diff --git a/src/init.cpp b/src/init.cpp
index 863c90c4f..0fabdf83a 100644
--- a/src/init.cpp
+++ b/src/init.cpp
@@ -1,3080 +1,3113 @@
 // Copyright (c) 2009-2010 Satoshi Nakamoto
 // Copyright (c) 2009-2018 The Bitcoin Core developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #if defined(HAVE_CONFIG_H)
 #include <config/bitcoin-config.h>
 #endif
 
 #include <init.h>
 
 #include <addrman.h>
 #include <amount.h>
 #include <avalanche/avalanche.h>
 #include <avalanche/processor.h>
 #include <avalanche/proof.h> // For AVALANCHE_LEGACY_PROOF_DEFAULT
 #include <avalanche/validation.h>
 #include <banman.h>
 #include <blockdb.h>
 #include <blockfilter.h>
 #include <chain.h>
 #include <chainparams.h>
 #include <checkpoints.h>
 #include <compat/sanity.h>
 #include <config.h>
 #include <consensus/validation.h>
 #include <currencyunit.h>
 #include <flatfile.h>
 #include <fs.h>
 #include <hash.h>
 #include <httprpc.h>
 #include <httpserver.h>
 #include <index/blockfilterindex.h>
 #include <index/txindex.h>
 #include <interfaces/chain.h>
 #include <interfaces/node.h>
 #include <key.h>
 #include <miner.h>
 #include <net.h>
 #include <net_permissions.h>
 #include <net_processing.h>
 #include <netbase.h>
 #include <network.h>
 #include <node/context.h>
 #include <node/ui_interface.h>
 #include <policy/mempool.h>
 #include <policy/policy.h>
 #include <policy/settings.h>
 #include <rpc/blockchain.h>
 #include <rpc/register.h>
 #include <rpc/server.h>
 #include <rpc/util.h>
 #include <scheduler.h>
 #include <script/scriptcache.h>
 #include <script/sigcache.h>
 #include <script/standard.h>
 #include <shutdown.h>
 #include <sync.h>
 #include <timedata.h>
 #include <torcontrol.h>
 #include <txdb.h>
 #include <txmempool.h>
 #include <util/asmap.h>
 #include <util/check.h>
 #include <util/moneystr.h>
 #include <util/string.h>
 #include <util/threadnames.h>
 #include <util/translation.h>
 #include <validation.h>
 #include <validationinterface.h>
 #include <walletinitinterface.h>
 
 #include <boost/algorithm/string/replace.hpp>
 #include <boost/signals2/signal.hpp>
 #include <boost/thread/thread.hpp>
 
 #if ENABLE_ZMQ
 #include <zmq/zmqabstractnotifier.h>
 #include <zmq/zmqnotificationinterface.h>
 #include <zmq/zmqrpc.h>
 #endif
 
 #ifndef WIN32
 #include <attributes.h>
 #include <cerrno>
 #include <csignal>
 #include <sys/stat.h>
 #endif
 #include <cstdint>
 #include <cstdio>
 #include <functional>
 #include <set>
 
 static const bool DEFAULT_PROXYRANDOMIZE = true;
 static const bool DEFAULT_REST_ENABLE = false;
 static const bool DEFAULT_STOPAFTERBLOCKIMPORT = false;
 
 #ifdef WIN32
 // Win32 LevelDB doesn't use filedescriptors, and the ones used for accessing
 // block files don't count towards the fd_set size limit anyway.
 #define MIN_CORE_FILEDESCRIPTORS 0
 #else
 #define MIN_CORE_FILEDESCRIPTORS 150
 #endif
 
 static const char *DEFAULT_ASMAP_FILENAME = "ip_asn.map";
 
 /**
  * The PID file facilities.
  */
 static const char *BITCOIN_PID_FILENAME = "bitcoind.pid";
 
 static fs::path GetPidFile(const ArgsManager &args) {
     return AbsPathForConfigVal(
         fs::path(args.GetArg("-pid", BITCOIN_PID_FILENAME)));
 }
 
 NODISCARD static bool CreatePidFile(const ArgsManager &args) {
     fsbridge::ofstream file{GetPidFile(args)};
     if (file) {
 #ifdef WIN32
         tfm::format(file, "%d\n", GetCurrentProcessId());
 #else
         tfm::format(file, "%d\n", getpid());
 #endif
         return true;
     } else {
         return InitError(strprintf(_("Unable to create the PID file '%s': %s"),
                                    GetPidFile(args).string(),
                                    std::strerror(errno)));
     }
 }
 
 //////////////////////////////////////////////////////////////////////////////
 //
 // Shutdown
 //
 
 //
 // Thread management and startup/shutdown:
 //
 // The network-processing threads are all part of a thread group created by
 // AppInit() or the Qt main() function.
 //
 // A clean exit happens when StartShutdown() or the SIGTERM signal handler sets
 // fRequestShutdown, which makes main thread's WaitForShutdown() interrupts the
 // thread group.
 // And then, WaitForShutdown() makes all other on-going threads in the thread
 // group join the main thread.
 // Shutdown() is then called to clean up database connections, and stop other
 // threads that should only be stopped after the main network-processing threads
 // have exited.
 //
 // Shutdown for Qt is very similar, only it uses a QTimer to detect
 // ShutdownRequested() getting set, and then does the normal Qt shutdown thing.
 //
 
 static std::unique_ptr<ECCVerifyHandle> globalVerifyHandle;
 
 static std::thread g_load_block;
 
 static boost::thread_group threadGroup;
 
 void Interrupt(NodeContext &node) {
     InterruptHTTPServer();
     InterruptHTTPRPC();
     InterruptRPC();
     InterruptREST();
     InterruptTorControl();
     InterruptMapPort();
     if (g_avalanche) {
         // Avalanche needs to be stopped before we interrupt the thread group as
         // the scheduler will stop working then.
         g_avalanche->stopEventLoop();
     }
     if (node.connman) {
         node.connman->Interrupt();
     }
     if (g_txindex) {
         g_txindex->Interrupt();
     }
     ForEachBlockFilterIndex([](BlockFilterIndex &index) { index.Interrupt(); });
 }
 
 void Shutdown(NodeContext &node) {
     static Mutex g_shutdown_mutex;
     TRY_LOCK(g_shutdown_mutex, lock_shutdown);
     if (!lock_shutdown) {
         return;
     }
     LogPrintf("%s: In progress...\n", __func__);
     Assert(node.args);
 
     /// Note: Shutdown() must be able to handle cases in which initialization
     /// failed part of the way, for example if the data directory was found to
     /// be locked. Be sure that anything that writes files or flushes caches
     /// only does this if the respective module was initialized.
     util::ThreadRename("shutoff");
     if (node.mempool) {
         node.mempool->AddTransactionsUpdated(1);
     }
 
     StopHTTPRPC();
     StopREST();
     StopRPC();
     StopHTTPServer();
     for (const auto &client : node.chain_clients) {
         client->flush();
     }
     StopMapPort();
 
     // Because avalanche and the network depend on each other, it is important
     // to shut them down in this order:
     // 1. Stop avalanche event loop.
     // 2. Shutdown network processing.
     // 3. Destroy avalanche::Processor.
     // 4. Destroy CConnman
     if (g_avalanche) {
         g_avalanche->stopEventLoop();
     }
 
     // Because these depend on each-other, we make sure that neither can be
     // using the other before destroying them.
     if (node.peerman) {
         UnregisterValidationInterface(node.peerman.get());
     }
     // Follow the lock order requirements:
     // * CheckForStaleTipAndEvictPeers locks cs_main before indirectly calling
     //   GetExtraOutboundCount which locks cs_vNodes.
     // * ProcessMessage locks cs_main and g_cs_orphans before indirectly calling
     //   ForEachNode which locks cs_vNodes.
     // * CConnman::Stop calls DeleteNode, which calls FinalizeNode, which locks
     //   cs_main and calls EraseOrphansFor, which locks g_cs_orphans.
     //
     // Thus the implicit locking order requirement is:
     // (1) cs_main, (2) g_cs_orphans, (3) cs_vNodes.
     if (node.connman) {
         node.connman->StopThreads();
         LOCK2(::cs_main, ::g_cs_orphans);
         node.connman->StopNodes();
     }
 
     StopTorControl();
 
     // After everything has been shut down, but before things get flushed, stop
     // the CScheduler/checkqueue, threadGroup and load block thread.
     if (node.scheduler) {
         node.scheduler->stop();
     }
     if (g_load_block.joinable()) {
         g_load_block.join();
     }
     threadGroup.interrupt_all();
     threadGroup.join_all();
 
     // After the threads that potentially access these pointers have been
     // stopped, destruct and reset all to nullptr.
     node.peerman.reset();
 
     // Destroy various global instances
     g_avalanche.reset();
     node.connman.reset();
     node.banman.reset();
 
     if (node.mempool && node.mempool->IsLoaded() &&
         node.args->GetArg("-persistmempool", DEFAULT_PERSIST_MEMPOOL)) {
         DumpMempool(*node.mempool);
     }
 
     // FlushStateToDisk generates a ChainStateFlushed callback, which we should
     // avoid missing
     if (node.chainman) {
         LOCK(cs_main);
         for (CChainState *chainstate : node.chainman->GetAll()) {
             if (chainstate->CanFlushToDisk()) {
                 chainstate->ForceFlushStateToDisk();
             }
         }
     }
 
     // After there are no more peers/RPC left to give us new data which may
     // generate CValidationInterface callbacks, flush them...
     GetMainSignals().FlushBackgroundCallbacks();
 
     // Stop and delete all indexes only after flushing background callbacks.
     if (g_txindex) {
         g_txindex->Stop();
         g_txindex.reset();
     }
     ForEachBlockFilterIndex([](BlockFilterIndex &index) { index.Stop(); });
     DestroyAllBlockFilterIndexes();
 
     // Any future callbacks will be dropped. This should absolutely be safe - if
     // missing a callback results in an unrecoverable situation, unclean
     // shutdown would too. The only reason to do the above flushes is to let the
     // wallet catch up with our current chain to avoid any strange pruning edge
     // cases and make next startup faster by avoiding rescan.
 
     if (node.chainman) {
         LOCK(cs_main);
         for (CChainState *chainstate : node.chainman->GetAll()) {
             if (chainstate->CanFlushToDisk()) {
                 chainstate->ForceFlushStateToDisk();
                 chainstate->ResetCoinsViews();
             }
         }
         pblocktree.reset();
     }
     for (const auto &client : node.chain_clients) {
         client->stop();
     }
 
 #if ENABLE_ZMQ
     if (g_zmq_notification_interface) {
         UnregisterValidationInterface(g_zmq_notification_interface);
         delete g_zmq_notification_interface;
         g_zmq_notification_interface = nullptr;
     }
 #endif
 
     node.chain_clients.clear();
     UnregisterAllValidationInterfaces();
     GetMainSignals().UnregisterBackgroundSignalScheduler();
     globalVerifyHandle.reset();
     ECC_Stop();
     node.mempool.reset();
     node.chainman = nullptr;
     node.scheduler.reset();
 
     try {
         if (!fs::remove(GetPidFile(*node.args))) {
             LogPrintf("%s: Unable to remove PID file: File does not exist\n",
                       __func__);
         }
     } catch (const fs::filesystem_error &e) {
         LogPrintf("%s: Unable to remove PID file: %s\n", __func__,
                   fsbridge::get_filesystem_error_message(e));
     }
 
     node.args = nullptr;
     LogPrintf("%s: done\n", __func__);
 }
 
 /**
  * Signal handlers are very limited in what they are allowed to do.
  * The execution context the handler is invoked in is not guaranteed,
  * so we restrict handler operations to just touching variables:
  */
 #ifndef WIN32
 static void HandleSIGTERM(int) {
     StartShutdown();
 }
 
 static void HandleSIGHUP(int) {
     LogInstance().m_reopen_file = true;
 }
 #else
 static BOOL WINAPI consoleCtrlHandler(DWORD dwCtrlType) {
     StartShutdown();
     Sleep(INFINITE);
     return true;
 }
 #endif
 
 #ifndef WIN32
 static void registerSignalHandler(int signal, void (*handler)(int)) {
     struct sigaction sa;
     sa.sa_handler = handler;
     sigemptyset(&sa.sa_mask);
     sa.sa_flags = 0;
     sigaction(signal, &sa, NULL);
 }
 #endif
 
 static boost::signals2::connection rpc_notify_block_change_connection;
 static void OnRPCStarted() {
     rpc_notify_block_change_connection = uiInterface.NotifyBlockTip_connect(
         std::bind(RPCNotifyBlockChange, std::placeholders::_2));
 }
 
 static void OnRPCStopped() {
     rpc_notify_block_change_connection.disconnect();
     RPCNotifyBlockChange(nullptr);
     g_best_block_cv.notify_all();
     LogPrint(BCLog::RPC, "RPC stopped.\n");
 }
 
 void SetupServerArgs(NodeContext &node) {
     assert(!node.args);
     node.args = &gArgs;
     ArgsManager &argsman = *node.args;
 
     SetupHelpOptions(argsman);
     SetupCurrencyUnitOptions(argsman);
     // server-only for now
     argsman.AddArg("-help-debug",
                    "Print help message with debugging options and exit", false,
                    OptionsCategory::DEBUG_TEST);
 
     const auto defaultBaseParams =
         CreateBaseChainParams(CBaseChainParams::MAIN);
     const auto testnetBaseParams =
         CreateBaseChainParams(CBaseChainParams::TESTNET);
     const auto regtestBaseParams =
         CreateBaseChainParams(CBaseChainParams::REGTEST);
     const auto defaultChainParams = CreateChainParams(CBaseChainParams::MAIN);
     const auto testnetChainParams =
         CreateChainParams(CBaseChainParams::TESTNET);
     const auto regtestChainParams =
         CreateChainParams(CBaseChainParams::REGTEST);
 
     // Hidden Options
     std::vector<std::string> hidden_args = {
         "-dbcrashratio", "-forcecompactdb", "-parkdeepreorg",
         "-automaticunparking", "-replayprotectionactivationtime",
         "-enableminerfund",
         // GUI args. These will be overwritten by SetupUIArgs for the GUI
         "-allowselfsignedrootcertificates", "-choosedatadir", "-lang=<lang>",
         "-min", "-resetguisettings", "-rootcertificates=<file>", "-splash",
         "-uiplatform",
         // TODO remove after the November 2020 upgrade
         "-axionactivationtime"};
 
     // Set all of the args and their help
     // When adding new options to the categories, please keep and ensure
     // alphabetical ordering. Do not translate _(...) -help-debug options, Many
     // technical terms, and only a very small audience, so is unnecessary stress
     // to translators.
     argsman.AddArg("-version", "Print version and exit", ArgsManager::ALLOW_ANY,
                    OptionsCategory::OPTIONS);
 #if defined(HAVE_SYSTEM)
     argsman.AddArg(
         "-alertnotify=<cmd>",
         "Execute command when a relevant alert is received or we see "
         "a really long fork (%s in cmd is replaced by message)",
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
 #endif
     argsman.AddArg(
         "-assumevalid=<hex>",
         strprintf(
             "If this block is in the chain assume that it and its ancestors "
             "are valid and potentially skip their script verification (0 to "
             "verify all, default: %s, testnet: %s)",
             defaultChainParams->GetConsensus().defaultAssumeValid.GetHex(),
             testnetChainParams->GetConsensus().defaultAssumeValid.GetHex()),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg("-blocksdir=<dir>",
                    "Specify directory to hold blocks subdirectory for *.dat "
                    "files (default: <datadir>)",
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
 #if defined(HAVE_SYSTEM)
     argsman.AddArg("-blocknotify=<cmd>",
                    "Execute command when the best block changes (%s in cmd is "
                    "replaced by block hash)",
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
 #endif
     argsman.AddArg("-blockreconstructionextratxn=<n>",
                    strprintf("Extra transactions to keep in memory for compact "
                              "block reconstructions (default: %u)",
                              DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN),
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-blocksonly",
         strprintf("Whether to reject transactions from network peers.  "
                   "Automatic broadcast and rebroadcast of any transactions "
                   "from inbound peers is disabled, unless the peer has the "
                   "'forcerelay' permission. RPC transactions are"
                   " not affected. (default: %u)",
                   DEFAULT_BLOCKSONLY),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-conf=<file>",
         strprintf("Specify path to read-only configuration file. Relative "
                   "paths will be prefixed by datadir location. (default: %s)",
                   BITCOIN_CONF_FILENAME),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg("-datadir=<dir>", "Specify data directory",
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-dbbatchsize",
         strprintf("Maximum database write batch size in bytes (default: %u)",
                   DEFAULT_DB_BATCH_SIZE),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-dbcache=<n>",
         strprintf("Set database cache size in MiB (%d to %d, default: %d)",
                   MIN_DB_CACHE_MB, MAX_DB_CACHE_MB, DEFAULT_DB_CACHE_MB),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-debuglogfile=<file>",
         strprintf("Specify location of debug log file. Relative paths "
                   "will be prefixed by a net-specific datadir "
                   "location. (0 to disable; default: %s)",
                   DEFAULT_DEBUGLOGFILE),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg("-feefilter",
                    strprintf("Tell other nodes to filter invs to us by our "
                              "mempool min fee (default: %d)",
                              DEFAULT_FEEFILTER),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-finalizationdelay=<n>",
         strprintf("Set the minimum amount of time to wait between a "
                   "block header reception and the block finalization. "
                   "Unit is seconds (default: %d)",
                   DEFAULT_MIN_FINALIZATION_DELAY),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-includeconf=<file>",
         "Specify additional configuration file, relative to the -datadir path "
         "(only useable from configuration file, not command line)",
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg("-maxreorgdepth=<n>",
                    strprintf("Configure at what depth blocks are considered "
                              "final (default: %d). Use -1 to disable.",
                              DEFAULT_MAX_REORG_DEPTH),
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg("-loadblock=<file>",
                    "Imports blocks from external file on startup",
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg("-maxmempool=<n>",
                    strprintf("Keep the transaction memory pool below <n> "
                              "megabytes (default: %u)",
                              DEFAULT_MAX_MEMPOOL_SIZE),
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg("-maxorphantx=<n>",
                    strprintf("Keep at most <n> unconnectable transactions in "
                              "memory (default: %u)",
                              DEFAULT_MAX_ORPHAN_TRANSACTIONS),
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg("-mempoolexpiry=<n>",
                    strprintf("Do not keep transactions in the mempool longer "
                              "than <n> hours (default: %u)",
                              DEFAULT_MEMPOOL_EXPIRY),
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-minimumchainwork=<hex>",
         strprintf(
             "Minimum work assumed to exist on a valid chain in hex "
             "(default: %s, testnet: %s)",
             defaultChainParams->GetConsensus().nMinimumChainWork.GetHex(),
             testnetChainParams->GetConsensus().nMinimumChainWork.GetHex()),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-par=<n>",
         strprintf("Set the number of script verification threads (%u to %d, 0 "
                   "= auto, <0 = leave that many cores free, default: %d)",
                   -GetNumCores(), MAX_SCRIPTCHECK_THREADS,
                   DEFAULT_SCRIPTCHECK_THREADS),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg("-persistmempool",
                    strprintf("Whether to save the mempool on shutdown and load "
                              "on restart (default: %u)",
                              DEFAULT_PERSIST_MEMPOOL),
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-pid=<file>",
         strprintf("Specify pid file. Relative paths will be prefixed "
                   "by a net-specific datadir location. (default: %s)",
                   BITCOIN_PID_FILENAME),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-prune=<n>",
         strprintf("Reduce storage requirements by enabling pruning (deleting) "
                   "of old blocks. This allows the pruneblockchain RPC to be "
                   "called to delete specific blocks, and enables automatic "
                   "pruning of old blocks if a target size in MiB is provided. "
                   "This mode is incompatible with -txindex and -rescan. "
                   "Warning: Reverting this setting requires re-downloading the "
                   "entire blockchain. (default: 0 = disable pruning blocks, 1 "
                   "= allow manual pruning via RPC, >=%u = automatically prune "
                   "block files to stay under the specified target size in MiB)",
                   MIN_DISK_SPACE_FOR_BLOCK_FILES / 1024 / 1024),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-reindex-chainstate",
         "Rebuild chain state from the currently indexed blocks. When "
         "in pruning mode or if blocks on disk might be corrupted, use "
         "full -reindex instead.",
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-reindex",
         "Rebuild chain state and block index from the blk*.dat files on disk",
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-settings=<file>",
         strprintf(
             "Specify path to dynamic settings data file. Can be disabled with "
             "-nosettings. File is written at runtime and not meant to be "
             "edited by users (use %s instead for custom settings). Relative "
             "paths will be prefixed by datadir location. (default: %s)",
             BITCOIN_CONF_FILENAME, BITCOIN_SETTINGS_FILENAME),
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
 #if HAVE_SYSTEM
     argsman.AddArg("-startupnotify=<cmd>", "Execute command on startup.",
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
 #endif
 #ifndef WIN32
     argsman.AddArg(
         "-sysperms",
         "Create new files with system default permissions, instead of umask "
         "077 (only effective with disabled wallet functionality)",
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
 #else
     hidden_args.emplace_back("-sysperms");
 #endif
     argsman.AddArg("-txindex",
                    strprintf("Maintain a full transaction index, used by the "
                              "getrawtransaction rpc call (default: %d)",
                              DEFAULT_TXINDEX),
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-blockfilterindex=<type>",
         strprintf("Maintain an index of compact filters by block "
                   "(default: %s, values: %s).",
                   DEFAULT_BLOCKFILTERINDEX, ListBlockFilterTypes()) +
             " If <type> is not supplied or if <type> = 1, indexes for "
             "all known types are enabled.",
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
     argsman.AddArg(
         "-usecashaddr",
         "Use Cash Address for destination encoding instead of base58 "
         "(activate by default on Jan, 14)",
         ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
 
     argsman.AddArg(
         "-addnode=<ip>",
         "Add a node to connect to and attempt to keep the connection "
         "open (see the `addnode` RPC command help for more info)",
         ArgsManager::ALLOW_ANY | ArgsManager::NETWORK_ONLY,
         OptionsCategory::CONNECTION);
     argsman.AddArg("-asmap=<file>",
                    strprintf("Specify asn mapping used for bucketing of the "
                              "peers (default: %s). Relative paths will be "
                              "prefixed by the net-specific datadir location.",
                              DEFAULT_ASMAP_FILENAME),
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg("-bantime=<n>",
                    strprintf("Default duration (in seconds) of manually "
                              "configured bans (default: %u)",
                              DEFAULT_MISBEHAVING_BANTIME),
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
-    argsman.AddArg("-bind=<addr>",
-                   "Bind to given address and always listen on it. Use "
-                   "[host]:port notation for IPv6",
-                   ArgsManager::ALLOW_ANY | ArgsManager::NETWORK_ONLY,
-                   OptionsCategory::CONNECTION);
+    argsman.AddArg(
+        "-bind=<addr>[:<port>][=onion]",
+        strprintf("Bind to given address and always listen on it (default: "
+                  "0.0.0.0). Use [host]:port notation for IPv6. Append =onion "
+                  "to tag any incoming connections to that address and port as "
+                  "incoming Tor connections (default: 127.0.0.1:%u=onion, "
+                  "testnet: 127.0.0.1:%u=onion, regtest: 127.0.0.1:%u=onion)",
+                  defaultBaseParams->OnionServiceTargetPort(),
+                  testnetBaseParams->OnionServiceTargetPort(),
+                  regtestBaseParams->OnionServiceTargetPort()),
+        ArgsManager::ALLOW_ANY | ArgsManager::NETWORK_ONLY,
+        OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-connect=<ip>",
         "Connect only to the specified node(s); -connect=0 disables automatic "
         "connections (the rules for this peer are the same as for -addnode)",
         ArgsManager::ALLOW_ANY | ArgsManager::NETWORK_ONLY,
         OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-discover",
         "Discover own IP addresses (default: 1 when listening and no "
         "-externalip or -proxy)",
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg("-dns",
                    strprintf("Allow DNS lookups for -addnode, -seednode and "
                              "-connect (default: %d)",
                              DEFAULT_NAME_LOOKUP),
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-dnsseed",
         "Query for peer addresses via DNS lookup, if low on addresses "
         "(default: 1 unless -connect used)",
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
 
     argsman.AddArg("-externalip=<ip>", "Specify your own public address",
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-forcednsseed",
         strprintf(
             "Always query for peer addresses via DNS lookup (default: %d)",
             DEFAULT_FORCEDNSSEED),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg("-overridednsseed",
                    "If set, only use the specified DNS seed when "
                    "querying for peer addresses via DNS lookup.",
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-listen",
         "Accept connections from outside (default: 1 if no -proxy or -connect)",
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-listenonion",
         strprintf("Automatically create Tor onion service (default: %d)",
                   DEFAULT_LISTEN_ONION),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-maxconnections=<n>",
         strprintf("Maintain at most <n> connections to peers. The effective "
                   "limit depends on system limitations and might be lower than "
                   "the specified value (default: %u)",
                   DEFAULT_MAX_PEER_CONNECTIONS),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg("-maxreceivebuffer=<n>",
                    strprintf("Maximum per-connection receive buffer, <n>*1000 "
                              "bytes (default: %u)",
                              DEFAULT_MAXRECEIVEBUFFER),
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-maxsendbuffer=<n>",
         strprintf(
             "Maximum per-connection send buffer, <n>*1000 bytes (default: %u)",
             DEFAULT_MAXSENDBUFFER),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-maxtimeadjustment",
         strprintf("Maximum allowed median peer time offset adjustment. Local "
                   "perspective of time may be influenced by peers forward or "
                   "backward by this amount. (default: %u seconds)",
                   DEFAULT_MAX_TIME_ADJUSTMENT),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg("-onion=<ip:port>",
                    strprintf("Use separate SOCKS5 proxy to reach peers via Tor "
                              "onion services (default: %s)",
                              "-proxy"),
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-onlynet=<net>",
         "Make outgoing connections only through network <net> (ipv4, ipv6 or "
         "onion). Incoming connections are not affected by this option. This "
         "option can be specified multiple times to allow multiple networks.",
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg("-peerbloomfilters",
                    strprintf("Support filtering of blocks and transaction with "
                              "bloom filters (default: %d)",
                              DEFAULT_PEERBLOOMFILTERS),
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-peerblockfilters",
         strprintf(
             "Serve compact block filters to peers per BIP 157 (default: %u)",
             DEFAULT_PEERBLOCKFILTERS),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg("-permitbaremultisig",
                    strprintf("Relay non-P2SH multisig (default: %d)",
                              DEFAULT_PERMIT_BAREMULTISIG),
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg("-port=<port>",
                    strprintf("Listen for connections on <port> (default: %u, "
                              "testnet: %u, regtest: %u)",
                              defaultChainParams->GetDefaultPort(),
                              testnetChainParams->GetDefaultPort(),
                              regtestChainParams->GetDefaultPort()),
                    ArgsManager::ALLOW_ANY | ArgsManager::NETWORK_ONLY,
                    OptionsCategory::CONNECTION);
     argsman.AddArg("-proxy=<ip:port>", "Connect through SOCKS5 proxy",
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-proxyrandomize",
         strprintf("Randomize credentials for every proxy connection. "
                   "This enables Tor stream isolation (default: %d)",
                   DEFAULT_PROXYRANDOMIZE),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-seednode=<ip>",
         "Connect to a node to retrieve peer addresses, and disconnect",
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     gArgs.AddArg("-networkactive",
                  "Enable all P2P network activity (default: 1). Can be changed "
                  "by the setnetworkactive RPC command",
                  ArgsManager::ALLOW_BOOL, OptionsCategory::CONNECTION);
     argsman.AddArg("-timeout=<n>",
                    strprintf("Specify connection timeout in milliseconds "
                              "(minimum: 1, default: %d)",
                              DEFAULT_CONNECT_TIMEOUT),
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-peertimeout=<n>",
         strprintf("Specify p2p connection timeout in seconds. This option "
                   "determines the amount of time a peer may be inactive before "
                   "the connection to it is dropped. (minimum: 1, default: %d)",
                   DEFAULT_PEER_CONNECT_TIMEOUT),
         true, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-torcontrol=<ip>:<port>",
         strprintf(
             "Tor control port to use if onion listening enabled (default: %s)",
             DEFAULT_TOR_CONTROL),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg("-torpassword=<pass>",
                    "Tor control port password (default: empty)",
                    ArgsManager::ALLOW_ANY | ArgsManager::SENSITIVE,
                    OptionsCategory::CONNECTION);
 #ifdef USE_UPNP
 #if USE_UPNP
     argsman.AddArg("-upnp",
                    "Use UPnP to map the listening port (default: 1 when "
                    "listening and no -proxy)",
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
 #else
     argsman.AddArg(
         "-upnp",
         strprintf("Use UPnP to map the listening port (default: %u)", 0),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
 #endif
 #else
     hidden_args.emplace_back("-upnp");
 #endif
     argsman.AddArg(
         "-whitebind=<[permissions@]addr>",
         "Bind to the given address and add permission flags to the peers "
         "connecting to it."
         "Use [host]:port notation for IPv6. Allowed permissions: " +
             Join(NET_PERMISSIONS_DOC, ", ") +
             ". "
             "Specify multiple permissions separated by commas (default: "
             "download,noban,mempool,relay). Can be specified multiple times.",
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
 
     argsman.AddArg("-whitelist=<[permissions@]IP address or network>",
                    "Add permission flags to the peers connecting from the "
                    "given IP address (e.g. 1.2.3.4) or CIDR-notated network "
                    "(e.g. 1.2.3.0/24). "
                    "Uses the same permissions as -whitebind. Can be specified "
                    "multiple times.",
                    ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
     argsman.AddArg(
         "-maxuploadtarget=<n>",
         strprintf("Tries to keep outbound traffic under the given target (in "
                   "MiB per 24h). Limit does not apply to peers with 'download' "
                   "permission. 0 = no limit (default: %d)",
                   DEFAULT_MAX_UPLOAD_TARGET),
         ArgsManager::ALLOW_ANY, OptionsCategory::CONNECTION);
 
     g_wallet_init_interface.AddWalletOptions(argsman);
 
 #if ENABLE_ZMQ
     argsman.AddArg("-zmqpubhashblock=<address>",
                    "Enable publish hash block in <address>",
                    ArgsManager::ALLOW_ANY, OptionsCategory::ZMQ);
     argsman.AddArg("-zmqpubhashtx=<address>",
                    "Enable publish hash transaction in <address>",
                    ArgsManager::ALLOW_ANY, OptionsCategory::ZMQ);
     argsman.AddArg("-zmqpubrawblock=<address>",
                    "Enable publish raw block in <address>",
                    ArgsManager::ALLOW_ANY, OptionsCategory::ZMQ);
     argsman.AddArg("-zmqpubrawtx=<address>",
                    "Enable publish raw transaction in <address>",
                    ArgsManager::ALLOW_ANY, OptionsCategory::ZMQ);
     argsman.AddArg("-zmqpubsequence=<address>",
                    "Enable publish hash block and tx sequence in <address>",
                    ArgsManager::ALLOW_ANY, OptionsCategory::ZMQ);
     argsman.AddArg(
         "-zmqpubhashblockhwm=<n>",
         strprintf("Set publish hash block outbound message high water "
                   "mark (default: %d)",
                   CZMQAbstractNotifier::DEFAULT_ZMQ_SNDHWM),
         ArgsManager::ALLOW_ANY, OptionsCategory::ZMQ);
     argsman.AddArg(
         "-zmqpubhashtxhwm=<n>",
         strprintf("Set publish hash transaction outbound message high "
                   "water mark (default: %d)",
                   CZMQAbstractNotifier::DEFAULT_ZMQ_SNDHWM),
         false, OptionsCategory::ZMQ);
     argsman.AddArg(
         "-zmqpubrawblockhwm=<n>",
         strprintf("Set publish raw block outbound message high water "
                   "mark (default: %d)",
                   CZMQAbstractNotifier::DEFAULT_ZMQ_SNDHWM),
         ArgsManager::ALLOW_ANY, OptionsCategory::ZMQ);
     argsman.AddArg(
         "-zmqpubrawtxhwm=<n>",
         strprintf("Set publish raw transaction outbound message high "
                   "water mark (default: %d)",
                   CZMQAbstractNotifier::DEFAULT_ZMQ_SNDHWM),
         ArgsManager::ALLOW_ANY, OptionsCategory::ZMQ);
     argsman.AddArg("-zmqpubsequencehwm=<n>",
                    strprintf("Set publish hash sequence message high water mark"
                              " (default: %d)",
                              CZMQAbstractNotifier::DEFAULT_ZMQ_SNDHWM),
                    ArgsManager::ALLOW_ANY, OptionsCategory::ZMQ);
 #else
     hidden_args.emplace_back("-zmqpubhashblock=<address>");
     hidden_args.emplace_back("-zmqpubhashtx=<address>");
     hidden_args.emplace_back("-zmqpubrawblock=<address>");
     hidden_args.emplace_back("-zmqpubrawtx=<address>");
     hidden_args.emplace_back("-zmqpubsequence=<n>");
     hidden_args.emplace_back("-zmqpubhashblockhwm=<n>");
     hidden_args.emplace_back("-zmqpubhashtxhwm=<n>");
     hidden_args.emplace_back("-zmqpubrawblockhwm=<n>");
     hidden_args.emplace_back("-zmqpubrawtxhwm=<n>");
     hidden_args.emplace_back("-zmqpubsequencehwm=<n>");
 #endif
 
     argsman.AddArg(
         "-checkblocks=<n>",
         strprintf("How many blocks to check at startup (default: %u, 0 = all)",
                   DEFAULT_CHECKBLOCKS),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-checklevel=<n>",
                    strprintf("How thorough the block verification of "
                              "-checkblocks is: %s (0-4, default: %u)",
                              Join(CHECKLEVEL_DOC, ", "), DEFAULT_CHECKLEVEL),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-checkblockindex",
                    strprintf("Do a consistency check for the block tree, "
                              "chainstate, and other validation data structures "
                              "occasionally. (default: %u, regtest: %u)",
                              defaultChainParams->DefaultConsistencyChecks(),
                              regtestChainParams->DefaultConsistencyChecks()),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-checkmempool=<n>",
         strprintf(
             "Run checks every <n> transactions (default: %u, regtest: %u)",
             defaultChainParams->DefaultConsistencyChecks(),
             regtestChainParams->DefaultConsistencyChecks()),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-checkpoints",
                    strprintf("Only accept block chain matching built-in "
                              "checkpoints (default: %d)",
                              DEFAULT_CHECKPOINTS_ENABLED),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-deprecatedrpc=<method>",
                    "Allows deprecated RPC method(s) to be used",
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-dropmessagestest=<n>",
                    "Randomly drop 1 of every <n> network messages",
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-stopafterblockimport",
         strprintf("Stop running after importing blocks from disk (default: %d)",
                   DEFAULT_STOPAFTERBLOCKIMPORT),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-stopatheight",
                    strprintf("Stop running after reaching the given height in "
                              "the main chain (default: %u)",
                              DEFAULT_STOPATHEIGHT),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-limitancestorcount=<n>",
         strprintf("Do not accept transactions if number of in-mempool "
                   "ancestors is <n> or more (default: %u)",
                   DEFAULT_ANCESTOR_LIMIT),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-limitancestorsize=<n>",
         strprintf("Do not accept transactions whose size with all in-mempool "
                   "ancestors exceeds <n> kilobytes (default: %u)",
                   DEFAULT_ANCESTOR_SIZE_LIMIT),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-limitdescendantcount=<n>",
         strprintf("Do not accept transactions if any ancestor would have <n> "
                   "or more in-mempool descendants (default: %u)",
                   DEFAULT_DESCENDANT_LIMIT),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-limitdescendantsize=<n>",
         strprintf("Do not accept transactions if any ancestor would have more "
                   "than <n> kilobytes of in-mempool descendants (default: %u).",
                   DEFAULT_DESCENDANT_SIZE_LIMIT),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-addrmantest", "Allows to test address relay on localhost",
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
 
     argsman.AddArg("-debug=<category>",
                    strprintf("Output debugging information (default: %u, "
                              "supplying <category> is optional)",
                              0) +
                        ". " +
                        "If <category> is not supplied or if <category> = 1, "
                        "output all debugging information. <category> can be: " +
                        LogInstance().LogCategoriesString() + ".",
                    ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-debugexclude=<category>",
         strprintf("Exclude debugging information for a category. Can be used "
                   "in conjunction with -debug=1 to output debug logs for all "
                   "categories except one or more specified categories."),
         ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-logips",
         strprintf("Include IP addresses in debug output (default: %d)",
                   DEFAULT_LOGIPS),
         ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-logtimestamps",
         strprintf("Prepend debug output with timestamp (default: %d)",
                   DEFAULT_LOGTIMESTAMPS),
         ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST);
 #ifdef HAVE_THREAD_LOCAL
     argsman.AddArg(
         "-logthreadnames",
         strprintf(
             "Prepend debug output with name of the originating thread (only "
             "available on platforms supporting thread_local) (default: %u)",
             DEFAULT_LOGTHREADNAMES),
         ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST);
 #else
     hidden_args.emplace_back("-logthreadnames");
 #endif
     argsman.AddArg(
         "-logtimemicros",
         strprintf("Add microsecond precision to debug timestamps (default: %d)",
                   DEFAULT_LOGTIMEMICROS),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-mocktime=<n>",
                    "Replace actual time with " + UNIX_EPOCH_TIME +
                        " (default: 0)",
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-maxsigcachesize=<n>",
         strprintf("Limit size of signature cache to <n> MiB (default: %u)",
                   DEFAULT_MAX_SIG_CACHE_SIZE),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-maxscriptcachesize=<n>",
         strprintf("Limit size of script cache to <n> MiB (default: %u)",
                   DEFAULT_MAX_SCRIPT_CACHE_SIZE),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-maxtipage=<n>",
                    strprintf("Maximum tip age in seconds to consider node in "
                              "initial block download (default: %u)",
                              DEFAULT_MAX_TIP_AGE),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
 
     argsman.AddArg(
         "-printtoconsole",
         "Send trace/debug info to console instead of debug.log file (default: "
         "1 when no -daemon. To disable logging to file, set debuglogfile=0)",
         ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-printpriority",
                    strprintf("Log transaction priority and fee per kB when "
                              "mining blocks (default: %d)",
                              DEFAULT_PRINTPRIORITY),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::DEBUG_TEST);
     argsman.AddArg(
         "-shrinkdebugfile",
         "Shrink debug.log file on client startup (default: 1 when no -debug)",
         ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST);
 
     argsman.AddArg("-uacomment=<cmt>",
                    "Append comment to the user agent string",
                    ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-uaclientname=<clientname>", "Set user agent client name",
                    ArgsManager::ALLOW_ANY, OptionsCategory::DEBUG_TEST);
     argsman.AddArg("-uaclientversion=<clientversion>",
                    "Set user agent client version", ArgsManager::ALLOW_ANY,
                    OptionsCategory::DEBUG_TEST);
 
     SetupChainParamsBaseOptions(argsman);
 
     argsman.AddArg(
         "-acceptnonstdtxn",
         strprintf(
             "Relay and mine \"non-standard\" transactions (%sdefault: %u)",
             "testnet/regtest only; ", defaultChainParams->RequireStandard()),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::NODE_RELAY);
     argsman.AddArg("-excessiveblocksize=<n>",
                    strprintf("Do not accept blocks larger than this limit, in "
                              "bytes (default: %d)",
                              DEFAULT_MAX_BLOCK_SIZE),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::NODE_RELAY);
     const auto &ticker = Currency::get().ticker;
     argsman.AddArg(
         "-dustrelayfee=<amt>",
         strprintf("Fee rate (in %s/kB) used to define dust, the value of an "
                   "output such that it will cost about 1/3 of its value in "
                   "fees at this fee rate to spend it. (default: %s)",
                   ticker, FormatMoney(DUST_RELAY_TX_FEE)),
         ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
         OptionsCategory::NODE_RELAY);
 
     argsman.AddArg("-bytespersigop",
                    strprintf("Equivalent bytes per sigop in transactions for "
                              "relay and mining (default: %u)",
                              DEFAULT_BYTES_PER_SIGOP),
                    ArgsManager::ALLOW_ANY, OptionsCategory::NODE_RELAY);
     argsman.AddArg(
         "-datacarrier",
         strprintf("Relay and mine data carrier transactions (default: %d)",
                   DEFAULT_ACCEPT_DATACARRIER),
         ArgsManager::ALLOW_ANY, OptionsCategory::NODE_RELAY);
     argsman.AddArg(
         "-datacarriersize",
         strprintf("Maximum size of data in data carrier transactions "
                   "we relay and mine (default: %u)",
                   MAX_OP_RETURN_RELAY),
         ArgsManager::ALLOW_ANY, OptionsCategory::NODE_RELAY);
     argsman.AddArg(
         "-minrelaytxfee=<amt>",
         strprintf("Fees (in %s/kB) smaller than this are rejected for "
                   "relaying, mining and transaction creation (default: %s)",
                   ticker, FormatMoney(DEFAULT_MIN_RELAY_TX_FEE_PER_KB)),
         ArgsManager::ALLOW_ANY, OptionsCategory::NODE_RELAY);
     argsman.AddArg(
         "-whitelistrelay",
         strprintf("Add 'relay' permission to whitelisted inbound peers "
                   "with default permissions. This will accept relayed "
                   "transactions even when not relaying transactions "
                   "(default: %d)",
                   DEFAULT_WHITELISTRELAY),
         ArgsManager::ALLOW_ANY, OptionsCategory::NODE_RELAY);
     argsman.AddArg(
         "-whitelistforcerelay",
         strprintf("Add 'forcerelay' permission to whitelisted inbound peers"
                   " with default permissions. This will relay transactions "
                   "even if the transactions were already in the mempool "
                   "(default: %d)",
                   DEFAULT_WHITELISTFORCERELAY),
         ArgsManager::ALLOW_ANY, OptionsCategory::NODE_RELAY);
 
     // Not sure this really belongs here, but it will do for now.
     // FIXME: This doesn't work anyways.
     argsman.AddArg("-excessutxocharge=<amt>",
                    strprintf("Fees (in %s/kB) to charge per utxo created for "
                              "relaying, and mining (default: %s)",
                              ticker, FormatMoney(DEFAULT_UTXO_FEE)),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::NODE_RELAY);
 
     argsman.AddArg("-blockmaxsize=<n>",
                    strprintf("Set maximum block size in bytes (default: %d)",
                              DEFAULT_MAX_GENERATED_BLOCK_SIZE),
                    ArgsManager::ALLOW_ANY, OptionsCategory::BLOCK_CREATION);
     argsman.AddArg(
         "-blockmintxfee=<amt>",
         strprintf("Set lowest fee rate (in %s/kB) for transactions to "
                   "be included in block creation. (default: %s)",
                   ticker, FormatMoney(DEFAULT_BLOCK_MIN_TX_FEE_PER_KB)),
         ArgsManager::ALLOW_ANY, OptionsCategory::BLOCK_CREATION);
 
     argsman.AddArg("-blockversion=<n>",
                    "Override block version to test forking scenarios",
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::BLOCK_CREATION);
 
     argsman.AddArg("-server", "Accept command line and JSON-RPC commands",
                    ArgsManager::ALLOW_ANY, OptionsCategory::RPC);
     argsman.AddArg("-rest",
                    strprintf("Accept public REST requests (default: %d)",
                              DEFAULT_REST_ENABLE),
                    ArgsManager::ALLOW_ANY, OptionsCategory::RPC);
     argsman.AddArg(
         "-rpcbind=<addr>[:port]",
         "Bind to given address to listen for JSON-RPC connections. Do not "
         "expose the RPC server to untrusted networks such as the public "
         "internet! This option is ignored unless -rpcallowip is also passed. "
         "Port is optional and overrides -rpcport.  Use [host]:port notation "
         "for IPv6. This option can be specified multiple times (default: "
         "127.0.0.1 and ::1 i.e., localhost)",
         ArgsManager::ALLOW_ANY | ArgsManager::NETWORK_ONLY |
             ArgsManager::SENSITIVE,
         OptionsCategory::RPC);
     argsman.AddArg(
         "-rpccookiefile=<loc>",
         "Location of the auth cookie. Relative paths will be prefixed "
         "by a net-specific datadir location. (default: data dir)",
         ArgsManager::ALLOW_ANY, OptionsCategory::RPC);
     argsman.AddArg("-rpcuser=<user>", "Username for JSON-RPC connections",
                    ArgsManager::ALLOW_ANY | ArgsManager::SENSITIVE,
                    OptionsCategory::RPC);
     argsman.AddArg("-rpcpassword=<pw>", "Password for JSON-RPC connections",
                    ArgsManager::ALLOW_ANY | ArgsManager::SENSITIVE,
                    OptionsCategory::RPC);
     argsman.AddArg(
         "-rpcwhitelist=<whitelist>",
         "Set a whitelist to filter incoming RPC calls for a specific user. The "
         "field <whitelist> comes in the format: <USERNAME>:<rpc 1>,<rpc "
         "2>,...,<rpc n>. If multiple whitelists are set for a given user, they "
         "are set-intersected. See -rpcwhitelistdefault documentation for "
         "information on default whitelist behavior.",
         ArgsManager::ALLOW_ANY, OptionsCategory::RPC);
     argsman.AddArg(
         "-rpcwhitelistdefault",
         "Sets default behavior for rpc whitelisting. Unless "
         "rpcwhitelistdefault is set to 0, if any -rpcwhitelist is set, the rpc "
         "server acts as if all rpc users are subject to "
         "empty-unless-otherwise-specified whitelists. If rpcwhitelistdefault "
         "is set to 1 and no -rpcwhitelist is set, rpc server acts as if all "
         "rpc users are subject to empty whitelists.",
         ArgsManager::ALLOW_BOOL, OptionsCategory::RPC);
     argsman.AddArg(
         "-rpcauth=<userpw>",
         "Username and HMAC-SHA-256 hashed password for JSON-RPC connections. "
         "The field <userpw> comes in the format: <USERNAME>:<SALT>$<HASH>. A "
         "canonical python script is included in share/rpcauth. The client then "
         "connects normally using the rpcuser=<USERNAME>/rpcpassword=<PASSWORD> "
         "pair of arguments. This option can be specified multiple times",
         ArgsManager::ALLOW_ANY | ArgsManager::SENSITIVE, OptionsCategory::RPC);
     argsman.AddArg("-rpcport=<port>",
                    strprintf("Listen for JSON-RPC connections on <port> "
                              "(default: %u, testnet: %u, regtest: %u)",
                              defaultBaseParams->RPCPort(),
                              testnetBaseParams->RPCPort(),
                              regtestBaseParams->RPCPort()),
                    ArgsManager::ALLOW_ANY | ArgsManager::NETWORK_ONLY,
                    OptionsCategory::RPC);
     argsman.AddArg(
         "-rpcallowip=<ip>",
         "Allow JSON-RPC connections from specified source. Valid for "
         "<ip> are a single IP (e.g. 1.2.3.4), a network/netmask (e.g. "
         "1.2.3.4/255.255.255.0) or a network/CIDR (e.g. 1.2.3.4/24). "
         "This option can be specified multiple times",
         ArgsManager::ALLOW_ANY, OptionsCategory::RPC);
     argsman.AddArg(
         "-rpcthreads=<n>",
         strprintf(
             "Set the number of threads to service RPC calls (default: %d)",
             DEFAULT_HTTP_THREADS),
         ArgsManager::ALLOW_ANY, OptionsCategory::RPC);
     argsman.AddArg(
         "-rpccorsdomain=value",
         "Domain from which to accept cross origin requests (browser enforced)",
         ArgsManager::ALLOW_ANY, OptionsCategory::RPC);
 
     argsman.AddArg("-rpcworkqueue=<n>",
                    strprintf("Set the depth of the work queue to service RPC "
                              "calls (default: %d)",
                              DEFAULT_HTTP_WORKQUEUE),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::RPC);
     argsman.AddArg("-rpcservertimeout=<n>",
                    strprintf("Timeout during HTTP requests (default: %d)",
                              DEFAULT_HTTP_SERVER_TIMEOUT),
                    ArgsManager::ALLOW_ANY | ArgsManager::DEBUG_ONLY,
                    OptionsCategory::RPC);
 
 #if HAVE_DECL_DAEMON
     argsman.AddArg("-daemon",
                    "Run in the background as a daemon and accept commands",
                    ArgsManager::ALLOW_ANY, OptionsCategory::OPTIONS);
 #else
     hidden_args.emplace_back("-daemon");
 #endif
 
     // Avalanche options.
     argsman.AddArg(
         "-enableavalanche",
         strprintf("Enable avalanche (default: %u)", AVALANCHE_DEFAULT_ENABLED),
         ArgsManager::ALLOW_ANY, OptionsCategory::AVALANCHE);
     argsman.AddArg("-enableavalanchepeerdiscovery",
                    strprintf("Enable avalanche peer discovery (default: %u)",
                              AVALANCHE_DEFAULT_PEER_DISCOVERY_ENABLED),
                    ArgsManager::ALLOW_ANY, OptionsCategory::AVALANCHE);
     argsman.AddArg(
         "-avacooldown",
         strprintf("Mandatory cooldown between two avapoll (default: %u)",
                   AVALANCHE_DEFAULT_COOLDOWN),
         ArgsManager::ALLOW_ANY, OptionsCategory::AVALANCHE);
     argsman.AddArg(
         "-avadelegation",
         "Avalanche proof delegation to the master key used by this node "
         "(default: none). Should be used in conjunction with -avaproof and "
         "-avamasterkey",
         ArgsManager::ALLOW_ANY, OptionsCategory::AVALANCHE);
     argsman.AddArg("-avaproof",
                    "Avalanche proof to be used by this node (default: none)",
                    ArgsManager::ALLOW_ANY, OptionsCategory::AVALANCHE);
     argsman.AddArg(
         "-legacyavaproof",
         strprintf("Use the legacy avalanche proof format (default: %u)",
                   AVALANCHE_DEFAULT_LEGACY_PROOF),
         ArgsManager::ALLOW_BOOL, OptionsCategory::AVALANCHE);
     argsman.AddArg("-avamasterkey",
                    "Master key associated with the proof. If a proof is "
                    "required, this is mandatory.",
                    ArgsManager::ALLOW_ANY, OptionsCategory::AVALANCHE);
     argsman.AddArg("-avasessionkey", "Avalanche session key (default: random)",
                    ArgsManager::ALLOW_ANY, OptionsCategory::AVALANCHE);
 
     // Add the hidden options
     argsman.AddHiddenArgs(hidden_args);
 }
 
 std::string LicenseInfo() {
     const std::string URL_SOURCE_CODE =
         "<https://github.com/Bitcoin-ABC/bitcoin-abc>";
     const std::string URL_WEBSITE = "<https://www.bitcoinabc.org>";
 
     return CopyrightHolders(strprintf(_("Copyright (C) %i-%i").translated, 2009,
                                       COPYRIGHT_YEAR) +
                             " ") +
            "\n" + "\n" +
            strprintf(_("Please contribute if you find %s useful. "
                        "Visit %s for further information about the software.")
                          .translated,
                      PACKAGE_NAME, URL_WEBSITE) +
            "\n" +
            strprintf(_("The source code is available from %s.").translated,
                      URL_SOURCE_CODE) +
            "\n" + "\n" + _("This is experimental software.").translated + "\n" +
            strprintf(_("Distributed under the MIT software license, see the "
                        "accompanying file %s or %s")
                          .translated,
                      "COPYING", "<https://opensource.org/licenses/MIT>") +
            "\n" + "\n" +
            strprintf(_("This product includes software developed by the "
                        "OpenSSL Project for use in the OpenSSL Toolkit %s and "
                        "cryptographic software written by Eric Young and UPnP "
                        "software written by Thomas Bernard.")
                          .translated,
                      "<https://www.openssl.org>") +
            "\n";
 }
 
 static bool fHaveGenesis = false;
 static Mutex g_genesis_wait_mutex;
 static std::condition_variable g_genesis_wait_cv;
 
 static void BlockNotifyGenesisWait(const CBlockIndex *pBlockIndex) {
     if (pBlockIndex != nullptr) {
         {
             LOCK(g_genesis_wait_mutex);
             fHaveGenesis = true;
         }
         g_genesis_wait_cv.notify_all();
     }
 }
 
 struct CImportingNow {
     CImportingNow() {
         assert(fImporting == false);
         fImporting = true;
     }
 
     ~CImportingNow() {
         assert(fImporting == true);
         fImporting = false;
     }
 };
 
 // If we're using -prune with -reindex, then delete block files that will be
 // ignored by the reindex.  Since reindexing works by starting at block file 0
 // and looping until a blockfile is missing, do the same here to delete any
 // later block files after a gap. Also delete all rev files since they'll be
 // rewritten by the reindex anyway. This ensures that vinfoBlockFile is in sync
 // with what's actually on disk by the time we start downloading, so that
 // pruning works correctly.
 static void CleanupBlockRevFiles() {
     std::map<std::string, fs::path> mapBlockFiles;
 
     // Glob all blk?????.dat and rev?????.dat files from the blocks directory.
     // Remove the rev files immediately and insert the blk file paths into an
     // ordered map keyed by block file index.
     LogPrintf("Removing unusable blk?????.dat and rev?????.dat files for "
               "-reindex with -prune\n");
     const auto directoryIterator = fs::directory_iterator{GetBlocksDir()};
     for (const auto &file : directoryIterator) {
         const auto fileName = file.path().filename().string();
         if (fs::is_regular_file(file) && fileName.length() == 12 &&
             fileName.substr(8, 4) == ".dat") {
             if (fileName.substr(0, 3) == "blk") {
                 mapBlockFiles[fileName.substr(3, 5)] = file.path();
             } else if (fileName.substr(0, 3) == "rev") {
                 remove(file.path());
             }
         }
     }
 
     // Remove all block files that aren't part of a contiguous set starting at
     // zero by walking the ordered map (keys are block file indices) by keeping
     // a separate counter. Once we hit a gap (or if 0 doesn't exist) start
     // removing block files.
     int contiguousCounter = 0;
     for (const auto &item : mapBlockFiles) {
         if (atoi(item.first) == contiguousCounter) {
             contiguousCounter++;
             continue;
         }
         remove(item.second);
     }
 }
 
 #if HAVE_SYSTEM
 static void StartupNotify(const ArgsManager &args) {
     std::string cmd = args.GetArg("-startupnotify", "");
     if (!cmd.empty()) {
         std::thread t(runCommand, cmd);
         // thread runs free
         t.detach();
     }
 }
 #endif
 
 static void ThreadImport(const Config &config, ChainstateManager &chainman,
                          std::vector<fs::path> vImportFiles,
                          const ArgsManager &args) {
     ScheduleBatchPriority();
 
     {
         const CChainParams &chainParams = config.GetChainParams();
 
         CImportingNow imp;
 
         // -reindex
         if (fReindex) {
             int nFile = 0;
             while (true) {
                 FlatFilePos pos(nFile, 0);
                 if (!fs::exists(GetBlockPosFilename(pos))) {
                     // No block files left to reindex
                     break;
                 }
                 FILE *file = OpenBlockFile(pos, true);
                 if (!file) {
                     // This error is logged in OpenBlockFile
                     break;
                 }
                 LogPrintf("Reindexing block file blk%05u.dat...\n",
                           (unsigned int)nFile);
                 LoadExternalBlockFile(config, file, &pos);
                 if (ShutdownRequested()) {
                     LogPrintf("Shutdown requested. Exit %s\n", __func__);
                     return;
                 }
                 nFile++;
             }
             pblocktree->WriteReindexing(false);
             fReindex = false;
             LogPrintf("Reindexing finished\n");
             // To avoid ending up in a situation without genesis block, re-try
             // initializing (no-op if reindexing worked):
             LoadGenesisBlock(chainParams);
         }
 
         // -loadblock=
         for (const fs::path &path : vImportFiles) {
             FILE *file = fsbridge::fopen(path, "rb");
             if (file) {
                 LogPrintf("Importing blocks file %s...\n", path.string());
                 LoadExternalBlockFile(config, file);
                 if (ShutdownRequested()) {
                     LogPrintf("Shutdown requested. Exit %s\n", __func__);
                     return;
                 }
             } else {
                 LogPrintf("Warning: Could not open blocks file %s\n",
                           path.string());
             }
         }
 
         // Reconsider blocks we know are valid. They may have been marked
         // invalid by, for instance, running an outdated version of the node
         // software.
         const MapCheckpoints &checkpoints =
             chainParams.Checkpoints().mapCheckpoints;
         for (const MapCheckpoints::value_type &i : checkpoints) {
             const BlockHash &hash = i.second;
 
             LOCK(cs_main);
             CBlockIndex *pblockindex = LookupBlockIndex(hash);
             if (pblockindex && !pblockindex->nStatus.isValid()) {
                 LogPrintf("Reconsidering checkpointed block %s ...\n",
                           hash.GetHex());
                 ResetBlockFailureFlags(pblockindex);
             }
         }
 
         // scan for better chains in the block chain database, that are not yet
         // connected in the active best chain
 
         // We can't hold cs_main during ActivateBestChain even though we're
         // accessing the chainman unique_ptrs since ABC requires us not to be
         // holding cs_main, so retrieve the relevant pointers before the ABC
         // call.
         for (CChainState *chainstate :
              WITH_LOCK(::cs_main, return chainman.GetAll())) {
             BlockValidationState state;
             if (!chainstate->ActivateBestChain(config, state, nullptr)) {
                 LogPrintf("Failed to connect best block (%s)\n",
                           state.ToString());
                 StartShutdown();
                 return;
             }
         }
 
         if (args.GetBoolArg("-stopafterblockimport",
                             DEFAULT_STOPAFTERBLOCKIMPORT)) {
             LogPrintf("Stopping after block import\n");
             StartShutdown();
             return;
         }
     } // End scope of CImportingNow
     chainman.ActiveChainstate().LoadMempool(config, args);
 }
 
 /** Sanity checks
  *  Ensure that Bitcoin is running in a usable environment with all
  *  necessary library support.
  */
 static bool InitSanityCheck() {
     if (!ECC_InitSanityCheck()) {
         return InitError(Untranslated(
             "Elliptic curve cryptography sanity check failure. Aborting."));
     }
 
     if (!glibcxx_sanity_test()) {
         return false;
     }
 
     if (!Random_SanityCheck()) {
         return InitError(Untranslated(
             "OS cryptographic RNG sanity check failure. Aborting."));
     }
 
     return true;
 }
 
 static bool AppInitServers(Config &config,
                            HTTPRPCRequestProcessor &httpRPCRequestProcessor,
                            NodeContext &node) {
     const ArgsManager &args = *Assert(node.args);
     RPCServerSignals::OnStarted(&OnRPCStarted);
     RPCServerSignals::OnStopped(&OnRPCStopped);
     if (!InitHTTPServer(config)) {
         return false;
     }
 
     StartRPC();
     node.rpc_interruption_point = RpcInterruptionPoint;
 
     if (!StartHTTPRPC(httpRPCRequestProcessor)) {
         return false;
     }
     if (args.GetBoolArg("-rest", DEFAULT_REST_ENABLE)) {
         StartREST(httpRPCRequestProcessor.context);
     }
 
     StartHTTPServer();
     return true;
 }
 
 // Parameter interaction based on rules
 void InitParameterInteraction(ArgsManager &args) {
     // when specifying an explicit binding address, you want to listen on it
     // even when -connect or -proxy is specified.
     if (args.IsArgSet("-bind")) {
         if (args.SoftSetBoolArg("-listen", true)) {
             LogPrintf(
                 "%s: parameter interaction: -bind set -> setting -listen=1\n",
                 __func__);
         }
     }
     if (args.IsArgSet("-whitebind")) {
         if (args.SoftSetBoolArg("-listen", true)) {
             LogPrintf("%s: parameter interaction: -whitebind set -> setting "
                       "-listen=1\n",
                       __func__);
         }
     }
 
     if (args.IsArgSet("-connect")) {
         // when only connecting to trusted nodes, do not seed via DNS, or listen
         // by default.
         if (args.SoftSetBoolArg("-dnsseed", false)) {
             LogPrintf("%s: parameter interaction: -connect set -> setting "
                       "-dnsseed=0\n",
                       __func__);
         }
         if (args.SoftSetBoolArg("-listen", false)) {
             LogPrintf("%s: parameter interaction: -connect set -> setting "
                       "-listen=0\n",
                       __func__);
         }
     }
 
     if (args.IsArgSet("-proxy")) {
         // to protect privacy, do not listen by default if a default proxy
         // server is specified.
         if (args.SoftSetBoolArg("-listen", false)) {
             LogPrintf(
                 "%s: parameter interaction: -proxy set -> setting -listen=0\n",
                 __func__);
         }
         // to protect privacy, do not use UPNP when a proxy is set. The user may
         // still specify -listen=1 to listen locally, so don't rely on this
         // happening through -listen below.
         if (args.SoftSetBoolArg("-upnp", false)) {
             LogPrintf(
                 "%s: parameter interaction: -proxy set -> setting -upnp=0\n",
                 __func__);
         }
         // to protect privacy, do not discover addresses by default
         if (args.SoftSetBoolArg("-discover", false)) {
             LogPrintf("%s: parameter interaction: -proxy set -> setting "
                       "-discover=0\n",
                       __func__);
         }
     }
 
     if (!args.GetBoolArg("-listen", DEFAULT_LISTEN)) {
         // do not map ports or try to retrieve public IP when not listening
         // (pointless)
         if (args.SoftSetBoolArg("-upnp", false)) {
             LogPrintf(
                 "%s: parameter interaction: -listen=0 -> setting -upnp=0\n",
                 __func__);
         }
         if (args.SoftSetBoolArg("-discover", false)) {
             LogPrintf(
                 "%s: parameter interaction: -listen=0 -> setting -discover=0\n",
                 __func__);
         }
         if (args.SoftSetBoolArg("-listenonion", false)) {
             LogPrintf("%s: parameter interaction: -listen=0 -> setting "
                       "-listenonion=0\n",
                       __func__);
         }
     }
 
     if (args.IsArgSet("-externalip")) {
         // if an explicit public IP is specified, do not try to find others
         if (args.SoftSetBoolArg("-discover", false)) {
             LogPrintf("%s: parameter interaction: -externalip set -> setting "
                       "-discover=0\n",
                       __func__);
         }
     }
 
     // disable whitelistrelay in blocksonly mode
     if (args.GetBoolArg("-blocksonly", DEFAULT_BLOCKSONLY)) {
         if (args.SoftSetBoolArg("-whitelistrelay", false)) {
             LogPrintf("%s: parameter interaction: -blocksonly=1 -> setting "
                       "-whitelistrelay=0\n",
                       __func__);
         }
     }
 
     // Forcing relay from whitelisted hosts implies we will accept relays from
     // them in the first place.
     if (args.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) {
         if (args.SoftSetBoolArg("-whitelistrelay", true)) {
             LogPrintf("%s: parameter interaction: -whitelistforcerelay=1 -> "
                       "setting -whitelistrelay=1\n",
                       __func__);
         }
     }
 }
 
 /**
  * Initialize global loggers.
  *
  * Note that this is called very early in the process lifetime, so you should be
  * careful about what global state you rely on here.
  */
 void InitLogging(const ArgsManager &args) {
     LogInstance().m_print_to_file = !args.IsArgNegated("-debuglogfile");
     LogInstance().m_file_path =
         AbsPathForConfigVal(args.GetArg("-debuglogfile", DEFAULT_DEBUGLOGFILE));
 
     LogInstance().m_print_to_console =
         args.GetBoolArg("-printtoconsole", !args.GetBoolArg("-daemon", false));
     LogInstance().m_log_timestamps =
         args.GetBoolArg("-logtimestamps", DEFAULT_LOGTIMESTAMPS);
     LogInstance().m_log_time_micros =
         args.GetBoolArg("-logtimemicros", DEFAULT_LOGTIMEMICROS);
 #ifdef HAVE_THREAD_LOCAL
     LogInstance().m_log_threadnames =
         args.GetBoolArg("-logthreadnames", DEFAULT_LOGTHREADNAMES);
 #endif
 
     fLogIPs = args.GetBoolArg("-logips", DEFAULT_LOGIPS);
 
     std::string version_string = FormatFullVersion();
 #ifdef DEBUG
     version_string += " (debug build)";
 #else
     version_string += " (release build)";
 #endif
     LogPrintf("%s version %s\n", CLIENT_NAME, version_string);
 }
 
 namespace { // Variables internal to initialization process only
 
 int nMaxConnections;
 int nUserMaxConnections;
 int nFD;
 ServiceFlags nLocalServices = ServiceFlags(NODE_NETWORK | NODE_NETWORK_LIMITED);
 int64_t peer_connect_timeout;
 std::set<BlockFilterType> g_enabled_filter_types;
 
 } // namespace
 
 [[noreturn]] static void new_handler_terminate() {
     // Rather than throwing std::bad-alloc if allocation fails, terminate
     // immediately to (try to) avoid chain corruption. Since LogPrintf may
     // itself allocate memory, set the handler directly to terminate first.
     std::set_new_handler(std::terminate);
     LogPrintf("Error: Out of memory. Terminating.\n");
 
     // The log was successful, terminate now.
     std::terminate();
 };
 
 bool AppInitBasicSetup(ArgsManager &args) {
 // Step 1: setup
 #ifdef _MSC_VER
     // Turn off Microsoft heap dump noise
     _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);
     _CrtSetReportFile(_CRT_WARN, CreateFileA("NUL", GENERIC_WRITE, 0, nullptr,
                                              OPEN_EXISTING, 0, 0));
     // Disable confusing "helpful" text message on abort, Ctrl-C
     _set_abort_behavior(0, _WRITE_ABORT_MSG | _CALL_REPORTFAULT);
 #endif
 #ifdef WIN32
     // Enable Data Execution Prevention (DEP)
     SetProcessDEPPolicy(PROCESS_DEP_ENABLE);
 #endif
 
     if (!SetupNetworking()) {
         return InitError(Untranslated("Initializing networking failed"));
     }
 
 #ifndef WIN32
     if (!args.GetBoolArg("-sysperms", false)) {
         umask(077);
     }
 
     // Clean shutdown on SIGTERM
     registerSignalHandler(SIGTERM, HandleSIGTERM);
     registerSignalHandler(SIGINT, HandleSIGTERM);
 
     // Reopen debug.log on SIGHUP
     registerSignalHandler(SIGHUP, HandleSIGHUP);
 
     // Ignore SIGPIPE, otherwise it will bring the daemon down if the client
     // closes unexpectedly
     signal(SIGPIPE, SIG_IGN);
 #else
     SetConsoleCtrlHandler(consoleCtrlHandler, true);
 #endif
 
     std::set_new_handler(new_handler_terminate);
 
     return true;
 }
 
 bool AppInitParameterInteraction(Config &config, const ArgsManager &args) {
     const CChainParams &chainparams = config.GetChainParams();
     // Step 2: parameter interactions
 
     // also see: InitParameterInteraction()
 
     // Error if network-specific options (-addnode, -connect, etc) are
     // specified in default section of config file, but not overridden
     // on the command line or in this network's section of the config file.
     std::string network = args.GetChainName();
     bilingual_str errors;
     for (const auto &arg : args.GetUnsuitableSectionOnlyArgs()) {
         errors += strprintf(_("Config setting for %s only applied on %s "
                               "network when in [%s] section.") +
                                 Untranslated("\n"),
                             arg, network, network);
     }
 
     if (!errors.empty()) {
         return InitError(errors);
     }
 
     // Warn if unrecognized section name are present in the config file.
     bilingual_str warnings;
     for (const auto &section : args.GetUnrecognizedSections()) {
         warnings += strprintf(Untranslated("%s:%i ") +
                                   _("Section [%s] is not recognized.") +
                                   Untranslated("\n"),
                               section.m_file, section.m_line, section.m_name);
     }
 
     if (!warnings.empty()) {
         InitWarning(warnings);
     }
 
     if (!fs::is_directory(GetBlocksDir())) {
         return InitError(
             strprintf(_("Specified blocks directory \"%s\" does not exist."),
                       args.GetArg("-blocksdir", "")));
     }
 
     // parse and validate enabled filter types
     std::string blockfilterindex_value =
         args.GetArg("-blockfilterindex", DEFAULT_BLOCKFILTERINDEX);
     if (blockfilterindex_value == "" || blockfilterindex_value == "1") {
         g_enabled_filter_types = AllBlockFilterTypes();
     } else if (blockfilterindex_value != "0") {
         const std::vector<std::string> names =
             args.GetArgs("-blockfilterindex");
         for (const auto &name : names) {
             BlockFilterType filter_type;
             if (!BlockFilterTypeByName(name, filter_type)) {
                 return InitError(
                     strprintf(_("Unknown -blockfilterindex value %s."), name));
             }
             g_enabled_filter_types.insert(filter_type);
         }
     }
 
     // Signal NODE_COMPACT_FILTERS if peerblockfilters and basic filters index
     // are both enabled.
     if (gArgs.GetBoolArg("-peerblockfilters", DEFAULT_PEERBLOCKFILTERS)) {
         if (g_enabled_filter_types.count(BlockFilterType::BASIC) != 1) {
             return InitError(
                 _("Cannot set -peerblockfilters without -blockfilterindex."));
         }
 
         nLocalServices = ServiceFlags(nLocalServices | NODE_COMPACT_FILTERS);
     }
 
     // if using block pruning, then disallow txindex
     if (args.GetArg("-prune", 0)) {
         if (args.GetBoolArg("-txindex", DEFAULT_TXINDEX)) {
             return InitError(_("Prune mode is incompatible with -txindex."));
         }
         if (!g_enabled_filter_types.empty()) {
             return InitError(
                 _("Prune mode is incompatible with -blockfilterindex."));
         }
     }
 
     // -bind and -whitebind can't be set when not listening
     size_t nUserBind =
         args.GetArgs("-bind").size() + args.GetArgs("-whitebind").size();
     if (nUserBind != 0 && !args.GetBoolArg("-listen", DEFAULT_LISTEN)) {
         return InitError(Untranslated(
             "Cannot set -bind or -whitebind together with -listen=0"));
     }
 
     // Make sure enough file descriptors are available
     int nBind = std::max(nUserBind, size_t(1));
     nUserMaxConnections =
         args.GetArg("-maxconnections", DEFAULT_MAX_PEER_CONNECTIONS);
     nMaxConnections = std::max(nUserMaxConnections, 0);
 
     // Trim requested connection counts, to fit into system limitations
     // <int> in std::min<int>(...) to work around FreeBSD compilation issue
     // described in #2695
     nFD = RaiseFileDescriptorLimit(nMaxConnections + nBind +
                                    MIN_CORE_FILEDESCRIPTORS +
                                    MAX_ADDNODE_CONNECTIONS);
 #ifdef USE_POLL
     int fd_max = nFD;
 #else
     int fd_max = FD_SETSIZE;
 #endif
     nMaxConnections =
         std::max(std::min<int>(nMaxConnections, fd_max - nBind -
                                                     MIN_CORE_FILEDESCRIPTORS -
                                                     MAX_ADDNODE_CONNECTIONS),
                  0);
     if (nFD < MIN_CORE_FILEDESCRIPTORS) {
         return InitError(_("Not enough file descriptors available."));
     }
     nMaxConnections =
         std::min(nFD - MIN_CORE_FILEDESCRIPTORS - MAX_ADDNODE_CONNECTIONS,
                  nMaxConnections);
 
     if (nMaxConnections < nUserMaxConnections) {
         // Not categorizing as "Warning" because this is the normal behavior for
         // platforms using the select() interface for which FD_SETSIZE is
         // usually 1024.
         LogPrintf("Reducing -maxconnections from %d to %d, because of system "
                   "limitations.\n",
                   nUserMaxConnections, nMaxConnections);
     }
 
     // Step 3: parameter-to-internal-flags
     if (args.IsArgSet("-debug")) {
         // Special-case: if -debug=0/-nodebug is set, turn off debugging
         // messages
         const std::vector<std::string> &categories = args.GetArgs("-debug");
         if (std::none_of(
                 categories.begin(), categories.end(),
                 [](std::string cat) { return cat == "0" || cat == "none"; })) {
             for (const auto &cat : categories) {
                 if (!LogInstance().EnableCategory(cat)) {
                     InitWarning(
                         strprintf(_("Unsupported logging category %s=%s."),
                                   "-debug", cat));
                 }
             }
         }
     }
 
     // Now remove the logging categories which were explicitly excluded
     for (const std::string &cat : args.GetArgs("-debugexclude")) {
         if (!LogInstance().DisableCategory(cat)) {
             InitWarning(strprintf(_("Unsupported logging category %s=%s."),
                                   "-debugexclude", cat));
         }
     }
 
     fCheckBlockIndex = args.GetBoolArg("-checkblockindex",
                                        chainparams.DefaultConsistencyChecks());
     fCheckpointsEnabled =
         args.GetBoolArg("-checkpoints", DEFAULT_CHECKPOINTS_ENABLED);
     if (fCheckpointsEnabled) {
         LogPrintf("Checkpoints will be verified.\n");
     } else {
         LogPrintf("Skipping checkpoint verification.\n");
     }
 
     hashAssumeValid = BlockHash::fromHex(
         args.GetArg("-assumevalid",
                     chainparams.GetConsensus().defaultAssumeValid.GetHex()));
     if (!hashAssumeValid.IsNull()) {
         LogPrintf("Assuming ancestors of block %s have valid signatures.\n",
                   hashAssumeValid.GetHex());
     } else {
         LogPrintf("Validating signatures for all blocks.\n");
     }
 
     if (args.IsArgSet("-minimumchainwork")) {
         const std::string minChainWorkStr =
             args.GetArg("-minimumchainwork", "");
         if (!IsHexNumber(minChainWorkStr)) {
             return InitError(strprintf(
                 Untranslated(
                     "Invalid non-hex (%s) minimum chain work value specified"),
                 minChainWorkStr));
         }
         nMinimumChainWork = UintToArith256(uint256S(minChainWorkStr));
     } else {
         nMinimumChainWork =
             UintToArith256(chainparams.GetConsensus().nMinimumChainWork);
     }
     LogPrintf("Setting nMinimumChainWork=%s\n", nMinimumChainWork.GetHex());
     if (nMinimumChainWork <
         UintToArith256(chainparams.GetConsensus().nMinimumChainWork)) {
         LogPrintf("Warning: nMinimumChainWork set below default value of %s\n",
                   chainparams.GetConsensus().nMinimumChainWork.GetHex());
     }
 
     // mempool limits
     int64_t nMempoolSizeMax =
         args.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000;
     int64_t nMempoolSizeMin =
         args.GetArg("-limitdescendantsize", DEFAULT_DESCENDANT_SIZE_LIMIT) *
         1000 * 40;
     if (nMempoolSizeMax < 0 || nMempoolSizeMax < nMempoolSizeMin) {
         return InitError(strprintf(_("-maxmempool must be at least %d MB"),
                                    std::ceil(nMempoolSizeMin / 1000000.0)));
     }
 
     // Configure excessive block size.
     const int64_t nProposedExcessiveBlockSize =
         args.GetArg("-excessiveblocksize", DEFAULT_MAX_BLOCK_SIZE);
     if (nProposedExcessiveBlockSize <= 0 ||
         !config.SetMaxBlockSize(nProposedExcessiveBlockSize)) {
         return InitError(
             _("Excessive block size must be > 1,000,000 bytes (1MB)"));
     }
 
     // Check blockmaxsize does not exceed maximum accepted block size.
     const int64_t nProposedMaxGeneratedBlockSize =
         args.GetArg("-blockmaxsize", DEFAULT_MAX_GENERATED_BLOCK_SIZE);
     if (nProposedMaxGeneratedBlockSize <= 0) {
         return InitError(_("Max generated block size must be greater than 0"));
     }
     if (uint64_t(nProposedMaxGeneratedBlockSize) > config.GetMaxBlockSize()) {
         return InitError(_("Max generated block size (blockmaxsize) cannot "
                            "exceed the excessive block size "
                            "(excessiveblocksize)"));
     }
 
     // block pruning; get the amount of disk space (in MiB) to allot for block &
     // undo files
     int64_t nPruneArg = args.GetArg("-prune", 0);
     if (nPruneArg < 0) {
         return InitError(
             _("Prune cannot be configured with a negative value."));
     }
     nPruneTarget = (uint64_t)nPruneArg * 1024 * 1024;
     if (nPruneArg == 1) {
         // manual pruning: -prune=1
         LogPrintf("Block pruning enabled.  Use RPC call "
                   "pruneblockchain(height) to manually prune block and undo "
                   "files.\n");
         nPruneTarget = std::numeric_limits<uint64_t>::max();
         fPruneMode = true;
     } else if (nPruneTarget) {
         if (nPruneTarget < MIN_DISK_SPACE_FOR_BLOCK_FILES) {
             return InitError(
                 strprintf(_("Prune configured below the minimum of %d MiB. "
                             "Please use a higher number."),
                           MIN_DISK_SPACE_FOR_BLOCK_FILES / 1024 / 1024));
         }
         LogPrintf("Prune configured to target %u MiB on disk for block and "
                   "undo files.\n",
                   nPruneTarget / 1024 / 1024);
         fPruneMode = true;
     }
 
     nConnectTimeout = args.GetArg("-timeout", DEFAULT_CONNECT_TIMEOUT);
     if (nConnectTimeout <= 0) {
         nConnectTimeout = DEFAULT_CONNECT_TIMEOUT;
     }
 
     peer_connect_timeout =
         args.GetArg("-peertimeout", DEFAULT_PEER_CONNECT_TIMEOUT);
     if (peer_connect_timeout <= 0) {
         return InitError(Untranslated(
             "peertimeout cannot be configured with a negative value."));
     }
 
     // Obtain the amount to charge excess UTXO
     if (args.IsArgSet("-excessutxocharge")) {
         Amount n = Amount::zero();
         auto parsed = ParseMoney(args.GetArg("-excessutxocharge", ""), n);
         if (!parsed || Amount::zero() > n) {
             return InitError(AmountErrMsg(
                 "excessutxocharge", args.GetArg("-excessutxocharge", "")));
         }
         config.SetExcessUTXOCharge(n);
     } else {
         config.SetExcessUTXOCharge(DEFAULT_UTXO_FEE);
     }
 
     if (args.IsArgSet("-minrelaytxfee")) {
         Amount n = Amount::zero();
         auto parsed = ParseMoney(args.GetArg("-minrelaytxfee", ""), n);
         if (!parsed || n == Amount::zero()) {
             return InitError(AmountErrMsg("minrelaytxfee",
                                           args.GetArg("-minrelaytxfee", "")));
         }
         // High fee check is done afterward in CWallet::CreateWalletFromFile()
         ::minRelayTxFee = CFeeRate(n);
     }
 
     // Sanity check argument for min fee for including tx in block
     // TODO: Harmonize which arguments need sanity checking and where that
     // happens.
     if (args.IsArgSet("-blockmintxfee")) {
         Amount n = Amount::zero();
         if (!ParseMoney(args.GetArg("-blockmintxfee", ""), n)) {
             return InitError(AmountErrMsg("blockmintxfee",
                                           args.GetArg("-blockmintxfee", "")));
         }
     }
 
     // Feerate used to define dust.  Shouldn't be changed lightly as old
     // implementations may inadvertently create non-standard transactions.
     if (args.IsArgSet("-dustrelayfee")) {
         Amount n = Amount::zero();
         auto parsed = ParseMoney(args.GetArg("-dustrelayfee", ""), n);
         if (!parsed || Amount::zero() == n) {
             return InitError(
                 AmountErrMsg("dustrelayfee", args.GetArg("-dustrelayfee", "")));
         }
         dustRelayFee = CFeeRate(n);
     }
 
     fRequireStandard =
         !args.GetBoolArg("-acceptnonstdtxn", !chainparams.RequireStandard());
     if (!chainparams.IsTestChain() && !fRequireStandard) {
         return InitError(strprintf(
             Untranslated(
                 "acceptnonstdtxn is not currently supported for %s chain"),
             chainparams.NetworkIDString()));
     }
     nBytesPerSigOp = args.GetArg("-bytespersigop", nBytesPerSigOp);
 
     if (!g_wallet_init_interface.ParameterInteraction()) {
         return false;
     }
 
     fIsBareMultisigStd =
         args.GetBoolArg("-permitbaremultisig", DEFAULT_PERMIT_BAREMULTISIG);
     fAcceptDatacarrier =
         args.GetBoolArg("-datacarrier", DEFAULT_ACCEPT_DATACARRIER);
 
     // Option to startup with mocktime set (used for regression testing):
     SetMockTime(args.GetArg("-mocktime", 0)); // SetMockTime(0) is a no-op
 
     if (args.GetBoolArg("-peerbloomfilters", DEFAULT_PEERBLOOMFILTERS)) {
         nLocalServices = ServiceFlags(nLocalServices | NODE_BLOOM);
     }
 
     nMaxTipAge = args.GetArg("-maxtipage", DEFAULT_MAX_TIP_AGE);
 
     if (args.IsArgSet("-proxy") && args.GetArg("-proxy", "").empty()) {
         return InitError(_(
             "No proxy server specified. Use -proxy=<ip> or -proxy=<ip:port>."));
     }
 
     return true;
 }
 
 static bool LockDataDirectory(bool probeOnly) {
     // Make sure only a single Bitcoin process is using the data directory.
     fs::path datadir = GetDataDir();
     if (!DirIsWritable(datadir)) {
         return InitError(strprintf(
             _("Cannot write to data directory '%s'; check permissions."),
             datadir.string()));
     }
     if (!LockDirectory(datadir, ".lock", probeOnly)) {
         return InitError(strprintf(_("Cannot obtain a lock on data directory "
                                      "%s. %s is probably already running."),
                                    datadir.string(), PACKAGE_NAME));
     }
     return true;
 }
 
 bool AppInitSanityChecks() {
     // Step 4: sanity checks
 
     // Initialize elliptic curve code
     std::string sha256_algo = SHA256AutoDetect();
     LogPrintf("Using the '%s' SHA256 implementation\n", sha256_algo);
     RandomInit();
     ECC_Start();
     globalVerifyHandle.reset(new ECCVerifyHandle());
 
     // Sanity check
     if (!InitSanityCheck()) {
         return InitError(strprintf(
             _("Initialization sanity check failed. %s is shutting down."),
             PACKAGE_NAME));
     }
 
     // Probe the data directory lock to give an early error message, if possible
     // We cannot hold the data directory lock here, as the forking for daemon()
     // hasn't yet happened, and a fork will cause weird behavior to it.
     return LockDataDirectory(true);
 }
 
 bool AppInitLockDataDirectory() {
     // After daemonization get the data directory lock again and hold on to it
     // until exit. This creates a slight window for a race condition to happen,
     // however this condition is harmless: it will at most make us exit without
     // printing a message to console.
     if (!LockDataDirectory(false)) {
         // Detailed error printed inside LockDataDirectory
         return false;
     }
     return true;
 }
 
 bool AppInitInterfaces(NodeContext &node) {
     node.chain = interfaces::MakeChain(node, Params());
     // Create client interfaces for wallets that are supposed to be loaded
     // according to -wallet and -disablewallet options. This only constructs
     // the interfaces, it doesn't load wallet data. Wallets actually get loaded
     // when load() and start() interface methods are called below.
     g_wallet_init_interface.Construct(node);
     return true;
 }
 
 bool AppInitMain(Config &config, RPCServer &rpcServer,
                  HTTPRPCRequestProcessor &httpRPCRequestProcessor,
                  NodeContext &node,
                  interfaces::BlockAndHeaderTipInfo *tip_info) {
     // Step 4a: application initialization
     const ArgsManager &args = *Assert(node.args);
     const CChainParams &chainparams = config.GetChainParams();
 
     if (!CreatePidFile(args)) {
         // Detailed error printed inside CreatePidFile().
         return false;
     }
 
     BCLog::Logger &logger = LogInstance();
     if (logger.m_print_to_file) {
         if (args.GetBoolArg("-shrinkdebugfile",
                             logger.DefaultShrinkDebugFile())) {
             // Do this first since it both loads a bunch of debug.log into
             // memory, and because this needs to happen before any other
             // debug.log printing.
             logger.ShrinkDebugFile();
         }
     }
 
     if (!logger.StartLogging()) {
         return InitError(
             strprintf(Untranslated("Could not open debug log file %s"),
                       logger.m_file_path.string()));
     }
 
     if (!logger.m_log_timestamps) {
         LogPrintf("Startup time: %s\n", FormatISO8601DateTime(GetTime()));
     }
     LogPrintf("Default data directory %s\n", GetDefaultDataDir().string());
     LogPrintf("Using data directory %s\n", GetDataDir().string());
 
     // Only log conf file usage message if conf file actually exists.
     fs::path config_file_path =
         GetConfigFile(args.GetArg("-conf", BITCOIN_CONF_FILENAME));
     if (fs::exists(config_file_path)) {
         LogPrintf("Config file: %s\n", config_file_path.string());
     } else if (args.IsArgSet("-conf")) {
         // Warn if no conf file exists at path provided by user
         InitWarning(
             strprintf(_("The specified config file %s does not exist\n"),
                       config_file_path.string()));
     } else {
         // Not categorizing as "Warning" because it's the default behavior
         LogPrintf("Config file: %s (not found, skipping)\n",
                   config_file_path.string());
     }
 
     // Log the config arguments to debug.log
     args.LogArgs();
 
     LogPrintf("Using at most %i automatic connections (%i file descriptors "
               "available)\n",
               nMaxConnections, nFD);
 
     // Warn about relative -datadir path.
     if (args.IsArgSet("-datadir") &&
         !fs::path(args.GetArg("-datadir", "")).is_absolute()) {
         LogPrintf("Warning: relative datadir option '%s' specified, which will "
                   "be interpreted relative to the current working directory "
                   "'%s'. This is fragile, because if bitcoin is started in the "
                   "future from a different location, it will be unable to "
                   "locate the current data files. There could also be data "
                   "loss if bitcoin is started while in a temporary "
                   "directory.\n",
                   args.GetArg("-datadir", ""), fs::current_path().string());
     }
 
     InitSignatureCache();
     InitScriptExecutionCache();
 
     int script_threads = args.GetArg("-par", DEFAULT_SCRIPTCHECK_THREADS);
     if (script_threads <= 0) {
         // -par=0 means autodetect (number of cores - 1 script threads)
         // -par=-n means "leave n cores free" (number of cores - n - 1 script
         // threads)
         script_threads += GetNumCores();
     }
 
     // Subtract 1 because the main thread counts towards the par threads
     script_threads = std::max(script_threads - 1, 0);
 
     // Number of script-checking threads <= MAX_SCRIPTCHECK_THREADS
     script_threads = std::min(script_threads, MAX_SCRIPTCHECK_THREADS);
 
     LogPrintf("Script verification uses %d additional threads\n",
               script_threads);
     if (script_threads >= 1) {
         for (int i = 0; i < script_threads; ++i) {
             threadGroup.create_thread([i]() { return ThreadScriptCheck(i); });
         }
     }
 
     assert(!node.scheduler);
     node.scheduler = std::make_unique<CScheduler>();
 
     // Start the lightweight task scheduler thread
     CScheduler::Function serviceLoop = [&node] {
         node.scheduler->serviceQueue();
     };
     threadGroup.create_thread(std::bind(&TraceThread<CScheduler::Function>,
                                         "scheduler", serviceLoop));
 
     // Gather some entropy once per minute.
     node.scheduler->scheduleEvery(
         [] {
             RandAddPeriodic();
             return true;
         },
         std::chrono::minutes{1});
 
     GetMainSignals().RegisterBackgroundSignalScheduler(*node.scheduler);
 
     /**
      * Register RPC commands regardless of -server setting so they will be
      * available in the GUI RPC console even if external calls are disabled.
      */
     RegisterAllRPCCommands(config, rpcServer, tableRPC);
     for (const auto &client : node.chain_clients) {
         client->registerRpcs();
     }
 #if ENABLE_ZMQ
     RegisterZMQRPCCommands(tableRPC);
 #endif
 
     /**
      * Start the RPC server.  It will be started in "warmup" mode and not
      * process calls yet (but it will verify that the server is there and will
      * be ready later).  Warmup mode will be completed when initialisation is
      * finished.
      */
     if (args.GetBoolArg("-server", false)) {
         uiInterface.InitMessage_connect(SetRPCWarmupStatus);
         if (!AppInitServers(config, httpRPCRequestProcessor, node)) {
             return InitError(
                 _("Unable to start HTTP server. See debug log for details."));
         }
     }
 
     // Step 5: verify wallet database integrity
     for (const auto &client : node.chain_clients) {
         if (!client->verify()) {
             return false;
         }
     }
 
     // Step 6: network initialization
 
     // Note that we absolutely cannot open any actual connections
     // until the very end ("start node") as the UTXO/block state
     // is not yet setup and may end up being set up twice if we
     // need to reindex later.
 
     assert(!node.banman);
     node.banman = std::make_unique<BanMan>(
         GetDataDir() / "banlist.dat", config.GetChainParams(), &uiInterface,
         args.GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME));
     assert(!node.connman);
     node.connman = std::make_unique<CConnman>(
         config, GetRand(std::numeric_limits<uint64_t>::max()),
         GetRand(std::numeric_limits<uint64_t>::max()),
         gArgs.GetBoolArg("-networkactive", true));
 
     // Make mempool generally available in the node context. For example the
     // connection manager, wallet, or RPC threads, which are all started after
     // this, may use it from the node context.
     assert(!node.mempool);
     node.mempool = std::make_unique<CTxMemPool>();
     if (node.mempool) {
         int ratio = std::min<int>(
             std::max<int>(
                 args.GetArg("-checkmempool",
                             chainparams.DefaultConsistencyChecks() ? 1 : 0),
                 0),
             1000000);
         if (ratio != 0) {
             node.mempool->setSanityCheck(1.0 / ratio);
         }
     }
 
     assert(!node.chainman);
     node.chainman = &g_chainman;
     ChainstateManager &chainman = *Assert(node.chainman);
 
     node.peerman.reset(new PeerManager(chainparams, *node.connman,
                                        node.banman.get(), *node.scheduler,
                                        chainman, *node.mempool));
     RegisterValidationInterface(node.peerman.get());
 
     // sanitize comments per BIP-0014, format user agent and check total size
     std::vector<std::string> uacomments;
     for (const std::string &cmt : args.GetArgs("-uacomment")) {
         if (cmt != SanitizeString(cmt, SAFE_CHARS_UA_COMMENT)) {
             return InitError(strprintf(
                 _("User Agent comment (%s) contains unsafe characters."), cmt));
         }
         uacomments.push_back(cmt);
     }
     const std::string client_name = args.GetArg("-uaclientname", CLIENT_NAME);
     const std::string client_version =
         args.GetArg("-uaclientversion", FormatVersion(CLIENT_VERSION));
     if (client_name != SanitizeString(client_name, SAFE_CHARS_UA_COMMENT)) {
         return InitError(strprintf(
             _("-uaclientname (%s) contains invalid characters."), client_name));
     }
     if (client_version !=
         SanitizeString(client_version, SAFE_CHARS_UA_COMMENT)) {
         return InitError(
             strprintf(_("-uaclientversion (%s) contains invalid characters."),
                       client_version));
     }
     const std::string strSubVersion =
         FormatUserAgent(client_name, client_version, uacomments);
     if (strSubVersion.size() > MAX_SUBVERSION_LENGTH) {
         return InitError(strprintf(
             _("Total length of network version string (%i) exceeds maximum "
               "length (%i). Reduce the number or size of uacomments."),
             strSubVersion.size(), MAX_SUBVERSION_LENGTH));
     }
 
     if (args.IsArgSet("-onlynet")) {
         std::set<enum Network> nets;
         for (const std::string &snet : args.GetArgs("-onlynet")) {
             enum Network net = ParseNetwork(snet);
             if (net == NET_UNROUTABLE) {
                 return InitError(strprintf(
                     _("Unknown network specified in -onlynet: '%s'"), snet));
             }
             nets.insert(net);
         }
         for (int n = 0; n < NET_MAX; n++) {
             enum Network net = (enum Network)n;
             if (!nets.count(net)) {
                 SetReachable(net, false);
             }
         }
     }
 
     // Check for host lookup allowed before parsing any network related
     // parameters
     fNameLookup = args.GetBoolArg("-dns", DEFAULT_NAME_LOOKUP);
 
     bool proxyRandomize =
         args.GetBoolArg("-proxyrandomize", DEFAULT_PROXYRANDOMIZE);
     // -proxy sets a proxy for all outgoing network traffic
     // -noproxy (or -proxy=0) as well as the empty string can be used to not set
     // a proxy, this is the default
     std::string proxyArg = args.GetArg("-proxy", "");
     SetReachable(NET_ONION, false);
     if (proxyArg != "" && proxyArg != "0") {
         CService proxyAddr;
         if (!Lookup(proxyArg, proxyAddr, 9050, fNameLookup)) {
             return InitError(strprintf(
                 _("Invalid -proxy address or hostname: '%s'"), proxyArg));
         }
 
         proxyType addrProxy = proxyType(proxyAddr, proxyRandomize);
         if (!addrProxy.IsValid()) {
             return InitError(strprintf(
                 _("Invalid -proxy address or hostname: '%s'"), proxyArg));
         }
 
         SetProxy(NET_IPV4, addrProxy);
         SetProxy(NET_IPV6, addrProxy);
         SetProxy(NET_ONION, addrProxy);
         SetNameProxy(addrProxy);
         // by default, -proxy sets onion as reachable, unless -noonion later
         SetReachable(NET_ONION, true);
     }
 
     // -onion can be used to set only a proxy for .onion, or override normal
     // proxy for .onion addresses.
     // -noonion (or -onion=0) disables connecting to .onion entirely. An empty
     // string is used to not override the onion proxy (in which case it defaults
     // to -proxy set above, or none)
     std::string onionArg = args.GetArg("-onion", "");
     if (onionArg != "") {
         if (onionArg == "0") {
             // Handle -noonion/-onion=0
             SetReachable(NET_ONION, false);
         } else {
             CService onionProxy;
             if (!Lookup(onionArg, onionProxy, 9050, fNameLookup)) {
                 return InitError(strprintf(
                     _("Invalid -onion address or hostname: '%s'"), onionArg));
             }
             proxyType addrOnion = proxyType(onionProxy, proxyRandomize);
             if (!addrOnion.IsValid()) {
                 return InitError(strprintf(
                     _("Invalid -onion address or hostname: '%s'"), onionArg));
             }
             SetProxy(NET_ONION, addrOnion);
             SetReachable(NET_ONION, true);
         }
     }
 
     // see Step 2: parameter interactions for more information about these
     fListen = args.GetBoolArg("-listen", DEFAULT_LISTEN);
     fDiscover = args.GetBoolArg("-discover", true);
     g_relay_txes = !args.GetBoolArg("-blocksonly", DEFAULT_BLOCKSONLY);
 
     for (const std::string &strAddr : args.GetArgs("-externalip")) {
         CService addrLocal;
         if (Lookup(strAddr, addrLocal, GetListenPort(), fNameLookup) &&
             addrLocal.IsValid()) {
             AddLocal(addrLocal, LOCAL_MANUAL);
         } else {
             return InitError(ResolveErrMsg("externalip", strAddr));
         }
     }
 
     // Read asmap file if configured
     if (args.IsArgSet("-asmap")) {
         fs::path asmap_path = fs::path(args.GetArg("-asmap", ""));
         if (asmap_path.empty()) {
             asmap_path = DEFAULT_ASMAP_FILENAME;
         }
         if (!asmap_path.is_absolute()) {
             asmap_path = GetDataDir() / asmap_path;
         }
         if (!fs::exists(asmap_path)) {
             InitError(strprintf(_("Could not find asmap file %s"), asmap_path));
             return false;
         }
         std::vector<bool> asmap = CAddrMan::DecodeAsmap(asmap_path);
         if (asmap.size() == 0) {
             InitError(
                 strprintf(_("Could not parse asmap file %s"), asmap_path));
             return false;
         }
         const uint256 asmap_version = SerializeHash(asmap);
         node.connman->SetAsmap(std::move(asmap));
         LogPrintf("Using asmap version %s for IP bucketing\n",
                   asmap_version.ToString());
     } else {
         LogPrintf("Using /16 prefix for IP bucketing\n");
     }
 
 #if ENABLE_ZMQ
     g_zmq_notification_interface = CZMQNotificationInterface::Create();
 
     if (g_zmq_notification_interface) {
         RegisterValidationInterface(g_zmq_notification_interface);
     }
 #endif
     // unlimited unless -maxuploadtarget is set
     uint64_t nMaxOutboundLimit = 0;
     uint64_t nMaxOutboundTimeframe = MAX_UPLOAD_TIMEFRAME;
 
     if (args.IsArgSet("-maxuploadtarget")) {
         nMaxOutboundLimit =
             args.GetArg("-maxuploadtarget", DEFAULT_MAX_UPLOAD_TARGET) * 1024 *
             1024;
     }
 
     // Step 6.5 (I guess ?): Initialize Avalanche.
     bilingual_str avalancheError;
     g_avalanche = avalanche::Processor::MakeProcessor(
         args, *node.chain, node.connman.get(), avalancheError);
     if (!g_avalanche) {
         InitError(avalancheError);
         return false;
     }
 
     if (isAvalancheEnabled(args) &&
         g_avalanche->isAvalancheServiceAvailable()) {
         nLocalServices = ServiceFlags(nLocalServices | NODE_AVALANCHE);
     }
 
     // Step 7: load block chain
 
     fReindex = args.GetBoolArg("-reindex", false);
     bool fReindexChainState = args.GetBoolArg("-reindex-chainstate", false);
 
     // cache size calculations
     int64_t nTotalCache = (args.GetArg("-dbcache", DEFAULT_DB_CACHE_MB) << 20);
     // total cache cannot be less than MIN_DB_CACHE_MB
     nTotalCache = std::max(nTotalCache, MIN_DB_CACHE_MB << 20);
     // total cache cannot be greater than MAX_DB_CACHE_MB
     nTotalCache = std::min(nTotalCache, MAX_DB_CACHE_MB << 20);
     int64_t nBlockTreeDBCache =
         std::min(nTotalCache / 8, MAX_BLOCK_DB_CACHE_MB << 20);
     nTotalCache -= nBlockTreeDBCache;
     int64_t nTxIndexCache =
         std::min(nTotalCache / 8, args.GetBoolArg("-txindex", DEFAULT_TXINDEX)
                                       ? MAX_TX_INDEX_CACHE_MB << 20
                                       : 0);
     nTotalCache -= nTxIndexCache;
     int64_t filter_index_cache = 0;
     if (!g_enabled_filter_types.empty()) {
         size_t n_indexes = g_enabled_filter_types.size();
         int64_t max_cache =
             std::min(nTotalCache / 8, MAX_FILTER_INDEX_CACHE_MB << 20);
         filter_index_cache = max_cache / n_indexes;
         nTotalCache -= filter_index_cache * n_indexes;
     }
     // use 25%-50% of the remainder for disk cache
     int64_t nCoinDBCache =
         std::min(nTotalCache / 2, (nTotalCache / 4) + (1 << 23));
     // cap total coins db cache
     nCoinDBCache = std::min(nCoinDBCache, MAX_COINS_DB_CACHE_MB << 20);
     nTotalCache -= nCoinDBCache;
     // the rest goes to in-memory cache
     int64_t nCoinCacheUsage = nTotalCache;
     int64_t nMempoolSizeMax =
         args.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000;
     LogPrintf("Cache configuration:\n");
     LogPrintf("* Using %.1f MiB for block index database\n",
               nBlockTreeDBCache * (1.0 / 1024 / 1024));
     if (args.GetBoolArg("-txindex", DEFAULT_TXINDEX)) {
         LogPrintf("* Using %.1f MiB for transaction index database\n",
                   nTxIndexCache * (1.0 / 1024 / 1024));
     }
     for (BlockFilterType filter_type : g_enabled_filter_types) {
         LogPrintf("* Using %.1f MiB for %s block filter index database\n",
                   filter_index_cache * (1.0 / 1024 / 1024),
                   BlockFilterTypeName(filter_type));
     }
     LogPrintf("* Using %.1f MiB for chain state database\n",
               nCoinDBCache * (1.0 / 1024 / 1024));
     LogPrintf("* Using %.1f MiB for in-memory UTXO set (plus up to %.1f MiB of "
               "unused mempool space)\n",
               nCoinCacheUsage * (1.0 / 1024 / 1024),
               nMempoolSizeMax * (1.0 / 1024 / 1024));
 
     bool fLoaded = false;
     while (!fLoaded && !ShutdownRequested()) {
         const bool fReset = fReindex;
         auto is_coinsview_empty =
             [&](CChainState *chainstate) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) {
                 return fReset || fReindexChainState ||
                        chainstate->CoinsTip().GetBestBlock().IsNull();
             };
         bilingual_str strLoadError;
 
         uiInterface.InitMessage(_("Loading block index...").translated);
         do {
             bool failed_verification = false;
             const int64_t load_block_index_start_time = GetTimeMillis();
             try {
                 LOCK(cs_main);
                 chainman.InitializeChainstate(*Assert(node.mempool));
                 chainman.m_total_coinstip_cache = nCoinCacheUsage;
                 chainman.m_total_coinsdb_cache = nCoinDBCache;
 
                 UnloadBlockIndex(node.mempool.get(), chainman);
 
                 // new CBlockTreeDB tries to delete the existing file, which
                 // fails if it's still open from the previous loop. Close it
                 // first:
                 pblocktree.reset();
                 pblocktree.reset(
                     new CBlockTreeDB(nBlockTreeDBCache, false, fReset));
 
                 if (fReset) {
                     pblocktree->WriteReindexing(true);
                     // If we're reindexing in prune mode, wipe away unusable
                     // block files and all undo data files
                     if (fPruneMode) {
                         CleanupBlockRevFiles();
                     }
                 }
 
                 const Consensus::Params &params = chainparams.GetConsensus();
 
                 // If necessary, upgrade from older database format.
                 // This is a no-op if we cleared the block tree db with -reindex
                 // or -reindex-chainstate
                 if (!pblocktree->Upgrade(params)) {
                     strLoadError = _("Error upgrading block index database");
                     break;
                 }
 
                 if (ShutdownRequested()) {
                     break;
                 }
 
                 // LoadBlockIndex will load fHavePruned if we've ever removed a
                 // block file from disk.
                 // Note that it also sets fReindex based on the disk flag!
                 // From here on out fReindex and fReset mean something
                 // different!
                 if (!chainman.LoadBlockIndex(params)) {
                     if (ShutdownRequested()) {
                         break;
                     }
                     strLoadError = _("Error loading block database");
                     break;
                 }
 
                 // If the loaded chain has a wrong genesis, bail out immediately
                 // (we're likely using a testnet datadir, or the other way
                 // around).
                 if (!chainman.BlockIndex().empty() &&
                     !LookupBlockIndex(params.hashGenesisBlock)) {
                     return InitError(_("Incorrect or no genesis block found. "
                                        "Wrong datadir for network?"));
                 }
 
                 // Check for changed -prune state.  What we are concerned about
                 // is a user who has pruned blocks in the past, but is now
                 // trying to run unpruned.
                 if (fHavePruned && !fPruneMode) {
                     strLoadError =
                         _("You need to rebuild the database using -reindex to "
                           "go back to unpruned mode.  This will redownload the "
                           "entire blockchain");
                     break;
                 }
 
                 // At this point blocktree args are consistent with what's on
                 // disk. If we're not mid-reindex (based on disk + args), add a
                 // genesis block on disk (otherwise we use the one already on
                 // disk).
                 // This is called again in ThreadImport after the reindex
                 // completes.
                 if (!fReindex && !LoadGenesisBlock(chainparams)) {
                     strLoadError = _("Error initializing block database");
                     break;
                 }
 
                 // At this point we're either in reindex or we've loaded a
                 // useful block tree into BlockIndex()!
 
                 bool failed_chainstate_init = false;
 
                 for (CChainState *chainstate : chainman.GetAll()) {
                     chainstate->InitCoinsDB(
                         /* cache_size_bytes */ nCoinDBCache,
                         /* in_memory */ false,
                         /* should_wipe */ fReset || fReindexChainState);
 
                     chainstate->CoinsErrorCatcher().AddReadErrCallback([]() {
                         uiInterface.ThreadSafeMessageBox(
                             _("Error reading from database, shutting down."),
                             "", CClientUIInterface::MSG_ERROR);
                     });
 
                     // If necessary, upgrade from older database format.
                     // This is a no-op if we cleared the coinsviewdb with
                     // -reindex or -reindex-chainstate
                     if (!chainstate->CoinsDB().Upgrade()) {
                         strLoadError = _("Error upgrading chainstate database");
                         failed_chainstate_init = true;
                         break;
                     }
 
                     // ReplayBlocks is a no-op if we cleared the coinsviewdb
                     // with -reindex or -reindex-chainstate
                     if (!chainstate->ReplayBlocks(params)) {
                         strLoadError = _(
                             "Unable to replay blocks. You will need to rebuild "
                             "the database using -reindex-chainstate.");
                         failed_chainstate_init = true;
                         break;
                     }
 
                     // The on-disk coinsdb is now in a good state, create the
                     // cache
                     chainstate->InitCoinsCache(nCoinCacheUsage);
                     assert(chainstate->CanFlushToDisk());
 
                     if (!is_coinsview_empty(chainstate)) {
                         // LoadChainTip initializes the chain based on
                         // CoinsTip()'s best block
                         if (!chainstate->LoadChainTip(chainparams)) {
                             strLoadError =
                                 _("Error initializing block database");
                             failed_chainstate_init = true;
                             // out of the per-chainstate loop
                             break;
                         }
                         assert(chainstate->m_chain.Tip() != nullptr);
                     }
                 }
 
                 if (failed_chainstate_init) {
                     // out of the chainstate activation do-while
                     break;
                 }
 
                 for (CChainState *chainstate : chainman.GetAll()) {
                     if (!is_coinsview_empty(chainstate)) {
                         uiInterface.InitMessage(
                             _("Verifying blocks...").translated);
                         if (fHavePruned &&
                             args.GetArg("-checkblocks", DEFAULT_CHECKBLOCKS) >
                                 MIN_BLOCKS_TO_KEEP) {
                             LogPrintf(
                                 "Prune: pruned datadir may not have more than "
                                 "%d blocks; only checking available blocks\n",
                                 MIN_BLOCKS_TO_KEEP);
                         }
 
                         const CBlockIndex *tip = chainstate->m_chain.Tip();
                         RPCNotifyBlockChange(tip);
                         if (tip &&
                             tip->nTime > GetAdjustedTime() + 2 * 60 * 60) {
                             strLoadError =
                                 _("The block database contains a block which "
                                   "appears to be from the future. "
                                   "This may be due to your computer's date and "
                                   "time being set incorrectly. "
                                   "Only rebuild the block database if you are "
                                   "sure that your computer's date and time are "
                                   "correct");
                             failed_verification = true;
                             break;
                         }
 
                         // Only verify the DB of the active chainstate. This is
                         // fixed in later work when we allow VerifyDB to be
                         // parameterized by chainstate.
                         if (&::ChainstateActive() == chainstate &&
                             !CVerifyDB().VerifyDB(
                                 config, &chainstate->CoinsDB(),
                                 args.GetArg("-checklevel", DEFAULT_CHECKLEVEL),
                                 args.GetArg("-checkblocks",
                                             DEFAULT_CHECKBLOCKS))) {
                             strLoadError =
                                 _("Corrupted block database detected");
                             failed_verification = true;
                             break;
                         }
                     }
                 }
             } catch (const std::exception &e) {
                 LogPrintf("%s\n", e.what());
                 strLoadError = _("Error opening block database");
                 failed_verification = true;
                 break;
             }
 
             if (!failed_verification) {
                 fLoaded = true;
                 LogPrintf(" block index %15dms\n",
                           GetTimeMillis() - load_block_index_start_time);
             }
         } while (false);
 
         if (!fLoaded && !ShutdownRequested()) {
             // first suggest a reindex
             if (!fReset) {
                 bool fRet = uiInterface.ThreadSafeQuestion(
                     strLoadError + Untranslated(".\n\n") +
                         _("Do you want to rebuild the block database now?"),
                     strLoadError.original +
                         ".\nPlease restart with -reindex or "
                         "-reindex-chainstate to recover.",
                     "",
                     CClientUIInterface::MSG_ERROR |
                         CClientUIInterface::BTN_ABORT);
                 if (fRet) {
                     fReindex = true;
                     AbortShutdown();
                 } else {
                     LogPrintf("Aborted block database rebuild. Exiting.\n");
                     return false;
                 }
             } else {
                 return InitError(strLoadError);
             }
         }
     }
 
     // As LoadBlockIndex can take several minutes, it's possible the user
     // requested to kill the GUI during the last operation. If so, exit.
     // As the program has not fully started yet, Shutdown() is possibly
     // overkill.
     if (ShutdownRequested()) {
         LogPrintf("Shutdown requested. Exiting.\n");
         return false;
     }
 
     // Encoded addresses using cashaddr instead of base58.
     // We do this by default to avoid confusion with BTC addresses.
     config.SetCashAddrEncoding(args.GetBoolArg("-usecashaddr", true));
 
     // Step 8: load indexers
     if (args.GetBoolArg("-txindex", DEFAULT_TXINDEX)) {
         g_txindex = std::make_unique<TxIndex>(nTxIndexCache, false, fReindex);
         g_txindex->Start();
     }
 
     for (const auto &filter_type : g_enabled_filter_types) {
         InitBlockFilterIndex(filter_type, filter_index_cache, false, fReindex);
         GetBlockFilterIndex(filter_type)->Start();
     }
 
     // Step 9: load wallet
     for (const auto &client : node.chain_clients) {
         if (!client->load()) {
             return false;
         }
     }
 
     // Step 10: data directory maintenance
 
     // if pruning, unset the service bit and perform the initial blockstore
     // prune after any wallet rescanning has taken place.
     if (fPruneMode) {
         LogPrintf("Unsetting NODE_NETWORK on prune mode\n");
         nLocalServices = ServiceFlags(nLocalServices & ~NODE_NETWORK);
         if (!fReindex) {
             LOCK(cs_main);
             for (CChainState *chainstate : chainman.GetAll()) {
                 uiInterface.InitMessage(_("Pruning blockstore...").translated);
                 chainstate->PruneAndFlush();
             }
         }
     }
 
     // Step 11: import blocks
     if (!CheckDiskSpace(GetDataDir())) {
         InitError(
             strprintf(_("Error: Disk space is low for %s"), GetDataDir()));
         return false;
     }
     if (!CheckDiskSpace(GetBlocksDir())) {
         InitError(
             strprintf(_("Error: Disk space is low for %s"), GetBlocksDir()));
         return false;
     }
 
     // Either install a handler to notify us when genesis activates, or set
     // fHaveGenesis directly.
     // No locking, as this happens before any background thread is started.
     boost::signals2::connection block_notify_genesis_wait_connection;
     if (::ChainActive().Tip() == nullptr) {
         block_notify_genesis_wait_connection =
             uiInterface.NotifyBlockTip_connect(
                 std::bind(BlockNotifyGenesisWait, std::placeholders::_2));
     } else {
         fHaveGenesis = true;
     }
 
 #if defined(HAVE_SYSTEM)
     const std::string block_notify = args.GetArg("-blocknotify", "");
     if (!block_notify.empty()) {
         uiInterface.NotifyBlockTip_connect([block_notify](
                                                SynchronizationState sync_state,
                                                const CBlockIndex *pBlockIndex) {
             if (sync_state != SynchronizationState::POST_INIT || !pBlockIndex) {
                 return;
             }
             std::string command = block_notify;
             boost::replace_all(command, "%s",
                                pBlockIndex->GetBlockHash().GetHex());
             std::thread t(runCommand, command);
             // thread runs free
             t.detach();
         });
     }
 #endif
 
     std::vector<fs::path> vImportFiles;
     for (const std::string &strFile : args.GetArgs("-loadblock")) {
         vImportFiles.push_back(strFile);
     }
 
     g_load_block =
         std::thread(&TraceThread<std::function<void()>>, "loadblk",
                     [=, &config, &chainman, &args] {
                         ThreadImport(config, chainman, vImportFiles, args);
                     });
 
     // Wait for genesis block to be processed
     {
         WAIT_LOCK(g_genesis_wait_mutex, lock);
         // We previously could hang here if StartShutdown() is called prior to
         // ThreadImport getting started, so instead we just wait on a timer to
         // check ShutdownRequested() regularly.
         while (!fHaveGenesis && !ShutdownRequested()) {
             g_genesis_wait_cv.wait_for(lock, std::chrono::milliseconds(500));
         }
         block_notify_genesis_wait_connection.disconnect();
     }
 
     if (ShutdownRequested()) {
         return false;
     }
 
     // Step 12: start node
 
     int chain_active_height;
 
     //// debug print
     {
         LOCK(cs_main);
         LogPrintf("block tree size = %u\n", chainman.BlockIndex().size());
         chain_active_height = chainman.ActiveChain().Height();
         if (tip_info) {
             tip_info->block_height = chain_active_height;
             tip_info->block_time =
                 chainman.ActiveChain().Tip()
                     ? chainman.ActiveChain().Tip()->GetBlockTime()
                     : Params().GenesisBlock().GetBlockTime();
             tip_info->verification_progress = GuessVerificationProgress(
                 Params().TxData(), chainman.ActiveChain().Tip());
         }
         if (tip_info && ::pindexBestHeader) {
             tip_info->header_height = ::pindexBestHeader->nHeight;
             tip_info->header_time = ::pindexBestHeader->GetBlockTime();
         }
     }
     LogPrintf("nBestHeight = %d\n", chain_active_height);
 
-    if (args.GetBoolArg("-listenonion", DEFAULT_LISTEN_ONION)) {
-        StartTorControl(DefaultOnionServiceTarget());
-    }
-
     Discover();
 
     // Map ports with UPnP
     if (args.GetBoolArg("-upnp", DEFAULT_UPNP)) {
         StartMapPort();
     }
 
     CConnman::Options connOptions;
     connOptions.nLocalServices = nLocalServices;
     connOptions.nMaxConnections = nMaxConnections;
     connOptions.m_max_outbound_full_relay = std::min(
         MAX_OUTBOUND_FULL_RELAY_CONNECTIONS, connOptions.nMaxConnections);
     connOptions.m_max_outbound_block_relay = std::min(
         MAX_BLOCK_RELAY_ONLY_CONNECTIONS,
         connOptions.nMaxConnections - connOptions.m_max_outbound_full_relay);
     connOptions.nMaxAddnode = MAX_ADDNODE_CONNECTIONS;
     connOptions.nMaxFeeler = MAX_FEELER_CONNECTIONS;
     connOptions.nBestHeight = chain_active_height;
     connOptions.uiInterface = &uiInterface;
     connOptions.m_banman = node.banman.get();
     connOptions.m_msgproc = node.peerman.get();
     connOptions.nSendBufferMaxSize =
         1000 * args.GetArg("-maxsendbuffer", DEFAULT_MAXSENDBUFFER);
     connOptions.nReceiveFloodSize =
         1000 * args.GetArg("-maxreceivebuffer", DEFAULT_MAXRECEIVEBUFFER);
     connOptions.m_added_nodes = args.GetArgs("-addnode");
 
     connOptions.nMaxOutboundTimeframe = nMaxOutboundTimeframe;
     connOptions.nMaxOutboundLimit = nMaxOutboundLimit;
     connOptions.m_peer_connect_timeout = peer_connect_timeout;
 
-    for (const std::string &strBind : args.GetArgs("-bind")) {
-        CService addrBind;
-        if (!Lookup(strBind, addrBind, GetListenPort(), false)) {
-            return InitError(ResolveErrMsg("bind", strBind));
+    for (const std::string &bind_arg : args.GetArgs("-bind")) {
+        CService bind_addr;
+        const size_t index = bind_arg.rfind('=');
+        if (index == std::string::npos) {
+            if (Lookup(bind_arg, bind_addr, GetListenPort(), false)) {
+                connOptions.vBinds.push_back(bind_addr);
+                continue;
+            }
+        } else {
+            const std::string network_type = bind_arg.substr(index + 1);
+            if (network_type == "onion") {
+                const std::string truncated_bind_arg =
+                    bind_arg.substr(0, index);
+                if (Lookup(truncated_bind_arg, bind_addr,
+                           BaseParams().OnionServiceTargetPort(), false)) {
+                    connOptions.onion_binds.push_back(bind_addr);
+                    continue;
+                }
+            }
+        }
+        return InitError(ResolveErrMsg("bind", bind_arg));
+    }
+
+    if (connOptions.onion_binds.empty()) {
+        connOptions.onion_binds.push_back(DefaultOnionServiceTarget());
+    }
+
+    if (args.GetBoolArg("-listenonion", DEFAULT_LISTEN_ONION)) {
+        const auto bind_addr = connOptions.onion_binds.front();
+        if (connOptions.onion_binds.size() > 1) {
+            InitWarning(strprintf(
+                _("More than one onion bind address is provided. Using %s for "
+                  "the automatically created Tor onion service."),
+                bind_addr.ToStringIPPort()));
         }
-        connOptions.vBinds.push_back(addrBind);
+        StartTorControl(bind_addr);
     }
 
     for (const std::string &strBind : args.GetArgs("-whitebind")) {
         NetWhitebindPermissions whitebind;
         bilingual_str error;
         if (!NetWhitebindPermissions::TryParse(strBind, whitebind, error)) {
             return InitError(error);
         }
         connOptions.vWhiteBinds.push_back(whitebind);
     }
 
     for (const auto &net : args.GetArgs("-whitelist")) {
         NetWhitelistPermissions subnet;
         bilingual_str error;
         if (!NetWhitelistPermissions::TryParse(net, subnet, error)) {
             return InitError(error);
         }
         connOptions.vWhitelistedRange.push_back(subnet);
     }
 
     connOptions.vSeedNodes = args.GetArgs("-seednode");
 
     // Initiate outbound connections unless connect=0
     connOptions.m_use_addrman_outgoing = !args.IsArgSet("-connect");
     if (!connOptions.m_use_addrman_outgoing) {
         const auto connect = args.GetArgs("-connect");
         if (connect.size() != 1 || connect[0] != "0") {
             connOptions.m_specified_outgoing = connect;
         }
     }
     if (!node.connman->Start(*node.scheduler, connOptions)) {
         return false;
     }
 
     // Step 13: finished
 
     SetRPCWarmupFinished();
     uiInterface.InitMessage(_("Done loading").translated);
 
     for (const auto &client : node.chain_clients) {
         client->start(*node.scheduler);
     }
 
     BanMan *banman = node.banman.get();
     node.scheduler->scheduleEvery(
         [banman] {
             banman->DumpBanlist();
             return true;
         },
         DUMP_BANS_INTERVAL);
 
     // Start Avalanche's event loop.
     g_avalanche->startEventLoop(*node.scheduler);
 
 #if HAVE_SYSTEM
     StartupNotify(args);
 #endif
 
     return true;
 }
diff --git a/src/net.cpp b/src/net.cpp
index 7d825a500..c6a8c9be6 100644
--- a/src/net.cpp
+++ b/src/net.cpp
@@ -1,3372 +1,3385 @@
 // Copyright (c) 2009-2010 Satoshi Nakamoto
 // Copyright (c) 2009-2019 The Bitcoin Core developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #if defined(HAVE_CONFIG_H)
 #include <config/bitcoin-config.h>
 #endif
 
 #include <net.h>
 
 #include <avalanche/avalanche.h>
 #include <banman.h>
 #include <clientversion.h>
 #include <config.h>
 #include <consensus/consensus.h>
 #include <crypto/sha256.h>
 #include <dnsseeds.h>
 #include <netbase.h>
 #include <node/ui_interface.h>
 #include <protocol.h>
 #include <random.h>
 #include <scheduler.h>
 #include <util/strencodings.h>
 #include <util/translation.h>
 
 #ifdef WIN32
 #include <cstring>
 #else
 #include <fcntl.h>
 #endif
 
 #ifdef USE_POLL
 #include <poll.h>
 #endif
 
 #ifdef USE_UPNP
 #include <miniupnpc/miniupnpc.h>
 #include <miniupnpc/upnpcommands.h>
 #include <miniupnpc/upnperrors.h>
 // The minimum supported miniUPnPc API version is set to 10. This keeps
 // compatibility with Ubuntu 16.04 LTS and Debian 8 libminiupnpc-dev packages.
 static_assert(MINIUPNPC_API_VERSION >= 10,
               "miniUPnPc API version >= 10 assumed");
 #endif
 
 #include <algorithm>
 #include <cmath>
 #include <cstdint>
 #include <limits>
 #include <optional>
 #include <unordered_map>
 
 // How often to dump addresses to peers.dat
 static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
 
 /**
  * Number of DNS seeds to query when the number of connections is low.
  */
 static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
 
 /**
  * How long to delay before querying DNS seeds
  *
  * If we have more than THRESHOLD entries in addrman, then it's likely
  * that we got those addresses from having previously connected to the P2P
  * network, and that we'll be able to successfully reconnect to the P2P
  * network via contacting one of them. So if that's the case, spend a
  * little longer trying to connect to known peers before querying the
  * DNS seeds.
  */
 static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
 static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
 // "many" vs "few" peers
 static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000;
 
 // We add a random period time (0 to 1 seconds) to feeler connections to prevent
 // synchronization.
 #define FEELER_SLEEP_WINDOW 1
 
 // MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define
 // it as 0
 #if !defined(MSG_NOSIGNAL)
 #define MSG_NOSIGNAL 0
 #endif
 
 // MSG_DONTWAIT is not available on some platforms, if it doesn't exist define
 // it as 0
 #if !defined(MSG_DONTWAIT)
 #define MSG_DONTWAIT 0
 #endif
 
 /** Used to pass flags to the Bind() function */
 enum BindFlags {
     BF_NONE = 0,
     BF_EXPLICIT = (1U << 0),
     BF_REPORT_ERROR = (1U << 1),
+    /**
+     * Do not call AddLocal() for our special addresses, e.g., for incoming
+     * Tor connections, to prevent gossiping them over the network.
+     */
+    BF_DONT_ADVERTISE = (1U << 2),
 };
 
 // The set of sockets cannot be modified while waiting
 // The sleep time needs to be small to avoid new sockets stalling
 static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
 
 const std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
 
 // SHA256("netgroup")[0:8]
 static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL;
 // SHA256("localhostnonce")[0:8]
 static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL;
 // SHA256("localhostnonce")[8:16]
 static const uint64_t RANDOMIZER_ID_EXTRAENTROPY = 0x94b05d41679a4ff7ULL;
 // SHA256("addrcache")[0:8]
 static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL;
 //
 // Global state variables
 //
 bool fDiscover = true;
 bool fListen = true;
 bool g_relay_txes = !DEFAULT_BLOCKSONLY;
 RecursiveMutex cs_mapLocalHost;
 std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
 static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {};
 
 void CConnman::AddAddrFetch(const std::string &strDest) {
     LOCK(m_addr_fetches_mutex);
     m_addr_fetches.push_back(strDest);
 }
 
 uint16_t GetListenPort() {
     return uint16_t(gArgs.GetArg("-port", Params().GetDefaultPort()));
 }
 
 // find 'best' local address for a particular peer
 bool GetLocal(CService &addr, const CNetAddr *paddrPeer) {
     if (!fListen) {
         return false;
     }
 
     int nBestScore = -1;
     int nBestReachability = -1;
     {
         LOCK(cs_mapLocalHost);
         for (const auto &entry : mapLocalHost) {
             int nScore = entry.second.nScore;
             int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
             if (nReachability > nBestReachability ||
                 (nReachability == nBestReachability && nScore > nBestScore)) {
                 addr = CService(entry.first, entry.second.nPort);
                 nBestReachability = nReachability;
                 nBestScore = nScore;
             }
         }
     }
     return nBestScore >= 0;
 }
 
 //! Convert the pnSeed6 array into usable address objects.
 static std::vector<CAddress>
 convertSeed6(const std::vector<SeedSpec6> &vSeedsIn) {
     // It'll only connect to one or two seed nodes because once it connects,
     // it'll get a pile of addresses with newer timestamps. Seed nodes are given
     // a random 'last seen time' of between one and two weeks ago.
     const int64_t nOneWeek = 7 * 24 * 60 * 60;
     std::vector<CAddress> vSeedsOut;
     vSeedsOut.reserve(vSeedsIn.size());
     FastRandomContext rng;
     for (const auto &seed_in : vSeedsIn) {
         struct in6_addr ip;
         memcpy(&ip, seed_in.addr, sizeof(ip));
         CAddress addr(CService(ip, seed_in.port),
                       GetDesirableServiceFlags(NODE_NONE));
         addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek;
         vSeedsOut.push_back(addr);
     }
     return vSeedsOut;
 }
 
 // Get best local address for a particular peer as a CAddress. Otherwise, return
 // the unroutable 0.0.0.0 but filled in with the normal parameters, since the IP
 // may be changed to a useful one by discovery.
 CAddress GetLocalAddress(const CNetAddr *paddrPeer,
                          ServiceFlags nLocalServices) {
     CAddress ret(CService(CNetAddr(), GetListenPort()), nLocalServices);
     CService addr;
     if (GetLocal(addr, paddrPeer)) {
         ret = CAddress(addr, nLocalServices);
     }
     ret.nTime = GetAdjustedTime();
     return ret;
 }
 
 static int GetnScore(const CService &addr) {
     LOCK(cs_mapLocalHost);
     if (mapLocalHost.count(addr) == 0) {
         return 0;
     }
     return mapLocalHost[addr].nScore;
 }
 
 // Is our peer's addrLocal potentially useful as an external IP source?
 bool IsPeerAddrLocalGood(CNode *pnode) {
     CService addrLocal = pnode->GetAddrLocal();
     return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
            IsReachable(addrLocal.GetNetwork());
 }
 
 // Pushes our own address to a peer.
 void AdvertiseLocal(CNode *pnode) {
     if (fListen && pnode->fSuccessfullyConnected) {
         CAddress addrLocal =
             GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
         if (gArgs.GetBoolArg("-addrmantest", false)) {
             // use IPv4 loopback during addrmantest
             addrLocal =
                 CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())),
                          pnode->GetLocalServices());
         }
         // If discovery is enabled, sometimes give our peer the address it
         // tells us that it sees us as in case it has a better idea of our
         // address than we do.
         FastRandomContext rng;
         if (IsPeerAddrLocalGood(pnode) &&
             (!addrLocal.IsRoutable() ||
              rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) ==
                  0)) {
             addrLocal.SetIP(pnode->GetAddrLocal());
         }
         if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false)) {
             LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n",
                      addrLocal.ToString());
             pnode->PushAddress(addrLocal, rng);
         }
     }
 }
 
 // Learn a new local address.
 bool AddLocal(const CService &addr, int nScore) {
     if (!addr.IsRoutable()) {
         return false;
     }
 
     if (!fDiscover && nScore < LOCAL_MANUAL) {
         return false;
     }
 
     if (!IsReachable(addr)) {
         return false;
     }
 
     LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
 
     {
         LOCK(cs_mapLocalHost);
         bool fAlready = mapLocalHost.count(addr) > 0;
         LocalServiceInfo &info = mapLocalHost[addr];
         if (!fAlready || nScore >= info.nScore) {
             info.nScore = nScore + (fAlready ? 1 : 0);
             info.nPort = addr.GetPort();
         }
     }
 
     return true;
 }
 
 bool AddLocal(const CNetAddr &addr, int nScore) {
     return AddLocal(CService(addr, GetListenPort()), nScore);
 }
 
 void RemoveLocal(const CService &addr) {
     LOCK(cs_mapLocalHost);
     LogPrintf("RemoveLocal(%s)\n", addr.ToString());
     mapLocalHost.erase(addr);
 }
 
 void SetReachable(enum Network net, bool reachable) {
     if (net == NET_UNROUTABLE || net == NET_INTERNAL) {
         return;
     }
     LOCK(cs_mapLocalHost);
     vfLimited[net] = !reachable;
 }
 
 bool IsReachable(enum Network net) {
     LOCK(cs_mapLocalHost);
     return !vfLimited[net];
 }
 
 bool IsReachable(const CNetAddr &addr) {
     return IsReachable(addr.GetNetwork());
 }
 
 /** vote for a local address */
 bool SeenLocal(const CService &addr) {
     LOCK(cs_mapLocalHost);
     if (mapLocalHost.count(addr) == 0) {
         return false;
     }
     mapLocalHost[addr].nScore++;
     return true;
 }
 
 /** check whether a given address is potentially local */
 bool IsLocal(const CService &addr) {
     LOCK(cs_mapLocalHost);
     return mapLocalHost.count(addr) > 0;
 }
 
 CNode *CConnman::FindNode(const CNetAddr &ip) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (static_cast<CNetAddr>(pnode->addr) == ip) {
             return pnode;
         }
     }
     return nullptr;
 }
 
 CNode *CConnman::FindNode(const CSubNet &subNet) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
             return pnode;
         }
     }
     return nullptr;
 }
 
 CNode *CConnman::FindNode(const std::string &addrName) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (pnode->GetAddrName() == addrName) {
             return pnode;
         }
     }
     return nullptr;
 }
 
 CNode *CConnman::FindNode(const CService &addr) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (static_cast<CService>(pnode->addr) == addr) {
             return pnode;
         }
     }
     return nullptr;
 }
 
 bool CConnman::CheckIncomingNonce(uint64_t nonce) {
     LOCK(cs_vNodes);
     for (const CNode *pnode : vNodes) {
         if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() &&
             pnode->GetLocalNonce() == nonce) {
             return false;
         }
     }
     return true;
 }
 
 /** Get the bind address for a socket as CAddress */
 static CAddress GetBindAddress(SOCKET sock) {
     CAddress addr_bind;
     struct sockaddr_storage sockaddr_bind;
     socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
     if (sock != INVALID_SOCKET) {
         if (!getsockname(sock, (struct sockaddr *)&sockaddr_bind,
                          &sockaddr_bind_len)) {
             addr_bind.SetSockAddr((const struct sockaddr *)&sockaddr_bind);
         } else {
             LogPrint(BCLog::NET, "Warning: getsockname failed\n");
         }
     }
     return addr_bind;
 }
 
 CNode *CConnman::ConnectNode(CAddress addrConnect, const char *pszDest,
                              bool fCountFailure, ConnectionType conn_type) {
     assert(conn_type != ConnectionType::INBOUND);
 
     if (pszDest == nullptr) {
         if (IsLocal(addrConnect)) {
             return nullptr;
         }
 
         // Look for an existing connection
         CNode *pnode = FindNode(static_cast<CService>(addrConnect));
         if (pnode) {
             LogPrintf("Failed to open new connection, already connected\n");
             return nullptr;
         }
     }
 
     /// debug print
     LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
              pszDest ? pszDest : addrConnect.ToString(),
              pszDest
                  ? 0.0
                  : (double)(GetAdjustedTime() - addrConnect.nTime) / 3600.0);
 
     // Resolve
     const int default_port = Params().GetDefaultPort();
     if (pszDest) {
         std::vector<CService> resolved;
         if (Lookup(pszDest, resolved, default_port,
                    fNameLookup && !HaveNameProxy(), 256) &&
             !resolved.empty()) {
             addrConnect =
                 CAddress(resolved[GetRand(resolved.size())], NODE_NONE);
             if (!addrConnect.IsValid()) {
                 LogPrint(BCLog::NET,
                          "Resolver returned invalid address %s for %s\n",
                          addrConnect.ToString(), pszDest);
                 return nullptr;
             }
             // It is possible that we already have a connection to the IP/port
             // pszDest resolved to. In that case, drop the connection that was
             // just created, and return the existing CNode instead. Also store
             // the name we used to connect in that CNode, so that future
             // FindNode() calls to that name catch this early.
             LOCK(cs_vNodes);
             CNode *pnode = FindNode(static_cast<CService>(addrConnect));
             if (pnode) {
                 pnode->MaybeSetAddrName(std::string(pszDest));
                 LogPrintf("Failed to open new connection, already connected\n");
                 return nullptr;
             }
         }
     }
 
     // Connect
     bool connected = false;
     SOCKET hSocket = INVALID_SOCKET;
     proxyType proxy;
     if (addrConnect.IsValid()) {
         bool proxyConnectionFailed = false;
 
         if (GetProxy(addrConnect.GetNetwork(), proxy)) {
             hSocket = CreateSocket(proxy.proxy);
             if (hSocket == INVALID_SOCKET) {
                 return nullptr;
             }
             connected = ConnectThroughProxy(
                 proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket,
                 nConnectTimeout, proxyConnectionFailed);
         } else {
             // no proxy needed (none set for target network)
             hSocket = CreateSocket(addrConnect);
             if (hSocket == INVALID_SOCKET) {
                 return nullptr;
             }
             connected =
                 ConnectSocketDirectly(addrConnect, hSocket, nConnectTimeout,
                                       conn_type == ConnectionType::MANUAL);
         }
         if (!proxyConnectionFailed) {
             // If a connection to the node was attempted, and failure (if any)
             // is not caused by a problem connecting to the proxy, mark this as
             // an attempt.
             addrman.Attempt(addrConnect, fCountFailure);
         }
     } else if (pszDest && GetNameProxy(proxy)) {
         hSocket = CreateSocket(proxy.proxy);
         if (hSocket == INVALID_SOCKET) {
             return nullptr;
         }
         std::string host;
         int port = default_port;
         SplitHostPort(std::string(pszDest), port, host);
         bool proxyConnectionFailed;
         connected = ConnectThroughProxy(proxy, host, port, hSocket,
                                         nConnectTimeout, proxyConnectionFailed);
     }
     if (!connected) {
         CloseSocket(hSocket);
         return nullptr;
     }
 
     // Add node
     NodeId id = GetNewNodeId();
     uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
                          .Write(id)
                          .Finalize();
     uint64_t extra_entropy =
         GetDeterministicRandomizer(RANDOMIZER_ID_EXTRAENTROPY)
             .Write(id)
             .Finalize();
     CAddress addr_bind = GetBindAddress(hSocket);
     CNode *pnode =
         new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect,
                   CalculateKeyedNetGroup(addrConnect), nonce, extra_entropy,
                   addr_bind, pszDest ? pszDest : "", conn_type);
     pnode->AddRef();
 
     // We're making a new connection, harvest entropy from the time (and our
     // peer count)
     RandAddEvent(uint32_t(id));
 
     return pnode;
 }
 
 void CNode::CloseSocketDisconnect() {
     fDisconnect = true;
     LOCK(cs_hSocket);
     if (hSocket != INVALID_SOCKET) {
         LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
         CloseSocket(hSocket);
     }
 }
 
 void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags &flags,
                                            const CNetAddr &addr) const {
     for (const auto &subnet : vWhitelistedRange) {
         if (subnet.m_subnet.Match(addr)) {
             NetPermissions::AddFlag(flags, subnet.m_flags);
         }
     }
 }
 
 std::string CNode::ConnectionTypeAsString() const {
     switch (m_conn_type) {
         case ConnectionType::INBOUND:
             return "inbound";
         case ConnectionType::MANUAL:
             return "manual";
         case ConnectionType::FEELER:
             return "feeler";
         case ConnectionType::OUTBOUND_FULL_RELAY:
             return "outbound-full-relay";
         case ConnectionType::BLOCK_RELAY:
             return "block-relay-only";
         case ConnectionType::ADDR_FETCH:
             return "addr-fetch";
     } // no default case, so the compiler can warn about missing cases
 
     assert(false);
 }
 
 std::string CNode::GetAddrName() const {
     LOCK(cs_addrName);
     return addrName;
 }
 
 void CNode::MaybeSetAddrName(const std::string &addrNameIn) {
     LOCK(cs_addrName);
     if (addrName.empty()) {
         addrName = addrNameIn;
     }
 }
 
 CService CNode::GetAddrLocal() const {
     LOCK(cs_addrLocal);
     return addrLocal;
 }
 
 void CNode::SetAddrLocal(const CService &addrLocalIn) {
     LOCK(cs_addrLocal);
     if (addrLocal.IsValid()) {
         error("Addr local already set for node: %i. Refusing to change from %s "
               "to %s",
               id, addrLocal.ToString(), addrLocalIn.ToString());
     } else {
         addrLocal = addrLocalIn;
     }
 }
 
 void CNode::copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap) {
     stats.nodeid = this->GetId();
     stats.nServices = nServices;
     stats.addr = addr;
     stats.addrBind = addrBind;
     stats.m_mapped_as = addr.GetMappedAS(m_asmap);
     if (m_tx_relay != nullptr) {
         LOCK(m_tx_relay->cs_filter);
         stats.fRelayTxes = m_tx_relay->fRelayTxes;
     } else {
         stats.fRelayTxes = false;
     }
     stats.nLastSend = nLastSend;
     stats.nLastRecv = nLastRecv;
     stats.nLastTXTime = nLastTXTime;
     stats.nLastProofTime = nLastProofTime;
     stats.nLastBlockTime = nLastBlockTime;
     stats.nTimeConnected = nTimeConnected;
     stats.nTimeOffset = nTimeOffset;
     stats.addrName = GetAddrName();
     stats.nVersion = nVersion;
     {
         LOCK(cs_SubVer);
         stats.cleanSubVer = cleanSubVer;
     }
     stats.fInbound = IsInboundConn();
     stats.m_manual_connection = IsManualConn();
     stats.nStartingHeight = nStartingHeight;
     {
         LOCK(cs_vSend);
         stats.mapSendBytesPerMsgCmd = mapSendBytesPerMsgCmd;
         stats.nSendBytes = nSendBytes;
     }
     {
         LOCK(cs_vRecv);
         stats.mapRecvBytesPerMsgCmd = mapRecvBytesPerMsgCmd;
         stats.nRecvBytes = nRecvBytes;
     }
     stats.m_legacyWhitelisted = m_legacyWhitelisted;
     stats.m_permissionFlags = m_permissionFlags;
     if (m_tx_relay != nullptr) {
         LOCK(m_tx_relay->cs_feeFilter);
         stats.minFeeFilter = m_tx_relay->minFeeFilter;
     } else {
         stats.minFeeFilter = Amount::zero();
     }
 
     // It is common for nodes with good ping times to suddenly become lagged,
     // due to a new block arriving or other large transfer. Merely reporting
     // pingtime might fool the caller into thinking the node was still
     // responsive, since pingtime does not update until the ping is complete,
     // which might take a while. So, if a ping is taking an unusually long time
     // in flight, the caller can immediately detect that this is happening.
     std::chrono::microseconds ping_wait{0};
     if ((0 != nPingNonceSent) && (0 != m_ping_start.load().count())) {
         ping_wait = GetTime<std::chrono::microseconds>() - m_ping_start.load();
     }
 
     // Raw ping time is in microseconds, but show it to user as whole seconds
     // (Bitcoin users should be well used to small numbers with many decimal
     // places by now :)
     stats.m_ping_usec = nPingUsecTime;
     stats.m_min_ping_usec = nMinPingUsecTime;
     stats.m_ping_wait_usec = count_microseconds(ping_wait);
 
     // Leave string empty if addrLocal invalid (not filled in yet)
     CService addrLocalUnlocked = GetAddrLocal();
     stats.addrLocal =
         addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
 
     stats.m_conn_type_string = ConnectionTypeAsString();
 }
 
 bool CNode::ReceiveMsgBytes(const Config &config, const char *pch,
                             uint32_t nBytes, bool &complete) {
     complete = false;
     const auto time = GetTime<std::chrono::microseconds>();
     LOCK(cs_vRecv);
     nLastRecv = std::chrono::duration_cast<std::chrono::seconds>(time).count();
     nRecvBytes += nBytes;
     while (nBytes > 0) {
         // Absorb network data.
         int handled = m_deserializer->Read(config, pch, nBytes);
 
         if (handled < 0) {
             return false;
         }
 
         pch += handled;
         nBytes -= handled;
 
         if (m_deserializer->Complete()) {
             // decompose a transport agnostic CNetMessage from the deserializer
             CNetMessage msg = m_deserializer->GetMessage(config, time);
 
             // Store received bytes per message command to prevent a memory DOS,
             // only allow valid commands.
             mapMsgCmdSize::iterator i =
                 mapRecvBytesPerMsgCmd.find(msg.m_command);
             if (i == mapRecvBytesPerMsgCmd.end()) {
                 i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
             }
 
             assert(i != mapRecvBytesPerMsgCmd.end());
             i->second += msg.m_raw_message_size;
 
             // push the message to the process queue,
             vRecvMsg.push_back(std::move(msg));
 
             complete = true;
         }
     }
 
     return true;
 }
 
 int V1TransportDeserializer::readHeader(const Config &config, const char *pch,
                                         uint32_t nBytes) {
     // copy data to temporary parsing buffer
     uint32_t nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
     uint32_t nCopy = std::min(nRemaining, nBytes);
 
     memcpy(&hdrbuf[nHdrPos], pch, nCopy);
     nHdrPos += nCopy;
 
     // if header incomplete, exit
     if (nHdrPos < CMessageHeader::HEADER_SIZE) {
         return nCopy;
     }
 
     // deserialize to CMessageHeader
     try {
         hdrbuf >> hdr;
     } catch (const std::exception &) {
         return -1;
     }
 
     // Reject oversized messages
     if (hdr.IsOversized(config)) {
         LogPrint(BCLog::NET, "Oversized header detected\n");
         return -1;
     }
 
     // switch state to reading message data
     in_data = true;
 
     return nCopy;
 }
 
 int V1TransportDeserializer::readData(const char *pch, uint32_t nBytes) {
     unsigned int nRemaining = hdr.nMessageSize - nDataPos;
     unsigned int nCopy = std::min(nRemaining, nBytes);
 
     if (vRecv.size() < nDataPos + nCopy) {
         // Allocate up to 256 KiB ahead, but never more than the total message
         // size.
         vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
     }
 
     hasher.Write({(const uint8_t *)pch, nCopy});
     memcpy(&vRecv[nDataPos], pch, nCopy);
     nDataPos += nCopy;
 
     return nCopy;
 }
 
 const uint256 &V1TransportDeserializer::GetMessageHash() const {
     assert(Complete());
     if (data_hash.IsNull()) {
         hasher.Finalize(data_hash);
     }
     return data_hash;
 }
 
 CNetMessage
 V1TransportDeserializer::GetMessage(const Config &config,
                                     const std::chrono::microseconds time) {
     // decompose a single CNetMessage from the TransportDeserializer
     CNetMessage msg(std::move(vRecv));
 
     // store state about valid header, netmagic and checksum
     msg.m_valid_header = hdr.IsValid(config);
     // FIXME Split CheckHeaderMagicAndCommand() into CheckHeaderMagic() and
     // CheckCommand() to prevent the net magic check code duplication.
     msg.m_valid_netmagic =
         (memcmp(std::begin(hdr.pchMessageStart),
                 std::begin(config.GetChainParams().NetMagic()),
                 CMessageHeader::MESSAGE_START_SIZE) == 0);
     uint256 hash = GetMessageHash();
 
     // store command string, payload size
     msg.m_command = hdr.GetCommand();
     msg.m_message_size = hdr.nMessageSize;
     msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
 
     // We just received a message off the wire, harvest entropy from the time
     // (and the message checksum)
     RandAddEvent(ReadLE32(hash.begin()));
 
     msg.m_valid_checksum = (memcmp(hash.begin(), hdr.pchChecksum,
                                    CMessageHeader::CHECKSUM_SIZE) == 0);
 
     if (!msg.m_valid_checksum) {
         LogPrint(
             BCLog::NET, "CHECKSUM ERROR (%s, %u bytes), expected %s was %s\n",
             SanitizeString(msg.m_command), msg.m_message_size,
             HexStr(Span<uint8_t>(hash.begin(),
                                  hash.begin() + CMessageHeader::CHECKSUM_SIZE)),
             HexStr(hdr.pchChecksum));
     }
 
     // store receive time
     msg.m_time = time;
 
     // reset the network deserializer (prepare for the next message)
     Reset();
     return msg;
 }
 
 void V1TransportSerializer::prepareForTransport(const Config &config,
                                                 CSerializedNetMsg &msg,
                                                 std::vector<uint8_t> &header) {
     // create dbl-sha256 checksum
     uint256 hash = Hash(msg.data);
 
     // create header
     CMessageHeader hdr(config.GetChainParams().NetMagic(), msg.m_type.c_str(),
                        msg.data.size());
     memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
 
     // serialize header
     header.reserve(CMessageHeader::HEADER_SIZE);
     CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr};
 }
 
 size_t CConnman::SocketSendData(CNode *pnode) const
     EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_vSend) {
     size_t nSentSize = 0;
     size_t nMsgCount = 0;
 
     for (const auto &data : pnode->vSendMsg) {
         assert(data.size() > pnode->nSendOffset);
         int nBytes = 0;
 
         {
             LOCK(pnode->cs_hSocket);
             if (pnode->hSocket == INVALID_SOCKET) {
                 break;
             }
 
             nBytes = send(pnode->hSocket,
                           reinterpret_cast<const char *>(data.data()) +
                               pnode->nSendOffset,
                           data.size() - pnode->nSendOffset,
                           MSG_NOSIGNAL | MSG_DONTWAIT);
         }
 
         if (nBytes == 0) {
             // couldn't send anything at all
             break;
         }
 
         if (nBytes < 0) {
             // error
             int nErr = WSAGetLastError();
             if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
                 nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
                 LogPrintf("socket send error %s\n", NetworkErrorString(nErr));
                 pnode->CloseSocketDisconnect();
             }
 
             break;
         }
 
         assert(nBytes > 0);
         pnode->nLastSend = GetSystemTimeInSeconds();
         pnode->nSendBytes += nBytes;
         pnode->nSendOffset += nBytes;
         nSentSize += nBytes;
         if (pnode->nSendOffset != data.size()) {
             // could not send full message; stop sending more
             break;
         }
 
         pnode->nSendOffset = 0;
         pnode->nSendSize -= data.size();
         pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize;
         nMsgCount++;
     }
 
     pnode->vSendMsg.erase(pnode->vSendMsg.begin(),
                           pnode->vSendMsg.begin() + nMsgCount);
 
     if (pnode->vSendMsg.empty()) {
         assert(pnode->nSendOffset == 0);
         assert(pnode->nSendSize == 0);
     }
 
     return nSentSize;
 }
 
 static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a,
                                           const NodeEvictionCandidate &b) {
     return a.nMinPingUsecTime > b.nMinPingUsecTime;
 }
 
 static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a,
                                             const NodeEvictionCandidate &b) {
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 static bool CompareLocalHostTimeConnected(const NodeEvictionCandidate &a,
                                           const NodeEvictionCandidate &b) {
     if (a.m_is_local != b.m_is_local) {
         return b.m_is_local;
     }
 
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a,
                                  const NodeEvictionCandidate &b) {
     return a.nKeyedNetGroup < b.nKeyedNetGroup;
 }
 
 static bool CompareNodeBlockTime(const NodeEvictionCandidate &a,
                                  const NodeEvictionCandidate &b) {
     // There is a fall-through here because it is common for a node to have many
     // peers which have not yet relayed a block.
     if (a.nLastBlockTime != b.nLastBlockTime) {
         return a.nLastBlockTime < b.nLastBlockTime;
     }
 
     if (a.fRelevantServices != b.fRelevantServices) {
         return b.fRelevantServices;
     }
 
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 static bool CompareNodeTXTime(const NodeEvictionCandidate &a,
                               const NodeEvictionCandidate &b) {
     // There is a fall-through here because it is common for a node to have more
     // than a few peers that have not yet relayed txn.
     if (a.nLastTXTime != b.nLastTXTime) {
         return a.nLastTXTime < b.nLastTXTime;
     }
 
     if (a.fRelayTxes != b.fRelayTxes) {
         return b.fRelayTxes;
     }
 
     if (a.fBloomFilter != b.fBloomFilter) {
         return a.fBloomFilter;
     }
 
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 static bool CompareNodeProofTime(const NodeEvictionCandidate &a,
                                  const NodeEvictionCandidate &b) {
     // There is a fall-through here because it is common for a node to have more
     // than a few peers that have not yet relayed proofs. This fallback is also
     // used in the case avalanche is not enabled.
     if (a.nLastProofTime != b.nLastProofTime) {
         return a.nLastProofTime < b.nLastProofTime;
     }
 
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 // Pick out the potential block-relay only peers, and sort them by last block
 // time.
 static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a,
                                           const NodeEvictionCandidate &b) {
     if (a.fRelayTxes != b.fRelayTxes) {
         return a.fRelayTxes;
     }
 
     if (a.nLastBlockTime != b.nLastBlockTime) {
         return a.nLastBlockTime < b.nLastBlockTime;
     }
 
     if (a.fRelevantServices != b.fRelevantServices) {
         return b.fRelevantServices;
     }
 
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 static bool CompareNodeAvailabilityScore(const NodeEvictionCandidate &a,
                                          const NodeEvictionCandidate &b) {
     // Equality can happen if the nodes have no score or it has not been
     // computed yet.
     if (a.availabilityScore != b.availabilityScore) {
         return a.availabilityScore < b.availabilityScore;
     }
 
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 //! Sort an array by the specified comparator, then erase the last K elements.
 template <typename T, typename Comparator>
 static void EraseLastKElements(std::vector<T> &elements, Comparator comparator,
                                size_t k) {
     std::sort(elements.begin(), elements.end(), comparator);
     size_t eraseSize = std::min(k, elements.size());
     elements.erase(elements.end() - eraseSize, elements.end());
 }
 
 //! Sort an array by the specified comparator, then erase up to K last elements
 //! which verify the condition.
 template <typename T, typename Comparator, typename Condition>
 static void EraseLastKElementsIf(std::vector<T> &elements,
                                  Comparator comparator, size_t k,
                                  Condition cond) {
     std::sort(elements.begin(), elements.end(), comparator);
     size_t eraseSize = std::min(k, elements.size());
     elements.erase(
         std::remove_if(elements.end() - eraseSize, elements.end(), cond),
         elements.end());
 }
 
 [[nodiscard]] std::optional<NodeId>
 SelectNodeToEvict(std::vector<NodeEvictionCandidate> &&vEvictionCandidates) {
     // Protect connections with certain characteristics
 
     // Deterministically select 4 peers to protect by netgroup.
     // An attacker cannot predict which netgroups will be protected
     EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
     // Protect the 8 nodes with the lowest minimum ping time.
     // An attacker cannot manipulate this metric without physically moving nodes
     // closer to the target.
     EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
     // Protect 4 nodes that most recently sent us novel transactions accepted
     // into our mempool. An attacker cannot manipulate this metric without
     // performing useful work.
     EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
     // Protect 4 nodes that most recently sent us novel proofs accepted
     // into our proof pool. An attacker cannot manipulate this metric without
     // performing useful work.
     // TODO this filter must happen before the last tx time once avalanche is
     // enabled for pre-consensus.
     EraseLastKElements(vEvictionCandidates, CompareNodeProofTime, 4);
     // Protect up to 8 non-tx-relay peers that have sent us novel blocks.
     EraseLastKElementsIf(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8,
                          [](NodeEvictionCandidate const &n) {
                              return !n.fRelayTxes && n.fRelevantServices;
                          });
 
     // Protect 4 nodes that most recently sent us novel blocks.
     // An attacker cannot manipulate this metric without performing useful work.
     EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
 
     // Protect up to 128 nodes that have the highest avalanche availability
     // score.
     EraseLastKElementsIf(vEvictionCandidates, CompareNodeAvailabilityScore, 128,
                          [](NodeEvictionCandidate const &n) {
                              return n.availabilityScore > 0.;
                          });
 
     // Protect the half of the remaining nodes which have been connected the
     // longest. This replicates the non-eviction implicit behavior, and
     // precludes attacks that start later.
     // Reserve half of these protected spots for localhost peers, even if
     // they're not longest-uptime overall. This helps protect tor peers, which
     // tend to be otherwise disadvantaged under our eviction criteria.
     size_t initial_size = vEvictionCandidates.size();
     size_t total_protect_size = initial_size / 2;
 
     // Pick out up to 1/4 peers that are localhost, sorted by longest uptime.
     EraseLastKElementsIf(
         vEvictionCandidates, CompareLocalHostTimeConnected,
         total_protect_size / 2,
         [](NodeEvictionCandidate const &n) { return n.m_is_local; });
     // Calculate how many we removed, and update our total number of peers that
     // we want to protect based on uptime accordingly.
     total_protect_size -= initial_size - vEvictionCandidates.size();
     EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected,
                        total_protect_size);
 
     if (vEvictionCandidates.empty()) {
         return std::nullopt;
     }
 
     // If any remaining peers are preferred for eviction consider only them.
     // This happens after the other preferences since if a peer is really the
     // best by other criteria (esp relaying blocks)
     // then we probably don't want to evict it no matter what.
     if (std::any_of(
             vEvictionCandidates.begin(), vEvictionCandidates.end(),
             [](NodeEvictionCandidate const &n) { return n.prefer_evict; })) {
         vEvictionCandidates.erase(
             std::remove_if(
                 vEvictionCandidates.begin(), vEvictionCandidates.end(),
                 [](NodeEvictionCandidate const &n) { return !n.prefer_evict; }),
             vEvictionCandidates.end());
     }
 
     // Identify the network group with the most connections and youngest member.
     // (vEvictionCandidates is already sorted by reverse connect time)
     uint64_t naMostConnections;
     unsigned int nMostConnections = 0;
     int64_t nMostConnectionsTime = 0;
     std::map<uint64_t, std::vector<NodeEvictionCandidate>> mapNetGroupNodes;
     for (const NodeEvictionCandidate &node : vEvictionCandidates) {
         std::vector<NodeEvictionCandidate> &group =
             mapNetGroupNodes[node.nKeyedNetGroup];
         group.push_back(node);
         int64_t grouptime = group[0].nTimeConnected;
         size_t group_size = group.size();
         if (group_size > nMostConnections ||
             (group_size == nMostConnections &&
              grouptime > nMostConnectionsTime)) {
             nMostConnections = group_size;
             nMostConnectionsTime = grouptime;
             naMostConnections = node.nKeyedNetGroup;
         }
     }
 
     // Reduce to the network group with the most connections
     vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
 
     // Disconnect from the network group with the most connections
     return vEvictionCandidates.front().id;
 }
 
 /** Try to find a connection to evict when the node is full.
  *  Extreme care must be taken to avoid opening the node to attacker
  *   triggered network partitioning.
  *  The strategy used here is to protect a small number of peers
  *   for each of several distinct characteristics which are difficult
  *   to forge.  In order to partition a node the attacker must be
  *   simultaneously better at all of them than honest peers.
  */
 bool CConnman::AttemptToEvictConnection() {
     std::vector<NodeEvictionCandidate> vEvictionCandidates;
     {
         LOCK(cs_vNodes);
         for (const CNode *node : vNodes) {
             if (node->HasPermission(PF_NOBAN)) {
                 continue;
             }
             if (!node->IsInboundConn()) {
                 continue;
             }
             if (node->fDisconnect) {
                 continue;
             }
             bool peer_relay_txes = false;
             bool peer_filter_not_null = false;
             if (node->m_tx_relay != nullptr) {
                 LOCK(node->m_tx_relay->cs_filter);
                 peer_relay_txes = node->m_tx_relay->fRelayTxes;
                 peer_filter_not_null = node->m_tx_relay->pfilter != nullptr;
             }
 
             NodeEvictionCandidate candidate = {
                 node->GetId(),
                 node->nTimeConnected,
                 node->nMinPingUsecTime,
                 node->nLastBlockTime,
                 node->nLastProofTime,
                 node->nLastTXTime,
                 HasAllDesirableServiceFlags(node->nServices),
                 peer_relay_txes,
                 peer_filter_not_null,
                 node->nKeyedNetGroup,
                 node->m_prefer_evict,
                 node->addr.IsLocal(),
                 node->m_avalanche_state
                     ? node->m_avalanche_state->getAvailabilityScore()
                     : -std::numeric_limits<double>::infinity()};
             vEvictionCandidates.push_back(candidate);
         }
     }
     const std::optional<NodeId> node_id_to_evict =
         SelectNodeToEvict(std::move(vEvictionCandidates));
     if (!node_id_to_evict) {
         return false;
     }
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (pnode->GetId() == *node_id_to_evict) {
             pnode->fDisconnect = true;
             return true;
         }
     }
     return false;
 }
 
 void CConnman::AcceptConnection(const ListenSocket &hListenSocket) {
     struct sockaddr_storage sockaddr;
     socklen_t len = sizeof(sockaddr);
     SOCKET hSocket =
         accept(hListenSocket.socket, (struct sockaddr *)&sockaddr, &len);
     CAddress addr;
     int nInbound = 0;
     int nMaxInbound = nMaxConnections - m_max_outbound;
 
     if (hSocket != INVALID_SOCKET) {
         if (!addr.SetSockAddr((const struct sockaddr *)&sockaddr)) {
             LogPrintf("Warning: Unknown socket family\n");
         }
     }
 
     NetPermissionFlags permissionFlags = NetPermissionFlags::PF_NONE;
     hListenSocket.AddSocketPermissionFlags(permissionFlags);
     AddWhitelistPermissionFlags(permissionFlags, addr);
     bool legacyWhitelisted = false;
     if (NetPermissions::HasFlag(permissionFlags,
                                 NetPermissionFlags::PF_ISIMPLICIT)) {
         NetPermissions::ClearFlag(permissionFlags, PF_ISIMPLICIT);
         if (gArgs.GetBoolArg("-whitelistforcerelay",
                              DEFAULT_WHITELISTFORCERELAY)) {
             NetPermissions::AddFlag(permissionFlags, PF_FORCERELAY);
         }
         if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) {
             NetPermissions::AddFlag(permissionFlags, PF_RELAY);
         }
         NetPermissions::AddFlag(permissionFlags, PF_MEMPOOL);
         NetPermissions::AddFlag(permissionFlags, PF_NOBAN);
         legacyWhitelisted = true;
     }
 
     {
         LOCK(cs_vNodes);
         for (const CNode *pnode : vNodes) {
             if (pnode->IsInboundConn()) {
                 nInbound++;
             }
         }
     }
 
     if (hSocket == INVALID_SOCKET) {
         int nErr = WSAGetLastError();
         if (nErr != WSAEWOULDBLOCK) {
             LogPrintf("socket error accept failed: %s\n",
                       NetworkErrorString(nErr));
         }
         return;
     }
 
     if (!fNetworkActive) {
         LogPrintf("connection from %s dropped: not accepting new connections\n",
                   addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     if (!IsSelectableSocket(hSocket)) {
         LogPrintf("connection from %s dropped: non-selectable socket\n",
                   addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     // According to the internet TCP_NODELAY is not carried into accepted
     // sockets on all platforms.  Set it again here just to be sure.
     SetSocketNoDelay(hSocket);
 
     // Don't accept connections from banned peers.
     bool banned = m_banman && m_banman->IsBanned(addr);
     if (!NetPermissions::HasFlag(permissionFlags,
                                  NetPermissionFlags::PF_NOBAN) &&
         banned) {
         LogPrint(BCLog::NET, "connection from %s dropped (banned)\n",
                  addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     // Only accept connections from discouraged peers if our inbound slots
     // aren't (almost) full.
     bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
     if (!NetPermissions::HasFlag(permissionFlags,
                                  NetPermissionFlags::PF_NOBAN) &&
         nInbound + 1 >= nMaxInbound && discouraged) {
         LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n",
                  addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     if (nInbound >= nMaxInbound) {
         if (!AttemptToEvictConnection()) {
             // No connection to evict, disconnect the new connection
             LogPrint(BCLog::NET, "failed to find an eviction candidate - "
                                  "connection dropped (full)\n");
             CloseSocket(hSocket);
             return;
         }
     }
 
     NodeId id = GetNewNodeId();
     uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
                          .Write(id)
                          .Finalize();
     uint64_t extra_entropy =
         GetDeterministicRandomizer(RANDOMIZER_ID_EXTRAENTROPY)
             .Write(id)
             .Finalize();
     CAddress addr_bind = GetBindAddress(hSocket);
 
     ServiceFlags nodeServices = nLocalServices;
     if (NetPermissions::HasFlag(permissionFlags, PF_BLOOMFILTER)) {
         nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
     }
     CNode *pnode = new CNode(id, nodeServices, GetBestHeight(), hSocket, addr,
                              CalculateKeyedNetGroup(addr), nonce, extra_entropy,
                              addr_bind, "", ConnectionType::INBOUND);
     pnode->AddRef();
     pnode->m_permissionFlags = permissionFlags;
     // If this flag is present, the user probably expect that RPC and QT report
     // it as whitelisted (backward compatibility)
     pnode->m_legacyWhitelisted = legacyWhitelisted;
     pnode->m_prefer_evict = discouraged;
     m_msgproc->InitializeNode(*config, pnode);
 
     LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString());
 
     {
         LOCK(cs_vNodes);
         vNodes.push_back(pnode);
     }
 
     // We received a new connection, harvest entropy from the time (and our peer
     // count)
     RandAddEvent(uint32_t(id));
 }
 
 void CConnman::DisconnectNodes() {
     {
         LOCK(cs_vNodes);
 
         if (!fNetworkActive) {
             // Disconnect any connected nodes
             for (CNode *pnode : vNodes) {
                 if (!pnode->fDisconnect) {
                     LogPrint(BCLog::NET,
                              "Network not active, dropping peer=%d\n",
                              pnode->GetId());
                     pnode->fDisconnect = true;
                 }
             }
         }
 
         // Disconnect unused nodes
         std::vector<CNode *> vNodesCopy = vNodes;
         for (CNode *pnode : vNodesCopy) {
             if (pnode->fDisconnect) {
                 // remove from vNodes
                 vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode),
                              vNodes.end());
 
                 // release outbound grant (if any)
                 pnode->grantOutbound.Release();
 
                 // close socket and cleanup
                 pnode->CloseSocketDisconnect();
 
                 // hold in disconnected pool until all refs are released
                 pnode->Release();
                 vNodesDisconnected.push_back(pnode);
             }
         }
     }
     {
         // Delete disconnected nodes
         std::list<CNode *> vNodesDisconnectedCopy = vNodesDisconnected;
         for (CNode *pnode : vNodesDisconnectedCopy) {
             // wait until threads are done using it
             if (pnode->GetRefCount() <= 0) {
                 bool fDelete = false;
                 {
                     TRY_LOCK(pnode->cs_vSend, lockSend);
                     if (lockSend) {
                         fDelete = true;
                     }
                 }
                 if (fDelete) {
                     vNodesDisconnected.remove(pnode);
                     DeleteNode(pnode);
                 }
             }
         }
     }
 }
 
 void CConnman::NotifyNumConnectionsChanged() {
     size_t vNodesSize;
     {
         LOCK(cs_vNodes);
         vNodesSize = vNodes.size();
     }
     if (vNodesSize != nPrevNodeCount) {
         nPrevNodeCount = vNodesSize;
         if (clientInterface) {
             clientInterface->NotifyNumConnectionsChanged(vNodesSize);
         }
     }
 }
 
 void CConnman::InactivityCheck(CNode *pnode) {
     int64_t nTime = GetSystemTimeInSeconds();
     if (nTime - pnode->nTimeConnected > m_peer_connect_timeout) {
         if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) {
             LogPrint(BCLog::NET,
                      "socket no message in first %i seconds, %d %d from %d\n",
                      m_peer_connect_timeout, pnode->nLastRecv != 0,
                      pnode->nLastSend != 0, pnode->GetId());
             pnode->fDisconnect = true;
         } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) {
             LogPrintf("socket sending timeout: %is\n",
                       nTime - pnode->nLastSend);
             pnode->fDisconnect = true;
         } else if (nTime - pnode->nLastRecv >
                    (pnode->GetCommonVersion() > BIP0031_VERSION
                         ? TIMEOUT_INTERVAL
                         : 90 * 60)) {
             LogPrintf("socket receive timeout: %is\n",
                       nTime - pnode->nLastRecv);
             pnode->fDisconnect = true;
         } else if (pnode->nPingNonceSent &&
                    pnode->m_ping_start.load() +
                            std::chrono::seconds{TIMEOUT_INTERVAL} <
                        GetTime<std::chrono::microseconds>()) {
             LogPrintf("ping timeout: %fs\n",
                       0.000001 * count_microseconds(
                                      GetTime<std::chrono::microseconds>() -
                                      pnode->m_ping_start.load()));
             pnode->fDisconnect = true;
         } else if (!pnode->fSuccessfullyConnected) {
             LogPrint(BCLog::NET, "version handshake timeout from %d\n",
                      pnode->GetId());
             pnode->fDisconnect = true;
         }
     }
 }
 
 bool CConnman::GenerateSelectSet(std::set<SOCKET> &recv_set,
                                  std::set<SOCKET> &send_set,
                                  std::set<SOCKET> &error_set) {
     for (const ListenSocket &hListenSocket : vhListenSocket) {
         recv_set.insert(hListenSocket.socket);
     }
 
     {
         LOCK(cs_vNodes);
         for (CNode *pnode : vNodes) {
             // Implement the following logic:
             // * If there is data to send, select() for sending data. As this
             //   only happens when optimistic write failed, we choose to first
             //   drain the write buffer in this case before receiving more. This
             //   avoids needlessly queueing received data, if the remote peer is
             //   not themselves receiving data. This means properly utilizing
             //   TCP flow control signalling.
             // * Otherwise, if there is space left in the receive buffer,
             //   select() for receiving data.
             // * Hand off all complete messages to the processor, to be handled
             //   without blocking here.
 
             bool select_recv = !pnode->fPauseRecv;
             bool select_send;
             {
                 LOCK(pnode->cs_vSend);
                 select_send = !pnode->vSendMsg.empty();
             }
 
             LOCK(pnode->cs_hSocket);
             if (pnode->hSocket == INVALID_SOCKET) {
                 continue;
             }
 
             error_set.insert(pnode->hSocket);
             if (select_send) {
                 send_set.insert(pnode->hSocket);
                 continue;
             }
             if (select_recv) {
                 recv_set.insert(pnode->hSocket);
             }
         }
     }
 
     return !recv_set.empty() || !send_set.empty() || !error_set.empty();
 }
 
 #ifdef USE_POLL
 void CConnman::SocketEvents(std::set<SOCKET> &recv_set,
                             std::set<SOCKET> &send_set,
                             std::set<SOCKET> &error_set) {
     std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
     if (!GenerateSelectSet(recv_select_set, send_select_set,
                            error_select_set)) {
         interruptNet.sleep_for(
             std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
         return;
     }
 
     std::unordered_map<SOCKET, struct pollfd> pollfds;
     for (SOCKET socket_id : recv_select_set) {
         pollfds[socket_id].fd = socket_id;
         pollfds[socket_id].events |= POLLIN;
     }
 
     for (SOCKET socket_id : send_select_set) {
         pollfds[socket_id].fd = socket_id;
         pollfds[socket_id].events |= POLLOUT;
     }
 
     for (SOCKET socket_id : error_select_set) {
         pollfds[socket_id].fd = socket_id;
         // These flags are ignored, but we set them for clarity
         pollfds[socket_id].events |= POLLERR | POLLHUP;
     }
 
     std::vector<struct pollfd> vpollfds;
     vpollfds.reserve(pollfds.size());
     for (auto it : pollfds) {
         vpollfds.push_back(std::move(it.second));
     }
 
     if (poll(vpollfds.data(), vpollfds.size(), SELECT_TIMEOUT_MILLISECONDS) <
         0) {
         return;
     }
 
     if (interruptNet) {
         return;
     }
 
     for (struct pollfd pollfd_entry : vpollfds) {
         if (pollfd_entry.revents & POLLIN) {
             recv_set.insert(pollfd_entry.fd);
         }
         if (pollfd_entry.revents & POLLOUT) {
             send_set.insert(pollfd_entry.fd);
         }
         if (pollfd_entry.revents & (POLLERR | POLLHUP)) {
             error_set.insert(pollfd_entry.fd);
         }
     }
 }
 #else
 void CConnman::SocketEvents(std::set<SOCKET> &recv_set,
                             std::set<SOCKET> &send_set,
                             std::set<SOCKET> &error_set) {
     std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
     if (!GenerateSelectSet(recv_select_set, send_select_set,
                            error_select_set)) {
         interruptNet.sleep_for(
             std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
         return;
     }
 
     //
     // Find which sockets have data to receive
     //
     struct timeval timeout;
     timeout.tv_sec = 0;
     // frequency to poll pnode->vSend
     timeout.tv_usec = SELECT_TIMEOUT_MILLISECONDS * 1000;
 
     fd_set fdsetRecv;
     fd_set fdsetSend;
     fd_set fdsetError;
     FD_ZERO(&fdsetRecv);
     FD_ZERO(&fdsetSend);
     FD_ZERO(&fdsetError);
     SOCKET hSocketMax = 0;
 
     for (SOCKET hSocket : recv_select_set) {
         FD_SET(hSocket, &fdsetRecv);
         hSocketMax = std::max(hSocketMax, hSocket);
     }
 
     for (SOCKET hSocket : send_select_set) {
         FD_SET(hSocket, &fdsetSend);
         hSocketMax = std::max(hSocketMax, hSocket);
     }
 
     for (SOCKET hSocket : error_select_set) {
         FD_SET(hSocket, &fdsetError);
         hSocketMax = std::max(hSocketMax, hSocket);
     }
 
     int nSelect =
         select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
 
     if (interruptNet) {
         return;
     }
 
     if (nSelect == SOCKET_ERROR) {
         int nErr = WSAGetLastError();
         LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
         for (unsigned int i = 0; i <= hSocketMax; i++) {
             FD_SET(i, &fdsetRecv);
         }
         FD_ZERO(&fdsetSend);
         FD_ZERO(&fdsetError);
         if (!interruptNet.sleep_for(
                 std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS))) {
             return;
         }
     }
 
     for (SOCKET hSocket : recv_select_set) {
         if (FD_ISSET(hSocket, &fdsetRecv)) {
             recv_set.insert(hSocket);
         }
     }
 
     for (SOCKET hSocket : send_select_set) {
         if (FD_ISSET(hSocket, &fdsetSend)) {
             send_set.insert(hSocket);
         }
     }
 
     for (SOCKET hSocket : error_select_set) {
         if (FD_ISSET(hSocket, &fdsetError)) {
             error_set.insert(hSocket);
         }
     }
 }
 #endif
 
 void CConnman::SocketHandler() {
     std::set<SOCKET> recv_set, send_set, error_set;
     SocketEvents(recv_set, send_set, error_set);
 
     if (interruptNet) {
         return;
     }
 
     //
     // Accept new connections
     //
     for (const ListenSocket &hListenSocket : vhListenSocket) {
         if (hListenSocket.socket != INVALID_SOCKET &&
             recv_set.count(hListenSocket.socket) > 0) {
             AcceptConnection(hListenSocket);
         }
     }
 
     //
     // Service each socket
     //
     std::vector<CNode *> vNodesCopy;
     {
         LOCK(cs_vNodes);
         vNodesCopy = vNodes;
         for (CNode *pnode : vNodesCopy) {
             pnode->AddRef();
         }
     }
     for (CNode *pnode : vNodesCopy) {
         if (interruptNet) {
             return;
         }
 
         //
         // Receive
         //
         bool recvSet = false;
         bool sendSet = false;
         bool errorSet = false;
         {
             LOCK(pnode->cs_hSocket);
             if (pnode->hSocket == INVALID_SOCKET) {
                 continue;
             }
             recvSet = recv_set.count(pnode->hSocket) > 0;
             sendSet = send_set.count(pnode->hSocket) > 0;
             errorSet = error_set.count(pnode->hSocket) > 0;
         }
         if (recvSet || errorSet) {
             // typical socket buffer is 8K-64K
             char pchBuf[0x10000];
             int32_t nBytes = 0;
             {
                 LOCK(pnode->cs_hSocket);
                 if (pnode->hSocket == INVALID_SOCKET) {
                     continue;
                 }
                 nBytes =
                     recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
             }
             if (nBytes > 0) {
                 bool notify = false;
                 if (!pnode->ReceiveMsgBytes(*config, pchBuf, nBytes, notify)) {
                     pnode->CloseSocketDisconnect();
                 }
                 RecordBytesRecv(nBytes);
                 if (notify) {
                     size_t nSizeAdded = 0;
                     auto it(pnode->vRecvMsg.begin());
                     for (; it != pnode->vRecvMsg.end(); ++it) {
                         // vRecvMsg contains only completed CNetMessage
                         // the single possible partially deserialized message
                         // are held by TransportDeserializer
                         nSizeAdded += it->m_raw_message_size;
                     }
                     {
                         LOCK(pnode->cs_vProcessMsg);
                         pnode->vProcessMsg.splice(pnode->vProcessMsg.end(),
                                                   pnode->vRecvMsg,
                                                   pnode->vRecvMsg.begin(), it);
                         pnode->nProcessQueueSize += nSizeAdded;
                         pnode->fPauseRecv =
                             pnode->nProcessQueueSize > nReceiveFloodSize;
                     }
                     WakeMessageHandler();
                 }
             } else if (nBytes == 0) {
                 // socket closed gracefully
                 if (!pnode->fDisconnect) {
                     LogPrint(BCLog::NET, "socket closed for peer=%d\n",
                              pnode->GetId());
                 }
                 pnode->CloseSocketDisconnect();
             } else if (nBytes < 0) {
                 // error
                 int nErr = WSAGetLastError();
                 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
                     nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
                     if (!pnode->fDisconnect) {
                         LogPrint(BCLog::NET,
                                  "socket recv error for peer=%d: %s\n",
                                  pnode->GetId(), NetworkErrorString(nErr));
                     }
                     pnode->CloseSocketDisconnect();
                 }
             }
         }
 
         //
         // Send
         //
         if (sendSet) {
             LOCK(pnode->cs_vSend);
             size_t nBytes = SocketSendData(pnode);
             if (nBytes) {
                 RecordBytesSent(nBytes);
             }
         }
 
         InactivityCheck(pnode);
     }
     {
         LOCK(cs_vNodes);
         for (CNode *pnode : vNodesCopy) {
             pnode->Release();
         }
     }
 }
 
 void CConnman::ThreadSocketHandler() {
     while (!interruptNet) {
         DisconnectNodes();
         NotifyNumConnectionsChanged();
         SocketHandler();
     }
 }
 
 void CConnman::WakeMessageHandler() {
     {
         LOCK(mutexMsgProc);
         fMsgProcWake = true;
     }
     condMsgProc.notify_one();
 }
 
 #ifdef USE_UPNP
 static CThreadInterrupt g_upnp_interrupt;
 static std::thread g_upnp_thread;
 static void ThreadMapPort() {
     std::string port = strprintf("%u", GetListenPort());
     const char *multicastif = nullptr;
     const char *minissdpdpath = nullptr;
     struct UPNPDev *devlist = nullptr;
     char lanaddr[64];
 
     int error = 0;
 #if MINIUPNPC_API_VERSION < 14
     devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
 #else
     devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
 #endif
 
     struct UPNPUrls urls;
     struct IGDdatas data;
     int r;
 
     r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
     if (r == 1) {
         if (fDiscover) {
             char externalIPAddress[40];
             r = UPNP_GetExternalIPAddress(
                 urls.controlURL, data.first.servicetype, externalIPAddress);
             if (r != UPNPCOMMAND_SUCCESS) {
                 LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
             } else {
                 if (externalIPAddress[0]) {
                     CNetAddr resolved;
                     if (LookupHost(externalIPAddress, resolved, false)) {
                         LogPrintf("UPnP: ExternalIPAddress = %s\n",
                                   resolved.ToString());
                         AddLocal(resolved, LOCAL_UPNP);
                     }
                 } else {
                     LogPrintf("UPnP: GetExternalIPAddress failed.\n");
                 }
             }
         }
 
         std::string strDesc = PACKAGE_NAME " " + FormatFullVersion();
 
         do {
             r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
                                     port.c_str(), port.c_str(), lanaddr,
                                     strDesc.c_str(), "TCP", 0, "0");
 
             if (r != UPNPCOMMAND_SUCCESS) {
                 LogPrintf(
                     "AddPortMapping(%s, %s, %s) failed with code %d (%s)\n",
                     port, port, lanaddr, r, strupnperror(r));
             } else {
                 LogPrintf("UPnP Port Mapping successful.\n");
             }
         } while (g_upnp_interrupt.sleep_for(std::chrono::minutes(20)));
 
         r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype,
                                    port.c_str(), "TCP", 0);
         LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
         freeUPNPDevlist(devlist);
         devlist = nullptr;
         FreeUPNPUrls(&urls);
     } else {
         LogPrintf("No valid UPnP IGDs found\n");
         freeUPNPDevlist(devlist);
         devlist = nullptr;
         if (r != 0) {
             FreeUPNPUrls(&urls);
         }
     }
 }
 
 void StartMapPort() {
     if (!g_upnp_thread.joinable()) {
         assert(!g_upnp_interrupt);
         g_upnp_thread = std::thread(
             (std::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort)));
     }
 }
 
 void InterruptMapPort() {
     if (g_upnp_thread.joinable()) {
         g_upnp_interrupt();
     }
 }
 
 void StopMapPort() {
     if (g_upnp_thread.joinable()) {
         g_upnp_thread.join();
         g_upnp_interrupt.reset();
     }
 }
 
 #else
 void StartMapPort() {
     // Intentionally left blank.
 }
 void InterruptMapPort() {
     // Intentionally left blank.
 }
 void StopMapPort() {
     // Intentionally left blank.
 }
 #endif
 
 void CConnman::ThreadDNSAddressSeed() {
     FastRandomContext rng;
     std::vector<std::string> seeds =
         GetRandomizedDNSSeeds(config->GetChainParams());
     // Number of seeds left before testing if we have enough connections
     int seeds_right_now = 0;
     int found = 0;
 
     if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
         // When -forcednsseed is provided, query all.
         seeds_right_now = seeds.size();
     } else if (addrman.size() == 0) {
         // If we have no known peers, query all.
         // This will occur on the first run, or if peers.dat has been
         // deleted.
         seeds_right_now = seeds.size();
     }
 
     // goal: only query DNS seed if address need is acute
     // * If we have a reasonable number of peers in addrman, spend
     //   some time trying them first. This improves user privacy by
     //   creating fewer identifying DNS requests, reduces trust by
     //   giving seeds less influence on the network topology, and
     //   reduces traffic to the seeds.
     // * When querying DNS seeds query a few at once, this ensures
     //   that we don't give DNS seeds the ability to eclipse nodes
     //   that query them.
     // * If we continue having problems, eventually query all the
     //   DNS seeds, and if that fails too, also try the fixed seeds.
     //   (done in ThreadOpenConnections)
     const std::chrono::seconds seeds_wait_time =
         (addrman.size() >= DNSSEEDS_DELAY_PEER_THRESHOLD
              ? DNSSEEDS_DELAY_MANY_PEERS
              : DNSSEEDS_DELAY_FEW_PEERS);
 
     for (const std::string &seed : seeds) {
         if (seeds_right_now == 0) {
             seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
 
             if (addrman.size() > 0) {
                 LogPrintf("Waiting %d seconds before querying DNS seeds.\n",
                           seeds_wait_time.count());
                 std::chrono::seconds to_wait = seeds_wait_time;
                 while (to_wait.count() > 0) {
                     // if sleeping for the MANY_PEERS interval, wake up
                     // early to see if we have enough peers and can stop
                     // this thread entirely freeing up its resources
                     std::chrono::seconds w =
                         std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
                     if (!interruptNet.sleep_for(w)) {
                         return;
                     }
                     to_wait -= w;
 
                     int nRelevant = 0;
                     {
                         LOCK(cs_vNodes);
                         for (const CNode *pnode : vNodes) {
                             if (pnode->fSuccessfullyConnected &&
                                 pnode->IsOutboundOrBlockRelayConn()) {
                                 ++nRelevant;
                             }
                         }
                     }
                     if (nRelevant >= 2) {
                         if (found > 0) {
                             LogPrintf("%d addresses found from DNS seeds\n",
                                       found);
                             LogPrintf(
                                 "P2P peers available. Finished DNS seeding.\n");
                         } else {
                             LogPrintf(
                                 "P2P peers available. Skipped DNS seeding.\n");
                         }
                         return;
                     }
                 }
             }
         }
 
         if (interruptNet) {
             return;
         }
 
         // hold off on querying seeds if P2P network deactivated
         if (!fNetworkActive) {
             LogPrintf("Waiting for network to be reactivated before querying "
                       "DNS seeds.\n");
             do {
                 if (!interruptNet.sleep_for(std::chrono::seconds{1})) {
                     return;
                 }
             } while (!fNetworkActive);
         }
 
         LogPrintf("Loading addresses from DNS seed %s\n", seed);
         if (HaveNameProxy()) {
             AddAddrFetch(seed);
         } else {
             std::vector<CNetAddr> vIPs;
             std::vector<CAddress> vAdd;
             ServiceFlags requiredServiceBits =
                 GetDesirableServiceFlags(NODE_NONE);
             std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
             CNetAddr resolveSource;
             if (!resolveSource.SetInternal(host)) {
                 continue;
             }
 
             // Limits number of IPs learned from a DNS seed
             unsigned int nMaxIPs = 256;
             if (LookupHost(host, vIPs, nMaxIPs, true)) {
                 for (const CNetAddr &ip : vIPs) {
                     int nOneDay = 24 * 3600;
                     CAddress addr = CAddress(
                         CService(ip, config->GetChainParams().GetDefaultPort()),
                         requiredServiceBits);
                     // Use a random age between 3 and 7 days old.
                     addr.nTime =
                         GetTime() - 3 * nOneDay - rng.randrange(4 * nOneDay);
                     vAdd.push_back(addr);
                     found++;
                 }
                 addrman.Add(vAdd, resolveSource);
             } else {
                 // We now avoid directly using results from DNS Seeds which do
                 // not support service bit filtering, instead using them as a
                 // addrfetch to get nodes with our desired service bits.
                 AddAddrFetch(seed);
             }
         }
         --seeds_right_now;
     }
     LogPrintf("%d addresses found from DNS seeds\n", found);
 }
 
 void CConnman::DumpAddresses() {
     int64_t nStart = GetTimeMillis();
 
     CAddrDB adb(config->GetChainParams());
     adb.Write(addrman);
 
     LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat  %dms\n",
              addrman.size(), GetTimeMillis() - nStart);
 }
 
 void CConnman::ProcessAddrFetch() {
     std::string strDest;
     {
         LOCK(m_addr_fetches_mutex);
         if (m_addr_fetches.empty()) {
             return;
         }
         strDest = m_addr_fetches.front();
         m_addr_fetches.pop_front();
     }
     CAddress addr;
     CSemaphoreGrant grant(*semOutbound, true);
     if (grant) {
         OpenNetworkConnection(addr, false, &grant, strDest.c_str(),
                               ConnectionType::ADDR_FETCH);
     }
 }
 
 bool CConnman::GetTryNewOutboundPeer() {
     return m_try_another_outbound_peer;
 }
 
 void CConnman::SetTryNewOutboundPeer(bool flag) {
     m_try_another_outbound_peer = flag;
     LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n",
              flag ? "true" : "false");
 }
 
 // Return the number of peers we have over our outbound connection limit.
 // Exclude peers that are marked for disconnect, or are going to be disconnected
 // soon (eg ADDR_FETCH and FEELER).
 // Also exclude peers that haven't finished initial connection handshake yet (so
 // that we don't decide we're over our desired connection limit, and then evict
 // some peer that has finished the handshake).
 int CConnman::GetExtraOutboundCount() {
     int nOutbound = 0;
     {
         LOCK(cs_vNodes);
         for (const CNode *pnode : vNodes) {
             if (pnode->fSuccessfullyConnected && !pnode->fDisconnect &&
                 pnode->IsOutboundOrBlockRelayConn()) {
                 ++nOutbound;
             }
         }
     }
     return std::max(
         nOutbound - m_max_outbound_full_relay - m_max_outbound_block_relay, 0);
 }
 
 void CConnman::ThreadOpenConnections(const std::vector<std::string> connect) {
     // Connect to specific addresses
     if (!connect.empty()) {
         for (int64_t nLoop = 0;; nLoop++) {
             ProcessAddrFetch();
             for (const std::string &strAddr : connect) {
                 CAddress addr(CService(), NODE_NONE);
                 OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(),
                                       ConnectionType::MANUAL);
                 for (int i = 0; i < 10 && i < nLoop; i++) {
                     if (!interruptNet.sleep_for(
                             std::chrono::milliseconds(500))) {
                         return;
                     }
                 }
             }
             if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
                 return;
             }
         }
     }
 
     // Initiate network connections
     int64_t nStart = GetTime();
 
     // Minimum time before next feeler connection (in microseconds).
     int64_t nNextFeeler =
         PoissonNextSend(nStart * 1000 * 1000, FEELER_INTERVAL);
     while (!interruptNet) {
         ProcessAddrFetch();
 
         if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
             return;
         }
 
         CSemaphoreGrant grant(*semOutbound);
         if (interruptNet) {
             return;
         }
 
         // Add seed nodes if DNS seeds are all down (an infrastructure attack?).
         // Note that we only do this if we started with an empty peers.dat,
         // (in which case we will query DNS seeds immediately) *and* the DNS
         // seeds have not returned any results.
         if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
             static bool done = false;
             if (!done) {
                 LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be "
                           "available.\n");
                 CNetAddr local;
                 local.SetInternal("fixedseeds");
                 addrman.Add(convertSeed6(config->GetChainParams().FixedSeeds()),
                             local);
                 done = true;
             }
         }
 
         //
         // Choose an address to connect to based on most recently seen
         //
         CAddress addrConnect;
 
         // Only connect out to one peer per network group (/16 for IPv4).
         int nOutboundFullRelay = 0;
         int nOutboundBlockRelay = 0;
         std::set<std::vector<uint8_t>> setConnected;
 
         {
             LOCK(cs_vNodes);
             for (const CNode *pnode : vNodes) {
                 if (pnode->IsFullOutboundConn()) {
                     nOutboundFullRelay++;
                 }
                 if (pnode->IsBlockOnlyConn()) {
                     nOutboundBlockRelay++;
                 }
 
                 // Netgroups for inbound and manual peers are not excluded
                 // because our goal here is to not use multiple of our
                 // limited outbound slots on a single netgroup but inbound
                 // and manual peers do not use our outbound slots. Inbound
                 // peers also have the added issue that they could be attacker
                 // controlled and could be used to prevent us from connecting
                 // to particular hosts if we used them here.
                 switch (pnode->m_conn_type) {
                     case ConnectionType::INBOUND:
                     case ConnectionType::MANUAL:
                         break;
                     case ConnectionType::OUTBOUND_FULL_RELAY:
                     case ConnectionType::BLOCK_RELAY:
                     case ConnectionType::ADDR_FETCH:
                     case ConnectionType::FEELER:
                         setConnected.insert(
                             pnode->addr.GetGroup(addrman.m_asmap));
                 } // no default case, so the compiler can warn about missing
                   // cases
             }
         }
 
         ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
         int64_t nTime = GetTimeMicros();
         bool fFeeler = false;
 
         // Determine what type of connection to open. Opening
         // OUTBOUND_FULL_RELAY connections gets the highest priority until we
         // meet our full-relay capacity. Then we open BLOCK_RELAY connection
         // until we hit our block-relay-only peer limit.
         // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
         // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
         // these conditions are met, check the nNextFeeler timer to decide if
         // we should open a FEELER.
 
         if (nOutboundFullRelay < m_max_outbound_full_relay) {
             // OUTBOUND_FULL_RELAY
         } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
             conn_type = ConnectionType::BLOCK_RELAY;
         } else if (GetTryNewOutboundPeer()) {
             // OUTBOUND_FULL_RELAY
         } else if (nTime > nNextFeeler) {
             nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
             conn_type = ConnectionType::FEELER;
             fFeeler = true;
         } else {
             // skip to next iteration of while loop
             continue;
         }
 
         addrman.ResolveCollisions();
 
         int64_t nANow = GetAdjustedTime();
         int nTries = 0;
         while (!interruptNet) {
             CAddrInfo addr = addrman.SelectTriedCollision();
 
             // SelectTriedCollision returns an invalid address if it is empty.
             if (!fFeeler || !addr.IsValid()) {
                 addr = addrman.Select(fFeeler);
             }
 
             // Require outbound connections, other than feelers, to be to
             // distinct network groups
             if (!fFeeler &&
                 setConnected.count(addr.GetGroup(addrman.m_asmap))) {
                 break;
             }
 
             // if we selected an invalid or local address, restart
             if (!addr.IsValid() || IsLocal(addr)) {
                 break;
             }
 
             // If we didn't find an appropriate destination after trying 100
             // addresses fetched from addrman, stop this loop, and let the outer
             // loop run again (which sleeps, adds seed nodes, recalculates
             // already-connected network ranges, ...) before trying new addrman
             // addresses.
             nTries++;
             if (nTries > 100) {
                 break;
             }
 
             if (!IsReachable(addr)) {
                 continue;
             }
 
             // only consider very recently tried nodes after 30 failed attempts
             if (nANow - addr.nLastTry < 600 && nTries < 30) {
                 continue;
             }
 
             // for non-feelers, require all the services we'll want,
             // for feelers, only require they be a full node (only because most
             // SPV clients don't have a good address DB available)
             if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
                 continue;
             }
 
             if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
                 continue;
             }
 
             // do not allow non-default ports, unless after 50 invalid addresses
             // selected already.
             if (addr.GetPort() != config->GetChainParams().GetDefaultPort() &&
                 nTries < 50) {
                 continue;
             }
 
             addrConnect = addr;
             break;
         }
 
         if (addrConnect.IsValid()) {
             if (fFeeler) {
                 // Add small amount of random noise before connection to avoid
                 // synchronization.
                 int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
                 if (!interruptNet.sleep_for(
                         std::chrono::milliseconds(randsleep))) {
                     return;
                 }
                 LogPrint(BCLog::NET, "Making feeler connection to %s\n",
                          addrConnect.ToString());
             }
 
             OpenNetworkConnection(addrConnect,
                                   int(setConnected.size()) >=
                                       std::min(nMaxConnections - 1, 2),
                                   &grant, nullptr, conn_type);
         }
     }
 }
 
 std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() {
     std::vector<AddedNodeInfo> ret;
 
     std::list<std::string> lAddresses(0);
     {
         LOCK(cs_vAddedNodes);
         ret.reserve(vAddedNodes.size());
         std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(),
                   std::back_inserter(lAddresses));
     }
 
     // Build a map of all already connected addresses (by IP:port and by name)
     // to inbound/outbound and resolved CService
     std::map<CService, bool> mapConnected;
     std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
     {
         LOCK(cs_vNodes);
         for (const CNode *pnode : vNodes) {
             if (pnode->addr.IsValid()) {
                 mapConnected[pnode->addr] = pnode->IsInboundConn();
             }
             std::string addrName = pnode->GetAddrName();
             if (!addrName.empty()) {
                 mapConnectedByName[std::move(addrName)] =
                     std::make_pair(pnode->IsInboundConn(),
                                    static_cast<const CService &>(pnode->addr));
             }
         }
     }
 
     for (const std::string &strAddNode : lAddresses) {
         CService service(LookupNumeric(strAddNode, Params().GetDefaultPort()));
         AddedNodeInfo addedNode{strAddNode, CService(), false, false};
         if (service.IsValid()) {
             // strAddNode is an IP:port
             auto it = mapConnected.find(service);
             if (it != mapConnected.end()) {
                 addedNode.resolvedAddress = service;
                 addedNode.fConnected = true;
                 addedNode.fInbound = it->second;
             }
         } else {
             // strAddNode is a name
             auto it = mapConnectedByName.find(strAddNode);
             if (it != mapConnectedByName.end()) {
                 addedNode.resolvedAddress = it->second.second;
                 addedNode.fConnected = true;
                 addedNode.fInbound = it->second.first;
             }
         }
         ret.emplace_back(std::move(addedNode));
     }
 
     return ret;
 }
 
 void CConnman::ThreadOpenAddedConnections() {
     while (true) {
         CSemaphoreGrant grant(*semAddnode);
         std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
         bool tried = false;
         for (const AddedNodeInfo &info : vInfo) {
             if (!info.fConnected) {
                 if (!grant.TryAcquire()) {
                     // If we've used up our semaphore and need a new one, let's
                     // not wait here since while we are waiting the
                     // addednodeinfo state might change.
                     break;
                 }
                 tried = true;
                 CAddress addr(CService(), NODE_NONE);
                 OpenNetworkConnection(addr, false, &grant,
                                       info.strAddedNode.c_str(),
                                       ConnectionType::MANUAL);
                 if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
                     return;
                 }
             }
         }
         // Retry every 60 seconds if a connection was attempted, otherwise two
         // seconds.
         if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) {
             return;
         }
     }
 }
 
 // If successful, this moves the passed grant to the constructed node.
 void CConnman::OpenNetworkConnection(const CAddress &addrConnect,
                                      bool fCountFailure,
                                      CSemaphoreGrant *grantOutbound,
                                      const char *pszDest,
                                      ConnectionType conn_type) {
     assert(conn_type != ConnectionType::INBOUND);
 
     //
     // Initiate outbound network connection
     //
     if (interruptNet) {
         return;
     }
     if (!fNetworkActive) {
         return;
     }
     if (!pszDest) {
         bool banned_or_discouraged =
             m_banman && (m_banman->IsDiscouraged(addrConnect) ||
                          m_banman->IsBanned(addrConnect));
         if (IsLocal(addrConnect) ||
             FindNode(static_cast<CNetAddr>(addrConnect)) ||
             banned_or_discouraged || FindNode(addrConnect.ToStringIPPort())) {
             return;
         }
     } else if (FindNode(std::string(pszDest))) {
         return;
     }
 
     CNode *pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type);
 
     if (!pnode) {
         return;
     }
     if (grantOutbound) {
         grantOutbound->MoveTo(pnode->grantOutbound);
     }
 
     m_msgproc->InitializeNode(*config, pnode);
     {
         LOCK(cs_vNodes);
         vNodes.push_back(pnode);
     }
 }
 
 void CConnman::ThreadMessageHandler() {
     while (!flagInterruptMsgProc) {
         std::vector<CNode *> vNodesCopy;
         {
             LOCK(cs_vNodes);
             vNodesCopy = vNodes;
             for (CNode *pnode : vNodesCopy) {
                 pnode->AddRef();
             }
         }
 
         bool fMoreWork = false;
 
         for (CNode *pnode : vNodesCopy) {
             if (pnode->fDisconnect) {
                 continue;
             }
 
             // Receive messages
             bool fMoreNodeWork = m_msgproc->ProcessMessages(
                 *config, pnode, flagInterruptMsgProc);
             fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
             if (flagInterruptMsgProc) {
                 return;
             }
 
             // Send messages
             {
                 LOCK(pnode->cs_sendProcessing);
                 m_msgproc->SendMessages(*config, pnode, flagInterruptMsgProc);
             }
 
             if (flagInterruptMsgProc) {
                 return;
             }
         }
 
         {
             LOCK(cs_vNodes);
             for (CNode *pnode : vNodesCopy) {
                 pnode->Release();
             }
         }
 
         WAIT_LOCK(mutexMsgProc, lock);
         if (!fMoreWork) {
             condMsgProc.wait_until(lock,
                                    std::chrono::steady_clock::now() +
                                        std::chrono::milliseconds(100),
                                    [this]() EXCLUSIVE_LOCKS_REQUIRED(
                                        mutexMsgProc) { return fMsgProcWake; });
         }
         fMsgProcWake = false;
     }
 }
 
 bool CConnman::BindListenPort(const CService &addrBind, bilingual_str &strError,
                               NetPermissionFlags permissions) {
     int nOne = 1;
 
     // Create socket for listening for incoming connections
     struct sockaddr_storage sockaddr;
     socklen_t len = sizeof(sockaddr);
     if (!addrBind.GetSockAddr((struct sockaddr *)&sockaddr, &len)) {
         strError = strprintf(
             Untranslated("Error: Bind address family for %s not supported"),
             addrBind.ToString());
         LogPrintf("%s\n", strError.original);
         return false;
     }
 
     SOCKET hListenSocket = CreateSocket(addrBind);
     if (hListenSocket == INVALID_SOCKET) {
         strError =
             strprintf(Untranslated("Error: Couldn't open socket for incoming "
                                    "connections (socket returned error %s)"),
                       NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError.original);
         return false;
     }
 
     // Allow binding if the port is still in TIME_WAIT state after
     // the program was closed and restarted.
     setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne,
                sizeof(int));
 
     // Some systems don't have IPV6_V6ONLY but are always v6only; others do have
     // the option and enable it by default or not. Try to enable it, if
     // possible.
     if (addrBind.IsIPv6()) {
 #ifdef IPV6_V6ONLY
         setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY,
                    (sockopt_arg_type)&nOne, sizeof(int));
 #endif
 #ifdef WIN32
         int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
         setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL,
                    (sockopt_arg_type)&nProtLevel, sizeof(int));
 #endif
     }
 
     if (::bind(hListenSocket, (struct sockaddr *)&sockaddr, len) ==
         SOCKET_ERROR) {
         int nErr = WSAGetLastError();
         if (nErr == WSAEADDRINUSE) {
             strError = strprintf(_("Unable to bind to %s on this computer. %s "
                                    "is probably already running."),
                                  addrBind.ToString(), PACKAGE_NAME);
         } else {
             strError = strprintf(_("Unable to bind to %s on this computer "
                                    "(bind returned error %s)"),
                                  addrBind.ToString(), NetworkErrorString(nErr));
         }
         LogPrintf("%s\n", strError.original);
         CloseSocket(hListenSocket);
         return false;
     }
     LogPrintf("Bound to %s\n", addrBind.ToString());
 
     // Listen for incoming connections
     if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) {
         strError = strprintf(_("Error: Listening for incoming connections "
                                "failed (listen returned error %s)"),
                              NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError.original);
         CloseSocket(hListenSocket);
         return false;
     }
 
     vhListenSocket.push_back(ListenSocket(hListenSocket, permissions));
     return true;
 }
 
 void Discover() {
     if (!fDiscover) {
         return;
     }
 
 #ifdef WIN32
     // Get local host IP
     char pszHostName[256] = "";
     if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) {
         std::vector<CNetAddr> vaddr;
         if (LookupHost(pszHostName, vaddr, 0, true)) {
             for (const CNetAddr &addr : vaddr) {
                 if (AddLocal(addr, LOCAL_IF)) {
                     LogPrintf("%s: %s - %s\n", __func__, pszHostName,
                               addr.ToString());
                 }
             }
         }
     }
 #elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
     // Get local host ip
     struct ifaddrs *myaddrs;
     if (getifaddrs(&myaddrs) == 0) {
         for (struct ifaddrs *ifa = myaddrs; ifa != nullptr;
              ifa = ifa->ifa_next) {
             if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0 ||
                 strcmp(ifa->ifa_name, "lo") == 0 ||
                 strcmp(ifa->ifa_name, "lo0") == 0) {
                 continue;
             }
             if (ifa->ifa_addr->sa_family == AF_INET) {
                 struct sockaddr_in *s4 =
                     reinterpret_cast<struct sockaddr_in *>(ifa->ifa_addr);
                 CNetAddr addr(s4->sin_addr);
                 if (AddLocal(addr, LOCAL_IF)) {
                     LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name,
                               addr.ToString());
                 }
             } else if (ifa->ifa_addr->sa_family == AF_INET6) {
                 struct sockaddr_in6 *s6 =
                     reinterpret_cast<struct sockaddr_in6 *>(ifa->ifa_addr);
                 CNetAddr addr(s6->sin6_addr);
                 if (AddLocal(addr, LOCAL_IF)) {
                     LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name,
                               addr.ToString());
                 }
             }
         }
         freeifaddrs(myaddrs);
     }
 #endif
 }
 
 void CConnman::SetNetworkActive(bool active) {
     LogPrintf("%s: %s\n", __func__, active);
 
     if (fNetworkActive == active) {
         return;
     }
 
     fNetworkActive = active;
     uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
 }
 
 CConnman::CConnman(const Config &configIn, uint64_t nSeed0In, uint64_t nSeed1In,
                    bool network_active)
     : config(&configIn), nSeed0(nSeed0In), nSeed1(nSeed1In) {
     SetTryNewOutboundPeer(false);
 
     Options connOptions;
     Init(connOptions);
     SetNetworkActive(network_active);
 }
 
 NodeId CConnman::GetNewNodeId() {
     return nLastNodeId.fetch_add(1);
 }
 
 bool CConnman::Bind(const CService &addr, unsigned int flags,
                     NetPermissionFlags permissions) {
     if (!(flags & BF_EXPLICIT) && !IsReachable(addr)) {
         return false;
     }
     bilingual_str strError;
     if (!BindListenPort(addr, strError, permissions)) {
         if ((flags & BF_REPORT_ERROR) && clientInterface) {
             clientInterface->ThreadSafeMessageBox(
                 strError, "", CClientUIInterface::MSG_ERROR);
         }
         return false;
     }
 
-    if (addr.IsRoutable() && fDiscover && (permissions & PF_NOBAN) == 0) {
+    if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) &&
+        !(permissions & PF_NOBAN)) {
         AddLocal(addr, LOCAL_BIND);
     }
 
     return true;
 }
 
-bool CConnman::InitBinds(
-    const std::vector<CService> &binds,
-    const std::vector<NetWhitebindPermissions> &whiteBinds) {
+bool CConnman::InitBinds(const std::vector<CService> &binds,
+                         const std::vector<NetWhitebindPermissions> &whiteBinds,
+                         const std::vector<CService> &onion_binds) {
     bool fBound = false;
     for (const auto &addrBind : binds) {
         fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR),
                        NetPermissionFlags::PF_NONE);
     }
     for (const auto &addrBind : whiteBinds) {
         fBound |= Bind(addrBind.m_service, (BF_EXPLICIT | BF_REPORT_ERROR),
                        addrBind.m_flags);
     }
     if (binds.empty() && whiteBinds.empty()) {
         struct in_addr inaddr_any;
         inaddr_any.s_addr = htonl(INADDR_ANY);
         struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
         fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE,
                        NetPermissionFlags::PF_NONE);
         fBound |= Bind(CService(inaddr_any, GetListenPort()),
                        !fBound ? BF_REPORT_ERROR : BF_NONE,
                        NetPermissionFlags::PF_NONE);
     }
+
+    for (const auto &addr_bind : onion_binds) {
+        fBound |= Bind(addr_bind, BF_EXPLICIT | BF_DONT_ADVERTISE,
+                       NetPermissionFlags::PF_NONE);
+    }
+
     return fBound;
 }
 
 bool CConnman::Start(CScheduler &scheduler, const Options &connOptions) {
     Init(connOptions);
 
     {
         LOCK(cs_totalBytesRecv);
         nTotalBytesRecv = 0;
     }
     {
         LOCK(cs_totalBytesSent);
         nTotalBytesSent = 0;
         nMaxOutboundTotalBytesSentInCycle = 0;
         nMaxOutboundCycleStartTime = 0;
     }
 
-    if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) {
+    if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds,
+                              connOptions.onion_binds)) {
         if (clientInterface) {
             clientInterface->ThreadSafeMessageBox(
                 _("Failed to listen on any port. Use -listen=0 if you want "
                   "this."),
                 "", CClientUIInterface::MSG_ERROR);
         }
         return false;
     }
 
     for (const auto &strDest : connOptions.vSeedNodes) {
         AddAddrFetch(strDest);
     }
 
     if (clientInterface) {
         clientInterface->InitMessage(_("Loading P2P addresses...").translated);
     }
     // Load addresses from peers.dat
     int64_t nStart = GetTimeMillis();
     {
         CAddrDB adb(config->GetChainParams());
         if (adb.Read(addrman)) {
             LogPrintf("Loaded %i addresses from peers.dat  %dms\n",
                       addrman.size(), GetTimeMillis() - nStart);
         } else {
             // Addrman can be in an inconsistent state after failure, reset it
             addrman.Clear();
             LogPrintf("Invalid or missing peers.dat; recreating\n");
             DumpAddresses();
         }
     }
 
     uiInterface.InitMessage(_("Starting network threads...").translated);
 
     fAddressesInitialized = true;
 
     if (semOutbound == nullptr) {
         // initialize semaphore
         semOutbound = std::make_unique<CSemaphore>(
             std::min(m_max_outbound, nMaxConnections));
     }
     if (semAddnode == nullptr) {
         // initialize semaphore
         semAddnode = std::make_unique<CSemaphore>(nMaxAddnode);
     }
 
     //
     // Start threads
     //
     assert(m_msgproc);
     InterruptSocks5(false);
     interruptNet.reset();
     flagInterruptMsgProc = false;
 
     {
         LOCK(mutexMsgProc);
         fMsgProcWake = false;
     }
 
     // Send and receive from sockets, accept connections
     threadSocketHandler = std::thread(
         &TraceThread<std::function<void()>>, "net",
         std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
 
     if (!gArgs.GetBoolArg("-dnsseed", true)) {
         LogPrintf("DNS seeding disabled\n");
     } else {
         threadDNSAddressSeed =
             std::thread(&TraceThread<std::function<void()>>, "dnsseed",
                         std::function<void()>(
                             std::bind(&CConnman::ThreadDNSAddressSeed, this)));
     }
 
     // Initiate manual connections
     threadOpenAddedConnections =
         std::thread(&TraceThread<std::function<void()>>, "addcon",
                     std::function<void()>(std::bind(
                         &CConnman::ThreadOpenAddedConnections, this)));
 
     if (connOptions.m_use_addrman_outgoing &&
         !connOptions.m_specified_outgoing.empty()) {
         if (clientInterface) {
             clientInterface->ThreadSafeMessageBox(
                 _("Cannot provide specific connections and have addrman find "
                   "outgoing connections at the same."),
                 "", CClientUIInterface::MSG_ERROR);
         }
         return false;
     }
     if (connOptions.m_use_addrman_outgoing ||
         !connOptions.m_specified_outgoing.empty()) {
         threadOpenConnections =
             std::thread(&TraceThread<std::function<void()>>, "opencon",
                         std::function<void()>(
                             std::bind(&CConnman::ThreadOpenConnections, this,
                                       connOptions.m_specified_outgoing)));
     }
 
     // Process messages
     threadMessageHandler =
         std::thread(&TraceThread<std::function<void()>>, "msghand",
                     std::function<void()>(
                         std::bind(&CConnman::ThreadMessageHandler, this)));
 
     // Dump network addresses
     scheduler.scheduleEvery(
         [this]() {
             this->DumpAddresses();
             return true;
         },
         DUMP_PEERS_INTERVAL);
 
     return true;
 }
 
 class CNetCleanup {
 public:
     CNetCleanup() {}
 
     ~CNetCleanup() {
 #ifdef WIN32
         // Shutdown Windows Sockets
         WSACleanup();
 #endif
     }
 };
 static CNetCleanup instance_of_cnetcleanup;
 
 void CConnman::Interrupt() {
     {
         LOCK(mutexMsgProc);
         flagInterruptMsgProc = true;
     }
     condMsgProc.notify_all();
 
     interruptNet();
     InterruptSocks5(true);
 
     if (semOutbound) {
         for (int i = 0; i < m_max_outbound; i++) {
             semOutbound->post();
         }
     }
 
     if (semAddnode) {
         for (int i = 0; i < nMaxAddnode; i++) {
             semAddnode->post();
         }
     }
 }
 
 void CConnman::StopThreads() {
     if (threadMessageHandler.joinable()) {
         threadMessageHandler.join();
     }
     if (threadOpenConnections.joinable()) {
         threadOpenConnections.join();
     }
     if (threadOpenAddedConnections.joinable()) {
         threadOpenAddedConnections.join();
     }
     if (threadDNSAddressSeed.joinable()) {
         threadDNSAddressSeed.join();
     }
     if (threadSocketHandler.joinable()) {
         threadSocketHandler.join();
     }
 }
 
 void CConnman::StopNodes() {
     if (fAddressesInitialized) {
         DumpAddresses();
         fAddressesInitialized = false;
     }
 
     // Close sockets
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         pnode->CloseSocketDisconnect();
     }
     for (ListenSocket &hListenSocket : vhListenSocket) {
         if (hListenSocket.socket != INVALID_SOCKET) {
             if (!CloseSocket(hListenSocket.socket)) {
                 LogPrintf("CloseSocket(hListenSocket) failed with error %s\n",
                           NetworkErrorString(WSAGetLastError()));
             }
         }
     }
 
     // clean up some globals (to help leak detection)
     for (CNode *pnode : vNodes) {
         DeleteNode(pnode);
     }
     for (CNode *pnode : vNodesDisconnected) {
         DeleteNode(pnode);
     }
     vNodes.clear();
     vNodesDisconnected.clear();
     vhListenSocket.clear();
     semOutbound.reset();
     semAddnode.reset();
 }
 
 void CConnman::DeleteNode(CNode *pnode) {
     assert(pnode);
     bool fUpdateConnectionTime = false;
     m_msgproc->FinalizeNode(*config, pnode->GetId(), fUpdateConnectionTime);
     if (fUpdateConnectionTime) {
         addrman.Connected(pnode->addr);
     }
     delete pnode;
 }
 
 CConnman::~CConnman() {
     Interrupt();
     Stop();
 }
 
 void CConnman::SetServices(const CService &addr, ServiceFlags nServices) {
     addrman.SetServices(addr, nServices);
 }
 
 void CConnman::MarkAddressGood(const CAddress &addr) {
     addrman.Good(addr);
 }
 
 bool CConnman::AddNewAddresses(const std::vector<CAddress> &vAddr,
                                const CAddress &addrFrom, int64_t nTimePenalty) {
     return addrman.Add(vAddr, addrFrom, nTimePenalty);
 }
 
 std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses,
                                              size_t max_pct) {
     std::vector<CAddress> addresses = addrman.GetAddr(max_addresses, max_pct);
     if (m_banman) {
         addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
                                        [this](const CAddress &addr) {
                                            return m_banman->IsDiscouraged(
                                                       addr) ||
                                                   m_banman->IsBanned(addr);
                                        }),
                         addresses.end());
     }
     return addresses;
 }
 
 std::vector<CAddress>
 CConnman::GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct) {
     SOCKET socket;
     WITH_LOCK(requestor.cs_hSocket, socket = requestor.hSocket);
     auto local_socket_bytes = GetBindAddress(socket).GetAddrBytes();
     uint64_t cache_id =
         GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
             .Write(requestor.addr.GetNetwork())
             .Write(local_socket_bytes.data(), local_socket_bytes.size())
             .Finalize();
     const auto current_time = GetTime<std::chrono::microseconds>();
     auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
     CachedAddrResponse &cache_entry = r.first->second;
     // New CachedAddrResponse have expiration 0.
     if (cache_entry.m_cache_entry_expiration < current_time) {
         cache_entry.m_addrs_response_cache =
             GetAddresses(max_addresses, max_pct);
         // Choosing a proper cache lifetime is a trade-off between the privacy
         // leak minimization and the usefulness of ADDR responses to honest
         // users.
         //
         // Longer cache lifetime makes it more difficult for an attacker to
         // scrape enough AddrMan data to maliciously infer something useful. By
         // the time an attacker scraped enough AddrMan records, most of the
         // records should be old enough to not leak topology info by e.g.
         // analyzing real-time changes in timestamps.
         //
         // It takes only several hundred requests to scrape everything from an
         // AddrMan containing 100,000 nodes, so ~24 hours of cache lifetime
         // indeed makes the data less inferable by the time most of it could be
         // scraped (considering that timestamps are updated via ADDR
         // self-announcements and when nodes communicate). We also should be
         // robust to those attacks which may not require scraping *full*
         // victim's AddrMan (because even several timestamps of the same handful
         // of nodes may leak privacy).
         //
         // On the other hand, longer cache lifetime makes ADDR responses
         // outdated and less useful for an honest requestor, e.g. if most nodes
         // in the ADDR response are no longer active.
         //
         // However, the churn in the network is known to be rather low. Since we
         // consider nodes to be "terrible" (see IsTerrible()) if the timestamps
         // are older than 30 days, max. 24 hours of "penalty" due to cache
         // shouldn't make any meaningful difference in terms of the freshness of
         // the response.
         cache_entry.m_cache_entry_expiration =
             current_time + std::chrono::hours(21) +
             GetRandMillis(std::chrono::hours(6));
     }
     return cache_entry.m_addrs_response_cache;
 }
 
 bool CConnman::AddNode(const std::string &strNode) {
     LOCK(cs_vAddedNodes);
     for (const std::string &it : vAddedNodes) {
         if (strNode == it) {
             return false;
         }
     }
 
     vAddedNodes.push_back(strNode);
     return true;
 }
 
 bool CConnman::RemoveAddedNode(const std::string &strNode) {
     LOCK(cs_vAddedNodes);
     for (std::vector<std::string>::iterator it = vAddedNodes.begin();
          it != vAddedNodes.end(); ++it) {
         if (strNode == *it) {
             vAddedNodes.erase(it);
             return true;
         }
     }
     return false;
 }
 
 size_t CConnman::GetNodeCount(NumConnections flags) {
     LOCK(cs_vNodes);
     // Shortcut if we want total
     if (flags == CConnman::CONNECTIONS_ALL) {
         return vNodes.size();
     }
 
     int nNum = 0;
     for (const auto &pnode : vNodes) {
         if (flags &
             (pnode->IsInboundConn() ? CONNECTIONS_IN : CONNECTIONS_OUT)) {
             nNum++;
         }
     }
 
     return nNum;
 }
 
 void CConnman::GetNodeStats(std::vector<CNodeStats> &vstats) {
     vstats.clear();
     LOCK(cs_vNodes);
     vstats.reserve(vNodes.size());
     for (CNode *pnode : vNodes) {
         vstats.emplace_back();
         pnode->copyStats(vstats.back(), addrman.m_asmap);
     }
 }
 
 bool CConnman::DisconnectNode(const std::string &strNode) {
     LOCK(cs_vNodes);
     if (CNode *pnode = FindNode(strNode)) {
         pnode->fDisconnect = true;
         return true;
     }
     return false;
 }
 
 bool CConnman::DisconnectNode(const CSubNet &subnet) {
     bool disconnected = false;
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (subnet.Match(pnode->addr)) {
             pnode->fDisconnect = true;
             disconnected = true;
         }
     }
     return disconnected;
 }
 
 bool CConnman::DisconnectNode(const CNetAddr &addr) {
     return DisconnectNode(CSubNet(addr));
 }
 
 bool CConnman::DisconnectNode(NodeId id) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (id == pnode->GetId()) {
             pnode->fDisconnect = true;
             return true;
         }
     }
     return false;
 }
 
 void CConnman::RecordBytesRecv(uint64_t bytes) {
     LOCK(cs_totalBytesRecv);
     nTotalBytesRecv += bytes;
 }
 
 void CConnman::RecordBytesSent(uint64_t bytes) {
     LOCK(cs_totalBytesSent);
     nTotalBytesSent += bytes;
 
     uint64_t now = GetTime();
     if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) {
         // timeframe expired, reset cycle
         nMaxOutboundCycleStartTime = now;
         nMaxOutboundTotalBytesSentInCycle = 0;
     }
 
     // TODO, exclude peers with download permission
     nMaxOutboundTotalBytesSentInCycle += bytes;
 }
 
 void CConnman::SetMaxOutboundTarget(uint64_t limit) {
     LOCK(cs_totalBytesSent);
     nMaxOutboundLimit = limit;
 }
 
 uint64_t CConnman::GetMaxOutboundTarget() {
     LOCK(cs_totalBytesSent);
     return nMaxOutboundLimit;
 }
 
 uint64_t CConnman::GetMaxOutboundTimeframe() {
     LOCK(cs_totalBytesSent);
     return nMaxOutboundTimeframe;
 }
 
 uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0) {
         return 0;
     }
 
     if (nMaxOutboundCycleStartTime == 0) {
         return nMaxOutboundTimeframe;
     }
 
     uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
     uint64_t now = GetTime();
     return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
 }
 
 void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundTimeframe != timeframe) {
         // reset measure-cycle in case of changing the timeframe.
         nMaxOutboundCycleStartTime = GetTime();
     }
     nMaxOutboundTimeframe = timeframe;
 }
 
 bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0) {
         return false;
     }
 
     if (historicalBlockServingLimit) {
         // keep a large enough buffer to at least relay each block once.
         uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
         uint64_t buffer = timeLeftInCycle / 600 * ONE_MEGABYTE;
         if (buffer >= nMaxOutboundLimit ||
             nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) {
             return true;
         }
     } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) {
         return true;
     }
 
     return false;
 }
 
 uint64_t CConnman::GetOutboundTargetBytesLeft() {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0) {
         return 0;
     }
 
     return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
                ? 0
                : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
 }
 
 uint64_t CConnman::GetTotalBytesRecv() {
     LOCK(cs_totalBytesRecv);
     return nTotalBytesRecv;
 }
 
 uint64_t CConnman::GetTotalBytesSent() {
     LOCK(cs_totalBytesSent);
     return nTotalBytesSent;
 }
 
 ServiceFlags CConnman::GetLocalServices() const {
     return nLocalServices;
 }
 
 void CConnman::SetBestHeight(int height) {
     nBestHeight.store(height, std::memory_order_release);
 }
 
 int CConnman::GetBestHeight() const {
     return nBestHeight.load(std::memory_order_acquire);
 }
 
 unsigned int CConnman::GetReceiveFloodSize() const {
     return nReceiveFloodSize;
 }
 
 void CNode::AvalancheState::invsPolled(uint32_t count) {
     invCounters += count;
 }
 
 void CNode::AvalancheState::invsVoted(uint32_t count) {
     invCounters += uint64_t(count) << 32;
 }
 
 void CNode::AvalancheState::updateAvailabilityScore() {
     LOCK(cs_statistics);
 
     uint64_t windowInvCounters = invCounters.exchange(0);
     double previousScore = availabilityScore;
 
     uint32_t polls = windowInvCounters & std::numeric_limits<uint32_t>::max();
     uint32_t votes = windowInvCounters >> 32;
 
     availabilityScore =
         AVALANCHE_STATISTICS_DECAY_FACTOR * (2 * votes - polls) +
         (1. - AVALANCHE_STATISTICS_DECAY_FACTOR) * previousScore;
 }
 
 double CNode::AvalancheState::getAvailabilityScore() const {
     // The score is set atomically so there is no need to lock the statistics
     // when reading.
     return availabilityScore;
 }
 
 CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn,
              int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn,
              uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn,
              uint64_t nLocalExtraEntropyIn, const CAddress &addrBindIn,
              const std::string &addrNameIn, ConnectionType conn_type_in)
     : nTimeConnected(GetSystemTimeInSeconds()), addr(addrIn),
       addrBind(addrBindIn), nKeyedNetGroup(nKeyedNetGroupIn),
       // Don't relay addr messages to peers that we connect to as
       // block-relay-only peers (to prevent adversaries from inferring these
       // links from addr traffic).
       id(idIn), nLocalHostNonce(nLocalHostNonceIn),
       nLocalExtraEntropy(nLocalExtraEntropyIn), m_conn_type(conn_type_in),
       nLocalServices(nLocalServicesIn), nMyStartingHeight(nMyStartingHeightIn) {
     hSocket = hSocketIn;
     addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
     hashContinue = BlockHash();
     if (conn_type_in != ConnectionType::BLOCK_RELAY) {
         m_tx_relay = std::make_unique<TxRelay>();
     }
 
     if (RelayAddrsWithConn()) {
         m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001);
     }
 
     // Don't relay proofs if avalanche is disabled
     if (isAvalancheEnabled(gArgs)) {
         m_proof_relay = std::make_unique<ProofRelay>();
     }
 
     for (const std::string &msg : getAllNetMessageTypes()) {
         mapRecvBytesPerMsgCmd[msg] = 0;
     }
     mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
 
     if (fLogIPs) {
         LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id);
     } else {
         LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
     }
 
     m_deserializer = std::make_unique<V1TransportDeserializer>(
         V1TransportDeserializer(GetConfig().GetChainParams().NetMagic(),
                                 SER_NETWORK, INIT_PROTO_VERSION));
     m_serializer =
         std::make_unique<V1TransportSerializer>(V1TransportSerializer());
 }
 
 CNode::~CNode() {
     CloseSocket(hSocket);
 }
 
 bool CConnman::NodeFullyConnected(const CNode *pnode) {
     return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
 }
 
 void CConnman::PushMessage(CNode *pnode, CSerializedNetMsg &&msg) {
     size_t nMessageSize = msg.data.size();
     LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n",
              SanitizeString(msg.m_type), nMessageSize, pnode->GetId());
 
     // make sure we use the appropriate network transport format
     std::vector<uint8_t> serializedHeader;
     pnode->m_serializer->prepareForTransport(*config, msg, serializedHeader);
     size_t nTotalSize = nMessageSize + serializedHeader.size();
 
     size_t nBytesSent = 0;
     {
         LOCK(pnode->cs_vSend);
         bool optimisticSend(pnode->vSendMsg.empty());
 
         // log total amount of bytes per message type
         pnode->mapSendBytesPerMsgCmd[msg.m_type] += nTotalSize;
         pnode->nSendSize += nTotalSize;
 
         if (pnode->nSendSize > nSendBufferMaxSize) {
             pnode->fPauseSend = true;
         }
         pnode->vSendMsg.push_back(std::move(serializedHeader));
         if (nMessageSize) {
             pnode->vSendMsg.push_back(std::move(msg.data));
         }
 
         // If write queue empty, attempt "optimistic write"
         if (optimisticSend == true) {
             nBytesSent = SocketSendData(pnode);
         }
     }
     if (nBytesSent) {
         RecordBytesSent(nBytesSent);
     }
 }
 
 bool CConnman::ForNode(NodeId id, std::function<bool(CNode *pnode)> func) {
     CNode *found = nullptr;
     LOCK(cs_vNodes);
     for (auto &&pnode : vNodes) {
         if (pnode->GetId() == id) {
             found = pnode;
             break;
         }
     }
     return found != nullptr && NodeFullyConnected(found) && func(found);
 }
 
 int64_t CConnman::PoissonNextSendInbound(int64_t now,
                                          int average_interval_seconds) {
     if (m_next_send_inv_to_incoming < now) {
         // If this function were called from multiple threads simultaneously
         // it would be possible that both update the next send variable, and
         // return a different result to their caller. This is not possible in
         // practice as only the net processing thread invokes this function.
         m_next_send_inv_to_incoming =
             PoissonNextSend(now, average_interval_seconds);
     }
     return m_next_send_inv_to_incoming;
 }
 
 int64_t PoissonNextSend(int64_t now, int average_interval_seconds) {
     return now + int64_t(log1p(GetRand(1ULL << 48) *
                                -0.0000000000000035527136788 /* -1/2^48 */) *
                              average_interval_seconds * -1000000.0 +
                          0.5);
 }
 
 CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const {
     return CSipHasher(nSeed0, nSeed1).Write(id);
 }
 
 uint64_t CConnman::CalculateKeyedNetGroup(const CAddress &ad) const {
     std::vector<uint8_t> vchNetGroup(ad.GetGroup(addrman.m_asmap));
 
     return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP)
         .Write(vchNetGroup.data(), vchNetGroup.size())
         .Finalize();
 }
 
 /**
  * This function convert MaxBlockSize from byte to
  * MB with a decimal precision one digit rounded down
  * E.g.
  * 1660000 -> 1.6
  * 2010000 -> 2.0
  * 1000000 -> 1.0
  * 230000  -> 0.2
  * 50000   -> 0.0
  *
  *  NB behavior for EB<1MB not standardized yet still
  *  the function applies the same algo used for
  *  EB greater or equal to 1MB
  */
 std::string getSubVersionEB(uint64_t MaxBlockSize) {
     // Prepare EB string we are going to add to SubVer:
     // 1) translate from byte to MB and convert to string
     // 2) limit the EB string to the first decimal digit (floored)
     std::stringstream ebMBs;
     ebMBs << (MaxBlockSize / (ONE_MEGABYTE / 10));
     std::string eb = ebMBs.str();
     eb.insert(eb.size() - 1, ".", 1);
     if (eb.substr(0, 1) == ".") {
         eb = "0" + eb;
     }
     return eb;
 }
 
 std::string userAgent(const Config &config) {
     // format excessive blocksize value
     std::string eb = getSubVersionEB(config.GetMaxBlockSize());
     std::vector<std::string> uacomments;
     uacomments.push_back("EB" + eb);
 
     // Comments are checked for char compliance at startup, it is safe to add
     // them to the user agent string
     for (const std::string &cmt : gArgs.GetArgs("-uacomment")) {
         uacomments.push_back(cmt);
     }
 
     const std::string client_name = gArgs.GetArg("-uaclientname", CLIENT_NAME);
     const std::string client_version =
         gArgs.GetArg("-uaclientversion", FormatVersion(CLIENT_VERSION));
 
     // Size compliance is checked at startup, it is safe to not check it again
     return FormatUserAgent(client_name, client_version, uacomments);
 }
diff --git a/src/net.h b/src/net.h
index 22b07e31f..485b7d2c6 100644
--- a/src/net.h
+++ b/src/net.h
@@ -1,1388 +1,1391 @@
 // Copyright (c) 2009-2010 Satoshi Nakamoto
 // Copyright (c) 2009-2019 The Bitcoin Core developers
 // Copyright (c) 2017-2019 The Bitcoin developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #ifndef BITCOIN_NET_H
 #define BITCOIN_NET_H
 
 #include <addrdb.h>
 #include <addrman.h>
 #include <amount.h>
 #include <avalanche/delegation.h>
 #include <bloom.h>
 #include <chainparams.h>
 #include <compat.h>
 #include <crypto/siphash.h>
 #include <hash.h>
 #include <net_permissions.h>
 #include <netaddress.h>
 #include <nodeid.h>
 #include <protocol.h>
 #include <random.h>
 #include <streams.h>
 #include <sync.h>
 #include <threadinterrupt.h>
 #include <uint256.h>
 #include <util/check.h>
 #include <validation.h> // For cs_main
 
 #include <atomic>
 #include <condition_variable>
 #include <cstdint>
 #include <deque>
 #include <map>
 #include <memory>
 #include <thread>
 #include <vector>
 
 #ifndef WIN32
 #include <arpa/inet.h>
 #endif
 
 class BanMan;
 class Config;
 class CNode;
 class CScheduler;
 struct bilingual_str;
 
 /** Default for -whitelistrelay. */
 static const bool DEFAULT_WHITELISTRELAY = true;
 /** Default for -whitelistforcerelay. */
 static const bool DEFAULT_WHITELISTFORCERELAY = false;
 
 /**
  * Time after which to disconnect, after waiting for a ping response (or
  * inactivity).
  */
 static const int TIMEOUT_INTERVAL = 20 * 60;
 /** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
 static const int FEELER_INTERVAL = 120;
 /**
  * The maximum number of addresses from our addrman to return in response to
  * a getaddr message.
  */
 static constexpr size_t MAX_ADDR_TO_SEND = 1000;
 /** Maximum length of the user agent string in `version` message */
 static const unsigned int MAX_SUBVERSION_LENGTH = 256;
 /**
  * Maximum number of automatic outgoing nodes over which we'll relay everything
  * (blocks, tx, addrs, etc)
  */
 static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8;
 /** Maximum number of addnode outgoing nodes */
 static const int MAX_ADDNODE_CONNECTIONS = 8;
 /** Maximum number of block-relay-only outgoing connections */
 static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2;
 /** Maximum number of feeler connections */
 static const int MAX_FEELER_CONNECTIONS = 1;
 /** -listen default */
 static const bool DEFAULT_LISTEN = true;
 /** -upnp default */
 #ifdef USE_UPNP
 static const bool DEFAULT_UPNP = USE_UPNP;
 #else
 static const bool DEFAULT_UPNP = false;
 #endif
 /**
  * The maximum number of peer connections to maintain.
  * This quantity might not be reachable on some systems, especially on platforms
  * that do not provide a working poll() interface.
  */
 static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 4096;
 /** The default for -maxuploadtarget. 0 = Unlimited */
 static const uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
 /** The default timeframe for -maxuploadtarget. 1 day. */
 static const uint64_t MAX_UPLOAD_TIMEFRAME = 60 * 60 * 24;
 /** Default for blocks only*/
 static const bool DEFAULT_BLOCKSONLY = false;
 /** -peertimeout default */
 static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60;
 
 static const bool DEFAULT_FORCEDNSSEED = false;
 static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
 static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
 
 /** Refresh period for the avalanche statistics computation */
 static constexpr std::chrono::minutes AVALANCHE_STATISTICS_REFRESH_PERIOD{10};
 /** Time constant for the avalanche statistics computation */
 static constexpr std::chrono::minutes AVALANCHE_STATISTICS_TIME_CONSTANT{10};
 /**
  * Pre-computed decay factor for the avalanche statistics computation.
  * There is currently no constexpr variant of std::exp, so use a const.
  */
 static const double AVALANCHE_STATISTICS_DECAY_FACTOR =
     1. - std::exp(-1. * AVALANCHE_STATISTICS_REFRESH_PERIOD.count() /
                   AVALANCHE_STATISTICS_TIME_CONSTANT.count());
 
 struct AddedNodeInfo {
     std::string strAddedNode;
     CService resolvedAddress;
     bool fConnected;
     bool fInbound;
 };
 
 struct CNodeStats;
 class CClientUIInterface;
 
 struct CSerializedNetMsg {
     CSerializedNetMsg() = default;
     CSerializedNetMsg(CSerializedNetMsg &&) = default;
     CSerializedNetMsg &operator=(CSerializedNetMsg &&) = default;
     // No copying, only moves.
     CSerializedNetMsg(const CSerializedNetMsg &msg) = delete;
     CSerializedNetMsg &operator=(const CSerializedNetMsg &) = delete;
 
     std::vector<uint8_t> data;
     std::string m_type;
 };
 
 const std::vector<std::string> CONNECTION_TYPE_DOC{
     "outbound-full-relay (default automatic connections)",
     "block-relay-only (does not relay transactions or addresses)",
     "inbound (initiated by the peer)",
     "manual (added via addnode RPC or -addnode/-connect configuration options)",
     "addr-fetch (short-lived automatic connection for soliciting addresses)",
     "feeler (short-lived automatic connection for testing addresses)"};
 
 /**
  * Different types of connections to a peer. This enum encapsulates the
  * information we have available at the time of opening or accepting the
  * connection. Aside from INBOUND, all types are initiated by us.
  */
 enum class ConnectionType {
     /**
      * Inbound connections are those initiated by a peer. This is the only
      * property we know at the time of connection, until P2P messages are
      * exchanged.
      */
     INBOUND,
 
     /**
      * These are the default connections that we use to connect with the
      * network. There is no restriction on what is relayed- by default we relay
      * blocks, addresses & transactions. We automatically attempt to open
      * MAX_OUTBOUND_FULL_RELAY_CONNECTIONS using addresses from our AddrMan.
      */
     OUTBOUND_FULL_RELAY,
 
     /**
      * We open manual connections to addresses that users explicitly inputted
      * via the addnode RPC, or the -connect command line argument. Even if a
      * manual connection is misbehaving, we do not automatically disconnect or
      * add it to our discouragement filter.
      */
     MANUAL,
 
     /**
      * Feeler connections are short-lived connections made to check that a node
      * is alive. They can be useful for:
      * - test-before-evict: if one of the peers is considered for eviction from
      *   our AddrMan because another peer is mapped to the same slot in the
      *   tried table, evict only if this longer-known peer is offline.
      * - move node addresses from New to Tried table, so that we have more
      *   connectable addresses in our AddrMan.
      * Note that in the literature ("Eclipse Attacks on Bitcoin’s Peer-to-Peer
      * Network") only the latter feature is referred to as "feeler connections",
      * although in our codebase feeler connections encompass test-before-evict
      * as well.
      * We make these connections approximately every FEELER_INTERVAL:
      * first we resolve previously found collisions if they exist
      * (test-before-evict), otherwise connect to a node from the new table.
      */
     FEELER,
 
     /**
      * We use block-relay-only connections to help prevent against partition
      * attacks. By not relaying transactions or addresses, these connections
      * are harder to detect by a third party, thus helping obfuscate the
      * network topology. We automatically attempt to open
      * MAX_BLOCK_RELAY_ONLY_CONNECTIONS using addresses from our AddrMan.
      */
     BLOCK_RELAY,
 
     /**
      * AddrFetch connections are short lived connections used to solicit
      * addresses from peers. These are initiated to addresses submitted via the
      * -seednode command line argument, or under certain conditions when the
      * AddrMan is empty.
      */
     ADDR_FETCH,
 };
 
 namespace {
 struct CConnmanTest;
 }
 
 class NetEventsInterface;
 class CConnman {
 public:
     enum NumConnections {
         CONNECTIONS_NONE = 0,
         CONNECTIONS_IN = (1U << 0),
         CONNECTIONS_OUT = (1U << 1),
         CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT),
     };
 
     struct Options {
         ServiceFlags nLocalServices = NODE_NONE;
         int nMaxConnections = 0;
         int m_max_outbound_full_relay = 0;
         int m_max_outbound_block_relay = 0;
         int nMaxAddnode = 0;
         int nMaxFeeler = 0;
         int nBestHeight = 0;
         CClientUIInterface *uiInterface = nullptr;
         NetEventsInterface *m_msgproc = nullptr;
         BanMan *m_banman = nullptr;
         unsigned int nSendBufferMaxSize = 0;
         unsigned int nReceiveFloodSize = 0;
         uint64_t nMaxOutboundTimeframe = 0;
         uint64_t nMaxOutboundLimit = 0;
         int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT;
         std::vector<std::string> vSeedNodes;
         std::vector<NetWhitelistPermissions> vWhitelistedRange;
         std::vector<NetWhitebindPermissions> vWhiteBinds;
         std::vector<CService> vBinds;
+        std::vector<CService> onion_binds;
         bool m_use_addrman_outgoing = true;
         std::vector<std::string> m_specified_outgoing;
         std::vector<std::string> m_added_nodes;
         std::vector<bool> m_asmap;
     };
 
     void Init(const Options &connOptions) {
         nLocalServices = connOptions.nLocalServices;
         nMaxConnections = connOptions.nMaxConnections;
         m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing;
         nMaxAddnode = connOptions.nMaxAddnode;
         nMaxFeeler = connOptions.nMaxFeeler;
         {
             // Lock cs_main to prevent a potential race with the peer validation
             // logic thread.
             LOCK(::cs_main);
             m_max_outbound_full_relay =
                 std::min(connOptions.m_max_outbound_full_relay,
                          connOptions.nMaxConnections);
             m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay;
             m_max_outbound = m_max_outbound_full_relay +
                              m_max_outbound_block_relay + nMaxFeeler;
         }
         nBestHeight = connOptions.nBestHeight;
         clientInterface = connOptions.uiInterface;
         m_banman = connOptions.m_banman;
         m_msgproc = connOptions.m_msgproc;
         nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
         nReceiveFloodSize = connOptions.nReceiveFloodSize;
         m_peer_connect_timeout = connOptions.m_peer_connect_timeout;
         {
             LOCK(cs_totalBytesSent);
             nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe;
             nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
         }
         vWhitelistedRange = connOptions.vWhitelistedRange;
         {
             LOCK(cs_vAddedNodes);
             vAddedNodes = connOptions.m_added_nodes;
         }
     }
 
     CConnman(const Config &configIn, uint64_t seed0, uint64_t seed1,
              bool network_active = true);
     ~CConnman();
 
     bool Start(CScheduler &scheduler, const Options &options);
 
     void StopThreads();
     void StopNodes();
     void Stop() {
         StopThreads();
         StopNodes();
     };
 
     void Interrupt();
     bool GetNetworkActive() const { return fNetworkActive; };
     bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; };
     void SetNetworkActive(bool active);
     void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure,
                                CSemaphoreGrant *grantOutbound,
                                const char *strDest, ConnectionType conn_type);
     bool CheckIncomingNonce(uint64_t nonce);
 
     bool ForNode(NodeId id, std::function<bool(CNode *pnode)> func);
 
     void PushMessage(CNode *pnode, CSerializedNetMsg &&msg);
 
     using NodeFn = std::function<void(CNode *)>;
     void ForEachNode(const NodeFn &func) {
         LOCK(cs_vNodes);
         for (auto &&node : vNodes) {
             if (NodeFullyConnected(node)) {
                 func(node);
             }
         }
     };
 
     void ForEachNode(const NodeFn &func) const {
         LOCK(cs_vNodes);
         for (auto &&node : vNodes) {
             if (NodeFullyConnected(node)) {
                 func(node);
             }
         }
     };
 
     template <typename Callable, typename CallableAfter>
     void ForEachNodeThen(Callable &&pre, CallableAfter &&post) {
         LOCK(cs_vNodes);
         for (auto &&node : vNodes) {
             if (NodeFullyConnected(node)) {
                 pre(node);
             }
         }
         post();
     };
 
     template <typename Callable, typename CallableAfter>
     void ForEachNodeThen(Callable &&pre, CallableAfter &&post) const {
         LOCK(cs_vNodes);
         for (auto &&node : vNodes) {
             if (NodeFullyConnected(node)) {
                 pre(node);
             }
         }
         post();
     };
 
     // Addrman functions
     void SetServices(const CService &addr, ServiceFlags nServices);
     void MarkAddressGood(const CAddress &addr);
     bool AddNewAddresses(const std::vector<CAddress> &vAddr,
                          const CAddress &addrFrom, int64_t nTimePenalty = 0);
     std::vector<CAddress> GetAddresses(size_t max_addresses, size_t max_pct);
     /**
      * Cache is used to minimize topology leaks, so it should
      * be used for all non-trusted calls, for example, p2p.
      * A non-malicious call (from RPC or a peer with addr permission) should
      * call the function without a parameter to avoid using the cache.
      */
     std::vector<CAddress> GetAddresses(CNode &requestor, size_t max_addresses,
                                        size_t max_pct);
 
     // This allows temporarily exceeding m_max_outbound_full_relay, with the
     // goal of finding a peer that is better than all our current peers.
     void SetTryNewOutboundPeer(bool flag);
     bool GetTryNewOutboundPeer();
 
     // Return the number of outbound peers we have in excess of our target (eg,
     // if we previously called SetTryNewOutboundPeer(true), and have since set
     // to false, we may have extra peers that we wish to disconnect). This may
     // return a value less than (num_outbound_connections - num_outbound_slots)
     // in cases where some outbound connections are not yet fully connected, or
     // not yet fully disconnected.
     int GetExtraOutboundCount();
 
     bool AddNode(const std::string &node);
     bool RemoveAddedNode(const std::string &node);
     std::vector<AddedNodeInfo> GetAddedNodeInfo();
 
     size_t GetNodeCount(NumConnections num);
     void GetNodeStats(std::vector<CNodeStats> &vstats);
     bool DisconnectNode(const std::string &node);
     bool DisconnectNode(const CSubNet &subnet);
     bool DisconnectNode(const CNetAddr &addr);
     bool DisconnectNode(NodeId id);
 
     //! Used to convey which local services we are offering peers during node
     //! connection.
     //!
     //! The data returned by this is used in CNode construction,
     //! which is used to advertise which services we are offering
     //! that peer during `net_processing.cpp:PushNodeVersion()`.
     ServiceFlags GetLocalServices() const;
 
     //! set the max outbound target in bytes.
     void SetMaxOutboundTarget(uint64_t limit);
     uint64_t GetMaxOutboundTarget();
 
     //! set the timeframe for the max outbound target.
     void SetMaxOutboundTimeframe(uint64_t timeframe);
     uint64_t GetMaxOutboundTimeframe();
 
     //! check if the outbound target is reached. If param
     //! historicalBlockServingLimit is set true, the function will response true
     //! if the limit for serving historical blocks has been reached.
     bool OutboundTargetReached(bool historicalBlockServingLimit);
 
     //! response the bytes left in the current max outbound cycle in case of no
     //! limit, it will always response 0
     uint64_t GetOutboundTargetBytesLeft();
 
     //! response the time in second left in the current max outbound cycle in
     //! case of no limit, it will always response 0
     uint64_t GetMaxOutboundTimeLeftInCycle();
 
     uint64_t GetTotalBytesRecv();
     uint64_t GetTotalBytesSent();
 
     void SetBestHeight(int height);
     int GetBestHeight() const;
 
     /** Get a unique deterministic randomizer. */
     CSipHasher GetDeterministicRandomizer(uint64_t id) const;
 
     unsigned int GetReceiveFloodSize() const;
 
     void WakeMessageHandler();
 
     /**
      * Attempts to obfuscate tx time through exponentially distributed emitting.
      * Works assuming that a single interval is used.
      * Variable intervals will result in privacy decrease.
      */
     int64_t PoissonNextSendInbound(int64_t now, int average_interval_seconds);
 
     void SetAsmap(std::vector<bool> asmap) {
         addrman.m_asmap = std::move(asmap);
     }
 
 private:
     struct ListenSocket {
     public:
         SOCKET socket;
         inline void AddSocketPermissionFlags(NetPermissionFlags &flags) const {
             NetPermissions::AddFlag(flags, m_permissions);
         }
         ListenSocket(SOCKET socket_, NetPermissionFlags permissions_)
             : socket(socket_), m_permissions(permissions_) {}
 
     private:
         NetPermissionFlags m_permissions;
     };
 
     bool BindListenPort(const CService &bindAddr, bilingual_str &strError,
                         NetPermissionFlags permissions);
     bool Bind(const CService &addr, unsigned int flags,
               NetPermissionFlags permissions);
     bool InitBinds(const std::vector<CService> &binds,
-                   const std::vector<NetWhitebindPermissions> &whiteBinds);
+                   const std::vector<NetWhitebindPermissions> &whiteBinds,
+                   const std::vector<CService> &onion_binds);
+
     void ThreadOpenAddedConnections();
     void AddAddrFetch(const std::string &strDest);
     void ProcessAddrFetch();
     void ThreadOpenConnections(std::vector<std::string> connect);
     void ThreadMessageHandler();
     void AcceptConnection(const ListenSocket &hListenSocket);
     void DisconnectNodes();
     void NotifyNumConnectionsChanged();
     void InactivityCheck(CNode *pnode);
     bool GenerateSelectSet(std::set<SOCKET> &recv_set,
                            std::set<SOCKET> &send_set,
                            std::set<SOCKET> &error_set);
     void SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set,
                       std::set<SOCKET> &error_set);
     void SocketHandler();
     void ThreadSocketHandler();
     void ThreadDNSAddressSeed();
 
     uint64_t CalculateKeyedNetGroup(const CAddress &ad) const;
 
     CNode *FindNode(const CNetAddr &ip);
     CNode *FindNode(const CSubNet &subNet);
     CNode *FindNode(const std::string &addrName);
     CNode *FindNode(const CService &addr);
 
     bool AttemptToEvictConnection();
     CNode *ConnectNode(CAddress addrConnect, const char *pszDest,
                        bool fCountFailure, ConnectionType conn_type);
     void AddWhitelistPermissionFlags(NetPermissionFlags &flags,
                                      const CNetAddr &addr) const;
 
     void DeleteNode(CNode *pnode);
 
     NodeId GetNewNodeId();
 
     size_t SocketSendData(CNode *pnode) const;
     void DumpAddresses();
 
     // Network stats
     void RecordBytesRecv(uint64_t bytes);
     void RecordBytesSent(uint64_t bytes);
 
     // Whether the node should be passed out in ForEach* callbacks
     static bool NodeFullyConnected(const CNode *pnode);
 
     const Config *config;
 
     // Network usage totals
     RecursiveMutex cs_totalBytesRecv;
     RecursiveMutex cs_totalBytesSent;
     uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv){0};
     uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent){0};
 
     // outbound limit & stats
     uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent);
     uint64_t nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent);
     uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent);
     uint64_t nMaxOutboundTimeframe GUARDED_BY(cs_totalBytesSent);
 
     // P2P timeout in seconds
     int64_t m_peer_connect_timeout;
 
     // Whitelisted ranges. Any node connecting from these is automatically
     // whitelisted (as well as those connecting to whitelisted binds).
     std::vector<NetWhitelistPermissions> vWhitelistedRange;
 
     unsigned int nSendBufferMaxSize{0};
     unsigned int nReceiveFloodSize{0};
 
     std::vector<ListenSocket> vhListenSocket;
     std::atomic<bool> fNetworkActive{true};
     bool fAddressesInitialized{false};
     CAddrMan addrman;
     std::deque<std::string> m_addr_fetches GUARDED_BY(m_addr_fetches_mutex);
     RecursiveMutex m_addr_fetches_mutex;
     std::vector<std::string> vAddedNodes GUARDED_BY(cs_vAddedNodes);
     RecursiveMutex cs_vAddedNodes;
     std::vector<CNode *> vNodes GUARDED_BY(cs_vNodes);
     std::list<CNode *> vNodesDisconnected;
     mutable RecursiveMutex cs_vNodes;
     std::atomic<NodeId> nLastNodeId{0};
     unsigned int nPrevNodeCount{0};
 
     /**
      * Cache responses to addr requests to minimize privacy leak.
      * Attack example: scraping addrs in real-time may allow an attacker
      * to infer new connections of the victim by detecting new records
      * with fresh timestamps (per self-announcement).
      */
     struct CachedAddrResponse {
         std::vector<CAddress> m_addrs_response_cache;
         std::chrono::microseconds m_cache_entry_expiration{0};
     };
 
     /**
      * Addr responses stored in different caches
      * per (network, local socket) prevent cross-network node identification.
      * If a node for example is multi-homed under Tor and IPv6,
      * a single cache (or no cache at all) would let an attacker
      * to easily detect that it is the same node by comparing responses.
      * Indexing by local socket prevents leakage when a node has multiple
      * listening addresses on the same network.
      *
      * The used memory equals to 1000 CAddress records (or around 40 bytes) per
      * distinct Network (up to 5) we have/had an inbound peer from,
      * resulting in at most ~196 KB. Every separate local socket may
      * add up to ~196 KB extra.
      */
     std::map<uint64_t, CachedAddrResponse> m_addr_response_caches;
 
     /**
      * Services this instance offers.
      *
      * This data is replicated in each CNode instance we create during peer
      * connection (in ConnectNode()) under a member also called
      * nLocalServices.
      *
      * This data is not marked const, but after being set it should not
      * change. See the note in CNode::nLocalServices documentation.
      *
      * \sa CNode::nLocalServices
      */
     ServiceFlags nLocalServices;
 
     std::unique_ptr<CSemaphore> semOutbound;
     std::unique_ptr<CSemaphore> semAddnode;
     int nMaxConnections;
 
     // How many full-relay (tx, block, addr) outbound peers we want
     int m_max_outbound_full_relay;
 
     // How many block-relay only outbound peers we want
     // We do not relay tx or addr messages with these peers
     int m_max_outbound_block_relay;
 
     int nMaxAddnode;
     int nMaxFeeler;
     int m_max_outbound;
     bool m_use_addrman_outgoing;
     std::atomic<int> nBestHeight;
     CClientUIInterface *clientInterface;
     NetEventsInterface *m_msgproc;
     /**
      * Pointer to this node's banman. May be nullptr - check existence before
      * dereferencing.
      */
     BanMan *m_banman;
 
     /** SipHasher seeds for deterministic randomness */
     const uint64_t nSeed0, nSeed1;
 
     /** flag for waking the message processor. */
     bool fMsgProcWake GUARDED_BY(mutexMsgProc);
 
     std::condition_variable condMsgProc;
     Mutex mutexMsgProc;
     std::atomic<bool> flagInterruptMsgProc{false};
 
     CThreadInterrupt interruptNet;
 
     std::thread threadDNSAddressSeed;
     std::thread threadSocketHandler;
     std::thread threadOpenAddedConnections;
     std::thread threadOpenConnections;
     std::thread threadMessageHandler;
 
     /**
      * flag for deciding to connect to an extra outbound peer, in excess of
      * m_max_outbound_full_relay. This takes the place of a feeler connection.
      */
     std::atomic_bool m_try_another_outbound_peer;
 
     std::atomic<int64_t> m_next_send_inv_to_incoming{0};
 
     friend struct ::CConnmanTest;
     friend struct ConnmanTestMsg;
 };
 
 void Discover();
 void StartMapPort();
 void InterruptMapPort();
 void StopMapPort();
 uint16_t GetListenPort();
 
 /**
  * Interface for message handling
  */
 class NetEventsInterface {
 public:
     virtual bool ProcessMessages(const Config &config, CNode *pnode,
                                  std::atomic<bool> &interrupt) = 0;
     virtual bool SendMessages(const Config &config, CNode *pnode,
                               std::atomic<bool> &interrupt) = 0;
     virtual void InitializeNode(const Config &config, CNode *pnode) = 0;
     virtual void FinalizeNode(const Config &config, NodeId id,
                               bool &update_connection_time) = 0;
 
 protected:
     /**
      * Protected destructor so that instances can only be deleted by derived
      * classes. If that restriction is no longer desired, this should be made
      * public and virtual.
      */
     ~NetEventsInterface() = default;
 };
 
 enum {
     // unknown
     LOCAL_NONE,
     // address a local interface listens on
     LOCAL_IF,
     // address explicit bound to
     LOCAL_BIND,
     // address reported by UPnP
     LOCAL_UPNP,
     // address explicitly specified (-externalip=)
     LOCAL_MANUAL,
 
     LOCAL_MAX
 };
 
 bool IsPeerAddrLocalGood(CNode *pnode);
 void AdvertiseLocal(CNode *pnode);
 
 /**
  * Mark a network as reachable or unreachable (no automatic connects to it)
  * @note Networks are reachable by default
  */
 void SetReachable(enum Network net, bool reachable);
 /** @returns true if the network is reachable, false otherwise */
 bool IsReachable(enum Network net);
 /** @returns true if the address is in a reachable network, false otherwise */
 bool IsReachable(const CNetAddr &addr);
 
 bool AddLocal(const CService &addr, int nScore = LOCAL_NONE);
 bool AddLocal(const CNetAddr &addr, int nScore = LOCAL_NONE);
 void RemoveLocal(const CService &addr);
 bool SeenLocal(const CService &addr);
 bool IsLocal(const CService &addr);
 bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr);
 CAddress GetLocalAddress(const CNetAddr *paddrPeer,
                          ServiceFlags nLocalServices);
 
 extern bool fDiscover;
 extern bool fListen;
 extern bool g_relay_txes;
 
 struct LocalServiceInfo {
     int nScore;
     int nPort;
 };
 
 extern RecursiveMutex cs_mapLocalHost;
 extern std::map<CNetAddr, LocalServiceInfo>
     mapLocalHost GUARDED_BY(cs_mapLocalHost);
 
 extern const std::string NET_MESSAGE_COMMAND_OTHER;
 // Command, total bytes
 typedef std::map<std::string, uint64_t> mapMsgCmdSize;
 
 /**
  * POD that contains various stats about a node.
  * Usually constructed from CConman::GetNodeStats. Stats are filled from the
  * node using CNode::copyStats.
  */
 struct CNodeStats {
     NodeId nodeid;
     ServiceFlags nServices;
     bool fRelayTxes;
     int64_t nLastSend;
     int64_t nLastRecv;
     int64_t nLastTXTime;
     int64_t nLastProofTime;
     int64_t nLastBlockTime;
     int64_t nTimeConnected;
     int64_t nTimeOffset;
     std::string addrName;
     int nVersion;
     std::string cleanSubVer;
     bool fInbound;
     bool m_manual_connection;
     int nStartingHeight;
     uint64_t nSendBytes;
     mapMsgCmdSize mapSendBytesPerMsgCmd;
     uint64_t nRecvBytes;
     mapMsgCmdSize mapRecvBytesPerMsgCmd;
     NetPermissionFlags m_permissionFlags;
     bool m_legacyWhitelisted;
     int64_t m_ping_usec;
     int64_t m_ping_wait_usec;
     int64_t m_min_ping_usec;
     Amount minFeeFilter;
     // Our address, as reported by the peer
     std::string addrLocal;
     // Address of this peer
     CAddress addr;
     // Bind address of our side of the connection
     CAddress addrBind;
     uint32_t m_mapped_as;
     std::string m_conn_type_string;
 };
 
 /**
  * Transport protocol agnostic message container.
  * Ideally it should only contain receive time, payload,
  * command and size.
  */
 class CNetMessage {
 public:
     //! received message data
     CDataStream m_recv;
     //! time of message receipt
     std::chrono::microseconds m_time{0};
     bool m_valid_netmagic = false;
     bool m_valid_header = false;
     bool m_valid_checksum = false;
     //! size of the payload
     uint32_t m_message_size{0};
     //! used wire size of the message (including header/checksum)
     uint32_t m_raw_message_size{0};
     std::string m_command;
 
     CNetMessage(CDataStream &&recv_in) : m_recv(std::move(recv_in)) {}
 
     void SetVersion(int nVersionIn) { m_recv.SetVersion(nVersionIn); }
 };
 
 /**
  * The TransportDeserializer takes care of holding and deserializing the
  * network receive buffer. It can deserialize the network buffer into a
  * transport protocol agnostic CNetMessage (command & payload)
  */
 class TransportDeserializer {
 public:
     // returns true if the current deserialization is complete
     virtual bool Complete() const = 0;
     // set the serialization context version
     virtual void SetVersion(int version) = 0;
     // read and deserialize data
     virtual int Read(const Config &config, const char *data,
                      uint32_t bytes) = 0;
     // decomposes a message from the context
     virtual CNetMessage GetMessage(const Config &config,
                                    std::chrono::microseconds time) = 0;
     virtual ~TransportDeserializer() {}
 };
 
 class V1TransportDeserializer final : public TransportDeserializer {
 private:
     mutable CHash256 hasher;
     mutable uint256 data_hash;
 
     // Parsing header (false) or data (true)
     bool in_data;
     // Partially received header.
     CDataStream hdrbuf;
     // Complete header.
     CMessageHeader hdr;
     // Received message data.
     CDataStream vRecv;
     uint32_t nHdrPos;
     uint32_t nDataPos;
 
     const uint256 &GetMessageHash() const;
     int readHeader(const Config &config, const char *pch, uint32_t nBytes);
     int readData(const char *pch, uint32_t nBytes);
 
     void Reset() {
         vRecv.clear();
         hdrbuf.clear();
         hdrbuf.resize(24);
         in_data = false;
         nHdrPos = 0;
         nDataPos = 0;
         data_hash.SetNull();
         hasher.Reset();
     }
 
 public:
     V1TransportDeserializer(
         const CMessageHeader::MessageMagic &pchMessageStartIn, int nTypeIn,
         int nVersionIn)
         : hdrbuf(nTypeIn, nVersionIn), hdr(pchMessageStartIn),
           vRecv(nTypeIn, nVersionIn) {
         Reset();
     }
 
     bool Complete() const override {
         if (!in_data) {
             return false;
         }
 
         return (hdr.nMessageSize == nDataPos);
     }
 
     void SetVersion(int nVersionIn) override {
         hdrbuf.SetVersion(nVersionIn);
         vRecv.SetVersion(nVersionIn);
     }
     int Read(const Config &config, const char *pch, uint32_t nBytes) override {
         int ret =
             in_data ? readData(pch, nBytes) : readHeader(config, pch, nBytes);
         if (ret < 0) {
             Reset();
         }
         return ret;
     }
 
     CNetMessage GetMessage(const Config &config,
                            std::chrono::microseconds time) override;
 };
 
 /**
  * The TransportSerializer prepares messages for the network transport
  */
 class TransportSerializer {
 public:
     // prepare message for transport (header construction, error-correction
     // computation, payload encryption, etc.)
     virtual void prepareForTransport(const Config &config,
                                      CSerializedNetMsg &msg,
                                      std::vector<uint8_t> &header) = 0;
     virtual ~TransportSerializer() {}
 };
 
 class V1TransportSerializer : public TransportSerializer {
 public:
     void prepareForTransport(const Config &config, CSerializedNetMsg &msg,
                              std::vector<uint8_t> &header) override;
 };
 
 /** Information about a peer */
 class CNode {
     friend class CConnman;
     friend struct ConnmanTestMsg;
 
 public:
     std::unique_ptr<TransportDeserializer> m_deserializer;
     std::unique_ptr<TransportSerializer> m_serializer;
 
     // socket
     std::atomic<ServiceFlags> nServices{NODE_NONE};
     SOCKET hSocket GUARDED_BY(cs_hSocket);
     // Total size of all vSendMsg entries.
     size_t nSendSize{0};
     // Offset inside the first vSendMsg already sent.
     size_t nSendOffset{0};
     uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
     std::deque<std::vector<uint8_t>> vSendMsg GUARDED_BY(cs_vSend);
     Mutex cs_vSend;
     Mutex cs_hSocket;
     Mutex cs_vRecv;
 
     RecursiveMutex cs_vProcessMsg;
     std::list<CNetMessage> vProcessMsg GUARDED_BY(cs_vProcessMsg);
     size_t nProcessQueueSize{0};
 
     RecursiveMutex cs_sendProcessing;
 
     std::deque<CInv> vRecvGetData;
     uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
 
     std::atomic<int64_t> nLastSend{0};
     std::atomic<int64_t> nLastRecv{0};
     const int64_t nTimeConnected;
     std::atomic<int64_t> nTimeOffset{0};
     // Address of this peer
     const CAddress addr;
     // Bind address of our side of the connection
     const CAddress addrBind;
     std::atomic<int> nVersion{0};
     // The nonce provided by the remote host.
     uint64_t nRemoteHostNonce{0};
     // The extra entropy provided by the remote host.
     uint64_t nRemoteExtraEntropy{0};
     /**
      * cleanSubVer is a sanitized string of the user agent byte array we read
      * from the wire. This cleaned string can safely be logged or displayed.
      */
     RecursiveMutex cs_SubVer;
     std::string cleanSubVer GUARDED_BY(cs_SubVer){};
     // This peer is preferred for eviction.
     bool m_prefer_evict{false};
     bool HasPermission(NetPermissionFlags permission) const {
         return NetPermissions::HasFlag(m_permissionFlags, permission);
     }
     // This boolean is unusued in actual processing, only present for backward
     // compatibility at RPC/QT level
     bool m_legacyWhitelisted{false};
     // set by version message
     bool fClient{false};
     // after BIP159, set by version message
     bool m_limited_node{false};
     /**
      * Whether the peer has signaled support for receiving ADDRv2 (BIP155)
      * messages, implying a preference to receive ADDRv2 instead of ADDR ones.
      */
     std::atomic_bool m_wants_addrv2{false};
     std::atomic_bool fSuccessfullyConnected{false};
     // Setting fDisconnect to true will cause the node to be disconnected the
     // next time DisconnectNodes() runs
     std::atomic_bool fDisconnect{false};
     bool fSentAddr{false};
     CSemaphoreGrant grantOutbound;
     std::atomic<int> nRefCount{0};
 
     const uint64_t nKeyedNetGroup;
     std::atomic_bool fPauseRecv{false};
     std::atomic_bool fPauseSend{false};
 
     bool IsOutboundOrBlockRelayConn() const {
         switch (m_conn_type) {
             case ConnectionType::OUTBOUND_FULL_RELAY:
             case ConnectionType::BLOCK_RELAY:
                 return true;
             case ConnectionType::INBOUND:
             case ConnectionType::MANUAL:
             case ConnectionType::ADDR_FETCH:
             case ConnectionType::FEELER:
                 return false;
         } // no default case, so the compiler can warn about missing cases
 
         assert(false);
     }
 
     bool IsFullOutboundConn() const {
         return m_conn_type == ConnectionType::OUTBOUND_FULL_RELAY;
     }
 
     bool IsManualConn() const { return m_conn_type == ConnectionType::MANUAL; }
 
     bool IsBlockOnlyConn() const {
         return m_conn_type == ConnectionType::BLOCK_RELAY;
     }
 
     bool IsFeelerConn() const { return m_conn_type == ConnectionType::FEELER; }
 
     bool IsAddrFetchConn() const {
         return m_conn_type == ConnectionType::ADDR_FETCH;
     }
 
     bool IsInboundConn() const {
         return m_conn_type == ConnectionType::INBOUND;
     }
 
     /* Whether we send addr messages over this connection */
     bool RelayAddrsWithConn() const {
         return m_conn_type != ConnectionType::BLOCK_RELAY;
     }
 
     bool ExpectServicesFromConn() const {
         switch (m_conn_type) {
             case ConnectionType::INBOUND:
             case ConnectionType::MANUAL:
             case ConnectionType::FEELER:
                 return false;
             case ConnectionType::OUTBOUND_FULL_RELAY:
             case ConnectionType::BLOCK_RELAY:
             case ConnectionType::ADDR_FETCH:
                 return true;
         } // no default case, so the compiler can warn about missing cases
 
         assert(false);
     }
 
 protected:
     mapMsgCmdSize mapSendBytesPerMsgCmd;
     mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv);
 
 public:
     BlockHash hashContinue;
     std::atomic<int> nStartingHeight{-1};
 
     // flood relay
     std::vector<CAddress> vAddrToSend;
     std::unique_ptr<CRollingBloomFilter> m_addr_known = nullptr;
     bool fGetAddr{false};
     std::chrono::microseconds m_next_addr_send GUARDED_BY(cs_sendProcessing){0};
     std::chrono::microseconds
         m_next_local_addr_send GUARDED_BY(cs_sendProcessing){0};
 
     // List of block ids we still have to announce.
     // There is no final sorting before sending, as they are always sent
     // immediately and in the order requested.
     std::vector<BlockHash> vInventoryBlockToSend GUARDED_BY(cs_inventory);
     Mutex cs_inventory;
 
     struct TxRelay {
         mutable RecursiveMutex cs_filter;
         // We use fRelayTxes for two purposes -
         // a) it allows us to not relay tx invs before receiving the peer's
         //    version message.
         // b) the peer may tell us in its version message that we should not
         //    relay tx invs unless it loads a bloom filter.
         bool fRelayTxes GUARDED_BY(cs_filter){false};
         std::unique_ptr<CBloomFilter> pfilter PT_GUARDED_BY(cs_filter)
             GUARDED_BY(cs_filter){nullptr};
 
         mutable RecursiveMutex cs_tx_inventory;
         CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_tx_inventory){
             50000, 0.000001};
         // Set of transaction ids we still have to announce.
         // They are sorted by the mempool before relay, so the order is not
         // important.
         std::set<TxId> setInventoryTxToSend GUARDED_BY(cs_tx_inventory);
         // Used for BIP35 mempool sending
         bool fSendMempool GUARDED_BY(cs_tx_inventory){false};
         // Last time a "MEMPOOL" request was serviced.
         std::atomic<std::chrono::seconds> m_last_mempool_req{
             std::chrono::seconds{0}};
         std::chrono::microseconds nNextInvSend{0};
 
         RecursiveMutex cs_feeFilter;
         // Minimum fee rate with which to filter inv's to this node
         Amount minFeeFilter GUARDED_BY(cs_feeFilter){Amount::zero()};
         Amount lastSentFeeFilter{Amount::zero()};
         int64_t nextSendTimeFeeFilter{0};
     };
 
     // m_tx_relay == nullptr if we're not relaying transactions with this peer
     std::unique_ptr<TxRelay> m_tx_relay;
 
     struct ProofRelay {
         mutable RecursiveMutex cs_proof_inventory;
         std::set<avalanche::ProofId>
             setInventoryProofToSend GUARDED_BY(cs_proof_inventory);
         // Prevent sending proof invs if the peer already knows about them
         CRollingBloomFilter filterProofKnown GUARDED_BY(cs_proof_inventory){
             10000, 0.000001};
         std::chrono::microseconds nextInvSend{0};
     };
 
     // m_proof_relay == nullptr if we're not relaying proofs with this peer
     std::unique_ptr<ProofRelay> m_proof_relay;
 
     class AvalancheState {
         /**
          * The inventories polled and voted couters since last score
          * computation, stored as a pair of uint32_t with the poll counter
          * being the 32 lowest bits and the vote counter the 32 highest bits.
          */
         std::atomic<uint64_t> invCounters;
 
         /** The last computed score */
         std::atomic<double> availabilityScore;
 
         /**
          * Protect the sequence of operations required for updating the
          * statistics.
          */
         Mutex cs_statistics;
 
     public:
         CPubKey pubkey;
 
         AvalancheState() : invCounters(0), availabilityScore(0.) {}
 
         /** The node was polled for count invs */
         void invsPolled(uint32_t count);
 
         /** The node voted for count invs */
         void invsVoted(uint32_t count);
 
         /**
          * The availability score is calculated using an exponentially weighted
          * average.
          * This has several interesting properties:
          *  - The most recent polls/responses have more weight than the previous
          * ones. A node that recently stopped answering will see its ratio
          * decrease quickly.
          *  - This is a low-pass filter, so it causes delay. This means that a
          * node needs to have a track record for the ratio to be high. A node
          * that has been little requested will have a lower ratio than a node
          * that failed to answer a few polls but answered a lot of them.
          *  - It is cheap to compute.
          *
          * This is expected to be called at a fixed interval of
          * AVALANCHE_STATISTICS_REFRESH_PERIOD.
          */
         void updateAvailabilityScore();
 
         double getAvailabilityScore() const;
     };
 
     // m_avalanche_state == nullptr if we're not using avalanche with this peer
     std::unique_ptr<AvalancheState> m_avalanche_state;
 
     // Used for headers announcements - unfiltered blocks to relay
     std::vector<BlockHash> vBlockHashesToAnnounce GUARDED_BY(cs_inventory);
 
     /**
      * UNIX epoch time of the last block received from this peer that we had
      * not yet seen (e.g. not already received from another peer), that passed
      * preliminary validity checks and was saved to disk, even if we don't
      * connect the block or it eventually fails connection. Used as an inbound
      * peer eviction criterium in CConnman::AttemptToEvictConnection.
      */
     std::atomic<int64_t> nLastBlockTime{0};
 
     /**
      * UNIX epoch time of the last transaction received from this peer that we
      * had not yet seen (e.g. not already received from another peer) and that
      * was accepted into our mempool. Used as an inbound peer eviction criterium
      * in CConnman::AttemptToEvictConnection.
      */
     std::atomic<int64_t> nLastTXTime{0};
 
     /**
      * UNIX epoch time of the last proof received from this peer that we
      * had not yet seen (e.g. not already received from another peer) and that
      * was accepted into our proof pool. Used as an inbound peer eviction
      * criterium in CConnman::AttemptToEvictConnection.
      */
     std::atomic<int64_t> nLastProofTime{0};
 
     // Ping time measurement:
     // The pong reply we're expecting, or 0 if no pong expected.
     std::atomic<uint64_t> nPingNonceSent{0};
     /** When the last ping was sent, or 0 if no ping was ever sent */
     std::atomic<std::chrono::microseconds> m_ping_start{
         std::chrono::microseconds{0}};
     // Last measured round-trip time.
     std::atomic<int64_t> nPingUsecTime{0};
     // Best measured round-trip time.
     std::atomic<int64_t> nMinPingUsecTime{std::numeric_limits<int64_t>::max()};
     // Whether a ping is requested.
     std::atomic<bool> fPingQueued{false};
 
     std::set<TxId> orphan_work_set;
 
     CNode(NodeId id, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn,
           SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn,
           uint64_t nLocalHostNonceIn, uint64_t nLocalExtraEntropyIn,
           const CAddress &addrBindIn, const std::string &addrNameIn,
           ConnectionType conn_type_in);
     ~CNode();
     CNode(const CNode &) = delete;
     CNode &operator=(const CNode &) = delete;
 
 private:
     const NodeId id;
     const uint64_t nLocalHostNonce;
     const uint64_t nLocalExtraEntropy;
     const ConnectionType m_conn_type;
     std::atomic<int> m_greatest_common_version{INIT_PROTO_VERSION};
 
     //! Services offered to this peer.
     //!
     //! This is supplied by the parent CConnman during peer connection
     //! (CConnman::ConnectNode()) from its attribute of the same name.
     //!
     //! This is const because there is no protocol defined for renegotiating
     //! services initially offered to a peer. The set of local services we
     //! offer should not change after initialization.
     //!
     //! An interesting example of this is NODE_NETWORK and initial block
     //! download: a node which starts up from scratch doesn't have any blocks
     //! to serve, but still advertises NODE_NETWORK because it will eventually
     //! fulfill this role after IBD completes. P2P code is written in such a
     //! way that it can gracefully handle peers who don't make good on their
     //! service advertisements.
     const ServiceFlags nLocalServices;
 
     const int nMyStartingHeight;
     NetPermissionFlags m_permissionFlags{PF_NONE};
     // Used only by SocketHandler thread
     std::list<CNetMessage> vRecvMsg;
 
     mutable RecursiveMutex cs_addrName;
     std::string addrName GUARDED_BY(cs_addrName);
 
     // Our address, as reported by the peer
     CService addrLocal GUARDED_BY(cs_addrLocal);
     mutable RecursiveMutex cs_addrLocal;
 
 public:
     NodeId GetId() const { return id; }
 
     uint64_t GetLocalNonce() const { return nLocalHostNonce; }
     uint64_t GetLocalExtraEntropy() const { return nLocalExtraEntropy; }
 
     int GetMyStartingHeight() const { return nMyStartingHeight; }
 
     int GetRefCount() const {
         assert(nRefCount >= 0);
         return nRefCount;
     }
 
     bool ReceiveMsgBytes(const Config &config, const char *pch, uint32_t nBytes,
                          bool &complete);
 
     void SetCommonVersion(int greatest_common_version) {
         Assume(m_greatest_common_version == INIT_PROTO_VERSION);
         m_greatest_common_version = greatest_common_version;
     }
     int GetCommonVersion() const { return m_greatest_common_version; }
 
     CService GetAddrLocal() const;
     //! May not be called more than once
     void SetAddrLocal(const CService &addrLocalIn);
 
     CNode *AddRef() {
         nRefCount++;
         return this;
     }
 
     void Release() { nRefCount--; }
 
     void AddAddressKnown(const CAddress &_addr) {
         assert(m_addr_known);
         m_addr_known->insert(_addr.GetKey());
     }
 
     void PushAddress(const CAddress &_addr, FastRandomContext &insecure_rand) {
         // Whether the peer supports the address in `_addr`. For example,
         // nodes that do not implement BIP155 cannot receive Tor v3 addresses
         // because they require ADDRv2 (BIP155) encoding.
         const bool addr_format_supported =
             m_wants_addrv2 || _addr.IsAddrV1Compatible();
 
         // Known checking here is only to save space from duplicates.
         // SendMessages will filter it again for knowns that were added
         // after addresses were pushed.
         assert(m_addr_known);
         if (_addr.IsValid() && !m_addr_known->contains(_addr.GetKey()) &&
             addr_format_supported) {
             if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) {
                 vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] =
                     _addr;
             } else {
                 vAddrToSend.push_back(_addr);
             }
         }
     }
 
     void AddKnownTx(const TxId &txid) {
         if (m_tx_relay != nullptr) {
             LOCK(m_tx_relay->cs_tx_inventory);
             m_tx_relay->filterInventoryKnown.insert(txid);
         }
     }
 
     void PushTxInventory(const TxId &txid) {
         if (m_tx_relay == nullptr) {
             return;
         }
         LOCK(m_tx_relay->cs_tx_inventory);
         if (!m_tx_relay->filterInventoryKnown.contains(txid)) {
             m_tx_relay->setInventoryTxToSend.insert(txid);
         }
     }
 
     void AddKnownProof(const avalanche::ProofId &proofid) {
         if (m_proof_relay != nullptr) {
             LOCK(m_proof_relay->cs_proof_inventory);
             m_proof_relay->filterProofKnown.insert(proofid);
         }
     }
 
     void PushProofInventory(const avalanche::ProofId &proofid) {
         if (m_proof_relay == nullptr) {
             return;
         }
 
         LOCK(m_proof_relay->cs_proof_inventory);
         if (!m_proof_relay->filterProofKnown.contains(proofid)) {
             m_proof_relay->setInventoryProofToSend.insert(proofid);
         }
     }
 
     void CloseSocketDisconnect();
 
     void copyStats(CNodeStats &stats, const std::vector<bool> &m_asmap);
 
     ServiceFlags GetLocalServices() const { return nLocalServices; }
 
     std::string GetAddrName() const;
     //! Sets the addrName only if it was not previously set
     void MaybeSetAddrName(const std::string &addrNameIn);
 
     std::string ConnectionTypeAsString() const;
 };
 
 /**
  * Return a timestamp in the future (in microseconds) for exponentially
  * distributed events.
  */
 int64_t PoissonNextSend(int64_t now, int average_interval_seconds);
 
 /** Wrapper to return mockable type */
 inline std::chrono::microseconds
 PoissonNextSend(std::chrono::microseconds now,
                 std::chrono::seconds average_interval) {
     return std::chrono::microseconds{
         PoissonNextSend(now.count(), average_interval.count())};
 }
 
 std::string getSubVersionEB(uint64_t MaxBlockSize);
 std::string userAgent(const Config &config);
 
 struct NodeEvictionCandidate {
     NodeId id;
     int64_t nTimeConnected;
     int64_t nMinPingUsecTime;
     int64_t nLastBlockTime;
     int64_t nLastProofTime;
     int64_t nLastTXTime;
     bool fRelevantServices;
     bool fRelayTxes;
     bool fBloomFilter;
     uint64_t nKeyedNetGroup;
     bool prefer_evict;
     bool m_is_local;
     double availabilityScore;
 };
 
 [[nodiscard]] std::optional<NodeId>
 SelectNodeToEvict(std::vector<NodeEvictionCandidate> &&vEvictionCandidates);
 
 #endif // BITCOIN_NET_H