (A few of the tests when iterating the block tree // require that chainActive has been initialized.) if (chainActive.Height() < 0) { assert(mapBlockIndex.size() <= 1); return; } // Build forward-pointing map of the entire block tree. std::multimap forward; for (BlockMap::iterator it = mapBlockIndex.begin(); it != mapBlockIndex.end(); it++) { forward.insert(std::make_pair(it->second->pprev, it->second)); } assert(forward.size() == mapBlockIndex.size()); std::pair::iterator, std::multimap::iterator> rangeGenesis = forward.equal_range(nullptr); CBlockIndex *pindex = rangeGenesis.first->second; rangeGenesis.first++; // There is only one index entry with parent nullptr. assert(rangeGenesis.first == rangeGenesis.second); // Iterate over the entire block tree, using depth-first search. // Along the way, remember whether there are blocks on the path from genesis // block being explored which are the first to have certain properties. size_t nNodes = 0; int nHeight = 0; // Oldest ancestor of pindex which is invalid. CBlockIndex *pindexFirstInvalid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_HAVE_DATA. CBlockIndex *pindexFirstMissing = nullptr; // Oldest ancestor of pindex for which nTx == 0. CBlockIndex *pindexFirstNeverProcessed = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_TREE // (regardless of being valid or not). CBlockIndex *pindexFirstNotTreeValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_TRANSACTIONS // (regardless of being valid or not). CBlockIndex *pindexFirstNotTransactionsValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_CHAIN // (regardless of being valid or not). CBlockIndex *pindexFirstNotChainValid = nullptr; // Oldest ancestor of pindex which does not have BLOCK_VALID_SCRIPTS // (regardless of being valid or not). CBlockIndex *pindexFirstNotScriptsValid = nullptr; while (pindex != nullptr) { nNodes++; if (pindexFirstInvalid == nullptr && pindex->nStatus & BLOCK_FAILED_VALID) { pindexFirstInvalid = pindex; } if (pindexFirstMissing == nullptr && !(pindex->nStatus & BLOCK_HAVE_DATA)) { pindexFirstMissing = pindex; } if (pindexFirstNeverProcessed == nullptr && pindex->nTx == 0) { pindexFirstNeverProcessed = pindex; } if (pindex->pprev != nullptr && pindexFirstNotTreeValid == nullptr && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TREE) { pindexFirstNotTreeValid = pindex; } if (pindex->pprev != nullptr && pindexFirstNotTransactionsValid == nullptr && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_TRANSACTIONS) { pindexFirstNotTransactionsValid = pindex; } if (pindex->pprev != nullptr && pindexFirstNotChainValid == nullptr && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_CHAIN) { pindexFirstNotChainValid = pindex; } if (pindex->pprev != nullptr && pindexFirstNotScriptsValid == nullptr && (pindex->nStatus & BLOCK_VALID_MASK) < BLOCK_VALID_SCRIPTS) { pindexFirstNotScriptsValid = pindex; } // Begin: actual consistency checks. if (pindex->pprev == nullptr) { // Genesis block checks. // Genesis block's hash must match. assert(pindex->GetBlockHash() == consensusParams.hashGenesisBlock); // The current active chain's genesis block must be this block. assert(pindex == chainActive.Genesis()); } if (pindex->nChainTx == 0) { // nSequenceId can't be set positive for blocks that aren't linked // (negative is used for preciousblock) assert(pindex->nSequenceId <= 0); } // VALID_TRANSACTIONS is equivalent to nTx > 0 for all nodes (whether or // not pruning has occurred). HAVE_DATA is only equivalent to nTx > 0 // (or VALID_TRANSACTIONS) if no pruning has occurred. if (!fHavePruned) { // If we've never pruned, then HAVE_DATA should be equivalent to nTx // > 0 assert(!(pindex->nStatus & BLOCK_HAVE_DATA) == (pindex->nTx == 0)); assert(pindexFirstMissing == pindexFirstNeverProcessed); } else { // If we have pruned, then we can only say that HAVE_DATA implies // nTx > 0 if (pindex->nStatus & BLOCK_HAVE_DATA) assert(pindex->nTx > 0); } if (pindex->nStatus & BLOCK_HAVE_UNDO) { assert(pindex->nStatus & BLOCK_HAVE_DATA); } // This is pruning-independent. assert(((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TRANSACTIONS) == (pindex->nTx > 0)); // All parents having had data (at some point) is equivalent to all // parents being VALID_TRANSACTIONS, which is equivalent to nChainTx // being set. // nChainTx != 0 is used to signal that all parent blocks have been // processed (but may have been pruned). assert((pindexFirstNeverProcessed != nullptr) == (pindex->nChainTx == 0)); assert((pindexFirstNotTransactionsValid != nullptr) == (pindex->nChainTx == 0)); // nHeight must be consistent. assert(pindex->nHeight == nHeight); // For every block except the genesis block, the chainwork must be // larger than the parent's. assert(pindex->pprev == nullptr || pindex->nChainWork >= pindex->pprev->nChainWork); // The pskip pointer must point back for all but the first 2 blocks. assert(nHeight < 2 || (pindex->pskip && (pindex->pskip->nHeight < nHeight))); // All mapBlockIndex entries must at least be TREE valid assert(pindexFirstNotTreeValid == nullptr); if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_TREE) { // TREE valid implies all parents are TREE valid assert(pindexFirstNotTreeValid == nullptr); } if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_CHAIN) { // CHAIN valid implies all parents are CHAIN valid assert(pindexFirstNotChainValid == nullptr); } if ((pindex->nStatus & BLOCK_VALID_MASK) >= BLOCK_VALID_SCRIPTS) { // SCRIPTS valid implies all parents are SCRIPTS valid assert(pindexFirstNotScriptsValid == nullptr); } if (pindexFirstInvalid == nullptr) { // Checks for not-invalid blocks. // The failed mask cannot be set for blocks without invalid parents. assert((pindex->nStatus & BLOCK_FAILED_MASK) == 0); } if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && pindexFirstNeverProcessed == nullptr) { if (pindexFirstInvalid == nullptr) { // If this block sorts at least as good as the current tip and // is valid and we have all data for its parents, it must be in // setBlockIndexCandidates. chainActive.Tip() must also be there // even if some data has been pruned. if (pindexFirstMissing == nullptr || pindex == chainActive.Tip()) { assert(setBlockIndexCandidates.count(pindex)); } // If some parent is missing, then it could be that this block // was in setBlockIndexCandidates but had to be removed because // of the missing data. In this case it must be in // mapBlocksUnlinked -- see test below. } } else { // If this block sorts worse than the current tip or some ancestor's // block has never been seen, it cannot be in // setBlockIndexCandidates. assert(setBlockIndexCandidates.count(pindex) == 0); } // Check whether this block is in mapBlocksUnlinked. std::pair::iterator, std::multimap::iterator> rangeUnlinked = mapBlocksUnlinked.equal_range(pindex->pprev); bool foundInUnlinked = false; while (rangeUnlinked.first != rangeUnlinked.second) { assert(rangeUnlinked.first->first == pindex->pprev); if (rangeUnlinked.first->second == pindex) { foundInUnlinked = true; break; } rangeUnlinked.first++; } if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed != nullptr && pindexFirstInvalid == nullptr) { // If this block has block data available, some parent was never // received, and has no invalid parents, it must be in // mapBlocksUnlinked. assert(foundInUnlinked); } if (!(pindex->nStatus & BLOCK_HAVE_DATA)) { // Can't be in mapBlocksUnlinked if we don't HAVE_DATA assert(!foundInUnlinked); } if (pindexFirstMissing == nullptr) { // We aren't missing data for any parent -- cannot be in // mapBlocksUnlinked. assert(!foundInUnlinked); } if (pindex->pprev && (pindex->nStatus & BLOCK_HAVE_DATA) && pindexFirstNeverProcessed == nullptr && pindexFirstMissing != nullptr) { // We HAVE_DATA for this block, have received data for all parents // at some point, but we're currently missing data for some parent. // We must have pruned. assert(fHavePruned); // This block may have entered mapBlocksUnlinked if: // - it has a descendant that at some point had more work than the // tip, and // - we tried switching to that descendant but were missing // data for some intermediate block between chainActive and the // tip. // So if this block is itself better than chainActive.Tip() and it // wasn't in // setBlockIndexCandidates, then it must be in mapBlocksUnlinked. if (!CBlockIndexWorkComparator()(pindex, chainActive.Tip()) && setBlockIndexCandidates.count(pindex) == 0) { if (pindexFirstInvalid == nullptr) { assert(foundInUnlinked); } } } // assert(pindex->GetBlockHash() == pindex->GetBlockHeader().GetHash()); // // Perhaps too slow // End: actual consistency checks. // Try descending into the first subnode. std::pair::iterator, std::multimap::iterator> range = forward.equal_range(pindex); if (range.first != range.second) { // A subnode was found. pindex = range.first->second; nHeight++; continue; } // This is a leaf node. Move upwards until we reach a node of which we // have not yet visited the last child. while (pindex) { // We are going to either move to a parent or a sibling of pindex. // If pindex was the first with a certain property, unset the // corresponding variable. if (pindex == pindexFirstInvalid) { pindexFirstInvalid = nullptr; } if (pindex == pindexFirstMissing) { pindexFirstMissing = nullptr; } if (pindex == pindexFirstNeverProcessed) { pindexFirstNeverProcessed = nullptr; } if (pindex == pindexFirstNotTreeValid) { pindexFirstNotTreeValid = nullptr; } if (pindex == pindexFirstNotTransactionsValid) { pindexFirstNotTransactionsValid = nullptr; } if (pindex == pindexFirstNotChainValid) { pindexFirstNotChainValid = nullptr; } if (pindex == pindexFirstNotScriptsValid) { pindexFirstNotScriptsValid = nullptr; } // Find our parent. CBlockIndex *pindexPar = pindex->pprev; // Find which child we just visited. std::pair::iterator, std::multimap::iterator> rangePar = forward.equal_range(pindexPar); while (rangePar.first->second != pindex) { // Our parent must have at least the node we're coming from as // child. assert(rangePar.first != rangePar.second); rangePar.first++; } // Proceed to the next one. rangePar.first++; if (rangePar.first != rangePar.second) { // Move to the sibling. pindex = rangePar.first->second; break; } else { // Move up further. pindex = pindexPar; nHeight--; continue; } } } // Check that we actually traversed the entire map. assert(nNodes == forward.size()); } std::string CBlockFileInfo::ToString() const { return strprintf( "CBlockFileInfo(blocks=%u, size=%u, heights=%u...%u, time=%s...%s)", nBlocks, nSize, nHeightFirst, nHeightLast, DateTimeStrFormat("%Y-%m-%d", nTimeFirst), DateTimeStrFormat("%Y-%m-%d", nTimeLast)); } CBlockFileInfo *GetBlockFileInfo(size_t n) { return &vinfoBlockFile.at(n); } ThresholdState VersionBitsTipState(const Consensus::Params ¶ms, Consensus::DeploymentPos pos) { LOCK(cs_main); return VersionBitsState(chainActive.Tip(), params, pos, versionbitscache); } int VersionBitsTipStateSinceHeight(const Consensus::Params ¶ms, Consensus::DeploymentPos pos) { LOCK(cs_main); return VersionBitsStateSinceHeight(chainActive.Tip(), params, pos, versionbitscache); } static const uint64_t MEMPOOL_DUMP_VERSION = 1; bool LoadMempool(const Config &config) { int64_t nExpiryTimeout = GetArg("-mempoolexpiry", DEFAULT_MEMPOOL_EXPIRY) * 60 * 60; FILE *filestr = fopen((GetDataDir() / "mempool.dat").string().c_str(), "rb"); CAutoFile file(filestr, SER_DISK, CLIENT_VERSION); if (file.IsNull()) { LogPrintf( "Failed to open mempool file from disk. Continuing anyway.\n"); return false; } int64_t count = 0; int64_t skipped = 0; int64_t failed = 0; int64_t nNow = GetTime(); try { uint64_t version; file >> version; if (version != MEMPOOL_DUMP_VERSION) { return false; } uint64_t num; file >> num; double prioritydummy = 0; while (num--) { CTransactionRef tx; int64_t nTime; int64_t nFeeDelta; file >> tx; file >> nTime; file >> nFeeDelta; Amount amountdelta(nFeeDelta); if (amountdelta != Amount(0)) { mempool.PrioritiseTransaction(tx->GetId(), tx->GetId().ToString(), prioritydummy, amountdelta); } CValidationState state; if (nTime + nExpiryTimeout > nNow) { LOCK(cs_main); AcceptToMemoryPoolWithTime(config, mempool, state, tx, true, nullptr, nTime); if (state.IsValid()) { ++count; } else { ++failed; } } else { ++skipped; } if (ShutdownRequested()) return false; } std::map mapDeltas; file >> mapDeltas; for (const auto &i : mapDeltas) { mempool.PrioritiseTransaction(i.first, i.first.ToString(), prioritydummy, i.second); } } catch (const std::exception &e) { LogPrintf("Failed to deserialize mempool data on disk: %s. Continuing " "anyway.\n", e.what()); return false; } LogPrintf("Imported mempool transactions from disk: %i successes, %i " "failed, %i expired\n", count, failed, skipped); return true; } void DumpMempool(void) { int64_t start = GetTimeMicros(); std::map mapDeltas; std::vector vinfo; { LOCK(mempool.cs); for (const auto &i : mempool.mapDeltas) { mapDeltas[i.first] = i.second.second; } vinfo = mempool.infoAll(); } int64_t mid = GetTimeMicros(); try { FILE *filestr = fopen((GetDataDir() / "mempool.dat.new").string().c_str(), "wb"); if (!filestr) { return; } CAutoFile file(filestr, SER_DISK, CLIENT_VERSION); uint64_t version = MEMPOOL_DUMP_VERSION; file << version; file << (uint64_t)vinfo.size(); for (const auto &i : vinfo) { file << *(i.tx); file << (int64_t)i.nTime; file << (int64_t)i.nFeeDelta.GetSatoshis(); mapDeltas.erase(i.tx->GetId()); } file << mapDeltas; FileCommit(file.Get()); file.fclose(); RenameOver(GetDataDir() / "mempool.dat.new", GetDataDir() / "mempool.dat"); int64_t last = GetTimeMicros(); LogPrintf("Dumped mempool: %gs to copy, %gs to dump\n", (mid - start) * 0.000001, (last - mid) * 0.000001); } catch (const std::exception &e) { LogPrintf("Failed to dump mempool: %s. Continuing anyway.\n", e.what()); } } //! Guess how far we are in the verification process at the given block index double GuessVerificationProgress(const ChainTxData &data, CBlockIndex *pindex) { if (pindex == nullptr) return 0.0; int64_t nNow = time(nullptr); double fTxTotal; if (pindex->nChainTx <= data.nTxCount) { fTxTotal = data.nTxCount + (nNow - data.nTime) * data.dTxRate; } else { fTxTotal = pindex->nChainTx + (nNow - pindex->GetBlockTime()) * data.dTxRate; } return pindex->nChainTx / fTxTotal; } class CMainCleanup { public: CMainCleanup() {} ~CMainCleanup() { // block headers BlockMap::iterator it1 = mapBlockIndex.begin(); for (; it1 != mapBlockIndex.end(); it1++) delete (*it1).second; mapBlockIndex.clear(); } } instance_of_cmaincleanup;