diff --git a/src/netaddress.h b/src/netaddress.h index b8b46fe4d..f5d442801 100644 --- a/src/netaddress.h +++ b/src/netaddress.h @@ -1,202 +1,198 @@ // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NETADDRESS_H #define BITCOIN_NETADDRESS_H #if defined(HAVE_CONFIG_H) #include #endif #include #include #include #include #include #include enum Network { NET_UNROUTABLE = 0, NET_IPV4, NET_IPV6, NET_ONION, NET_INTERNAL, NET_MAX, }; /** IP address (IPv6, or IPv4 using mapped IPv6 range (::FFFF:0:0/96)) */ class CNetAddr { protected: // in network byte order uint8_t ip[16]; // for scoped/link-local ipv6 addresses uint32_t scopeId{0}; public: CNetAddr(); explicit CNetAddr(const struct in_addr &ipv4Addr); void SetIP(const CNetAddr &ip); private: /** * Set raw IPv4 or IPv6 address (in network byte order) * @note Only NET_IPV4 and NET_IPV6 are allowed for network. */ void SetRaw(Network network, const uint8_t *data); public: /** * Transform an arbitrary string into a non-routable ipv6 address. * Useful for mapping resolved addresses back to their source. */ bool SetInternal(const std::string &name); // for Tor addresses bool SetSpecial(const std::string &strName); // IPv4 mapped address (::FFFF:0:0/96, 0.0.0.0/0) bool IsIPv4() const; // IPv6 address (not mapped IPv4, not Tor) bool IsIPv6() const; // IPv4 private networks (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12) bool IsRFC1918() const; // IPv4 inter-network communications (192.18.0.0/15) bool IsRFC2544() const; // IPv4 ISP-level NAT (100.64.0.0/10) bool IsRFC6598() const; // IPv4 documentation addresses (192.0.2.0/24, 198.51.100.0/24, // 203.0.113.0/24) bool IsRFC5737() const; // IPv6 documentation address (2001:0DB8::/32) bool IsRFC3849() const; // IPv4 autoconfig (169.254.0.0/16) bool IsRFC3927() const; // IPv6 6to4 tunnelling (2002::/16) bool IsRFC3964() const; // IPv6 unique local (FC00::/7) bool IsRFC4193() const; // IPv6 Teredo tunnelling (2001::/32) bool IsRFC4380() const; // IPv6 ORCHID (2001:10::/28) bool IsRFC4843() const; // IPv6 autoconfig (FE80::/64) bool IsRFC4862() const; // IPv6 well-known prefix (64:FF9B::/96) bool IsRFC6052() const; // IPv6 IPv4-translated address (::FFFF:0:0:0/96) bool IsRFC6145() const; bool IsTor() const; bool IsLocal() const; bool IsRoutable() const; bool IsInternal() const; bool IsValid() const; enum Network GetNetwork() const; std::string ToString() const; std::string ToStringIP() const; unsigned int GetByte(int n) const; uint64_t GetHash() const; bool GetInAddr(struct in_addr *pipv4Addr) const; std::vector GetGroup() const; int GetReachabilityFrom(const CNetAddr *paddrPartner = nullptr) const; explicit CNetAddr(const struct in6_addr &pipv6Addr, const uint32_t scope = 0); bool GetIn6Addr(struct in6_addr *pipv6Addr) const; friend bool operator==(const CNetAddr &a, const CNetAddr &b); friend bool operator!=(const CNetAddr &a, const CNetAddr &b) { return !(a == b); } friend bool operator<(const CNetAddr &a, const CNetAddr &b); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(ip); } friend class CSubNet; }; class CSubNet { protected: /// Network (base) address CNetAddr network; /// Netmask, in network byte order uint8_t netmask[16]; /// Is this value valid? (only used to signal parse errors) bool valid; public: CSubNet(); CSubNet(const CNetAddr &addr, int32_t mask); CSubNet(const CNetAddr &addr, const CNetAddr &mask); // constructor for single ip subnet (/32 or /128) explicit CSubNet(const CNetAddr &addr); bool Match(const CNetAddr &addr) const; std::string ToString() const; bool IsValid() const; friend bool operator==(const CSubNet &a, const CSubNet &b); friend bool operator!=(const CSubNet &a, const CSubNet &b) { return !(a == b); } friend bool operator<(const CSubNet &a, const CSubNet &b); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(network); READWRITE(netmask); READWRITE(valid); } }; /** A combination of a network address (CNetAddr) and a (TCP) port */ class CService : public CNetAddr { protected: // host order - unsigned short port; + uint16_t port; public: CService(); CService(const CNetAddr &ip, unsigned short port); CService(const struct in_addr &ipv4Addr, unsigned short port); explicit CService(const struct sockaddr_in &addr); unsigned short GetPort() const; bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const; bool SetSockAddr(const struct sockaddr *paddr); friend bool operator==(const CService &a, const CService &b); friend bool operator!=(const CService &a, const CService &b) { return !(a == b); } friend bool operator<(const CService &a, const CService &b); std::vector GetKey() const; std::string ToString() const; std::string ToStringPort() const; std::string ToStringIPPort() const; CService(const struct in6_addr &ipv6Addr, unsigned short port); explicit CService(const struct sockaddr_in6 &addr); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(ip); - unsigned short portN = htons(port); - READWRITE(Span((uint8_t *)&portN, 2)); - if (ser_action.ForRead()) { - port = ntohs(portN); - } + READWRITE(WrapBigEndian(port)); } }; #endif // BITCOIN_NETADDRESS_H diff --git a/src/serialize.h b/src/serialize.h index b3a08ea4c..abe229396 100644 --- a/src/serialize.h +++ b/src/serialize.h @@ -1,998 +1,1044 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SERIALIZE_H #define BITCOIN_SERIALIZE_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const uint64_t MAX_SIZE = 0x02000000; /** * Dummy data type to identify deserializing constructors. * * By convention, a constructor of a type T with signature * * template T::T(deserialize_type, Stream& s) * * is a deserializing constructor, which builds the type by deserializing it * from s. If T contains const fields, this is likely the only way to do so. */ struct deserialize_type {}; constexpr deserialize_type deserialize{}; /** * Used to bypass the rule against non-const reference to temporary * where it makes sense with wrappers. */ template inline T &REF(const T &val) { return const_cast(val); } /** * Used to acquire a non-const pointer "this" to generate bodies of const * serialization operations from a template */ template inline T *NCONST_PTR(const T *val) { return const_cast(val); } //! Safely convert odd char pointer types to standard ones. inline char *CharCast(char *c) { return c; } inline char *CharCast(uint8_t *c) { return (char *)c; } inline const char *CharCast(const char *c) { return c; } inline const char *CharCast(const uint8_t *c) { return (const char *)c; } /** * Lowest-level serialization and conversion. * @note Sizes of these types are verified in the tests */ template inline void ser_writedata8(Stream &s, uint8_t obj) { s.write((char *)&obj, 1); } template inline void ser_writedata16(Stream &s, uint16_t obj) { obj = htole16(obj); s.write((char *)&obj, 2); } template +inline void ser_writedata16be(Stream &s, uint16_t obj) { + obj = htobe16(obj); + s.write((char *)&obj, 2); +} +template inline void ser_writedata32(Stream &s, uint32_t obj) { obj = htole32(obj); s.write((char *)&obj, 4); } template inline void ser_writedata32be(Stream &s, uint32_t obj) { obj = htobe32(obj); s.write((char *)&obj, 4); } template inline void ser_writedata64(Stream &s, uint64_t obj) { obj = htole64(obj); s.write((char *)&obj, 8); } template inline uint8_t ser_readdata8(Stream &s) { uint8_t obj; s.read((char *)&obj, 1); return obj; } template inline uint16_t ser_readdata16(Stream &s) { uint16_t obj; s.read((char *)&obj, 2); return le16toh(obj); } +template inline uint16_t ser_readdata16be(Stream &s) { + uint16_t obj; + s.read((char *)&obj, 2); + return be16toh(obj); +} template inline uint32_t ser_readdata32(Stream &s) { uint32_t obj; s.read((char *)&obj, 4); return le32toh(obj); } template inline uint32_t ser_readdata32be(Stream &s) { uint32_t obj; s.read((char *)&obj, 4); return be32toh(obj); } template inline uint64_t ser_readdata64(Stream &s) { uint64_t obj; s.read((char *)&obj, 8); return le64toh(obj); } inline uint64_t ser_double_to_uint64(double x) { union { double x; uint64_t y; } tmp; tmp.x = x; return tmp.y; } inline uint32_t ser_float_to_uint32(float x) { union { float x; uint32_t y; } tmp; tmp.x = x; return tmp.y; } inline double ser_uint64_to_double(uint64_t y) { union { double x; uint64_t y; } tmp; tmp.y = y; return tmp.x; } inline float ser_uint32_to_float(uint32_t y) { union { float x; uint32_t y; } tmp; tmp.y = y; return tmp.x; } ///////////////////////////////////////////////////////////////// // // Templates for serializing to anything that looks like a stream, // i.e. anything that supports .read(char*, size_t) and .write(char*, size_t) // class CSizeComputer; enum { // primary actions SER_NETWORK = (1 << 0), SER_DISK = (1 << 1), SER_GETHASH = (1 << 2), }; //! Convert the reference base type to X, without changing constness or //! reference type. template X &ReadWriteAsHelper(X &x) { return x; } template const X &ReadWriteAsHelper(const X &x) { return x; } #define READWRITE(...) (::SerReadWriteMany(s, ser_action, __VA_ARGS__)) #define READWRITEAS(type, obj) \ (::SerReadWriteMany(s, ser_action, ReadWriteAsHelper(obj))) /** * Implement three methods for serializable objects. These are actually wrappers * over "SerializationOp" template, which implements the body of each class' * serialization code. Adding "ADD_SERIALIZE_METHODS" in the body of the class * causes these wrappers to be added as members. */ #define ADD_SERIALIZE_METHODS \ template void Serialize(Stream &s) const { \ NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize()); \ } \ template void Unserialize(Stream &s) { \ SerializationOp(s, CSerActionUnserialize()); \ } #ifndef CHAR_EQUALS_INT8 // TODO Get rid of bare char template inline void Serialize(Stream &s, char a) { ser_writedata8(s, a); } #endif template inline void Serialize(Stream &s, int8_t a) { ser_writedata8(s, a); } template inline void Serialize(Stream &s, uint8_t a) { ser_writedata8(s, a); } template inline void Serialize(Stream &s, int16_t a) { ser_writedata16(s, a); } template inline void Serialize(Stream &s, uint16_t a) { ser_writedata16(s, a); } template inline void Serialize(Stream &s, int32_t a) { ser_writedata32(s, a); } template inline void Serialize(Stream &s, uint32_t a) { ser_writedata32(s, a); } template inline void Serialize(Stream &s, int64_t a) { ser_writedata64(s, a); } template inline void Serialize(Stream &s, uint64_t a) { ser_writedata64(s, a); } template inline void Serialize(Stream &s, float a) { ser_writedata32(s, ser_float_to_uint32(a)); } template inline void Serialize(Stream &s, double a) { ser_writedata64(s, ser_double_to_uint64(a)); } template inline void Serialize(Stream &s, const int8_t (&a)[N]) { s.write(a, N); } template inline void Serialize(Stream &s, const uint8_t (&a)[N]) { s.write(CharCast(a), N); } template inline void Serialize(Stream &s, const std::array &a) { s.write(a.data(), N); } template inline void Serialize(Stream &s, const std::array &a) { s.write(CharCast(a.data()), N); } #ifndef CHAR_EQUALS_INT8 // TODO Get rid of bare char template inline void Unserialize(Stream &s, char &a) { a = ser_readdata8(s); } template inline void Serialize(Stream &s, const char (&a)[N]) { s.write(a, N); } template inline void Serialize(Stream &s, const std::array &a) { s.write(a.data(), N); } #endif template inline void Serialize(Stream &s, const Span &span) { s.write(CharCast(span.data()), span.size()); } template inline void Serialize(Stream &s, const Span &span) { s.write(CharCast(span.data()), span.size()); } template inline void Unserialize(Stream &s, int8_t &a) { a = ser_readdata8(s); } template inline void Unserialize(Stream &s, uint8_t &a) { a = ser_readdata8(s); } template inline void Unserialize(Stream &s, int16_t &a) { a = ser_readdata16(s); } template inline void Unserialize(Stream &s, uint16_t &a) { a = ser_readdata16(s); } template inline void Unserialize(Stream &s, int32_t &a) { a = ser_readdata32(s); } template inline void Unserialize(Stream &s, uint32_t &a) { a = ser_readdata32(s); } template inline void Unserialize(Stream &s, int64_t &a) { a = ser_readdata64(s); } template inline void Unserialize(Stream &s, uint64_t &a) { a = ser_readdata64(s); } template inline void Unserialize(Stream &s, float &a) { a = ser_uint32_to_float(ser_readdata32(s)); } template inline void Unserialize(Stream &s, double &a) { a = ser_uint64_to_double(ser_readdata64(s)); } template inline void Unserialize(Stream &s, int8_t (&a)[N]) { s.read(a, N); } template inline void Unserialize(Stream &s, uint8_t (&a)[N]) { s.read(CharCast(a), N); } template inline void Unserialize(Stream &s, std::array &a) { s.read(a.data(), N); } template inline void Unserialize(Stream &s, std::array &a) { s.read(CharCast(a.data()), N); } #ifndef CHAR_EQUALS_INT8 template inline void Unserialize(Stream &s, char (&a)[N]) { s.read(CharCast(a), N); } template inline void Unserialize(Stream &s, std::array &a) { s.read(CharCast(a.data()), N); } #endif template inline void Serialize(Stream &s, bool a) { char f = a; ser_writedata8(s, f); } template inline void Unserialize(Stream &s, bool &a) { char f = ser_readdata8(s); a = f; } template inline void Unserialize(Stream &s, Span &span) { s.read(CharCast(span.data()), span.size()); } /** * Compact Size * size < 253 -- 1 byte * size <= USHRT_MAX -- 3 bytes (253 + 2 bytes) * size <= UINT_MAX -- 5 bytes (254 + 4 bytes) * size > UINT_MAX -- 9 bytes (255 + 8 bytes) */ inline uint32_t GetSizeOfCompactSize(uint64_t nSize) { if (nSize < 253) { return sizeof(uint8_t); } if (nSize <= std::numeric_limits::max()) { return sizeof(uint8_t) + sizeof(uint16_t); } if (nSize <= std::numeric_limits::max()) { return sizeof(uint8_t) + sizeof(uint32_t); } return sizeof(uint8_t) + sizeof(uint64_t); } inline void WriteCompactSize(CSizeComputer &os, uint64_t nSize); template void WriteCompactSize(Stream &os, uint64_t nSize) { if (nSize < 253) { ser_writedata8(os, nSize); } else if (nSize <= std::numeric_limits::max()) { ser_writedata8(os, 253); ser_writedata16(os, nSize); } else if (nSize <= std::numeric_limits::max()) { ser_writedata8(os, 254); ser_writedata32(os, nSize); } else { ser_writedata8(os, 255); ser_writedata64(os, nSize); } return; } template uint64_t ReadCompactSize(Stream &is) { uint8_t chSize = ser_readdata8(is); uint64_t nSizeRet = 0; if (chSize < 253) { nSizeRet = chSize; } else if (chSize == 253) { nSizeRet = ser_readdata16(is); if (nSizeRet < 253) { throw std::ios_base::failure("non-canonical ReadCompactSize()"); } } else if (chSize == 254) { nSizeRet = ser_readdata32(is); if (nSizeRet < 0x10000u) { throw std::ios_base::failure("non-canonical ReadCompactSize()"); } } else { nSizeRet = ser_readdata64(is); if (nSizeRet < 0x100000000ULL) { throw std::ios_base::failure("non-canonical ReadCompactSize()"); } } if (nSizeRet > MAX_SIZE) { throw std::ios_base::failure("ReadCompactSize(): size too large"); } return nSizeRet; } /** * Variable-length integers: bytes are a MSB base-128 encoding of the number. * The high bit in each byte signifies whether another digit follows. To make * sure the encoding is one-to-one, one is subtracted from all but the last * digit. Thus, the byte sequence a[] with length len, where all but the last * byte has bit 128 set, encodes the number: * * (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1)) * * Properties: * * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes) * * Every integer has exactly one encoding * * Encoding does not depend on size of original integer type * * No redundancy: every (infinite) byte sequence corresponds to a list * of encoded integers. * * 0: [0x00] 256: [0x81 0x00] * 1: [0x01] 16383: [0xFE 0x7F] * 127: [0x7F] 16384: [0xFF 0x00] * 128: [0x80 0x00] 16511: [0xFF 0x7F] * 255: [0x80 0x7F] 65535: [0x82 0xFE 0x7F] * 2^32: [0x8E 0xFE 0xFE 0xFF 0x00] */ /** * Mode for encoding VarInts. * * Currently there is no support for signed encodings. The default mode will not * compile with signed values, and the legacy "nonnegative signed" mode will * accept signed values, but improperly encode and decode them if they are * negative. In the future, the DEFAULT mode could be extended to support * negative numbers in a backwards compatible way, and additional modes could be * added to support different varint formats (e.g. zigzag encoding). */ enum class VarIntMode { DEFAULT, NONNEGATIVE_SIGNED }; template struct CheckVarIntMode { constexpr CheckVarIntMode() { static_assert(Mode != VarIntMode::DEFAULT || std::is_unsigned::value, "Unsigned type required with mode DEFAULT."); static_assert(Mode != VarIntMode::NONNEGATIVE_SIGNED || std::is_signed::value, "Signed type required with mode NONNEGATIVE_SIGNED."); } }; template inline unsigned int GetSizeOfVarInt(I n) { CheckVarIntMode(); int nRet = 0; while (true) { nRet++; if (n <= 0x7F) { return nRet; } n = (n >> 7) - 1; } } template inline void WriteVarInt(CSizeComputer &os, I n); template void WriteVarInt(Stream &os, I n) { CheckVarIntMode(); uint8_t tmp[(sizeof(n) * 8 + 6) / 7]; int len = 0; while (true) { tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00); if (n <= 0x7F) { break; } n = (n >> 7) - 1; len++; } do { ser_writedata8(os, tmp[len]); } while (len--); } template I ReadVarInt(Stream &is) { CheckVarIntMode(); I n = 0; while (true) { uint8_t chData = ser_readdata8(is); if (n > (std::numeric_limits::max() >> 7)) { throw std::ios_base::failure("ReadVarInt(): size too large"); } n = (n << 7) | (chData & 0x7F); if ((chData & 0x80) == 0) { return n; } if (n == std::numeric_limits::max()) { throw std::ios_base::failure("ReadVarInt(): size too large"); } n++; } } #define VARINT(obj, ...) WrapVarInt<__VA_ARGS__>(REF(obj)) #define COMPACTSIZE(obj) CCompactSize(REF(obj)) #define LIMITED_STRING(obj, n) LimitedString(REF(obj)) template class CVarInt { protected: I &n; public: explicit CVarInt(I &nIn) : n(nIn) {} template void Serialize(Stream &s) const { WriteVarInt(s, n); } template void Unserialize(Stream &s) { n = ReadVarInt(s); } }; +/** Serialization wrapper class for big-endian integers. + * + * Use this wrapper around integer types that are stored in memory in native + * byte order, but serialized in big endian notation. This is only intended + * to implement serializers that are compatible with existing formats, and + * its use is not recommended for new data structures. + * + * Only 16-bit types are supported for now. + */ +template class BigEndian { +protected: + I &m_val; + +public: + explicit BigEndian(I &val) : m_val(val) { + static_assert(std::is_unsigned::value, + "BigEndian type must be unsigned integer"); + static_assert(sizeof(I) == 2 && std::numeric_limits::min() == 0 && + std::numeric_limits::max() == + std::numeric_limits::max(), + "Unsupported BigEndian size"); + } + + template void Serialize(Stream &s) const { + ser_writedata16be(s, m_val); + } + + template void Unserialize(Stream &s) { + m_val = ser_readdata16be(s); + } +}; + class CCompactSize { protected: uint64_t &n; public: explicit CCompactSize(uint64_t &nIn) : n(nIn) {} template void Serialize(Stream &s) const { WriteCompactSize(s, n); } template void Unserialize(Stream &s) { n = ReadCompactSize(s); } }; template class LimitedString { protected: std::string &string; public: explicit LimitedString(std::string &_string) : string(_string) {} template void Unserialize(Stream &s) { size_t size = ReadCompactSize(s); if (size > Limit) { throw std::ios_base::failure("String length limit exceeded"); } string.resize(size); if (size != 0) { s.read((char *)string.data(), size); } } template void Serialize(Stream &s) const { WriteCompactSize(s, string.size()); if (!string.empty()) { s.write((char *)string.data(), string.size()); } } }; template CVarInt WrapVarInt(I &n) { return CVarInt{n}; } +template BigEndian WrapBigEndian(I &n) { + return BigEndian(n); +} + /** * Forward declarations */ /** * string */ template void Serialize(Stream &os, const std::basic_string &str); template void Unserialize(Stream &is, std::basic_string &str); /** * prevector * prevectors of uint8_t are a special case and are intended to be serialized as * a single opaque blob. */ template void Serialize_impl(Stream &os, const prevector &v, const uint8_t &); template void Serialize_impl(Stream &os, const prevector &v, const V &); template inline void Serialize(Stream &os, const prevector &v); template void Unserialize_impl(Stream &is, prevector &v, const uint8_t &); template void Unserialize_impl(Stream &is, prevector &v, const V &); template inline void Unserialize(Stream &is, prevector &v); /** * vector * vectors of uint8_t are a special case and are intended to be serialized as a * single opaque blob. */ template void Serialize_impl(Stream &os, const std::vector &v, const uint8_t &); template void Serialize_impl(Stream &os, const std::vector &v, const V &); template inline void Serialize(Stream &os, const std::vector &v); template void Unserialize_impl(Stream &is, std::vector &v, const uint8_t &); template void Unserialize_impl(Stream &is, std::vector &v, const V &); template inline void Unserialize(Stream &is, std::vector &v); /** * pair */ template void Serialize(Stream &os, const std::pair &item); template void Unserialize(Stream &is, std::pair &item); /** * map */ template void Serialize(Stream &os, const std::map &m); template void Unserialize(Stream &is, std::map &m); /** * set */ template void Serialize(Stream &os, const std::set &m); template void Unserialize(Stream &is, std::set &m); /** * shared_ptr */ template void Serialize(Stream &os, const std::shared_ptr &p); template void Unserialize(Stream &os, std::shared_ptr &p); /** * unique_ptr */ template void Serialize(Stream &os, const std::unique_ptr &p); template void Unserialize(Stream &os, std::unique_ptr &p); /** * If none of the specialized versions above matched, default to calling member * function. */ template inline void Serialize(Stream &os, const T &a) { a.Serialize(os); } template inline void Unserialize(Stream &is, T &&a) { a.Unserialize(is); } /** * string */ template void Serialize(Stream &os, const std::basic_string &str) { WriteCompactSize(os, str.size()); if (!str.empty()) { os.write((char *)str.data(), str.size() * sizeof(C)); } } template void Unserialize(Stream &is, std::basic_string &str) { size_t nSize = ReadCompactSize(is); str.resize(nSize); if (nSize != 0) { is.read((char *)str.data(), nSize * sizeof(C)); } } /** * prevector */ template void Serialize_impl(Stream &os, const prevector &v, const uint8_t &) { WriteCompactSize(os, v.size()); if (!v.empty()) { os.write((char *)v.data(), v.size() * sizeof(T)); } } template void Serialize_impl(Stream &os, const prevector &v, const V &) { WriteCompactSize(os, v.size()); for (const T &i : v) { ::Serialize(os, i); } } template inline void Serialize(Stream &os, const prevector &v) { Serialize_impl(os, v, T()); } template void Unserialize_impl(Stream &is, prevector &v, const uint8_t &) { // Limit size per read so bogus size value won't cause out of memory v.clear(); size_t nSize = ReadCompactSize(is); size_t i = 0; while (i < nSize) { size_t blk = std::min(nSize - i, size_t(1 + 4999999 / sizeof(T))); v.resize(i + blk); is.read((char *)&v[i], blk * sizeof(T)); i += blk; } } template void Unserialize_impl(Stream &is, prevector &v, const V &) { v.clear(); size_t nSize = ReadCompactSize(is); size_t i = 0; size_t nMid = 0; while (nMid < nSize) { nMid += 5000000 / sizeof(T); if (nMid > nSize) { nMid = nSize; } v.resize(nMid); for (; i < nMid; i++) { Unserialize(is, v[i]); } } } template inline void Unserialize(Stream &is, prevector &v) { Unserialize_impl(is, v, T()); } /** * vector */ template void Serialize_impl(Stream &os, const std::vector &v, const uint8_t &) { WriteCompactSize(os, v.size()); if (!v.empty()) { os.write((char *)v.data(), v.size() * sizeof(T)); } } template void Serialize_impl(Stream &os, const std::vector &v, const V &) { WriteCompactSize(os, v.size()); for (const T &i : v) { ::Serialize(os, i); } } template inline void Serialize(Stream &os, const std::vector &v) { Serialize_impl(os, v, T()); } template void Unserialize_impl(Stream &is, std::vector &v, const uint8_t &) { // Limit size per read so bogus size value won't cause out of memory v.clear(); size_t nSize = ReadCompactSize(is); size_t i = 0; while (i < nSize) { size_t blk = std::min(nSize - i, size_t(1 + 4999999 / sizeof(T))); v.resize(i + blk); is.read((char *)&v[i], blk * sizeof(T)); i += blk; } } template void Unserialize_impl(Stream &is, std::vector &v, const V &) { v.clear(); size_t nSize = ReadCompactSize(is); size_t i = 0; size_t nMid = 0; while (nMid < nSize) { nMid += 5000000 / sizeof(T); if (nMid > nSize) { nMid = nSize; } v.resize(nMid); for (; i < nMid; i++) { Unserialize(is, v[i]); } } } template inline void Unserialize(Stream &is, std::vector &v) { Unserialize_impl(is, v, T()); } /** * pair */ template void Serialize(Stream &os, const std::pair &item) { Serialize(os, item.first); Serialize(os, item.second); } template void Unserialize(Stream &is, std::pair &item) { Unserialize(is, item.first); Unserialize(is, item.second); } /** * map */ template void Serialize(Stream &os, const std::map &m) { WriteCompactSize(os, m.size()); for (const auto &entry : m) { Serialize(os, entry); } } template void Unserialize(Stream &is, std::map &m) { m.clear(); size_t nSize = ReadCompactSize(is); typename std::map::iterator mi = m.begin(); for (size_t i = 0; i < nSize; i++) { std::pair item; Unserialize(is, item); mi = m.insert(mi, item); } } /** * set */ template void Serialize(Stream &os, const std::set &m) { WriteCompactSize(os, m.size()); for (const K &i : m) { Serialize(os, i); } } template void Unserialize(Stream &is, std::set &m) { m.clear(); size_t nSize = ReadCompactSize(is); typename std::set::iterator it = m.begin(); for (size_t i = 0; i < nSize; i++) { K key; Unserialize(is, key); it = m.insert(it, key); } } /** * unique_ptr */ template void Serialize(Stream &os, const std::unique_ptr &p) { Serialize(os, *p); } template void Unserialize(Stream &is, std::unique_ptr &p) { p.reset(new T(deserialize, is)); } /** * shared_ptr */ template void Serialize(Stream &os, const std::shared_ptr &p) { Serialize(os, *p); } template void Unserialize(Stream &is, std::shared_ptr &p) { p = std::make_shared(deserialize, is); } /** * Support for ADD_SERIALIZE_METHODS and READWRITE macro */ struct CSerActionSerialize { constexpr bool ForRead() const { return false; } }; struct CSerActionUnserialize { constexpr bool ForRead() const { return true; } }; /** * ::GetSerializeSize implementations * * Computing the serialized size of objects is done through a special stream * object of type CSizeComputer, which only records the number of bytes written * to it. * * If your Serialize or SerializationOp method has non-trivial overhead for * serialization, it may be worthwhile to implement a specialized version for * CSizeComputer, which uses the s.seek() method to record bytes that would * be written instead. */ class CSizeComputer { protected: size_t nSize; const int nVersion; public: explicit CSizeComputer(int nVersionIn) : nSize(0), nVersion(nVersionIn) {} void write(const char *psz, size_t _nSize) { this->nSize += _nSize; } /** Pretend _nSize bytes are written, without specifying them. */ void seek(size_t _nSize) { this->nSize += _nSize; } template CSizeComputer &operator<<(const T &obj) { ::Serialize(*this, obj); return (*this); } size_t size() const { return nSize; } int GetVersion() const { return nVersion; } }; template void SerializeMany(Stream &s) {} template void SerializeMany(Stream &s, const Arg &arg, const Args &... args) { ::Serialize(s, arg); ::SerializeMany(s, args...); } template inline void UnserializeMany(Stream &s) {} template inline void UnserializeMany(Stream &s, Arg &&arg, Args &&... args) { ::Unserialize(s, arg); ::UnserializeMany(s, args...); } template inline void SerReadWriteMany(Stream &s, CSerActionSerialize ser_action, const Args &... args) { ::SerializeMany(s, args...); } template inline void SerReadWriteMany(Stream &s, CSerActionUnserialize ser_action, Args &&... args) { ::UnserializeMany(s, args...); } template inline void WriteVarInt(CSizeComputer &s, I n) { s.seek(GetSizeOfVarInt(n)); } inline void WriteCompactSize(CSizeComputer &s, uint64_t nSize) { s.seek(GetSizeOfCompactSize(nSize)); } template size_t GetSerializeSize(const T &t, int nVersion = 0) { return (CSizeComputer(nVersion) << t).size(); } template size_t GetSerializeSizeMany(int nVersion, const T &... t) { CSizeComputer sc(nVersion); SerializeMany(sc, t...); return sc.size(); } #endif // BITCOIN_SERIALIZE_H