diff --git a/src/serialize.h b/src/serialize.h index 2a8887ac3..c729219a8 100644 --- a/src/serialize.h +++ b/src/serialize.h @@ -1,934 +1,912 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SERIALIZE_H #define BITCOIN_SERIALIZE_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const uint64_t MAX_SIZE = 0x02000000; /** * Dummy data type to identify deserializing constructors. * * By convention, a constructor of a type T with signature * * template T::T(deserialize_type, Stream& s) * * is a deserializing constructor, which builds the type by deserializing it * from s. If T contains const fields, this is likely the only way to do so. */ struct deserialize_type {}; constexpr deserialize_type deserialize{}; /** * Used to bypass the rule against non-const reference to temporary where it * makes sense with wrappers such as CFlatData or CTxDB */ template inline T &REF(const T &val) { return const_cast(val); } /** * Used to acquire a non-const pointer "this" to generate bodies of const * serialization operations from a template */ template inline T *NCONST_PTR(const T *val) { return const_cast(val); } /* * Lowest-level serialization and conversion. * @note Sizes of these types are verified in the tests */ template inline void ser_writedata8(Stream &s, uint8_t obj) { s.write((char *)&obj, 1); } template inline void ser_writedata16(Stream &s, uint16_t obj) { obj = htole16(obj); s.write((char *)&obj, 2); } template inline void ser_writedata32(Stream &s, uint32_t obj) { obj = htole32(obj); s.write((char *)&obj, 4); } template inline void ser_writedata32be(Stream &s, uint32_t obj) { obj = htobe32(obj); s.write((char *)&obj, 4); } template inline void ser_writedata64(Stream &s, uint64_t obj) { obj = htole64(obj); s.write((char *)&obj, 8); } template inline uint8_t ser_readdata8(Stream &s) { uint8_t obj; s.read((char *)&obj, 1); return obj; } template inline uint16_t ser_readdata16(Stream &s) { uint16_t obj; s.read((char *)&obj, 2); return le16toh(obj); } template inline uint32_t ser_readdata32(Stream &s) { uint32_t obj; s.read((char *)&obj, 4); return le32toh(obj); } template inline uint32_t ser_readdata32be(Stream &s) { uint32_t obj; s.read((char *)&obj, 4); return be32toh(obj); } template inline uint64_t ser_readdata64(Stream &s) { uint64_t obj; s.read((char *)&obj, 8); return le64toh(obj); } inline uint64_t ser_double_to_uint64(double x) { union { double x; uint64_t y; } tmp; tmp.x = x; return tmp.y; } inline uint32_t ser_float_to_uint32(float x) { union { float x; uint32_t y; } tmp; tmp.x = x; return tmp.y; } inline double ser_uint64_to_double(uint64_t y) { union { double x; uint64_t y; } tmp; tmp.y = y; return tmp.x; } inline float ser_uint32_to_float(uint32_t y) { union { float x; uint32_t y; } tmp; tmp.y = y; return tmp.x; } ///////////////////////////////////////////////////////////////// // // Templates for serializing to anything that looks like a stream, // i.e. anything that supports .read(char*, size_t) and .write(char*, size_t) // class CSizeComputer; enum { // primary actions SER_NETWORK = (1 << 0), SER_DISK = (1 << 1), SER_GETHASH = (1 << 2), }; -#define READWRITE(obj) (::SerReadWrite(s, (obj), ser_action)) -#define READWRITEMANY(...) (::SerReadWriteMany(s, ser_action, __VA_ARGS__)) +#define READWRITE(...) (::SerReadWriteMany(s, ser_action, __VA_ARGS__)) /** * Implement three methods for serializable objects. These are actually wrappers * over "SerializationOp" template, which implements the body of each class' * serialization code. Adding "ADD_SERIALIZE_METHODS" in the body of the class * causes these wrappers to be added as members. */ #define ADD_SERIALIZE_METHODS \ template void Serialize(Stream &s) const { \ NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize()); \ } \ template void Unserialize(Stream &s) { \ SerializationOp(s, CSerActionUnserialize()); \ } template inline void Serialize(Stream &s, char a) { ser_writedata8(s, a); } // TODO Get rid of bare char template inline void Serialize(Stream &s, int8_t a) { ser_writedata8(s, a); } template inline void Serialize(Stream &s, uint8_t a) { ser_writedata8(s, a); } template inline void Serialize(Stream &s, int16_t a) { ser_writedata16(s, a); } template inline void Serialize(Stream &s, uint16_t a) { ser_writedata16(s, a); } template inline void Serialize(Stream &s, int32_t a) { ser_writedata32(s, a); } template inline void Serialize(Stream &s, uint32_t a) { ser_writedata32(s, a); } template inline void Serialize(Stream &s, int64_t a) { ser_writedata64(s, a); } template inline void Serialize(Stream &s, uint64_t a) { ser_writedata64(s, a); } template inline void Serialize(Stream &s, float a) { ser_writedata32(s, ser_float_to_uint32(a)); } template inline void Serialize(Stream &s, double a) { ser_writedata64(s, ser_double_to_uint64(a)); } // TODO Get rid of bare char template inline void Unserialize(Stream &s, char &a) { a = ser_readdata8(s); } template inline void Unserialize(Stream &s, int8_t &a) { a = ser_readdata8(s); } template inline void Unserialize(Stream &s, uint8_t &a) { a = ser_readdata8(s); } template inline void Unserialize(Stream &s, int16_t &a) { a = ser_readdata16(s); } template inline void Unserialize(Stream &s, uint16_t &a) { a = ser_readdata16(s); } template inline void Unserialize(Stream &s, int32_t &a) { a = ser_readdata32(s); } template inline void Unserialize(Stream &s, uint32_t &a) { a = ser_readdata32(s); } template inline void Unserialize(Stream &s, int64_t &a) { a = ser_readdata64(s); } template inline void Unserialize(Stream &s, uint64_t &a) { a = ser_readdata64(s); } template inline void Unserialize(Stream &s, float &a) { a = ser_uint32_to_float(ser_readdata32(s)); } template inline void Unserialize(Stream &s, double &a) { a = ser_uint64_to_double(ser_readdata64(s)); } template inline void Serialize(Stream &s, bool a) { char f = a; ser_writedata8(s, f); } template inline void Unserialize(Stream &s, bool &a) { char f = ser_readdata8(s); a = f; } /** * Compact Size * size < 253 -- 1 byte * size <= USHRT_MAX -- 3 bytes (253 + 2 bytes) * size <= UINT_MAX -- 5 bytes (254 + 4 bytes) * size > UINT_MAX -- 9 bytes (255 + 8 bytes) */ inline uint32_t GetSizeOfCompactSize(uint64_t nSize) { if (nSize < 253) { return sizeof(uint8_t); } if (nSize <= std::numeric_limits::max()) { return sizeof(uint8_t) + sizeof(uint16_t); } if (nSize <= std::numeric_limits::max()) { return sizeof(uint8_t) + sizeof(uint32_t); } return sizeof(uint8_t) + sizeof(uint64_t); } inline void WriteCompactSize(CSizeComputer &os, uint64_t nSize); template void WriteCompactSize(Stream &os, uint64_t nSize) { if (nSize < 253) { ser_writedata8(os, nSize); } else if (nSize <= std::numeric_limits::max()) { ser_writedata8(os, 253); ser_writedata16(os, nSize); } else if (nSize <= std::numeric_limits::max()) { ser_writedata8(os, 254); ser_writedata32(os, nSize); } else { ser_writedata8(os, 255); ser_writedata64(os, nSize); } return; } template uint64_t ReadCompactSize(Stream &is) { uint8_t chSize = ser_readdata8(is); uint64_t nSizeRet = 0; if (chSize < 253) { nSizeRet = chSize; } else if (chSize == 253) { nSizeRet = ser_readdata16(is); if (nSizeRet < 253) { throw std::ios_base::failure("non-canonical ReadCompactSize()"); } } else if (chSize == 254) { nSizeRet = ser_readdata32(is); if (nSizeRet < 0x10000u) { throw std::ios_base::failure("non-canonical ReadCompactSize()"); } } else { nSizeRet = ser_readdata64(is); if (nSizeRet < 0x100000000ULL) { throw std::ios_base::failure("non-canonical ReadCompactSize()"); } } if (nSizeRet > MAX_SIZE) { throw std::ios_base::failure("ReadCompactSize(): size too large"); } return nSizeRet; } /** * Variable-length integers: bytes are a MSB base-128 encoding of the number. * The high bit in each byte signifies whether another digit follows. To make * sure the encoding is one-to-one, one is subtracted from all but the last * digit. Thus, the byte sequence a[] with length len, where all but the last * byte has bit 128 set, encodes the number: * * (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1)) * * Properties: * * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes) * * Every integer has exactly one encoding * * Encoding does not depend on size of original integer type * * No redundancy: every (infinite) byte sequence corresponds to a list * of encoded integers. * * 0: [0x00] 256: [0x81 0x00] * 1: [0x01] 16383: [0xFE 0x7F] * 127: [0x7F] 16384: [0xFF 0x00] * 128: [0x80 0x00] 16511: [0xFF 0x7F] * 255: [0x80 0x7F] 65535: [0x82 0xFE 0x7F] * 2^32: [0x8E 0xFE 0xFE 0xFF 0x00] */ template inline unsigned int GetSizeOfVarInt(I n) { int nRet = 0; while (true) { nRet++; if (n <= 0x7F) { return nRet; } n = (n >> 7) - 1; } } template inline void WriteVarInt(CSizeComputer &os, I n); template void WriteVarInt(Stream &os, I n) { uint8_t tmp[(sizeof(n) * 8 + 6) / 7]; int len = 0; while (true) { tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00); if (n <= 0x7F) { break; } n = (n >> 7) - 1; len++; } do { ser_writedata8(os, tmp[len]); } while (len--); } template I ReadVarInt(Stream &is) { I n = 0; while (true) { uint8_t chData = ser_readdata8(is); if (n > (std::numeric_limits::max() >> 7)) { throw std::ios_base::failure("ReadVarInt(): size too large"); } n = (n << 7) | (chData & 0x7F); if ((chData & 0x80) == 0) { return n; } if (n == std::numeric_limits::max()) { throw std::ios_base::failure("ReadVarInt(): size too large"); } n++; } } #define FLATDATA(obj) \ REF(CFlatData((char *)&(obj), (char *)&(obj) + sizeof(obj))) #define VARINT(obj) REF(WrapVarInt(REF(obj))) #define COMPACTSIZE(obj) REF(CCompactSize(REF(obj))) #define LIMITED_STRING(obj, n) REF(LimitedString(REF(obj))) /** * Wrapper for serializing arrays and POD. */ class CFlatData { protected: char *pbegin; char *pend; public: CFlatData(void *pbeginIn, void *pendIn) : pbegin((char *)pbeginIn), pend((char *)pendIn) {} template explicit CFlatData(std::vector &v) { pbegin = (char *)v.data(); pend = (char *)(v.data() + v.size()); } template explicit CFlatData(prevector &v) { pbegin = (char *)v.data(); pend = (char *)(v.data() + v.size()); } char *begin() { return pbegin; } const char *begin() const { return pbegin; } char *end() { return pend; } const char *end() const { return pend; } template void Serialize(Stream &s) const { s.write(pbegin, pend - pbegin); } template void Unserialize(Stream &s) { s.read(pbegin, pend - pbegin); } }; template class CVarInt { protected: I &n; public: explicit CVarInt(I &nIn) : n(nIn) {} template void Serialize(Stream &s) const { WriteVarInt(s, n); } template void Unserialize(Stream &s) { n = ReadVarInt(s); } }; class CCompactSize { protected: uint64_t &n; public: explicit CCompactSize(uint64_t &nIn) : n(nIn) {} template void Serialize(Stream &s) const { WriteCompactSize(s, n); } template void Unserialize(Stream &s) { n = ReadCompactSize(s); } }; template class LimitedString { protected: std::string &string; public: explicit LimitedString(std::string &_string) : string(_string) {} template void Unserialize(Stream &s) { size_t size = ReadCompactSize(s); if (size > Limit) { throw std::ios_base::failure("String length limit exceeded"); } string.resize(size); if (size != 0) { s.read((char *)&string[0], size); } } template void Serialize(Stream &s) const { WriteCompactSize(s, string.size()); if (!string.empty()) { s.write((char *)&string[0], string.size()); } } }; template CVarInt WrapVarInt(I &n) { return CVarInt(n); } /** * Forward declarations */ /** * string */ template void Serialize(Stream &os, const std::basic_string &str); template void Unserialize(Stream &is, std::basic_string &str); /** * prevector * prevectors of uint8_t are a special case and are intended to be serialized as * a single opaque blob. */ template void Serialize_impl(Stream &os, const prevector &v, const uint8_t &); template void Serialize_impl(Stream &os, const prevector &v, const V &); template inline void Serialize(Stream &os, const prevector &v); template void Unserialize_impl(Stream &is, prevector &v, const uint8_t &); template void Unserialize_impl(Stream &is, prevector &v, const V &); template inline void Unserialize(Stream &is, prevector &v); /** * vector * vectors of uint8_t are a special case and are intended to be serialized as a * single opaque blob. */ template void Serialize_impl(Stream &os, const std::vector &v, const uint8_t &); template void Serialize_impl(Stream &os, const std::vector &v, const V &); template inline void Serialize(Stream &os, const std::vector &v); template void Unserialize_impl(Stream &is, std::vector &v, const uint8_t &); template void Unserialize_impl(Stream &is, std::vector &v, const V &); template inline void Unserialize(Stream &is, std::vector &v); /** * pair */ template void Serialize(Stream &os, const std::pair &item); template void Unserialize(Stream &is, std::pair &item); /** * map */ template void Serialize(Stream &os, const std::map &m); template void Unserialize(Stream &is, std::map &m); /** * set */ template void Serialize(Stream &os, const std::set &m); template void Unserialize(Stream &is, std::set &m); /** * shared_ptr */ template void Serialize(Stream &os, const std::shared_ptr &p); template void Unserialize(Stream &os, std::shared_ptr &p); /** * unique_ptr */ template void Serialize(Stream &os, const std::unique_ptr &p); template void Unserialize(Stream &os, std::unique_ptr &p); /** * If none of the specialized versions above matched, default to calling member * function. */ template inline void Serialize(Stream &os, const T &a) { a.Serialize(os); } template inline void Unserialize(Stream &is, T &a) { a.Unserialize(is); } /** * string */ template void Serialize(Stream &os, const std::basic_string &str) { WriteCompactSize(os, str.size()); if (!str.empty()) { os.write((char *)&str[0], str.size() * sizeof(str[0])); } } template void Unserialize(Stream &is, std::basic_string &str) { size_t nSize = ReadCompactSize(is); str.resize(nSize); if (nSize != 0) { is.read((char *)&str[0], nSize * sizeof(str[0])); } } /** * prevector */ template void Serialize_impl(Stream &os, const prevector &v, const uint8_t &) { WriteCompactSize(os, v.size()); if (!v.empty()) { os.write((char *)&v[0], v.size() * sizeof(T)); } } template void Serialize_impl(Stream &os, const prevector &v, const V &) { WriteCompactSize(os, v.size()); for (const T &i : v) { ::Serialize(os, i); } } template inline void Serialize(Stream &os, const prevector &v) { Serialize_impl(os, v, T()); } template void Unserialize_impl(Stream &is, prevector &v, const uint8_t &) { // Limit size per read so bogus size value won't cause out of memory v.clear(); size_t nSize = ReadCompactSize(is); size_t i = 0; while (i < nSize) { size_t blk = std::min(nSize - i, size_t(1 + 4999999 / sizeof(T))); v.resize(i + blk); is.read((char *)&v[i], blk * sizeof(T)); i += blk; } } template void Unserialize_impl(Stream &is, prevector &v, const V &) { v.clear(); size_t nSize = ReadCompactSize(is); size_t i = 0; size_t nMid = 0; while (nMid < nSize) { nMid += 5000000 / sizeof(T); if (nMid > nSize) { nMid = nSize; } v.resize(nMid); for (; i < nMid; i++) { Unserialize(is, v[i]); } } } template inline void Unserialize(Stream &is, prevector &v) { Unserialize_impl(is, v, T()); } /** * vector */ template void Serialize_impl(Stream &os, const std::vector &v, const uint8_t &) { WriteCompactSize(os, v.size()); if (!v.empty()) { os.write((char *)&v[0], v.size() * sizeof(T)); } } template void Serialize_impl(Stream &os, const std::vector &v, const V &) { WriteCompactSize(os, v.size()); for (const T &i : v) { ::Serialize(os, i); } } template inline void Serialize(Stream &os, const std::vector &v) { Serialize_impl(os, v, T()); } template void Unserialize_impl(Stream &is, std::vector &v, const uint8_t &) { // Limit size per read so bogus size value won't cause out of memory v.clear(); size_t nSize = ReadCompactSize(is); size_t i = 0; while (i < nSize) { size_t blk = std::min(nSize - i, size_t(1 + 4999999 / sizeof(T))); v.resize(i + blk); is.read((char *)&v[i], blk * sizeof(T)); i += blk; } } template void Unserialize_impl(Stream &is, std::vector &v, const V &) { v.clear(); size_t nSize = ReadCompactSize(is); size_t i = 0; size_t nMid = 0; while (nMid < nSize) { nMid += 5000000 / sizeof(T); if (nMid > nSize) { nMid = nSize; } v.resize(nMid); for (; i < nMid; i++) { Unserialize(is, v[i]); } } } template inline void Unserialize(Stream &is, std::vector &v) { Unserialize_impl(is, v, T()); } /** * pair */ template void Serialize(Stream &os, const std::pair &item) { Serialize(os, item.first); Serialize(os, item.second); } template void Unserialize(Stream &is, std::pair &item) { Unserialize(is, item.first); Unserialize(is, item.second); } /** * map */ template void Serialize(Stream &os, const std::map &m) { WriteCompactSize(os, m.size()); for (const auto &entry : m) { Serialize(os, entry); } } template void Unserialize(Stream &is, std::map &m) { m.clear(); size_t nSize = ReadCompactSize(is); typename std::map::iterator mi = m.begin(); for (size_t i = 0; i < nSize; i++) { std::pair item; Unserialize(is, item); mi = m.insert(mi, item); } } /** * set */ template void Serialize(Stream &os, const std::set &m) { WriteCompactSize(os, m.size()); for (const K &i : m) { Serialize(os, i); } } template void Unserialize(Stream &is, std::set &m) { m.clear(); size_t nSize = ReadCompactSize(is); typename std::set::iterator it = m.begin(); for (size_t i = 0; i < nSize; i++) { K key; Unserialize(is, key); it = m.insert(it, key); } } /** * unique_ptr */ template void Serialize(Stream &os, const std::unique_ptr &p) { Serialize(os, *p); } template void Unserialize(Stream &is, std::unique_ptr &p) { p.reset(new T(deserialize, is)); } /** * shared_ptr */ template void Serialize(Stream &os, const std::shared_ptr &p) { Serialize(os, *p); } template void Unserialize(Stream &is, std::shared_ptr &p) { p = std::make_shared(deserialize, is); } /** * Support for ADD_SERIALIZE_METHODS and READWRITE macro */ struct CSerActionSerialize { constexpr bool ForRead() const { return false; } }; struct CSerActionUnserialize { constexpr bool ForRead() const { return true; } }; -template -inline void SerReadWrite(Stream &s, const T &obj, - CSerActionSerialize ser_action) { - ::Serialize(s, obj); -} - -template -inline void SerReadWrite(Stream &s, T &obj, CSerActionUnserialize ser_action) { - ::Unserialize(s, obj); -} - /** * ::GetSerializeSize implementations * * Computing the serialized size of objects is done through a special stream * object of type CSizeComputer, which only records the number of bytes written * to it. * * If your Serialize or SerializationOp method has non-trivial overhead for * serialization, it may be worthwhile to implement a specialized version for * CSizeComputer, which uses the s.seek() method to record bytes that would * be written instead. */ class CSizeComputer { protected: size_t nSize; const int nType; const int nVersion; public: CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {} void write(const char *psz, size_t _nSize) { this->nSize += _nSize; } /** Pretend _nSize bytes are written, without specifying them. */ void seek(size_t _nSize) { this->nSize += _nSize; } template CSizeComputer &operator<<(const T &obj) { ::Serialize(*this, obj); return (*this); } size_t size() const { return nSize; } int GetVersion() const { return nVersion; } int GetType() const { return nType; } }; template void SerializeMany(Stream &s) {} -template -void SerializeMany(Stream &s, Arg &&arg) { - ::Serialize(s, std::forward(arg)); -} - template void SerializeMany(Stream &s, Arg &&arg, Args &&... args) { ::Serialize(s, std::forward(arg)); ::SerializeMany(s, std::forward(args)...); } template inline void UnserializeMany(Stream &s) {} -template -inline void UnserializeMany(Stream &s, Arg &arg) { - ::Unserialize(s, arg); -} - template inline void UnserializeMany(Stream &s, Arg &arg, Args &... args) { ::Unserialize(s, arg); ::UnserializeMany(s, args...); } template inline void SerReadWriteMany(Stream &s, CSerActionSerialize ser_action, Args &&... args) { ::SerializeMany(s, std::forward(args)...); } template inline void SerReadWriteMany(Stream &s, CSerActionUnserialize ser_action, Args &... args) { ::UnserializeMany(s, args...); } template inline void WriteVarInt(CSizeComputer &s, I n) { s.seek(GetSizeOfVarInt(n)); } inline void WriteCompactSize(CSizeComputer &s, uint64_t nSize) { s.seek(GetSizeOfCompactSize(nSize)); } template size_t GetSerializeSize(const T &t, int nType, int nVersion = 0) { return (CSizeComputer(nType, nVersion) << t).size(); } template size_t GetSerializeSize(const S &s, const T &t) { return (CSizeComputer(s.GetType(), s.GetVersion()) << t).size(); } #endif // BITCOIN_SERIALIZE_H diff --git a/src/test/serialize_tests.cpp b/src/test/serialize_tests.cpp index fc2fe33cd..c27688309 100644 --- a/src/test/serialize_tests.cpp +++ b/src/test/serialize_tests.cpp @@ -1,433 +1,433 @@ // Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include BOOST_FIXTURE_TEST_SUITE(serialize_tests, BasicTestingSetup) class CSerializeMethodsTestSingle { protected: int intval; bool boolval; std::string stringval; const char *charstrval; CTransactionRef txval; public: CSerializeMethodsTestSingle() = default; CSerializeMethodsTestSingle(int intvalin, bool boolvalin, std::string stringvalin, const char *charstrvalin, CTransaction txvalin) : intval(intvalin), boolval(boolvalin), stringval(std::move(stringvalin)), charstrval(charstrvalin), txval(MakeTransactionRef(txvalin)) {} ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(intval); READWRITE(boolval); READWRITE(stringval); READWRITE(FLATDATA(charstrval)); READWRITE(txval); } bool operator==(const CSerializeMethodsTestSingle &rhs) { return intval == rhs.intval && boolval == rhs.boolval && stringval == rhs.stringval && strcmp(charstrval, rhs.charstrval) == 0 && *txval == *rhs.txval; } }; class CSerializeMethodsTestMany : public CSerializeMethodsTestSingle { public: using CSerializeMethodsTestSingle::CSerializeMethodsTestSingle; ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { - READWRITEMANY(intval, boolval, stringval, FLATDATA(charstrval), txval); + READWRITE(intval, boolval, stringval, FLATDATA(charstrval), txval); } }; BOOST_AUTO_TEST_CASE(sizes) { BOOST_CHECK_EQUAL(sizeof(char), GetSerializeSize(char(0), 0)); BOOST_CHECK_EQUAL(sizeof(int8_t), GetSerializeSize(int8_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(uint8_t), GetSerializeSize(uint8_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(int16_t), GetSerializeSize(int16_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(uint16_t), GetSerializeSize(uint16_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(int32_t), GetSerializeSize(int32_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(uint32_t), GetSerializeSize(uint32_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(int64_t), GetSerializeSize(int64_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(uint64_t), GetSerializeSize(uint64_t(0), 0)); BOOST_CHECK_EQUAL(sizeof(float), GetSerializeSize(float(0), 0)); BOOST_CHECK_EQUAL(sizeof(double), GetSerializeSize(double(0), 0)); // Bool is serialized as char BOOST_CHECK_EQUAL(sizeof(char), GetSerializeSize(bool(0), 0)); // Sanity-check GetSerializeSize and c++ type matching BOOST_CHECK_EQUAL(GetSerializeSize(char(0), 0), 1); BOOST_CHECK_EQUAL(GetSerializeSize(int8_t(0), 0), 1); BOOST_CHECK_EQUAL(GetSerializeSize(uint8_t(0), 0), 1); BOOST_CHECK_EQUAL(GetSerializeSize(int16_t(0), 0), 2); BOOST_CHECK_EQUAL(GetSerializeSize(uint16_t(0), 0), 2); BOOST_CHECK_EQUAL(GetSerializeSize(int32_t(0), 0), 4); BOOST_CHECK_EQUAL(GetSerializeSize(uint32_t(0), 0), 4); BOOST_CHECK_EQUAL(GetSerializeSize(int64_t(0), 0), 8); BOOST_CHECK_EQUAL(GetSerializeSize(uint64_t(0), 0), 8); BOOST_CHECK_EQUAL(GetSerializeSize(float(0), 0), 4); BOOST_CHECK_EQUAL(GetSerializeSize(double(0), 0), 8); BOOST_CHECK_EQUAL(GetSerializeSize(bool(0), 0), 1); } BOOST_AUTO_TEST_CASE(floats_conversion) { // Choose values that map unambiguously to binary floating point to avoid // rounding issues at the compiler side. BOOST_CHECK_EQUAL(ser_uint32_to_float(0x00000000), 0.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x3f000000), 0.5F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x3f800000), 1.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x40000000), 2.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x40800000), 4.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x44444444), 785.066650390625F); BOOST_CHECK_EQUAL(ser_float_to_uint32(0.0F), 0x00000000); BOOST_CHECK_EQUAL(ser_float_to_uint32(0.5F), 0x3f000000); BOOST_CHECK_EQUAL(ser_float_to_uint32(1.0F), 0x3f800000); BOOST_CHECK_EQUAL(ser_float_to_uint32(2.0F), 0x40000000); BOOST_CHECK_EQUAL(ser_float_to_uint32(4.0F), 0x40800000); BOOST_CHECK_EQUAL(ser_float_to_uint32(785.066650390625F), 0x44444444); } BOOST_AUTO_TEST_CASE(doubles_conversion) { // Choose values that map unambiguously to binary floating point to avoid // rounding issues at the compiler side. BOOST_CHECK_EQUAL(ser_uint64_to_double(0x0000000000000000ULL), 0.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x3fe0000000000000ULL), 0.5); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x3ff0000000000000ULL), 1.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x4000000000000000ULL), 2.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x4010000000000000ULL), 4.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x4088888880000000ULL), 785.066650390625); BOOST_CHECK_EQUAL(ser_double_to_uint64(0.0), 0x0000000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(0.5), 0x3fe0000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(1.0), 0x3ff0000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(2.0), 0x4000000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(4.0), 0x4010000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(785.066650390625), 0x4088888880000000ULL); } /* Python code to generate the below hashes: def reversed_hex(x): return binascii.hexlify(''.join(reversed(x))) def dsha256(x): return hashlib.sha256(hashlib.sha256(x).digest()).digest() reversed_hex(dsha256(''.join(struct.pack('> j; BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } BOOST_AUTO_TEST_CASE(doubles) { CDataStream ss(SER_DISK, 0); // encode for (int i = 0; i < 1000; i++) { ss << double(i); } BOOST_CHECK(Hash(ss.begin(), ss.end()) == uint256S("43d0c82591953c4eafe114590d392676a01585d25b25d433557f0" "d7878b23f96")); // decode for (int i = 0; i < 1000; i++) { double j; ss >> j; BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } BOOST_AUTO_TEST_CASE(varints) { // encode CDataStream ss(SER_DISK, 0); CDataStream::size_type size = 0; for (int i = 0; i < 100000; i++) { ss << VARINT(i); size += ::GetSerializeSize(VARINT(i), 0, 0); BOOST_CHECK(size == ss.size()); } for (uint64_t i = 0; i < 100000000000ULL; i += 999999937) { ss << VARINT(i); size += ::GetSerializeSize(VARINT(i), 0, 0); BOOST_CHECK(size == ss.size()); } // decode for (int i = 0; i < 100000; i++) { int j = -1; ss >> VARINT(j); BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } for (uint64_t i = 0; i < 100000000000ULL; i += 999999937) { uint64_t j = -1; ss >> VARINT(j); BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } BOOST_AUTO_TEST_CASE(varints_bitpatterns) { CDataStream ss(SER_DISK, 0); ss << VARINT(0); BOOST_CHECK_EQUAL(HexStr(ss), "00"); ss.clear(); ss << VARINT(0x7f); BOOST_CHECK_EQUAL(HexStr(ss), "7f"); ss.clear(); ss << VARINT((int8_t)0x7f); BOOST_CHECK_EQUAL(HexStr(ss), "7f"); ss.clear(); ss << VARINT(0x80); BOOST_CHECK_EQUAL(HexStr(ss), "8000"); ss.clear(); ss << VARINT((uint8_t)0x80); BOOST_CHECK_EQUAL(HexStr(ss), "8000"); ss.clear(); ss << VARINT(0x1234); BOOST_CHECK_EQUAL(HexStr(ss), "a334"); ss.clear(); ss << VARINT((int16_t)0x1234); BOOST_CHECK_EQUAL(HexStr(ss), "a334"); ss.clear(); ss << VARINT(0xffff); BOOST_CHECK_EQUAL(HexStr(ss), "82fe7f"); ss.clear(); ss << VARINT((uint16_t)0xffff); BOOST_CHECK_EQUAL(HexStr(ss), "82fe7f"); ss.clear(); ss << VARINT(0x123456); BOOST_CHECK_EQUAL(HexStr(ss), "c7e756"); ss.clear(); ss << VARINT((int32_t)0x123456); BOOST_CHECK_EQUAL(HexStr(ss), "c7e756"); ss.clear(); ss << VARINT(0x80123456U); BOOST_CHECK_EQUAL(HexStr(ss), "86ffc7e756"); ss.clear(); ss << VARINT((uint32_t)0x80123456U); BOOST_CHECK_EQUAL(HexStr(ss), "86ffc7e756"); ss.clear(); ss << VARINT(0xffffffff); BOOST_CHECK_EQUAL(HexStr(ss), "8efefefe7f"); ss.clear(); ss << VARINT(0x7fffffffffffffffLL); BOOST_CHECK_EQUAL(HexStr(ss), "fefefefefefefefe7f"); ss.clear(); ss << VARINT(0xffffffffffffffffULL); BOOST_CHECK_EQUAL(HexStr(ss), "80fefefefefefefefe7f"); ss.clear(); } static bool isTooLargeException(const std::ios_base::failure &ex) { std::ios_base::failure expectedException( "ReadCompactSize(): size too large"); // The string returned by what() can be different for different platforms. // Instead of directly comparing the ex.what() with an expected string, // create an instance of exception to see if ex.what() matches the expected // explanatory string returned by the exception instance. return strcmp(expectedException.what(), ex.what()) == 0; } BOOST_AUTO_TEST_CASE(compactsize) { CDataStream ss(SER_DISK, 0); std::vector::size_type i, j; for (i = 1; i <= MAX_SIZE; i *= 2) { WriteCompactSize(ss, i - 1); WriteCompactSize(ss, i); } for (i = 1; i <= MAX_SIZE; i *= 2) { j = ReadCompactSize(ss); BOOST_CHECK_MESSAGE((i - 1) == j, "decoded:" << j << " expected:" << (i - 1)); j = ReadCompactSize(ss); BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } WriteCompactSize(ss, MAX_SIZE); BOOST_CHECK_EQUAL(ReadCompactSize(ss), MAX_SIZE); WriteCompactSize(ss, MAX_SIZE + 1); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isTooLargeException); WriteCompactSize(ss, std::numeric_limits::max()); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isTooLargeException); WriteCompactSize(ss, std::numeric_limits::max()); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isTooLargeException); } static bool isCanonicalException(const std::ios_base::failure &ex) { std::ios_base::failure expectedException("non-canonical ReadCompactSize()"); // The string returned by what() can be different for different platforms. // Instead of directly comparing the ex.what() with an expected string, // create an instance of exception to see if ex.what() matches the expected // explanatory string returned by the exception instance. return strcmp(expectedException.what(), ex.what()) == 0; } BOOST_AUTO_TEST_CASE(noncanonical) { // Write some non-canonical CompactSize encodings, and make sure an // exception is thrown when read back. CDataStream ss(SER_DISK, 0); std::vector::size_type n; // zero encoded with three bytes: ss.write("\xfd\x00\x00", 3); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0xfc encoded with three bytes: ss.write("\xfd\xfc\x00", 3); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0xfd encoded with three bytes is OK: ss.write("\xfd\xfd\x00", 3); n = ReadCompactSize(ss); BOOST_CHECK(n == 0xfd); // zero encoded with five bytes: ss.write("\xfe\x00\x00\x00\x00", 5); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0xffff encoded with five bytes: ss.write("\xfe\xff\xff\x00\x00", 5); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // zero encoded with nine bytes: ss.write("\xff\x00\x00\x00\x00\x00\x00\x00\x00", 9); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0x01ffffff encoded with nine bytes: ss.write("\xff\xff\xff\xff\x01\x00\x00\x00\x00", 9); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); } BOOST_AUTO_TEST_CASE(insert_delete) { // Test inserting/deleting bytes. CDataStream ss(SER_DISK, 0); BOOST_CHECK_EQUAL(ss.size(), 0); ss.write("\x00\x01\x02\xff", 4); BOOST_CHECK_EQUAL(ss.size(), 4); char c = (char)11; // Inserting at beginning/end/middle: ss.insert(ss.begin(), c); BOOST_CHECK_EQUAL(ss.size(), 5); BOOST_CHECK_EQUAL(ss[0], c); BOOST_CHECK_EQUAL(ss[1], 0); ss.insert(ss.end(), c); BOOST_CHECK_EQUAL(ss.size(), 6); BOOST_CHECK_EQUAL(ss[4], (char)0xff); BOOST_CHECK_EQUAL(ss[5], c); ss.insert(ss.begin() + 2, c); BOOST_CHECK_EQUAL(ss.size(), 7); BOOST_CHECK_EQUAL(ss[2], c); // Delete at beginning/end/middle ss.erase(ss.begin()); BOOST_CHECK_EQUAL(ss.size(), 6); BOOST_CHECK_EQUAL(ss[0], 0); ss.erase(ss.begin() + ss.size() - 1); BOOST_CHECK_EQUAL(ss.size(), 5); BOOST_CHECK_EQUAL(ss[4], (char)0xff); ss.erase(ss.begin() + 1); BOOST_CHECK_EQUAL(ss.size(), 4); BOOST_CHECK_EQUAL(ss[0], 0); BOOST_CHECK_EQUAL(ss[1], 1); BOOST_CHECK_EQUAL(ss[2], 2); BOOST_CHECK_EQUAL(ss[3], (char)0xff); // Make sure GetAndClear does the right thing: CSerializeData d; ss.GetAndClear(d); BOOST_CHECK_EQUAL(ss.size(), 0); } BOOST_AUTO_TEST_CASE(class_methods) { int intval(100); bool boolval(true); std::string stringval("testing"); const char *charstrval("testing charstr"); CMutableTransaction txval; CSerializeMethodsTestSingle methodtest1(intval, boolval, stringval, charstrval, CTransaction(txval)); CSerializeMethodsTestMany methodtest2(intval, boolval, stringval, charstrval, CTransaction(txval)); CSerializeMethodsTestSingle methodtest3; CSerializeMethodsTestMany methodtest4; CDataStream ss(SER_DISK, PROTOCOL_VERSION); BOOST_CHECK(methodtest1 == methodtest2); ss << methodtest1; ss >> methodtest4; ss << methodtest2; ss >> methodtest3; BOOST_CHECK(methodtest1 == methodtest2); BOOST_CHECK(methodtest2 == methodtest3); BOOST_CHECK(methodtest3 == methodtest4); CDataStream ss2(SER_DISK, PROTOCOL_VERSION, intval, boolval, stringval, FLATDATA(charstrval), txval); ss2 >> methodtest3; BOOST_CHECK(methodtest3 == methodtest4); } BOOST_AUTO_TEST_SUITE_END()