diff --git a/src/bitcoin-tx.cpp b/src/bitcoin-tx.cpp index 7a3d01f17..199d47fdf 100644 --- a/src/bitcoin-tx.cpp +++ b/src/bitcoin-tx.cpp @@ -1,904 +1,886 @@ // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include "config/bitcoin-config.h" #endif #include "base58.h" #include "chainparams.h" #include "clientversion.h" #include "coins.h" #include "consensus/consensus.h" #include "core_io.h" #include "dstencode.h" #include "keystore.h" #include "policy/policy.h" #include "primitives/transaction.h" #include "script/script.h" #include "script/sign.h" #include "univalue.h" #include "util.h" #include "utilmoneystr.h" #include "utilstrencodings.h" #include #include static bool fCreateBlank; static std::map registers; static const int CONTINUE_EXECUTION = -1; // // This function returns either one of EXIT_ codes when it's expected to stop // the process or CONTINUE_EXECUTION when it's expected to continue further. // static int AppInitRawTx(int argc, char *argv[]) { // // Parameters // gArgs.ParseParameters(argc, argv); // Check for -testnet or -regtest parameter (Params() calls are only valid // after this clause) try { SelectParams(ChainNameFromCommandLine()); } catch (const std::exception &e) { fprintf(stderr, "Error: %s\n", e.what()); return EXIT_FAILURE; } fCreateBlank = gArgs.GetBoolArg("-create", false); if (argc < 2 || gArgs.IsArgSet("-?") || gArgs.IsArgSet("-h") || gArgs.IsArgSet("-help")) { // First part of help message is specific to this utility std::string strUsage = strprintf(_("%s bitcoin-tx utility version"), _(PACKAGE_NAME)) + " " + FormatFullVersion() + "\n\n" + _("Usage:") + "\n" + " bitcoin-tx [options] [commands] " + _("Update hex-encoded bitcoin transaction") + "\n" + " bitcoin-tx [options] -create [commands] " + _("Create hex-encoded bitcoin transaction") + "\n" + "\n"; fprintf(stdout, "%s", strUsage.c_str()); strUsage = HelpMessageGroup(_("Options:")); strUsage += HelpMessageOpt("-?", _("This help message")); strUsage += HelpMessageOpt("-create", _("Create new, empty TX.")); strUsage += HelpMessageOpt("-json", _("Select JSON output")); strUsage += HelpMessageOpt("-txid", _("Output only the hex-encoded transaction " "id of the resultant transaction.")); AppendParamsHelpMessages(strUsage); fprintf(stdout, "%s", strUsage.c_str()); strUsage = HelpMessageGroup(_("Commands:")); strUsage += HelpMessageOpt("delin=N", _("Delete input N from TX")); strUsage += HelpMessageOpt("delout=N", _("Delete output N from TX")); strUsage += HelpMessageOpt("in=TXID:VOUT(:SEQUENCE_NUMBER)", _("Add input to TX")); strUsage += HelpMessageOpt("locktime=N", _("Set TX lock time to N")); strUsage += HelpMessageOpt("nversion=N", _("Set TX version to N")); strUsage += HelpMessageOpt("outaddr=VALUE:ADDRESS", _("Add address-based output to TX")); strUsage += HelpMessageOpt("outpubkey=VALUE:PUBKEY[:FLAGS]", _("Add pay-to-pubkey output to TX") + ". " + _("Optionally add the \"S\" flag to wrap the " "output in a pay-to-script-hash.")); strUsage += HelpMessageOpt("outdata=[VALUE:]DATA", _("Add data-based output to TX")); strUsage += HelpMessageOpt("outscript=VALUE:SCRIPT[:FLAGS]", _("Add raw script output to TX") + ". " + _("Optionally add the \"S\" flag to wrap the " "output in a pay-to-script-hash.")); strUsage += HelpMessageOpt( "outmultisig=VALUE:REQUIRED:PUBKEYS:PUBKEY1:PUBKEY2:....[:FLAGS]", _("Add Pay To n-of-m Multi-sig output to TX. n = REQUIRED, m = " "PUBKEYS") + ". " + _("Optionally add the \"S\" flag to wrap the output in " "a pay-to-script-hash.")); strUsage += HelpMessageOpt( "sign=SIGHASH-FLAGS", _("Add zero or more signatures to transaction") + ". " + _("This command requires JSON registers:") + _("prevtxs=JSON object") + ", " + _("privatekeys=JSON object") + ". " + _("See signrawtransaction docs for format of sighash " "flags, JSON objects.")); fprintf(stdout, "%s", strUsage.c_str()); strUsage = HelpMessageGroup(_("Register Commands:")); strUsage += HelpMessageOpt("load=NAME:FILENAME", _("Load JSON file FILENAME into register NAME")); strUsage += HelpMessageOpt("set=NAME:JSON-STRING", _("Set register NAME to given JSON-STRING")); fprintf(stdout, "%s", strUsage.c_str()); if (argc < 2) { fprintf(stderr, "Error: too few parameters\n"); return EXIT_FAILURE; } return EXIT_SUCCESS; } return CONTINUE_EXECUTION; } static void RegisterSetJson(const std::string &key, const std::string &rawJson) { UniValue val; if (!val.read(rawJson)) { std::string strErr = "Cannot parse JSON for key " + key; throw std::runtime_error(strErr); } registers[key] = val; } static void RegisterSet(const std::string &strInput) { // separate NAME:VALUE in string size_t pos = strInput.find(':'); if ((pos == std::string::npos) || (pos == 0) || (pos == (strInput.size() - 1))) { throw std::runtime_error("Register input requires NAME:VALUE"); } std::string key = strInput.substr(0, pos); std::string valStr = strInput.substr(pos + 1, std::string::npos); RegisterSetJson(key, valStr); } static void RegisterLoad(const std::string &strInput) { // separate NAME:FILENAME in string size_t pos = strInput.find(':'); if ((pos == std::string::npos) || (pos == 0) || (pos == (strInput.size() - 1))) { throw std::runtime_error("Register load requires NAME:FILENAME"); } std::string key = strInput.substr(0, pos); std::string filename = strInput.substr(pos + 1, std::string::npos); FILE *f = fopen(filename.c_str(), "r"); if (!f) { std::string strErr = "Cannot open file " + filename; throw std::runtime_error(strErr); } // load file chunks into one big buffer std::string valStr; while ((!feof(f)) && (!ferror(f))) { char buf[4096]; int bread = fread(buf, 1, sizeof(buf), f); if (bread <= 0) { break; } valStr.insert(valStr.size(), buf, bread); } int error = ferror(f); fclose(f); if (error) { std::string strErr = "Error reading file " + filename; throw std::runtime_error(strErr); } // evaluate as JSON buffer register RegisterSetJson(key, valStr); } static Amount ExtractAndValidateValue(const std::string &strValue) { Amount value; if (!ParseMoney(strValue, value)) { throw std::runtime_error("invalid TX output value"); } return value; } static void MutateTxVersion(CMutableTransaction &tx, const std::string &cmdVal) { int64_t newVersion = atoi64(cmdVal); if (newVersion < 1 || newVersion > CTransaction::MAX_STANDARD_VERSION) { throw std::runtime_error("Invalid TX version requested"); } tx.nVersion = int(newVersion); } static void MutateTxLocktime(CMutableTransaction &tx, const std::string &cmdVal) { int64_t newLocktime = atoi64(cmdVal); if (newLocktime < 0LL || newLocktime > 0xffffffffLL) { throw std::runtime_error("Invalid TX locktime requested"); } tx.nLockTime = (unsigned int)newLocktime; } static void MutateTxAddInput(CMutableTransaction &tx, const std::string &strInput) { std::vector vStrInputParts; boost::split(vStrInputParts, strInput, boost::is_any_of(":")); // separate TXID:VOUT in string if (vStrInputParts.size() < 2) { throw std::runtime_error("TX input missing separator"); } // extract and validate TXID std::string strTxid = vStrInputParts[0]; if ((strTxid.size() != 64) || !IsHex(strTxid)) { throw std::runtime_error("invalid TX input txid"); } TxId txid(uint256S(strTxid)); static const unsigned int minTxOutSz = 9; static const unsigned int maxVout = MAX_TX_SIZE / minTxOutSz; // extract and validate vout std::string strVout = vStrInputParts[1]; int vout = atoi(strVout); if ((vout < 0) || (vout > (int)maxVout)) { throw std::runtime_error("invalid TX input vout"); } // extract the optional sequence number uint32_t nSequenceIn = std::numeric_limits::max(); if (vStrInputParts.size() > 2) { nSequenceIn = std::stoul(vStrInputParts[2]); } // append to transaction input list CTxIn txin(txid, vout, CScript(), nSequenceIn); tx.vin.push_back(txin); } static void MutateTxAddOutAddr(CMutableTransaction &tx, const std::string &strInput, const CChainParams &chainParams) { // Separate into VALUE:ADDRESS std::vector vStrInputParts; boost::split(vStrInputParts, strInput, boost::is_any_of(":")); if (vStrInputParts.size() != 2) { throw std::runtime_error("TX output missing or too many separators"); } // Extract and validate VALUE Amount value = ExtractAndValidateValue(vStrInputParts[0]); // extract and validate ADDRESS std::string strAddr = vStrInputParts[1]; CTxDestination destination = DecodeDestination(strAddr, chainParams); if (!IsValidDestination(destination)) { throw std::runtime_error("invalid TX output address"); } CScript scriptPubKey = GetScriptForDestination(destination); // construct TxOut, append to transaction output list CTxOut txout(value, scriptPubKey); tx.vout.push_back(txout); } static void MutateTxAddOutPubKey(CMutableTransaction &tx, const std::string &strInput) { // Separate into VALUE:PUBKEY[:FLAGS] std::vector vStrInputParts; boost::split(vStrInputParts, strInput, boost::is_any_of(":")); if (vStrInputParts.size() < 2 || vStrInputParts.size() > 3) { throw std::runtime_error("TX output missing or too many separators"); } // Extract and validate VALUE Amount value = ExtractAndValidateValue(vStrInputParts[0]); // Extract and validate PUBKEY CPubKey pubkey(ParseHex(vStrInputParts[1])); if (!pubkey.IsFullyValid()) { throw std::runtime_error("invalid TX output pubkey"); } CScript scriptPubKey = GetScriptForRawPubKey(pubkey); // Extract and validate FLAGS bool bScriptHash = false; if (vStrInputParts.size() == 3) { std::string flags = vStrInputParts[2]; bScriptHash = (flags.find("S") != std::string::npos); } if (bScriptHash) { // Get the ID for the script, and then construct a P2SH destination for // it. scriptPubKey = GetScriptForDestination(CScriptID(scriptPubKey)); } // construct TxOut, append to transaction output list CTxOut txout(value, scriptPubKey); tx.vout.push_back(txout); } static void MutateTxAddOutMultiSig(CMutableTransaction &tx, const std::string &strInput) { // Separate into VALUE:REQUIRED:NUMKEYS:PUBKEY1:PUBKEY2:....[:FLAGS] std::vector vStrInputParts; boost::split(vStrInputParts, strInput, boost::is_any_of(":")); // Check that there are enough parameters if (vStrInputParts.size() < 3) { throw std::runtime_error("Not enough multisig parameters"); } // Extract and validate VALUE Amount value = ExtractAndValidateValue(vStrInputParts[0]); // Extract REQUIRED uint32_t required = stoul(vStrInputParts[1]); // Extract NUMKEYS uint32_t numkeys = stoul(vStrInputParts[2]); // Validate there are the correct number of pubkeys if (vStrInputParts.size() < numkeys + 3) { throw std::runtime_error("incorrect number of multisig pubkeys"); } if (required < 1 || required > 20 || numkeys < 1 || numkeys > 20 || numkeys < required) { throw std::runtime_error("multisig parameter mismatch. Required " + std::to_string(required) + " of " + std::to_string(numkeys) + "signatures."); } // extract and validate PUBKEYs std::vector pubkeys; for (int pos = 1; pos <= int(numkeys); pos++) { CPubKey pubkey(ParseHex(vStrInputParts[pos + 2])); if (!pubkey.IsFullyValid()) { throw std::runtime_error("invalid TX output pubkey"); } pubkeys.push_back(pubkey); } // Extract FLAGS bool bScriptHash = false; if (vStrInputParts.size() == numkeys + 4) { std::string flags = vStrInputParts.back(); bScriptHash = (flags.find("S") != std::string::npos); } else if (vStrInputParts.size() > numkeys + 4) { // Validate that there were no more parameters passed throw std::runtime_error("Too many parameters"); } CScript scriptPubKey = GetScriptForMultisig(required, pubkeys); if (bScriptHash) { // Get the ID for the script, and then construct a P2SH destination for // it. scriptPubKey = GetScriptForDestination(CScriptID(scriptPubKey)); } // construct TxOut, append to transaction output list CTxOut txout(value, scriptPubKey); tx.vout.push_back(txout); } static void MutateTxAddOutData(CMutableTransaction &tx, const std::string &strInput) { Amount value = Amount::zero(); // separate [VALUE:]DATA in string size_t pos = strInput.find(':'); if (pos == 0) { throw std::runtime_error("TX output value not specified"); } if (pos != std::string::npos) { // Extract and validate VALUE value = ExtractAndValidateValue(strInput.substr(0, pos)); } // extract and validate DATA std::string strData = strInput.substr(pos + 1, std::string::npos); if (!IsHex(strData)) { throw std::runtime_error("invalid TX output data"); } std::vector data = ParseHex(strData); CTxOut txout(value, CScript() << OP_RETURN << data); tx.vout.push_back(txout); } static void MutateTxAddOutScript(CMutableTransaction &tx, const std::string &strInput) { // separate VALUE:SCRIPT[:FLAGS] std::vector vStrInputParts; boost::split(vStrInputParts, strInput, boost::is_any_of(":")); if (vStrInputParts.size() < 2) throw std::runtime_error("TX output missing separator"); // Extract and validate VALUE Amount value = ExtractAndValidateValue(vStrInputParts[0]); // extract and validate script std::string strScript = vStrInputParts[1]; CScript scriptPubKey = ParseScript(strScript); // Extract FLAGS bool bScriptHash = false; if (vStrInputParts.size() == 3) { std::string flags = vStrInputParts.back(); bScriptHash = (flags.find("S") != std::string::npos); } if (bScriptHash) { scriptPubKey = GetScriptForDestination(CScriptID(scriptPubKey)); } // construct TxOut, append to transaction output list CTxOut txout(value, scriptPubKey); tx.vout.push_back(txout); } static void MutateTxDelInput(CMutableTransaction &tx, const std::string &strInIdx) { // parse requested deletion index int inIdx = atoi(strInIdx); if (inIdx < 0 || inIdx >= (int)tx.vin.size()) { std::string strErr = "Invalid TX input index '" + strInIdx + "'"; throw std::runtime_error(strErr.c_str()); } // delete input from transaction tx.vin.erase(tx.vin.begin() + inIdx); } static void MutateTxDelOutput(CMutableTransaction &tx, const std::string &strOutIdx) { // parse requested deletion index int outIdx = atoi(strOutIdx); if (outIdx < 0 || outIdx >= (int)tx.vout.size()) { std::string strErr = "Invalid TX output index '" + strOutIdx + "'"; throw std::runtime_error(strErr.c_str()); } // delete output from transaction tx.vout.erase(tx.vout.begin() + outIdx); } static const unsigned int N_SIGHASH_OPTS = 12; static const struct { const char *flagStr; int flags; } sigHashOptions[N_SIGHASH_OPTS] = { {"ALL", SIGHASH_ALL}, {"NONE", SIGHASH_NONE}, {"SINGLE", SIGHASH_SINGLE}, {"ALL|ANYONECANPAY", SIGHASH_ALL | SIGHASH_ANYONECANPAY}, {"NONE|ANYONECANPAY", SIGHASH_NONE | SIGHASH_ANYONECANPAY}, {"SINGLE|ANYONECANPAY", SIGHASH_SINGLE | SIGHASH_ANYONECANPAY}, {"ALL|FORKID", SIGHASH_ALL | SIGHASH_FORKID}, {"NONE|FORKID", SIGHASH_NONE | SIGHASH_FORKID}, {"SINGLE|FORKID", SIGHASH_SINGLE | SIGHASH_FORKID}, {"ALL|FORKID|ANYONECANPAY", SIGHASH_ALL | SIGHASH_FORKID | SIGHASH_ANYONECANPAY}, {"NONE|FORKID|ANYONECANPAY", SIGHASH_NONE | SIGHASH_FORKID | SIGHASH_ANYONECANPAY}, {"SINGLE|FORKID|ANYONECANPAY", SIGHASH_SINGLE | SIGHASH_FORKID | SIGHASH_ANYONECANPAY}, }; static bool findSigHashFlags(SigHashType &sigHashType, const std::string &flagStr) { sigHashType = SigHashType(); for (unsigned int i = 0; i < N_SIGHASH_OPTS; i++) { if (flagStr == sigHashOptions[i].flagStr) { sigHashType = SigHashType(sigHashOptions[i].flags); return true; } } return false; } -uint256 ParseHashUO(std::map &o, std::string strKey) { - if (!o.count(strKey)) { - return uint256(); - } - - return ParseHashUV(o[strKey], strKey); -} - -std::vector ParseHexUO(std::map &o, - std::string strKey) { - if (!o.count(strKey)) { - std::vector emptyVec; - return emptyVec; - } - - return ParseHexUV(o[strKey], strKey); -} - static Amount AmountFromValue(const UniValue &value) { if (!value.isNum() && !value.isStr()) { throw std::runtime_error("Amount is not a number or string"); } int64_t n; if (!ParseFixedPoint(value.getValStr(), 8, &n)) { throw std::runtime_error("Invalid amount"); } Amount amount = n * SATOSHI; if (!MoneyRange(amount)) { throw std::runtime_error("Amount out of range"); } return amount; } static void MutateTxSign(CMutableTransaction &tx, const std::string &flagStr) { SigHashType sigHashType = SigHashType().withForkId(); if ((flagStr.size() > 0) && !findSigHashFlags(sigHashType, flagStr)) { throw std::runtime_error("unknown sighash flag/sign option"); } std::vector txVariants; txVariants.push_back(CTransaction(tx)); // mergedTx will end up with all the signatures; it starts as a clone of the // raw tx: CMutableTransaction mergedTx(txVariants[0]); bool fComplete = true; CCoinsView viewDummy; CCoinsViewCache view(&viewDummy); if (!registers.count("privatekeys")) { throw std::runtime_error("privatekeys register variable must be set."); } CBasicKeyStore tempKeystore; UniValue keysObj = registers["privatekeys"]; for (unsigned int kidx = 0; kidx < keysObj.size(); kidx++) { if (!keysObj[kidx].isStr()) { throw std::runtime_error("privatekey not a std::string"); } CBitcoinSecret vchSecret; bool fGood = vchSecret.SetString(keysObj[kidx].getValStr()); if (!fGood) { throw std::runtime_error("privatekey not valid"); } CKey key = vchSecret.GetKey(); tempKeystore.AddKey(key); } // Add previous txouts given in the RPC call: if (!registers.count("prevtxs")) { throw std::runtime_error("prevtxs register variable must be set."); } UniValue prevtxsObj = registers["prevtxs"]; for (unsigned int previdx = 0; previdx < prevtxsObj.size(); previdx++) { UniValue prevOut = prevtxsObj[previdx]; if (!prevOut.isObject()) { throw std::runtime_error("expected prevtxs internal object"); } std::map types = { {"txid", UniValue::VSTR}, {"vout", UniValue::VNUM}, {"scriptPubKey", UniValue::VSTR}}; if (!prevOut.checkObject(types)) { throw std::runtime_error("prevtxs internal object typecheck fail"); } TxId txid(ParseHashUV(prevOut["txid"], "txid")); int nOut = atoi(prevOut["vout"].getValStr()); if (nOut < 0) { throw std::runtime_error("vout must be positive"); } COutPoint out(txid, nOut); std::vector pkData( ParseHexUV(prevOut["scriptPubKey"], "scriptPubKey")); CScript scriptPubKey(pkData.begin(), pkData.end()); { const Coin &coin = view.AccessCoin(out); if (!coin.IsSpent() && coin.GetTxOut().scriptPubKey != scriptPubKey) { std::string err("Previous output scriptPubKey mismatch:\n"); err = err + ScriptToAsmStr(coin.GetTxOut().scriptPubKey) + "\nvs:\n" + ScriptToAsmStr(scriptPubKey); throw std::runtime_error(err); } CTxOut txout; txout.scriptPubKey = scriptPubKey; txout.nValue = Amount::zero(); if (prevOut.exists("amount")) { txout.nValue = AmountFromValue(prevOut["amount"]); } view.AddCoin(out, Coin(txout, 1, false), true); } // If redeemScript given and private keys given, add redeemScript to the // tempKeystore so it can be signed: if (scriptPubKey.IsPayToScriptHash() && prevOut.exists("redeemScript")) { UniValue v = prevOut["redeemScript"]; std::vector rsData(ParseHexUV(v, "redeemScript")); CScript redeemScript(rsData.begin(), rsData.end()); tempKeystore.AddCScript(redeemScript); } } const CKeyStore &keystore = tempKeystore; // Sign what we can: for (size_t i = 0; i < mergedTx.vin.size(); i++) { CTxIn &txin = mergedTx.vin[i]; const Coin &coin = view.AccessCoin(txin.prevout); if (coin.IsSpent()) { fComplete = false; continue; } const CScript &prevPubKey = coin.GetTxOut().scriptPubKey; const Amount amount = coin.GetTxOut().nValue; SignatureData sigdata; // Only sign SIGHASH_SINGLE if there's a corresponding output: if ((sigHashType.getBaseType() != BaseSigHashType::SINGLE) || (i < mergedTx.vout.size())) { ProduceSignature(MutableTransactionSignatureCreator( &keystore, &mergedTx, i, amount, sigHashType), prevPubKey, sigdata); } // ... and merge in other signatures: for (const CTransaction &txv : txVariants) { sigdata = CombineSignatures( prevPubKey, MutableTransactionSignatureChecker(&mergedTx, i, amount), sigdata, DataFromTransaction(txv, i)); } UpdateTransaction(mergedTx, i, sigdata); if (!VerifyScript( txin.scriptSig, prevPubKey, STANDARD_SCRIPT_VERIFY_FLAGS, MutableTransactionSignatureChecker(&mergedTx, i, amount))) { fComplete = false; } } if (fComplete) { // do nothing... for now // perhaps store this for later optional JSON output } tx = mergedTx; } class Secp256k1Init { ECCVerifyHandle globalVerifyHandle; public: Secp256k1Init() { ECC_Start(); } ~Secp256k1Init() { ECC_Stop(); } }; static void MutateTx(CMutableTransaction &tx, const std::string &command, const std::string &commandVal, const CChainParams &chainParams) { std::unique_ptr ecc; if (command == "nversion") { MutateTxVersion(tx, commandVal); } else if (command == "locktime") { MutateTxLocktime(tx, commandVal); } else if (command == "delin") { MutateTxDelInput(tx, commandVal); } else if (command == "in") { MutateTxAddInput(tx, commandVal); } else if (command == "delout") { MutateTxDelOutput(tx, commandVal); } else if (command == "outaddr") { MutateTxAddOutAddr(tx, commandVal, chainParams); } else if (command == "outpubkey") { MutateTxAddOutPubKey(tx, commandVal); } else if (command == "outmultisig") { MutateTxAddOutMultiSig(tx, commandVal); } else if (command == "outscript") { MutateTxAddOutScript(tx, commandVal); } else if (command == "outdata") { MutateTxAddOutData(tx, commandVal); } else if (command == "sign") { if (!ecc) { ecc.reset(new Secp256k1Init()); } MutateTxSign(tx, commandVal); } else if (command == "load") { RegisterLoad(commandVal); } else if (command == "set") { RegisterSet(commandVal); } else { throw std::runtime_error("unknown command"); } } static void OutputTxJSON(const CTransaction &tx) { UniValue entry(UniValue::VOBJ); TxToUniv(tx, uint256(), entry); std::string jsonOutput = entry.write(4); fprintf(stdout, "%s\n", jsonOutput.c_str()); } static void OutputTxHash(const CTransaction &tx) { // the hex-encoded transaction id. std::string strHexHash = tx.GetId().GetHex(); fprintf(stdout, "%s\n", strHexHash.c_str()); } static void OutputTxHex(const CTransaction &tx) { std::string strHex = EncodeHexTx(tx); fprintf(stdout, "%s\n", strHex.c_str()); } static void OutputTx(const CTransaction &tx) { if (gArgs.GetBoolArg("-json", false)) { OutputTxJSON(tx); } else if (gArgs.GetBoolArg("-txid", false)) { OutputTxHash(tx); } else { OutputTxHex(tx); } } static std::string readStdin() { char buf[4096]; std::string ret; while (!feof(stdin)) { size_t bread = fread(buf, 1, sizeof(buf), stdin); ret.append(buf, bread); if (bread < sizeof(buf)) { break; } } if (ferror(stdin)) { throw std::runtime_error("error reading stdin"); } boost::algorithm::trim_right(ret); return ret; } static int CommandLineRawTx(int argc, char *argv[], const CChainParams &chainParams) { std::string strPrint; int nRet = 0; try { // Skip switches; Permit common stdin convention "-" while (argc > 1 && IsSwitchChar(argv[1][0]) && (argv[1][1] != 0)) { argc--; argv++; } CMutableTransaction tx; int startArg; if (!fCreateBlank) { // require at least one param if (argc < 2) { throw std::runtime_error("too few parameters"); } // param: hex-encoded bitcoin transaction std::string strHexTx(argv[1]); // "-" implies standard input if (strHexTx == "-") { strHexTx = readStdin(); } if (!DecodeHexTx(tx, strHexTx)) { throw std::runtime_error("invalid transaction encoding"); } startArg = 2; } else { startArg = 1; } for (int i = startArg; i < argc; i++) { std::string arg = argv[i]; std::string key, value; size_t eqpos = arg.find('='); if (eqpos == std::string::npos) { key = arg; } else { key = arg.substr(0, eqpos); value = arg.substr(eqpos + 1); } MutateTx(tx, key, value, chainParams); } OutputTx(CTransaction(tx)); } catch (const boost::thread_interrupted &) { throw; } catch (const std::exception &e) { strPrint = std::string("error: ") + e.what(); nRet = EXIT_FAILURE; } catch (...) { PrintExceptionContinue(nullptr, "CommandLineRawTx()"); throw; } if (strPrint != "") { fprintf((nRet == 0 ? stdout : stderr), "%s\n", strPrint.c_str()); } return nRet; } int main(int argc, char *argv[]) { SetupEnvironment(); try { int ret = AppInitRawTx(argc, argv); if (ret != CONTINUE_EXECUTION) return ret; } catch (const std::exception &e) { PrintExceptionContinue(&e, "AppInitRawTx()"); return EXIT_FAILURE; } catch (...) { PrintExceptionContinue(nullptr, "AppInitRawTx()"); return EXIT_FAILURE; } int ret = EXIT_FAILURE; try { ret = CommandLineRawTx(argc, argv, Params()); } catch (const std::exception &e) { PrintExceptionContinue(&e, "CommandLineRawTx()"); } catch (...) { PrintExceptionContinue(nullptr, "CommandLineRawTx()"); } return ret; } diff --git a/src/chainparams.cpp b/src/chainparams.cpp index 6d58d057a..709079c80 100644 --- a/src/chainparams.cpp +++ b/src/chainparams.cpp @@ -1,497 +1,494 @@ // Copyright (c) 2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Copyright (c) 2017-2018 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "chainparams.h" #include "consensus/merkle.h" #include "tinyformat.h" #include "util.h" #include "utilstrencodings.h" #include #include "chainparamsseeds.h" static CBlock CreateGenesisBlock(const char *pszTimestamp, const CScript &genesisOutputScript, uint32_t nTime, uint32_t nNonce, uint32_t nBits, int32_t nVersion, const Amount genesisReward) { CMutableTransaction txNew; txNew.nVersion = 1; txNew.vin.resize(1); txNew.vout.resize(1); txNew.vin[0].scriptSig = CScript() << 486604799 << CScriptNum(4) << std::vector((const uint8_t *)pszTimestamp, (const uint8_t *)pszTimestamp + strlen(pszTimestamp)); txNew.vout[0].nValue = genesisReward; txNew.vout[0].scriptPubKey = genesisOutputScript; CBlock genesis; genesis.nTime = nTime; genesis.nBits = nBits; genesis.nNonce = nNonce; genesis.nVersion = nVersion; genesis.vtx.push_back(MakeTransactionRef(std::move(txNew))); genesis.hashPrevBlock.SetNull(); genesis.hashMerkleRoot = BlockMerkleRoot(genesis); return genesis; } /** * Build the genesis block. Note that the output of its generation transaction * cannot be spent since it did not originally exist in the database. * * CBlock(hash=000000000019d6, ver=1, hashPrevBlock=00000000000000, * hashMerkleRoot=4a5e1e, nTime=1231006505, nBits=1d00ffff, nNonce=2083236893, * vtx=1) * CTransaction(hash=4a5e1e, ver=1, vin.size=1, vout.size=1, nLockTime=0) * CTxIn(COutPoint(000000, -1), coinbase * 04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73) * CTxOut(nValue=50.00000000, scriptPubKey=0x5F1DF16B2B704C8A578D0B) * vMerkleTree: 4a5e1e */ static CBlock CreateGenesisBlock(uint32_t nTime, uint32_t nNonce, uint32_t nBits, int32_t nVersion, const Amount genesisReward) { const char *pszTimestamp = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks"; const CScript genesisOutputScript = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112" "de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG; return CreateGenesisBlock(pszTimestamp, genesisOutputScript, nTime, nNonce, nBits, nVersion, genesisReward); } /** * Main network */ /** * What makes a good checkpoint block? * + Is surrounded by blocks with reasonable timestamps * (no blocks before with a timestamp after, none after with * timestamp before) * + Contains no strange transactions */ class CMainParams : public CChainParams { public: CMainParams() { strNetworkID = "main"; consensus.nSubsidyHalvingInterval = 210000; consensus.BIP34Height = 227931; consensus.BIP34Hash = uint256S( "000000000000024b89b42a942fe0d9fea3bb44ab7bd1b19115dd6a759c0808b8"); // 000000000000000004c2b624ed5d7756c508d90fd0da2c7c679febfa6c4735f0 consensus.BIP65Height = 388381; // 00000000000000000379eaa19dce8c9b722d46ae6a57c2f1a988119488b50931 consensus.BIP66Height = 363725; // 000000000000000004a1b34462cb8aeebd5799177f7a29cf28f2d1961716b5b5 consensus.CSVHeight = 419328; consensus.powLimit = uint256S( "00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); // two weeks consensus.nPowTargetTimespan = 14 * 24 * 60 * 60; consensus.nPowTargetSpacing = 10 * 60; consensus.fPowAllowMinDifficultyBlocks = false; consensus.fPowNoRetargeting = false; // 95% of 2016 consensus.nRuleChangeActivationThreshold = 1916; // nPowTargetTimespan / nPowTargetSpacing consensus.nMinerConfirmationWindow = 2016; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].bit = 28; // January 1, 2008 consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nStartTime = 1199145601; // December 31, 2008 consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nTimeout = 1230767999; // The best chain should have at least this much work. consensus.nMinimumChainWork = uint256S( "000000000000000000000000000000000000000000b8702680bcb0fec8548e05"); // By default assume that the signatures in ancestors of this block are // valid. consensus.defaultAssumeValid = uint256S( "0000000000000000007e11995a8969e2d8838e72da271cdd1903ae4c6753064a"); // August 1, 2017 hard fork consensus.uahfHeight = 478558; // November 13, 2017 hard fork consensus.daaHeight = 504031; // Nov 15, 2018 hard fork consensus.magneticAnomalyActivationTime = 1542300000; // Wed, 15 May 2019 12:00:00 UTC hard fork consensus.greatWallActivationTime = 1557921600; /** * The message start string is designed to be unlikely to occur in * normal data. The characters are rarely used upper ASCII, not valid as * UTF-8, and produce a large 32-bit integer with any alignment. */ diskMagic[0] = 0xf9; diskMagic[1] = 0xbe; diskMagic[2] = 0xb4; diskMagic[3] = 0xd9; netMagic[0] = 0xe3; netMagic[1] = 0xe1; netMagic[2] = 0xf3; netMagic[3] = 0xe8; nDefaultPort = 8333; nPruneAfterHeight = 100000; genesis = CreateGenesisBlock(1231006505, 2083236893, 0x1d00ffff, 1, 50 * COIN); consensus.hashGenesisBlock = genesis.GetHash(); assert(consensus.hashGenesisBlock == uint256S("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1" "b60a8ce26f")); assert(genesis.hashMerkleRoot == uint256S("4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b" "7afdeda33b")); // Note that of those with the service bits flag, most only support a // subset of possible options. // Bitcoin ABC seeder vSeeds.emplace_back("seed.bitcoinabc.org", true); // bitcoinforks seeders vSeeds.emplace_back("seed-abc.bitcoinforks.org", true); // BU backed seeder vSeeds.emplace_back("btccash-seeder.bitcoinunlimited.info", true); // Bitprim vSeeds.emplace_back("seed.bitprim.org", true); // Amaury SÉCHET vSeeds.emplace_back("seed.deadalnix.me", true); // criptolayer.net vSeeds.emplace_back("seeder.criptolayer.net", true); base58Prefixes[PUBKEY_ADDRESS] = std::vector(1, 0); base58Prefixes[SCRIPT_ADDRESS] = std::vector(1, 5); base58Prefixes[SECRET_KEY] = std::vector(1, 128); base58Prefixes[EXT_PUBLIC_KEY] = {0x04, 0x88, 0xB2, 0x1E}; base58Prefixes[EXT_SECRET_KEY] = {0x04, 0x88, 0xAD, 0xE4}; cashaddrPrefix = "bitcoincash"; vFixedSeeds = std::vector( pnSeed6_main, pnSeed6_main + ARRAYLEN(pnSeed6_main)); - fMiningRequiresPeers = true; fDefaultConsistencyChecks = false; fRequireStandard = true; fMineBlocksOnDemand = false; checkpointData = { .mapCheckpoints = { {11111, uint256S("0000000069e244f73d78e8fd29ba2fd2ed618bd6fa2ee" "92559f542fdb26e7c1d")}, {33333, uint256S("000000002dd5588a74784eaa7ab0507a18ad16a236e7b" "1ce69f00d7ddfb5d0a6")}, {74000, uint256S("0000000000573993a3c9e41ce34471c079dcf5f52a0e8" "24a81e7f953b8661a20")}, {105000, uint256S("00000000000291ce28027faea320c8d2b054b2e0fe44" "a773f3eefb151d6bdc97")}, {134444, uint256S("00000000000005b12ffd4cd315cd34ffd4a594f430ac" "814c91184a0d42d2b0fe")}, {168000, uint256S("000000000000099e61ea72015e79632f216fe6cb33d7" "899acb35b75c8303b763")}, {193000, uint256S("000000000000059f452a5f7340de6682a977387c1701" "0ff6e6c3bd83ca8b1317")}, {210000, uint256S("000000000000048b95347e83192f69cf0366076336c6" "39f9b7228e9ba171342e")}, {216116, uint256S("00000000000001b4f4b433e81ee46494af945cf96014" "816a4e2370f11b23df4e")}, {225430, uint256S("00000000000001c108384350f74090433e7fcf79a606" "b8e797f065b130575932")}, {250000, uint256S("000000000000003887df1f29024b06fc2200b55f8af8" "f35453d7be294df2d214")}, {279000, uint256S("0000000000000001ae8c72a0b0c301f67e3afca10e81" "9efa9041e458e9bd7e40")}, {295000, uint256S("00000000000000004d9b4ef50f0f9d686fd69db2e03a" "f35a100370c64632a983")}, // UAHF fork block. {478558, uint256S("0000000000000000011865af4122fe3b144e2cbeea86" "142e8ff2fb4107352d43")}, // Nov, 13 DAA activation block. {504031, uint256S("0000000000000000011ebf65b60d0a3de80b8175be70" "9d653b4c1a1beeb6ab9c")}, // Monolith activation. {530359, uint256S("0000000000000000011ada8bd08f46074f44a8f15539" "6f43e38acf9501c49103")}, }}; // Data as of block // 000000000000000001d2ce557406b017a928be25ee98906397d339c3f68eec5d // (height 523992). chainTxData = ChainTxData{ // UNIX timestamp of last known number of transactions. 1522608016, // Total number of transactions between genesis and that timestamp // (the tx=... number in the SetBestChain debug.log lines) 248589038, // Estimated number of transactions per second after that timestamp. 3.2}; } }; /** * Testnet (v3) */ class CTestNetParams : public CChainParams { public: CTestNetParams() { strNetworkID = "test"; consensus.nSubsidyHalvingInterval = 210000; consensus.BIP34Height = 21111; consensus.BIP34Hash = uint256S( "0000000023b3a96d3484e5abb3755c413e7d41500f8e2a5c3f0dd01299cd8ef8"); // 00000000007f6655f22f98e72ed80d8b06dc761d5da09df0fa1dc4be4f861eb6 consensus.BIP65Height = 581885; // 000000002104c8c45e99a8853285a3b592602a3ccde2b832481da85e9e4ba182 consensus.BIP66Height = 330776; // 00000000025e930139bac5c6c31a403776da130831ab85be56578f3fa75369bb consensus.CSVHeight = 770112; consensus.powLimit = uint256S( "00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); // two weeks consensus.nPowTargetTimespan = 14 * 24 * 60 * 60; consensus.nPowTargetSpacing = 10 * 60; consensus.fPowAllowMinDifficultyBlocks = true; consensus.fPowNoRetargeting = false; // 75% for testchains consensus.nRuleChangeActivationThreshold = 1512; // nPowTargetTimespan / nPowTargetSpacing consensus.nMinerConfirmationWindow = 2016; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].bit = 28; // January 1, 2008 consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nStartTime = 1199145601; // December 31, 2008 consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nTimeout = 1230767999; // The best chain should have at least this much work. consensus.nMinimumChainWork = uint256S( "000000000000000000000000000000000000000000000030015a07e503af3227"); // By default assume that the signatures in ancestors of this block are // valid. consensus.defaultAssumeValid = uint256S( "00000000000000ba5624709777f8df34b911c16a33a474562aec7360580218cc"); // August 1, 2017 hard fork consensus.uahfHeight = 1155875; // November 13, 2017 hard fork consensus.daaHeight = 1188697; // Nov 15, 2018 hard fork consensus.magneticAnomalyActivationTime = 1542300000; // Wed, 15 May 2019 12:00:00 UTC hard fork consensus.greatWallActivationTime = 1557921600; diskMagic[0] = 0x0b; diskMagic[1] = 0x11; diskMagic[2] = 0x09; diskMagic[3] = 0x07; netMagic[0] = 0xf4; netMagic[1] = 0xe5; netMagic[2] = 0xf3; netMagic[3] = 0xf4; nDefaultPort = 18333; nPruneAfterHeight = 1000; genesis = CreateGenesisBlock(1296688602, 414098458, 0x1d00ffff, 1, 50 * COIN); consensus.hashGenesisBlock = genesis.GetHash(); assert(consensus.hashGenesisBlock == uint256S("000000000933ea01ad0ee984209779baaec3ced90fa3f408719526" "f8d77f4943")); assert(genesis.hashMerkleRoot == uint256S("4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b" "7afdeda33b")); vFixedSeeds.clear(); vSeeds.clear(); // nodes with support for servicebits filtering should be at the top // Bitcoin ABC seeder vSeeds.emplace_back("testnet-seed.bitcoinabc.org", true); // bitcoinforks seeders vSeeds.emplace_back("testnet-seed-abc.bitcoinforks.org", true); // Bitprim vSeeds.emplace_back("testnet-seed.bitprim.org", true); // Amaury SÉCHET vSeeds.emplace_back("testnet-seed.deadalnix.me", true); // criptolayer.net vSeeds.emplace_back("testnet-seeder.criptolayer.net", true); base58Prefixes[PUBKEY_ADDRESS] = std::vector(1, 111); base58Prefixes[SCRIPT_ADDRESS] = std::vector(1, 196); base58Prefixes[SECRET_KEY] = std::vector(1, 239); base58Prefixes[EXT_PUBLIC_KEY] = {0x04, 0x35, 0x87, 0xCF}; base58Prefixes[EXT_SECRET_KEY] = {0x04, 0x35, 0x83, 0x94}; cashaddrPrefix = "bchtest"; vFixedSeeds = std::vector( pnSeed6_test, pnSeed6_test + ARRAYLEN(pnSeed6_test)); - fMiningRequiresPeers = true; fDefaultConsistencyChecks = false; fRequireStandard = false; fMineBlocksOnDemand = false; checkpointData = { .mapCheckpoints = { {546, uint256S("000000002a936ca763904c3c35fce2f3556c559c0214345" "d31b1bcebf76acb70")}, // UAHF fork block. {1155875, uint256S("00000000f17c850672894b9a75b63a1e72830bbd5f4" "c8889b5c1a80e7faef138")}, // Nov, 13. DAA activation block. {1188697, uint256S("0000000000170ed0918077bde7b4d36cc4c91be69fa" "09211f748240dabe047fb")}, }}; // Data as of block // 000000000005b07ecf85563034d13efd81c1a29e47e22b20f4fc6919d5b09cd6 // (height 1223263) chainTxData = ChainTxData{1522608381, 15052068, 0.15}; } }; /** * Regression test */ class CRegTestParams : public CChainParams { public: CRegTestParams() { strNetworkID = "regtest"; consensus.nSubsidyHalvingInterval = 150; // BIP34 has not activated on regtest (far in the future so block v1 are // not rejected in tests) consensus.BIP34Height = 100000000; consensus.BIP34Hash = uint256(); // BIP65 activated on regtest (Used in rpc activation tests) consensus.BIP65Height = 1351; // BIP66 activated on regtest (Used in rpc activation tests) consensus.BIP66Height = 1251; // CSV activated on regtest (Used in rpc activation tests) consensus.CSVHeight = 576; consensus.powLimit = uint256S( "7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); // two weeks consensus.nPowTargetTimespan = 14 * 24 * 60 * 60; consensus.nPowTargetSpacing = 10 * 60; consensus.fPowAllowMinDifficultyBlocks = true; consensus.fPowNoRetargeting = true; // 75% for testchains consensus.nRuleChangeActivationThreshold = 108; // Faster than normal for regtest (144 instead of 2016) consensus.nMinerConfirmationWindow = 144; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].bit = 28; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nStartTime = 0; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nTimeout = 999999999999ULL; // The best chain should have at least this much work. consensus.nMinimumChainWork = uint256S("0x00"); // By default assume that the signatures in ancestors of this block are // valid. consensus.defaultAssumeValid = uint256S("0x00"); // UAHF is always enabled on regtest. consensus.uahfHeight = 0; // November 13, 2017 hard fork is always on on regtest. consensus.daaHeight = 0; // Nov 15, 2018 hard fork consensus.magneticAnomalyActivationTime = 1542300000; // Wed, 15 May 2019 12:00:00 UTC hard fork consensus.greatWallActivationTime = 1557921600; diskMagic[0] = 0xfa; diskMagic[1] = 0xbf; diskMagic[2] = 0xb5; diskMagic[3] = 0xda; netMagic[0] = 0xda; netMagic[1] = 0xb5; netMagic[2] = 0xbf; netMagic[3] = 0xfa; nDefaultPort = 18444; nPruneAfterHeight = 1000; genesis = CreateGenesisBlock(1296688602, 2, 0x207fffff, 1, 50 * COIN); consensus.hashGenesisBlock = genesis.GetHash(); assert(consensus.hashGenesisBlock == uint256S("0x0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b" "1a11466e2206")); assert(genesis.hashMerkleRoot == uint256S("0x4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab212" "7b7afdeda33b")); //!< Regtest mode doesn't have any fixed seeds. vFixedSeeds.clear(); //!< Regtest mode doesn't have any DNS seeds. vSeeds.clear(); - fMiningRequiresPeers = false; fDefaultConsistencyChecks = true; fRequireStandard = false; fMineBlocksOnDemand = true; checkpointData = {.mapCheckpoints = { {0, uint256S("0f9188f13cb7b2c71f2a335e3a4fc328bf5" "beb436012afca590b1a11466e2206")}, }}; chainTxData = ChainTxData{0, 0, 0}; base58Prefixes[PUBKEY_ADDRESS] = std::vector(1, 111); base58Prefixes[SCRIPT_ADDRESS] = std::vector(1, 196); base58Prefixes[SECRET_KEY] = std::vector(1, 239); base58Prefixes[EXT_PUBLIC_KEY] = {0x04, 0x35, 0x87, 0xCF}; base58Prefixes[EXT_SECRET_KEY] = {0x04, 0x35, 0x83, 0x94}; cashaddrPrefix = "bchreg"; } }; static std::unique_ptr globalChainParams; const CChainParams &Params() { assert(globalChainParams); return *globalChainParams; } std::unique_ptr CreateChainParams(const std::string &chain) { if (chain == CBaseChainParams::MAIN) { return std::unique_ptr(new CMainParams()); } if (chain == CBaseChainParams::TESTNET) { return std::unique_ptr(new CTestNetParams()); } if (chain == CBaseChainParams::REGTEST) { return std::unique_ptr(new CRegTestParams()); } throw std::runtime_error( strprintf("%s: Unknown chain %s.", __func__, chain)); } void SelectParams(const std::string &network) { SelectBaseParams(network); globalChainParams = CreateChainParams(network); } diff --git a/src/chainparams.h b/src/chainparams.h index 17114f445..dc903e991 100644 --- a/src/chainparams.h +++ b/src/chainparams.h @@ -1,132 +1,129 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CHAINPARAMS_H #define BITCOIN_CHAINPARAMS_H #include "chainparamsbase.h" #include "consensus/params.h" #include "primitives/block.h" #include "protocol.h" #include #include struct CDNSSeedData { std::string host; bool supportsServiceBitsFiltering; CDNSSeedData(const std::string &strHost, bool supportsServiceBitsFilteringIn) : host(strHost), supportsServiceBitsFiltering(supportsServiceBitsFilteringIn) {} }; struct SeedSpec6 { uint8_t addr[16]; uint16_t port; }; typedef std::map MapCheckpoints; struct CCheckpointData { MapCheckpoints mapCheckpoints; }; struct ChainTxData { int64_t nTime; int64_t nTxCount; double dTxRate; }; /** * CChainParams defines various tweakable parameters of a given instance of the * Bitcoin system. There are three: the main network on which people trade goods * and services, the public test network which gets reset from time to time and * a regression test mode which is intended for private networks only. It has * minimal difficulty to ensure that blocks can be found instantly. */ class CChainParams { public: enum Base58Type { PUBKEY_ADDRESS, SCRIPT_ADDRESS, SECRET_KEY, EXT_PUBLIC_KEY, EXT_SECRET_KEY, MAX_BASE58_TYPES }; const Consensus::Params &GetConsensus() const { return consensus; } const CMessageHeader::MessageMagic &DiskMagic() const { return diskMagic; } const CMessageHeader::MessageMagic &NetMagic() const { return netMagic; } int GetDefaultPort() const { return nDefaultPort; } const CBlock &GenesisBlock() const { return genesis; } - /** Make miner wait to have peers to avoid wasting work */ - bool MiningRequiresPeers() const { return fMiningRequiresPeers; } /** Default value for -checkmempool and -checkblockindex argument */ bool DefaultConsistencyChecks() const { return fDefaultConsistencyChecks; } /** Policy: Filter transactions that do not match well-defined patterns */ bool RequireStandard() const { return fRequireStandard; } uint64_t PruneAfterHeight() const { return nPruneAfterHeight; } /** * Make miner stop after a block is found. In RPC, don't return until * nGenProcLimit blocks are generated. */ bool MineBlocksOnDemand() const { return fMineBlocksOnDemand; } /** Return the BIP70 network string (main, test or regtest) */ std::string NetworkIDString() const { return strNetworkID; } const std::vector &DNSSeeds() const { return vSeeds; } const std::vector &Base58Prefix(Base58Type type) const { return base58Prefixes[type]; } const std::string &CashAddrPrefix() const { return cashaddrPrefix; } const std::vector &FixedSeeds() const { return vFixedSeeds; } const CCheckpointData &Checkpoints() const { return checkpointData; } const ChainTxData &TxData() const { return chainTxData; } protected: CChainParams() {} Consensus::Params consensus; CMessageHeader::MessageMagic diskMagic; CMessageHeader::MessageMagic netMagic; int nDefaultPort; uint64_t nPruneAfterHeight; std::vector vSeeds; std::vector base58Prefixes[MAX_BASE58_TYPES]; std::string cashaddrPrefix; std::string strNetworkID; CBlock genesis; std::vector vFixedSeeds; - bool fMiningRequiresPeers; bool fDefaultConsistencyChecks; bool fRequireStandard; bool fMineBlocksOnDemand; CCheckpointData checkpointData; ChainTxData chainTxData; }; /** * Creates and returns a std::unique_ptr of the chosen chain. * @returns a CChainParams* of the chosen chain. * @throws a std::runtime_error if the chain is not supported. */ std::unique_ptr CreateChainParams(const std::string &chain); /** * Return the currently selected parameters. This won't change after app * startup, except for unit tests. */ const CChainParams &Params(); /** * Sets the params returned by Params() to those for the given BIP70 chain name. * @throws std::runtime_error when the chain is not supported. */ void SelectParams(const std::string &chain); #endif // BITCOIN_CHAINPARAMS_H diff --git a/src/dbwrapper.h b/src/dbwrapper.h index a43e43b55..0a05735e5 100644 --- a/src/dbwrapper.h +++ b/src/dbwrapper.h @@ -1,332 +1,330 @@ // Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_DBWRAPPER_H #define BITCOIN_DBWRAPPER_H #include "clientversion.h" #include "fs.h" #include "serialize.h" #include "streams.h" #include "util.h" #include "utilstrencodings.h" #include "version.h" #include #include static const size_t DBWRAPPER_PREALLOC_KEY_SIZE = 64; static const size_t DBWRAPPER_PREALLOC_VALUE_SIZE = 1024; class dbwrapper_error : public std::runtime_error { public: dbwrapper_error(const std::string &msg) : std::runtime_error(msg) {} }; class CDBWrapper; /** * These should be considered an implementation detail of the specific database. */ namespace dbwrapper_private { /** * Handle database error by throwing dbwrapper_error exception. */ void HandleError(const leveldb::Status &status); /** * Work around circular dependency, as well as for testing in dbwrapper_tests. * Database obfuscation should be considered an implementation detail of the * specific database. */ const std::vector &GetObfuscateKey(const CDBWrapper &w); }; // namespace dbwrapper_private /** Batch of changes queued to be written to a CDBWrapper */ class CDBBatch { friend class CDBWrapper; private: const CDBWrapper &parent; leveldb::WriteBatch batch; CDataStream ssKey; CDataStream ssValue; size_t size_estimate; public: /** * @param[in] _parent CDBWrapper that this batch is to be submitted to */ CDBBatch(const CDBWrapper &_parent) : parent(_parent), ssKey(SER_DISK, CLIENT_VERSION), ssValue(SER_DISK, CLIENT_VERSION), size_estimate(0){}; void Clear() { batch.Clear(); size_estimate = 0; } template void Write(const K &key, const V &value) { ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; leveldb::Slice slKey(ssKey.data(), ssKey.size()); ssValue.reserve(DBWRAPPER_PREALLOC_VALUE_SIZE); ssValue << value; ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent)); leveldb::Slice slValue(ssValue.data(), ssValue.size()); batch.Put(slKey, slValue); // LevelDB serializes writes as: // - byte: header // - varint: key length (1 byte up to 127B, 2 bytes up to 16383B, ...) // - byte[]: key // - varint: value length // - byte[]: value // The formula below assumes the key and value are both less than 16k. size_estimate += 3 + (slKey.size() > 127) + slKey.size() + (slValue.size() > 127) + slValue.size(); ssKey.clear(); ssValue.clear(); } template void Erase(const K &key) { ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; leveldb::Slice slKey(ssKey.data(), ssKey.size()); batch.Delete(slKey); // LevelDB serializes erases as: // - byte: header // - varint: key length // - byte[]: key // The formula below assumes the key is less than 16kB. size_estimate += 2 + (slKey.size() > 127) + slKey.size(); ssKey.clear(); } size_t SizeEstimate() const { return size_estimate; } }; class CDBIterator { private: const CDBWrapper &parent; leveldb::Iterator *piter; public: /** * @param[in] _parent Parent CDBWrapper instance. * @param[in] _piter The original leveldb iterator. */ CDBIterator(const CDBWrapper &_parent, leveldb::Iterator *_piter) : parent(_parent), piter(_piter){}; ~CDBIterator(); bool Valid(); void SeekToFirst(); template void Seek(const K &key) { CDataStream ssKey(SER_DISK, CLIENT_VERSION); ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; leveldb::Slice slKey(ssKey.data(), ssKey.size()); piter->Seek(slKey); } void Next(); template bool GetKey(K &key) { leveldb::Slice slKey = piter->key(); try { CDataStream ssKey(slKey.data(), slKey.data() + slKey.size(), SER_DISK, CLIENT_VERSION); ssKey >> key; } catch (const std::exception &) { return false; } return true; } - unsigned int GetKeySize() { return piter->key().size(); } - template bool GetValue(V &value) { leveldb::Slice slValue = piter->value(); try { CDataStream ssValue(slValue.data(), slValue.data() + slValue.size(), SER_DISK, CLIENT_VERSION); ssValue.Xor(dbwrapper_private::GetObfuscateKey(parent)); ssValue >> value; } catch (const std::exception &) { return false; } return true; } unsigned int GetValueSize() { return piter->value().size(); } }; class CDBWrapper { friend const std::vector & dbwrapper_private::GetObfuscateKey(const CDBWrapper &w); private: //! custom environment this database is using (may be nullptr in case of //! default environment) leveldb::Env *penv; //! database options used leveldb::Options options; //! options used when reading from the database leveldb::ReadOptions readoptions; //! options used when iterating over values of the database leveldb::ReadOptions iteroptions; //! options used when writing to the database leveldb::WriteOptions writeoptions; //! options used when sync writing to the database leveldb::WriteOptions syncoptions; //! the database itself leveldb::DB *pdb; //! a key used for optional XOR-obfuscation of the database std::vector obfuscate_key; //! the key under which the obfuscation key is stored static const std::string OBFUSCATE_KEY_KEY; //! the length of the obfuscate key in number of bytes static const unsigned int OBFUSCATE_KEY_NUM_BYTES; std::vector CreateObfuscateKey() const; public: /** * @param[in] path Location in the filesystem where leveldb data will * be stored. * @param[in] nCacheSize Configures various leveldb cache settings. * @param[in] fMemory If true, use leveldb's memory environment. * @param[in] fWipe If true, remove all existing data. * @param[in] obfuscate If true, store data obfuscated via simple XOR. If * false, XOR * with a zero'd byte array. */ CDBWrapper(const fs::path &path, size_t nCacheSize, bool fMemory = false, bool fWipe = false, bool obfuscate = false); ~CDBWrapper(); template bool Read(const K &key, V &value) const { CDataStream ssKey(SER_DISK, CLIENT_VERSION); ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; leveldb::Slice slKey(ssKey.data(), ssKey.size()); std::string strValue; leveldb::Status status = pdb->Get(readoptions, slKey, &strValue); if (!status.ok()) { if (status.IsNotFound()) return false; LogPrintf("LevelDB read failure: %s\n", status.ToString()); dbwrapper_private::HandleError(status); } try { CDataStream ssValue(strValue.data(), strValue.data() + strValue.size(), SER_DISK, CLIENT_VERSION); ssValue.Xor(obfuscate_key); ssValue >> value; } catch (const std::exception &) { return false; } return true; } template bool Write(const K &key, const V &value, bool fSync = false) { CDBBatch batch(*this); batch.Write(key, value); return WriteBatch(batch, fSync); } template bool Exists(const K &key) const { CDataStream ssKey(SER_DISK, CLIENT_VERSION); ssKey.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey << key; leveldb::Slice slKey(ssKey.data(), ssKey.size()); std::string strValue; leveldb::Status status = pdb->Get(readoptions, slKey, &strValue); if (!status.ok()) { if (status.IsNotFound()) return false; LogPrintf("LevelDB read failure: %s\n", status.ToString()); dbwrapper_private::HandleError(status); } return true; } template bool Erase(const K &key, bool fSync = false) { CDBBatch batch(*this); batch.Erase(key); return WriteBatch(batch, fSync); } bool WriteBatch(CDBBatch &batch, bool fSync = false); // not available for LevelDB; provide for compatibility with BDB bool Flush() { return true; } bool Sync() { CDBBatch batch(*this); return WriteBatch(batch, true); } CDBIterator *NewIterator() { return new CDBIterator(*this, pdb->NewIterator(iteroptions)); } /** * Return true if the database managed by this class contains no entries. */ bool IsEmpty(); template size_t EstimateSize(const K &key_begin, const K &key_end) const { CDataStream ssKey1(SER_DISK, CLIENT_VERSION), ssKey2(SER_DISK, CLIENT_VERSION); ssKey1.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey2.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey1 << key_begin; ssKey2 << key_end; leveldb::Slice slKey1(ssKey1.data(), ssKey1.size()); leveldb::Slice slKey2(ssKey2.data(), ssKey2.size()); uint64_t size = 0; leveldb::Range range(slKey1, slKey2); pdb->GetApproximateSizes(&range, 1, &size); return size; } /** * Compact a certain range of keys in the database. */ template void CompactRange(const K &key_begin, const K &key_end) const { CDataStream ssKey1(SER_DISK, CLIENT_VERSION), ssKey2(SER_DISK, CLIENT_VERSION); ssKey1.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey2.reserve(DBWRAPPER_PREALLOC_KEY_SIZE); ssKey1 << key_begin; ssKey2 << key_end; leveldb::Slice slKey1(ssKey1.data(), ssKey1.size()); leveldb::Slice slKey2(ssKey2.data(), ssKey2.size()); pdb->CompactRange(&slKey1, &slKey2); } }; #endif // BITCOIN_DBWRAPPER_H diff --git a/src/httpserver.cpp b/src/httpserver.cpp index 00ac001a4..894507e18 100644 --- a/src/httpserver.cpp +++ b/src/httpserver.cpp @@ -1,675 +1,669 @@ // Copyright (c) 2015-2016 The Bitcoin Core developers // Copyright (c) 2018 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "httpserver.h" #include "chainparamsbase.h" #include "compat.h" #include "config.h" #include "netbase.h" #include "rpc/protocol.h" // For HTTP status codes #include "sync.h" #include "ui_interface.h" #include "util.h" #include "utilstrencodings.h" #include #include #include #include #include #include #include #include #include #ifdef EVENT__HAVE_NETINET_IN_H #include #ifdef _XOPEN_SOURCE_EXTENDED #include #endif #endif #include #include #include #include /** Maximum size of http request (request line + headers) */ static const size_t MAX_HEADERS_SIZE = 8192; /** * Maximum HTTP post body size. Twice the maximum block size is added to this * value in practice. */ static const size_t MIN_SUPPORTED_BODY_SIZE = 0x02000000; /** HTTP request work item */ class HTTPWorkItem final : public HTTPClosure { public: HTTPWorkItem(Config &_config, std::unique_ptr _req, const std::string &_path, const HTTPRequestHandler &_func) : req(std::move(_req)), path(_path), func(_func), config(&_config) {} void operator()() override { func(*config, req.get(), path); } std::unique_ptr req; private: std::string path; HTTPRequestHandler func; Config *config; }; /** * Simple work queue for distributing work over multiple threads. * Work items are simply callable objects. */ template class WorkQueue { private: /** Mutex protects entire object */ std::mutex cs; std::condition_variable cond; std::deque> queue; bool running; size_t maxDepth; int numThreads; /** RAII object to keep track of number of running worker threads */ class ThreadCounter { public: WorkQueue &wq; ThreadCounter(WorkQueue &w) : wq(w) { std::lock_guard lock(wq.cs); wq.numThreads += 1; } ~ThreadCounter() { std::lock_guard lock(wq.cs); wq.numThreads -= 1; wq.cond.notify_all(); } }; public: WorkQueue(size_t _maxDepth) : running(true), maxDepth(_maxDepth), numThreads(0) {} /** Precondition: worker threads have all stopped (call WaitExit) */ ~WorkQueue() {} /** Enqueue a work item */ bool Enqueue(WorkItem *item) { std::unique_lock lock(cs); if (queue.size() >= maxDepth) { return false; } queue.emplace_back(std::unique_ptr(item)); cond.notify_one(); return true; } /** Thread function */ void Run() { ThreadCounter count(*this); while (true) { std::unique_ptr i; { std::unique_lock lock(cs); while (running && queue.empty()) cond.wait(lock); if (!running) break; i = std::move(queue.front()); queue.pop_front(); } (*i)(); } } /** Interrupt and exit loops */ void Interrupt() { std::unique_lock lock(cs); running = false; cond.notify_all(); } /** Wait for worker threads to exit */ void WaitExit() { std::unique_lock lock(cs); while (numThreads > 0) cond.wait(lock); } - - /** Return current depth of queue */ - size_t Depth() { - std::unique_lock lock(cs); - return queue.size(); - } }; struct HTTPPathHandler { HTTPPathHandler() {} HTTPPathHandler(std::string _prefix, bool _exactMatch, HTTPRequestHandler _handler) : prefix(_prefix), exactMatch(_exactMatch), handler(_handler) {} std::string prefix; bool exactMatch; HTTPRequestHandler handler; }; /** HTTP module state */ //! libevent event loop static struct event_base *eventBase = 0; //! HTTP server struct evhttp *eventHTTP = 0; //! List of subnets to allow RPC connections from static std::vector rpc_allow_subnets; //! Work queue for handling longer requests off the event loop thread static WorkQueue *workQueue = 0; //! Handlers for (sub)paths std::vector pathHandlers; //! Bound listening sockets std::vector boundSockets; /** Check if a network address is allowed to access the HTTP server */ static bool ClientAllowed(const CNetAddr &netaddr) { if (!netaddr.IsValid()) return false; for (const CSubNet &subnet : rpc_allow_subnets) if (subnet.Match(netaddr)) return true; return false; } /** Initialize ACL list for HTTP server */ static bool InitHTTPAllowList() { rpc_allow_subnets.clear(); CNetAddr localv4; CNetAddr localv6; LookupHost("127.0.0.1", localv4, false); LookupHost("::1", localv6, false); // always allow IPv4 local subnet. rpc_allow_subnets.push_back(CSubNet(localv4, 8)); // always allow IPv6 localhost. rpc_allow_subnets.push_back(CSubNet(localv6)); for (const std::string &strAllow : gArgs.GetArgs("-rpcallowip")) { CSubNet subnet; LookupSubNet(strAllow.c_str(), subnet); if (!subnet.IsValid()) { uiInterface.ThreadSafeMessageBox( strprintf("Invalid -rpcallowip subnet specification: %s. " "Valid are a single IP (e.g. 1.2.3.4), a " "network/netmask (e.g. 1.2.3.4/255.255.255.0) or a " "network/CIDR (e.g. 1.2.3.4/24).", strAllow), "", CClientUIInterface::MSG_ERROR); return false; } rpc_allow_subnets.push_back(subnet); } std::string strAllowed; for (const CSubNet &subnet : rpc_allow_subnets) { strAllowed += subnet.ToString() + " "; } LogPrint(BCLog::HTTP, "Allowing HTTP connections from: %s\n", strAllowed); return true; } /** HTTP request method as string - use for logging only */ static std::string RequestMethodString(HTTPRequest::RequestMethod m) { switch (m) { case HTTPRequest::GET: return "GET"; case HTTPRequest::POST: return "POST"; case HTTPRequest::HEAD: return "HEAD"; case HTTPRequest::PUT: return "PUT"; case HTTPRequest::OPTIONS: return "OPTIONS"; default: return "unknown"; } } /** HTTP request callback */ static void http_request_cb(struct evhttp_request *req, void *arg) { Config &config = *reinterpret_cast(arg); std::unique_ptr hreq(new HTTPRequest(req)); LogPrint(BCLog::HTTP, "Received a %s request for %s from %s\n", RequestMethodString(hreq->GetRequestMethod()), hreq->GetURI(), hreq->GetPeer().ToString()); // Early address-based allow check if (!ClientAllowed(hreq->GetPeer())) { hreq->WriteReply(HTTP_FORBIDDEN); return; } // Early reject unknown HTTP methods if (hreq->GetRequestMethod() == HTTPRequest::UNKNOWN) { hreq->WriteReply(HTTP_BADMETHOD); return; } // Find registered handler for prefix std::string strURI = hreq->GetURI(); std::string path; std::vector::const_iterator i = pathHandlers.begin(); std::vector::const_iterator iend = pathHandlers.end(); for (; i != iend; ++i) { bool match = false; if (i->exactMatch) { match = (strURI == i->prefix); } else { match = (strURI.substr(0, i->prefix.size()) == i->prefix); } if (match) { path = strURI.substr(i->prefix.size()); break; } } // Dispatch to worker thread. if (i != iend) { std::unique_ptr item( new HTTPWorkItem(config, std::move(hreq), path, i->handler)); assert(workQueue); if (workQueue->Enqueue(item.get())) { /* if true, queue took ownership */ item.release(); } else { LogPrintf("WARNING: request rejected because http work queue depth " "exceeded, it can be increased with the -rpcworkqueue= " "setting\n"); item->req->WriteReply(HTTP_INTERNAL, "Work queue depth exceeded"); } } else { hreq->WriteReply(HTTP_NOTFOUND); } } /** Callback to reject HTTP requests after shutdown. */ static void http_reject_request_cb(struct evhttp_request *req, void *) { LogPrint(BCLog::HTTP, "Rejecting request while shutting down\n"); evhttp_send_error(req, HTTP_SERVUNAVAIL, nullptr); } /** Event dispatcher thread */ static bool ThreadHTTP(struct event_base *base, struct evhttp *http) { RenameThread("bitcoin-http"); LogPrint(BCLog::HTTP, "Entering http event loop\n"); event_base_dispatch(base); // Event loop will be interrupted by InterruptHTTPServer() LogPrint(BCLog::HTTP, "Exited http event loop\n"); return event_base_got_break(base) == 0; } /** Bind HTTP server to specified addresses */ static bool HTTPBindAddresses(struct evhttp *http) { int defaultPort = gArgs.GetArg("-rpcport", BaseParams().RPCPort()); std::vector> endpoints; // Determine what addresses to bind to if (!gArgs.IsArgSet("-rpcallowip")) { // Default to loopback if not allowing external IPs. endpoints.push_back(std::make_pair("::1", defaultPort)); endpoints.push_back(std::make_pair("127.0.0.1", defaultPort)); if (gArgs.IsArgSet("-rpcbind")) { LogPrintf("WARNING: option -rpcbind was ignored because " "-rpcallowip was not specified, refusing to allow " "everyone to connect\n"); } } else if (gArgs.IsArgSet("-rpcbind")) { // Specific bind address. for (const std::string &strRPCBind : gArgs.GetArgs("-rpcbind")) { int port = defaultPort; std::string host; SplitHostPort(strRPCBind, port, host); endpoints.push_back(std::make_pair(host, port)); } } else { // No specific bind address specified, bind to any. endpoints.push_back(std::make_pair("::", defaultPort)); endpoints.push_back(std::make_pair("0.0.0.0", defaultPort)); } // Bind addresses for (std::vector>::iterator i = endpoints.begin(); i != endpoints.end(); ++i) { LogPrint(BCLog::HTTP, "Binding RPC on address %s port %i\n", i->first, i->second); evhttp_bound_socket *bind_handle = evhttp_bind_socket_with_handle( http, i->first.empty() ? nullptr : i->first.c_str(), i->second); if (bind_handle) { boundSockets.push_back(bind_handle); } else { LogPrintf("Binding RPC on address %s port %i failed.\n", i->first, i->second); } } return !boundSockets.empty(); } /** Simple wrapper to set thread name and run work queue */ static void HTTPWorkQueueRun(WorkQueue *queue) { RenameThread("bitcoin-httpworker"); queue->Run(); } /** libevent event log callback */ static void libevent_log_cb(int severity, const char *msg) { #ifndef EVENT_LOG_WARN // EVENT_LOG_WARN was added in 2.0.19; but before then _EVENT_LOG_WARN existed. #define EVENT_LOG_WARN _EVENT_LOG_WARN #endif // Log warn messages and higher without debug category. if (severity >= EVENT_LOG_WARN) { LogPrintf("libevent: %s\n", msg); } else { LogPrint(BCLog::LIBEVENT, "libevent: %s\n", msg); } } bool InitHTTPServer(Config &config) { struct evhttp *http = 0; struct event_base *base = 0; if (!InitHTTPAllowList()) return false; if (gArgs.GetBoolArg("-rpcssl", false)) { uiInterface.ThreadSafeMessageBox( "SSL mode for RPC (-rpcssl) is no longer supported.", "", CClientUIInterface::MSG_ERROR); return false; } // Redirect libevent's logging to our own log event_set_log_callback(&libevent_log_cb); #if LIBEVENT_VERSION_NUMBER >= 0x02010100 // If -debug=libevent, set full libevent debugging. // Otherwise, disable all libevent debugging. if (LogAcceptCategory(BCLog::LIBEVENT)) { event_enable_debug_logging(EVENT_DBG_ALL); } else { event_enable_debug_logging(EVENT_DBG_NONE); } #endif #ifdef WIN32 evthread_use_windows_threads(); #else evthread_use_pthreads(); #endif // XXX RAII: Create a new event_base for Libevent use base = event_base_new(); if (!base) { LogPrintf("Couldn't create an event_base: exiting\n"); return false; } // XXX RAII: Create a new evhttp object to handle requests http = evhttp_new(base); if (!http) { LogPrintf("couldn't create evhttp. Exiting.\n"); event_base_free(base); return false; } evhttp_set_timeout( http, gArgs.GetArg("-rpcservertimeout", DEFAULT_HTTP_SERVER_TIMEOUT)); evhttp_set_max_headers_size(http, MAX_HEADERS_SIZE); evhttp_set_max_body_size( http, MIN_SUPPORTED_BODY_SIZE + 2 * config.GetMaxBlockSize()); evhttp_set_gencb(http, http_request_cb, &config); // Only POST and OPTIONS are supported, but we return HTTP 405 for the // others evhttp_set_allowed_methods(http, EVHTTP_REQ_GET | EVHTTP_REQ_POST | EVHTTP_REQ_HEAD | EVHTTP_REQ_PUT | EVHTTP_REQ_DELETE | EVHTTP_REQ_OPTIONS); if (!HTTPBindAddresses(http)) { LogPrintf("Unable to bind any endpoint for RPC server\n"); evhttp_free(http); event_base_free(base); return false; } LogPrint(BCLog::HTTP, "Initialized HTTP server\n"); int workQueueDepth = std::max( (long)gArgs.GetArg("-rpcworkqueue", DEFAULT_HTTP_WORKQUEUE), 1L); LogPrintf("HTTP: creating work queue of depth %d\n", workQueueDepth); workQueue = new WorkQueue(workQueueDepth); eventBase = base; eventHTTP = http; return true; } std::thread threadHTTP; std::future threadResult; bool StartHTTPServer() { LogPrint(BCLog::HTTP, "Starting HTTP server\n"); int rpcThreads = std::max((long)gArgs.GetArg("-rpcthreads", DEFAULT_HTTP_THREADS), 1L); LogPrintf("HTTP: starting %d worker threads\n", rpcThreads); std::packaged_task task(ThreadHTTP); threadResult = task.get_future(); threadHTTP = std::thread(std::move(task), eventBase, eventHTTP); for (int i = 0; i < rpcThreads; i++) { std::thread rpc_worker(HTTPWorkQueueRun, workQueue); rpc_worker.detach(); } return true; } void InterruptHTTPServer() { LogPrint(BCLog::HTTP, "Interrupting HTTP server\n"); if (eventHTTP) { // Unlisten sockets for (evhttp_bound_socket *socket : boundSockets) { evhttp_del_accept_socket(eventHTTP, socket); } // Reject requests on current connections evhttp_set_gencb(eventHTTP, http_reject_request_cb, nullptr); } if (workQueue) workQueue->Interrupt(); } void StopHTTPServer() { LogPrint(BCLog::HTTP, "Stopping HTTP server\n"); if (workQueue) { LogPrint(BCLog::HTTP, "Waiting for HTTP worker threads to exit\n"); workQueue->WaitExit(); delete workQueue; } if (eventBase) { LogPrint(BCLog::HTTP, "Waiting for HTTP event thread to exit\n"); // Give event loop a few seconds to exit (to send back last RPC // responses), then break it. Before this was solved with // event_base_loopexit, but that didn't work as expected in at least // libevent 2.0.21 and always introduced a delay. In libevent master // that appears to be solved, so in the future that solution could be // used again (if desirable). // (see discussion in https://github.com/bitcoin/bitcoin/pull/6990) if (threadResult.valid() && threadResult.wait_for(std::chrono::milliseconds(2000)) == std::future_status::timeout) { LogPrintf("HTTP event loop did not exit within allotted time, " "sending loopbreak\n"); event_base_loopbreak(eventBase); } threadHTTP.join(); } if (eventHTTP) { evhttp_free(eventHTTP); eventHTTP = 0; } if (eventBase) { event_base_free(eventBase); eventBase = 0; } LogPrint(BCLog::HTTP, "Stopped HTTP server\n"); } struct event_base *EventBase() { return eventBase; } static void httpevent_callback_fn(evutil_socket_t, short, void *data) { // Static handler: simply call inner handler HTTPEvent *self = ((HTTPEvent *)data); self->handler(); if (self->deleteWhenTriggered) delete self; } HTTPEvent::HTTPEvent(struct event_base *base, bool _deleteWhenTriggered, const std::function &_handler) : deleteWhenTriggered(_deleteWhenTriggered), handler(_handler) { ev = event_new(base, -1, 0, httpevent_callback_fn, this); assert(ev); } HTTPEvent::~HTTPEvent() { event_free(ev); } void HTTPEvent::trigger(struct timeval *tv) { if (tv == nullptr) { // Immediately trigger event in main thread. event_active(ev, 0, 0); } else { // Trigger after timeval passed. evtimer_add(ev, tv); } } HTTPRequest::HTTPRequest(struct evhttp_request *_req) : req(_req), replySent(false) {} HTTPRequest::~HTTPRequest() { if (!replySent) { // Keep track of whether reply was sent to avoid request leaks LogPrintf("%s: Unhandled request\n", __func__); WriteReply(HTTP_INTERNAL, "Unhandled request"); } // evhttpd cleans up the request, as long as a reply was sent. } std::pair HTTPRequest::GetHeader(const std::string &hdr) { const struct evkeyvalq *headers = evhttp_request_get_input_headers(req); assert(headers); const char *val = evhttp_find_header(headers, hdr.c_str()); if (val) return std::make_pair(true, val); else return std::make_pair(false, ""); } std::string HTTPRequest::ReadBody() { struct evbuffer *buf = evhttp_request_get_input_buffer(req); if (!buf) return ""; size_t size = evbuffer_get_length(buf); /** * Trivial implementation: if this is ever a performance bottleneck, * internal copying can be avoided in multi-segment buffers by using * evbuffer_peek and an awkward loop. Though in that case, it'd be even * better to not copy into an intermediate string but use a stream * abstraction to consume the evbuffer on the fly in the parsing algorithm. */ const char *data = (const char *)evbuffer_pullup(buf, size); // returns nullptr in case of empty buffer. if (!data) { return ""; } std::string rv(data, size); evbuffer_drain(buf, size); return rv; } void HTTPRequest::WriteHeader(const std::string &hdr, const std::string &value) { struct evkeyvalq *headers = evhttp_request_get_output_headers(req); assert(headers); evhttp_add_header(headers, hdr.c_str(), value.c_str()); } /** * Closure sent to main thread to request a reply to be sent to a HTTP request. * Replies must be sent in the main loop in the main http thread, this cannot be * done from worker threads. */ void HTTPRequest::WriteReply(int nStatus, const std::string &strReply) { assert(!replySent && req); // Send event to main http thread to send reply message struct evbuffer *evb = evhttp_request_get_output_buffer(req); assert(evb); evbuffer_add(evb, strReply.data(), strReply.size()); HTTPEvent *ev = new HTTPEvent(eventBase, true, std::bind(evhttp_send_reply, req, nStatus, (const char *)nullptr, (struct evbuffer *)nullptr)); ev->trigger(0); replySent = true; // transferred back to main thread. req = 0; } CService HTTPRequest::GetPeer() { evhttp_connection *con = evhttp_request_get_connection(req); CService peer; if (con) { // evhttp retains ownership over returned address string const char *address = ""; uint16_t port = 0; evhttp_connection_get_peer(con, (char **)&address, &port); peer = LookupNumeric(address, port); } return peer; } std::string HTTPRequest::GetURI() { return evhttp_request_get_uri(req); } HTTPRequest::RequestMethod HTTPRequest::GetRequestMethod() { switch (evhttp_request_get_command(req)) { case EVHTTP_REQ_GET: return GET; case EVHTTP_REQ_POST: return POST; case EVHTTP_REQ_HEAD: return HEAD; case EVHTTP_REQ_PUT: return PUT; case EVHTTP_REQ_OPTIONS: return OPTIONS; default: return UNKNOWN; } } void RegisterHTTPHandler(const std::string &prefix, bool exactMatch, const HTTPRequestHandler &handler) { LogPrint(BCLog::HTTP, "Registering HTTP handler for %s (exactmatch %d)\n", prefix, exactMatch); pathHandlers.push_back(HTTPPathHandler(prefix, exactMatch, handler)); } void UnregisterHTTPHandler(const std::string &prefix, bool exactMatch) { std::vector::iterator i = pathHandlers.begin(); std::vector::iterator iend = pathHandlers.end(); for (; i != iend; ++i) if (i->prefix == prefix && i->exactMatch == exactMatch) break; if (i != iend) { LogPrint(BCLog::HTTP, "Unregistering HTTP handler for %s (exactmatch %d)\n", prefix, exactMatch); pathHandlers.erase(i); } } diff --git a/src/net.cpp b/src/net.cpp index 91aeefe6b..f0f628d65 100644 --- a/src/net.cpp +++ b/src/net.cpp @@ -1,3096 +1,3091 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include "config/bitcoin-config.h" #endif #include "net.h" #include "addrman.h" #include "chainparams.h" #include "clientversion.h" #include "config.h" #include "consensus/consensus.h" #include "crypto/common.h" #include "crypto/sha256.h" #include "hash.h" #include "netbase.h" #include "primitives/transaction.h" #include "scheduler.h" #include "ui_interface.h" #include "utilstrencodings.h" #ifdef WIN32 #include #else #include #endif #ifdef USE_UPNP #include #include #include #include #endif #include // Dump addresses to peers.dat and banlist.dat every 15 minutes (900s) #define DUMP_ADDRESSES_INTERVAL 900 // We add a random period time (0 to 1 seconds) to feeler connections to prevent // synchronization. #define FEELER_SLEEP_WINDOW 1 // MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define // it as 0 #if !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // MSG_DONTWAIT is not available on some platforms, if it doesn't exist define // it as 0 #if !defined(MSG_DONTWAIT) #define MSG_DONTWAIT 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW // version. #ifdef WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif /** Used to pass flags to the Bind() function */ enum BindFlags { BF_NONE = 0, BF_EXPLICIT = (1U << 0), BF_REPORT_ERROR = (1U << 1), BF_WHITELIST = (1U << 2), }; const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*"; // SHA256("netgroup")[0:8] static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("localhostnonce")[0:8] static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // // Global state variables // bool fDiscover = true; bool fListen = true; bool fRelayTxes = true; CCriticalSection cs_mapLocalHost; std::map mapLocalHost; static bool vfLimited[NET_MAX] = {}; limitedmap mapAlreadyAskedFor(MAX_INV_SZ); void CConnman::AddOneShot(const std::string &strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { return (unsigned short)(gArgs.GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService &addr, const CNetAddr *paddrPeer) { if (!fListen) { return false; } int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (const auto &entry : mapLocalHost) { int nScore = entry.second.nScore; int nReachability = entry.first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService(entry.first, entry.second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the pnSeeds6 array into usable address objects. static std::vector convertSeed6(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. Seed nodes are given // a random 'last seen time' of between one and two weeks ago. const int64_t nOneWeek = 7 * 24 * 60 * 60; std::vector vSeedsOut; vSeedsOut.reserve(vSeedsIn.size()); for (const auto &seed_in : vSeedsIn) { struct in6_addr ip; memcpy(&ip, seed_in.addr, sizeof(ip)); CAddress addr(CService(ip, seed_in.port), NODE_NETWORK); addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek; vSeedsOut.push_back(addr); } return vSeedsOut; } // Get best local address for a particular peer as a CAddress. Otherwise, return // the unroutable 0.0.0.0 but filled in with the normal parameters, since the IP // may be changed to a useful one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices) { CAddress ret(CService(CNetAddr(), GetListenPort()), nLocalServices); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr, nLocalServices); } ret.nTime = GetAdjustedTime(); return ret; } static int GetnScore(const CService &addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == LOCAL_NONE) { return 0; } return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { CService addrLocal = pnode->GetAddrLocal(); return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() && !IsLimited(addrLocal.GetNetwork()); } // Pushes our own address to a peer. void AdvertiseLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices()); // If discovery is enabled, sometimes give our peer the address it tells // us that it sees us as in case it has a better idea of our address // than we do. if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8 : 2) == 0)) { addrLocal.SetIP(pnode->GetAddrLocal()); } if (addrLocal.IsRoutable()) { LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString()); FastRandomContext insecure_rand; pnode->PushAddress(addrLocal, insecure_rand); } } } // Learn a new local address. bool AddLocal(const CService &addr, int nScore) { if (!addr.IsRoutable()) { return false; } if (!fDiscover && nScore < LOCAL_MANUAL) { return false; } if (IsLimited(addr)) { return false; } LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } void RemoveLocal(const CService &addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); } /** * Make a particular network entirely off-limits (no automatic connects to it). */ void SetLimited(enum Network net, bool fLimited) { if (net == NET_UNROUTABLE || net == NET_INTERNAL) { return; } LOCK(cs_mapLocalHost); vfLimited[net] = fLimited; } bool IsLimited(enum Network net) { LOCK(cs_mapLocalHost); return vfLimited[net]; } bool IsLimited(const CNetAddr &addr) { return IsLimited(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService &addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) { return false; } mapLocalHost[addr].nScore++; return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService &addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } /** check whether a given network is one we can probably connect to */ bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr &addr) { enum Network net = addr.GetNetwork(); return IsReachable(net); } CNode *CConnman::FindNode(const CNetAddr &ip) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (static_cast(pnode->addr) == ip) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const CSubNet &subNet) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const std::string &addrName) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (pnode->GetAddrName() == addrName) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const CService &addr) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (static_cast(pnode->addr) == addr) { return pnode; } } return nullptr; } bool CConnman::CheckIncomingNonce(uint64_t nonce) { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce) return false; } return true; } /** Get the bind address for a socket as CAddress */ static CAddress GetBindAddress(SOCKET sock) { CAddress addr_bind; struct sockaddr_storage sockaddr_bind; socklen_t sockaddr_bind_len = sizeof(sockaddr_bind); if (sock != INVALID_SOCKET) { if (!getsockname(sock, (struct sockaddr *)&sockaddr_bind, &sockaddr_bind_len)) { addr_bind.SetSockAddr((const struct sockaddr *)&sockaddr_bind); } else { LogPrint(BCLog::NET, "Warning: getsockname failed\n"); } } return addr_bind; } CNode *CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure) { if (pszDest == nullptr) { if (IsLocal(addrConnect)) { return nullptr; } // Look for an existing connection CNode *pnode = FindNode(static_cast(addrConnect)); if (pnode) { LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } /// debug print LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime) / 3600.0); // Resolve const int default_port = Params().GetDefaultPort(); if (pszDest) { std::vector resolved; if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) { addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE); if (!addrConnect.IsValid()) { LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest); return nullptr; } // It is possible that we already have a connection to the IP/port // pszDest resolved to. In that case, drop the connection that was // just created, and return the existing CNode instead. Also store // the name we used to connect in that CNode, so that future // FindNode() calls to that name catch this early. LOCK(cs_vNodes); CNode *pnode = FindNode(static_cast(addrConnect)); if (pnode) { pnode->MaybeSetAddrName(std::string(pszDest)); LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } } // Connect bool connected = false; SOCKET hSocket = INVALID_SOCKET; proxyType proxy; if (addrConnect.IsValid()) { bool proxyConnectionFailed = false; if (GetProxy(addrConnect.GetNetwork(), proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectThroughProxy( proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket, nConnectTimeout, &proxyConnectionFailed); } else { // no proxy needed (none set for target network) hSocket = CreateSocket(addrConnect); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectSocketDirectly(addrConnect, hSocket, nConnectTimeout); } if (!proxyConnectionFailed) { // If a connection to the node was attempted, and failure (if any) // is not caused by a problem connecting to the proxy, mark this as // an attempt. addrman.Attempt(addrConnect, fCountFailure); } } else if (pszDest && GetNameProxy(proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } std::string host; int port = default_port; SplitHostPort(std::string(pszDest), port, host); connected = ConnectThroughProxy(proxy, host, port, hSocket, nConnectTimeout, nullptr); } if (!connected) { CloseSocket(hSocket); return nullptr; } // Add node NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE) .Write(id) .Finalize(); CAddress addr_bind = GetBindAddress(hSocket); CNode *pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", false); pnode->AddRef(); return pnode; } void CConnman::DumpBanlist() { // Clean unused entries (if bantime has expired) SweepBanned(); if (!BannedSetIsDirty()) { return; } int64_t nStart = GetTimeMillis(); CBanDB bandb(config->GetChainParams()); banmap_t banmap; GetBanned(banmap); if (bandb.Write(banmap)) { SetBannedSetDirty(false); } LogPrint(BCLog::NET, "Flushed %d banned node ips/subnets to banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } void CNode::CloseSocketDisconnect() { fDisconnect = true; LOCK(cs_hSocket); if (hSocket != INVALID_SOCKET) { LogPrint(BCLog::NET, "disconnecting peer=%d\n", id); CloseSocket(hSocket); } } void CConnman::ClearBanned() { { LOCK(cs_setBanned); setBanned.clear(); setBannedIsDirty = true; } // Store banlist to disk. DumpBanlist(); if (clientInterface) { clientInterface->BannedListChanged(); } } bool CConnman::IsBanned(CNetAddr ip) { LOCK(cs_setBanned); for (const auto &it : setBanned) { CSubNet subNet = it.first; CBanEntry banEntry = it.second; if (subNet.Match(ip) && GetTime() < banEntry.nBanUntil) { return true; } } return false; } bool CConnman::IsBanned(CSubNet subnet) { LOCK(cs_setBanned); banmap_t::iterator i = setBanned.find(subnet); if (i != setBanned.end()) { CBanEntry banEntry = (*i).second; if (GetTime() < banEntry.nBanUntil) { return true; } } return false; } void CConnman::Ban(const CNetAddr &addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CSubNet subNet(addr); Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch); } void CConnman::Ban(const CSubNet &subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CBanEntry banEntry(GetTime()); banEntry.banReason = banReason; if (bantimeoffset <= 0) { bantimeoffset = gArgs.GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME); sinceUnixEpoch = false; } banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime()) + bantimeoffset; { LOCK(cs_setBanned); if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) { setBanned[subNet] = banEntry; setBannedIsDirty = true; } else { return; } } if (clientInterface) { clientInterface->BannedListChanged(); } { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) { pnode->fDisconnect = true; } } } if (banReason == BanReasonManuallyAdded) { // Store banlist to disk immediately if user requested ban. DumpBanlist(); } } bool CConnman::Unban(const CNetAddr &addr) { CSubNet subNet(addr); return Unban(subNet); } bool CConnman::Unban(const CSubNet &subNet) { { LOCK(cs_setBanned); if (!setBanned.erase(subNet)) { return false; } setBannedIsDirty = true; } if (clientInterface) { clientInterface->BannedListChanged(); } // Store banlist to disk immediately. DumpBanlist(); return true; } void CConnman::GetBanned(banmap_t &banMap) { LOCK(cs_setBanned); // Sweep the banlist so expired bans are not returned SweepBanned(); // Create a thread safe copy. banMap = setBanned; } void CConnman::SetBanned(const banmap_t &banMap) { LOCK(cs_setBanned); setBanned = banMap; setBannedIsDirty = true; } void CConnman::SweepBanned() { int64_t now = GetTime(); bool notifyUI = false; { LOCK(cs_setBanned); banmap_t::iterator it = setBanned.begin(); while (it != setBanned.end()) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if (now > banEntry.nBanUntil) { setBanned.erase(it++); setBannedIsDirty = true; notifyUI = true; LogPrint( BCLog::NET, "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString()); } else { ++it; } } } // update UI if (notifyUI && clientInterface) { clientInterface->BannedListChanged(); } } bool CConnman::BannedSetIsDirty() { LOCK(cs_setBanned); return setBannedIsDirty; } void CConnman::SetBannedSetDirty(bool dirty) { // Reuse setBanned lock for the isDirty flag. LOCK(cs_setBanned); setBannedIsDirty = dirty; } bool CConnman::IsWhitelistedRange(const CNetAddr &addr) { for (const CSubNet &subnet : vWhitelistedRange) { if (subnet.Match(addr)) { return true; } } return false; } std::string CNode::GetAddrName() const { LOCK(cs_addrName); return addrName; } void CNode::MaybeSetAddrName(const std::string &addrNameIn) { LOCK(cs_addrName); if (addrName.empty()) { addrName = addrNameIn; } } CService CNode::GetAddrLocal() const { LOCK(cs_addrLocal); return addrLocal; } void CNode::SetAddrLocal(const CService &addrLocalIn) { LOCK(cs_addrLocal); if (addrLocal.IsValid()) { error("Addr local already set for node: %i. Refusing to change from %s " "to %s", id, addrLocal.ToString(), addrLocalIn.ToString()); } else { addrLocal = addrLocalIn; } } void CNode::copyStats(CNodeStats &stats) { stats.nodeid = this->GetId(); stats.nServices = nServices; stats.addr = addr; stats.addrBind = addrBind; { LOCK(cs_filter); stats.fRelayTxes = fRelayTxes; } stats.nLastSend = nLastSend; stats.nLastRecv = nLastRecv; stats.nTimeConnected = nTimeConnected; stats.nTimeOffset = nTimeOffset; stats.addrName = GetAddrName(); stats.nVersion = nVersion; { LOCK(cs_SubVer); stats.cleanSubVer = cleanSubVer; } stats.fInbound = fInbound; stats.m_manual_connection = m_manual_connection; stats.nStartingHeight = nStartingHeight; { LOCK(cs_vSend); stats.mapSendBytesPerMsgCmd = mapSendBytesPerMsgCmd; stats.nSendBytes = nSendBytes; } { LOCK(cs_vRecv); stats.mapRecvBytesPerMsgCmd = mapRecvBytesPerMsgCmd; stats.nRecvBytes = nRecvBytes; } stats.fWhitelisted = fWhitelisted; // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. Merely reporting // pingtime might fool the caller into thinking the node was still // responsive, since pingtime does not update until the ping is complete, // which might take a while. So, if a ping is taking an unusually long time // in flight, the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds // (Bitcoin users should be well used to small numbers with many decimal // places by now :) stats.dPingTime = ((double(nPingUsecTime)) / 1e6); stats.dMinPing = ((double(nMinPingUsecTime)) / 1e6); stats.dPingWait = ((double(nPingUsecWait)) / 1e6); // Leave string empty if addrLocal invalid (not filled in yet) CService addrLocalUnlocked = GetAddrLocal(); stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : ""; } static bool IsOversizedMessage(const Config &config, const CNetMessage &msg) { if (!msg.in_data) { // Header only, cannot be oversized. return false; } return msg.hdr.IsOversized(config); } bool CNode::ReceiveMsgBytes(const Config &config, const char *pch, uint32_t nBytes, bool &complete) { complete = false; int64_t nTimeMicros = GetTimeMicros(); LOCK(cs_vRecv); nLastRecv = nTimeMicros / 1000000; nRecvBytes += nBytes; while (nBytes > 0) { // Get current incomplete message, or create a new one. if (vRecvMsg.empty() || vRecvMsg.back().complete()) { vRecvMsg.push_back(CNetMessage(config.GetChainParams().NetMagic(), SER_NETWORK, INIT_PROTO_VERSION)); } CNetMessage &msg = vRecvMsg.back(); // Absorb network data. int handled; if (!msg.in_data) { handled = msg.readHeader(config, pch, nBytes); } else { handled = msg.readData(pch, nBytes); } if (handled < 0) { return false; } if (IsOversizedMessage(config, msg)) { LogPrint(BCLog::NET, "Oversized message from peer=%i, disconnecting\n", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) { // Store received bytes per message command to prevent a memory DOS, // only allow valid commands. mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand.data()); if (i == mapRecvBytesPerMsgCmd.end()) { i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER); } assert(i != mapRecvBytesPerMsgCmd.end()); i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE; msg.nTime = nTimeMicros; complete = true; } } return true; } void CNode::SetSendVersion(int nVersionIn) { // Send version may only be changed in the version message, and only one // version message is allowed per session. We can therefore treat this value // as const and even atomic as long as it's only used once a version message // has been successfully processed. Any attempt to set this twice is an // error. if (nSendVersion != 0) { error("Send version already set for node: %i. Refusing to change from " "%i to %i", id, nSendVersion, nVersionIn); } else { nSendVersion = nVersionIn; } } int CNode::GetSendVersion() const { // The send version should always be explicitly set to INIT_PROTO_VERSION // rather than using this value until SetSendVersion has been called. if (nSendVersion == 0) { error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION); return INIT_PROTO_VERSION; } return nSendVersion; } int CNetMessage::readHeader(const Config &config, const char *pch, uint32_t nBytes) { // copy data to temporary parsing buffer uint32_t nRemaining = 24 - nHdrPos; uint32_t nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) { return nCopy; } // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception &) { return -1; } // Reject oversized messages if (hdr.IsOversized(config)) { LogPrint(BCLog::NET, "Oversized header detected\n"); return -1; } // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, uint32_t nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message // size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } hasher.Write((const uint8_t *)pch, nCopy); memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } const uint256 &CNetMessage::GetMessageHash() const { assert(complete()); if (data_hash.IsNull()) { hasher.Finalize(data_hash.begin()); } return data_hash; } // requires LOCK(cs_vSend) size_t CConnman::SocketSendData(CNode *pnode) const { AssertLockHeld(pnode->cs_vSend); size_t nSentSize = 0; size_t nMsgCount = 0; for (const auto &data : pnode->vSendMsg) { assert(data.size() > pnode->nSendOffset); int nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { break; } nBytes = send(pnode->hSocket, reinterpret_cast(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); } if (nBytes == 0) { // couldn't send anything at all break; } if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrintf("socket send error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } break; } assert(nBytes > 0); pnode->nLastSend = GetSystemTimeInSeconds(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; nSentSize += nBytes; if (pnode->nSendOffset != data.size()) { // could not send full message; stop sending more break; } pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize; nMsgCount++; } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), pnode->vSendMsg.begin() + nMsgCount); if (pnode->vSendMsg.empty()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } return nSentSize; } struct NodeEvictionCandidate { NodeId id; int64_t nTimeConnected; int64_t nMinPingUsecTime; int64_t nLastBlockTime; int64_t nLastTXTime; bool fRelevantServices; bool fRelayTxes; bool fBloomFilter; CAddress addr; uint64_t nKeyedNetGroup; }; static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nMinPingUsecTime > b.nMinPingUsecTime; } static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nTimeConnected > b.nTimeConnected; } static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nKeyedNetGroup < b.nKeyedNetGroup; } static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have many // peers which have not yet relayed a block. if (a.nLastBlockTime != b.nLastBlockTime) { return a.nLastBlockTime < b.nLastBlockTime; } if (a.fRelevantServices != b.fRelevantServices) { return b.fRelevantServices; } return a.nTimeConnected > b.nTimeConnected; } static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more // than a few peers that have not yet relayed txn. if (a.nLastTXTime != b.nLastTXTime) { return a.nLastTXTime < b.nLastTXTime; } if (a.fRelayTxes != b.fRelayTxes) { return b.fRelayTxes; } if (a.fBloomFilter != b.fBloomFilter) { return a.fBloomFilter; } return a.nTimeConnected > b.nTimeConnected; } //! Sort an array by the specified comparator, then erase the last K elements. template static void EraseLastKElements(std::vector &elements, Comparator comparator, size_t k) { std::sort(elements.begin(), elements.end(), comparator); size_t eraseSize = std::min(k, elements.size()); elements.erase(elements.end() - eraseSize, elements.end()); } /** * Try to find a connection to evict when the node is full. * Extreme care must be taken to avoid opening the node to attacker triggered * network partitioning. * The strategy used here is to protect a small number of peers for each of * several distinct characteristics which are difficult to forge. In order to * partition a node the attacker must be simultaneously better at all of them * than honest peers. */ bool CConnman::AttemptToEvictConnection() { std::vector vEvictionCandidates; { LOCK(cs_vNodes); for (CNode *node : vNodes) { if (node->fWhitelisted || !node->fInbound || node->fDisconnect) { continue; } NodeEvictionCandidate candidate = { node->GetId(), node->nTimeConnected, node->nMinPingUsecTime, node->nLastBlockTime, node->nLastTXTime, HasAllDesirableServiceFlags(node->nServices), node->fRelayTxes, node->pfilter != nullptr, node->addr, node->nKeyedNetGroup}; vEvictionCandidates.push_back(candidate); } } // Protect connections with certain characteristics // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4); // Protect the 8 nodes with the lowest minimum ping time. // An attacker cannot manipulate this metric without physically moving nodes // closer to the target. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8); // Protect 4 nodes that most recently sent us transactions. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4); // Protect 4 nodes that most recently sent us blocks. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4); // Protect the half of the remaining nodes which have been connected the // longest. This replicates the non-eviction implicit behavior, and // precludes attacks that start later. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected, vEvictionCandidates.size() / 2); if (vEvictionCandidates.empty()) { return false; } // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) uint64_t naMostConnections; unsigned int nMostConnections = 0; int64_t nMostConnectionsTime = 0; std::map> mapNetGroupNodes; for (const NodeEvictionCandidate &node : vEvictionCandidates) { std::vector &group = mapNetGroupNodes[node.nKeyedNetGroup]; group.push_back(node); int64_t grouptime = group[0].nTimeConnected; size_t group_size = group.size(); if (group_size > nMostConnections || (group_size == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = group_size; nMostConnectionsTime = grouptime; naMostConnections = node.nKeyedNetGroup; } } // Reduce to the network group with the most connections vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); // Disconnect from the network group with the most connections NodeId evicted = vEvictionCandidates.front().id; LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (pnode->GetId() == evicted) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::AcceptConnection(const ListenSocket &hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr *)&sockaddr, &len); CAddress addr; int nInbound = 0; int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler); if (hSocket != INVALID_SOCKET) { if (!addr.SetSockAddr((const struct sockaddr *)&sockaddr)) { LogPrintf("Warning: Unknown socket family\n"); } } bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr); { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->fInbound) { nInbound++; } } } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) { LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); } return; } if (!fNetworkActive) { LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString()); CloseSocket(hSocket); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted // sockets on all platforms. Set it again here just to be sure. SetSocketNoDelay(hSocket); if (IsBanned(addr) && !whitelisted) { LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); return; } if (nInbound >= nMaxInbound) { if (!AttemptToEvictConnection()) { // No connection to evict, disconnect the new connection LogPrint(BCLog::NET, "failed to find an eviction candidate - " "connection dropped (full)\n"); CloseSocket(hSocket); return; } } NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE) .Write(id) .Finalize(); CAddress addr_bind = GetBindAddress(hSocket); CNode *pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true); pnode->AddRef(); pnode->fWhitelisted = whitelisted; m_msgproc->InitializeNode(*config, pnode); LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString()); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::ThreadSocketHandler() { unsigned int nPrevNodeCount = 0; while (!interruptNet) { // // Disconnect nodes // { LOCK(cs_vNodes); if (!fNetworkActive) { // Disconnect any connected nodes for (CNode *pnode : vNodes) { if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId()); pnode->fDisconnect = true; } } } // Disconnect unused nodes std::vector vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { if (pnode->fDisconnect) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes std::list vNodesDisconnectedCopy = vNodesDisconnected; for (CNode *pnode : vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { fDelete = true; } } } if (fDelete) { vNodesDisconnected.remove(pnode); DeleteNode(pnode); } } } } size_t vNodesSize; { LOCK(cs_vNodes); vNodesSize = vNodes.size(); } if (vNodesSize != nPrevNodeCount) { nPrevNodeCount = vNodesSize; if (clientInterface) { clientInterface->NotifyNumConnectionsChanged(nPrevNodeCount); } } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; // Frequency to poll pnode->vSend timeout.tv_usec = 50000; fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; bool have_fds = false; for (const ListenSocket &hListenSocket : vhListenSocket) { FD_SET(hListenSocket.socket, &fdsetRecv); hSocketMax = std::max(hSocketMax, hListenSocket.socket); have_fds = true; } { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { // Implement the following logic: // * If there is data to send, select() for sending data. As // this only happens when optimistic write failed, we choose to // first drain the write buffer in this case before receiving // more. This avoids needlessly queueing received data, if the // remote peer is not themselves receiving data. This means // properly utilizing TCP flow control signalling. // * Otherwise, if there is space left in the receive buffer, // select() for receiving data. // * Hand off all complete messages to the processor, to be // handled without blocking here. bool select_recv = !pnode->fPauseRecv; bool select_send; { LOCK(pnode->cs_vSend); select_send = !pnode->vSendMsg.empty(); } LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } FD_SET(pnode->hSocket, &fdsetError); hSocketMax = std::max(hSocketMax, pnode->hSocket); have_fds = true; if (select_send) { FD_SET(pnode->hSocket, &fdsetSend); continue; } if (select_recv) { FD_SET(pnode->hSocket, &fdsetRecv); } } } int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); if (interruptNet) { return; } if (nSelect == SOCKET_ERROR) { if (have_fds) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) { FD_SET(i, &fdsetRecv); } } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); if (!interruptNet.sleep_for( std::chrono::milliseconds(timeout.tv_usec / 1000))) { return; } } // // Accept new connections // for (const ListenSocket &hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) { AcceptConnection(hListenSocket); } } // // Service each socket // std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { pnode->AddRef(); } } for (CNode *pnode : vNodesCopy) { if (interruptNet) { return; } // // Receive // bool recvSet = false; bool sendSet = false; bool errorSet = false; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } recvSet = FD_ISSET(pnode->hSocket, &fdsetRecv); sendSet = FD_ISSET(pnode->hSocket, &fdsetSend); errorSet = FD_ISSET(pnode->hSocket, &fdsetError); } if (recvSet || errorSet) { // typical socket buffer is 8K-64K char pchBuf[0x10000]; int32_t nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); } if (nBytes > 0) { bool notify = false; if (!pnode->ReceiveMsgBytes(*config, pchBuf, nBytes, notify)) { pnode->CloseSocketDisconnect(); } RecordBytesRecv(nBytes); if (notify) { size_t nSizeAdded = 0; auto it(pnode->vRecvMsg.begin()); for (; it != pnode->vRecvMsg.end(); ++it) { if (!it->complete()) { break; } nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE; } { LOCK(pnode->cs_vProcessMsg); pnode->vProcessMsg.splice( pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it); pnode->nProcessQueueSize += nSizeAdded; pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize; } WakeMessageHandler(); } } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "socket closed\n"); } pnode->CloseSocketDisconnect(); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) { LogPrintf("socket recv error %s\n", NetworkErrorString(nErr)); } pnode->CloseSocketDisconnect(); } } } // // Send // if (sendSet) { LOCK(pnode->cs_vSend); size_t nBytes = SocketSendData(pnode); if (nBytes) { RecordBytesSent(nBytes); } } // // Inactivity checking // int64_t nTime = GetSystemTimeInSeconds(); if (nTime - pnode->nTimeConnected > 60) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint(BCLog::NET, "socket no message in first 60 " "seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId()); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90 * 60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } else if (!pnode->fSuccessfullyConnected) { LogPrint(BCLog::NET, "version handshake timeout from %d\n", pnode->GetId()); pnode->fDisconnect = true; } } } { LOCK(cs_vNodes); for (CNode *pnode : vNodesCopy) { pnode->Release(); } } } } void CConnman::WakeMessageHandler() { { std::lock_guard lock(mutexMsgProc); fMsgProcWake = true; } condMsgProc.notify_one(); } #ifdef USE_UPNP static CThreadInterrupt g_upnp_interrupt; static std::thread g_upnp_thread; static void ThreadMapPort() { std::string port = strprintf("%u", GetListenPort()); const char *multicastif = nullptr; const char *minissdpdpath = nullptr; struct UPNPDev *devlist = nullptr; char lanaddr[64]; #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); #elif MINIUPNPC_API_VERSION < 14 /* miniupnpc 1.6 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); #else /* miniupnpc 1.9.20150730 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error); #endif struct UPNPUrls urls; struct IGDdatas data; int r; r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); if (r == 1) { if (fDiscover) { char externalIPAddress[40]; r = UPNP_GetExternalIPAddress( urls.controlURL, data.first.servicetype, externalIPAddress); if (r != UPNPCOMMAND_SUCCESS) { LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); } else { if (externalIPAddress[0]) { CNetAddr resolved; if (LookupHost(externalIPAddress, resolved, false)) { LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str()); AddLocal(resolved, LOCAL_UPNP); } } else { LogPrintf("UPnP: GetExternalIPAddress failed.\n"); } } } std::string strDesc = "Bitcoin " + FormatFullVersion(); do { #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); #else /* miniupnpc 1.6 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); #endif if (r != UPNPCOMMAND_SUCCESS) { LogPrintf( "AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r)); } else { LogPrintf("UPnP Port Mapping successful.\n"); } } while (g_upnp_interrupt.sleep_for(std::chrono::minutes(20))); r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r); freeUPNPDevlist(devlist); devlist = nullptr; FreeUPNPUrls(&urls); } else { LogPrintf("No valid UPnP IGDs found\n"); freeUPNPDevlist(devlist); devlist = nullptr; if (r != 0) { FreeUPNPUrls(&urls); } } } void StartMapPort() { if (!g_upnp_thread.joinable()) { assert(!g_upnp_interrupt); g_upnp_thread = std::thread( (std::bind(&TraceThread, "upnp", &ThreadMapPort))); } } void InterruptMapPort() { if (g_upnp_thread.joinable()) { g_upnp_interrupt(); } } void StopMapPort() { if (g_upnp_thread.joinable()) { g_upnp_thread.join(); g_upnp_interrupt.reset(); } } #else void StartMapPort() { // Intentionally left blank. } void InterruptMapPort() { // Intentionally left blank. } void StopMapPort() { // Intentionally left blank. } #endif static std::string GetDNSHost(const CDNSSeedData &data, ServiceFlags *requiredServiceBits) { // use default host for non-filter-capable seeds or if we use the default // service bits (NODE_NETWORK) if (!data.supportsServiceBitsFiltering || *requiredServiceBits == NODE_NETWORK) { *requiredServiceBits = NODE_NETWORK; return data.host; } // See chainparams.cpp, most dnsseeds only support one or two possible // servicebits hostnames return strprintf("x%x.%s", *requiredServiceBits, data.host); } void CConnman::ThreadDNSAddressSeed() { // goal: only query DNS seeds if address need is acute. // Avoiding DNS seeds when we don't need them improves user privacy by // creating fewer identifying DNS requests, reduces trust by giving seeds // less influence on the network topology, and reduces traffic to the seeds. if ((addrman.size() > 0) && (!gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) { if (!interruptNet.sleep_for(std::chrono::seconds(11))) { return; } LOCK(cs_vNodes); int nRelevant = 0; for (const CNode *pnode : vNodes) { nRelevant += pnode->fSuccessfullyConnected && !pnode->fFeeler && !pnode->fOneShot && !pnode->m_manual_connection && !pnode->fInbound; } if (nRelevant >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } } const std::vector &vSeeds = config->GetChainParams().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); for (const CDNSSeedData &seed : vSeeds) { if (HaveNameProxy()) { AddOneShot(seed.host); } else { std::vector vIPs; std::vector vAdd; ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE); std::string host = GetDNSHost(seed, &requiredServiceBits); CNetAddr resolveSource; if (!resolveSource.SetInternal(host)) { continue; } if (LookupHost(host.c_str(), vIPs, 0, true)) { for (const CNetAddr &ip : vIPs) { int nOneDay = 24 * 3600; CAddress addr = CAddress( CService(ip, config->GetChainParams().GetDefaultPort()), requiredServiceBits); // Use a random age between 3 and 7 days old. addr.nTime = GetTime() - 3 * nOneDay - GetRand(4 * nOneDay); vAdd.push_back(addr); found++; } addrman.Add(vAdd, resolveSource); } } } LogPrintf("%d addresses found from DNS seeds\n", found); } void CConnman::DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb(config->GetChainParams()); adb.Write(addrman); LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void CConnman::DumpData() { DumpAddresses(); DumpBanlist(); } void CConnman::ProcessOneShot() { std::string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) { return; } strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true); } } bool CConnman::GetTryNewOutboundPeer() { return m_try_another_outbound_peer; } void CConnman::SetTryNewOutboundPeer(bool flag) { m_try_another_outbound_peer = flag; LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false"); } // Return the number of peers we have over our outbound connection limit. // Exclude peers that are marked for disconnect, or are going to be disconnected // soon (eg one-shots and feelers). // Also exclude peers that haven't finished initial connection handshake yet (so // that we don't decide we're over our desired connection limit, and then evict // some peer that has finished the handshake). int CConnman::GetExtraOutboundCount() { int nOutbound = 0; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fInbound && !pnode->m_manual_connection && !pnode->fFeeler && !pnode->fDisconnect && !pnode->fOneShot && pnode->fSuccessfullyConnected) { ++nOutbound; } } } return std::max(nOutbound - nMaxOutbound, 0); } void CConnman::ThreadOpenConnections(const std::vector connect) { // Connect to specific addresses if (!connect.empty()) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); for (const std::string &strAddr : connect) { CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), false, false, true); for (int i = 0; i < 10 && i < nLoop; i++) { if (!interruptNet.sleep_for( std::chrono::milliseconds(500))) { return; } } } if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } } } // Initiate network connections int64_t nStart = GetTime(); // Minimum time before next feeler connection (in microseconds). int64_t nNextFeeler = PoissonNextSend(nStart * 1000 * 1000, FEELER_INTERVAL); while (!interruptNet) { ProcessOneShot(); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } CSemaphoreGrant grant(*semOutbound); if (interruptNet) { return; } // Add seed nodes if DNS seeds are all down (an infrastructure attack?). if (addrman.size() == 0 && (GetTime() - nStart > 60)) { static bool done = false; if (!done) { LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be " "available.\n"); CNetAddr local; local.SetInternal("fixedseeds"); addrman.Add(convertSeed6(config->GetChainParams().FixedSeeds()), local); done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). Do // this here so we don't have to critsect vNodes inside mapAddresses // critsect. int nOutbound = 0; std::set> setConnected; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fInbound && !pnode->m_manual_connection) { // Netgroups for inbound and addnode peers are not excluded // because our goal here is to not use multiple of our // limited outbound slots on a single netgroup but inbound // and addnode peers do not use our outbound slots. Inbound // peers also have the added issue that they're attacker // controlled and could be used to prevent us from // connecting to particular hosts if we used them here. setConnected.insert(pnode->addr.GetGroup()); nOutbound++; } } } // Feeler Connections // // Design goals: // * Increase the number of connectable addresses in the tried table. // // Method: // * Choose a random address from new and attempt to connect to it if // we can connect successfully it is added to tried. // * Start attempting feeler connections only after node finishes // making outbound connections. // * Only make a feeler connection once every few minutes. // bool fFeeler = false; if (nOutbound >= nMaxOutbound && !GetTryNewOutboundPeer()) { // The current time right now (in microseconds). int64_t nTime = GetTimeMicros(); if (nTime > nNextFeeler) { nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL); fFeeler = true; } else { continue; } } int64_t nANow = GetAdjustedTime(); int nTries = 0; while (!interruptNet) { CAddrInfo addr = addrman.Select(fFeeler); // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr)) { break; } // If we didn't find an appropriate destination after trying 100 // addresses fetched from addrman, stop this loop, and let the outer // loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman // addresses. nTries++; if (nTries > 100) { break; } if (IsLimited(addr)) { continue; } // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) { continue; } // for non-feelers, require all the services we'll want, // for feelers, only require they be a full node (only because most // SPV clients don't have a good address DB available) if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) { continue; } // do not allow non-default ports, unless after 50 invalid addresses // selected already. if (addr.GetPort() != config->GetChainParams().GetDefaultPort() && nTries < 50) { continue; } addrConnect = addr; break; } if (addrConnect.IsValid()) { if (fFeeler) { // Add small amount of random noise before connection to avoid // synchronization. int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); if (!interruptNet.sleep_for( std::chrono::milliseconds(randsleep))) { return; } LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString()); } OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, false, fFeeler); } } } std::vector CConnman::GetAddedNodeInfo() { std::vector ret; std::list lAddresses(0); { LOCK(cs_vAddedNodes); ret.reserve(vAddedNodes.size()); std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses)); } // Build a map of all already connected addresses (by IP:port and by name) // to inbound/outbound and resolved CService std::map mapConnected; std::map> mapConnectedByName; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->addr.IsValid()) { mapConnected[pnode->addr] = pnode->fInbound; } std::string addrName = pnode->GetAddrName(); if (!addrName.empty()) { mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast(pnode->addr)); } } } for (const std::string &strAddNode : lAddresses) { CService service( LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort())); AddedNodeInfo addedNode{strAddNode, CService(), false, false}; if (service.IsValid()) { // strAddNode is an IP:port auto it = mapConnected.find(service); if (it != mapConnected.end()) { addedNode.resolvedAddress = service; addedNode.fConnected = true; addedNode.fInbound = it->second; } } else { // strAddNode is a name auto it = mapConnectedByName.find(strAddNode); if (it != mapConnectedByName.end()) { addedNode.resolvedAddress = it->second.second; addedNode.fConnected = true; addedNode.fInbound = it->second.first; } } ret.emplace_back(std::move(addedNode)); } return ret; } void CConnman::ThreadOpenAddedConnections() { while (true) { CSemaphoreGrant grant(*semAddnode); std::vector vInfo = GetAddedNodeInfo(); bool tried = false; for (const AddedNodeInfo &info : vInfo) { if (!info.fConnected) { if (!grant.TryAcquire()) { // If we've used up our semaphore and need a new one, lets // not wait here since while we are waiting the // addednodeinfo state might change. break; } tried = true; CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), false, false, true); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } } } // Retry every 60 seconds if a connection was attempted, otherwise two // seconds. if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) { return; } } } // If successful, this moves the passed grant to the constructed node. void CConnman::OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool manual_connection) { // // Initiate outbound network connection // if (interruptNet) { return; } if (!fNetworkActive) { return; } if (!pszDest) { if (IsLocal(addrConnect) || FindNode((CNetAddr)addrConnect) || IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) { return; } } else if (FindNode(std::string(pszDest))) { return; } CNode *pnode = ConnectNode(addrConnect, pszDest, fCountFailure); if (!pnode) { return; } if (grantOutbound) { grantOutbound->MoveTo(pnode->grantOutbound); } if (fOneShot) { pnode->fOneShot = true; } if (fFeeler) { pnode->fFeeler = true; } if (manual_connection) { pnode->m_manual_connection = true; } m_msgproc->InitializeNode(*config, pnode); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::ThreadMessageHandler() { while (!flagInterruptMsgProc) { std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { pnode->AddRef(); } } bool fMoreWork = false; for (CNode *pnode : vNodesCopy) { if (pnode->fDisconnect) { continue; } // Receive messages bool fMoreNodeWork = m_msgproc->ProcessMessages( *config, pnode, flagInterruptMsgProc); fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend); if (flagInterruptMsgProc) { return; } // Send messages { LOCK(pnode->cs_sendProcessing); m_msgproc->SendMessages(*config, pnode, flagInterruptMsgProc); } if (flagInterruptMsgProc) { return; } } { LOCK(cs_vNodes); for (CNode *pnode : vNodesCopy) { pnode->Release(); } } std::unique_lock lock(mutexMsgProc); if (!fMoreWork) { condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this] { return fMsgProcWake; }); } fMsgProcWake = false; } } bool CConnman::BindListenPort(const CService &addrBind, std::string &strError, bool fWhitelisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr *)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = CreateSocket(addrBind); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming " "connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)); // Some systems don't have IPV6_V6ONLY but are always v6only; others do have // the option and enable it by default or not. Try to enable it, if // possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)); #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (sockopt_arg_type)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr *)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) { strError = strprintf(_("Unable to bind to %s on this computer. %s " "is probably already running."), addrBind.ToString(), _(PACKAGE_NAME)); } else { strError = strprintf(_("Unable to bind to %s on this computer " "(bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); } LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections " "failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) { AddLocal(addrBind, LOCAL_BIND); } return true; } void Discover() { if (!fDiscover) { return; } #ifdef WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { std::vector vaddr; if (LookupHost(pszHostName, vaddr, 0, true)) { for (const CNetAddr &addr : vaddr) { if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } } #else // Get local host ip struct ifaddrs *myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs *ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next) { if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0 || strcmp(ifa->ifa_name, "lo") == 0 || strcmp(ifa->ifa_name, "lo0") == 0) { continue; } if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in *s4 = (struct sockaddr_in *)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6 *s6 = (struct sockaddr_in6 *)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } } freeifaddrs(myaddrs); } #endif } void CConnman::SetNetworkActive(bool active) { LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active); if (fNetworkActive == active) { return; } fNetworkActive = active; uiInterface.NotifyNetworkActiveChanged(fNetworkActive); } CConnman::CConnman(const Config &configIn, uint64_t nSeed0In, uint64_t nSeed1In) : config(&configIn), nSeed0(nSeed0In), nSeed1(nSeed1In) { fNetworkActive = true; setBannedIsDirty = false; fAddressesInitialized = false; nLastNodeId = 0; nSendBufferMaxSize = 0; nReceiveFloodSize = 0; flagInterruptMsgProc = false; SetTryNewOutboundPeer(false); Options connOptions; Init(connOptions); } NodeId CConnman::GetNewNodeId() { return nLastNodeId.fetch_add(1, std::memory_order_relaxed); } bool CConnman::Bind(const CService &addr, unsigned int flags) { if (!(flags & BF_EXPLICIT) && IsLimited(addr)) { return false; } std::string strError; if (!BindListenPort(addr, strError, (flags & BF_WHITELIST) != 0)) { if ((flags & BF_REPORT_ERROR) && clientInterface) { clientInterface->ThreadSafeMessageBox( strError, "", CClientUIInterface::MSG_ERROR); } return false; } return true; } bool CConnman::InitBinds(const std::vector &binds, const std::vector &whiteBinds) { bool fBound = false; for (const auto &addrBind : binds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR)); } for (const auto &addrBind : whiteBinds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR | BF_WHITELIST)); } if (binds.empty() && whiteBinds.empty()) { struct in_addr inaddr_any; inaddr_any.s_addr = INADDR_ANY; struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT; fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE); fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE); } return fBound; } bool CConnman::Start(CScheduler &scheduler, const Options &connOptions) { Init(connOptions); nTotalBytesRecv = 0; nTotalBytesSent = 0; nMaxOutboundTotalBytesSentInCycle = 0; nMaxOutboundCycleStartTime = 0; if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Failed to listen on any port. Use -listen=0 if you want " "this."), "", CClientUIInterface::MSG_ERROR); } return false; } for (const auto &strDest : connOptions.vSeedNodes) { AddOneShot(strDest); } if (clientInterface) { clientInterface->InitMessage(_("Loading P2P addresses...")); } // Load addresses from peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb(config->GetChainParams()); if (adb.Read(addrman)) { LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } else { // Addrman can be in an inconsistent state after failure, reset it addrman.Clear(); LogPrintf("Invalid or missing peers.dat; recreating\n"); DumpAddresses(); } } if (clientInterface) { clientInterface->InitMessage(_("Loading banlist...")); } // Load addresses from banlist.dat nStart = GetTimeMillis(); CBanDB bandb(config->GetChainParams()); banmap_t banmap; if (bandb.Read(banmap)) { // thread save setter SetBanned(banmap); // no need to write down, just read data SetBannedSetDirty(false); // sweep out unused entries SweepBanned(); LogPrint(BCLog::NET, "Loaded %d banned node ips/subnets from banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } else { LogPrintf("Invalid or missing banlist.dat; recreating\n"); // force write SetBannedSetDirty(true); DumpBanlist(); } uiInterface.InitMessage(_("Starting network threads...")); fAddressesInitialized = true; if (semOutbound == nullptr) { // initialize semaphore semOutbound = std::unique_ptr(new CSemaphore( std::min((nMaxOutbound + nMaxFeeler), nMaxConnections))); } if (semAddnode == nullptr) { // initialize semaphore semAddnode = std::unique_ptr(new CSemaphore(nMaxAddnode)); } // // Start threads // assert(m_msgproc); InterruptSocks5(false); interruptNet.reset(); flagInterruptMsgProc = false; { std::unique_lock lock(mutexMsgProc); fMsgProcWake = false; } // Send and receive from sockets, accept connections threadSocketHandler = std::thread( &TraceThread>, "net", std::function(std::bind(&CConnman::ThreadSocketHandler, this))); if (!gArgs.GetBoolArg("-dnsseed", true)) { LogPrintf("DNS seeding disabled\n"); } else { threadDNSAddressSeed = std::thread(&TraceThread>, "dnsseed", std::function( std::bind(&CConnman::ThreadDNSAddressSeed, this))); } // Initiate outbound connections from -addnode threadOpenAddedConnections = std::thread(&TraceThread>, "addcon", std::function(std::bind( &CConnman::ThreadOpenAddedConnections, this))); if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Cannot provide specific connections and have addrman find " "outgoing connections at the same."), "", CClientUIInterface::MSG_ERROR); } return false; } if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) { threadOpenConnections = std::thread(&TraceThread>, "opencon", std::function( std::bind(&CConnman::ThreadOpenConnections, this, connOptions.m_specified_outgoing))); } // Process messages threadMessageHandler = std::thread(&TraceThread>, "msghand", std::function( std::bind(&CConnman::ThreadMessageHandler, this))); // Dump network addresses scheduler.scheduleEvery(std::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL * 1000); return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void CConnman::Interrupt() { { std::lock_guard lock(mutexMsgProc); flagInterruptMsgProc = true; } condMsgProc.notify_all(); interruptNet(); InterruptSocks5(true); if (semOutbound) { for (int i = 0; i < (nMaxOutbound + nMaxFeeler); i++) { semOutbound->post(); } } if (semAddnode) { for (int i = 0; i < nMaxAddnode; i++) { semAddnode->post(); } } } void CConnman::Stop() { if (threadMessageHandler.joinable()) { threadMessageHandler.join(); } if (threadOpenConnections.joinable()) { threadOpenConnections.join(); } if (threadOpenAddedConnections.joinable()) { threadOpenAddedConnections.join(); } if (threadDNSAddressSeed.joinable()) { threadDNSAddressSeed.join(); } if (threadSocketHandler.joinable()) { threadSocketHandler.join(); } if (fAddressesInitialized) { DumpData(); fAddressesInitialized = false; } // Close sockets for (CNode *pnode : vNodes) { pnode->CloseSocketDisconnect(); } for (ListenSocket &hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET) { if (!CloseSocket(hListenSocket.socket)) { LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); } } } // clean up some globals (to help leak detection) for (CNode *pnode : vNodes) { DeleteNode(pnode); } for (CNode *pnode : vNodesDisconnected) { DeleteNode(pnode); } vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); semOutbound.reset(); semAddnode.reset(); } void CConnman::DeleteNode(CNode *pnode) { assert(pnode); bool fUpdateConnectionTime = false; m_msgproc->FinalizeNode(*config, pnode->GetId(), fUpdateConnectionTime); if (fUpdateConnectionTime) { addrman.Connected(pnode->addr); } delete pnode; } CConnman::~CConnman() { Interrupt(); Stop(); } size_t CConnman::GetAddressCount() const { return addrman.size(); } void CConnman::SetServices(const CService &addr, ServiceFlags nServices) { addrman.SetServices(addr, nServices); } void CConnman::MarkAddressGood(const CAddress &addr) { addrman.Good(addr); } -void CConnman::AddNewAddress(const CAddress &addr, const CAddress &addrFrom, - int64_t nTimePenalty) { - addrman.Add(addr, addrFrom, nTimePenalty); -} - void CConnman::AddNewAddresses(const std::vector &vAddr, const CAddress &addrFrom, int64_t nTimePenalty) { addrman.Add(vAddr, addrFrom, nTimePenalty); } std::vector CConnman::GetAddresses() { return addrman.GetAddr(); } bool CConnman::AddNode(const std::string &strNode) { LOCK(cs_vAddedNodes); for (const std::string &it : vAddedNodes) { if (strNode == it) { return false; } } vAddedNodes.push_back(strNode); return true; } bool CConnman::RemoveAddedNode(const std::string &strNode) { LOCK(cs_vAddedNodes); for (std::vector::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { if (strNode == *it) { vAddedNodes.erase(it); return true; } } return false; } size_t CConnman::GetNodeCount(NumConnections flags) { LOCK(cs_vNodes); // Shortcut if we want total if (flags == CConnman::CONNECTIONS_ALL) { return vNodes.size(); } int nNum = 0; for (const auto &pnode : vNodes) { if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) { nNum++; } } return nNum; } void CConnman::GetNodeStats(std::vector &vstats) { vstats.clear(); LOCK(cs_vNodes); vstats.reserve(vNodes.size()); for (CNode *pnode : vNodes) { vstats.emplace_back(); pnode->copyStats(vstats.back()); } } bool CConnman::DisconnectNode(const std::string &strNode) { LOCK(cs_vNodes); if (CNode *pnode = FindNode(strNode)) { pnode->fDisconnect = true; return true; } return false; } bool CConnman::DisconnectNode(NodeId id) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (id == pnode->GetId()) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CConnman::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; uint64_t now = GetTime(); if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) { // timeframe expired, reset cycle nMaxOutboundCycleStartTime = now; nMaxOutboundTotalBytesSentInCycle = 0; } // TODO, exclude whitebind peers nMaxOutboundTotalBytesSentInCycle += bytes; } void CConnman::SetMaxOutboundTarget(uint64_t limit) { LOCK(cs_totalBytesSent); nMaxOutboundLimit = limit; } uint64_t CConnman::GetMaxOutboundTarget() { LOCK(cs_totalBytesSent); return nMaxOutboundLimit; } uint64_t CConnman::GetMaxOutboundTimeframe() { LOCK(cs_totalBytesSent); return nMaxOutboundTimeframe; } uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return 0; } if (nMaxOutboundCycleStartTime == 0) { return nMaxOutboundTimeframe; } uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe; uint64_t now = GetTime(); return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime(); } void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) { LOCK(cs_totalBytesSent); if (nMaxOutboundTimeframe != timeframe) { // reset measure-cycle in case of changing the timeframe. nMaxOutboundCycleStartTime = GetTime(); } nMaxOutboundTimeframe = timeframe; } bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return false; } if (historicalBlockServingLimit) { // keep a large enough buffer to at least relay each block once. uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle(); uint64_t buffer = timeLeftInCycle / 600 * ONE_MEGABYTE; if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) { return true; } } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) { return true; } return false; } uint64_t CConnman::GetOutboundTargetBytesLeft() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return 0; } return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle; } uint64_t CConnman::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CConnman::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } ServiceFlags CConnman::GetLocalServices() const { return nLocalServices; } void CConnman::SetBestHeight(int height) { nBestHeight.store(height, std::memory_order_release); } int CConnman::GetBestHeight() const { return nBestHeight.load(std::memory_order_acquire); } unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; } CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn, bool fInboundIn) : nTimeConnected(GetSystemTimeInSeconds()), addr(addrIn), addrBind(addrBindIn), fInbound(fInboundIn), nKeyedNetGroup(nKeyedNetGroupIn), addrKnown(5000, 0.001), filterInventoryKnown(50000, 0.000001), id(idIn), nLocalHostNonce(nLocalHostNonceIn), nLocalServices(nLocalServicesIn), nMyStartingHeight(nMyStartingHeightIn), nSendVersion(0) { nServices = NODE_NONE; hSocket = hSocketIn; nRecvVersion = INIT_PROTO_VERSION; nLastSend = 0; nLastRecv = 0; nSendBytes = 0; nRecvBytes = 0; nTimeOffset = 0; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; nVersion = 0; strSubVer = ""; fWhitelisted = false; fOneShot = false; m_manual_connection = false; // set by version message fClient = false; fFeeler = false; fSuccessfullyConnected = false; fDisconnect = false; nRefCount = 0; nSendSize = 0; nSendOffset = 0; hashContinue = uint256(); nStartingHeight = -1; filterInventoryKnown.reset(); fSendMempool = false; fGetAddr = false; nNextLocalAddrSend = 0; nNextAddrSend = 0; nNextInvSend = 0; fRelayTxes = false; fSentAddr = false; pfilter = std::unique_ptr(new CBloomFilter()); timeLastMempoolReq = 0; nLastBlockTime = 0; nLastTXTime = 0; nPingNonceSent = 0; nPingUsecStart = 0; nPingUsecTime = 0; fPingQueued = false; nMinPingUsecTime = std::numeric_limits::max(); minFeeFilter = Amount::zero(); lastSentFeeFilter = Amount::zero(); nextSendTimeFeeFilter = 0; fPauseRecv = false; fPauseSend = false; nProcessQueueSize = 0; for (const std::string &msg : getAllNetMessageTypes()) { mapRecvBytesPerMsgCmd[msg] = 0; } mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0; if (fLogIPs) { LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id); } else { LogPrint(BCLog::NET, "Added connection peer=%d\n", id); } } CNode::~CNode() { CloseSocket(hSocket); } void CNode::AskFor(const CInv &inv) { if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ) { return; } // a peer may not have multiple non-responded queue positions for a single // inv item. if (!setAskFor.insert(inv.hash).second) { return; } // We're using mapAskFor as a priority queue, the key is the earliest time // the request can be sent. int64_t nRequestTime; limitedmap::const_iterator it = mapAlreadyAskedFor.find(inv.hash); if (it != mapAlreadyAskedFor.end()) { nRequestTime = it->second; } else { nRequestTime = 0; } LogPrint(BCLog::NET, "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime / 1000000), id); // Make sure not to reuse time indexes to keep things in the same order int64_t nNow = GetTimeMicros() - 1000000; static int64_t nLastTime; ++nLastTime; nNow = std::max(nNow, nLastTime); nLastTime = nNow; // Each retry is 2 minutes after the last nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow); if (it != mapAlreadyAskedFor.end()) { mapAlreadyAskedFor.update(it, nRequestTime); } else { mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime)); } mapAskFor.insert(std::make_pair(nRequestTime, inv)); } bool CConnman::NodeFullyConnected(const CNode *pnode) { return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect; } void CConnman::PushMessage(CNode *pnode, CSerializedNetMsg &&msg) { size_t nMessageSize = msg.data.size(); size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE; LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command.c_str()), nMessageSize, pnode->GetId()); std::vector serializedHeader; serializedHeader.reserve(CMessageHeader::HEADER_SIZE); uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize); CMessageHeader hdr(config->GetChainParams().NetMagic(), msg.command.c_str(), nMessageSize); memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE); CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr}; size_t nBytesSent = 0; { LOCK(pnode->cs_vSend); bool optimisticSend(pnode->vSendMsg.empty()); // log total amount of bytes per command pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize; pnode->nSendSize += nTotalSize; if (pnode->nSendSize > nSendBufferMaxSize) { pnode->fPauseSend = true; } pnode->vSendMsg.push_back(std::move(serializedHeader)); if (nMessageSize) { pnode->vSendMsg.push_back(std::move(msg.data)); } // If write queue empty, attempt "optimistic write" if (optimisticSend == true) { nBytesSent = SocketSendData(pnode); } } if (nBytesSent) { RecordBytesSent(nBytesSent); } } bool CConnman::ForNode(NodeId id, std::function func) { CNode *found = nullptr; LOCK(cs_vNodes); for (auto &&pnode : vNodes) { if (pnode->GetId() == id) { found = pnode; break; } } return found != nullptr && NodeFullyConnected(found) && func(found); } int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) { return nNow + int64_t(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5); } CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const { return CSipHasher(nSeed0, nSeed1).Write(id); } uint64_t CConnman::CalculateKeyedNetGroup(const CAddress &ad) const { std::vector vchNetGroup(ad.GetGroup()); return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP) .Write(vchNetGroup.data(), vchNetGroup.size()) .Finalize(); } /** * This function convert MaxBlockSize from byte to * MB with a decimal precision one digit rounded down * E.g. * 1660000 -> 1.6 * 2010000 -> 2.0 * 1000000 -> 1.0 * 230000 -> 0.2 * 50000 -> 0.0 * * NB behavior for EB<1MB not standardized yet still * the function applies the same algo used for * EB greater or equal to 1MB */ std::string getSubVersionEB(uint64_t MaxBlockSize) { // Prepare EB string we are going to add to SubVer: // 1) translate from byte to MB and convert to string // 2) limit the EB string to the first decimal digit (floored) std::stringstream ebMBs; ebMBs << (MaxBlockSize / (ONE_MEGABYTE / 10)); std::string eb = ebMBs.str(); eb.insert(eb.size() - 1, ".", 1); if (eb.substr(0, 1) == ".") { eb = "0" + eb; } return eb; } std::string userAgent(const Config &config) { // format excessive blocksize value std::string eb = getSubVersionEB(config.GetMaxBlockSize()); std::vector uacomments; uacomments.push_back("EB" + eb); // sanitize comments per BIP-0014, format user agent and check total size for (const std::string &cmt : gArgs.GetArgs("-uacomment")) { if (cmt != SanitizeString(cmt, SAFE_CHARS_UA_COMMENT)) { LogPrintf( "User Agent comment (%s) contains unsafe characters. " "We are going to use a sanitize version of the comment.\n", cmt); } uacomments.push_back(cmt); } std::string subversion = FormatSubVersion(CLIENT_NAME, CLIENT_VERSION, uacomments); if (subversion.size() > MAX_SUBVERSION_LENGTH) { LogPrintf("Total length of network version string (%i) exceeds maximum " "length (%i). Reduce the number or size of uacomments. " "String has been resized to the max length allowed.\n", subversion.size(), MAX_SUBVERSION_LENGTH); subversion.resize(MAX_SUBVERSION_LENGTH - 2); subversion.append(")/"); LogPrintf("Current network string has been set to: %s\n", subversion); } return subversion; } diff --git a/src/net.h b/src/net.h index 988a159ea..c1ef6746c 100644 --- a/src/net.h +++ b/src/net.h @@ -1,853 +1,850 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Copyright (c) 2017 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NET_H #define BITCOIN_NET_H #include "addrdb.h" #include "addrman.h" #include "amount.h" #include "bloom.h" #include "chainparams.h" #include "compat.h" #include "hash.h" #include "limitedmap.h" #include "netaddress.h" #include "protocol.h" #include "random.h" #include "streams.h" #include "sync.h" #include "threadinterrupt.h" #include "uint256.h" #include #include #include #include #include #include #ifndef WIN32 #include #endif class Config; class CNode; class CScheduler; /** * Time between pings automatically sent out for latency probing and keepalive * (in seconds). */ static const int PING_INTERVAL = 2 * 60; /** * Time after which to disconnect, after waiting for a ping response (or * inactivity). */ static const int TIMEOUT_INTERVAL = 20 * 60; /** Run the feeler connection loop once every 2 minutes or 120 seconds. **/ static const int FEELER_INTERVAL = 120; /** The maximum number of entries in an 'inv' protocol message */ static const unsigned int MAX_INV_SZ = 50000; /** The maximum number of new addresses to accumulate before announcing. */ static const unsigned int MAX_ADDR_TO_SEND = 1000; /** Maximum length of strSubVer in `version` message */ static const unsigned int MAX_SUBVERSION_LENGTH = 256; /** Maximum number of automatic outgoing nodes */ static const int MAX_OUTBOUND_CONNECTIONS = 8; /** Maximum number of addnode outgoing nodes */ static const int MAX_ADDNODE_CONNECTIONS = 8; /** -listen default */ static const bool DEFAULT_LISTEN = true; /** -upnp default */ #ifdef USE_UPNP static const bool DEFAULT_UPNP = USE_UPNP; #else static const bool DEFAULT_UPNP = false; #endif /** The maximum number of entries in mapAskFor */ static const size_t MAPASKFOR_MAX_SZ = MAX_INV_SZ; /** The maximum number of entries in setAskFor (larger due to getdata latency)*/ static const size_t SETASKFOR_MAX_SZ = 2 * MAX_INV_SZ; /** The maximum number of peer connections to maintain. */ static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125; /** The default for -maxuploadtarget. 0 = Unlimited */ static const uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0; /** The default timeframe for -maxuploadtarget. 1 day. */ static const uint64_t MAX_UPLOAD_TIMEFRAME = 60 * 60 * 24; /** Default for blocks only*/ static const bool DEFAULT_BLOCKSONLY = false; static const bool DEFAULT_FORCEDNSSEED = false; static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000; static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000; // Default 24-hour ban. // NOTE: When adjusting this, update rpcnet:setban's help ("24h") static const unsigned int DEFAULT_MISBEHAVING_BANTIME = 60 * 60 * 24; typedef int64_t NodeId; struct AddedNodeInfo { std::string strAddedNode; CService resolvedAddress; bool fConnected; bool fInbound; }; class CNodeStats; class CClientUIInterface; struct CSerializedNetMsg { CSerializedNetMsg() = default; CSerializedNetMsg(CSerializedNetMsg &&) = default; CSerializedNetMsg &operator=(CSerializedNetMsg &&) = default; // No copying, only moves. CSerializedNetMsg(const CSerializedNetMsg &msg) = delete; CSerializedNetMsg &operator=(const CSerializedNetMsg &) = delete; std::vector data; std::string command; }; class NetEventsInterface; class CConnman { public: enum NumConnections { CONNECTIONS_NONE = 0, CONNECTIONS_IN = (1U << 0), CONNECTIONS_OUT = (1U << 1), CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT), }; struct Options { ServiceFlags nLocalServices = NODE_NONE; int nMaxConnections = 0; int nMaxOutbound = 0; int nMaxAddnode = 0; int nMaxFeeler = 0; int nBestHeight = 0; CClientUIInterface *uiInterface = nullptr; NetEventsInterface *m_msgproc = nullptr; unsigned int nSendBufferMaxSize = 0; unsigned int nReceiveFloodSize = 0; uint64_t nMaxOutboundTimeframe = 0; uint64_t nMaxOutboundLimit = 0; std::vector vSeedNodes; std::vector vWhitelistedRange; std::vector vBinds, vWhiteBinds; bool m_use_addrman_outgoing = true; std::vector m_specified_outgoing; std::vector m_added_nodes; }; void Init(const Options &connOptions) { nLocalServices = connOptions.nLocalServices; nMaxConnections = connOptions.nMaxConnections; nMaxOutbound = std::min(connOptions.nMaxOutbound, connOptions.nMaxConnections); nMaxAddnode = connOptions.nMaxAddnode; nMaxFeeler = connOptions.nMaxFeeler; nBestHeight = connOptions.nBestHeight; clientInterface = connOptions.uiInterface; m_msgproc = connOptions.m_msgproc; nSendBufferMaxSize = connOptions.nSendBufferMaxSize; nReceiveFloodSize = connOptions.nReceiveFloodSize; nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe; nMaxOutboundLimit = connOptions.nMaxOutboundLimit; vWhitelistedRange = connOptions.vWhitelistedRange; vAddedNodes = connOptions.m_added_nodes; } CConnman(const Config &configIn, uint64_t seed0, uint64_t seed1); ~CConnman(); bool Start(CScheduler &scheduler, const Options &options); void Stop(); void Interrupt(); bool GetNetworkActive() const { return fNetworkActive; }; void SetNetworkActive(bool active); void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound = nullptr, const char *strDest = nullptr, bool fOneShot = false, bool fFeeler = false, bool manual_connection = false); bool CheckIncomingNonce(uint64_t nonce); bool ForNode(NodeId id, std::function func); void PushMessage(CNode *pnode, CSerializedNetMsg &&msg); template void ForEachNode(Callable &&func) { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) func(node); } }; template void ForEachNode(Callable &&func) const { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) func(node); } }; template void ForEachNodeThen(Callable &&pre, CallableAfter &&post) { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) pre(node); } post(); }; template void ForEachNodeThen(Callable &&pre, CallableAfter &&post) const { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) pre(node); } post(); }; // Addrman functions size_t GetAddressCount() const; void SetServices(const CService &addr, ServiceFlags nServices); void MarkAddressGood(const CAddress &addr); - void AddNewAddress(const CAddress &addr, const CAddress &addrFrom, - int64_t nTimePenalty = 0); void AddNewAddresses(const std::vector &vAddr, const CAddress &addrFrom, int64_t nTimePenalty = 0); std::vector GetAddresses(); - void AddressCurrentlyConnected(const CService &addr); // Denial-of-service detection/prevention. The idea is to detect peers that // are behaving badly and disconnect/ban them, but do it in a // one-coding-mistake-won't-shatter-the-entire-network way. // IMPORTANT: There should be nothing I can give a node that it will forward // on that will make that node's peers drop it. If there is, an attacker can // isolate a node and/or try to split the network. Dropping a node for // sending stuff that is invalid now but might be valid in a later version // is also dangerous, because it can cause a network split between nodes // running old code and nodes running new code. void Ban(const CNetAddr &netAddr, const BanReason &reason, int64_t bantimeoffset = 0, bool sinceUnixEpoch = false); void Ban(const CSubNet &subNet, const BanReason &reason, int64_t bantimeoffset = 0, bool sinceUnixEpoch = false); // Needed for unit testing. void ClearBanned(); bool IsBanned(CNetAddr ip); bool IsBanned(CSubNet subnet); bool Unban(const CNetAddr &ip); bool Unban(const CSubNet &ip); void GetBanned(banmap_t &banmap); void SetBanned(const banmap_t &banmap); // This allows temporarily exceeding nMaxOutbound, with the goal of finding // a peer that is better than all our current peers. void SetTryNewOutboundPeer(bool flag); bool GetTryNewOutboundPeer(); // Return the number of outbound peers we have in excess of our target (eg, // if we previously called SetTryNewOutboundPeer(true), and have since set // to false, we may have extra peers that we wish to disconnect). This may // return a value less than (num_outbound_connections - num_outbound_slots) // in cases where some outbound connections are not yet fully connected, or // not yet fully disconnected. int GetExtraOutboundCount(); bool AddNode(const std::string &node); bool RemoveAddedNode(const std::string &node); std::vector GetAddedNodeInfo(); size_t GetNodeCount(NumConnections num); void GetNodeStats(std::vector &vstats); bool DisconnectNode(const std::string &node); bool DisconnectNode(NodeId id); ServiceFlags GetLocalServices() const; //! set the max outbound target in bytes. void SetMaxOutboundTarget(uint64_t limit); uint64_t GetMaxOutboundTarget(); //! set the timeframe for the max outbound target. void SetMaxOutboundTimeframe(uint64_t timeframe); uint64_t GetMaxOutboundTimeframe(); //! check if the outbound target is reached. // If param historicalBlockServingLimit is set true, the function will // response true if the limit for serving historical blocks has been // reached. bool OutboundTargetReached(bool historicalBlockServingLimit); //! response the bytes left in the current max outbound cycle // in case of no limit, it will always response 0 uint64_t GetOutboundTargetBytesLeft(); //! response the time in second left in the current max outbound cycle // in case of no limit, it will always response 0 uint64_t GetMaxOutboundTimeLeftInCycle(); uint64_t GetTotalBytesRecv(); uint64_t GetTotalBytesSent(); void SetBestHeight(int height); int GetBestHeight() const; /** Get a unique deterministic randomizer. */ CSipHasher GetDeterministicRandomizer(uint64_t id) const; unsigned int GetReceiveFloodSize() const; void WakeMessageHandler(); private: struct ListenSocket { SOCKET socket; bool whitelisted; ListenSocket(SOCKET socket_, bool whitelisted_) : socket(socket_), whitelisted(whitelisted_) {} }; bool BindListenPort(const CService &bindAddr, std::string &strError, bool fWhitelisted = false); bool Bind(const CService &addr, unsigned int flags); bool InitBinds(const std::vector &binds, const std::vector &whiteBinds); void ThreadOpenAddedConnections(); void AddOneShot(const std::string &strDest); void ProcessOneShot(); void ThreadOpenConnections(std::vector connect); void ThreadMessageHandler(); void AcceptConnection(const ListenSocket &hListenSocket); void ThreadSocketHandler(); void ThreadDNSAddressSeed(); uint64_t CalculateKeyedNetGroup(const CAddress &ad) const; CNode *FindNode(const CNetAddr &ip); CNode *FindNode(const CSubNet &subNet); CNode *FindNode(const std::string &addrName); CNode *FindNode(const CService &addr); bool AttemptToEvictConnection(); CNode *ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure); bool IsWhitelistedRange(const CNetAddr &addr); void DeleteNode(CNode *pnode); NodeId GetNewNodeId(); size_t SocketSendData(CNode *pnode) const; //! check is the banlist has unwritten changes bool BannedSetIsDirty(); //! set the "dirty" flag for the banlist void SetBannedSetDirty(bool dirty = true); //! clean unused entries (if bantime has expired) void SweepBanned(); void DumpAddresses(); void DumpData(); void DumpBanlist(); // Network stats void RecordBytesRecv(uint64_t bytes); void RecordBytesSent(uint64_t bytes); // Whether the node should be passed out in ForEach* callbacks static bool NodeFullyConnected(const CNode *pnode); const Config *config; // Network usage totals CCriticalSection cs_totalBytesRecv; CCriticalSection cs_totalBytesSent; uint64_t nTotalBytesRecv; uint64_t nTotalBytesSent; // outbound limit & stats uint64_t nMaxOutboundTotalBytesSentInCycle; uint64_t nMaxOutboundCycleStartTime; uint64_t nMaxOutboundLimit; uint64_t nMaxOutboundTimeframe; // Whitelisted ranges. Any node connecting from these is automatically // whitelisted (as well as those connecting to whitelisted binds). std::vector vWhitelistedRange; unsigned int nSendBufferMaxSize; unsigned int nReceiveFloodSize; std::vector vhListenSocket; std::atomic fNetworkActive; banmap_t setBanned; CCriticalSection cs_setBanned; bool setBannedIsDirty; bool fAddressesInitialized; CAddrMan addrman; std::deque vOneShots; CCriticalSection cs_vOneShots; std::vector vAddedNodes; CCriticalSection cs_vAddedNodes; std::vector vNodes; std::list vNodesDisconnected; mutable CCriticalSection cs_vNodes; std::atomic nLastNodeId; /** Services this instance offers */ ServiceFlags nLocalServices; std::unique_ptr semOutbound; std::unique_ptr semAddnode; int nMaxConnections; int nMaxOutbound; int nMaxAddnode; int nMaxFeeler; std::atomic nBestHeight; CClientUIInterface *clientInterface; NetEventsInterface *m_msgproc; /** SipHasher seeds for deterministic randomness */ const uint64_t nSeed0, nSeed1; /** flag for waking the message processor. */ bool fMsgProcWake; std::condition_variable condMsgProc; std::mutex mutexMsgProc; std::atomic flagInterruptMsgProc; CThreadInterrupt interruptNet; std::thread threadDNSAddressSeed; std::thread threadSocketHandler; std::thread threadOpenAddedConnections; std::thread threadOpenConnections; std::thread threadMessageHandler; /** * Flag for deciding to connect to an extra outbound peer, in excess of * nMaxOutbound. * This takes the place of a feeler connection. */ std::atomic_bool m_try_another_outbound_peer; friend struct CConnmanTest; }; extern std::unique_ptr g_connman; void Discover(); void StartMapPort(); void InterruptMapPort(); void StopMapPort(); unsigned short GetListenPort(); bool BindListenPort(const CService &bindAddr, std::string &strError, bool fWhitelisted = false); /** * Interface for message handling */ class NetEventsInterface { public: virtual bool ProcessMessages(const Config &config, CNode *pnode, std::atomic &interrupt) = 0; virtual bool SendMessages(const Config &config, CNode *pnode, std::atomic &interrupt) = 0; virtual void InitializeNode(const Config &config, CNode *pnode) = 0; virtual void FinalizeNode(const Config &config, NodeId id, bool &update_connection_time) = 0; protected: /** * Protected destructor so that instances can only be deleted by derived * classes. If that restriction is no longer desired, this should be made * public and virtual. */ ~NetEventsInterface() = default; }; enum { // unknown LOCAL_NONE, // address a local interface listens on LOCAL_IF, // address explicit bound to LOCAL_BIND, // address reported by UPnP LOCAL_UPNP, // address explicitly specified (-externalip=) LOCAL_MANUAL, LOCAL_MAX }; bool IsPeerAddrLocalGood(CNode *pnode); void AdvertiseLocal(CNode *pnode); void SetLimited(enum Network net, bool fLimited = true); bool IsLimited(enum Network net); bool IsLimited(const CNetAddr &addr); bool AddLocal(const CService &addr, int nScore = LOCAL_NONE); bool AddLocal(const CNetAddr &addr, int nScore = LOCAL_NONE); void RemoveLocal(const CService &addr); bool SeenLocal(const CService &addr); bool IsLocal(const CService &addr); bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr); bool IsReachable(enum Network net); bool IsReachable(const CNetAddr &addr); CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices); extern bool fDiscover; extern bool fListen; extern bool fRelayTxes; extern limitedmap mapAlreadyAskedFor; struct LocalServiceInfo { int nScore; int nPort; }; extern CCriticalSection cs_mapLocalHost; extern std::map mapLocalHost; // Command, total bytes typedef std::map mapMsgCmdSize; class CNodeStats { public: NodeId nodeid; ServiceFlags nServices; bool fRelayTxes; int64_t nLastSend; int64_t nLastRecv; int64_t nTimeConnected; int64_t nTimeOffset; std::string addrName; int nVersion; std::string cleanSubVer; bool fInbound; bool m_manual_connection; int nStartingHeight; uint64_t nSendBytes; mapMsgCmdSize mapSendBytesPerMsgCmd; uint64_t nRecvBytes; mapMsgCmdSize mapRecvBytesPerMsgCmd; bool fWhitelisted; double dPingTime; double dPingWait; double dMinPing; // Our address, as reported by the peer std::string addrLocal; // Address of this peer CAddress addr; // Bind address of our side of the connection CAddress addrBind; }; class CNetMessage { private: mutable CHash256 hasher; mutable uint256 data_hash; public: // Parsing header (false) or data (true) bool in_data; // Partially received header. CDataStream hdrbuf; // Complete header. CMessageHeader hdr; uint32_t nHdrPos; // Received message data. CDataStream vRecv; uint32_t nDataPos; // Time (in microseconds) of message receipt. int64_t nTime; CNetMessage(const CMessageHeader::MessageMagic &pchMessageStartIn, int nTypeIn, int nVersionIn) : hdrbuf(nTypeIn, nVersionIn), hdr(pchMessageStartIn), vRecv(nTypeIn, nVersionIn) { hdrbuf.resize(24); in_data = false; nHdrPos = 0; nDataPos = 0; nTime = 0; } bool complete() const { if (!in_data) { return false; } return (hdr.nMessageSize == nDataPos); } const uint256 &GetMessageHash() const; void SetVersion(int nVersionIn) { hdrbuf.SetVersion(nVersionIn); vRecv.SetVersion(nVersionIn); } int readHeader(const Config &config, const char *pch, uint32_t nBytes); int readData(const char *pch, uint32_t nBytes); }; /** Information about a peer */ class CNode { friend class CConnman; public: // socket std::atomic nServices; SOCKET hSocket; // Total size of all vSendMsg entries. size_t nSendSize; // Offset inside the first vSendMsg already sent. size_t nSendOffset; uint64_t nSendBytes; std::deque> vSendMsg; CCriticalSection cs_vSend; CCriticalSection cs_hSocket; CCriticalSection cs_vRecv; CCriticalSection cs_vProcessMsg; std::list vProcessMsg; size_t nProcessQueueSize; CCriticalSection cs_sendProcessing; std::deque vRecvGetData; uint64_t nRecvBytes; std::atomic nRecvVersion; std::atomic nLastSend; std::atomic nLastRecv; const int64_t nTimeConnected; std::atomic nTimeOffset; // Address of this peer const CAddress addr; // Bind address of our side of the connection const CAddress addrBind; std::atomic nVersion; // strSubVer is whatever byte array we read from the wire. However, this // field is intended to be printed out, displayed to humans in various forms // and so on. So we sanitize it and store the sanitized version in // cleanSubVer. The original should be used when dealing with the network or // wire types and the cleaned string used when displayed or logged. std::string strSubVer, cleanSubVer; // Used for both cleanSubVer and strSubVer. CCriticalSection cs_SubVer; // This peer can bypass DoS banning. bool fWhitelisted; // If true this node is being used as a short lived feeler. bool fFeeler; bool fOneShot; bool m_manual_connection; bool fClient; const bool fInbound; std::atomic_bool fSuccessfullyConnected; std::atomic_bool fDisconnect; // We use fRelayTxes for two purposes - // a) it allows us to not relay tx invs before receiving the peer's version // message. // b) the peer may tell us in its version message that we should not relay // tx invs unless it loads a bloom filter. // protected by cs_filter bool fRelayTxes; bool fSentAddr; CSemaphoreGrant grantOutbound; CCriticalSection cs_filter; std::unique_ptr pfilter; std::atomic nRefCount; const uint64_t nKeyedNetGroup; std::atomic_bool fPauseRecv; std::atomic_bool fPauseSend; protected: mapMsgCmdSize mapSendBytesPerMsgCmd; mapMsgCmdSize mapRecvBytesPerMsgCmd; public: uint256 hashContinue; std::atomic nStartingHeight; // flood relay std::vector vAddrToSend; CRollingBloomFilter addrKnown; bool fGetAddr; std::set setKnown; int64_t nNextAddrSend; int64_t nNextLocalAddrSend; // Inventory based relay. CRollingBloomFilter filterInventoryKnown; // Set of transaction ids we still have to announce. They are sorted by the // mempool before relay, so the order is not important. std::set setInventoryTxToSend; // List of block ids we still have announce. There is no final sorting // before sending, as they are always sent immediately and in the order // requested. std::vector vInventoryBlockToSend; CCriticalSection cs_inventory; std::set setAskFor; std::multimap mapAskFor; int64_t nNextInvSend; // Used for headers announcements - unfiltered blocks to relay. Also // protected by cs_inventory. std::vector vBlockHashesToAnnounce; // Used for BIP35 mempool sending, also protected by cs_inventory. bool fSendMempool; // Last time a "MEMPOOL" request was serviced. std::atomic timeLastMempoolReq; // Block and TXN accept times std::atomic nLastBlockTime; std::atomic nLastTXTime; // Ping time measurement: // The pong reply we're expecting, or 0 if no pong expected. std::atomic nPingNonceSent; // Time (in usec) the last ping was sent, or 0 if no ping was ever sent. std::atomic nPingUsecStart; // Last measured round-trip time. std::atomic nPingUsecTime; // Best measured round-trip time. std::atomic nMinPingUsecTime; // Whether a ping is requested. std::atomic fPingQueued; // Minimum fee rate with which to filter inv's to this node Amount minFeeFilter; CCriticalSection cs_feeFilter; Amount lastSentFeeFilter; int64_t nextSendTimeFeeFilter; CNode(NodeId id, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn = "", bool fInboundIn = false); ~CNode(); private: CNode(const CNode &); void operator=(const CNode &); const NodeId id; const uint64_t nLocalHostNonce; // Services offered to this peer const ServiceFlags nLocalServices; const int nMyStartingHeight; int nSendVersion; // Used only by SocketHandler thread. std::list vRecvMsg; mutable CCriticalSection cs_addrName; std::string addrName; // Our address, as reported by the peer CService addrLocal; mutable CCriticalSection cs_addrLocal; public: NodeId GetId() const { return id; } uint64_t GetLocalNonce() const { return nLocalHostNonce; } int GetMyStartingHeight() const { return nMyStartingHeight; } int GetRefCount() const { assert(nRefCount >= 0); return nRefCount; } bool ReceiveMsgBytes(const Config &config, const char *pch, uint32_t nBytes, bool &complete); void SetRecvVersion(int nVersionIn) { nRecvVersion = nVersionIn; } int GetRecvVersion() const { return nRecvVersion; } void SetSendVersion(int nVersionIn); int GetSendVersion() const; CService GetAddrLocal() const; //! May not be called more than once void SetAddrLocal(const CService &addrLocalIn); CNode *AddRef() { nRefCount++; return this; } void Release() { nRefCount--; } void AddAddressKnown(const CAddress &_addr) { addrKnown.insert(_addr.GetKey()); } void PushAddress(const CAddress &_addr, FastRandomContext &insecure_rand) { // Known checking here is only to save space from duplicates. // SendMessages will filter it again for knowns that were added // after addresses were pushed. if (_addr.IsValid() && !addrKnown.contains(_addr.GetKey())) { if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) { vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] = _addr; } else { vAddrToSend.push_back(_addr); } } } void AddInventoryKnown(const CInv &inv) { LOCK(cs_inventory); filterInventoryKnown.insert(inv.hash); } void PushInventory(const CInv &inv) { LOCK(cs_inventory); if (inv.type == MSG_TX) { if (!filterInventoryKnown.contains(inv.hash)) { setInventoryTxToSend.insert(inv.hash); } } else if (inv.type == MSG_BLOCK) { vInventoryBlockToSend.push_back(inv.hash); } } void PushBlockHash(const uint256 &hash) { LOCK(cs_inventory); vBlockHashesToAnnounce.push_back(hash); } void AskFor(const CInv &inv); void CloseSocketDisconnect(); void copyStats(CNodeStats &stats); ServiceFlags GetLocalServices() const { return nLocalServices; } std::string GetAddrName() const; //! Sets the addrName only if it was not previously set void MaybeSetAddrName(const std::string &addrNameIn); }; /** * Return a timestamp in the future (in microseconds) for exponentially * distributed events. */ int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds); std::string getSubVersionEB(uint64_t MaxBlockSize); std::string userAgent(const Config &config); #endif // BITCOIN_NET_H diff --git a/src/rpc/server.h b/src/rpc/server.h index 694dd59ec..b90a0f703 100644 --- a/src/rpc/server.h +++ b/src/rpc/server.h @@ -1,281 +1,280 @@ // Copyright (c) 2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Copyright (c) 2017-2018 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_RPC_SERVER_H #define BITCOIN_RPC_SERVER_H #include "amount.h" #include "rpc/jsonrpcrequest.h" #include "rpc/protocol.h" #include "uint256.h" #include #include #include #include #include #include #include static const unsigned int DEFAULT_RPC_SERIALIZE_VERSION = 1; class ContextFreeRPCCommand; namespace RPCServerSignals { void OnStarted(std::function slot); void OnStopped(std::function slot); void OnPreCommand(std::function slot); -void OnPostCommand(std::function slot); } // namespace RPCServerSignals class CBlockIndex; class Config; class CNetAddr; /** * Wrapper for UniValue::VType, which includes typeAny: used to denote don't * care type. Only used by RPCTypeCheckObj. */ struct UniValueType { UniValueType(UniValue::VType _type) : typeAny(false), type(_type) {} UniValueType() : typeAny(true) {} bool typeAny; UniValue::VType type; }; /** * Class for registering and managing all RPC calls. */ class RPCServer : public boost::noncopyable { public: RPCServer() {} /** * Attempts to execute an RPC command from the given request. * If no RPC command exists that matches the request, an error is returned. */ UniValue ExecuteCommand(Config &config, const JSONRPCRequest &request) const; }; /** * Query whether RPC is running */ bool IsRPCRunning(); /** * Set the RPC warmup status. When this is done, all RPC calls will error out * immediately with RPC_IN_WARMUP. */ void SetRPCWarmupStatus(const std::string &newStatus); /** * Mark warmup as done. RPC calls will be processed from now on. */ void SetRPCWarmupFinished(); /** * Returns the current warmup state */ bool RPCIsInWarmup(std::string *statusOut); /** * Type-check arguments; throws JSONRPCError if wrong type given. Does not check * that the right number of arguments are passed, just that any passed are the * correct type. */ void RPCTypeCheck(const UniValue ¶ms, const std::list &typesExpected, bool fAllowNull = false); /** * Type-check one argument; throws JSONRPCError if wrong type given. */ void RPCTypeCheckArgument(const UniValue &value, UniValue::VType typeExpected); /** * Check for expected keys/value types in an Object. */ void RPCTypeCheckObj(const UniValue &o, const std::map &typesExpected, bool fAllowNull = false, bool fStrict = false); /** * Opaque base class for timers returned by NewTimerFunc. * This provides no methods at the moment, but makes sure that delete cleans up * the whole state. */ class RPCTimerBase { public: virtual ~RPCTimerBase() {} }; /** * RPC timer "driver". */ class RPCTimerInterface { public: virtual ~RPCTimerInterface() {} /** * Implementation name */ virtual const char *Name() = 0; /** * Factory function for timers. * RPC will call the function to create a timer that will call func in * *millis* milliseconds. * @note As the RPC mechanism is backend-neutral, it can use different * implementations of timers. * This is needed to cope with the case in which there is no HTTP server, * but only GUI RPC console, and to break the dependency of pcserver on * httprpc. */ virtual RPCTimerBase *NewTimer(std::function &func, int64_t millis) = 0; }; /** * Set the factory function for timers */ void RPCSetTimerInterface(RPCTimerInterface *iface); /** * Set the factory function for timer, but only, if unset */ void RPCSetTimerInterfaceIfUnset(RPCTimerInterface *iface); /** * Unset factory function for timers */ void RPCUnsetTimerInterface(RPCTimerInterface *iface); /** * Run func nSeconds from now. * Overrides previous timer (if any). */ void RPCRunLater(const std::string &name, std::function func, int64_t nSeconds); typedef UniValue (*rpcfn_type)(Config &config, const JSONRPCRequest &jsonRequest); typedef UniValue (*const_rpcfn_type)(const Config &config, const JSONRPCRequest &jsonRequest); class ContextFreeRPCCommand { public: std::string category; std::string name; bool okSafeMode; private: union { rpcfn_type fn; const_rpcfn_type cfn; } actor; bool useConstConfig; public: std::vector argNames; ContextFreeRPCCommand(std::string _category, std::string _name, rpcfn_type _actor, bool _okSafeMode, std::vector _argNames) : category{std::move(_category)}, name{std::move(_name)}, okSafeMode{_okSafeMode}, useConstConfig{false}, argNames{std::move( _argNames)} { actor.fn = _actor; } /** * There are 2 constructors depending Config is const or not, so we * can call the command through the proper pointer. Casting constness * on parameters of function is undefined behavior. */ ContextFreeRPCCommand(std::string _category, std::string _name, const_rpcfn_type _actor, bool _okSafeMode, std::vector _argNames) : category{std::move(_category)}, name{std::move(_name)}, okSafeMode{_okSafeMode}, useConstConfig{true}, argNames{std::move( _argNames)} { actor.cfn = _actor; } UniValue call(Config &config, const JSONRPCRequest &jsonRequest) const { return useConstConfig ? (*actor.cfn)(config, jsonRequest) : (*actor.fn)(config, jsonRequest); }; }; /** * Bitcoin RPC command dispatcher. */ class CRPCTable { private: std::map mapCommands; public: CRPCTable(); const ContextFreeRPCCommand *operator[](const std::string &name) const; std::string help(Config &config, const std::string &name, const JSONRPCRequest &helpreq) const; /** * Execute a method. * @param request The JSONRPCRequest to execute * @returns Result of the call. * @throws an exception (UniValue) when an error happens. */ UniValue execute(Config &config, const JSONRPCRequest &request) const; /** * Returns a list of registered commands * @returns List of registered commands. */ std::vector listCommands() const; /** * Appends a ContextFreeRPCCommand to the dispatch table. * Returns false if RPC server is already running (dump concurrency * protection). * Commands cannot be overwritten (returns false). */ bool appendCommand(const std::string &name, const ContextFreeRPCCommand *pcmd); }; extern CRPCTable tableRPC; /** * Utilities: convert hex-encoded values (throws error if not hex). */ extern uint256 ParseHashV(const UniValue &v, std::string strName); extern uint256 ParseHashO(const UniValue &o, std::string strKey); extern std::vector ParseHexV(const UniValue &v, std::string strName); extern std::vector ParseHexO(const UniValue &o, std::string strKey); extern Amount AmountFromValue(const UniValue &value); extern UniValue ValueFromAmount(const Amount amount); extern std::string HelpExampleCli(const std::string &methodname, const std::string &args); extern std::string HelpExampleRpc(const std::string &methodname, const std::string &args); bool StartRPC(); void InterruptRPC(); void StopRPC(); std::string JSONRPCExecBatch(Config &config, RPCServer &rpcServer, const JSONRPCRequest &req, const UniValue &vReq); void RPCNotifyBlockChange(bool ibd, const CBlockIndex *); /** * Retrieves any serialization flags requested in command line argument */ int RPCSerializationFlags(); #endif // BITCOIN_RPC_SERVER_H diff --git a/src/sync.cpp b/src/sync.cpp index 5667f5a18..f163dee8c 100644 --- a/src/sync.cpp +++ b/src/sync.cpp @@ -1,182 +1,180 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "sync.h" #include "util.h" #include "utilstrencodings.h" #include #include #ifdef DEBUG_LOCKCONTENTION void PrintLockContention(const char *pszName, const char *pszFile, int nLine) { LogPrintf("LOCKCONTENTION: %s\n", pszName); LogPrintf("Locker: %s:%d\n", pszFile, nLine); } #endif /* DEBUG_LOCKCONTENTION */ #ifdef DEBUG_LOCKORDER // // Early deadlock detection. // Problem being solved: // Thread 1 locks A, then B, then C // Thread 2 locks D, then C, then A // --> may result in deadlock between the two threads, depending on when // they run. // Solution implemented here: // Keep track of pairs of locks: (A before B), (A before C), etc. // Complain if any thread tries to lock in a different order. // struct CLockLocation { CLockLocation(const char *pszName, const char *pszFile, int nLine, bool fTryIn) { mutexName = pszName; sourceFile = pszFile; sourceLine = nLine; fTry = fTryIn; } std::string ToString() const { return mutexName + " " + sourceFile + ":" + itostr(sourceLine) + (fTry ? " (TRY)" : ""); } - std::string MutexName() const { return mutexName; } - bool fTry; private: std::string mutexName; std::string sourceFile; int sourceLine; }; typedef std::vector> LockStack; typedef std::map, LockStack> LockOrders; typedef std::set> InvLockOrders; struct LockData { // Very ugly hack: as the global constructs and destructors run single // threaded, we use this boolean to know whether LockData still exists, // as DeleteLock can get called by global CCriticalSection destructors // after LockData disappears. bool available; LockData() : available(true) {} ~LockData() { available = false; } LockOrders lockorders; InvLockOrders invlockorders; boost::mutex dd_mutex; } static lockdata; boost::thread_specific_ptr lockstack; static void potential_deadlock_detected(const std::pair &mismatch, const LockStack &s1, const LockStack &s2) { LogPrintf("POTENTIAL DEADLOCK DETECTED\n"); LogPrintf("Previous lock order was:\n"); for (const std::pair &i : s2) { if (i.first == mismatch.first) { LogPrintf(" (1)"); } if (i.first == mismatch.second) { LogPrintf(" (2)"); } LogPrintf(" %s\n", i.second.ToString()); } LogPrintf("Current lock order is:\n"); for (const std::pair &i : s1) { if (i.first == mismatch.first) { LogPrintf(" (1)"); } if (i.first == mismatch.second) { LogPrintf(" (2)"); } LogPrintf(" %s\n", i.second.ToString()); } assert(false); } static void push_lock(void *c, const CLockLocation &locklocation, bool fTry) { if (lockstack.get() == nullptr) lockstack.reset(new LockStack); boost::unique_lock lock(lockdata.dd_mutex); (*lockstack).push_back(std::make_pair(c, locklocation)); for (const std::pair &i : (*lockstack)) { if (i.first == c) break; std::pair p1 = std::make_pair(i.first, c); if (lockdata.lockorders.count(p1)) continue; lockdata.lockorders[p1] = (*lockstack); std::pair p2 = std::make_pair(c, i.first); lockdata.invlockorders.insert(p2); if (lockdata.lockorders.count(p2)) potential_deadlock_detected(p1, lockdata.lockorders[p2], lockdata.lockorders[p1]); } } static void pop_lock() { (*lockstack).pop_back(); } void EnterCritical(const char *pszName, const char *pszFile, int nLine, void *cs, bool fTry) { push_lock(cs, CLockLocation(pszName, pszFile, nLine, fTry), fTry); } void LeaveCritical() { pop_lock(); } std::string LocksHeld() { std::string result; for (const std::pair &i : *lockstack) { result += i.second.ToString() + std::string("\n"); } return result; } void AssertLockHeldInternal(const char *pszName, const char *pszFile, int nLine, void *cs) { for (const std::pair &i : *lockstack) { if (i.first == cs) return; } fprintf(stderr, "Assertion failed: lock %s not held in %s:%i; locks held:\n%s", pszName, pszFile, nLine, LocksHeld().c_str()); abort(); } void DeleteLock(void *cs) { if (!lockdata.available) { // We're already shutting down. return; } boost::unique_lock lock(lockdata.dd_mutex); std::pair item = std::make_pair(cs, (void *)0); LockOrders::iterator it = lockdata.lockorders.lower_bound(item); while (it != lockdata.lockorders.end() && it->first.first == cs) { std::pair invitem = std::make_pair(it->first.second, it->first.first); lockdata.invlockorders.erase(invitem); lockdata.lockorders.erase(it++); } InvLockOrders::iterator invit = lockdata.invlockorders.lower_bound(item); while (invit != lockdata.invlockorders.end() && invit->first == cs) { std::pair invinvitem = std::make_pair(invit->second, invit->first); lockdata.lockorders.erase(invinvitem); lockdata.invlockorders.erase(invit++); } } #endif /* DEBUG_LOCKORDER */ diff --git a/src/sync.h b/src/sync.h index f297a9396..8324c953a 100644 --- a/src/sync.h +++ b/src/sync.h @@ -1,261 +1,260 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SYNC_H #define BITCOIN_SYNC_H #include "threadsafety.h" #include #include #include ///////////////////////////////////////////////// // // // THE SIMPLE DEFINITION, EXCLUDING DEBUG CODE // // // ///////////////////////////////////////////////// /* CCriticalSection mutex; boost::recursive_mutex mutex; LOCK(mutex); boost::unique_lock criticalblock(mutex); LOCK2(mutex1, mutex2); boost::unique_lock criticalblock1(mutex1); boost::unique_lock criticalblock2(mutex2); TRY_LOCK(mutex, name); boost::unique_lock name(mutex, boost::try_to_lock_t); ENTER_CRITICAL_SECTION(mutex); // no RAII mutex.lock(); LEAVE_CRITICAL_SECTION(mutex); // no RAII mutex.unlock(); */ /////////////////////////////// // // // THE ACTUAL IMPLEMENTATION // // // /////////////////////////////// /** * Template mixin that adds -Wthread-safety locking * annotations to a subset of the mutex API. */ template class LOCKABLE AnnotatedMixin : public PARENT { public: void lock() EXCLUSIVE_LOCK_FUNCTION() { PARENT::lock(); } void unlock() UNLOCK_FUNCTION() { PARENT::unlock(); } bool try_lock() EXCLUSIVE_TRYLOCK_FUNCTION(true) { return PARENT::try_lock(); } }; #ifdef DEBUG_LOCKORDER void EnterCritical(const char *pszName, const char *pszFile, int nLine, void *cs, bool fTry = false); void LeaveCritical(); std::string LocksHeld(); void AssertLockHeldInternal(const char *pszName, const char *pszFile, int nLine, void *cs); void DeleteLock(void *cs); #else static inline void EnterCritical(const char *pszName, const char *pszFile, int nLine, void *cs, bool fTry = false) {} static inline void LeaveCritical() {} static inline void AssertLockHeldInternal(const char *pszName, const char *pszFile, int nLine, void *cs) {} static inline void DeleteLock(void *cs) {} #endif #define AssertLockHeld(cs) AssertLockHeldInternal(#cs, __FILE__, __LINE__, &cs) /** * Wrapped boost mutex: supports recursive locking, but no waiting * TODO: We should move away from using the recursive lock by default. */ class CCriticalSection : public AnnotatedMixin { public: ~CCriticalSection() { DeleteLock((void *)this); } }; -typedef CCriticalSection CDynamicCriticalSection; /** Wrapped boost mutex: supports waiting but not recursive locking */ typedef AnnotatedMixin CWaitableCriticalSection; /** Just a typedef for boost::condition_variable, can be wrapped later if * desired */ typedef boost::condition_variable CConditionVariable; #ifdef DEBUG_LOCKCONTENTION void PrintLockContention(const char *pszName, const char *pszFile, int nLine); #endif /** Wrapper around boost::unique_lock */ template class SCOPED_LOCKABLE CMutexLock { private: boost::unique_lock lock; void Enter(const char *pszName, const char *pszFile, int nLine) { EnterCritical(pszName, pszFile, nLine, (void *)(lock.mutex())); #ifdef DEBUG_LOCKCONTENTION if (!lock.try_lock()) { PrintLockContention(pszName, pszFile, nLine); #endif lock.lock(); #ifdef DEBUG_LOCKCONTENTION } #endif } bool TryEnter(const char *pszName, const char *pszFile, int nLine) { EnterCritical(pszName, pszFile, nLine, (void *)(lock.mutex()), true); lock.try_lock(); if (!lock.owns_lock()) LeaveCritical(); return lock.owns_lock(); } public: CMutexLock(Mutex &mutexIn, const char *pszName, const char *pszFile, int nLine, bool fTry = false) EXCLUSIVE_LOCK_FUNCTION(mutexIn) : lock(mutexIn, boost::defer_lock) { if (fTry) TryEnter(pszName, pszFile, nLine); else Enter(pszName, pszFile, nLine); } CMutexLock(Mutex *pmutexIn, const char *pszName, const char *pszFile, int nLine, bool fTry = false) EXCLUSIVE_LOCK_FUNCTION(pmutexIn) { if (!pmutexIn) return; lock = boost::unique_lock(*pmutexIn, boost::defer_lock); if (fTry) TryEnter(pszName, pszFile, nLine); else Enter(pszName, pszFile, nLine); } ~CMutexLock() UNLOCK_FUNCTION() { if (lock.owns_lock()) LeaveCritical(); } operator bool() { return lock.owns_lock(); } }; typedef CMutexLock CCriticalBlock; #define PASTE(x, y) x##y #define PASTE2(x, y) PASTE(x, y) #define LOCK(cs) \ CCriticalBlock PASTE2(criticalblock, __COUNTER__)(cs, #cs, __FILE__, \ __LINE__) #define LOCK2(cs1, cs2) \ CCriticalBlock criticalblock1(cs1, #cs1, __FILE__, __LINE__), \ criticalblock2(cs2, #cs2, __FILE__, __LINE__) #define TRY_LOCK(cs, name) \ CCriticalBlock name(cs, #cs, __FILE__, __LINE__, true) #define ENTER_CRITICAL_SECTION(cs) \ { \ EnterCritical(#cs, __FILE__, __LINE__, (void *)(&cs)); \ (cs).lock(); \ } #define LEAVE_CRITICAL_SECTION(cs) \ { \ (cs).unlock(); \ LeaveCritical(); \ } class CSemaphore { private: boost::condition_variable condition; boost::mutex mutex; int value; public: CSemaphore(int init) : value(init) {} void wait() { boost::unique_lock lock(mutex); while (value < 1) { condition.wait(lock); } value--; } bool try_wait() { boost::unique_lock lock(mutex); if (value < 1) return false; value--; return true; } void post() { { boost::unique_lock lock(mutex); value++; } condition.notify_one(); } }; /** RAII-style semaphore lock */ class CSemaphoreGrant { private: CSemaphore *sem; bool fHaveGrant; public: void Acquire() { if (fHaveGrant) return; sem->wait(); fHaveGrant = true; } void Release() { if (!fHaveGrant) return; sem->post(); fHaveGrant = false; } bool TryAcquire() { if (!fHaveGrant && sem->try_wait()) fHaveGrant = true; return fHaveGrant; } void MoveTo(CSemaphoreGrant &grant) { grant.Release(); grant.sem = sem; grant.fHaveGrant = fHaveGrant; fHaveGrant = false; } CSemaphoreGrant() : sem(nullptr), fHaveGrant(false) {} CSemaphoreGrant(CSemaphore &sema, bool fTry = false) : sem(&sema), fHaveGrant(false) { if (fTry) TryAcquire(); else Acquire(); } ~CSemaphoreGrant() { Release(); } operator bool() { return fHaveGrant; } }; #endif // BITCOIN_SYNC_H diff --git a/src/test/key_tests.cpp b/src/test/key_tests.cpp index ff5096cbe..2a0bd1c44 100644 --- a/src/test/key_tests.cpp +++ b/src/test/key_tests.cpp @@ -1,211 +1,185 @@ // Copyright (c) 2012-2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "key.h" #include "base58.h" #include "dstencode.h" #include "script/script.h" #include "test/test_bitcoin.h" #include "uint256.h" #include "util.h" #include "utilstrencodings.h" #include #include #include static const std::string strSecret1 = "5HxWvvfubhXpYYpS3tJkw6fq9jE9j18THftkZjHHfmFiWtmAbrj"; static const std::string strSecret2 = "5KC4ejrDjv152FGwP386VD1i2NYc5KkfSMyv1nGy1VGDxGHqVY3"; static const std::string strSecret1C = "Kwr371tjA9u2rFSMZjTNun2PXXP3WPZu2afRHTcta6KxEUdm1vEw"; static const std::string strSecret2C = "L3Hq7a8FEQwJkW1M2GNKDW28546Vp5miewcCzSqUD9kCAXrJdS3g"; static const std::string addr1 = "1QFqqMUD55ZV3PJEJZtaKCsQmjLT6JkjvJ"; static const std::string addr2 = "1F5y5E5FMc5YzdJtB9hLaUe43GDxEKXENJ"; static const std::string addr1C = "1NoJrossxPBKfCHuJXT4HadJrXRE9Fxiqs"; static const std::string addr2C = "1CRj2HyM1CXWzHAXLQtiGLyggNT9WQqsDs"; static const std::string strAddressBad = "1HV9Lc3sNHZxwj4Zk6fB38tEmBryq2cBiF"; -#ifdef KEY_TESTS_DUMPINFO -void dumpKeyInfo(uint256 privkey) { - CKey key; - key.resize(32); - memcpy(&secret[0], &privkey, 32); - std::vector sec; - sec.resize(32); - memcpy(&sec[0], &secret[0], 32); - printf(" * secret (hex): %s\n", HexStr(sec).c_str()); - - for (int nCompressed = 0; nCompressed < 2; nCompressed++) { - bool fCompressed = nCompressed == 1; - printf(" * %s:\n", fCompressed ? "compressed" : "uncompressed"); - CBitcoinSecret bsecret; - bsecret.SetSecret(secret, fCompressed); - printf(" * secret (base58): %s\n", bsecret.ToString().c_str()); - CKey key; - key.SetSecret(secret, fCompressed); - std::vector vchPubKey = key.GetPubKey(); - printf(" * pubkey (hex): %s\n", HexStr(vchPubKey).c_str()); - printf(" * address (base58): %s\n", - CBitcoinAddress(vchPubKey).ToString().c_str()); - } -} -#endif - BOOST_FIXTURE_TEST_SUITE(key_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(key_test1) { CBitcoinSecret bsecret1, bsecret2, bsecret1C, bsecret2C, baddress1; BOOST_CHECK(bsecret1.SetString(strSecret1)); BOOST_CHECK(bsecret2.SetString(strSecret2)); BOOST_CHECK(bsecret1C.SetString(strSecret1C)); BOOST_CHECK(bsecret2C.SetString(strSecret2C)); BOOST_CHECK(!baddress1.SetString(strAddressBad)); CKey key1 = bsecret1.GetKey(); BOOST_CHECK(key1.IsCompressed() == false); CKey key2 = bsecret2.GetKey(); BOOST_CHECK(key2.IsCompressed() == false); CKey key1C = bsecret1C.GetKey(); BOOST_CHECK(key1C.IsCompressed() == true); CKey key2C = bsecret2C.GetKey(); BOOST_CHECK(key2C.IsCompressed() == true); CPubKey pubkey1 = key1.GetPubKey(); CPubKey pubkey2 = key2.GetPubKey(); CPubKey pubkey1C = key1C.GetPubKey(); CPubKey pubkey2C = key2C.GetPubKey(); BOOST_CHECK(key1.VerifyPubKey(pubkey1)); BOOST_CHECK(!key1.VerifyPubKey(pubkey1C)); BOOST_CHECK(!key1.VerifyPubKey(pubkey2)); BOOST_CHECK(!key1.VerifyPubKey(pubkey2C)); BOOST_CHECK(!key1C.VerifyPubKey(pubkey1)); BOOST_CHECK(key1C.VerifyPubKey(pubkey1C)); BOOST_CHECK(!key1C.VerifyPubKey(pubkey2)); BOOST_CHECK(!key1C.VerifyPubKey(pubkey2C)); BOOST_CHECK(!key2.VerifyPubKey(pubkey1)); BOOST_CHECK(!key2.VerifyPubKey(pubkey1C)); BOOST_CHECK(key2.VerifyPubKey(pubkey2)); BOOST_CHECK(!key2.VerifyPubKey(pubkey2C)); BOOST_CHECK(!key2C.VerifyPubKey(pubkey1)); BOOST_CHECK(!key2C.VerifyPubKey(pubkey1C)); BOOST_CHECK(!key2C.VerifyPubKey(pubkey2)); BOOST_CHECK(key2C.VerifyPubKey(pubkey2C)); const CChainParams &chainParams = Params(); BOOST_CHECK(DecodeDestination(addr1, chainParams) == CTxDestination(pubkey1.GetID())); BOOST_CHECK(DecodeDestination(addr2, chainParams) == CTxDestination(pubkey2.GetID())); BOOST_CHECK(DecodeDestination(addr1C, chainParams) == CTxDestination(pubkey1C.GetID())); BOOST_CHECK(DecodeDestination(addr2C, chainParams) == CTxDestination(pubkey2C.GetID())); for (int n = 0; n < 16; n++) { std::string strMsg = strprintf("Very secret message %i: 11", n); uint256 hashMsg = Hash(strMsg.begin(), strMsg.end()); // normal signatures std::vector sign1, sign2, sign1C, sign2C; BOOST_CHECK(key1.Sign(hashMsg, sign1)); BOOST_CHECK(key2.Sign(hashMsg, sign2)); BOOST_CHECK(key1C.Sign(hashMsg, sign1C)); BOOST_CHECK(key2C.Sign(hashMsg, sign2C)); BOOST_CHECK(pubkey1.Verify(hashMsg, sign1)); BOOST_CHECK(!pubkey1.Verify(hashMsg, sign2)); BOOST_CHECK(pubkey1.Verify(hashMsg, sign1C)); BOOST_CHECK(!pubkey1.Verify(hashMsg, sign2C)); BOOST_CHECK(!pubkey2.Verify(hashMsg, sign1)); BOOST_CHECK(pubkey2.Verify(hashMsg, sign2)); BOOST_CHECK(!pubkey2.Verify(hashMsg, sign1C)); BOOST_CHECK(pubkey2.Verify(hashMsg, sign2C)); BOOST_CHECK(pubkey1C.Verify(hashMsg, sign1)); BOOST_CHECK(!pubkey1C.Verify(hashMsg, sign2)); BOOST_CHECK(pubkey1C.Verify(hashMsg, sign1C)); BOOST_CHECK(!pubkey1C.Verify(hashMsg, sign2C)); BOOST_CHECK(!pubkey2C.Verify(hashMsg, sign1)); BOOST_CHECK(pubkey2C.Verify(hashMsg, sign2)); BOOST_CHECK(!pubkey2C.Verify(hashMsg, sign1C)); BOOST_CHECK(pubkey2C.Verify(hashMsg, sign2C)); // compact signatures (with key recovery) std::vector csign1, csign2, csign1C, csign2C; BOOST_CHECK(key1.SignCompact(hashMsg, csign1)); BOOST_CHECK(key2.SignCompact(hashMsg, csign2)); BOOST_CHECK(key1C.SignCompact(hashMsg, csign1C)); BOOST_CHECK(key2C.SignCompact(hashMsg, csign2C)); CPubKey rkey1, rkey2, rkey1C, rkey2C; BOOST_CHECK(rkey1.RecoverCompact(hashMsg, csign1)); BOOST_CHECK(rkey2.RecoverCompact(hashMsg, csign2)); BOOST_CHECK(rkey1C.RecoverCompact(hashMsg, csign1C)); BOOST_CHECK(rkey2C.RecoverCompact(hashMsg, csign2C)); BOOST_CHECK(rkey1 == pubkey1); BOOST_CHECK(rkey2 == pubkey2); BOOST_CHECK(rkey1C == pubkey1C); BOOST_CHECK(rkey2C == pubkey2C); } // test deterministic signing std::vector detsig, detsigc; std::string strMsg = "Very deterministic message"; uint256 hashMsg = Hash(strMsg.begin(), strMsg.end()); BOOST_CHECK(key1.Sign(hashMsg, detsig)); BOOST_CHECK(key1C.Sign(hashMsg, detsigc)); BOOST_CHECK(detsig == detsigc); BOOST_CHECK(detsig == ParseHex("304402205dbbddda71772d95ce91cd2d14b592cfbc1dd0aabd6a3" "94b6c2d377bbe59d31d022014ddda21494a4e221f0824f0b8b924" "c43fa43c0ad57dccdaa11f81a6bd4582f6")); BOOST_CHECK(key2.Sign(hashMsg, detsig)); BOOST_CHECK(key2C.Sign(hashMsg, detsigc)); BOOST_CHECK(detsig == detsigc); BOOST_CHECK(detsig == ParseHex("3044022052d8a32079c11e79db95af63bb9600c5b04f21a9ca33d" "c129c2bfa8ac9dc1cd5022061d8ae5e0f6c1a16bde3719c64c2fd" "70e404b6428ab9a69566962e8771b5944d")); BOOST_CHECK(key1.SignCompact(hashMsg, detsig)); BOOST_CHECK(key1C.SignCompact(hashMsg, detsigc)); BOOST_CHECK(detsig == ParseHex("1c5dbbddda71772d95ce91cd2d14b592cfbc1dd0aabd6a394b6c2" "d377bbe59d31d14ddda21494a4e221f0824f0b8b924c43fa43c0a" "d57dccdaa11f81a6bd4582f6")); BOOST_CHECK(detsigc == ParseHex("205dbbddda71772d95ce91cd2d14b592cfbc1dd0aabd6a394b6c2" "d377bbe59d31d14ddda21494a4e221f0824f0b8b924c43fa43c0a" "d57dccdaa11f81a6bd4582f6")); BOOST_CHECK(key2.SignCompact(hashMsg, detsig)); BOOST_CHECK(key2C.SignCompact(hashMsg, detsigc)); BOOST_CHECK(detsig == ParseHex("1c52d8a32079c11e79db95af63bb9600c5b04f21a9ca33dc129c2" "bfa8ac9dc1cd561d8ae5e0f6c1a16bde3719c64c2fd70e404b642" "8ab9a69566962e8771b5944d")); BOOST_CHECK(detsigc == ParseHex("2052d8a32079c11e79db95af63bb9600c5b04f21a9ca33dc129c2" "bfa8ac9dc1cd561d8ae5e0f6c1a16bde3719c64c2fd70e404b642" "8ab9a69566962e8771b5944d")); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/script_tests.cpp b/src/test/script_tests.cpp index 96f282c7e..01a6bf9a8 100644 --- a/src/test/script_tests.cpp +++ b/src/test/script_tests.cpp @@ -1,2071 +1,2069 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Copyright (c) 2017-2018 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "data/script_tests.json.h" #include "core_io.h" #include "key.h" #include "keystore.h" #include "rpc/server.h" #include "script/script.h" #include "script/script_error.h" #include "script/sighashtype.h" #include "script/sign.h" #include "test/jsonutil.h" #include "test/scriptflags.h" #include "test/sigutil.h" #include "test/test_bitcoin.h" #include "util.h" #include "utilstrencodings.h" #if defined(HAVE_CONSENSUS_LIB) #include "script/bitcoinconsensus.h" #endif #include #include #include #include #include #include // Uncomment if you want to output updated JSON tests. // #define UPDATE_JSON_TESTS static const uint32_t gFlags = SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC; struct ScriptErrorDesc { ScriptError_t err; const char *name; }; static ScriptErrorDesc script_errors[] = { {SCRIPT_ERR_OK, "OK"}, {SCRIPT_ERR_UNKNOWN_ERROR, "UNKNOWN_ERROR"}, {SCRIPT_ERR_EVAL_FALSE, "EVAL_FALSE"}, {SCRIPT_ERR_OP_RETURN, "OP_RETURN"}, {SCRIPT_ERR_SCRIPT_SIZE, "SCRIPT_SIZE"}, {SCRIPT_ERR_PUSH_SIZE, "PUSH_SIZE"}, {SCRIPT_ERR_OP_COUNT, "OP_COUNT"}, {SCRIPT_ERR_STACK_SIZE, "STACK_SIZE"}, {SCRIPT_ERR_SIG_COUNT, "SIG_COUNT"}, {SCRIPT_ERR_PUBKEY_COUNT, "PUBKEY_COUNT"}, {SCRIPT_ERR_INVALID_OPERAND_SIZE, "OPERAND_SIZE"}, {SCRIPT_ERR_INVALID_NUMBER_RANGE, "INVALID_NUMBER_RANGE"}, {SCRIPT_ERR_IMPOSSIBLE_ENCODING, "IMPOSSIBLE_ENCODING"}, {SCRIPT_ERR_INVALID_SPLIT_RANGE, "SPLIT_RANGE"}, {SCRIPT_ERR_VERIFY, "VERIFY"}, {SCRIPT_ERR_EQUALVERIFY, "EQUALVERIFY"}, {SCRIPT_ERR_CHECKMULTISIGVERIFY, "CHECKMULTISIGVERIFY"}, {SCRIPT_ERR_CHECKSIGVERIFY, "CHECKSIGVERIFY"}, {SCRIPT_ERR_CHECKDATASIGVERIFY, "CHECKDATASIGVERIFY"}, {SCRIPT_ERR_NUMEQUALVERIFY, "NUMEQUALVERIFY"}, {SCRIPT_ERR_BAD_OPCODE, "BAD_OPCODE"}, {SCRIPT_ERR_DISABLED_OPCODE, "DISABLED_OPCODE"}, {SCRIPT_ERR_INVALID_STACK_OPERATION, "INVALID_STACK_OPERATION"}, {SCRIPT_ERR_INVALID_ALTSTACK_OPERATION, "INVALID_ALTSTACK_OPERATION"}, {SCRIPT_ERR_UNBALANCED_CONDITIONAL, "UNBALANCED_CONDITIONAL"}, {SCRIPT_ERR_NEGATIVE_LOCKTIME, "NEGATIVE_LOCKTIME"}, {SCRIPT_ERR_UNSATISFIED_LOCKTIME, "UNSATISFIED_LOCKTIME"}, {SCRIPT_ERR_SIG_HASHTYPE, "SIG_HASHTYPE"}, {SCRIPT_ERR_SIG_DER, "SIG_DER"}, {SCRIPT_ERR_MINIMALDATA, "MINIMALDATA"}, {SCRIPT_ERR_SIG_PUSHONLY, "SIG_PUSHONLY"}, {SCRIPT_ERR_SIG_HIGH_S, "SIG_HIGH_S"}, {SCRIPT_ERR_SIG_NULLDUMMY, "SIG_NULLDUMMY"}, {SCRIPT_ERR_PUBKEYTYPE, "PUBKEYTYPE"}, {SCRIPT_ERR_CLEANSTACK, "CLEANSTACK"}, {SCRIPT_ERR_MINIMALIF, "MINIMALIF"}, {SCRIPT_ERR_SIG_NULLFAIL, "NULLFAIL"}, {SCRIPT_ERR_DISCOURAGE_UPGRADABLE_NOPS, "DISCOURAGE_UPGRADABLE_NOPS"}, {SCRIPT_ERR_NONCOMPRESSED_PUBKEY, "NONCOMPRESSED_PUBKEY"}, {SCRIPT_ERR_ILLEGAL_FORKID, "ILLEGAL_FORKID"}, {SCRIPT_ERR_MUST_USE_FORKID, "MISSING_FORKID"}, {SCRIPT_ERR_DIV_BY_ZERO, "DIV_BY_ZERO"}, {SCRIPT_ERR_MOD_BY_ZERO, "MOD_BY_ZERO"}, }; const char *FormatScriptError(ScriptError_t err) { for (size_t i = 0; i < ARRAYLEN(script_errors); ++i) { if (script_errors[i].err == err) { return script_errors[i].name; } } BOOST_ERROR("Unknown scripterror enumeration value, update script_errors " "in script_tests.cpp."); return ""; } ScriptError_t ParseScriptError(const std::string &name) { for (size_t i = 0; i < ARRAYLEN(script_errors); ++i) { if (script_errors[i].name == name) { return script_errors[i].err; } } BOOST_ERROR("Unknown scripterror \"" << name << "\" in test description"); return SCRIPT_ERR_UNKNOWN_ERROR; } BOOST_FIXTURE_TEST_SUITE(script_tests, BasicTestingSetup) static CMutableTransaction BuildCreditingTransaction(const CScript &scriptPubKey, const Amount nValue) { CMutableTransaction txCredit; txCredit.nVersion = 1; txCredit.nLockTime = 0; txCredit.vin.resize(1); txCredit.vout.resize(1); txCredit.vin[0].prevout = COutPoint(); txCredit.vin[0].scriptSig = CScript() << CScriptNum(0) << CScriptNum(0); txCredit.vin[0].nSequence = CTxIn::SEQUENCE_FINAL; txCredit.vout[0].scriptPubKey = scriptPubKey; txCredit.vout[0].nValue = nValue; return txCredit; } static CMutableTransaction BuildSpendingTransaction(const CScript &scriptSig, const CMutableTransaction &txCredit) { CMutableTransaction txSpend; txSpend.nVersion = 1; txSpend.nLockTime = 0; txSpend.vin.resize(1); txSpend.vout.resize(1); txSpend.vin[0].prevout = COutPoint(txCredit.GetId(), 0); txSpend.vin[0].scriptSig = scriptSig; txSpend.vin[0].nSequence = CTxIn::SEQUENCE_FINAL; txSpend.vout[0].scriptPubKey = CScript(); txSpend.vout[0].nValue = txCredit.vout[0].nValue; return txSpend; } static void DoTest(const CScript &scriptPubKey, const CScript &scriptSig, uint32_t flags, const std::string &message, int scriptError, const Amount nValue) { bool expect = (scriptError == SCRIPT_ERR_OK); if (flags & SCRIPT_VERIFY_CLEANSTACK) { flags |= SCRIPT_VERIFY_P2SH; } ScriptError err; CMutableTransaction txCredit = BuildCreditingTransaction(scriptPubKey, nValue); CMutableTransaction tx = BuildSpendingTransaction(scriptSig, txCredit); CMutableTransaction tx2 = tx; BOOST_CHECK_MESSAGE(VerifyScript(scriptSig, scriptPubKey, flags, MutableTransactionSignatureChecker( &tx, 0, txCredit.vout[0].nValue), &err) == expect, message); BOOST_CHECK_MESSAGE( err == scriptError, std::string(FormatScriptError(err)) + " where " + std::string(FormatScriptError((ScriptError_t)scriptError)) + " expected: " + message); #if defined(HAVE_CONSENSUS_LIB) CDataStream stream(SER_NETWORK, PROTOCOL_VERSION); stream << tx2; uint32_t libconsensus_flags = flags & bitcoinconsensus_SCRIPT_FLAGS_VERIFY_ALL; if (libconsensus_flags == flags) { if (flags & bitcoinconsensus_SCRIPT_ENABLE_SIGHASH_FORKID) { BOOST_CHECK_MESSAGE(bitcoinconsensus_verify_script_with_amount( scriptPubKey.data(), scriptPubKey.size(), txCredit.vout[0].nValue / SATOSHI, (const uint8_t *)&stream[0], stream.size(), 0, libconsensus_flags, nullptr) == expect, message); } else { BOOST_CHECK_MESSAGE(bitcoinconsensus_verify_script_with_amount( scriptPubKey.data(), scriptPubKey.size(), 0, (const uint8_t *)&stream[0], stream.size(), 0, libconsensus_flags, nullptr) == expect, message); BOOST_CHECK_MESSAGE(bitcoinconsensus_verify_script( scriptPubKey.data(), scriptPubKey.size(), (const uint8_t *)&stream[0], stream.size(), 0, libconsensus_flags, nullptr) == expect, message); } } #endif } namespace { const uint8_t vchKey0[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; const uint8_t vchKey1[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0}; const uint8_t vchKey2[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}; struct KeyData { CKey key0, key0C, key1, key1C, key2, key2C; CPubKey pubkey0, pubkey0C, pubkey0H; CPubKey pubkey1, pubkey1C; CPubKey pubkey2, pubkey2C; KeyData() { key0.Set(vchKey0, vchKey0 + 32, false); key0C.Set(vchKey0, vchKey0 + 32, true); pubkey0 = key0.GetPubKey(); pubkey0H = key0.GetPubKey(); pubkey0C = key0C.GetPubKey(); *const_cast(&pubkey0H[0]) = 0x06 | (pubkey0H[64] & 1); key1.Set(vchKey1, vchKey1 + 32, false); key1C.Set(vchKey1, vchKey1 + 32, true); pubkey1 = key1.GetPubKey(); pubkey1C = key1C.GetPubKey(); key2.Set(vchKey2, vchKey2 + 32, false); key2C.Set(vchKey2, vchKey2 + 32, true); pubkey2 = key2.GetPubKey(); pubkey2C = key2C.GetPubKey(); } }; class TestBuilder { private: //! Actually executed script CScript script; //! The P2SH redeemscript CScript redeemscript; CTransactionRef creditTx; CMutableTransaction spendTx; bool havePush; std::vector push; std::string comment; uint32_t flags; int scriptError; Amount nValue; void DoPush() { if (havePush) { spendTx.vin[0].scriptSig << push; havePush = false; } } void DoPush(const std::vector &data) { DoPush(); push = data; havePush = true; } std::vector DoSign(const CKey &key, const uint256 &hash, unsigned int lenR = 32, unsigned int lenS = 32) const { std::vector vchSig, r, s; uint32_t iter = 0; do { key.Sign(hash, vchSig, iter++); if ((lenS == 33) != (vchSig[5 + vchSig[3]] == 33)) { NegateSignatureS(vchSig); } r = std::vector(vchSig.begin() + 4, vchSig.begin() + 4 + vchSig[3]); s = std::vector(vchSig.begin() + 6 + vchSig[3], vchSig.begin() + 6 + vchSig[3] + vchSig[5 + vchSig[3]]); } while (lenR != r.size() || lenS != s.size()); return vchSig; } public: TestBuilder(const CScript &script_, const std::string &comment_, uint32_t flags_, bool P2SH = false, Amount nValue_ = Amount::zero()) : script(script_), havePush(false), comment(comment_), flags(flags_), scriptError(SCRIPT_ERR_OK), nValue(nValue_) { CScript scriptPubKey = script; if (P2SH) { redeemscript = scriptPubKey; scriptPubKey = CScript() << OP_HASH160 << ToByteVector(CScriptID(redeemscript)) << OP_EQUAL; } creditTx = MakeTransactionRef(BuildCreditingTransaction(scriptPubKey, nValue)); spendTx = BuildSpendingTransaction(CScript(), *creditTx); } TestBuilder &ScriptError(ScriptError_t err) { scriptError = err; return *this; } TestBuilder &Add(const CScript &_script) { DoPush(); spendTx.vin[0].scriptSig += _script; return *this; } TestBuilder &Num(int num) { DoPush(); spendTx.vin[0].scriptSig << num; return *this; } TestBuilder &Push(const std::string &hex) { DoPush(ParseHex(hex)); return *this; } TestBuilder &Push(const uint256 &hash) { DoPush(ToByteVector(hash)); return *this; } TestBuilder &Push(const CScript &_script) { DoPush(std::vector(_script.begin(), _script.end())); return *this; } TestBuilder &PushSig(const CKey &key, SigHashType sigHashType = SigHashType(), unsigned int lenR = 32, unsigned int lenS = 32, Amount amount = Amount::zero(), uint32_t sigFlags = SCRIPT_ENABLE_SIGHASH_FORKID) { uint256 hash = SignatureHash(script, CTransaction(spendTx), 0, sigHashType, amount, nullptr, sigFlags); std::vector vchSig = DoSign(key, hash, lenR, lenS); vchSig.push_back(static_cast(sigHashType.getRawSigHashType())); DoPush(vchSig); return *this; } TestBuilder &PushDataSig(const CKey &key, const std::vector &data, unsigned int lenR = 32, unsigned int lenS = 32) { std::vector vchHash(32); CSHA256().Write(data.data(), data.size()).Finalize(vchHash.data()); DoPush(DoSign(key, uint256(vchHash), lenR, lenS)); return *this; } TestBuilder &Push(const CPubKey &pubkey) { DoPush(std::vector(pubkey.begin(), pubkey.end())); return *this; } TestBuilder &PushRedeem() { DoPush(std::vector(redeemscript.begin(), redeemscript.end())); return *this; } TestBuilder &EditPush(unsigned int pos, const std::string &hexin, const std::string &hexout) { assert(havePush); std::vector datain = ParseHex(hexin); std::vector dataout = ParseHex(hexout); assert(pos + datain.size() <= push.size()); BOOST_CHECK_MESSAGE( std::vector(push.begin() + pos, push.begin() + pos + datain.size()) == datain, comment); push.erase(push.begin() + pos, push.begin() + pos + datain.size()); push.insert(push.begin() + pos, dataout.begin(), dataout.end()); return *this; } TestBuilder &DamagePush(unsigned int pos) { assert(havePush); assert(pos < push.size()); push[pos] ^= 1; return *this; } TestBuilder &Test() { // Make a copy so we can rollback the push. TestBuilder copy = *this; DoPush(); DoTest(creditTx->vout[0].scriptPubKey, spendTx.vin[0].scriptSig, flags, comment, scriptError, nValue); *this = copy; return *this; } UniValue GetJSON() { DoPush(); UniValue array(UniValue::VARR); if (nValue != Amount::zero()) { UniValue amount(UniValue::VARR); amount.push_back(ValueFromAmount(nValue)); array.push_back(amount); } array.push_back(FormatScript(spendTx.vin[0].scriptSig)); array.push_back(FormatScript(creditTx->vout[0].scriptPubKey)); array.push_back(FormatScriptFlags(flags)); array.push_back(FormatScriptError((ScriptError_t)scriptError)); array.push_back(comment); return array; } std::string GetComment() { return comment; } - - const CScript &GetScriptPubKey() { return creditTx->vout[0].scriptPubKey; } }; std::string JSONPrettyPrint(const UniValue &univalue) { std::string ret = univalue.write(4); // Workaround for libunivalue pretty printer, which puts a space between // commas and newlines size_t pos = 0; while ((pos = ret.find(" \n", pos)) != std::string::npos) { ret.replace(pos, 2, "\n"); pos++; } return ret; } } // namespace BOOST_AUTO_TEST_CASE(script_build) { const KeyData keys; std::vector tests; tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK", 0) .PushSig(keys.key0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK, bad sig", 0) .PushSig(keys.key0) .DamagePush(10) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey1C.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2PKH", 0) .PushSig(keys.key1) .Push(keys.pubkey1C)); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey2C.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2PKH, bad pubkey", 0) .PushSig(keys.key2) .Push(keys.pubkey2C) .DamagePush(5) .ScriptError(SCRIPT_ERR_EQUALVERIFY)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2PK anyonecanpay", 0) .PushSig(keys.key1, SigHashType().withAnyoneCanPay())); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2PK anyonecanpay marked with normal hashtype", 0) .PushSig(keys.key1, SigHashType().withAnyoneCanPay()) .EditPush(70, "81", "01") .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0C) << OP_CHECKSIG, "P2SH(P2PK)", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .PushRedeem()); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0C) << OP_CHECKSIG, "P2SH(P2PK), bad redeemscript", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .PushRedeem() .DamagePush(10) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey0.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2SH(P2PKH)", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .Push(keys.pubkey0) .PushRedeem()); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey1.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2SH(P2PKH), bad sig but no VERIFY_P2SH", 0, true) .PushSig(keys.key0) .DamagePush(10) .PushRedeem()); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey1.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2SH(P2PKH), bad sig", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .DamagePush(10) .PushRedeem() .ScriptError(SCRIPT_ERR_EQUALVERIFY)); tests.push_back(TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "3-of-3", 0) .Num(0) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2)); tests.push_back(TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "3-of-3, 2 sigs", 0) .Num(0) .PushSig(keys.key0) .PushSig(keys.key1) .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "P2SH(2-of-3)", SCRIPT_VERIFY_P2SH, true) .Num(0) .PushSig(keys.key1) .PushSig(keys.key2) .PushRedeem()); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "P2SH(2-of-3), 1 sig", SCRIPT_VERIFY_P2SH, true) .Num(0) .PushSig(keys.key1) .Num(0) .PushRedeem() .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too much R padding but no DERSIG", 0) .PushSig(keys.key1, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too much R padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too much S padding but no DERSIG", 0) .PushSig(keys.key1) .EditPush(1, "44", "45") .EditPush(37, "20", "2100")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too much S padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1) .EditPush(1, "44", "45") .EditPush(37, "20", "2100") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too little R padding but no DERSIG", 0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "P2PK with too little R padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG << OP_NOT, "P2PK NOT with bad sig with too much R padding but no DERSIG", 0) .PushSig(keys.key2, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .DamagePush(10)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG << OP_NOT, "P2PK NOT with bad sig with too much R padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key2, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .DamagePush(10) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG << OP_NOT, "P2PK NOT with too much R padding but no DERSIG", 0) .PushSig(keys.key2, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG << OP_NOT, "P2PK NOT with too much R padding", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key2, SigHashType(), 31, 32) .EditPush(1, "43021F", "44022000") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 1, without DERSIG", 0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 1, with DERSIG", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 2, without DERSIG", 0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 2, with DERSIG", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 3, without DERSIG", 0) .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 3, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, without DERSIG", 0) .Num(0)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, with DERSIG, non-null DER-compliant signature", SCRIPT_VERIFY_DERSIG) .Push("300602010102010101")); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, with DERSIG and NULLFAIL", SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_NULLFAIL) .Num(0)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 4, with DERSIG and NULLFAIL, " "non-null DER-compliant signature", SCRIPT_VERIFY_DERSIG | SCRIPT_VERIFY_NULLFAIL) .Push("300602010102010101") .ScriptError(SCRIPT_ERR_SIG_NULLFAIL)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 5, without DERSIG", 0) .Num(1) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG, "BIP66 example 5, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(1) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 6, without DERSIG", 0) .Num(1)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKSIG << OP_NOT, "BIP66 example 6, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(1) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 7, without DERSIG", 0) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .PushSig(keys.key2)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 7, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .PushSig(keys.key2) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 8, without DERSIG", 0) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .PushSig(keys.key2) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 8, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .PushSig(keys.key2) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 9, without DERSIG", 0) .Num(0) .Num(0) .PushSig(keys.key2, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 9, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .Num(0) .PushSig(keys.key2, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 10, without DERSIG", 0) .Num(0) .Num(0) .PushSig(keys.key2, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220")); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 10, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .Num(0) .PushSig(keys.key2, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 11, without DERSIG", 0) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG, "BIP66 example 11, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .Num(0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 12, without DERSIG", 0) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .Num(0)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_2 << OP_CHECKMULTISIG << OP_NOT, "BIP66 example 12, with DERSIG", SCRIPT_VERIFY_DERSIG) .Num(0) .PushSig(keys.key1, SigHashType(), 33, 32) .EditPush(1, "45022100", "440220") .Num(0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with multi-byte hashtype, without DERSIG", 0) .PushSig(keys.key2) .EditPush(70, "01", "0101")); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with multi-byte hashtype, with DERSIG", SCRIPT_VERIFY_DERSIG) .PushSig(keys.key2) .EditPush(70, "01", "0101") .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with high S but no LOW_S", 0) .PushSig(keys.key2, SigHashType(), 32, 33)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with high S", SCRIPT_VERIFY_LOW_S) .PushSig(keys.key2, SigHashType(), 32, 33) .ScriptError(SCRIPT_ERR_SIG_HIGH_S)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG, "P2PK with hybrid pubkey but no STRICTENC", 0) .PushSig(keys.key0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG, "P2PK with hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key0, SigHashType()) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG << OP_NOT, "P2PK NOT with hybrid pubkey but no STRICTENC", 0) .PushSig(keys.key0) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG << OP_NOT, "P2PK NOT with hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key0) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG << OP_NOT, "P2PK NOT with invalid hybrid pubkey but no STRICTENC", 0) .PushSig(keys.key0) .DamagePush(10)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKSIG << OP_NOT, "P2PK NOT with invalid hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key0) .DamagePush(10) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back( TestBuilder(CScript() << OP_1 << ToByteVector(keys.pubkey0H) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "1-of-2 with the second 1 hybrid pubkey and no STRICTENC", 0) .Num(0) .PushSig(keys.key1)); tests.push_back(TestBuilder(CScript() << OP_1 << ToByteVector(keys.pubkey0H) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "1-of-2 with the second 1 hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .Num(0) .PushSig(keys.key1)); tests.push_back(TestBuilder(CScript() << OP_1 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey0H) << OP_2 << OP_CHECKMULTISIG, "1-of-2 with the first 1 hybrid pubkey", SCRIPT_VERIFY_STRICTENC) .Num(0) .PushSig(keys.key1) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2PK with undefined hashtype but no STRICTENC", 0) .PushSig(keys.key1, SigHashType(5))); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2PK with undefined hashtype", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key1, SigHashType(5)) .ScriptError(SCRIPT_ERR_SIG_HASHTYPE)); // Generate P2PKH tests for invalid SigHashType tests.push_back( TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey0.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2PKH with invalid sighashtype", 0) .PushSig(keys.key0, SigHashType(0x21), 32, 32, Amount::zero(), 0) .Push(keys.pubkey0)); tests.push_back(TestBuilder(CScript() << OP_DUP << OP_HASH160 << ToByteVector(keys.pubkey0.GetID()) << OP_EQUALVERIFY << OP_CHECKSIG, "P2PKH with invalid sighashtype and STRICTENC", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key0, SigHashType(0x21), 32, 32, Amount::zero(), SCRIPT_VERIFY_STRICTENC) .Push(keys.pubkey0) // Should fail for STRICTENC .ScriptError(SCRIPT_ERR_SIG_HASHTYPE)); // Generate P2SH tests for invalid SigHashType tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2SH(P2PK) with invalid sighashtype", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key1, SigHashType(0x21)) .PushRedeem()); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG, "P2SH(P2PK) with invalid sighashtype and STRICTENC", SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC, true) .PushSig(keys.key1, SigHashType(0x21)) .PushRedeem() // Should fail for STRICTENC .ScriptError(SCRIPT_ERR_SIG_HASHTYPE)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG << OP_NOT, "P2PK NOT with invalid sig and undefined hashtype but no STRICTENC", 0) .PushSig(keys.key1, SigHashType(5)) .DamagePush(10)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1) << OP_CHECKSIG << OP_NOT, "P2PK NOT with invalid sig and undefined hashtype", SCRIPT_VERIFY_STRICTENC) .PushSig(keys.key1, SigHashType(5)) .DamagePush(10) .ScriptError(SCRIPT_ERR_SIG_HASHTYPE)); tests.push_back(TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "3-of-3 with nonzero dummy but no NULLDUMMY", 0) .Num(1) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2)); tests.push_back(TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG, "3-of-3 with nonzero dummy", SCRIPT_VERIFY_NULLDUMMY) .Num(1) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2) .ScriptError(SCRIPT_ERR_SIG_NULLDUMMY)); tests.push_back( TestBuilder( CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG << OP_NOT, "3-of-3 NOT with invalid sig and nonzero dummy but no NULLDUMMY", 0) .Num(1) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2) .DamagePush(10)); tests.push_back( TestBuilder(CScript() << OP_3 << ToByteVector(keys.pubkey0C) << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey2C) << OP_3 << OP_CHECKMULTISIG << OP_NOT, "3-of-3 NOT with invalid sig with nonzero dummy", SCRIPT_VERIFY_NULLDUMMY) .Num(1) .PushSig(keys.key0) .PushSig(keys.key1) .PushSig(keys.key2) .DamagePush(10) .ScriptError(SCRIPT_ERR_SIG_NULLDUMMY)); tests.push_back(TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "2-of-2 with two identical keys and sigs " "pushed using OP_DUP but no SIGPUSHONLY", 0) .Num(0) .PushSig(keys.key1) .Add(CScript() << OP_DUP)); tests.push_back( TestBuilder( CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "2-of-2 with two identical keys and sigs pushed using OP_DUP", SCRIPT_VERIFY_SIGPUSHONLY) .Num(0) .PushSig(keys.key1) .Add(CScript() << OP_DUP) .ScriptError(SCRIPT_ERR_SIG_PUSHONLY)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2SH(P2PK) with non-push scriptSig but no P2SH or SIGPUSHONLY", 0, true) .PushSig(keys.key2) .Add(CScript() << OP_NOP8) .PushRedeem()); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2PK with non-push scriptSig but with P2SH validation", 0) .PushSig(keys.key2) .Add(CScript() << OP_NOP8)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2SH(P2PK) with non-push scriptSig but no SIGPUSHONLY", SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key2) .Add(CScript() << OP_NOP8) .PushRedeem() .ScriptError(SCRIPT_ERR_SIG_PUSHONLY)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey2C) << OP_CHECKSIG, "P2SH(P2PK) with non-push scriptSig but not P2SH", SCRIPT_VERIFY_SIGPUSHONLY, true) .PushSig(keys.key2) .Add(CScript() << OP_NOP8) .PushRedeem() .ScriptError(SCRIPT_ERR_SIG_PUSHONLY)); tests.push_back( TestBuilder(CScript() << OP_2 << ToByteVector(keys.pubkey1C) << ToByteVector(keys.pubkey1C) << OP_2 << OP_CHECKMULTISIG, "2-of-2 with two identical keys and sigs pushed", SCRIPT_VERIFY_SIGPUSHONLY) .Num(0) .PushSig(keys.key1) .PushSig(keys.key1)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK with unnecessary input but no CLEANSTACK", SCRIPT_VERIFY_P2SH) .Num(11) .PushSig(keys.key0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK with unnecessary input", SCRIPT_VERIFY_CLEANSTACK | SCRIPT_VERIFY_P2SH) .Num(11) .PushSig(keys.key0) .ScriptError(SCRIPT_ERR_CLEANSTACK)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2SH with unnecessary input but no CLEANSTACK", SCRIPT_VERIFY_P2SH, true) .Num(11) .PushSig(keys.key0) .PushRedeem()); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2SH with unnecessary input", SCRIPT_VERIFY_CLEANSTACK | SCRIPT_VERIFY_P2SH, true) .Num(11) .PushSig(keys.key0) .PushRedeem() .ScriptError(SCRIPT_ERR_CLEANSTACK)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2SH with CLEANSTACK", SCRIPT_VERIFY_CLEANSTACK | SCRIPT_VERIFY_P2SH, true) .PushSig(keys.key0) .PushRedeem()); static const Amount TEST_AMOUNT(int64_t(12345000000000) * SATOSHI); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK FORKID", SCRIPT_ENABLE_SIGHASH_FORKID, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK INVALID AMOUNT", SCRIPT_ENABLE_SIGHASH_FORKID, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT + SATOSHI) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK INVALID FORKID", SCRIPT_VERIFY_STRICTENC, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT) .ScriptError(SCRIPT_ERR_ILLEGAL_FORKID)); // Test replay protection tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK REPLAY PROTECTED", SCRIPT_ENABLE_SIGHASH_FORKID | SCRIPT_ENABLE_REPLAY_PROTECTION, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT, SCRIPT_ENABLE_SIGHASH_FORKID | SCRIPT_ENABLE_REPLAY_PROTECTION)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0) << OP_CHECKSIG, "P2PK REPLAY PROTECTED", SCRIPT_ENABLE_SIGHASH_FORKID | SCRIPT_ENABLE_REPLAY_PROTECTION, false, TEST_AMOUNT) .PushSig(keys.key0, SigHashType().withForkId(), 32, 32, TEST_AMOUNT, SCRIPT_ENABLE_SIGHASH_FORKID) .ScriptError(SCRIPT_ERR_EVAL_FALSE)); // Test OP_CHECKDATASIG const uint32_t checkdatasigflags = SCRIPT_VERIFY_STRICTENC | SCRIPT_VERIFY_NULLFAIL | SCRIPT_ENABLE_CHECKDATASIG; tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIG, "Standard CHECKDATASIG", checkdatasigflags) .PushDataSig(keys.key1, {}) .Num(0)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIG << OP_NOT, "CHECKDATASIG with NULLFAIL flags", checkdatasigflags) .PushDataSig(keys.key1, {}) .Num(1) .ScriptError(SCRIPT_ERR_SIG_NULLFAIL)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIG << OP_NOT, "CHECKDATASIG without NULLFAIL flags", checkdatasigflags & ~SCRIPT_VERIFY_NULLFAIL) .PushDataSig(keys.key1, {}) .Num(1)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIG << OP_NOT, "CHECKDATASIG empty signature", checkdatasigflags) .Num(0) .Num(0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIG, "CHECKDATASIG with High S but no Low S", checkdatasigflags) .PushDataSig(keys.key1, {}, 32, 33) .Num(0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIG, "CHECKDATASIG with High S", checkdatasigflags | SCRIPT_VERIFY_LOW_S) .PushDataSig(keys.key1, {}, 32, 33) .Num(0) .ScriptError(SCRIPT_ERR_SIG_HIGH_S)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIG, "CHECKDATASIG with too little R padding but no DERSIG", checkdatasigflags & ~SCRIPT_VERIFY_STRICTENC) .PushDataSig(keys.key1, {}, 33, 32) .EditPush(1, "45022100", "440220") .Num(0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIG, "CHECKDATASIG with too little R padding", checkdatasigflags) .PushDataSig(keys.key1, {}, 33, 32) .EditPush(1, "45022100", "440220") .Num(0) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKDATASIG, "CHECKDATASIG with hybrid pubkey but no STRICTENC", checkdatasigflags & ~SCRIPT_VERIFY_STRICTENC) .PushDataSig(keys.key0, {}) .Num(0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKDATASIG, "CHECKDATASIG with hybrid pubkey", checkdatasigflags) .PushDataSig(keys.key0, {}) .Num(0) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKDATASIG << OP_NOT, "CHECKDATASIG with invalid hybrid pubkey but no STRICTENC", SCRIPT_ENABLE_CHECKDATASIG) .PushDataSig(keys.key0, {}) .DamagePush(10) .Num(0)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKDATASIG, "CHECKDATASIG with invalid hybrid pubkey", checkdatasigflags) .PushDataSig(keys.key0, {}) .DamagePush(10) .Num(0) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); // Test OP_CHECKDATASIGVERIFY tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIGVERIFY << OP_TRUE, "Standard CHECKDATASIGVERIFY", checkdatasigflags) .PushDataSig(keys.key1, {}) .Num(0)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIGVERIFY with NULLFAIL flags", checkdatasigflags) .PushDataSig(keys.key1, {}) .Num(1) .ScriptError(SCRIPT_ERR_SIG_NULLFAIL)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIGVERIFY without NULLFAIL flags", checkdatasigflags & ~SCRIPT_VERIFY_NULLFAIL) .PushDataSig(keys.key1, {}) .Num(1) .ScriptError(SCRIPT_ERR_CHECKDATASIGVERIFY)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIGVERIFY empty signature", checkdatasigflags) .Num(0) .Num(0) .ScriptError(SCRIPT_ERR_CHECKDATASIGVERIFY)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIG with High S but no Low S", checkdatasigflags) .PushDataSig(keys.key1, {}, 32, 33) .Num(0)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIG with High S", checkdatasigflags | SCRIPT_VERIFY_LOW_S) .PushDataSig(keys.key1, {}, 32, 33) .Num(0) .ScriptError(SCRIPT_ERR_SIG_HIGH_S)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIGVERIFY with too little R padding but no DERSIG", checkdatasigflags & ~SCRIPT_VERIFY_STRICTENC) .PushDataSig(keys.key1, {}, 33, 32) .EditPush(1, "45022100", "440220") .Num(0)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey1C) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIGVERIFY with too little R padding", checkdatasigflags) .PushDataSig(keys.key1, {}, 33, 32) .EditPush(1, "45022100", "440220") .Num(0) .ScriptError(SCRIPT_ERR_SIG_DER)); tests.push_back( TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIGVERIFY with hybrid pubkey but no STRICTENC", checkdatasigflags & ~SCRIPT_VERIFY_STRICTENC) .PushDataSig(keys.key0, {}) .Num(0)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIGVERIFY with hybrid pubkey", checkdatasigflags) .PushDataSig(keys.key0, {}) .Num(0) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); tests.push_back( TestBuilder( CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIGVERIFY with invalid hybrid pubkey but no STRICTENC", SCRIPT_ENABLE_CHECKDATASIG) .PushDataSig(keys.key0, {}) .DamagePush(10) .Num(0) .ScriptError(SCRIPT_ERR_CHECKDATASIGVERIFY)); tests.push_back(TestBuilder(CScript() << ToByteVector(keys.pubkey0H) << OP_CHECKDATASIGVERIFY << OP_TRUE, "CHECKDATASIGVERIFY with invalid hybrid pubkey", checkdatasigflags) .PushDataSig(keys.key0, {}) .DamagePush(10) .Num(0) .ScriptError(SCRIPT_ERR_PUBKEYTYPE)); std::set tests_set; { UniValue json_tests = read_json(std::string( json_tests::script_tests, json_tests::script_tests + sizeof(json_tests::script_tests))); for (unsigned int idx = 0; idx < json_tests.size(); idx++) { const UniValue &tv = json_tests[idx]; tests_set.insert(JSONPrettyPrint(tv.get_array())); } } std::string strGen; for (TestBuilder &test : tests) { test.Test(); std::string str = JSONPrettyPrint(test.GetJSON()); #ifndef UPDATE_JSON_TESTS if (tests_set.count(str) == 0) { BOOST_CHECK_MESSAGE( false, "Missing auto script_valid test: " + test.GetComment()); } #endif strGen += str + ",\n"; } #ifdef UPDATE_JSON_TESTS FILE *file = fopen("script_tests.json.gen", "w"); fputs(strGen.c_str(), file); fclose(file); #endif } BOOST_AUTO_TEST_CASE(script_json_test) { // Read tests from test/data/script_tests.json // Format is an array of arrays // Inner arrays are [ ["wit"..., nValue]?, "scriptSig", "scriptPubKey", // "flags", "expected_scripterror" ] // ... where scriptSig and scriptPubKey are stringified // scripts. UniValue tests = read_json(std::string( json_tests::script_tests, json_tests::script_tests + sizeof(json_tests::script_tests))); for (unsigned int idx = 0; idx < tests.size(); idx++) { UniValue test = tests[idx]; std::string strTest = test.write(); Amount nValue = Amount::zero(); unsigned int pos = 0; if (test.size() > 0 && test[pos].isArray()) { nValue = AmountFromValue(test[pos][0]); pos++; } // Allow size > 3; extra stuff ignored (useful for comments) if (test.size() < 4 + pos) { if (test.size() != 1) { BOOST_ERROR("Bad test: " << strTest); } continue; } std::string scriptSigString = test[pos++].get_str(); std::string scriptPubKeyString = test[pos++].get_str(); try { CScript scriptSig = ParseScript(scriptSigString); CScript scriptPubKey = ParseScript(scriptPubKeyString); unsigned int scriptflags = ParseScriptFlags(test[pos++].get_str()); int scriptError = ParseScriptError(test[pos++].get_str()); DoTest(scriptPubKey, scriptSig, scriptflags, strTest, scriptError, nValue); } catch (std::runtime_error &e) { BOOST_TEST_MESSAGE("Script test failed. scriptSig: " << scriptSigString << " scriptPubKey: " << scriptPubKeyString); BOOST_TEST_MESSAGE("Exception: " << e.what()); throw; } } } BOOST_AUTO_TEST_CASE(script_PushData) { // Check that PUSHDATA1, PUSHDATA2, and PUSHDATA4 create the same value on // the stack as the 1-75 opcodes do. static const uint8_t direct[] = {1, 0x5a}; static const uint8_t pushdata1[] = {OP_PUSHDATA1, 1, 0x5a}; static const uint8_t pushdata2[] = {OP_PUSHDATA2, 1, 0, 0x5a}; static const uint8_t pushdata4[] = {OP_PUSHDATA4, 1, 0, 0, 0, 0x5a}; ScriptError err; std::vector> directStack; BOOST_CHECK(EvalScript(directStack, CScript(&direct[0], &direct[sizeof(direct)]), SCRIPT_VERIFY_P2SH, BaseSignatureChecker(), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); std::vector> pushdata1Stack; BOOST_CHECK(EvalScript( pushdata1Stack, CScript(&pushdata1[0], &pushdata1[sizeof(pushdata1)]), SCRIPT_VERIFY_P2SH, BaseSignatureChecker(), &err)); BOOST_CHECK(pushdata1Stack == directStack); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); std::vector> pushdata2Stack; BOOST_CHECK(EvalScript( pushdata2Stack, CScript(&pushdata2[0], &pushdata2[sizeof(pushdata2)]), SCRIPT_VERIFY_P2SH, BaseSignatureChecker(), &err)); BOOST_CHECK(pushdata2Stack == directStack); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); std::vector> pushdata4Stack; BOOST_CHECK(EvalScript( pushdata4Stack, CScript(&pushdata4[0], &pushdata4[sizeof(pushdata4)]), SCRIPT_VERIFY_P2SH, BaseSignatureChecker(), &err)); BOOST_CHECK(pushdata4Stack == directStack); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } CScript sign_multisig(CScript scriptPubKey, std::vector keys, CTransaction transaction) { uint256 hash = SignatureHash(scriptPubKey, transaction, 0, SigHashType(), Amount::zero()); CScript result; // // NOTE: CHECKMULTISIG has an unfortunate bug; it requires one extra item on // the stack, before the signatures. Putting OP_0 on the stack is the // workaround; fixing the bug would mean splitting the block chain (old // clients would not accept new CHECKMULTISIG transactions, and vice-versa) // result << OP_0; for (const CKey &key : keys) { std::vector vchSig; BOOST_CHECK(key.Sign(hash, vchSig)); vchSig.push_back(uint8_t(SIGHASH_ALL)); result << vchSig; } return result; } CScript sign_multisig(CScript scriptPubKey, const CKey &key, CTransaction transaction) { std::vector keys; keys.push_back(key); return sign_multisig(scriptPubKey, keys, transaction); } BOOST_AUTO_TEST_CASE(script_CHECKMULTISIG12) { ScriptError err; CKey key1, key2, key3; key1.MakeNewKey(true); key2.MakeNewKey(false); key3.MakeNewKey(true); CScript scriptPubKey12; scriptPubKey12 << OP_1 << ToByteVector(key1.GetPubKey()) << ToByteVector(key2.GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CMutableTransaction txFrom12 = BuildCreditingTransaction(scriptPubKey12, Amount::zero()); CMutableTransaction txTo12 = BuildSpendingTransaction(CScript(), txFrom12); CScript goodsig1 = sign_multisig(scriptPubKey12, key1, CTransaction(txTo12)); BOOST_CHECK(VerifyScript( goodsig1, scriptPubKey12, gFlags, MutableTransactionSignatureChecker(&txTo12, 0, txFrom12.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); txTo12.vout[0].nValue = 2 * SATOSHI; BOOST_CHECK(!VerifyScript( goodsig1, scriptPubKey12, gFlags, MutableTransactionSignatureChecker(&txTo12, 0, txFrom12.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); CScript goodsig2 = sign_multisig(scriptPubKey12, key2, CTransaction(txTo12)); BOOST_CHECK(VerifyScript( goodsig2, scriptPubKey12, gFlags, MutableTransactionSignatureChecker(&txTo12, 0, txFrom12.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); CScript badsig1 = sign_multisig(scriptPubKey12, key3, CTransaction(txTo12)); BOOST_CHECK(!VerifyScript( badsig1, scriptPubKey12, gFlags, MutableTransactionSignatureChecker(&txTo12, 0, txFrom12.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); } BOOST_AUTO_TEST_CASE(script_CHECKMULTISIG23) { ScriptError err; CKey key1, key2, key3, key4; key1.MakeNewKey(true); key2.MakeNewKey(false); key3.MakeNewKey(true); key4.MakeNewKey(false); CScript scriptPubKey23; scriptPubKey23 << OP_2 << ToByteVector(key1.GetPubKey()) << ToByteVector(key2.GetPubKey()) << ToByteVector(key3.GetPubKey()) << OP_3 << OP_CHECKMULTISIG; CMutableTransaction txFrom23 = BuildCreditingTransaction(scriptPubKey23, Amount::zero()); CMutableTransaction mutableTxTo23 = BuildSpendingTransaction(CScript(), txFrom23); // after it has been set up, mutableTxTo23 does not change in this test, // so we can convert it to readonly transaction and use // TransactionSignatureChecker // instead of MutableTransactionSignatureChecker const CTransaction txTo23(mutableTxTo23); std::vector keys; keys.push_back(key1); keys.push_back(key2); CScript goodsig1 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(VerifyScript( goodsig1, scriptPubKey23, gFlags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); keys.clear(); keys.push_back(key1); keys.push_back(key3); CScript goodsig2 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(VerifyScript( goodsig2, scriptPubKey23, gFlags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); keys.clear(); keys.push_back(key2); keys.push_back(key3); CScript goodsig3 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(VerifyScript( goodsig3, scriptPubKey23, gFlags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); keys.clear(); keys.push_back(key2); keys.push_back(key2); // Can't re-use sig CScript badsig1 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig1, scriptPubKey23, gFlags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); keys.push_back(key2); keys.push_back(key1); // sigs must be in correct order CScript badsig2 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig2, scriptPubKey23, gFlags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); keys.push_back(key3); keys.push_back(key2); // sigs must be in correct order CScript badsig3 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig3, scriptPubKey23, gFlags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); keys.push_back(key4); keys.push_back(key2); // sigs must match pubkeys CScript badsig4 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig4, scriptPubKey23, gFlags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); keys.push_back(key1); keys.push_back(key4); // sigs must match pubkeys CScript badsig5 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig5, scriptPubKey23, gFlags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); keys.clear(); // Must have signatures CScript badsig6 = sign_multisig(scriptPubKey23, keys, txTo23); BOOST_CHECK(!VerifyScript( badsig6, scriptPubKey23, gFlags, TransactionSignatureChecker(&txTo23, 0, txFrom23.vout[0].nValue), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_INVALID_STACK_OPERATION, ScriptErrorString(err)); } BOOST_AUTO_TEST_CASE(script_combineSigs) { // Test the CombineSignatures function Amount amount = Amount::zero(); CBasicKeyStore keystore; std::vector keys; std::vector pubkeys; for (int i = 0; i < 3; i++) { CKey key; key.MakeNewKey(i % 2 == 1); keys.push_back(key); pubkeys.push_back(key.GetPubKey()); keystore.AddKey(key); } CMutableTransaction txFrom = BuildCreditingTransaction( GetScriptForDestination(keys[0].GetPubKey().GetID()), Amount::zero()); CMutableTransaction txTo = BuildSpendingTransaction(CScript(), txFrom); CScript &scriptPubKey = txFrom.vout[0].scriptPubKey; CScript &scriptSig = txTo.vin[0].scriptSig; // Although it looks like CMutableTransaction is not modified after it’s // been set up (it is not passed as parameter to any non-const function), // it is actually modified when new value is assigned to scriptPubKey, // which points to mutableTxFrom.vout[0].scriptPubKey. Therefore we can // not use single instance of CTransaction in this test. // CTransaction creates a copy of CMutableTransaction and is not modified // when scriptPubKey is assigned to. SignatureData empty; SignatureData combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), empty, empty); BOOST_CHECK(combined.scriptSig.empty()); // Single signature case: SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); // changes scriptSig combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSig), empty); BOOST_CHECK(combined.scriptSig == scriptSig); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), empty, SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSig); CScript scriptSigCopy = scriptSig; // Signing again will give a different, valid signature: SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSigCopy), SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSigCopy || combined.scriptSig == scriptSig); // P2SH, single-signature case: CScript pkSingle; pkSingle << ToByteVector(keys[0].GetPubKey()) << OP_CHECKSIG; keystore.AddCScript(pkSingle); scriptPubKey = GetScriptForDestination(CScriptID(pkSingle)); SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSig), empty); BOOST_CHECK(combined.scriptSig == scriptSig); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), empty, SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSig); scriptSigCopy = scriptSig; SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSigCopy), SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSigCopy || combined.scriptSig == scriptSig); // dummy scriptSigCopy with placeholder, should always choose // non-placeholder: scriptSigCopy = CScript() << OP_0 << std::vector(pkSingle.begin(), pkSingle.end()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSigCopy), SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSig); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSig), SignatureData(scriptSigCopy)); BOOST_CHECK(combined.scriptSig == scriptSig); // Hardest case: Multisig 2-of-3 scriptPubKey = GetScriptForMultisig(2, pubkeys); keystore.AddCScript(scriptPubKey); SignSignature(keystore, CTransaction(txFrom), txTo, 0, SigHashType()); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(scriptSig), empty); BOOST_CHECK(combined.scriptSig == scriptSig); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), empty, SignatureData(scriptSig)); BOOST_CHECK(combined.scriptSig == scriptSig); // A couple of partially-signed versions: std::vector sig1; uint256 hash1 = SignatureHash(scriptPubKey, CTransaction(txTo), 0, SigHashType(), Amount::zero()); BOOST_CHECK(keys[0].Sign(hash1, sig1)); sig1.push_back(SIGHASH_ALL); std::vector sig2; uint256 hash2 = SignatureHash( scriptPubKey, CTransaction(txTo), 0, SigHashType().withBaseType(BaseSigHashType::NONE), Amount::zero()); BOOST_CHECK(keys[1].Sign(hash2, sig2)); sig2.push_back(SIGHASH_NONE); std::vector sig3; uint256 hash3 = SignatureHash( scriptPubKey, CTransaction(txTo), 0, SigHashType().withBaseType(BaseSigHashType::SINGLE), Amount::zero()); BOOST_CHECK(keys[2].Sign(hash3, sig3)); sig3.push_back(SIGHASH_SINGLE); // Not fussy about order (or even existence) of placeholders or signatures: CScript partial1a = CScript() << OP_0 << sig1 << OP_0; CScript partial1b = CScript() << OP_0 << OP_0 << sig1; CScript partial2a = CScript() << OP_0 << sig2; CScript partial2b = CScript() << sig2 << OP_0; CScript partial3a = CScript() << sig3; CScript partial3b = CScript() << OP_0 << OP_0 << sig3; CScript partial3c = CScript() << OP_0 << sig3 << OP_0; CScript complete12 = CScript() << OP_0 << sig1 << sig2; CScript complete13 = CScript() << OP_0 << sig1 << sig3; CScript complete23 = CScript() << OP_0 << sig2 << sig3; combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial1a), SignatureData(partial1b)); BOOST_CHECK(combined.scriptSig == partial1a); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial1a), SignatureData(partial2a)); BOOST_CHECK(combined.scriptSig == complete12); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial2a), SignatureData(partial1a)); BOOST_CHECK(combined.scriptSig == complete12); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial1b), SignatureData(partial2b)); BOOST_CHECK(combined.scriptSig == complete12); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial3b), SignatureData(partial1b)); BOOST_CHECK(combined.scriptSig == complete13); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial2a), SignatureData(partial3a)); BOOST_CHECK(combined.scriptSig == complete23); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial3b), SignatureData(partial2b)); BOOST_CHECK(combined.scriptSig == complete23); combined = CombineSignatures( scriptPubKey, MutableTransactionSignatureChecker(&txTo, 0, amount), SignatureData(partial3b), SignatureData(partial3a)); BOOST_CHECK(combined.scriptSig == partial3c); } BOOST_AUTO_TEST_CASE(script_standard_push) { ScriptError err; for (int i = 0; i < 67000; i++) { CScript script; script << i; BOOST_CHECK_MESSAGE(script.IsPushOnly(), "Number " << i << " is not pure push."); BOOST_CHECK_MESSAGE(VerifyScript(script, CScript() << OP_1, SCRIPT_VERIFY_MINIMALDATA, BaseSignatureChecker(), &err), "Number " << i << " push is not minimal data."); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } for (unsigned int i = 0; i <= MAX_SCRIPT_ELEMENT_SIZE; i++) { std::vector data(i, '\111'); CScript script; script << data; BOOST_CHECK_MESSAGE(script.IsPushOnly(), "Length " << i << " is not pure push."); BOOST_CHECK_MESSAGE(VerifyScript(script, CScript() << OP_1, SCRIPT_VERIFY_MINIMALDATA, BaseSignatureChecker(), &err), "Length " << i << " push is not minimal data."); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } } BOOST_AUTO_TEST_CASE(script_IsPushOnly_on_invalid_scripts) { // IsPushOnly returns false when given a script containing only pushes that // are invalid due to truncation. IsPushOnly() is consensus critical because // P2SH evaluation uses it, although this specific behavior should not be // consensus critical as the P2SH evaluation would fail first due to the // invalid push. Still, it doesn't hurt to test it explicitly. static const uint8_t direct[] = {1}; BOOST_CHECK(!CScript(direct, direct + sizeof(direct)).IsPushOnly()); } BOOST_AUTO_TEST_CASE(script_GetScriptAsm) { BOOST_CHECK_EQUAL("OP_CHECKLOCKTIMEVERIFY", ScriptToAsmStr(CScript() << OP_NOP2, true)); BOOST_CHECK_EQUAL( "OP_CHECKLOCKTIMEVERIFY", ScriptToAsmStr(CScript() << OP_CHECKLOCKTIMEVERIFY, true)); BOOST_CHECK_EQUAL("OP_CHECKLOCKTIMEVERIFY", ScriptToAsmStr(CScript() << OP_NOP2)); BOOST_CHECK_EQUAL("OP_CHECKLOCKTIMEVERIFY", ScriptToAsmStr(CScript() << OP_CHECKLOCKTIMEVERIFY)); std::string derSig("304502207fa7a6d1e0ee81132a269ad84e68d695483745cde8b541e" "3bf630749894e342a022100c1f7ab20e13e22fb95281a870f3dcf38" "d782e53023ee313d741ad0cfbc0c5090"); std::string pubKey( "03b0da749730dc9b4b1f4a14d6902877a92541f5368778853d9c4a0cb7802dcfb2"); std::vector vchPubKey = ToByteVector(ParseHex(pubKey)); BOOST_CHECK_EQUAL( derSig + "00 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "00")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "80 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "80")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[ALL] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "01")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[ALL|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "81")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[ALL|FORKID] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "41")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[ALL|FORKID|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "c1")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[NONE] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "02")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[NONE|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "82")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[NONE|FORKID] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "42")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[NONE|FORKID|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "c2")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[SINGLE] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "03")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[SINGLE|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "83")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[SINGLE|FORKID] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "43")) << vchPubKey, true)); BOOST_CHECK_EQUAL( derSig + "[SINGLE|FORKID|ANYONECANPAY] " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "c3")) << vchPubKey, true)); BOOST_CHECK_EQUAL(derSig + "00 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "00")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "80 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "80")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "01 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "01")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "02 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "02")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "03 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "03")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "81 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "81")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "82 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "82")) << vchPubKey)); BOOST_CHECK_EQUAL(derSig + "83 " + pubKey, ScriptToAsmStr(CScript() << ToByteVector(ParseHex(derSig + "83")) << vchPubKey)); } static CScript ScriptFromHex(const char *hex) { std::vector data = ParseHex(hex); return CScript(data.begin(), data.end()); } BOOST_AUTO_TEST_CASE(script_FindAndDelete) { // Exercise the FindAndDelete functionality CScript s; CScript d; CScript expect; s = CScript() << OP_1 << OP_2; // delete nothing should be a no-op d = CScript(); expect = s; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); s = CScript() << OP_1 << OP_2 << OP_3; d = CScript() << OP_2; expect = CScript() << OP_1 << OP_3; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = CScript() << OP_3 << OP_1 << OP_3 << OP_3 << OP_4 << OP_3; d = CScript() << OP_3; expect = CScript() << OP_1 << OP_4; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 4); BOOST_CHECK(s == expect); // PUSH 0x02ff03 onto stack s = ScriptFromHex("0302ff03"); d = ScriptFromHex("0302ff03"); expect = CScript(); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); // PUSH 0x2ff03 PUSH 0x2ff03 s = ScriptFromHex("0302ff030302ff03"); d = ScriptFromHex("0302ff03"); expect = CScript(); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 2); BOOST_CHECK(s == expect); s = ScriptFromHex("0302ff030302ff03"); d = ScriptFromHex("02"); expect = s; // FindAndDelete matches entire opcodes BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); s = ScriptFromHex("0302ff030302ff03"); d = ScriptFromHex("ff"); expect = s; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); // This is an odd edge case: strip of the push-three-bytes prefix, leaving // 02ff03 which is push-two-bytes: s = ScriptFromHex("0302ff030302ff03"); d = ScriptFromHex("03"); expect = CScript() << ParseHex("ff03") << ParseHex("ff03"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 2); BOOST_CHECK(s == expect); // Byte sequence that spans multiple opcodes: // PUSH(0xfeed) OP_1 OP_VERIFY s = ScriptFromHex("02feed5169"); d = ScriptFromHex("feed51"); expect = s; // doesn't match 'inside' opcodes BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); // PUSH(0xfeed) OP_1 OP_VERIFY s = ScriptFromHex("02feed5169"); d = ScriptFromHex("02feed51"); expect = ScriptFromHex("69"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = ScriptFromHex("516902feed5169"); d = ScriptFromHex("feed51"); expect = s; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 0); BOOST_CHECK(s == expect); s = ScriptFromHex("516902feed5169"); d = ScriptFromHex("02feed51"); expect = ScriptFromHex("516969"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = CScript() << OP_0 << OP_0 << OP_1 << OP_1; d = CScript() << OP_0 << OP_1; // FindAndDelete is single-pass expect = CScript() << OP_0 << OP_1; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = CScript() << OP_0 << OP_0 << OP_1 << OP_0 << OP_1 << OP_1; d = CScript() << OP_0 << OP_1; // FindAndDelete is single-pass expect = CScript() << OP_0 << OP_1; BOOST_CHECK_EQUAL(s.FindAndDelete(d), 2); BOOST_CHECK(s == expect); // Another weird edge case: // End with invalid push (not enough data)... s = ScriptFromHex("0003feed"); // ... can remove the invalid push d = ScriptFromHex("03feed"); expect = ScriptFromHex("00"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); s = ScriptFromHex("0003feed"); d = ScriptFromHex("00"); expect = ScriptFromHex("03feed"); BOOST_CHECK_EQUAL(s.FindAndDelete(d), 1); BOOST_CHECK(s == expect); } BOOST_AUTO_TEST_SUITE_END()