diff --git a/src/arith_uint256.h b/src/arith_uint256.h index 5e5a2eff8..de3c34f24 100644 --- a/src/arith_uint256.h +++ b/src/arith_uint256.h @@ -1,304 +1,298 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_ARITH_UINT256_H #define BITCOIN_ARITH_UINT256_H #include #include #include #include #include #include class uint256; class uint_error : public std::runtime_error { public: explicit uint_error(const std::string &str) : std::runtime_error(str) {} }; /** Template base class for unsigned big integers. */ template class base_uint { protected: static constexpr int WIDTH = BITS / 32; uint32_t pn[WIDTH]; public: base_uint() { for (int i = 0; i < WIDTH; i++) pn[i] = 0; } base_uint(const base_uint &b) { for (int i = 0; i < WIDTH; i++) pn[i] = b.pn[i]; } base_uint &operator=(const base_uint &b) { for (int i = 0; i < WIDTH; i++) pn[i] = b.pn[i]; return *this; } base_uint(uint64_t b) { pn[0] = (unsigned int)b; pn[1] = (unsigned int)(b >> 32); for (int i = 2; i < WIDTH; i++) pn[i] = 0; } explicit base_uint(const std::string &str); - bool operator!() const { - for (int i = 0; i < WIDTH; i++) - if (pn[i] != 0) return false; - return true; - } - const base_uint operator~() const { base_uint ret; for (int i = 0; i < WIDTH; i++) ret.pn[i] = ~pn[i]; return ret; } const base_uint operator-() const { base_uint ret; for (int i = 0; i < WIDTH; i++) ret.pn[i] = ~pn[i]; ++ret; return ret; } double getdouble() const; base_uint &operator=(uint64_t b) { pn[0] = (unsigned int)b; pn[1] = (unsigned int)(b >> 32); for (int i = 2; i < WIDTH; i++) pn[i] = 0; return *this; } base_uint &operator^=(const base_uint &b) { for (int i = 0; i < WIDTH; i++) pn[i] ^= b.pn[i]; return *this; } base_uint &operator&=(const base_uint &b) { for (int i = 0; i < WIDTH; i++) pn[i] &= b.pn[i]; return *this; } base_uint &operator|=(const base_uint &b) { for (int i = 0; i < WIDTH; i++) pn[i] |= b.pn[i]; return *this; } base_uint &operator^=(uint64_t b) { pn[0] ^= (unsigned int)b; pn[1] ^= (unsigned int)(b >> 32); return *this; } base_uint &operator|=(uint64_t b) { pn[0] |= (unsigned int)b; pn[1] |= (unsigned int)(b >> 32); return *this; } base_uint &operator<<=(unsigned int shift); base_uint &operator>>=(unsigned int shift); base_uint &operator+=(const base_uint &b) { uint64_t carry = 0; for (int i = 0; i < WIDTH; i++) { uint64_t n = carry + pn[i] + b.pn[i]; pn[i] = n & 0xffffffff; carry = n >> 32; } return *this; } base_uint &operator-=(const base_uint &b) { *this += -b; return *this; } base_uint &operator+=(uint64_t b64) { base_uint b; b = b64; *this += b; return *this; } base_uint &operator-=(uint64_t b64) { base_uint b; b = b64; *this += -b; return *this; } base_uint &operator*=(uint32_t b32); base_uint &operator*=(const base_uint &b); base_uint &operator/=(const base_uint &b); base_uint &operator++() { // prefix operator int i = 0; while (++pn[i] == 0 && i < WIDTH - 1) i++; return *this; } const base_uint operator++(int) { // postfix operator const base_uint ret = *this; ++(*this); return ret; } base_uint &operator--() { // prefix operator int i = 0; while (--pn[i] == (uint32_t)-1 && i < WIDTH - 1) i++; return *this; } const base_uint operator--(int) { // postfix operator const base_uint ret = *this; --(*this); return ret; } int CompareTo(const base_uint &b) const; bool EqualTo(uint64_t b) const; friend inline const base_uint operator+(const base_uint &a, const base_uint &b) { return base_uint(a) += b; } friend inline const base_uint operator-(const base_uint &a, const base_uint &b) { return base_uint(a) -= b; } friend inline const base_uint operator*(const base_uint &a, const base_uint &b) { return base_uint(a) *= b; } friend inline const base_uint operator/(const base_uint &a, const base_uint &b) { return base_uint(a) /= b; } friend inline const base_uint operator|(const base_uint &a, const base_uint &b) { return base_uint(a) |= b; } friend inline const base_uint operator&(const base_uint &a, const base_uint &b) { return base_uint(a) &= b; } friend inline const base_uint operator^(const base_uint &a, const base_uint &b) { return base_uint(a) ^= b; } friend inline const base_uint operator>>(const base_uint &a, int shift) { return base_uint(a) >>= shift; } friend inline const base_uint operator<<(const base_uint &a, int shift) { return base_uint(a) <<= shift; } friend inline const base_uint operator*(const base_uint &a, uint32_t b) { return base_uint(a) *= b; } friend inline bool operator==(const base_uint &a, const base_uint &b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) == 0; } friend inline bool operator!=(const base_uint &a, const base_uint &b) { return memcmp(a.pn, b.pn, sizeof(a.pn)) != 0; } friend inline bool operator>(const base_uint &a, const base_uint &b) { return a.CompareTo(b) > 0; } friend inline bool operator<(const base_uint &a, const base_uint &b) { return a.CompareTo(b) < 0; } friend inline bool operator>=(const base_uint &a, const base_uint &b) { return a.CompareTo(b) >= 0; } friend inline bool operator<=(const base_uint &a, const base_uint &b) { return a.CompareTo(b) <= 0; } friend inline bool operator==(const base_uint &a, uint64_t b) { return a.EqualTo(b); } friend inline bool operator!=(const base_uint &a, uint64_t b) { return !a.EqualTo(b); } std::string GetHex() const; void SetHex(const char *psz); void SetHex(const std::string &str); std::string ToString() const; unsigned int size() const { return sizeof(pn); } /** * Returns the position of the highest bit set plus one, or zero if the * value is zero. */ unsigned int bits() const; uint64_t GetLow64() const { static_assert(WIDTH >= 2, "Assertion WIDTH >= 2 failed (WIDTH = BITS / " "32). BITS is a template parameter."); return pn[0] | (uint64_t)pn[1] << 32; } }; /** 256-bit unsigned big integer. */ class arith_uint256 : public base_uint<256> { public: arith_uint256() {} arith_uint256(const base_uint<256> &b) : base_uint<256>(b) {} arith_uint256(uint64_t b) : base_uint<256>(b) {} explicit arith_uint256(const std::string &str) : base_uint<256>(str) {} /** * The "compact" format is a representation of a whole number N using an * unsigned 32bit number similar to a floating point format. * The most significant 8 bits are the unsigned exponent of base 256. * This exponent can be thought of as "number of bytes of N". * The lower 23 bits are the mantissa. * Bit number 24 (0x800000) represents the sign of N. * N = (-1^sign) * mantissa * 256^(exponent-3) * * Satoshi's original implementation used BN_bn2mpi() and BN_mpi2bn(). * MPI uses the most significant bit of the first byte as sign. * Thus 0x1234560000 is compact (0x05123456) * and 0xc0de000000 is compact (0x0600c0de) * * Bitcoin only uses this "compact" format for encoding difficulty targets, * which are unsigned 256bit quantities. Thus, all the complexities of the * sign bit and using base 256 are probably an implementation accident. */ arith_uint256 &SetCompact(uint32_t nCompact, bool *pfNegative = nullptr, bool *pfOverflow = nullptr); uint32_t GetCompact(bool fNegative = false) const; friend uint256 ArithToUint256(const arith_uint256 &); friend arith_uint256 UintToArith256(const uint256 &); }; uint256 ArithToUint256(const arith_uint256 &); arith_uint256 UintToArith256(const uint256 &); #endif // BITCOIN_ARITH_UINT256_H diff --git a/src/test/arith_uint256_tests.cpp b/src/test/arith_uint256_tests.cpp index 2592f4cab..8039332a3 100644 --- a/src/test/arith_uint256_tests.cpp +++ b/src/test/arith_uint256_tests.cpp @@ -1,674 +1,667 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include BOOST_FIXTURE_TEST_SUITE(arith_uint256_tests, BasicTestingSetup) /// Convert vector to arith_uint256, via uint256 blob inline arith_uint256 arith_uint256V(const std::vector &vch) { return UintToArith256(uint256(vch)); } const uint8_t R1Array[] = "\x9c\x52\x4a\xdb\xcf\x56\x11\x12\x2b\x29\x12\x5e\x5d\x35\xd2\xd2" "\x22\x81\xaa\xb5\x33\xf0\x08\x32\xd5\x56\xb1\xf9\xea\xe5\x1d\x7d"; const char R1ArrayHex[] = "7D1DE5EAF9B156D53208F033B5AA8122D2d2355d5e12292b121156cfdb4a529c"; // R1L equals roughly R1Ldouble * 2^256 const double R1Ldouble = 0.4887374590559308955; const arith_uint256 R1L = arith_uint256V(std::vector(R1Array, R1Array + 32)); const uint64_t R1LLow64 = 0x121156cfdb4a529cULL; const uint8_t R2Array[] = "\x70\x32\x1d\x7c\x47\xa5\x6b\x40\x26\x7e\x0a\xc3\xa6\x9c\xb6\xbf" "\x13\x30\x47\xa3\x19\x2d\xda\x71\x49\x13\x72\xf0\xb4\xca\x81\xd7"; const arith_uint256 R2L = arith_uint256V(std::vector(R2Array, R2Array + 32)); const char R1LplusR2L[] = "549FB09FEA236A1EA3E31D4D58F1B1369288D204211CA751527CFC175767850C"; const uint8_t ZeroArray[] = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"; const arith_uint256 ZeroL = arith_uint256V(std::vector(ZeroArray, ZeroArray + 32)); const uint8_t OneArray[] = "\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"; const arith_uint256 OneL = arith_uint256V(std::vector(OneArray, OneArray + 32)); const uint8_t MaxArray[] = "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff" "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"; const arith_uint256 MaxL = arith_uint256V(std::vector(MaxArray, MaxArray + 32)); const arith_uint256 HalfL = (OneL << 255); std::string ArrayToString(const uint8_t A[], unsigned int width) { std::stringstream Stream; Stream << std::hex; for (unsigned int i = 0; i < width; ++i) { Stream << std::setw(2) << std::setfill('0') << (unsigned int)A[width - i - 1]; } return Stream.str(); } // constructors, equality, inequality BOOST_AUTO_TEST_CASE(basics) { BOOST_CHECK(1 == 0 + 1); // constructor arith_uint256(vector): BOOST_CHECK(R1L.ToString() == ArrayToString(R1Array, 32)); BOOST_CHECK(R2L.ToString() == ArrayToString(R2Array, 32)); BOOST_CHECK(ZeroL.ToString() == ArrayToString(ZeroArray, 32)); BOOST_CHECK(OneL.ToString() == ArrayToString(OneArray, 32)); BOOST_CHECK(MaxL.ToString() == ArrayToString(MaxArray, 32)); BOOST_CHECK(OneL.ToString() != ArrayToString(ZeroArray, 32)); // == and != BOOST_CHECK(R1L != R2L); BOOST_CHECK(ZeroL != OneL); BOOST_CHECK(OneL != ZeroL); BOOST_CHECK(MaxL != ZeroL); BOOST_CHECK(~MaxL == ZeroL); BOOST_CHECK(((R1L ^ R2L) ^ R1L) == R2L); uint64_t Tmp64 = 0xc4dab720d9c7acaaULL; for (unsigned int i = 0; i < 256; ++i) { BOOST_CHECK(ZeroL != (OneL << i)); BOOST_CHECK((OneL << i) != ZeroL); BOOST_CHECK(R1L != (R1L ^ (OneL << i))); BOOST_CHECK(((arith_uint256(Tmp64) ^ (OneL << i)) != Tmp64)); } BOOST_CHECK(ZeroL == (OneL << 256)); // String Constructor and Copy Constructor BOOST_CHECK(arith_uint256("0x" + R1L.ToString()) == R1L); BOOST_CHECK(arith_uint256("0x" + R2L.ToString()) == R2L); BOOST_CHECK(arith_uint256("0x" + ZeroL.ToString()) == ZeroL); BOOST_CHECK(arith_uint256("0x" + OneL.ToString()) == OneL); BOOST_CHECK(arith_uint256("0x" + MaxL.ToString()) == MaxL); BOOST_CHECK(arith_uint256(R1L.ToString()) == R1L); BOOST_CHECK(arith_uint256(" 0x" + R1L.ToString() + " ") == R1L); BOOST_CHECK(arith_uint256("") == ZeroL); BOOST_CHECK(R1L == arith_uint256(R1ArrayHex)); BOOST_CHECK(arith_uint256(R1L) == R1L); BOOST_CHECK((arith_uint256(R1L ^ R2L) ^ R2L) == R1L); BOOST_CHECK(arith_uint256(ZeroL) == ZeroL); BOOST_CHECK(arith_uint256(OneL) == OneL); // uint64_t constructor BOOST_CHECK((R1L & arith_uint256("0xffffffffffffffff")) == arith_uint256(R1LLow64)); BOOST_CHECK(ZeroL == arith_uint256(0)); BOOST_CHECK(OneL == arith_uint256(1)); BOOST_CHECK(arith_uint256("0xffffffffffffffff") == arith_uint256(0xffffffffffffffffULL)); // Assignment (from base_uint) arith_uint256 tmpL = ~ZeroL; BOOST_CHECK(tmpL == ~ZeroL); tmpL = ~OneL; BOOST_CHECK(tmpL == ~OneL); tmpL = ~R1L; BOOST_CHECK(tmpL == ~R1L); tmpL = ~R2L; BOOST_CHECK(tmpL == ~R2L); tmpL = ~MaxL; BOOST_CHECK(tmpL == ~MaxL); } void shiftArrayRight(uint8_t *to, const uint8_t *from, unsigned int arrayLength, unsigned int bitsToShift) { for (unsigned int T = 0; T < arrayLength; ++T) { unsigned int F = (T + bitsToShift / 8); if (F < arrayLength) { to[T] = from[F] >> (bitsToShift % 8); } else { to[T] = 0; } if (F + 1 < arrayLength) { to[T] |= from[(F + 1)] << (8 - bitsToShift % 8); } } } void shiftArrayLeft(uint8_t *to, const uint8_t *from, unsigned int arrayLength, unsigned int bitsToShift) { for (unsigned int T = 0; T < arrayLength; ++T) { if (T >= bitsToShift / 8) { unsigned int F = T - bitsToShift / 8; to[T] = from[F] << (bitsToShift % 8); if (T >= bitsToShift / 8 + 1) { to[T] |= from[F - 1] >> (8 - bitsToShift % 8); } } else { to[T] = 0; } } } // "<<" ">>" "<<=" ">>=" BOOST_AUTO_TEST_CASE(shifts) { uint8_t TmpArray[32]; arith_uint256 TmpL; for (unsigned int i = 0; i < 256; ++i) { shiftArrayLeft(TmpArray, OneArray, 32, i); BOOST_CHECK(arith_uint256V(std::vector( TmpArray, TmpArray + 32)) == (OneL << i)); TmpL = OneL; TmpL <<= i; BOOST_CHECK(TmpL == (OneL << i)); BOOST_CHECK((HalfL >> (255 - i)) == (OneL << i)); TmpL = HalfL; TmpL >>= (255 - i); BOOST_CHECK(TmpL == (OneL << i)); shiftArrayLeft(TmpArray, R1Array, 32, i); BOOST_CHECK(arith_uint256V(std::vector( TmpArray, TmpArray + 32)) == (R1L << i)); TmpL = R1L; TmpL <<= i; BOOST_CHECK(TmpL == (R1L << i)); shiftArrayRight(TmpArray, R1Array, 32, i); BOOST_CHECK(arith_uint256V(std::vector( TmpArray, TmpArray + 32)) == (R1L >> i)); TmpL = R1L; TmpL >>= i; BOOST_CHECK(TmpL == (R1L >> i)); shiftArrayLeft(TmpArray, MaxArray, 32, i); BOOST_CHECK(arith_uint256V(std::vector( TmpArray, TmpArray + 32)) == (MaxL << i)); TmpL = MaxL; TmpL <<= i; BOOST_CHECK(TmpL == (MaxL << i)); shiftArrayRight(TmpArray, MaxArray, 32, i); BOOST_CHECK(arith_uint256V(std::vector( TmpArray, TmpArray + 32)) == (MaxL >> i)); TmpL = MaxL; TmpL >>= i; BOOST_CHECK(TmpL == (MaxL >> i)); } arith_uint256 c1L = arith_uint256(0x0123456789abcdefULL); arith_uint256 c2L = c1L << 128; for (unsigned int i = 0; i < 128; ++i) { BOOST_CHECK((c1L << i) == (c2L >> (128 - i))); } for (unsigned int i = 128; i < 256; ++i) { BOOST_CHECK((c1L << i) == (c2L << (i - 128))); } } // ! ~ - BOOST_AUTO_TEST_CASE(unaryOperators) { - BOOST_CHECK(!ZeroL); - BOOST_CHECK(!(!OneL)); - for (unsigned int i = 0; i < 256; ++i) - BOOST_CHECK(!(!(OneL << i))); - BOOST_CHECK(!(!R1L)); - BOOST_CHECK(!(!MaxL)); - BOOST_CHECK(~ZeroL == MaxL); uint8_t TmpArray[32]; for (unsigned int i = 0; i < 32; ++i) { TmpArray[i] = ~R1Array[i]; } BOOST_CHECK(arith_uint256V(std::vector(TmpArray, TmpArray + 32)) == (~R1L)); BOOST_CHECK(-ZeroL == ZeroL); BOOST_CHECK(-R1L == (~R1L) + 1); for (unsigned int i = 0; i < 256; ++i) BOOST_CHECK(-(OneL << i) == (MaxL << i)); } // Check if doing _A_ _OP_ _B_ results in the same as applying _OP_ onto each // element of Aarray and Barray, and then converting the result into an // arith_uint256. #define CHECKBITWISEOPERATOR(_A_, _B_, _OP_) \ for (unsigned int i = 0; i < 32; ++i) { \ TmpArray[i] = _A_##Array[i] _OP_ _B_##Array[i]; \ } \ BOOST_CHECK(arith_uint256V(std::vector( \ TmpArray, TmpArray + 32)) == (_A_##L _OP_ _B_##L)); #define CHECKASSIGNMENTOPERATOR(_A_, _B_, _OP_) \ TmpL = _A_##L; \ TmpL _OP_## = _B_##L; \ BOOST_CHECK(TmpL == (_A_##L _OP_ _B_##L)); BOOST_AUTO_TEST_CASE(bitwiseOperators) { uint8_t TmpArray[32]; CHECKBITWISEOPERATOR(R1, R2, |) CHECKBITWISEOPERATOR(R1, R2, ^) CHECKBITWISEOPERATOR(R1, R2, &) CHECKBITWISEOPERATOR(R1, Zero, |) CHECKBITWISEOPERATOR(R1, Zero, ^) CHECKBITWISEOPERATOR(R1, Zero, &) CHECKBITWISEOPERATOR(R1, Max, |) CHECKBITWISEOPERATOR(R1, Max, ^) CHECKBITWISEOPERATOR(R1, Max, &) CHECKBITWISEOPERATOR(Zero, R1, |) CHECKBITWISEOPERATOR(Zero, R1, ^) CHECKBITWISEOPERATOR(Zero, R1, &) CHECKBITWISEOPERATOR(Max, R1, |) CHECKBITWISEOPERATOR(Max, R1, ^) CHECKBITWISEOPERATOR(Max, R1, &) arith_uint256 TmpL; CHECKASSIGNMENTOPERATOR(R1, R2, |) CHECKASSIGNMENTOPERATOR(R1, R2, ^) CHECKASSIGNMENTOPERATOR(R1, R2, &) CHECKASSIGNMENTOPERATOR(R1, Zero, |) CHECKASSIGNMENTOPERATOR(R1, Zero, ^) CHECKASSIGNMENTOPERATOR(R1, Zero, &) CHECKASSIGNMENTOPERATOR(R1, Max, |) CHECKASSIGNMENTOPERATOR(R1, Max, ^) CHECKASSIGNMENTOPERATOR(R1, Max, &) CHECKASSIGNMENTOPERATOR(Zero, R1, |) CHECKASSIGNMENTOPERATOR(Zero, R1, ^) CHECKASSIGNMENTOPERATOR(Zero, R1, &) CHECKASSIGNMENTOPERATOR(Max, R1, |) CHECKASSIGNMENTOPERATOR(Max, R1, ^) CHECKASSIGNMENTOPERATOR(Max, R1, &) uint64_t Tmp64 = 0xe1db685c9a0b47a2ULL; TmpL = R1L; TmpL |= Tmp64; BOOST_CHECK(TmpL == (R1L | arith_uint256(Tmp64))); TmpL = R1L; TmpL |= 0; BOOST_CHECK(TmpL == R1L); TmpL ^= 0; BOOST_CHECK(TmpL == R1L); TmpL ^= Tmp64; BOOST_CHECK(TmpL == (R1L ^ arith_uint256(Tmp64))); } // <= >= < > BOOST_AUTO_TEST_CASE(comparison) { arith_uint256 TmpL; for (unsigned int i = 0; i < 256; ++i) { TmpL = OneL << i; BOOST_CHECK(TmpL >= ZeroL && TmpL > ZeroL && ZeroL < TmpL && ZeroL <= TmpL); BOOST_CHECK(TmpL >= 0 && TmpL > 0 && 0 < TmpL && 0 <= TmpL); TmpL |= R1L; BOOST_CHECK(TmpL >= R1L); BOOST_CHECK((TmpL == R1L) != (TmpL > R1L)); BOOST_CHECK((TmpL == R1L) || !(TmpL <= R1L)); BOOST_CHECK(R1L <= TmpL); BOOST_CHECK((R1L == TmpL) != (R1L < TmpL)); BOOST_CHECK((TmpL == R1L) || !(R1L >= TmpL)); BOOST_CHECK(!(TmpL < R1L)); BOOST_CHECK(!(R1L > TmpL)); } } BOOST_AUTO_TEST_CASE(plusMinus) { arith_uint256 TmpL = 0; BOOST_CHECK(R1L + R2L == arith_uint256(R1LplusR2L)); TmpL += R1L; BOOST_CHECK(TmpL == R1L); TmpL += R2L; BOOST_CHECK(TmpL == R1L + R2L); BOOST_CHECK(OneL + MaxL == ZeroL); BOOST_CHECK(MaxL + OneL == ZeroL); for (unsigned int i = 1; i < 256; ++i) { BOOST_CHECK((MaxL >> i) + OneL == (HalfL >> (i - 1))); BOOST_CHECK(OneL + (MaxL >> i) == (HalfL >> (i - 1))); TmpL = (MaxL >> i); TmpL += OneL; BOOST_CHECK(TmpL == (HalfL >> (i - 1))); TmpL = (MaxL >> i); TmpL += 1; BOOST_CHECK(TmpL == (HalfL >> (i - 1))); TmpL = (MaxL >> i); BOOST_CHECK(TmpL++ == (MaxL >> i)); BOOST_CHECK(TmpL == (HalfL >> (i - 1))); } BOOST_CHECK(arith_uint256(0xbedc77e27940a7ULL) + 0xee8d836fce66fbULL == arith_uint256(0xbedc77e27940a7ULL + 0xee8d836fce66fbULL)); TmpL = arith_uint256(0xbedc77e27940a7ULL); TmpL += 0xee8d836fce66fbULL; BOOST_CHECK(TmpL == arith_uint256(0xbedc77e27940a7ULL + 0xee8d836fce66fbULL)); TmpL -= 0xee8d836fce66fbULL; BOOST_CHECK(TmpL == 0xbedc77e27940a7ULL); TmpL = R1L; BOOST_CHECK(++TmpL == R1L + 1); BOOST_CHECK(R1L - (-R2L) == R1L + R2L); BOOST_CHECK(R1L - (-OneL) == R1L + OneL); BOOST_CHECK(R1L - OneL == R1L + (-OneL)); for (unsigned int i = 1; i < 256; ++i) { BOOST_CHECK((MaxL >> i) - (-OneL) == (HalfL >> (i - 1))); BOOST_CHECK((HalfL >> (i - 1)) - OneL == (MaxL >> i)); TmpL = (HalfL >> (i - 1)); BOOST_CHECK(TmpL-- == (HalfL >> (i - 1))); BOOST_CHECK(TmpL == (MaxL >> i)); TmpL = (HalfL >> (i - 1)); BOOST_CHECK(--TmpL == (MaxL >> i)); } TmpL = R1L; BOOST_CHECK(--TmpL == R1L - 1); } BOOST_AUTO_TEST_CASE(multiply) { BOOST_CHECK( (R1L * R1L).ToString() == "62a38c0486f01e45879d7910a7761bf30d5237e9873f9bff3642a732c4d84f10"); BOOST_CHECK( (R1L * R2L).ToString() == "de37805e9986996cfba76ff6ba51c008df851987d9dd323f0e5de07760529c40"); BOOST_CHECK((R1L * ZeroL) == ZeroL); BOOST_CHECK((R1L * OneL) == R1L); BOOST_CHECK((R1L * MaxL) == -R1L); BOOST_CHECK((R2L * R1L) == (R1L * R2L)); BOOST_CHECK( (R2L * R2L).ToString() == "ac8c010096767d3cae5005dec28bb2b45a1d85ab7996ccd3e102a650f74ff100"); BOOST_CHECK((R2L * ZeroL) == ZeroL); BOOST_CHECK((R2L * OneL) == R2L); BOOST_CHECK((R2L * MaxL) == -R2L); BOOST_CHECK(MaxL * MaxL == OneL); BOOST_CHECK((R1L * 0) == 0); BOOST_CHECK((R1L * 1) == R1L); BOOST_CHECK( (R1L * 3).ToString() == "7759b1c0ed14047f961ad09b20ff83687876a0181a367b813634046f91def7d4"); BOOST_CHECK( (R2L * 0x87654321UL).ToString() == "23f7816e30c4ae2017257b7a0fa64d60402f5234d46e746b61c960d09a26d070"); } BOOST_AUTO_TEST_CASE(divide) { arith_uint256 D1L("AD7133AC1977FA2B7"); arith_uint256 D2L("ECD751716"); BOOST_CHECK( (R1L / D1L).ToString() == "00000000000000000b8ac01106981635d9ed112290f8895545a7654dde28fb3a"); BOOST_CHECK( (R1L / D2L).ToString() == "000000000873ce8efec5b67150bad3aa8c5fcb70e947586153bf2cec7c37c57a"); BOOST_CHECK(R1L / OneL == R1L); BOOST_CHECK(R1L / MaxL == ZeroL); BOOST_CHECK(MaxL / R1L == 2); BOOST_CHECK_THROW(R1L / ZeroL, uint_error); BOOST_CHECK( (R2L / D1L).ToString() == "000000000000000013e1665895a1cc981de6d93670105a6b3ec3b73141b3a3c5"); BOOST_CHECK( (R2L / D2L).ToString() == "000000000e8f0abe753bb0afe2e9437ee85d280be60882cf0bd1aaf7fa3cc2c4"); BOOST_CHECK(R2L / OneL == R2L); BOOST_CHECK(R2L / MaxL == ZeroL); BOOST_CHECK(MaxL / R2L == 1); BOOST_CHECK_THROW(R2L / ZeroL, uint_error); } bool almostEqual(double d1, double d2) { return fabs(d1 - d2) <= 4 * fabs(d1) * std::numeric_limits::epsilon(); } // GetHex SetHex size() GetLow64 GetSerializeSize, Serialize, Unserialize BOOST_AUTO_TEST_CASE(methods) { BOOST_CHECK(R1L.GetHex() == R1L.ToString()); BOOST_CHECK(R2L.GetHex() == R2L.ToString()); BOOST_CHECK(OneL.GetHex() == OneL.ToString()); BOOST_CHECK(MaxL.GetHex() == MaxL.ToString()); arith_uint256 TmpL(R1L); BOOST_CHECK(TmpL == R1L); TmpL.SetHex(R2L.ToString()); BOOST_CHECK(TmpL == R2L); TmpL.SetHex(ZeroL.ToString()); BOOST_CHECK(TmpL == 0); TmpL.SetHex(HalfL.ToString()); BOOST_CHECK(TmpL == HalfL); TmpL.SetHex(R1L.ToString()); BOOST_CHECK(R1L.size() == 32); BOOST_CHECK(R2L.size() == 32); BOOST_CHECK(ZeroL.size() == 32); BOOST_CHECK(MaxL.size() == 32); BOOST_CHECK(R1L.GetLow64() == R1LLow64); BOOST_CHECK(HalfL.GetLow64() == 0x0000000000000000ULL); BOOST_CHECK(OneL.GetLow64() == 0x0000000000000001ULL); for (unsigned int i = 0; i < 255; ++i) { BOOST_CHECK((OneL << i).getdouble() == ldexp(1.0, i)); } BOOST_CHECK(ZeroL.getdouble() == 0.0); for (int i = 256; i > 53; --i) BOOST_CHECK( almostEqual((R1L >> (256 - i)).getdouble(), ldexp(R1Ldouble, i))); uint64_t R1L64part = (R1L >> 192).GetLow64(); for (int i = 53; i > 0; --i) // doubles can store all integers in {0,...,2^54-1} exactly { BOOST_CHECK((R1L >> (256 - i)).getdouble() == (double)(R1L64part >> (64 - i))); } } BOOST_AUTO_TEST_CASE(bignum_SetCompact) { arith_uint256 num; bool fNegative; bool fOverflow; num.SetCompact(0, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x00123456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x01003456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x02000056, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x03000000, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x04000000, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x00923456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x01803456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x02800056, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x03800000, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x04800000, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x01123456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000000012"); BOOST_CHECK_EQUAL(num.GetCompact(), 0x01120000U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); // Make sure that we don't generate compacts with the 0x00800000 bit set num = 0x80; BOOST_CHECK_EQUAL(num.GetCompact(), 0x02008000U); num.SetCompact(0x01fedcba, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "000000000000000000000000000000000000000000000000000000000000007e"); BOOST_CHECK_EQUAL(num.GetCompact(true), 0x01fe0000U); BOOST_CHECK_EQUAL(fNegative, true); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x02123456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000001234"); BOOST_CHECK_EQUAL(num.GetCompact(), 0x02123400U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x03123456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000000123456"); BOOST_CHECK_EQUAL(num.GetCompact(), 0x03123456U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x04123456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000012345600"); BOOST_CHECK_EQUAL(num.GetCompact(), 0x04123456U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x04923456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000012345600"); BOOST_CHECK_EQUAL(num.GetCompact(true), 0x04923456U); BOOST_CHECK_EQUAL(fNegative, true); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x05009234, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "0000000000000000000000000000000000000000000000000000000092340000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0x05009234U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0x20123456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL( num.GetHex(), "1234560000000000000000000000000000000000000000000000000000000000"); BOOST_CHECK_EQUAL(num.GetCompact(), 0x20123456U); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, false); num.SetCompact(0xff123456, &fNegative, &fOverflow); BOOST_CHECK_EQUAL(fNegative, false); BOOST_CHECK_EQUAL(fOverflow, true); } // some more tests just to get 100% coverage BOOST_AUTO_TEST_CASE(getmaxcoverage) { // ~R1L give a base_uint<256> BOOST_CHECK((~~R1L >> 10) == (R1L >> 10)); BOOST_CHECK((~~R1L << 10) == (R1L << 10)); BOOST_CHECK(!(~~R1L < R1L)); BOOST_CHECK(~~R1L <= R1L); BOOST_CHECK(!(~~R1L > R1L)); BOOST_CHECK(~~R1L >= R1L); BOOST_CHECK(!(R1L < ~~R1L)); BOOST_CHECK(R1L <= ~~R1L); BOOST_CHECK(!(R1L > ~~R1L)); BOOST_CHECK(R1L >= ~~R1L); BOOST_CHECK(~~R1L + R2L == R1L + ~~R2L); BOOST_CHECK(~~R1L - R2L == R1L - ~~R2L); BOOST_CHECK(~R1L != R1L); BOOST_CHECK(R1L != ~R1L); uint8_t TmpArray[32]; CHECKBITWISEOPERATOR(~R1, R2, |) CHECKBITWISEOPERATOR(~R1, R2, ^) CHECKBITWISEOPERATOR(~R1, R2, &) CHECKBITWISEOPERATOR(R1, ~R2, |) CHECKBITWISEOPERATOR(R1, ~R2, ^) CHECKBITWISEOPERATOR(R1, ~R2, &) } BOOST_AUTO_TEST_SUITE_END()