diff --git a/src/avalanche/processor.cpp b/src/avalanche/processor.cpp index e51bafb4d..5e245c002 100644 --- a/src/avalanche/processor.cpp +++ b/src/avalanche/processor.cpp @@ -1,1007 +1,1007 @@ // Copyright (c) 2018-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include // For DecodeSecret #include #include #include #include #include #include #include #include #include #include #include /** * Run the avalanche event loop every 10ms. */ static constexpr std::chrono::milliseconds AVALANCHE_TIME_STEP{10}; // Unfortunately, the bitcoind codebase is full of global and we are kinda // forced into it here. std::unique_ptr g_avalanche; namespace avalanche { static bool VerifyProof(const Amount &stakeUtxoDustThreshold, const Proof &proof, bilingual_str &error) { ProofValidationState proof_state; if (!proof.verify(stakeUtxoDustThreshold, proof_state)) { switch (proof_state.GetResult()) { case ProofValidationResult::NO_STAKE: error = _("The avalanche proof has no stake."); return false; case ProofValidationResult::DUST_THRESHOLD: error = _("The avalanche proof stake is too low."); return false; case ProofValidationResult::DUPLICATE_STAKE: error = _("The avalanche proof has duplicated stake."); return false; case ProofValidationResult::INVALID_STAKE_SIGNATURE: error = _("The avalanche proof has invalid stake signatures."); return false; case ProofValidationResult::TOO_MANY_UTXOS: error = strprintf( _("The avalanche proof has too many utxos (max: %u)."), AVALANCHE_MAX_PROOF_STAKES); return false; default: error = _("The avalanche proof is invalid."); return false; } } return true; } static bool VerifyDelegation(const Delegation &dg, const CPubKey &expectedPubKey, bilingual_str &error) { DelegationState dg_state; CPubKey auth; if (!dg.verify(dg_state, auth)) { switch (dg_state.GetResult()) { case avalanche::DelegationResult::INVALID_SIGNATURE: error = _("The avalanche delegation has invalid signatures."); return false; case avalanche::DelegationResult::TOO_MANY_LEVELS: error = _( "The avalanche delegation has too many delegation levels."); return false; default: error = _("The avalanche delegation is invalid."); return false; } } if (auth != expectedPubKey) { error = _( "The avalanche delegation does not match the expected public key."); return false; } return true; } struct Processor::PeerData { ProofRef proof; Delegation delegation; }; class Processor::NotificationsHandler : public interfaces::Chain::Notifications { Processor *m_processor; public: NotificationsHandler(Processor *p) : m_processor(p) {} void updatedBlockTip() override { auto registerProofs = [&]() { LOCK(m_processor->cs_peerManager); auto registeredProofs = m_processor->peerManager->updatedBlockTip(); if (m_processor->peerData && m_processor->peerData->proof && m_processor->peerManager->registerProof( m_processor->peerData->proof)) { registeredProofs.insert(m_processor->peerData->proof); } return registeredProofs; }; auto registeredProofs = registerProofs(); for (const auto &proof : registeredProofs) { m_processor->addProofToReconcile(proof); } } }; Processor::Processor(Config avaconfigIn, interfaces::Chain &chain, CConnman *connmanIn, ChainstateManager &chainmanIn, CScheduler &scheduler, std::unique_ptr peerDataIn, CKey sessionKeyIn, uint32_t minQuorumTotalScoreIn, double minQuorumConnectedScoreRatioIn, int64_t minAvaproofsNodeCountIn, uint32_t staleVoteThresholdIn, uint32_t staleVoteFactorIn, Amount stakeUtxoDustThreshold) : avaconfig(std::move(avaconfigIn)), connman(connmanIn), chainman(chainmanIn), round(0), peerManager(std::make_unique( stakeUtxoDustThreshold, chainman)), peerData(std::move(peerDataIn)), sessionKey(std::move(sessionKeyIn)), minQuorumScore(minQuorumTotalScoreIn), minQuorumConnectedScoreRatio(minQuorumConnectedScoreRatioIn), minAvaproofsNodeCount(minAvaproofsNodeCountIn), staleVoteThreshold(staleVoteThresholdIn), staleVoteFactor(staleVoteFactorIn) { // Make sure we get notified of chain state changes. chainNotificationsHandler = chain.handleNotifications(std::make_shared(this)); scheduler.scheduleEvery( [this]() -> bool { WITH_LOCK(cs_peerManager, peerManager->cleanupDanglingProofs(getLocalProof())); return true; }, 5min); } Processor::~Processor() { chainNotificationsHandler.reset(); stopEventLoop(); } std::unique_ptr Processor::MakeProcessor(const ArgsManager &argsman, interfaces::Chain &chain, CConnman *connman, ChainstateManager &chainman, CScheduler &scheduler, bilingual_str &error) { std::unique_ptr peerData; CKey masterKey; CKey sessionKey; Amount stakeUtxoDustThreshold = PROOF_DUST_THRESHOLD; if (gArgs.IsArgSet("-avaproofstakeutxodustthreshold") && !ParseMoney(gArgs.GetArg("-avaproofstakeutxodustthreshold", ""), stakeUtxoDustThreshold)) { error = _("The avalanche stake utxo dust threshold amount is invalid."); return nullptr; } if (argsman.IsArgSet("-avasessionkey")) { sessionKey = DecodeSecret(argsman.GetArg("-avasessionkey", "")); if (!sessionKey.IsValid()) { error = _("The avalanche session key is invalid."); return nullptr; } } else { // Pick a random key for the session. sessionKey.MakeNewKey(true); } if (argsman.IsArgSet("-avaproof")) { if (!argsman.IsArgSet("-avamasterkey")) { error = _( "The avalanche master key is missing for the avalanche proof."); return nullptr; } masterKey = DecodeSecret(argsman.GetArg("-avamasterkey", "")); if (!masterKey.IsValid()) { error = _("The avalanche master key is invalid."); return nullptr; } auto proof = RCUPtr::make(); if (!Proof::FromHex(*proof, argsman.GetArg("-avaproof", ""), error)) { // error is set by FromHex return nullptr; } peerData = std::make_unique(); peerData->proof = std::move(proof); if (!VerifyProof(stakeUtxoDustThreshold, *peerData->proof, error)) { // error is set by VerifyProof return nullptr; } std::unique_ptr dgb; const CPubKey &masterPubKey = masterKey.GetPubKey(); if (argsman.IsArgSet("-avadelegation")) { Delegation dg; if (!Delegation::FromHex(dg, argsman.GetArg("-avadelegation", ""), error)) { // error is set by FromHex() return nullptr; } if (dg.getProofId() != peerData->proof->getId()) { error = _("The delegation does not match the proof."); return nullptr; } if (masterPubKey != dg.getDelegatedPubkey()) { error = _( "The master key does not match the delegation public key."); return nullptr; } dgb = std::make_unique(dg); } else { if (masterPubKey != peerData->proof->getMaster()) { error = _("The master key does not match the proof public key."); return nullptr; } dgb = std::make_unique(*peerData->proof); } // Generate the delegation to the session key. const CPubKey sessionPubKey = sessionKey.GetPubKey(); if (sessionPubKey != masterPubKey) { if (!dgb->addLevel(masterKey, sessionPubKey)) { error = _("Failed to generate a delegation for this session."); return nullptr; } } peerData->delegation = dgb->build(); if (!VerifyDelegation(peerData->delegation, sessionPubKey, error)) { // error is set by VerifyDelegation return nullptr; } } const auto queryTimeoutDuration = std::chrono::milliseconds(argsman.GetIntArg( "-avatimeout", AVALANCHE_DEFAULT_QUERY_TIMEOUT.count())); // Determine quorum parameters Amount minQuorumStake = AVALANCHE_DEFAULT_MIN_QUORUM_STAKE; if (argsman.IsArgSet("-avaminquorumstake") && !ParseMoney(argsman.GetArg("-avaminquorumstake", ""), minQuorumStake)) { error = _("The avalanche min quorum stake amount is invalid."); return nullptr; } if (!MoneyRange(minQuorumStake)) { error = _("The avalanche min quorum stake amount is out of range."); return nullptr; } double minQuorumConnectedStakeRatio = AVALANCHE_DEFAULT_MIN_QUORUM_CONNECTED_STAKE_RATIO; if (argsman.IsArgSet("-avaminquorumconnectedstakeratio") && !ParseDouble(argsman.GetArg("-avaminquorumconnectedstakeratio", ""), &minQuorumConnectedStakeRatio)) { error = _("The avalanche min quorum connected stake ratio is invalid."); return nullptr; } if (minQuorumConnectedStakeRatio < 0 || minQuorumConnectedStakeRatio > 1) { error = _( "The avalanche min quorum connected stake ratio is out of range."); return nullptr; } int64_t minAvaproofsNodeCount = argsman.GetIntArg("-avaminavaproofsnodecount", AVALANCHE_DEFAULT_MIN_AVAPROOFS_NODE_COUNT); if (minAvaproofsNodeCount < 0) { error = _("The minimum number of node that sent avaproofs message " "should be non-negative"); return nullptr; } // Determine voting parameters int64_t staleVoteThreshold = argsman.GetIntArg( "-avastalevotethreshold", AVALANCHE_VOTE_STALE_THRESHOLD); if (staleVoteThreshold < AVALANCHE_VOTE_STALE_MIN_THRESHOLD) { error = strprintf(_("The avalanche stale vote threshold must be " "greater than or equal to %d"), AVALANCHE_VOTE_STALE_MIN_THRESHOLD); return nullptr; } if (staleVoteThreshold > std::numeric_limits::max()) { error = strprintf(_("The avalanche stale vote threshold must be less " "than or equal to %d"), std::numeric_limits::max()); return nullptr; } int64_t staleVoteFactor = argsman.GetIntArg("-avastalevotefactor", AVALANCHE_VOTE_STALE_FACTOR); if (staleVoteFactor <= 0) { error = _("The avalanche stale vote factor must be greater than 0"); return nullptr; } if (staleVoteFactor > std::numeric_limits::max()) { error = strprintf(_("The avalanche stale vote factor must be less than " "or equal to %d"), std::numeric_limits::max()); return nullptr; } Config avaconfig(queryTimeoutDuration); // We can't use std::make_unique with a private constructor return std::unique_ptr(new Processor( std::move(avaconfig), chain, connman, chainman, scheduler, std::move(peerData), std::move(sessionKey), Proof::amountToScore(minQuorumStake), minQuorumConnectedStakeRatio, minAvaproofsNodeCount, staleVoteThreshold, staleVoteFactor, stakeUtxoDustThreshold)); } bool Processor::addBlockToReconcile(const CBlockIndex *pindex) { if (!pindex) { // isWorthPolling expects this to be non-null, so bail early. return false; } bool isAccepted; { LOCK(cs_main); if (!isWorthPolling(pindex)) { // There is no point polling this block. return false; } isAccepted = chainman.ActiveChain().Contains(pindex); } return blockVoteRecords.getWriteView() ->insert(std::make_pair(pindex, VoteRecord(isAccepted))) .second; } bool Processor::addProofToReconcile(const ProofRef &proof) { if (!proof) { // isWorthPolling expects this to be non-null, so bail early. return false; } bool isAccepted; { LOCK(cs_peerManager); if (!isWorthPolling(proof)) { return false; } isAccepted = peerManager->isBoundToPeer(proof->getId()); } return proofVoteRecords.getWriteView() ->insert(std::make_pair(proof, VoteRecord(isAccepted))) .second; } bool Processor::isAccepted(const CBlockIndex *pindex) const { if (!pindex) { // CBlockIndexWorkComparator expects this to be non-null, so bail early. return false; } auto r = blockVoteRecords.getReadView(); auto it = r->find(pindex); if (it == r.end()) { return false; } return it->second.isAccepted(); } bool Processor::isAccepted(const ProofRef &proof) const { auto r = proofVoteRecords.getReadView(); auto it = r->find(proof); if (it == r.end()) { return false; } return it->second.isAccepted(); } int Processor::getConfidence(const CBlockIndex *pindex) const { if (!pindex) { // CBlockIndexWorkComparator expects this to be non-null, so bail early. return -1; } auto r = blockVoteRecords.getReadView(); auto it = r->find(pindex); if (it == r.end()) { return -1; } return it->second.getConfidence(); } int Processor::getConfidence(const ProofRef &proof) const { auto r = proofVoteRecords.getReadView(); auto it = r->find(proof); if (it == r.end()) { return -1; } return it->second.getConfidence(); } namespace { /** * When using TCP, we need to sign all messages as the transport layer is * not secure. */ class TCPResponse { Response response; SchnorrSig sig; public: TCPResponse(Response responseIn, const CKey &key) : response(std::move(responseIn)) { CHashWriter hasher(SER_GETHASH, 0); hasher << response; const uint256 hash = hasher.GetHash(); // Now let's sign! if (!key.SignSchnorr(hash, sig)) { sig.fill(0); } } // serialization support SERIALIZE_METHODS(TCPResponse, obj) { READWRITE(obj.response, obj.sig); } }; } // namespace void Processor::sendResponse(CNode *pfrom, Response response) const { connman->PushMessage( pfrom, CNetMsgMaker(pfrom->GetCommonVersion()) .Make(NetMsgType::AVARESPONSE, TCPResponse(std::move(response), sessionKey))); } bool Processor::registerVotes(NodeId nodeid, const Response &response, std::vector &blockUpdates, std::vector &proofUpdates, int &banscore, std::string &error) { { // Save the time at which we can query again. LOCK(cs_peerManager); // FIXME: This will override the time even when we received an old stale // message. This should check that the message is indeed the most up to // date one before updating the time. peerManager->updateNextRequestTime( nodeid, std::chrono::steady_clock::now() + std::chrono::milliseconds(response.getCooldown())); } std::vector invs; { // Check that the query exists. auto w = queries.getWriteView(); auto it = w->find(std::make_tuple(nodeid, response.getRound())); if (it == w.end()) { banscore = 2; error = "unexpected-ava-response"; return false; } invs = std::move(it->invs); w->erase(it); } // Verify that the request and the vote are consistent. const std::vector &votes = response.GetVotes(); size_t size = invs.size(); if (votes.size() != size) { banscore = 100; error = "invalid-ava-response-size"; return false; } for (size_t i = 0; i < size; i++) { if (invs[i].hash != votes[i].GetHash()) { banscore = 100; error = "invalid-ava-response-content"; return false; } } std::map responseIndex; std::map responseProof; // At this stage we are certain that invs[i] matches votes[i], so we can use // the inv type to retrieve what is being voted on. for (size_t i = 0; i < size; i++) { if (invs[i].IsMsgBlk()) { CBlockIndex *pindex; { LOCK(cs_main); pindex = chainman.m_blockman.LookupBlockIndex( BlockHash(votes[i].GetHash())); if (!pindex) { // This should not happen, but just in case... continue; } if (!isWorthPolling(pindex)) { // There is no point polling this block. continue; } } responseIndex.insert(std::make_pair(pindex, votes[i])); } if (invs[i].IsMsgProof()) { const ProofId proofid(votes[i].GetHash()); ProofRef proof; { LOCK(cs_peerManager); proof = peerManager->getProof(proofid); if (!proof) { continue; } if (!isWorthPolling(proof)) { continue; } } responseProof.insert(std::make_pair(proof, votes[i])); } } // Thanks to C++14 generic lambdas, we can apply the same logic to various // parameter types sharing the same interface. auto registerVoteItems = [&](auto voteRecordsWriteView, auto &updates, auto responseItems) { // Register votes. for (const auto &p : responseItems) { auto item = p.first; const Vote &v = p.second; auto it = voteRecordsWriteView->find(item); if (it == voteRecordsWriteView.end()) { // We are not voting on that item anymore. continue; } auto &vr = it->second; if (!vr.registerVote(nodeid, v.GetError())) { if (vr.isStale(staleVoteThreshold, staleVoteFactor)) { updates.emplace_back(item, VoteStatus::Stale); // Just drop stale votes. If we see this item again, we'll // do a new vote. voteRecordsWriteView->erase(it); } // This vote did not provide any extra information, move on. continue; } if (!vr.hasFinalized()) { // This item has not been finalized, so we have nothing more to // do. updates.emplace_back(item, vr.isAccepted() ? VoteStatus::Accepted : VoteStatus::Rejected); continue; } // We just finalized a vote. If it is valid, then let the caller // know. Either way, remove the item from the map. updates.emplace_back(item, vr.isAccepted() ? VoteStatus::Finalized : VoteStatus::Invalid); voteRecordsWriteView->erase(it); } }; registerVoteItems(blockVoteRecords.getWriteView(), blockUpdates, responseIndex); registerVoteItems(proofVoteRecords.getWriteView(), proofUpdates, responseProof); for (const auto &blockUpdate : blockUpdates) { if (blockUpdate.getStatus() != VoteStatus::Finalized) { continue; } LOCK(cs_finalizationTip); CBlockIndex *pindex = blockUpdate.getVoteItem(); if (finalizationTip && finalizationTip->GetAncestor(pindex->nHeight) == pindex) { continue; } finalizationTip = pindex; } return true; } CPubKey Processor::getSessionPubKey() const { return sessionKey.GetPubKey(); } bool Processor::sendHello(CNode *pfrom) const { Delegation delegation; if (peerData) { delegation = peerData->delegation; pfrom->AddKnownProof(delegation.getProofId()); } CHashWriter hasher(SER_GETHASH, 0); hasher << delegation.getId(); hasher << pfrom->GetLocalNonce(); hasher << pfrom->nRemoteHostNonce; hasher << pfrom->GetLocalExtraEntropy(); hasher << pfrom->nRemoteExtraEntropy; // Now let's sign! SchnorrSig sig; if (!sessionKey.SignSchnorr(hasher.GetHash(), sig)) { return false; } connman->PushMessage( pfrom, CNetMsgMaker(pfrom->GetCommonVersion()) .Make(NetMsgType::AVAHELLO, Hello(delegation, sig))); return true; } ProofRef Processor::getLocalProof() const { return peerData ? peerData->proof : ProofRef(); } bool Processor::startEventLoop(CScheduler &scheduler) { return eventLoop.startEventLoop( scheduler, [this]() { this->runEventLoop(); }, AVALANCHE_TIME_STEP); } bool Processor::stopEventLoop() { return eventLoop.stopEventLoop(); } void Processor::avaproofsSent(NodeId nodeid) { if (chainman.ActiveChainstate().IsInitialBlockDownload()) { // Before IBD is complete there is no way to make sure a proof is valid // or not, e.g. it can be spent in a block we don't know yet. In order // to increase confidence that our proof set is similar to other nodes // on the network, the messages received during IBD are not accounted. return; } LOCK(cs_peerManager); if (peerManager->latchAvaproofsSent(nodeid)) { avaproofsNodeCounter++; } } /* * Returns a bool indicating whether we have a usable Avalanche quorum enabling * us to take decisions based on polls. */ bool Processor::isQuorumEstablished() { { LOCK(cs_peerManager); if (peerManager->getNodeCount() < 8) { // There is no point polling if we know the vote cannot converge return false; } } /* * The following parameters can naturally go temporarly below the threshold * under normal circumstances, like during a proof replacement with a lower * stake amount, or the discovery of a new proofs for which we don't have a * node yet. * In order to prevent our node from starting and stopping the polls * spuriously on such event, the quorum establishement is latched. The only * parameters that should not latched is the minimum node count, as this * would cause the poll to be inconclusive anyway and should not happen * under normal circumstances. */ if (quorumIsEstablished) { return true; } // Don't do Avalanche while node is IBD'ing if (chainman.ActiveChainstate().IsInitialBlockDownload()) { return false; } if (avaproofsNodeCounter < minAvaproofsNodeCount) { return false; } auto localProof = getLocalProof(); // Get the registered proof score and registered score we have nodes for uint32_t totalPeersScore; uint32_t connectedPeersScore; { LOCK(cs_peerManager); totalPeersScore = peerManager->getTotalPeersScore(); connectedPeersScore = peerManager->getConnectedPeersScore(); // Consider that we are always connected to our proof, even if we are // the single node using that proof. if (localProof && peerManager->forPeer(localProof->getId(), [](const Peer &peer) { return peer.node_count == 0; })) { connectedPeersScore += localProof->getScore(); } } // Ensure enough is being staked overall if (totalPeersScore < minQuorumScore) { return false; } // Ensure we have connected score for enough of the overall score uint32_t minConnectedScore = std::round(double(totalPeersScore) * minQuorumConnectedScoreRatio); if (connectedPeersScore < minConnectedScore) { return false; } quorumIsEstablished = true; return true; } void Processor::FinalizeNode(const ::Config &config, const CNode &node) { WITH_LOCK(cs_peerManager, peerManager->removeNode(node.GetId())); } void Processor::runEventLoop() { // Don't poll if quorum hasn't been established yet if (!isQuorumEstablished()) { return; } // First things first, check if we have requests that timed out and clear // them. clearTimedoutRequests(); // Make sure there is at least one suitable node to query before gathering // invs. NodeId nodeid = WITH_LOCK(cs_peerManager, return peerManager->selectNode()); if (nodeid == NO_NODE) { return; } std::vector invs = getInvsForNextPoll(); if (invs.empty()) { return; } LOCK(cs_peerManager); do { /** * If we lost contact to that node, then we remove it from nodeids, but * never add the request to queries, which ensures bad nodes get cleaned * up over time. */ bool hasSent = connman->ForNode( nodeid, [this, &invs](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED( cs_peerManager) { uint64_t current_round = round++; { // Compute the time at which this requests times out. auto timeout = std::chrono::steady_clock::now() + avaconfig.queryTimeoutDuration; // Register the query. queries.getWriteView()->insert( {pnode->GetId(), current_round, timeout, invs}); // Set the timeout. peerManager->updateNextRequestTime(pnode->GetId(), timeout); } - pnode->m_avalanche_state->invsPolled(invs.size()); + pnode->invsPolled(invs.size()); // Send the query to the node. connman->PushMessage( pnode, CNetMsgMaker(pnode->GetCommonVersion()) .Make(NetMsgType::AVAPOLL, Poll(current_round, std::move(invs)))); return true; }); // Success! if (hasSent) { return; } // This node is obsolete, delete it. peerManager->removeNode(nodeid); // Get next suitable node to try again nodeid = peerManager->selectNode(); } while (nodeid != NO_NODE); } void Processor::clearTimedoutRequests() { auto now = std::chrono::steady_clock::now(); std::map timedout_items{}; { // Clear expired requests. auto w = queries.getWriteView(); auto it = w->get().begin(); while (it != w->get().end() && it->timeout < now) { for (const auto &i : it->invs) { timedout_items[i]++; } w->get().erase(it++); } } if (timedout_items.empty()) { return; } auto clearInflightRequest = [&](auto &voteRecords, const auto &voteItem, uint8_t count) { if (!voteItem) { return false; } auto voteRecordsWriteView = voteRecords.getWriteView(); auto it = voteRecordsWriteView->find(voteItem); if (it == voteRecordsWriteView.end()) { return false; } it->second.clearInflightRequest(count); return true; }; // In flight request accounting. for (const auto &p : timedout_items) { const CInv &inv = p.first; if (inv.IsMsgBlk()) { const CBlockIndex *pindex = WITH_LOCK(cs_main, return chainman.m_blockman.LookupBlockIndex( BlockHash(inv.hash))); if (!clearInflightRequest(blockVoteRecords, pindex, p.second)) { continue; } } if (inv.IsMsgProof()) { const ProofRef proof = WITH_LOCK(cs_peerManager, return peerManager->getProof(ProofId(inv.hash))); if (!clearInflightRequest(proofVoteRecords, proof, p.second)) { continue; } } } } std::vector Processor::getInvsForNextPoll(bool forPoll) { std::vector invs; // Use NO_THREAD_SAFETY_ANALYSIS to avoid false positive due to // isWorthPolling requiring a different lock depending of the prototype. auto removeItemsNotWorthPolling = [&](auto &itemVoteRecords) NO_THREAD_SAFETY_ANALYSIS { auto w = itemVoteRecords.getWriteView(); for (auto it = w->begin(); it != w->end();) { if (!isWorthPolling(it->first)) { it = w->erase(it); } else { ++it; } } }; auto extractVoteRecordsToInvs = [&](const auto &itemVoteRecordRange, auto buildInvFromVoteItem) { for (const auto &[item, voteRecord] : itemVoteRecordRange) { if (invs.size() >= AVALANCHE_MAX_ELEMENT_POLL) { // Make sure we do not produce more invs than specified by the // protocol. return true; } const bool shouldPoll = forPoll ? voteRecord.registerPoll() : voteRecord.shouldPoll(); if (!shouldPoll) { continue; } invs.emplace_back(buildInvFromVoteItem(item)); } return invs.size() >= AVALANCHE_MAX_ELEMENT_POLL; }; // First remove all proofs that are not worth polling. WITH_LOCK(cs_peerManager, removeItemsNotWorthPolling(proofVoteRecords)); if (extractVoteRecordsToInvs(proofVoteRecords.getReadView(), [](const ProofRef &proof) { return CInv(MSG_AVA_PROOF, proof->getId()); })) { // The inventory vector is full, we're done return invs; } // First remove all blocks that are not worth polling. WITH_LOCK(cs_main, removeItemsNotWorthPolling(blockVoteRecords)); auto r = blockVoteRecords.getReadView(); extractVoteRecordsToInvs(reverse_iterate(r), [](const CBlockIndex *pindex) { return CInv(MSG_BLOCK, pindex->GetBlockHash()); }); return invs; } bool Processor::isWorthPolling(const CBlockIndex *pindex) { AssertLockHeld(cs_main); if (pindex->nStatus.isInvalid()) { // No point polling invalid blocks. return false; } if (WITH_LOCK(cs_finalizationTip, return finalizationTip && finalizationTip->GetAncestor( pindex->nHeight) == pindex)) { // There is no point polling blocks that are ancestor of a block that // has been accepted by the network. return false; } if (chainman.ActiveChainstate().IsBlockFinalized(pindex)) { // There is no point polling finalized block. return false; } return true; } bool Processor::isWorthPolling(const ProofRef &proof) const { AssertLockHeld(cs_peerManager); const ProofId &proofid = proof->getId(); // No point polling immature or discarded proofs return peerManager->isBoundToPeer(proofid) || peerManager->isInConflictingPool(proofid); } } // namespace avalanche diff --git a/src/avalanche/test/processor_tests.cpp b/src/avalanche/test/processor_tests.cpp index c2001732e..1e99f80ab 100644 --- a/src/avalanche/test/processor_tests.cpp +++ b/src/avalanche/test/processor_tests.cpp @@ -1,1792 +1,1791 @@ // Copyright (c) 2018-2020 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include // For ::PeerManager #include #include #include #include // For bilingual_str // D6970 moved LookupBlockIndex from chain.h to validation.h TODO: remove this // when LookupBlockIndex is refactored out of validation #include #include #include #include #include #include #include #include using namespace avalanche; namespace avalanche { namespace { struct AvalancheTest { static void runEventLoop(avalanche::Processor &p) { p.runEventLoop(); } static std::vector getInvsForNextPoll(Processor &p) { return p.getInvsForNextPoll(false); } static NodeId getSuitableNodeToQuery(Processor &p) { return WITH_LOCK(p.cs_peerManager, return p.peerManager->selectNode()); } static uint64_t getRound(const Processor &p) { return p.round; } static uint32_t getMinQuorumScore(const Processor &p) { return p.minQuorumScore; } static double getMinQuorumConnectedScoreRatio(const Processor &p) { return p.minQuorumConnectedScoreRatio; } static void clearavaproofsNodeCounter(Processor &p) { p.avaproofsNodeCounter = 0; } }; } // namespace } // namespace avalanche namespace { struct CConnmanTest : public CConnman { using CConnman::CConnman; void AddNode(CNode &node) { LOCK(cs_vNodes); vNodes.push_back(&node); } void ClearNodes() { LOCK(cs_vNodes); for (CNode *node : vNodes) { delete node; } vNodes.clear(); } }; CService ip(uint32_t i) { struct in_addr s; s.s_addr = i; return CService(CNetAddr(s), Params().GetDefaultPort()); } struct AvalancheTestingSetup : public TestChain100Setup { const ::Config &config; CConnmanTest *m_connman; std::unique_ptr m_processor; // The master private key we delegate to. CKey masterpriv; AvalancheTestingSetup() : TestChain100Setup(), config(GetConfig()), masterpriv(CKey::MakeCompressedKey()) { // Deterministic randomness for tests. auto connman = std::make_unique(config, 0x1337, 0x1337, *m_node.addrman); m_connman = connman.get(); m_node.connman = std::move(connman); m_node.peerman = ::PeerManager::make( config.GetChainParams(), *m_connman, *m_node.addrman, m_node.banman.get(), *m_node.chainman, *m_node.mempool, false); m_node.chain = interfaces::MakeChain(m_node, config.GetChainParams()); // Get the processor ready. gArgs.ForceSetArg("-avaminquorumstake", "0"); gArgs.ForceSetArg("-avaminquorumconnectedstakeratio", "0"); gArgs.ForceSetArg("avaminavaproofsnodecount", "0"); bilingual_str error; m_processor = Processor::MakeProcessor( *m_node.args, *m_node.chain, m_node.connman.get(), *Assert(m_node.chainman), *m_node.scheduler, error); BOOST_CHECK(m_processor); gArgs.ForceSetArg("-avaproofstakeutxoconfirmations", "1"); } ~AvalancheTestingSetup() { m_connman->ClearNodes(); SyncWithValidationInterfaceQueue(); gArgs.ClearForcedArg("-avaproofstakeutxoconfirmations"); gArgs.ClearForcedArg("-avaminquorumstake"); gArgs.ClearForcedArg("-avaminquorumconnectedstakeratio"); gArgs.ClearForcedArg("-avaminavaproofsnodecount"); } CNode *ConnectNode(ServiceFlags nServices) { static NodeId id = 0; CAddress addr(ip(GetRandInt(0xffffffff)), NODE_NONE); auto node = new CNode(id++, ServiceFlags(NODE_NETWORK), INVALID_SOCKET, addr, /* nKeyedNetGroupIn */ 0, /* nLocalHostNonceIn */ 0, /* nLocalExtraEntropyIn */ 0, CAddress(), /* pszDest */ "", ConnectionType::OUTBOUND_FULL_RELAY, /* inbound_onion */ false); node->SetCommonVersion(PROTOCOL_VERSION); node->nServices = nServices; m_node.peerman->InitializeNode(config, node); node->nVersion = 1; node->fSuccessfullyConnected = true; - node->m_avalanche_state = std::make_unique(); m_connman->AddNode(*node); return node; } ProofRef GetProof() { const CKey key = CKey::MakeCompressedKey(); const COutPoint outpoint{TxId(GetRandHash()), 0}; CScript script = GetScriptForDestination(PKHash(key.GetPubKey())); const Amount amount = PROOF_DUST_THRESHOLD; const uint32_t height = 100; LOCK(cs_main); CCoinsViewCache &coins = Assert(m_node.chainman)->ActiveChainstate().CoinsTip(); coins.AddCoin(outpoint, Coin(CTxOut(amount, script), height, false), false); ProofBuilder pb(0, 0, masterpriv, UNSPENDABLE_ECREG_PAYOUT_SCRIPT); BOOST_CHECK(pb.addUTXO(outpoint, amount, height, false, key)); return pb.build(); } bool addNode(NodeId nodeid, const ProofId &proofid) { return m_processor->withPeerManager([&](avalanche::PeerManager &pm) { return pm.addNode(nodeid, proofid); }); } bool addNode(NodeId nodeid) { auto proof = GetProof(); return m_processor->withPeerManager([&](avalanche::PeerManager &pm) { return pm.registerProof(proof) && pm.addNode(nodeid, proof->getId()); }); } std::array ConnectNodes() { auto proof = GetProof(); BOOST_CHECK( m_processor->withPeerManager([&](avalanche::PeerManager &pm) { return pm.registerProof(proof); })); const ProofId &proofid = proof->getId(); std::array nodes; for (CNode *&n : nodes) { n = ConnectNode(NODE_AVALANCHE); BOOST_CHECK(addNode(n->GetId(), proofid)); } return nodes; } void runEventLoop() { AvalancheTest::runEventLoop(*m_processor); } NodeId getSuitableNodeToQuery() { return AvalancheTest::getSuitableNodeToQuery(*m_processor); } std::vector getInvsForNextPoll() { return AvalancheTest::getInvsForNextPoll(*m_processor); } uint64_t getRound() const { return AvalancheTest::getRound(*m_processor); } bool registerVotes(NodeId nodeid, const avalanche::Response &response, std::vector &blockUpdates) { int banscore; std::string error; std::vector proofUpdates; return m_processor->registerVotes(nodeid, response, blockUpdates, proofUpdates, banscore, error); } }; struct BlockProvider { AvalancheTestingSetup *fixture; std::vector updates; uint32_t invType; BlockProvider(AvalancheTestingSetup *_fixture) : fixture(_fixture), invType(MSG_BLOCK) {} CBlockIndex *buildVoteItem() const { CBlock block = fixture->CreateAndProcessBlock({}, CScript()); const BlockHash blockHash = block.GetHash(); LOCK(cs_main); return Assert(fixture->m_node.chainman) ->m_blockman.LookupBlockIndex(blockHash); } uint256 getVoteItemId(const CBlockIndex *pindex) const { return pindex->GetBlockHash(); } bool registerVotes(NodeId nodeid, const avalanche::Response &response, std::string &error) { int banscore; std::vector proofUpdates; return fixture->m_processor->registerVotes( nodeid, response, updates, proofUpdates, banscore, error); } bool registerVotes(NodeId nodeid, const avalanche::Response &response) { std::string error; return registerVotes(nodeid, response, error); } bool addToReconcile(const CBlockIndex *pindex) { return fixture->m_processor->addBlockToReconcile(pindex); } std::vector buildVotesForItems(uint32_t error, std::vector &&items) { size_t numItems = items.size(); std::vector votes; votes.reserve(numItems); // Votes are sorted by most work first std::sort(items.begin(), items.end(), CBlockIndexWorkComparator()); for (auto &item : reverse_iterate(items)) { votes.emplace_back(error, item->GetBlockHash()); } return votes; } void invalidateItem(CBlockIndex *pindex) { pindex->nStatus = pindex->nStatus.withFailed(); } }; struct ProofProvider { AvalancheTestingSetup *fixture; std::vector updates; uint32_t invType; ProofProvider(AvalancheTestingSetup *_fixture) : fixture(_fixture), invType(MSG_AVA_PROOF) {} ProofRef buildVoteItem() const { const ProofRef proof = fixture->GetProof(); fixture->m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof)); }); return proof; } uint256 getVoteItemId(const ProofRef &proof) const { return proof->getId(); } bool registerVotes(NodeId nodeid, const avalanche::Response &response, std::string &error) { int banscore; std::vector blockUpdates; return fixture->m_processor->registerVotes( nodeid, response, blockUpdates, updates, banscore, error); } bool registerVotes(NodeId nodeid, const avalanche::Response &response) { std::string error; return registerVotes(nodeid, response, error); } bool addToReconcile(const ProofRef &proof) { return fixture->m_processor->addProofToReconcile(proof); } std::vector buildVotesForItems(uint32_t error, std::vector &&items) { size_t numItems = items.size(); std::vector votes; votes.reserve(numItems); // Votes are sorted by high score first std::sort(items.begin(), items.end(), ProofComparatorByScore()); for (auto &item : items) { votes.emplace_back(error, item->getId()); } return votes; } void invalidateItem(const ProofRef &proof) { fixture->m_processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.rejectProof(proof->getId(), avalanche::PeerManager::RejectionMode::INVALIDATE); }); } }; } // namespace BOOST_FIXTURE_TEST_SUITE(processor_tests, AvalancheTestingSetup) // FIXME A std::tuple can be used instead of boost::mpl::list after boost 1.67 using VoteItemProviders = boost::mpl::list; BOOST_AUTO_TEST_CASE(block_update) { CBlockIndex index; CBlockIndex *pindex = &index; std::set status{ VoteStatus::Invalid, VoteStatus::Rejected, VoteStatus::Accepted, VoteStatus::Finalized, VoteStatus::Stale, }; for (auto s : status) { BlockUpdate abu(pindex, s); // The use of BOOST_CHECK instead of BOOST_CHECK_EQUAL prevents from // having to define operator<<() for each argument type. BOOST_CHECK(abu.getVoteItem() == pindex); BOOST_CHECK(abu.getStatus() == s); } } BOOST_AUTO_TEST_CASE_TEMPLATE(item_reconcile_twice, P, VoteItemProviders) { P provider(this); auto item = provider.buildVoteItem(); // Adding the item twice does nothing. BOOST_CHECK(provider.addToReconcile(item)); BOOST_CHECK(!provider.addToReconcile(item)); BOOST_CHECK(m_processor->isAccepted(item)); } BOOST_AUTO_TEST_CASE_TEMPLATE(item_null, P, VoteItemProviders) { P provider(this); // Check that null case is handled on the public interface BOOST_CHECK(!m_processor->isAccepted(nullptr)); BOOST_CHECK_EQUAL(m_processor->getConfidence(nullptr), -1); auto item = decltype(provider.buildVoteItem())(); BOOST_CHECK(item == nullptr); BOOST_CHECK(!provider.addToReconcile(item)); // Check that adding item to vote on doesn't change the outcome. A // comparator is used under the hood, and this is skipped if there are no // vote records. item = provider.buildVoteItem(); BOOST_CHECK(provider.addToReconcile(item)); BOOST_CHECK(!m_processor->isAccepted(nullptr)); BOOST_CHECK_EQUAL(m_processor->getConfidence(nullptr), -1); } namespace { Response next(Response &r) { auto copy = r; r = {r.getRound() + 1, r.getCooldown(), r.GetVotes()}; return copy; } } // namespace BOOST_AUTO_TEST_CASE_TEMPLATE(vote_item_register, P, VoteItemProviders) { P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; auto item = provider.buildVoteItem(); auto itemid = provider.getVoteItemId(item); // Create nodes that supports avalanche. auto avanodes = ConnectNodes(); // Querying for random item returns false. BOOST_CHECK(!m_processor->isAccepted(item)); // Add a new item. Check it is added to the polls. BOOST_CHECK(provider.addToReconcile(item)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); BOOST_CHECK(m_processor->isAccepted(item)); int nextNodeIndex = 0; auto registerNewVote = [&](const Response &resp) { runEventLoop(); auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId(); BOOST_CHECK(provider.registerVotes(nodeid, resp)); }; // Let's vote for this item a few times. Response resp{0, 0, {Vote(0, itemid)}}; for (int i = 0; i < 6; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 0); BOOST_CHECK_EQUAL(updates.size(), 0); } // A single neutral vote do not change anything. resp = {getRound(), 0, {Vote(-1, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 0); BOOST_CHECK_EQUAL(updates.size(), 0); resp = {getRound(), 0, {Vote(0, itemid)}}; for (int i = 1; i < 7; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), i); BOOST_CHECK_EQUAL(updates.size(), 0); } // Two neutral votes will stall progress. resp = {getRound(), 0, {Vote(-1, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 6); BOOST_CHECK_EQUAL(updates.size(), 0); registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 6); BOOST_CHECK_EQUAL(updates.size(), 0); resp = {getRound(), 0, {Vote(0, itemid)}}; for (int i = 2; i < 8; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 6); BOOST_CHECK_EQUAL(updates.size(), 0); } // We vote for it numerous times to finalize it. for (int i = 7; i < AVALANCHE_FINALIZATION_SCORE; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), i); BOOST_CHECK_EQUAL(updates.size(), 0); } // As long as it is not finalized, we poll. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); // Now finalize the decision. registerNewVote(next(resp)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == item); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized); updates.clear(); // Once the decision is finalized, there is no poll for it. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); // Get a new item to vote on item = provider.buildVoteItem(); itemid = provider.getVoteItemId(item); BOOST_CHECK(provider.addToReconcile(item)); // Now let's finalize rejection. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); resp = {getRound(), 0, {Vote(1, itemid)}}; for (int i = 0; i < 6; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(updates.size(), 0); } // Now the state will flip. registerNewVote(next(resp)); BOOST_CHECK(!m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == item); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Rejected); updates.clear(); // Now it is rejected, but we can vote for it numerous times. for (int i = 1; i < AVALANCHE_FINALIZATION_SCORE; i++) { registerNewVote(next(resp)); BOOST_CHECK(!m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(updates.size(), 0); } // As long as it is not finalized, we poll. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); // Now finalize the decision. registerNewVote(next(resp)); BOOST_CHECK(!m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == item); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Invalid); updates.clear(); // Once the decision is finalized, there is no poll for it. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); } BOOST_AUTO_TEST_CASE_TEMPLATE(multi_item_register, P, VoteItemProviders) { P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; auto itemA = provider.buildVoteItem(); auto itemidA = provider.getVoteItemId(itemA); auto itemB = provider.buildVoteItem(); auto itemidB = provider.getVoteItemId(itemB); // Create several nodes that support avalanche. auto avanodes = ConnectNodes(); // Querying for random item returns false. BOOST_CHECK(!m_processor->isAccepted(itemA)); BOOST_CHECK(!m_processor->isAccepted(itemB)); // Start voting on item A. BOOST_CHECK(provider.addToReconcile(itemA)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemidA); uint64_t round = getRound(); runEventLoop(); BOOST_CHECK(provider.registerVotes(avanodes[0]->GetId(), {round, 0, {Vote(0, itemidA)}})); BOOST_CHECK_EQUAL(updates.size(), 0); // Start voting on item B after one vote. std::vector votes = provider.buildVotesForItems(0, {itemA, itemB}); Response resp{round + 1, 0, votes}; BOOST_CHECK(provider.addToReconcile(itemB)); invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 2); // Ensure the inv ordering is as expected for (size_t i = 0; i < invs.size(); i++) { BOOST_CHECK_EQUAL(invs[i].type, invType); BOOST_CHECK(invs[i].hash == votes[i].GetHash()); } // Let's vote for these items a few times. for (int i = 0; i < 4; i++) { NodeId nodeid = getSuitableNodeToQuery(); runEventLoop(); BOOST_CHECK(provider.registerVotes(nodeid, next(resp))); BOOST_CHECK_EQUAL(updates.size(), 0); } // Now it is accepted, but we can vote for it numerous times. for (int i = 0; i < AVALANCHE_FINALIZATION_SCORE; i++) { NodeId nodeid = getSuitableNodeToQuery(); runEventLoop(); BOOST_CHECK(provider.registerVotes(nodeid, next(resp))); BOOST_CHECK_EQUAL(updates.size(), 0); } // Running two iterration of the event loop so that vote gets triggered on A // and B. NodeId firstNodeid = getSuitableNodeToQuery(); runEventLoop(); NodeId secondNodeid = getSuitableNodeToQuery(); runEventLoop(); BOOST_CHECK(firstNodeid != secondNodeid); // Next vote will finalize item A. BOOST_CHECK(provider.registerVotes(firstNodeid, next(resp))); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == itemA); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized); updates = {}; // We do not vote on A anymore. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemidB); // Next vote will finalize item B. BOOST_CHECK(provider.registerVotes(secondNodeid, resp)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == itemB); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized); updates = {}; // There is nothing left to vote on. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); } BOOST_AUTO_TEST_CASE_TEMPLATE(poll_and_response, P, VoteItemProviders) { P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; auto item = provider.buildVoteItem(); auto itemid = provider.getVoteItemId(item); // There is no node to query. BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE); // Add enough nodes to have a valid quorum, and the same amount with no // avalanche support std::set avanodeIds; auto avanodes = ConnectNodes(); for (auto avanode : avanodes) { ConnectNode(NODE_NONE); avanodeIds.insert(avanode->GetId()); } auto getSelectedAvanodeId = [&]() { NodeId avanodeid = getSuitableNodeToQuery(); BOOST_CHECK(avanodeIds.find(avanodeid) != avanodeIds.end()); return avanodeid; }; // It returns one of the avalanche peer. NodeId avanodeid = getSelectedAvanodeId(); // Register an item and check it is added to the list of elements to poll. BOOST_CHECK(provider.addToReconcile(item)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); std::set unselectedNodeids = avanodeIds; unselectedNodeids.erase(avanodeid); const size_t remainingNodeIds = unselectedNodeids.size(); uint64_t round = getRound(); for (size_t i = 0; i < remainingNodeIds; i++) { // Trigger a poll on avanode. runEventLoop(); // Another node is selected NodeId nodeid = getSuitableNodeToQuery(); BOOST_CHECK(unselectedNodeids.find(nodeid) != avanodeIds.end()); unselectedNodeids.erase(nodeid); } // There is no more suitable peer available, so return nothing. BOOST_CHECK(unselectedNodeids.empty()); runEventLoop(); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE); // Respond to the request. Response resp = {round, 0, {Vote(0, itemid)}}; BOOST_CHECK(provider.registerVotes(avanodeid, resp)); BOOST_CHECK_EQUAL(updates.size(), 0); // Now that avanode fullfilled his request, it is added back to the list of // queriable nodes. BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); auto checkRegisterVotesError = [&](NodeId nodeid, const avalanche::Response &response, const std::string &expectedError) { std::string error; BOOST_CHECK(!provider.registerVotes(nodeid, response, error)); BOOST_CHECK_EQUAL(error, expectedError); BOOST_CHECK_EQUAL(updates.size(), 0); }; // Sending a response when not polled fails. checkRegisterVotesError(avanodeid, next(resp), "unexpected-ava-response"); // Trigger a poll on avanode. round = getRound(); runEventLoop(); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE); // Sending responses that do not match the request also fails. // 1. Too many results. resp = {round, 0, {Vote(0, itemid), Vote(0, itemid)}}; runEventLoop(); checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-size"); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // 2. Not enough results. resp = {getRound(), 0, {}}; runEventLoop(); checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-size"); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // 3. Do not match the poll. resp = {getRound(), 0, {Vote()}}; runEventLoop(); checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-content"); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // At this stage we have reached the max inflight requests for our inv, so // it won't be requested anymore until the requests are fullfilled. Let's // vote on another item with no inflight request so the remaining tests // makes sense. invs = getInvsForNextPoll(); BOOST_CHECK(invs.empty()); item = provider.buildVoteItem(); itemid = provider.getVoteItemId(item); BOOST_CHECK(provider.addToReconcile(item)); invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); // 4. Invalid round count. Request is not discarded. uint64_t queryRound = getRound(); runEventLoop(); resp = {queryRound + 1, 0, {Vote()}}; checkRegisterVotesError(avanodeid, resp, "unexpected-ava-response"); resp = {queryRound - 1, 0, {Vote()}}; checkRegisterVotesError(avanodeid, resp, "unexpected-ava-response"); // 5. Making request for invalid nodes do not work. Request is not // discarded. resp = {queryRound, 0, {Vote(0, itemid)}}; checkRegisterVotesError(avanodeid + 1234, resp, "unexpected-ava-response"); // Proper response gets processed and avanode is available again. resp = {queryRound, 0, {Vote(0, itemid)}}; BOOST_CHECK(provider.registerVotes(avanodeid, resp)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // Out of order response are rejected. const auto item2 = provider.buildVoteItem(); BOOST_CHECK(provider.addToReconcile(item2)); std::vector votes = provider.buildVotesForItems(0, {item, item2}); resp = {getRound(), 0, {votes[1], votes[0]}}; runEventLoop(); checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-content"); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // But they are accepted in order. resp = {getRound(), 0, votes}; runEventLoop(); BOOST_CHECK(provider.registerVotes(avanodeid, resp)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); } BOOST_AUTO_TEST_CASE_TEMPLATE(dont_poll_invalid_item, P, VoteItemProviders) { P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; auto itemA = provider.buildVoteItem(); auto itemB = provider.buildVoteItem(); auto avanodes = ConnectNodes(); // Build votes to get proper ordering std::vector votes = provider.buildVotesForItems(0, {itemA, itemB}); // Register the items and check they are added to the list of elements to // poll. BOOST_CHECK(provider.addToReconcile(itemA)); BOOST_CHECK(provider.addToReconcile(itemB)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 2); for (size_t i = 0; i < invs.size(); i++) { BOOST_CHECK_EQUAL(invs[i].type, invType); BOOST_CHECK(invs[i].hash == votes[i].GetHash()); } // When an item is marked invalid, stop polling. provider.invalidateItem(itemB); Response goodResp{getRound(), 0, {Vote(0, provider.getVoteItemId(itemA))}}; runEventLoop(); BOOST_CHECK(provider.registerVotes(avanodes[0]->GetId(), goodResp)); BOOST_CHECK_EQUAL(updates.size(), 0); // Votes including itemB are rejected Response badResp{getRound(), 0, votes}; runEventLoop(); std::string error; BOOST_CHECK(!provider.registerVotes(avanodes[1]->GetId(), badResp, error)); BOOST_CHECK_EQUAL(error, "invalid-ava-response-size"); } BOOST_TEST_DECORATOR(*boost::unit_test::timeout(60)) BOOST_AUTO_TEST_CASE_TEMPLATE(poll_inflight_timeout, P, VoteItemProviders) { P provider(this); ArgsManager argsman; ChainstateManager &chainman = *Assert(m_node.chainman); auto queryTimeDuration = std::chrono::milliseconds(10); argsman.ForceSetArg("-avatimeout", ToString(queryTimeDuration.count())); argsman.ForceSetArg("-avaminquorumstake", "0"); argsman.ForceSetArg("-avaminquorumconnectedstakeratio", "0"); argsman.ForceSetArg("avaminavaproofsnodecount", "0"); bilingual_str error; m_processor = Processor::MakeProcessor(argsman, *m_node.chain, m_node.connman.get(), chainman, *m_node.scheduler, error); const auto item = provider.buildVoteItem(); const auto itemid = provider.getVoteItemId(item); // Add the item BOOST_CHECK(provider.addToReconcile(item)); // Create a quorum of nodes that support avalanche. ConnectNodes(); NodeId avanodeid = NO_NODE; // Expire requests after some time. for (int i = 0; i < 10; i++) { Response resp = {getRound(), 0, {Vote(0, itemid)}}; avanodeid = getSuitableNodeToQuery(); auto start = std::chrono::steady_clock::now(); runEventLoop(); // We cannot guarantee that we'll wait for just 1ms, so we have to bail // if we aren't within the proper time range. std::this_thread::sleep_for(std::chrono::milliseconds(1)); runEventLoop(); bool ret = provider.registerVotes(avanodeid, next(resp)); if (std::chrono::steady_clock::now() > start + queryTimeDuration) { // We waited for too long, bail. Because we can't know for sure when // previous steps ran, ret is not deterministic and we do not check // it. i--; continue; } // We are within time bounds, so the vote should have worked. BOOST_CHECK(ret); avanodeid = getSuitableNodeToQuery(); // Now try again but wait for expiration. runEventLoop(); std::this_thread::sleep_for(queryTimeDuration); runEventLoop(); BOOST_CHECK(!provider.registerVotes(avanodeid, next(resp))); } } BOOST_AUTO_TEST_CASE_TEMPLATE(poll_inflight_count, P, VoteItemProviders) { P provider(this); const uint32_t invType = provider.invType; // Create enough nodes so that we run into the inflight request limit. auto proof = GetProof(); BOOST_CHECK(m_processor->withPeerManager( [&](avalanche::PeerManager &pm) { return pm.registerProof(proof); })); std::array nodes; for (auto &n : nodes) { n = ConnectNode(NODE_AVALANCHE); BOOST_CHECK(addNode(n->GetId(), proof->getId())); } // Add an item to poll const auto item = provider.buildVoteItem(); const auto itemid = provider.getVoteItemId(item); BOOST_CHECK(provider.addToReconcile(item)); // Ensure there are enough requests in flight. std::map node_round_map; for (int i = 0; i < AVALANCHE_MAX_INFLIGHT_POLL; i++) { NodeId nodeid = getSuitableNodeToQuery(); BOOST_CHECK(node_round_map.find(nodeid) == node_round_map.end()); node_round_map.insert(std::pair(nodeid, getRound())); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); runEventLoop(); } // Now that we have enough in flight requests, we shouldn't poll. auto suitablenodeid = getSuitableNodeToQuery(); BOOST_CHECK(suitablenodeid != NO_NODE); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); runEventLoop(); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), suitablenodeid); // Send one response, now we can poll again. auto it = node_round_map.begin(); Response resp = {it->second, 0, {Vote(0, itemid)}}; BOOST_CHECK(provider.registerVotes(it->first, resp)); node_round_map.erase(it); invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); } BOOST_AUTO_TEST_CASE(quorum_diversity) { std::vector updates; CBlock block = CreateAndProcessBlock({}, CScript()); const BlockHash blockHash = block.GetHash(); const CBlockIndex *pindex; { LOCK(cs_main); pindex = Assert(m_node.chainman)->m_blockman.LookupBlockIndex(blockHash); } // Create nodes that supports avalanche. auto avanodes = ConnectNodes(); // Querying for random block returns false. BOOST_CHECK(!m_processor->isAccepted(pindex)); // Add a new block. Check it is added to the polls. BOOST_CHECK(m_processor->addBlockToReconcile(pindex)); // Do one valid round of voting. uint64_t round = getRound(); Response resp{round, 0, {Vote(0, blockHash)}}; // Check that all nodes can vote. for (size_t i = 0; i < avanodes.size(); i++) { runEventLoop(); BOOST_CHECK(registerVotes(avanodes[i]->GetId(), next(resp), updates)); } // Generate a query for every single node. const NodeId firstNodeId = getSuitableNodeToQuery(); std::map node_round_map; round = getRound(); for (size_t i = 0; i < avanodes.size(); i++) { NodeId nodeid = getSuitableNodeToQuery(); BOOST_CHECK(node_round_map.find(nodeid) == node_round_map.end()); node_round_map[nodeid] = getRound(); runEventLoop(); } // Now only the first node can vote. All others would be duplicate in the // quorum. auto confidence = m_processor->getConfidence(pindex); BOOST_REQUIRE(confidence > 0); for (auto &[nodeid, r] : node_round_map) { if (nodeid == firstNodeId) { // Node 0 is the only one which can vote at this stage. round = r; continue; } BOOST_CHECK( registerVotes(nodeid, {r, 0, {Vote(0, blockHash)}}, updates)); BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), confidence); } BOOST_CHECK( registerVotes(firstNodeId, {round, 0, {Vote(0, blockHash)}}, updates)); BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), confidence + 1); } BOOST_AUTO_TEST_CASE(event_loop) { CScheduler s; CBlock block = CreateAndProcessBlock({}, CScript()); const BlockHash blockHash = block.GetHash(); const CBlockIndex *pindex; { LOCK(cs_main); pindex = Assert(m_node.chainman)->m_blockman.LookupBlockIndex(blockHash); } // Starting the event loop. BOOST_CHECK(m_processor->startEventLoop(s)); // There is one task planned in the next hour (our event loop). std::chrono::steady_clock::time_point start, stop; BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1); // Starting twice doesn't start it twice. BOOST_CHECK(!m_processor->startEventLoop(s)); // Start the scheduler thread. std::thread schedulerThread(std::bind(&CScheduler::serviceQueue, &s)); // Create a quorum of nodes that support avalanche. auto avanodes = ConnectNodes(); // There is no query in flight at the moment. NodeId nodeid = getSuitableNodeToQuery(); BOOST_CHECK_NE(nodeid, NO_NODE); // Add a new block. Check it is added to the polls. uint64_t queryRound = getRound(); BOOST_CHECK(m_processor->addBlockToReconcile(pindex)); // Wait until all nodes got a poll for (int i = 0; i < 60 * 1000; i++) { // Technically, this is a race condition, but this should do just fine // as we wait up to 1 minute for an event that should take 80ms. UninterruptibleSleep(std::chrono::milliseconds(1)); if (getRound() == queryRound + avanodes.size()) { break; } } // Check that we effectively got a request and not timed out. BOOST_CHECK(getRound() > queryRound); // Respond and check the cooldown time is respected. uint64_t responseRound = getRound(); auto queryTime = std::chrono::steady_clock::now() + std::chrono::milliseconds(100); std::vector updates; // Only the first node answers, so it's the only one that gets polled again registerVotes(nodeid, {queryRound, 100, {Vote(0, blockHash)}}, updates); for (int i = 0; i < 10000; i++) { // We make sure that we do not get a request before queryTime. UninterruptibleSleep(std::chrono::milliseconds(1)); if (getRound() != responseRound) { BOOST_CHECK(std::chrono::steady_clock::now() > queryTime); break; } } // But we eventually get one. BOOST_CHECK(getRound() > responseRound); // Stop event loop. BOOST_CHECK(m_processor->stopEventLoop()); // We don't have any task scheduled anymore. BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0); // Can't stop the event loop twice. BOOST_CHECK(!m_processor->stopEventLoop()); // Wait for the scheduler to stop. s.StopWhenDrained(); schedulerThread.join(); } BOOST_AUTO_TEST_CASE(destructor) { CScheduler s; std::chrono::steady_clock::time_point start, stop; std::thread schedulerThread; BOOST_CHECK(m_processor->startEventLoop(s)); BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1); // Start the service thread after the queue size check to prevent a race // condition where the thread may be processing the event loop task during // the check. schedulerThread = std::thread(std::bind(&CScheduler::serviceQueue, &s)); // Destroy the processor. m_processor.reset(); // Now that avalanche is destroyed, there is no more scheduled tasks. BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0); // Wait for the scheduler to stop. s.StopWhenDrained(); schedulerThread.join(); } BOOST_AUTO_TEST_CASE(add_proof_to_reconcile) { uint32_t score = MIN_VALID_PROOF_SCORE; CChainState &active_chainstate = Assert(m_node.chainman)->ActiveChainstate(); auto addProofToReconcile = [&](uint32_t proofScore) { auto proof = buildRandomProof(active_chainstate, proofScore); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof)); }); BOOST_CHECK(m_processor->addProofToReconcile(proof)); return proof; }; for (size_t i = 0; i < AVALANCHE_MAX_ELEMENT_POLL; i++) { auto proof = addProofToReconcile(++score); auto invs = AvalancheTest::getInvsForNextPoll(*m_processor); BOOST_CHECK_EQUAL(invs.size(), i + 1); BOOST_CHECK(invs.front().IsMsgProof()); BOOST_CHECK_EQUAL(invs.front().hash, proof->getId()); } // From here a new proof is only polled if its score is in the top // AVALANCHE_MAX_ELEMENT_POLL ProofId lastProofId; for (size_t i = 0; i < 10; i++) { auto proof = addProofToReconcile(++score); auto invs = AvalancheTest::getInvsForNextPoll(*m_processor); BOOST_CHECK_EQUAL(invs.size(), AVALANCHE_MAX_ELEMENT_POLL); BOOST_CHECK(invs.front().IsMsgProof()); BOOST_CHECK_EQUAL(invs.front().hash, proof->getId()); lastProofId = proof->getId(); } for (size_t i = 0; i < 10; i++) { auto proof = addProofToReconcile(--score); auto invs = AvalancheTest::getInvsForNextPoll(*m_processor); BOOST_CHECK_EQUAL(invs.size(), AVALANCHE_MAX_ELEMENT_POLL); BOOST_CHECK(invs.front().IsMsgProof()); BOOST_CHECK_EQUAL(invs.front().hash, lastProofId); } { // The score is not high enough to get polled auto proof = addProofToReconcile(--score); auto invs = AvalancheTest::getInvsForNextPoll(*m_processor); for (auto &inv : invs) { BOOST_CHECK_NE(inv.hash, proof->getId()); } } } BOOST_AUTO_TEST_CASE(proof_record) { gArgs.ForceSetArg("-avaproofstakeutxoconfirmations", "2"); gArgs.ForceSetArg("-avalancheconflictingproofcooldown", "0"); BOOST_CHECK(!m_processor->isAccepted(nullptr)); BOOST_CHECK_EQUAL(m_processor->getConfidence(nullptr), -1); const CKey key = CKey::MakeCompressedKey(); const COutPoint conflictingOutpoint{TxId(GetRandHash()), 0}; const COutPoint immatureOutpoint{TxId(GetRandHash()), 0}; { CScript script = GetScriptForDestination(PKHash(key.GetPubKey())); LOCK(cs_main); CCoinsViewCache &coins = Assert(m_node.chainman)->ActiveChainstate().CoinsTip(); coins.AddCoin(conflictingOutpoint, Coin(CTxOut(PROOF_DUST_THRESHOLD, script), 10, false), false); coins.AddCoin(immatureOutpoint, Coin(CTxOut(PROOF_DUST_THRESHOLD, script), 100, false), false); } auto buildProof = [&](const COutPoint &outpoint, uint64_t sequence, uint32_t height = 10) { ProofBuilder pb(sequence, 0, key, UNSPENDABLE_ECREG_PAYOUT_SCRIPT); BOOST_CHECK( pb.addUTXO(outpoint, PROOF_DUST_THRESHOLD, height, false, key)); return pb.build(); }; auto conflictingProof = buildProof(conflictingOutpoint, 1); auto validProof = buildProof(conflictingOutpoint, 2); auto immatureProof = buildProof(immatureOutpoint, 3, 100); BOOST_CHECK(!m_processor->isAccepted(conflictingProof)); BOOST_CHECK(!m_processor->isAccepted(validProof)); BOOST_CHECK(!m_processor->isAccepted(immatureProof)); BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), -1); BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), -1); BOOST_CHECK_EQUAL(m_processor->getConfidence(immatureProof), -1); // Reconciling proofs that don't exist will fail BOOST_CHECK(!m_processor->addProofToReconcile(conflictingProof)); BOOST_CHECK(!m_processor->addProofToReconcile(validProof)); BOOST_CHECK(!m_processor->addProofToReconcile(immatureProof)); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(conflictingProof)); BOOST_CHECK(pm.registerProof(validProof)); BOOST_CHECK(!pm.registerProof(immatureProof)); BOOST_CHECK(pm.isBoundToPeer(validProof->getId())); BOOST_CHECK(pm.isInConflictingPool(conflictingProof->getId())); BOOST_CHECK(pm.isImmature(immatureProof->getId())); }); BOOST_CHECK(m_processor->addProofToReconcile(conflictingProof)); BOOST_CHECK(!m_processor->isAccepted(conflictingProof)); BOOST_CHECK(!m_processor->isAccepted(validProof)); BOOST_CHECK(!m_processor->isAccepted(immatureProof)); BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), -1); BOOST_CHECK_EQUAL(m_processor->getConfidence(immatureProof), -1); BOOST_CHECK(m_processor->addProofToReconcile(validProof)); BOOST_CHECK(!m_processor->isAccepted(conflictingProof)); BOOST_CHECK(m_processor->isAccepted(validProof)); BOOST_CHECK(!m_processor->isAccepted(immatureProof)); BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(immatureProof), -1); BOOST_CHECK(!m_processor->addProofToReconcile(immatureProof)); BOOST_CHECK(!m_processor->isAccepted(conflictingProof)); BOOST_CHECK(m_processor->isAccepted(validProof)); BOOST_CHECK(!m_processor->isAccepted(immatureProof)); BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(immatureProof), -1); gArgs.ClearForcedArg("-avaproofstakeutxoconfirmations"); gArgs.ClearForcedArg("-avalancheconflictingproofcooldown"); } BOOST_AUTO_TEST_CASE(quorum_detection) { // Set min quorum parameters for our test int minStake = 400'000'000; gArgs.ForceSetArg("-avaminquorumstake", ToString(minStake)); gArgs.ForceSetArg("-avaminquorumconnectedstakeratio", "0.5"); // Create a new processor with our given quorum parameters const auto currency = Currency::get(); uint32_t minScore = Proof::amountToScore(minStake * currency.baseunit); CChainState &active_chainstate = Assert(m_node.chainman)->ActiveChainstate(); const CKey key = CKey::MakeCompressedKey(); auto localProof = buildRandomProof(active_chainstate, minScore / 4, 100, key); gArgs.ForceSetArg("-avamasterkey", EncodeSecret(key)); gArgs.ForceSetArg("-avaproof", localProof->ToHex()); bilingual_str error; ChainstateManager &chainman = *Assert(m_node.chainman); m_processor = Processor::MakeProcessor(*m_node.args, *m_node.chain, m_node.connman.get(), chainman, *m_node.scheduler, error); BOOST_CHECK(m_processor != nullptr); BOOST_CHECK(m_processor->getLocalProof() != nullptr); BOOST_CHECK_EQUAL(m_processor->getLocalProof()->getId(), localProof->getId()); BOOST_CHECK_EQUAL(AvalancheTest::getMinQuorumScore(*m_processor), minScore); BOOST_CHECK_EQUAL( AvalancheTest::getMinQuorumConnectedScoreRatio(*m_processor), 0.5); // The local proof has not been validated yet m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 0); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), 0); }); BOOST_CHECK(!m_processor->isQuorumEstablished()); // Register the local proof. This is normally done when the chain tip is // updated. The local proof should be accounted for in the min quorum // computation but the peer manager doesn't know about that. m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(m_processor->getLocalProof())); BOOST_CHECK(pm.isBoundToPeer(m_processor->getLocalProof()->getId())); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), 0); }); BOOST_CHECK(!m_processor->isQuorumEstablished()); // Add enough nodes to get a conclusive vote for (NodeId id = 0; id < 8; id++) { m_processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.addNode(id, m_processor->getLocalProof()->getId()); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); } // Add part of the required stake and make sure we still report no quorum auto proof1 = buildRandomProof(active_chainstate, minScore / 2); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof1)); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 3 * minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(!m_processor->isQuorumEstablished()); // Add the rest of the stake, but we are still lacking connected stake const int64_t tipTime = chainman.ActiveTip()->GetBlockTime(); const COutPoint utxo{TxId(GetRandHash()), 0}; const Amount amount = (int64_t(minScore / 4) * COIN) / 100; const int height = 100; const bool isCoinbase = false; { LOCK(cs_main); CCoinsViewCache &coins = active_chainstate.CoinsTip(); coins.AddCoin(utxo, Coin(CTxOut(amount, GetScriptForDestination( PKHash(key.GetPubKey()))), height, isCoinbase), false); } ProofBuilder pb(1, tipTime + 1, key, UNSPENDABLE_ECREG_PAYOUT_SCRIPT); BOOST_CHECK(pb.addUTXO(utxo, amount, height, isCoinbase, key)); auto proof2 = pb.build(); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof2)); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(!m_processor->isQuorumEstablished()); // Adding a node should cause the quorum to be detected and locked-in m_processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.addNode(8, proof2->getId()); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore); // The peer manager knows that proof2 has a node attached ... BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 2); }); // ... but the processor also account for the local proof, so we reached 50% BOOST_CHECK(m_processor->isQuorumEstablished()); // Go back to not having enough connected score, but we've already latched // the quorum as established m_processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.removeNode(8); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(m_processor->isQuorumEstablished()); // Removing one more node drops our count below the minimum and the quorum // is no longer ready m_processor->withPeerManager( [&](avalanche::PeerManager &pm) { pm.removeNode(7); }); BOOST_CHECK(!m_processor->isQuorumEstablished()); // It resumes when we have enough nodes again m_processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.addNode(7, m_processor->getLocalProof()->getId()); }); BOOST_CHECK(m_processor->isQuorumEstablished()); // Remove peers one at a time until the quorum is no longer established auto spendProofUtxo = [&](ProofRef proof) { { LOCK(cs_main); CCoinsViewCache &coins = chainman.ActiveChainstate().CoinsTip(); coins.SpendCoin(proof->getStakes()[0].getStake().getUTXO()); } m_processor->withPeerManager([&proof](avalanche::PeerManager &pm) { pm.updatedBlockTip(); BOOST_CHECK(!pm.isBoundToPeer(proof->getId())); }); }; // Expire proof2, the quorum is still latched for (int64_t i = 0; i < 6; i++) { SetMockTime(proof2->getExpirationTime() + i); CreateAndProcessBlock({}, CScript()); } BOOST_CHECK_EQUAL(chainman.ActiveTip()->GetMedianTimePast(), proof2->getExpirationTime()); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.updatedBlockTip(); BOOST_CHECK(!pm.exists(proof2->getId())); }); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 3 * minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(m_processor->isQuorumEstablished()); spendProofUtxo(proof1); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(m_processor->isQuorumEstablished()); spendProofUtxo(m_processor->getLocalProof()); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 0); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), 0); }); // There is no node left BOOST_CHECK(!m_processor->isQuorumEstablished()); gArgs.ClearForcedArg("-avamasterkey"); gArgs.ClearForcedArg("-avaproof"); gArgs.ClearForcedArg("-avaminquorumstake"); gArgs.ClearForcedArg("-avaminquorumconnectedstakeratio"); } BOOST_AUTO_TEST_CASE(quorum_detection_parameter_validation) { // Create vector of tuples of: // std::vector> tests = { // All parameters are invalid {"", "", "", false}, {"-1", "-1", "-1", false}, // Min stake is out of range {"-1", "0", "0", false}, {"-0.01", "0", "0", false}, {"21000000000000.01", "0", "0", false}, // Min connected ratio is out of range {"0", "-1", "0", false}, {"0", "1.1", "0", false}, // Min avaproofs messages ratio is out of range {"0", "0", "-1", false}, // All parameters are valid {"0", "0", "0", true}, {"0.00", "0", "0", true}, {"0.01", "0", "0", true}, {"1", "0.1", "0", true}, {"10", "0.5", "0", true}, {"10", "1", "0", true}, {"21000000000000.00", "0", "0", true}, {"0", "0", "1", true}, {"0", "0", "100", true}, }; // For each case set the parameters and check that making the processor // succeeds or fails as expected for (auto it = tests.begin(); it != tests.end(); ++it) { gArgs.ForceSetArg("-avaminquorumstake", std::get<0>(*it)); gArgs.ForceSetArg("-avaminquorumconnectedstakeratio", std::get<1>(*it)); gArgs.ForceSetArg("-avaminavaproofsnodecount", std::get<2>(*it)); bilingual_str error; std::unique_ptr processor = Processor::MakeProcessor( *m_node.args, *m_node.chain, m_node.connman.get(), *Assert(m_node.chainman), *m_node.scheduler, error); if (std::get<3>(*it)) { BOOST_CHECK(processor != nullptr); BOOST_CHECK(error.empty()); BOOST_CHECK_EQUAL(error.original, ""); } else { BOOST_CHECK(processor == nullptr); BOOST_CHECK(!error.empty()); BOOST_CHECK(error.original != ""); } } gArgs.ClearForcedArg("-avaminquorumstake"); gArgs.ClearForcedArg("-avaminquorumconnectedstakeratio"); gArgs.ClearForcedArg("-avaminavaproofsnodecount"); } BOOST_AUTO_TEST_CASE(min_avaproofs_messages) { ArgsManager argsman; argsman.ForceSetArg("-avaminquorumstake", "0"); argsman.ForceSetArg("-avaminquorumconnectedstakeratio", "0"); ChainstateManager &chainman = *Assert(m_node.chainman); auto checkMinAvaproofsMessages = [&](int64_t minAvaproofsMessages) { argsman.ForceSetArg("-avaminavaproofsnodecount", ToString(minAvaproofsMessages)); bilingual_str error; auto processor = Processor::MakeProcessor( argsman, *m_node.chain, m_node.connman.get(), chainman, *m_node.scheduler, error); auto addNode = [&](NodeId nodeid) { auto proof = buildRandomProof(chainman.ActiveChainstate(), MIN_VALID_PROOF_SCORE); processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof)); BOOST_CHECK(pm.addNode(nodeid, proof->getId())); }); }; // Add enough node to have a conclusive vote, but don't account any // avaproofs. // NOTE: we can't use the test facilites like ConnectNodes() because we // are not testing on m_processor. for (NodeId id = 100; id < 108; id++) { addNode(id); } BOOST_CHECK_EQUAL(processor->isQuorumEstablished(), minAvaproofsMessages <= 0); for (int64_t i = 0; i < minAvaproofsMessages - 1; i++) { addNode(i); processor->avaproofsSent(i); BOOST_CHECK_EQUAL(processor->getAvaproofsNodeCounter(), i + 1); // Receiving again on the same node does not increase the counter processor->avaproofsSent(i); BOOST_CHECK_EQUAL(processor->getAvaproofsNodeCounter(), i + 1); BOOST_CHECK(!processor->isQuorumEstablished()); } addNode(minAvaproofsMessages); processor->avaproofsSent(minAvaproofsMessages); BOOST_CHECK(processor->isQuorumEstablished()); // Check the latch AvalancheTest::clearavaproofsNodeCounter(*processor); BOOST_CHECK(processor->isQuorumEstablished()); }; checkMinAvaproofsMessages(0); checkMinAvaproofsMessages(1); checkMinAvaproofsMessages(10); checkMinAvaproofsMessages(100); } BOOST_AUTO_TEST_CASE_TEMPLATE(voting_parameters, P, VoteItemProviders) { // Check that setting voting parameters has the expected effect gArgs.ForceSetArg("-avastalevotethreshold", ToString(AVALANCHE_VOTE_STALE_MIN_THRESHOLD)); gArgs.ForceSetArg("-avastalevotefactor", "2"); std::vector> testCases = { // {number of yes votes, number of neutral votes} {0, AVALANCHE_VOTE_STALE_MIN_THRESHOLD}, {AVALANCHE_FINALIZATION_SCORE + 4, AVALANCHE_FINALIZATION_SCORE - 6}, }; bilingual_str error; m_processor = Processor::MakeProcessor( *m_node.args, *m_node.chain, m_node.connman.get(), *Assert(m_node.chainman), *m_node.scheduler, error); BOOST_CHECK(m_processor != nullptr); BOOST_CHECK(error.empty()); P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; const auto item = provider.buildVoteItem(); const auto itemid = provider.getVoteItemId(item); // Create nodes that supports avalanche. auto avanodes = ConnectNodes(); int nextNodeIndex = 0; for (auto &testCase : testCases) { // Add a new item. Check it is added to the polls. BOOST_CHECK(provider.addToReconcile(item)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); BOOST_CHECK(m_processor->isAccepted(item)); auto registerNewVote = [&](const Response &resp) { runEventLoop(); auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId(); BOOST_CHECK(provider.registerVotes(nodeid, resp)); }; // Add some confidence for (int i = 0; i < std::get<0>(testCase); i++) { Response resp = {getRound(), 0, {Vote(0, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), i >= 6 ? i - 5 : 0); BOOST_CHECK_EQUAL(updates.size(), 0); } // Vote until just before item goes stale for (int i = 0; i < std::get<1>(testCase); i++) { Response resp = {getRound(), 0, {Vote(-1, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK_EQUAL(updates.size(), 0); } // As long as it is not stale, we poll. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); // Now stale Response resp = {getRound(), 0, {Vote(-1, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == item); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Stale); updates.clear(); // Once stale, there is no poll for it. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); } gArgs.ClearForcedArg("-avastalevotethreshold"); gArgs.ClearForcedArg("-avastalevotefactor"); } BOOST_AUTO_TEST_CASE(block_vote_finalization_tip) { BlockProvider provider(this); std::vector blockIndexes; for (size_t i = 0; i < AVALANCHE_MAX_ELEMENT_POLL; i++) { CBlockIndex *pindex = provider.buildVoteItem(); BOOST_CHECK(provider.addToReconcile(pindex)); blockIndexes.push_back(pindex); } auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), AVALANCHE_MAX_ELEMENT_POLL); for (size_t i = 0; i < AVALANCHE_MAX_ELEMENT_POLL; i++) { BOOST_CHECK_EQUAL( invs[i].hash, blockIndexes[AVALANCHE_MAX_ELEMENT_POLL - i - 1]->GetBlockHash()); } // Build a vote vector with the 11th block only being accepted and others // unknown. const BlockHash eleventhBlockHash = blockIndexes[AVALANCHE_MAX_ELEMENT_POLL - 10 - 1]->GetBlockHash(); std::vector votes; votes.reserve(AVALANCHE_MAX_ELEMENT_POLL); for (size_t i = AVALANCHE_MAX_ELEMENT_POLL; i > 0; i--) { BlockHash blockhash = blockIndexes[i - 1]->GetBlockHash(); votes.emplace_back(blockhash == eleventhBlockHash ? 0 : -1, blockhash); } auto avanodes = ConnectNodes(); int nextNodeIndex = 0; auto registerNewVote = [&]() { Response resp = {getRound(), 0, votes}; runEventLoop(); auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId(); BOOST_CHECK(provider.registerVotes(nodeid, resp)); }; // Vote for the blocks until the one being accepted finalizes bool eleventhBlockFinalized = false; for (size_t i = 0; i < 10000 && !eleventhBlockFinalized; i++) { registerNewVote(); for (auto &update : provider.updates) { if (update.getStatus() == VoteStatus::Finalized && update.getVoteItem()->GetBlockHash() == eleventhBlockHash) { eleventhBlockFinalized = true; } } } BOOST_CHECK(eleventhBlockFinalized); // From now only the 10 blocks with more work are polled for invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 10); for (size_t i = 0; i < 10; i++) { BOOST_CHECK_EQUAL( invs[i].hash, blockIndexes[AVALANCHE_MAX_ELEMENT_POLL - i - 1]->GetBlockHash()); } // Adding ancestor blocks to reconcile will fail for (size_t i = 0; i < AVALANCHE_MAX_ELEMENT_POLL - 10 - 1; i++) { BOOST_CHECK(!provider.addToReconcile(blockIndexes[i])); } // Create a couple concurrent chain tips CBlockIndex *tip = provider.buildVoteItem(); const auto &config = GetConfig(); auto &activeChainstate = m_node.chainman->ActiveChainstate(); BlockValidationState state; activeChainstate.InvalidateBlock(config, state, tip); // Use another script to make sure we don't generate the same block again CBlock altblock = CreateAndProcessBlock({}, CScript() << OP_TRUE); auto alttip = WITH_LOCK( cs_main, return Assert(m_node.chainman) ->m_blockman.LookupBlockIndex(altblock.GetHash())); BOOST_CHECK(alttip); BOOST_CHECK(alttip->pprev == tip->pprev); BOOST_CHECK(alttip->GetBlockHash() != tip->GetBlockHash()); // Reconsider the previous tip valid, so we have concurrent tip candidates { LOCK(cs_main); activeChainstate.ResetBlockFailureFlags(tip); } activeChainstate.ActivateBestChain(config, state); BOOST_CHECK(provider.addToReconcile(tip)); BOOST_CHECK(provider.addToReconcile(alttip)); invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 12); // Vote for the tip until it finalizes BlockHash tiphash = tip->GetBlockHash(); votes.clear(); votes.reserve(12); for (auto &inv : invs) { votes.emplace_back(inv.hash == tiphash ? 0 : -1, inv.hash); } bool tipFinalized = false; for (size_t i = 0; i < 10000 && !tipFinalized; i++) { registerNewVote(); for (auto &update : provider.updates) { if (update.getStatus() == VoteStatus::Finalized && update.getVoteItem()->GetBlockHash() == tiphash) { tipFinalized = true; } } } BOOST_CHECK(tipFinalized); // Now the tip and all its ancestors will be removed from polls. Only the // alttip remains because it is on a forked chain so we want to keep polling // for that one until it's invalidated or stalled. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].hash, alttip->GetBlockHash()); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/net.cpp b/src/net.cpp index 442aae616..8e781c35c 100644 --- a/src/net.cpp +++ b/src/net.cpp @@ -1,3630 +1,3631 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef WIN32 #include #else #include #endif #ifdef USE_POLL #include #endif #include #include #include #include #include #include #include #include /** Maximum number of block-relay-only anchor connections */ static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2; static_assert(MAX_BLOCK_RELAY_ONLY_ANCHORS <= static_cast(MAX_BLOCK_RELAY_ONLY_CONNECTIONS), "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed " "MAX_BLOCK_RELAY_ONLY_CONNECTIONS."); /** Anchor IP address database file name */ const char *const ANCHORS_DATABASE_FILENAME = "anchors.dat"; // How often to dump addresses to peers.dat static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15}; /** * Number of DNS seeds to query when the number of connections is low. */ static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3; /** * How long to delay before querying DNS seeds * * If we have more than THRESHOLD entries in addrman, then it's likely * that we got those addresses from having previously connected to the P2P * network, and that we'll be able to successfully reconnect to the P2P * network via contacting one of them. So if that's the case, spend a * little longer trying to connect to known peers before querying the * DNS seeds. */ static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11}; static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5}; // "many" vs "few" peers static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000; /** The default timeframe for -maxuploadtarget. 1 day. */ static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24}; // We add a random period time (0 to 1 seconds) to feeler connections to prevent // synchronization. #define FEELER_SLEEP_WINDOW 1 /** Used to pass flags to the Bind() function */ enum BindFlags { BF_NONE = 0, BF_EXPLICIT = (1U << 0), BF_REPORT_ERROR = (1U << 1), /** * Do not call AddLocal() for our special addresses, e.g., for incoming * Tor connections, to prevent gossiping them over the network. */ BF_DONT_ADVERTISE = (1U << 2), }; // The set of sockets cannot be modified while waiting // The sleep time needs to be small to avoid new sockets stalling static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50; const std::string NET_MESSAGE_COMMAND_OTHER = "*other*"; // SHA256("netgroup")[0:8] static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("localhostnonce")[0:8] static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[8:16] static const uint64_t RANDOMIZER_ID_EXTRAENTROPY = 0x94b05d41679a4ff7ULL; // SHA256("addrcache")[0:8] static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL; // // Global state variables // bool fDiscover = true; bool fListen = true; RecursiveMutex cs_mapLocalHost; std::map mapLocalHost GUARDED_BY(cs_mapLocalHost); static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {}; void CConnman::AddAddrFetch(const std::string &strDest) { LOCK(m_addr_fetches_mutex); m_addr_fetches.push_back(strDest); } uint16_t GetListenPort() { return static_cast( gArgs.GetIntArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService &addr, const CNetAddr *paddrPeer) { if (!fListen) { return false; } int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (const auto &entry : mapLocalHost) { int nScore = entry.second.nScore; int nReachability = entry.first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService(entry.first, entry.second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the pnSeed6 array into usable address objects. static std::vector convertSeed6(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. Seed nodes are given // a random 'last seen time' of between one and two weeks ago. const int64_t nOneWeek = 7 * 24 * 60 * 60; std::vector vSeedsOut; vSeedsOut.reserve(vSeedsIn.size()); FastRandomContext rng; for (const auto &seed_in : vSeedsIn) { struct in6_addr ip; memcpy(&ip, seed_in.addr, sizeof(ip)); CAddress addr(CService(ip, seed_in.port), GetDesirableServiceFlags(NODE_NONE)); addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek; vSeedsOut.push_back(addr); } return vSeedsOut; } // Get best local address for a particular peer as a CAddress. Otherwise, return // the unroutable 0.0.0.0 but filled in with the normal parameters, since the IP // may be changed to a useful one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices) { CAddress ret(CService(CNetAddr(), GetListenPort()), nLocalServices); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr, nLocalServices); } ret.nTime = GetAdjustedTime(); return ret; } static int GetnScore(const CService &addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) { return 0; } return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { CService addrLocal = pnode->GetAddrLocal(); return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() && IsReachable(addrLocal.GetNetwork()); } std::optional GetLocalAddrForPeer(CNode *pnode) { CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices()); if (gArgs.GetBoolArg("-addrmantest", false)) { // use IPv4 loopback during addrmantest addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices()); } // If discovery is enabled, sometimes give our peer the address it // tells us that it sees us as in case it has a better idea of our // address than we do. FastRandomContext rng; if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0)) { addrLocal.SetIP(pnode->GetAddrLocal()); } if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false)) { LogPrint(BCLog::NET, "Advertising address %s to peer=%d\n", addrLocal.ToString(), pnode->GetId()); return addrLocal; } // Address is unroutable. Don't advertise. return std::nullopt; } // Learn a new local address. bool AddLocal(const CService &addr, int nScore) { if (!addr.IsRoutable()) { return false; } if (!fDiscover && nScore < LOCAL_MANUAL) { return false; } if (!IsReachable(addr)) { return false; } LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } void RemoveLocal(const CService &addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); } void SetReachable(enum Network net, bool reachable) { if (net == NET_UNROUTABLE || net == NET_INTERNAL) { return; } LOCK(cs_mapLocalHost); vfLimited[net] = !reachable; } bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } bool IsReachable(const CNetAddr &addr) { return IsReachable(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService &addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) { return false; } mapLocalHost[addr].nScore++; return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService &addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } CNode *CConnman::FindNode(const CNetAddr &ip) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (static_cast(pnode->addr) == ip) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const CSubNet &subNet) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const std::string &addrName) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (pnode->GetAddrName() == addrName) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const CService &addr) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (static_cast(pnode->addr) == addr) { return pnode; } } return nullptr; } bool CConnman::AlreadyConnectedToAddress(const CAddress &addr) { return FindNode(static_cast(addr)) || FindNode(addr.ToStringIPPort()); } bool CConnman::CheckIncomingNonce(uint64_t nonce) { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() && pnode->GetLocalNonce() == nonce) { return false; } } return true; } /** Get the bind address for a socket as CAddress */ static CAddress GetBindAddress(SOCKET sock) { CAddress addr_bind; struct sockaddr_storage sockaddr_bind; socklen_t sockaddr_bind_len = sizeof(sockaddr_bind); if (sock != INVALID_SOCKET) { if (!getsockname(sock, (struct sockaddr *)&sockaddr_bind, &sockaddr_bind_len)) { addr_bind.SetSockAddr((const struct sockaddr *)&sockaddr_bind); } else { LogPrint(BCLog::NET, "Warning: getsockname failed\n"); } } return addr_bind; } CNode *CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type) { assert(conn_type != ConnectionType::INBOUND); if (pszDest == nullptr) { if (IsLocal(addrConnect)) { return nullptr; } // Look for an existing connection CNode *pnode = FindNode(static_cast(addrConnect)); if (pnode) { LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } /// debug print LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime) / 3600.0); // Resolve const uint16_t default_port{pszDest != nullptr ? Params().GetDefaultPort(pszDest) : Params().GetDefaultPort()}; if (pszDest) { std::vector resolved; if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) { addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE); if (!addrConnect.IsValid()) { LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest); return nullptr; } // It is possible that we already have a connection to the IP/port // pszDest resolved to. In that case, drop the connection that was // just created, and return the existing CNode instead. Also store // the name we used to connect in that CNode, so that future // FindNode() calls to that name catch this early. LOCK(cs_vNodes); CNode *pnode = FindNode(static_cast(addrConnect)); if (pnode) { pnode->MaybeSetAddrName(std::string(pszDest)); LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } } // Connect bool connected = false; std::unique_ptr sock; proxyType proxy; CAddress addr_bind; assert(!addr_bind.IsValid()); if (addrConnect.IsValid()) { bool proxyConnectionFailed = false; if (addrConnect.GetNetwork() == NET_I2P && m_i2p_sam_session.get() != nullptr) { i2p::Connection conn; if (m_i2p_sam_session->Connect(addrConnect, conn, proxyConnectionFailed)) { connected = true; sock = std::move(conn.sock); addr_bind = CAddress{conn.me, NODE_NONE}; } } else if (GetProxy(addrConnect.GetNetwork(), proxy)) { sock = CreateSock(proxy.proxy); if (!sock) { return nullptr; } connected = ConnectThroughProxy( proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), *sock, nConnectTimeout, proxyConnectionFailed); } else { // no proxy needed (none set for target network) sock = CreateSock(addrConnect); if (!sock) { return nullptr; } connected = ConnectSocketDirectly(addrConnect, *sock, nConnectTimeout, conn_type == ConnectionType::MANUAL); } if (!proxyConnectionFailed) { // If a connection to the node was attempted, and failure (if any) // is not caused by a problem connecting to the proxy, mark this as // an attempt. addrman.Attempt(addrConnect, fCountFailure); } } else if (pszDest && GetNameProxy(proxy)) { sock = CreateSock(proxy.proxy); if (!sock) { return nullptr; } std::string host; uint16_t port{default_port}; SplitHostPort(std::string(pszDest), port, host); bool proxyConnectionFailed; connected = ConnectThroughProxy(proxy, host, port, *sock, nConnectTimeout, proxyConnectionFailed); } if (!connected) { return nullptr; } // Add node NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE) .Write(id) .Finalize(); uint64_t extra_entropy = GetDeterministicRandomizer(RANDOMIZER_ID_EXTRAENTROPY) .Write(id) .Finalize(); if (!addr_bind.IsValid()) { addr_bind = GetBindAddress(sock->Get()); } CNode *pnode = new CNode(id, nLocalServices, sock->Release(), addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, extra_entropy, addr_bind, pszDest ? pszDest : "", conn_type, /* inbound_onion */ false); pnode->AddRef(); // We're making a new connection, harvest entropy from the time (and our // peer count) RandAddEvent(uint32_t(id)); return pnode; } void CNode::CloseSocketDisconnect() { fDisconnect = true; LOCK(cs_hSocket); if (hSocket != INVALID_SOCKET) { LogPrint(BCLog::NET, "disconnecting peer=%d\n", id); CloseSocket(hSocket); } } void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr) const { for (const auto &subnet : vWhitelistedRange) { if (subnet.m_subnet.Match(addr)) { NetPermissions::AddFlag(flags, subnet.m_flags); } } } std::string CNode::ConnectionTypeAsString() const { switch (m_conn_type) { case ConnectionType::INBOUND: return "inbound"; case ConnectionType::MANUAL: return "manual"; case ConnectionType::FEELER: return "feeler"; case ConnectionType::OUTBOUND_FULL_RELAY: return "outbound-full-relay"; case ConnectionType::BLOCK_RELAY: return "block-relay-only"; case ConnectionType::ADDR_FETCH: return "addr-fetch"; case ConnectionType::AVALANCHE_OUTBOUND: return "avalanche"; } // no default case, so the compiler can warn about missing cases assert(false); } std::string CNode::GetAddrName() const { LOCK(cs_addrName); return addrName; } void CNode::MaybeSetAddrName(const std::string &addrNameIn) { LOCK(cs_addrName); if (addrName.empty()) { addrName = addrNameIn; } } CService CNode::GetAddrLocal() const { LOCK(cs_addrLocal); return addrLocal; } void CNode::SetAddrLocal(const CService &addrLocalIn) { LOCK(cs_addrLocal); if (addrLocal.IsValid()) { error("Addr local already set for node: %i. Refusing to change from %s " "to %s", id, addrLocal.ToString(), addrLocalIn.ToString()); } else { addrLocal = addrLocalIn; } } Network CNode::ConnectedThroughNetwork() const { return m_inbound_onion ? NET_ONION : addr.GetNetClass(); } void CNode::copyStats(CNodeStats &stats) { stats.nodeid = this->GetId(); stats.nServices = nServices; stats.addr = addr; stats.addrBind = addrBind; stats.m_network = ConnectedThroughNetwork(); if (m_tx_relay != nullptr) { LOCK(m_tx_relay->cs_filter); stats.fRelayTxes = m_tx_relay->fRelayTxes; } else { stats.fRelayTxes = false; } stats.m_last_send = m_last_send; stats.m_last_recv = m_last_recv; stats.m_last_tx_time = m_last_tx_time; stats.m_last_proof_time = m_last_proof_time; stats.m_last_block_time = m_last_block_time; stats.m_connected = m_connected; stats.nTimeOffset = nTimeOffset; stats.addrName = GetAddrName(); stats.nVersion = nVersion; { LOCK(cs_SubVer); stats.cleanSubVer = cleanSubVer; } stats.fInbound = IsInboundConn(); stats.m_manual_connection = IsManualConn(); stats.m_bip152_highbandwidth_to = m_bip152_highbandwidth_to; stats.m_bip152_highbandwidth_from = m_bip152_highbandwidth_from; { LOCK(cs_vSend); stats.mapSendBytesPerMsgCmd = mapSendBytesPerMsgCmd; stats.nSendBytes = nSendBytes; } { LOCK(cs_vRecv); stats.mapRecvBytesPerMsgCmd = mapRecvBytesPerMsgCmd; stats.nRecvBytes = nRecvBytes; } stats.m_legacyWhitelisted = m_legacyWhitelisted; stats.m_permissionFlags = m_permissionFlags; if (m_tx_relay != nullptr) { LOCK(m_tx_relay->cs_feeFilter); stats.minFeeFilter = m_tx_relay->minFeeFilter; } else { stats.minFeeFilter = Amount::zero(); } stats.m_last_ping_time = m_last_ping_time; stats.m_min_ping_time = m_min_ping_time; // Leave string empty if addrLocal invalid (not filled in yet) CService addrLocalUnlocked = GetAddrLocal(); stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : ""; stats.m_conn_type_string = ConnectionTypeAsString(); - stats.m_availabilityScore = - m_avalanche_state - ? std::make_optional(m_avalanche_state->getAvailabilityScore()) - : std::nullopt; + stats.m_availabilityScore = m_avalanche_enabled + ? std::make_optional(getAvailabilityScore()) + : std::nullopt; } bool CNode::ReceiveMsgBytes(const Config &config, Span msg_bytes, bool &complete) { complete = false; const auto time = GetTime(); LOCK(cs_vRecv); m_last_recv = std::chrono::duration_cast(time); nRecvBytes += msg_bytes.size(); while (msg_bytes.size() > 0) { // Absorb network data. int handled = m_deserializer->Read(config, msg_bytes); if (handled < 0) { return false; } if (m_deserializer->Complete()) { // decompose a transport agnostic CNetMessage from the deserializer CNetMessage msg = m_deserializer->GetMessage(config, time); // Store received bytes per message command to prevent a memory DOS, // only allow valid commands. mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.m_command); if (i == mapRecvBytesPerMsgCmd.end()) { i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER); } assert(i != mapRecvBytesPerMsgCmd.end()); i->second += msg.m_raw_message_size; // push the message to the process queue, vRecvMsg.push_back(std::move(msg)); complete = true; } } return true; } int V1TransportDeserializer::readHeader(const Config &config, Span msg_bytes) { // copy data to temporary parsing buffer uint32_t nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos; uint32_t nCopy = std::min(nRemaining, msg_bytes.size()); memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < CMessageHeader::HEADER_SIZE) { return nCopy; } // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception &) { return -1; } // Reject oversized messages if (hdr.IsOversized(config)) { LogPrint(BCLog::NET, "Oversized header detected\n"); return -1; } // switch state to reading message data in_data = true; return nCopy; } int V1TransportDeserializer::readData(Span msg_bytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, msg_bytes.size()); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message // size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } hasher.Write(msg_bytes.first(nCopy)); memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy); nDataPos += nCopy; return nCopy; } const uint256 &V1TransportDeserializer::GetMessageHash() const { assert(Complete()); if (data_hash.IsNull()) { hasher.Finalize(data_hash); } return data_hash; } CNetMessage V1TransportDeserializer::GetMessage(const Config &config, const std::chrono::microseconds time) { // decompose a single CNetMessage from the TransportDeserializer CNetMessage msg(std::move(vRecv)); // store state about valid header, netmagic and checksum msg.m_valid_header = hdr.IsValid(config); // FIXME Split CheckHeaderMagicAndCommand() into CheckHeaderMagic() and // CheckCommand() to prevent the net magic check code duplication. msg.m_valid_netmagic = (memcmp(std::begin(hdr.pchMessageStart), std::begin(config.GetChainParams().NetMagic()), CMessageHeader::MESSAGE_START_SIZE) == 0); uint256 hash = GetMessageHash(); // store command string, payload size msg.m_command = hdr.GetCommand(); msg.m_message_size = hdr.nMessageSize; msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE; // We just received a message off the wire, harvest entropy from the time // (and the message checksum) RandAddEvent(ReadLE32(hash.begin())); msg.m_valid_checksum = (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) == 0); if (!msg.m_valid_checksum) { LogPrint( BCLog::NET, "CHECKSUM ERROR (%s, %u bytes), expected %s was %s\n", SanitizeString(msg.m_command), msg.m_message_size, HexStr(Span(hash.begin(), hash.begin() + CMessageHeader::CHECKSUM_SIZE)), HexStr(hdr.pchChecksum)); } // store receive time msg.m_time = time; // reset the network deserializer (prepare for the next message) Reset(); return msg; } void V1TransportSerializer::prepareForTransport(const Config &config, CSerializedNetMsg &msg, std::vector &header) { // create dbl-sha256 checksum uint256 hash = Hash(msg.data); // create header CMessageHeader hdr(config.GetChainParams().NetMagic(), msg.m_type.c_str(), msg.data.size()); memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE); // serialize header header.reserve(CMessageHeader::HEADER_SIZE); CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr}; } size_t CConnman::SocketSendData(CNode &node) const { size_t nSentSize = 0; size_t nMsgCount = 0; for (const auto &data : node.vSendMsg) { assert(data.size() > node.nSendOffset); int nBytes = 0; { LOCK(node.cs_hSocket); if (node.hSocket == INVALID_SOCKET) { break; } nBytes = send( node.hSocket, reinterpret_cast(data.data()) + node.nSendOffset, data.size() - node.nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); } if (nBytes == 0) { // couldn't send anything at all break; } if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrint(BCLog::NET, "socket send error for peer=%d: %s\n", node.GetId(), NetworkErrorString(nErr)); node.CloseSocketDisconnect(); } break; } assert(nBytes > 0); node.m_last_send = GetTime(); node.nSendBytes += nBytes; node.nSendOffset += nBytes; nSentSize += nBytes; if (node.nSendOffset != data.size()) { // could not send full message; stop sending more break; } node.nSendOffset = 0; node.nSendSize -= data.size(); node.fPauseSend = node.nSendSize > nSendBufferMaxSize; nMsgCount++; } node.vSendMsg.erase(node.vSendMsg.begin(), node.vSendMsg.begin() + nMsgCount); if (node.vSendMsg.empty()) { assert(node.nSendOffset == 0); assert(node.nSendSize == 0); } return nSentSize; } static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.m_min_ping_time > b.m_min_ping_time; } static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.m_connected > b.m_connected; } static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nKeyedNetGroup < b.nKeyedNetGroup; } static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have many // peers which have not yet relayed a block. if (a.m_last_block_time != b.m_last_block_time) { return a.m_last_block_time < b.m_last_block_time; } if (a.fRelevantServices != b.fRelevantServices) { return b.fRelevantServices; } return a.m_connected > b.m_connected; } static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more // than a few peers that have not yet relayed txn. if (a.m_last_tx_time != b.m_last_tx_time) { return a.m_last_tx_time < b.m_last_tx_time; } if (a.fRelayTxes != b.fRelayTxes) { return b.fRelayTxes; } if (a.fBloomFilter != b.fBloomFilter) { return a.fBloomFilter; } return a.m_connected > b.m_connected; } static bool CompareNodeProofTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more // than a few peers that have not yet relayed proofs. This fallback is also // used in the case avalanche is not enabled. if (a.m_last_proof_time != b.m_last_proof_time) { return a.m_last_proof_time < b.m_last_proof_time; } return a.m_connected > b.m_connected; } // Pick out the potential block-relay only peers, and sort them by last block // time. static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { if (a.fRelayTxes != b.fRelayTxes) { return a.fRelayTxes; } if (a.m_last_block_time != b.m_last_block_time) { return a.m_last_block_time < b.m_last_block_time; } if (a.fRelevantServices != b.fRelevantServices) { return b.fRelevantServices; } return a.m_connected > b.m_connected; } static bool CompareNodeAvailabilityScore(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // Equality can happen if the nodes have no score or it has not been // computed yet. if (a.availabilityScore != b.availabilityScore) { return a.availabilityScore < b.availabilityScore; } return a.m_connected > b.m_connected; } /** * Sort eviction candidates by network/localhost and connection uptime. * Candidates near the beginning are more likely to be evicted, and those * near the end are more likely to be protected, e.g. less likely to be evicted. * - First, nodes that are not `is_local` and that do not belong to `network`, * sorted by increasing uptime (from most recently connected to connected * longer). * - Then, nodes that are `is_local` or belong to `network`, sorted by * increasing uptime. */ struct CompareNodeNetworkTime { const bool m_is_local; const Network m_network; CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {} bool operator()(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) const { if (m_is_local && a.m_is_local != b.m_is_local) { return b.m_is_local; } if ((a.m_network == m_network) != (b.m_network == m_network)) { return b.m_network == m_network; } return a.m_connected > b.m_connected; }; }; //! Sort an array by the specified comparator, then erase the last K elements //! where predicate is true. template static void EraseLastKElements( std::vector &elements, Comparator comparator, size_t k, std::function predicate = [](const NodeEvictionCandidate &n) { return true; }) { std::sort(elements.begin(), elements.end(), comparator); size_t eraseSize = std::min(k, elements.size()); elements.erase( std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end()); } void ProtectEvictionCandidatesByRatio( std::vector &eviction_candidates) { // Protect the half of the remaining nodes which have been connected the // longest. This replicates the non-eviction implicit behavior, and // precludes attacks that start later. // To promote the diversity of our peer connections, reserve up to half of // these protected spots for Tor/onion, localhost and I2P peers, even if // they're not the longest uptime overall. This helps protect these // higher-latency peers that tend to be otherwise disadvantaged under our // eviction criteria. const size_t initial_size = eviction_candidates.size(); const size_t total_protect_size{initial_size / 2}; // Disadvantaged networks to protect: I2P, localhost and Tor/onion. In case // of equal counts, earlier array members have first opportunity to recover // unused slots from the previous iteration. struct Net { bool is_local; Network id; size_t count; }; std::array networks{{{false, NET_I2P, 0}, {/* localhost */ true, NET_MAX, 0}, {false, NET_ONION, 0}}}; // Count and store the number of eviction candidates per network. for (Net &n : networks) { n.count = std::count_if( eviction_candidates.cbegin(), eviction_candidates.cend(), [&n](const NodeEvictionCandidate &c) { return n.is_local ? c.m_is_local : c.m_network == n.id; }); } // Sort `networks` by ascending candidate count, to give networks having // fewer candidates the first opportunity to recover unused protected slots // from the previous iteration. std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; }); // Protect up to 25% of the eviction candidates by disadvantaged network. const size_t max_protect_by_network{total_protect_size / 2}; size_t num_protected{0}; while (num_protected < max_protect_by_network) { // Count the number of disadvantaged networks from which we have peers // to protect. auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net &n) { return n.count; }); if (num_networks == 0) { break; } const size_t disadvantaged_to_protect{max_protect_by_network - num_protected}; const size_t protect_per_network{std::max( disadvantaged_to_protect / num_networks, static_cast(1))}; // Early exit flag if there are no remaining candidates by disadvantaged // network. bool protected_at_least_one{false}; for (Net &n : networks) { if (n.count == 0) { continue; } const size_t before = eviction_candidates.size(); EraseLastKElements( eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id), protect_per_network, [&n](const NodeEvictionCandidate &c) { return n.is_local ? c.m_is_local : c.m_network == n.id; }); const size_t after = eviction_candidates.size(); if (before > after) { protected_at_least_one = true; const size_t delta{before - after}; num_protected += delta; if (num_protected >= max_protect_by_network) { break; } n.count -= delta; } } if (!protected_at_least_one) { break; } } // Calculate how many we removed, and update our total number of peers that // we want to protect based on uptime accordingly. assert(num_protected == initial_size - eviction_candidates.size()); const size_t remaining_to_protect{total_protect_size - num_protected}; EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect); } [[nodiscard]] std::optional SelectNodeToEvict(std::vector &&vEvictionCandidates) { // Protect connections with certain characteristics // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4); // Protect the 8 nodes with the lowest minimum ping time. // An attacker cannot manipulate this metric without physically moving nodes // closer to the target. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8); // Protect 4 nodes that most recently sent us novel transactions accepted // into our mempool. An attacker cannot manipulate this metric without // performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4); // Protect 4 nodes that most recently sent us novel proofs accepted // into our proof pool. An attacker cannot manipulate this metric without // performing useful work. // TODO this filter must happen before the last tx time once avalanche is // enabled for pre-consensus. EraseLastKElements(vEvictionCandidates, CompareNodeProofTime, 4); // Protect up to 8 non-tx-relay peers that have sent us novel blocks. EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8, [](const NodeEvictionCandidate &n) { return !n.fRelayTxes && n.fRelevantServices; }); // Protect 4 nodes that most recently sent us novel blocks. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4); // Protect up to 128 nodes that have the highest avalanche availability // score. EraseLastKElements(vEvictionCandidates, CompareNodeAvailabilityScore, 128, [](NodeEvictionCandidate const &n) { return n.availabilityScore > 0.; }); // Protect some of the remaining eviction candidates by ratios of desirable // or disadvantaged characteristics. ProtectEvictionCandidatesByRatio(vEvictionCandidates); if (vEvictionCandidates.empty()) { return std::nullopt; } // If any remaining peers are preferred for eviction consider only them. // This happens after the other preferences since if a peer is really the // best by other criteria (esp relaying blocks) // then we probably don't want to evict it no matter what. if (std::any_of( vEvictionCandidates.begin(), vEvictionCandidates.end(), [](NodeEvictionCandidate const &n) { return n.prefer_evict; })) { vEvictionCandidates.erase( std::remove_if( vEvictionCandidates.begin(), vEvictionCandidates.end(), [](NodeEvictionCandidate const &n) { return !n.prefer_evict; }), vEvictionCandidates.end()); } // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) uint64_t naMostConnections; unsigned int nMostConnections = 0; std::chrono::seconds nMostConnectionsTime{0}; std::map> mapNetGroupNodes; for (const NodeEvictionCandidate &node : vEvictionCandidates) { std::vector &group = mapNetGroupNodes[node.nKeyedNetGroup]; group.push_back(node); const auto grouptime{group[0].m_connected}; size_t group_size = group.size(); if (group_size > nMostConnections || (group_size == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = group_size; nMostConnectionsTime = grouptime; naMostConnections = node.nKeyedNetGroup; } } // Reduce to the network group with the most connections vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); // Disconnect from the network group with the most connections return vEvictionCandidates.front().id; } /** Try to find a connection to evict when the node is full. * Extreme care must be taken to avoid opening the node to attacker * triggered network partitioning. * The strategy used here is to protect a small number of peers * for each of several distinct characteristics which are difficult * to forge. In order to partition a node the attacker must be * simultaneously better at all of them than honest peers. */ bool CConnman::AttemptToEvictConnection() { std::vector vEvictionCandidates; { LOCK(cs_vNodes); for (const CNode *node : vNodes) { if (node->HasPermission(PF_NOBAN)) { continue; } if (!node->IsInboundConn()) { continue; } if (node->fDisconnect) { continue; } bool peer_relay_txes = false; bool peer_filter_not_null = false; if (node->m_tx_relay != nullptr) { LOCK(node->m_tx_relay->cs_filter); peer_relay_txes = node->m_tx_relay->fRelayTxes; peer_filter_not_null = node->m_tx_relay->pfilter != nullptr; } NodeEvictionCandidate candidate = { node->GetId(), node->m_connected, node->m_min_ping_time, node->m_last_block_time, node->m_last_proof_time, node->m_last_tx_time, HasAllDesirableServiceFlags(node->nServices), peer_relay_txes, peer_filter_not_null, node->nKeyedNetGroup, node->m_prefer_evict, node->addr.IsLocal(), node->ConnectedThroughNetwork(), - node->m_avalanche_state - ? node->m_avalanche_state->getAvailabilityScore() + node->m_avalanche_enabled + ? node->getAvailabilityScore() : -std::numeric_limits::infinity()}; vEvictionCandidates.push_back(candidate); } } const std::optional node_id_to_evict = SelectNodeToEvict(std::move(vEvictionCandidates)); if (!node_id_to_evict) { return false; } LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (pnode->GetId() == *node_id_to_evict) { LogPrint( BCLog::NET, "selected %s connection for eviction peer=%d; disconnecting\n", pnode->ConnectionTypeAsString(), pnode->GetId()); pnode->fDisconnect = true; return true; } } return false; } void CConnman::AcceptConnection(const ListenSocket &hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr *)&sockaddr, &len); CAddress addr; if (hSocket == INVALID_SOCKET) { const int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) { LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); } return; } if (!addr.SetSockAddr((const struct sockaddr *)&sockaddr)) { LogPrintf("Warning: Unknown socket family\n"); } const CAddress addr_bind = GetBindAddress(hSocket); NetPermissionFlags permissionFlags = NetPermissionFlags::PF_NONE; hListenSocket.AddSocketPermissionFlags(permissionFlags); CreateNodeFromAcceptedSocket(hSocket, permissionFlags, addr_bind, addr); } void CConnman::CreateNodeFromAcceptedSocket(SOCKET hSocket, NetPermissionFlags permissionFlags, const CAddress &addr_bind, const CAddress &addr) { int nInbound = 0; int nMaxInbound = nMaxConnections - m_max_outbound; AddWhitelistPermissionFlags(permissionFlags, addr); bool legacyWhitelisted = false; if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_ISIMPLICIT)) { NetPermissions::ClearFlag(permissionFlags, PF_ISIMPLICIT); if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) { NetPermissions::AddFlag(permissionFlags, PF_FORCERELAY); } if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) { NetPermissions::AddFlag(permissionFlags, PF_RELAY); } NetPermissions::AddFlag(permissionFlags, PF_MEMPOOL); NetPermissions::AddFlag(permissionFlags, PF_NOBAN); legacyWhitelisted = true; } { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->IsInboundConn()) { nInbound++; } } } if (!fNetworkActive) { LogPrint(BCLog::NET, "connection from %s dropped: not accepting new connections\n", addr.ToString()); CloseSocket(hSocket); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted // sockets on all platforms. Set it again here just to be sure. SetSocketNoDelay(hSocket); // Don't accept connections from banned peers. bool banned = m_banman && m_banman->IsBanned(addr); if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_NOBAN) && banned) { LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); return; } // Only accept connections from discouraged peers if our inbound slots // aren't (almost) full. bool discouraged = m_banman && m_banman->IsDiscouraged(addr); if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_NOBAN) && nInbound + 1 >= nMaxInbound && discouraged) { LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToString()); CloseSocket(hSocket); return; } if (nInbound >= nMaxInbound) { if (!AttemptToEvictConnection()) { // No connection to evict, disconnect the new connection LogPrint(BCLog::NET, "failed to find an eviction candidate - " "connection dropped (full)\n"); CloseSocket(hSocket); return; } } NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE) .Write(id) .Finalize(); uint64_t extra_entropy = GetDeterministicRandomizer(RANDOMIZER_ID_EXTRAENTROPY) .Write(id) .Finalize(); ServiceFlags nodeServices = nLocalServices; if (NetPermissions::HasFlag(permissionFlags, PF_BLOOMFILTER)) { nodeServices = static_cast(nodeServices | NODE_BLOOM); } const bool inbound_onion = std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) != m_onion_binds.end(); CNode *pnode = new CNode( id, nodeServices, hSocket, addr, CalculateKeyedNetGroup(addr), nonce, extra_entropy, addr_bind, "", ConnectionType::INBOUND, inbound_onion); pnode->AddRef(); pnode->m_permissionFlags = permissionFlags; // If this flag is present, the user probably expect that RPC and QT report // it as whitelisted (backward compatibility) pnode->m_legacyWhitelisted = legacyWhitelisted; pnode->m_prefer_evict = discouraged; for (auto interface : m_msgproc) { interface->InitializeNode(*config, pnode); } LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString()); { LOCK(cs_vNodes); vNodes.push_back(pnode); } // We received a new connection, harvest entropy from the time (and our peer // count) RandAddEvent(uint32_t(id)); } bool CConnman::AddConnection(const std::string &address, ConnectionType conn_type) { std::optional max_connections; switch (conn_type) { case ConnectionType::INBOUND: case ConnectionType::MANUAL: return false; case ConnectionType::OUTBOUND_FULL_RELAY: max_connections = m_max_outbound_full_relay; break; case ConnectionType::BLOCK_RELAY: max_connections = m_max_outbound_block_relay; break; // no limit for ADDR_FETCH because -seednode has no limit either case ConnectionType::ADDR_FETCH: break; // no limit for FEELER connections since they're short-lived case ConnectionType::FEELER: break; case ConnectionType::AVALANCHE_OUTBOUND: max_connections = m_max_avalanche_outbound; break; } // no default case, so the compiler can warn about missing cases // Count existing connections int existing_connections = WITH_LOCK( cs_vNodes, return std::count_if( vNodes.begin(), vNodes.end(), [conn_type](CNode *node) { return node->m_conn_type == conn_type; });); // Max connections of specified type already exist if (max_connections != std::nullopt && existing_connections >= max_connections) { return false; } // Max total outbound connections already exist CSemaphoreGrant grant(*semOutbound, true); if (!grant) { return false; } OpenNetworkConnection(CAddress(), false, &grant, address.c_str(), conn_type); return true; } void CConnman::DisconnectNodes() { { LOCK(cs_vNodes); if (!fNetworkActive) { // Disconnect any connected nodes for (CNode *pnode : vNodes) { if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId()); pnode->fDisconnect = true; } } } // Disconnect unused nodes std::vector vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { if (pnode->fDisconnect) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes std::list vNodesDisconnectedCopy = vNodesDisconnected; for (CNode *pnode : vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { fDelete = true; } } if (fDelete) { vNodesDisconnected.remove(pnode); DeleteNode(pnode); } } } } } void CConnman::NotifyNumConnectionsChanged() { size_t vNodesSize; { LOCK(cs_vNodes); vNodesSize = vNodes.size(); } if (vNodesSize != nPrevNodeCount) { nPrevNodeCount = vNodesSize; if (clientInterface) { clientInterface->NotifyNumConnectionsChanged(vNodesSize); } } } bool CConnman::ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const { return node.m_connected + m_peer_connect_timeout < now; } bool CConnman::InactivityCheck(const CNode &node) const { // Tests that see disconnects after using mocktime can start nodes with a // large timeout. For example, -peertimeout=999999999. const auto now{GetTime()}; const auto last_send{node.m_last_send.load()}; const auto last_recv{node.m_last_recv.load()}; if (!ShouldRunInactivityChecks(node, now)) { return false; } if (last_recv.count() == 0 || last_send.count() == 0) { LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d peer=%d\n", count_seconds(m_peer_connect_timeout), last_recv.count() != 0, last_send.count() != 0, node.GetId()); return true; } if (now > last_send + TIMEOUT_INTERVAL) { LogPrint(BCLog::NET, "socket sending timeout: %is peer=%d\n", count_seconds(now - last_send), node.GetId()); return true; } if (now > last_recv + TIMEOUT_INTERVAL) { LogPrint(BCLog::NET, "socket receive timeout: %is peer=%d\n", count_seconds(now - last_recv), node.GetId()); return true; } if (!node.fSuccessfullyConnected) { LogPrint(BCLog::NET, "version handshake timeout peer=%d\n", node.GetId()); return true; } return false; } bool CConnman::GenerateSelectSet(std::set &recv_set, std::set &send_set, std::set &error_set) { for (const ListenSocket &hListenSocket : vhListenSocket) { recv_set.insert(hListenSocket.socket); } { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { // Implement the following logic: // * If there is data to send, select() for sending data. As this // only happens when optimistic write failed, we choose to first // drain the write buffer in this case before receiving more. This // avoids needlessly queueing received data, if the remote peer is // not themselves receiving data. This means properly utilizing // TCP flow control signalling. // * Otherwise, if there is space left in the receive buffer, // select() for receiving data. // * Hand off all complete messages to the processor, to be handled // without blocking here. bool select_recv = !pnode->fPauseRecv; bool select_send; { LOCK(pnode->cs_vSend); select_send = !pnode->vSendMsg.empty(); } LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } error_set.insert(pnode->hSocket); if (select_send) { send_set.insert(pnode->hSocket); continue; } if (select_recv) { recv_set.insert(pnode->hSocket); } } } return !recv_set.empty() || !send_set.empty() || !error_set.empty(); } #ifdef USE_POLL void CConnman::SocketEvents(std::set &recv_set, std::set &send_set, std::set &error_set) { std::set recv_select_set, send_select_set, error_select_set; if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) { interruptNet.sleep_for( std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)); return; } std::unordered_map pollfds; for (SOCKET socket_id : recv_select_set) { pollfds[socket_id].fd = socket_id; pollfds[socket_id].events |= POLLIN; } for (SOCKET socket_id : send_select_set) { pollfds[socket_id].fd = socket_id; pollfds[socket_id].events |= POLLOUT; } for (SOCKET socket_id : error_select_set) { pollfds[socket_id].fd = socket_id; // These flags are ignored, but we set them for clarity pollfds[socket_id].events |= POLLERR | POLLHUP; } std::vector vpollfds; vpollfds.reserve(pollfds.size()); for (auto it : pollfds) { vpollfds.push_back(std::move(it.second)); } if (poll(vpollfds.data(), vpollfds.size(), SELECT_TIMEOUT_MILLISECONDS) < 0) { return; } if (interruptNet) { return; } for (struct pollfd pollfd_entry : vpollfds) { if (pollfd_entry.revents & POLLIN) { recv_set.insert(pollfd_entry.fd); } if (pollfd_entry.revents & POLLOUT) { send_set.insert(pollfd_entry.fd); } if (pollfd_entry.revents & (POLLERR | POLLHUP)) { error_set.insert(pollfd_entry.fd); } } } #else void CConnman::SocketEvents(std::set &recv_set, std::set &send_set, std::set &error_set) { std::set recv_select_set, send_select_set, error_select_set; if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) { interruptNet.sleep_for( std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)); return; } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; // frequency to poll pnode->vSend timeout.tv_usec = SELECT_TIMEOUT_MILLISECONDS * 1000; fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; for (SOCKET hSocket : recv_select_set) { FD_SET(hSocket, &fdsetRecv); hSocketMax = std::max(hSocketMax, hSocket); } for (SOCKET hSocket : send_select_set) { FD_SET(hSocket, &fdsetSend); hSocketMax = std::max(hSocketMax, hSocket); } for (SOCKET hSocket : error_select_set) { FD_SET(hSocket, &fdsetError); hSocketMax = std::max(hSocketMax, hSocket); } int nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); if (interruptNet) { return; } if (nSelect == SOCKET_ERROR) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) { FD_SET(i, &fdsetRecv); } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); if (!interruptNet.sleep_for( std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS))) { return; } } for (SOCKET hSocket : recv_select_set) { if (FD_ISSET(hSocket, &fdsetRecv)) { recv_set.insert(hSocket); } } for (SOCKET hSocket : send_select_set) { if (FD_ISSET(hSocket, &fdsetSend)) { send_set.insert(hSocket); } } for (SOCKET hSocket : error_select_set) { if (FD_ISSET(hSocket, &fdsetError)) { error_set.insert(hSocket); } } } #endif void CConnman::SocketHandler() { std::set recv_set, send_set, error_set; SocketEvents(recv_set, send_set, error_set); if (interruptNet) { return; } // // Accept new connections // for (const ListenSocket &hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && recv_set.count(hListenSocket.socket) > 0) { AcceptConnection(hListenSocket); } } // // Service each socket // std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { pnode->AddRef(); } } for (CNode *pnode : vNodesCopy) { if (interruptNet) { return; } // // Receive // bool recvSet = false; bool sendSet = false; bool errorSet = false; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } recvSet = recv_set.count(pnode->hSocket) > 0; sendSet = send_set.count(pnode->hSocket) > 0; errorSet = error_set.count(pnode->hSocket) > 0; } if (recvSet || errorSet) { // typical socket buffer is 8K-64K uint8_t pchBuf[0x10000]; int32_t nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } nBytes = recv(pnode->hSocket, (char *)pchBuf, sizeof(pchBuf), MSG_DONTWAIT); } if (nBytes > 0) { bool notify = false; if (!pnode->ReceiveMsgBytes( *config, Span(pchBuf, nBytes), notify)) { pnode->CloseSocketDisconnect(); } RecordBytesRecv(nBytes); if (notify) { size_t nSizeAdded = 0; auto it(pnode->vRecvMsg.begin()); for (; it != pnode->vRecvMsg.end(); ++it) { // vRecvMsg contains only completed CNetMessage // the single possible partially deserialized message // are held by TransportDeserializer nSizeAdded += it->m_raw_message_size; } { LOCK(pnode->cs_vProcessMsg); pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it); pnode->nProcessQueueSize += nSizeAdded; pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize; } WakeMessageHandler(); } } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId()); } pnode->CloseSocketDisconnect(); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr)); } pnode->CloseSocketDisconnect(); } } } // // Send // if (sendSet) { LOCK(pnode->cs_vSend); size_t nBytes = SocketSendData(*pnode); if (nBytes) { RecordBytesSent(nBytes); } } if (InactivityCheck(*pnode)) { pnode->fDisconnect = true; } } { LOCK(cs_vNodes); for (CNode *pnode : vNodesCopy) { pnode->Release(); } } } void CConnman::ThreadSocketHandler() { while (!interruptNet) { DisconnectNodes(); NotifyNumConnectionsChanged(); SocketHandler(); } } void CConnman::WakeMessageHandler() { { LOCK(mutexMsgProc); fMsgProcWake = true; } condMsgProc.notify_one(); } void CConnman::ThreadDNSAddressSeed() { FastRandomContext rng; std::vector seeds = GetRandomizedDNSSeeds(config->GetChainParams()); // Number of seeds left before testing if we have enough connections int seeds_right_now = 0; int found = 0; if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) { // When -forcednsseed is provided, query all. seeds_right_now = seeds.size(); } else if (addrman.size() == 0) { // If we have no known peers, query all. // This will occur on the first run, or if peers.dat has been // deleted. seeds_right_now = seeds.size(); } // goal: only query DNS seed if address need is acute // * If we have a reasonable number of peers in addrman, spend // some time trying them first. This improves user privacy by // creating fewer identifying DNS requests, reduces trust by // giving seeds less influence on the network topology, and // reduces traffic to the seeds. // * When querying DNS seeds query a few at once, this ensures // that we don't give DNS seeds the ability to eclipse nodes // that query them. // * If we continue having problems, eventually query all the // DNS seeds, and if that fails too, also try the fixed seeds. // (done in ThreadOpenConnections) const std::chrono::seconds seeds_wait_time = (addrman.size() >= DNSSEEDS_DELAY_PEER_THRESHOLD ? DNSSEEDS_DELAY_MANY_PEERS : DNSSEEDS_DELAY_FEW_PEERS); for (const std::string &seed : seeds) { if (seeds_right_now == 0) { seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE; if (addrman.size() > 0) { LogPrintf("Waiting %d seconds before querying DNS seeds.\n", seeds_wait_time.count()); std::chrono::seconds to_wait = seeds_wait_time; while (to_wait.count() > 0) { // if sleeping for the MANY_PEERS interval, wake up // early to see if we have enough peers and can stop // this thread entirely freeing up its resources std::chrono::seconds w = std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait); if (!interruptNet.sleep_for(w)) { return; } to_wait -= w; int nRelevant = 0; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->fSuccessfullyConnected && pnode->IsOutboundOrBlockRelayConn()) { ++nRelevant; } } } if (nRelevant >= 2) { if (found > 0) { LogPrintf("%d addresses found from DNS seeds\n", found); LogPrintf( "P2P peers available. Finished DNS seeding.\n"); } else { LogPrintf( "P2P peers available. Skipped DNS seeding.\n"); } return; } } } } if (interruptNet) { return; } // hold off on querying seeds if P2P network deactivated if (!fNetworkActive) { LogPrintf("Waiting for network to be reactivated before querying " "DNS seeds.\n"); do { if (!interruptNet.sleep_for(std::chrono::seconds{1})) { return; } } while (!fNetworkActive); } LogPrintf("Loading addresses from DNS seed %s\n", seed); if (HaveNameProxy()) { AddAddrFetch(seed); } else { std::vector vIPs; std::vector vAdd; ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE); std::string host = strprintf("x%x.%s", requiredServiceBits, seed); CNetAddr resolveSource; if (!resolveSource.SetInternal(host)) { continue; } // Limits number of IPs learned from a DNS seed unsigned int nMaxIPs = 256; if (LookupHost(host, vIPs, nMaxIPs, true)) { for (const CNetAddr &ip : vIPs) { int nOneDay = 24 * 3600; CAddress addr = CAddress( CService(ip, config->GetChainParams().GetDefaultPort()), requiredServiceBits); // Use a random age between 3 and 7 days old. addr.nTime = GetTime() - 3 * nOneDay - rng.randrange(4 * nOneDay); vAdd.push_back(addr); found++; } addrman.Add(vAdd, resolveSource); } else { // We now avoid directly using results from DNS Seeds which do // not support service bit filtering, instead using them as a // addrfetch to get nodes with our desired service bits. AddAddrFetch(seed); } } --seeds_right_now; } LogPrintf("%d addresses found from DNS seeds\n", found); } void CConnman::DumpAddresses() { int64_t nStart = GetTimeMillis(); DumpPeerAddresses(config->GetChainParams(), ::gArgs, addrman); LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void CConnman::ProcessAddrFetch() { std::string strDest; { LOCK(m_addr_fetches_mutex); if (m_addr_fetches.empty()) { return; } strDest = m_addr_fetches.front(); m_addr_fetches.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { OpenNetworkConnection(addr, false, &grant, strDest.c_str(), ConnectionType::ADDR_FETCH); } } bool CConnman::GetTryNewOutboundPeer() { return m_try_another_outbound_peer; } void CConnman::SetTryNewOutboundPeer(bool flag) { m_try_another_outbound_peer = flag; LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false"); } // Return the number of peers we have over our outbound connection limit. // Exclude peers that are marked for disconnect, or are going to be disconnected // soon (eg ADDR_FETCH and FEELER). // Also exclude peers that haven't finished initial connection handshake yet (so // that we don't decide we're over our desired connection limit, and then evict // some peer that has finished the handshake). int CConnman::GetExtraFullOutboundCount() { int full_outbound_peers = 0; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsFullOutboundConn()) { ++full_outbound_peers; } } } return std::max(full_outbound_peers - m_max_outbound_full_relay - m_max_avalanche_outbound, 0); } int CConnman::GetExtraBlockRelayCount() { int block_relay_peers = 0; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->fSuccessfullyConnected && !pnode->fDisconnect && pnode->IsBlockOnlyConn()) { ++block_relay_peers; } } } return std::max(block_relay_peers - m_max_outbound_block_relay, 0); } void CConnman::ThreadOpenConnections( const std::vector connect, std::function mockOpenConnection) { // Connect to specific addresses if (!connect.empty()) { for (int64_t nLoop = 0;; nLoop++) { ProcessAddrFetch(); for (const std::string &strAddr : connect) { CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), ConnectionType::MANUAL); for (int i = 0; i < 10 && i < nLoop; i++) { if (!interruptNet.sleep_for( std::chrono::milliseconds(500))) { return; } } } if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } } } // Initiate network connections auto start = GetTime(); // Minimum time before next feeler connection (in microseconds). auto next_feeler = PoissonNextSend(start, FEELER_INTERVAL); auto next_extra_block_relay = PoissonNextSend(start, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL); const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED); bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS); if (!add_fixed_seeds) { LogPrintf("Fixed seeds are disabled\n"); } while (!interruptNet) { ProcessAddrFetch(); // No need to sleep the thread if we are mocking the network connection if (!mockOpenConnection && !interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } CSemaphoreGrant grant(*semOutbound); if (interruptNet) { return; } if (add_fixed_seeds && addrman.size() == 0) { // When the node starts with an empty peers.dat, there are a few // other sources of peers before we fallback on to fixed seeds: // -dnsseed, -seednode, -addnode If none of those are available, we // fallback on to fixed seeds immediately, else we allow 60 seconds // for any of those sources to populate addrman. bool add_fixed_seeds_now = false; // It is cheapest to check if enough time has passed first. if (GetTime() > start + std::chrono::minutes{1}) { add_fixed_seeds_now = true; LogPrintf("Adding fixed seeds as 60 seconds have passed and " "addrman is empty\n"); } // Checking !dnsseed is cheaper before locking 2 mutexes. if (!add_fixed_seeds_now && !dnsseed) { LOCK2(m_addr_fetches_mutex, cs_vAddedNodes); if (m_addr_fetches.empty() && vAddedNodes.empty()) { add_fixed_seeds_now = true; LogPrintf( "Adding fixed seeds as -dnsseed=0, -addnode is not " "provided and all -seednode(s) attempted\n"); } } if (add_fixed_seeds_now) { CNetAddr local; local.SetInternal("fixedseeds"); addrman.Add(convertSeed6(config->GetChainParams().FixedSeeds()), local); add_fixed_seeds = false; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). int nOutboundFullRelay = 0; int nOutboundBlockRelay = 0; int nOutboundAvalanche = 0; std::set> setConnected; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->IsAvalancheOutboundConnection()) { nOutboundAvalanche++; } else if (pnode->IsFullOutboundConn()) { nOutboundFullRelay++; } else if (pnode->IsBlockOnlyConn()) { nOutboundBlockRelay++; } // Netgroups for inbound and manual peers are not excluded // because our goal here is to not use multiple of our // limited outbound slots on a single netgroup but inbound // and manual peers do not use our outbound slots. Inbound // peers also have the added issue that they could be attacker // controlled and could be used to prevent us from connecting // to particular hosts if we used them here. switch (pnode->m_conn_type) { case ConnectionType::INBOUND: case ConnectionType::MANUAL: break; case ConnectionType::AVALANCHE_OUTBOUND: case ConnectionType::OUTBOUND_FULL_RELAY: case ConnectionType::BLOCK_RELAY: case ConnectionType::ADDR_FETCH: case ConnectionType::FEELER: setConnected.insert( pnode->addr.GetGroup(addrman.GetAsmap())); } // no default case, so the compiler can warn about missing // cases } } ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY; auto now = GetTime(); bool anchor = false; bool fFeeler = false; // Determine what type of connection to open. Opening // BLOCK_RELAY connections to addresses from anchors.dat gets the // highest priority. Then we open AVALANCHE_OUTBOUND connection until we // hit our avalanche outbound peer limit, which is 0 if avalanche is not // enabled. We fallback after 50 retries to OUTBOUND_FULL_RELAY if the // peer is not avalanche capable until we meet our full-relay capacity. // Then we open BLOCK_RELAY connection until we hit our block-relay-only // peer limit. // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we // try opening an additional OUTBOUND_FULL_RELAY connection. If none of // these conditions are met, check to see if it's time to try an extra // block-relay-only peer (to confirm our tip is current, see below) or // the next_feeler timer to decide if we should open a FEELER. if (!m_anchors.empty() && (nOutboundBlockRelay < m_max_outbound_block_relay)) { conn_type = ConnectionType::BLOCK_RELAY; anchor = true; } else if (g_avalanche && (nOutboundAvalanche < m_max_avalanche_outbound)) { conn_type = ConnectionType::AVALANCHE_OUTBOUND; } else if (nOutboundFullRelay < m_max_outbound_full_relay) { // OUTBOUND_FULL_RELAY } else if (nOutboundBlockRelay < m_max_outbound_block_relay) { conn_type = ConnectionType::BLOCK_RELAY; } else if (GetTryNewOutboundPeer()) { // OUTBOUND_FULL_RELAY } else if (now > next_extra_block_relay && m_start_extra_block_relay_peers) { // Periodically connect to a peer (using regular outbound selection // methodology from addrman) and stay connected long enough to sync // headers, but not much else. // // Then disconnect the peer, if we haven't learned anything new. // // The idea is to make eclipse attacks very difficult to pull off, // because every few minutes we're finding a new peer to learn // headers from. // // This is similar to the logic for trying extra outbound // (full-relay) peers, except: // - we do this all the time on a poisson timer, rather than just // when our tip is stale // - we potentially disconnect our next-youngest block-relay-only // peer, if our newest block-relay-only peer delivers a block more // recently. // See the eviction logic in net_processing.cpp. // // Because we can promote these connections to block-relay-only // connections, they do not get their own ConnectionType enum // (similar to how we deal with extra outbound peers). next_extra_block_relay = PoissonNextSend(now, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL); conn_type = ConnectionType::BLOCK_RELAY; } else if (now > next_feeler) { next_feeler = PoissonNextSend(now, FEELER_INTERVAL); conn_type = ConnectionType::FEELER; fFeeler = true; } else { // skip to next iteration of while loop continue; } addrman.ResolveCollisions(); int64_t nANow = GetAdjustedTime(); int nTries = 0; while (!interruptNet) { if (anchor && !m_anchors.empty()) { const CAddress addr = m_anchors.back(); m_anchors.pop_back(); if (!addr.IsValid() || IsLocal(addr) || !IsReachable(addr) || !HasAllDesirableServiceFlags(addr.nServices) || setConnected.count(addr.GetGroup(addrman.GetAsmap()))) { continue; } addrConnect = addr; LogPrint(BCLog::NET, "Trying to make an anchor connection to %s\n", addrConnect.ToString()); break; } // If we didn't find an appropriate destination after trying 100 // addresses fetched from addrman, stop this loop, and let the outer // loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman // addresses. nTries++; if (nTries > 100) { break; } CAddress addr; int64_t addr_last_try{0}; if (fFeeler) { // First, try to get a tried table collision address. This // returns an empty (invalid) address if there are no collisions // to try. std::tie(addr, addr_last_try) = addrman.SelectTriedCollision(); if (!addr.IsValid()) { // No tried table collisions. Select a new table address // for our feeler. std::tie(addr, addr_last_try) = addrman.Select(true); } else if (AlreadyConnectedToAddress(addr)) { // If test-before-evict logic would have us connect to a // peer that we're already connected to, just mark that // address as Good(). We won't be able to initiate the // connection anyway, so this avoids inadvertently evicting // a currently-connected peer. addrman.Good(addr); // Select a new table address for our feeler instead. std::tie(addr, addr_last_try) = addrman.Select(true); } } else { // Not a feeler std::tie(addr, addr_last_try) = addrman.Select(); } // Require outbound connections, other than feelers and avalanche, // to be to distinct network groups if (!fFeeler && conn_type != ConnectionType::AVALANCHE_OUTBOUND && setConnected.count(addr.GetGroup(addrman.GetAsmap()))) { break; } // if we selected an invalid or local address, restart if (!addr.IsValid() || IsLocal(addr)) { break; } if (!IsReachable(addr)) { continue; } // only consider very recently tried nodes after 30 failed attempts if (nANow - addr_last_try < 600 && nTries < 30) { continue; } // for non-feelers, require all the services we'll want, // for feelers, only require they be a full node (only because most // SPV clients don't have a good address DB available) if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) { continue; } // Do not connect to bad ports, unless 50 invalid addresses have // been selected already. if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) && IsBadPort(addr.GetPort())) { continue; } // For avalanche peers, check they have the avalanche service bit // set. if (conn_type == ConnectionType::AVALANCHE_OUTBOUND && !(addr.nServices & NODE_AVALANCHE)) { // If this peer is not suitable as an avalanche one and we tried // over 50 addresses already, see if we can fallback to a non // avalanche full outbound. if (nTries < 50 || nOutboundFullRelay >= m_max_outbound_full_relay || setConnected.count(addr.GetGroup(addrman.GetAsmap()))) { // Fallback is not desirable or possible, try another one continue; } // Fallback is possible, update the connection type accordingly conn_type = ConnectionType::OUTBOUND_FULL_RELAY; } addrConnect = addr; break; } if (addrConnect.IsValid()) { if (fFeeler) { // Add small amount of random noise before connection to avoid // synchronization. int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); if (!interruptNet.sleep_for( std::chrono::milliseconds(randsleep))) { return; } LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString()); } // This mock is for testing purpose only. It prevents the thread // from attempting the connection which is useful for testing. if (mockOpenConnection) { mockOpenConnection(addrConnect, conn_type); } else { OpenNetworkConnection(addrConnect, int(setConnected.size()) >= std::min(nMaxConnections - 1, 2), &grant, nullptr, conn_type); } } } } std::vector CConnman::GetCurrentBlockRelayOnlyConns() const { std::vector ret; LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->IsBlockOnlyConn()) { ret.push_back(pnode->addr); } } return ret; } std::vector CConnman::GetAddedNodeInfo() { std::vector ret; std::list lAddresses(0); { LOCK(cs_vAddedNodes); ret.reserve(vAddedNodes.size()); std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses)); } // Build a map of all already connected addresses (by IP:port and by name) // to inbound/outbound and resolved CService std::map mapConnected; std::map> mapConnectedByName; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->addr.IsValid()) { mapConnected[pnode->addr] = pnode->IsInboundConn(); } std::string addrName = pnode->GetAddrName(); if (!addrName.empty()) { mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->IsInboundConn(), static_cast(pnode->addr)); } } } for (const std::string &strAddNode : lAddresses) { CService service( LookupNumeric(strAddNode, Params().GetDefaultPort(strAddNode))); AddedNodeInfo addedNode{strAddNode, CService(), false, false}; if (service.IsValid()) { // strAddNode is an IP:port auto it = mapConnected.find(service); if (it != mapConnected.end()) { addedNode.resolvedAddress = service; addedNode.fConnected = true; addedNode.fInbound = it->second; } } else { // strAddNode is a name auto it = mapConnectedByName.find(strAddNode); if (it != mapConnectedByName.end()) { addedNode.resolvedAddress = it->second.second; addedNode.fConnected = true; addedNode.fInbound = it->second.first; } } ret.emplace_back(std::move(addedNode)); } return ret; } void CConnman::ThreadOpenAddedConnections() { while (true) { CSemaphoreGrant grant(*semAddnode); std::vector vInfo = GetAddedNodeInfo(); bool tried = false; for (const AddedNodeInfo &info : vInfo) { if (!info.fConnected) { if (!grant.TryAcquire()) { // If we've used up our semaphore and need a new one, let's // not wait here since while we are waiting the // addednodeinfo state might change. break; } tried = true; CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), ConnectionType::MANUAL); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } } } // Retry every 60 seconds if a connection was attempted, otherwise two // seconds. if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) { return; } } } // If successful, this moves the passed grant to the constructed node. void CConnman::OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, ConnectionType conn_type) { assert(conn_type != ConnectionType::INBOUND); // // Initiate outbound network connection // if (interruptNet) { return; } if (!fNetworkActive) { return; } if (!pszDest) { bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect)); if (IsLocal(addrConnect) || banned_or_discouraged || AlreadyConnectedToAddress(addrConnect)) { return; } } else if (FindNode(std::string(pszDest))) { return; } CNode *pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type); if (!pnode) { return; } if (grantOutbound) { grantOutbound->MoveTo(pnode->grantOutbound); } for (auto interface : m_msgproc) { interface->InitializeNode(*config, pnode); } { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::ThreadMessageHandler() { while (!flagInterruptMsgProc) { std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { pnode->AddRef(); } } bool fMoreWork = false; for (CNode *pnode : vNodesCopy) { if (pnode->fDisconnect) { continue; } bool fMoreNodeWork = false; // Receive messages for (auto interface : m_msgproc) { fMoreNodeWork |= interface->ProcessMessages( *config, pnode, flagInterruptMsgProc); } fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend); if (flagInterruptMsgProc) { return; } // Send messages { LOCK(pnode->cs_sendProcessing); for (auto interface : m_msgproc) { interface->SendMessages(*config, pnode); } } if (flagInterruptMsgProc) { return; } } { LOCK(cs_vNodes); for (CNode *pnode : vNodesCopy) { pnode->Release(); } } WAIT_LOCK(mutexMsgProc, lock); if (!fMoreWork) { condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED( mutexMsgProc) { return fMsgProcWake; }); } fMsgProcWake = false; } } void CConnman::ThreadI2PAcceptIncoming() { static constexpr auto err_wait_begin = 1s; static constexpr auto err_wait_cap = 5min; auto err_wait = err_wait_begin; bool advertising_listen_addr = false; i2p::Connection conn; while (!interruptNet) { if (!m_i2p_sam_session->Listen(conn)) { if (advertising_listen_addr && conn.me.IsValid()) { RemoveLocal(conn.me); advertising_listen_addr = false; } interruptNet.sleep_for(err_wait); if (err_wait < err_wait_cap) { err_wait *= 2; } continue; } if (!advertising_listen_addr) { AddLocal(conn.me, LOCAL_MANUAL); advertising_listen_addr = true; } if (!m_i2p_sam_session->Accept(conn)) { continue; } CreateNodeFromAcceptedSocket( conn.sock->Release(), NetPermissionFlags::PF_NONE, CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE}); } } bool CConnman::BindListenPort(const CService &addrBind, bilingual_str &strError, NetPermissionFlags permissions) { int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr *)&sockaddr, &len)) { strError = strprintf( Untranslated("Error: Bind address family for %s not supported"), addrBind.ToString()); LogPrintf("%s\n", strError.original); return false; } std::unique_ptr sock = CreateSock(addrBind); if (!sock) { strError = strprintf(Untranslated("Error: Couldn't open socket for incoming " "connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError.original); return false; } // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(sock->Get(), SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)); // Some systems don't have IPV6_V6ONLY but are always v6only; others do have // the option and enable it by default or not. Try to enable it, if // possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY setsockopt(sock->Get(), IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)); #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(sock->Get(), IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (sockopt_arg_type)&nProtLevel, sizeof(int)); #endif } if (::bind(sock->Get(), (struct sockaddr *)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) { strError = strprintf(_("Unable to bind to %s on this computer. %s " "is probably already running."), addrBind.ToString(), PACKAGE_NAME); } else { strError = strprintf(_("Unable to bind to %s on this computer " "(bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); } LogPrintf("%s\n", strError.original); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(sock->Get(), SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections " "failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError.original); return false; } vhListenSocket.push_back(ListenSocket(sock->Release(), permissions)); return true; } void Discover() { if (!fDiscover) { return; } #ifdef WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { std::vector vaddr; if (LookupHost(pszHostName, vaddr, 0, true)) { for (const CNetAddr &addr : vaddr) { if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } } #elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS) // Get local host ip struct ifaddrs *myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs *ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next) { if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0 || strcmp(ifa->ifa_name, "lo") == 0 || strcmp(ifa->ifa_name, "lo0") == 0) { continue; } if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in *s4 = reinterpret_cast(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6 *s6 = reinterpret_cast(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } } freeifaddrs(myaddrs); } #endif } void CConnman::SetNetworkActive(bool active) { LogPrintf("%s: %s\n", __func__, active); if (fNetworkActive == active) { return; } fNetworkActive = active; uiInterface.NotifyNetworkActiveChanged(fNetworkActive); } CConnman::CConnman(const Config &configIn, uint64_t nSeed0In, uint64_t nSeed1In, AddrMan &addrmanIn, bool network_active) : config(&configIn), addrman(addrmanIn), nSeed0(nSeed0In), nSeed1(nSeed1In) { SetTryNewOutboundPeer(false); Options connOptions; Init(connOptions); SetNetworkActive(network_active); } NodeId CConnman::GetNewNodeId() { return nLastNodeId.fetch_add(1); } bool CConnman::Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions) { if (!(flags & BF_EXPLICIT) && !IsReachable(addr)) { return false; } bilingual_str strError; if (!BindListenPort(addr, strError, permissions)) { if ((flags & BF_REPORT_ERROR) && clientInterface) { clientInterface->ThreadSafeMessageBox( strError, "", CClientUIInterface::MSG_ERROR); } return false; } if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) && !(permissions & PF_NOBAN)) { AddLocal(addr, LOCAL_BIND); } return true; } bool CConnman::InitBinds(const Options &options) { bool fBound = false; for (const auto &addrBind : options.vBinds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR), NetPermissionFlags::PF_NONE); } for (const auto &addrBind : options.vWhiteBinds) { fBound |= Bind(addrBind.m_service, (BF_EXPLICIT | BF_REPORT_ERROR), addrBind.m_flags); } for (const auto &addr_bind : options.onion_binds) { fBound |= Bind(addr_bind, BF_EXPLICIT | BF_DONT_ADVERTISE, NetPermissionFlags::PF_NONE); } if (options.bind_on_any) { struct in_addr inaddr_any; inaddr_any.s_addr = htonl(INADDR_ANY); struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT; fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::PF_NONE); fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::PF_NONE); } return fBound; } bool CConnman::Start(CScheduler &scheduler, const Options &connOptions) { Init(connOptions); if (fListen && !InitBinds(connOptions)) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Failed to listen on any port. Use -listen=0 if you want " "this."), "", CClientUIInterface::MSG_ERROR); } return false; } proxyType i2p_sam; if (GetProxy(NET_I2P, i2p_sam)) { m_i2p_sam_session = std::make_unique( gArgs.GetDataDirNet() / "i2p_private_key", i2p_sam.proxy, &interruptNet); } for (const auto &strDest : connOptions.vSeedNodes) { AddAddrFetch(strDest); } if (m_use_addrman_outgoing) { // Load addresses from anchors.dat m_anchors = ReadAnchors(config->GetChainParams(), gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME); if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) { m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS); } LogPrintf( "%i block-relay-only anchors will be tried for connections.\n", m_anchors.size()); } uiInterface.InitMessage(_("Starting network threads...").translated); fAddressesInitialized = true; if (semOutbound == nullptr) { // initialize semaphore semOutbound = std::make_unique( std::min(m_max_outbound, nMaxConnections)); } if (semAddnode == nullptr) { // initialize semaphore semAddnode = std::make_unique(nMaxAddnode); } // // Start threads // assert(m_msgproc.size() > 0); InterruptSocks5(false); interruptNet.reset(); flagInterruptMsgProc = false; { LOCK(mutexMsgProc); fMsgProcWake = false; } // Send and receive from sockets, accept connections threadSocketHandler = std::thread(&util::TraceThread, "net", [this] { ThreadSocketHandler(); }); if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED)) { LogPrintf("DNS seeding disabled\n"); } else { threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed", [this] { ThreadDNSAddressSeed(); }); } // Initiate manual connections threadOpenAddedConnections = std::thread( &util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); }); if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Cannot provide specific connections and have addrman find " "outgoing connections at the same."), "", CClientUIInterface::MSG_ERROR); } return false; } if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) { threadOpenConnections = std::thread(&util::TraceThread, "opencon", [this, connect = connOptions.m_specified_outgoing] { ThreadOpenConnections(connect, nullptr); }); } // Process messages threadMessageHandler = std::thread(&util::TraceThread, "msghand", [this] { ThreadMessageHandler(); }); if (connOptions.m_i2p_accept_incoming && m_i2p_sam_session.get() != nullptr) { threadI2PAcceptIncoming = std::thread(&util::TraceThread, "i2paccept", [this] { ThreadI2PAcceptIncoming(); }); } // Dump network addresses scheduler.scheduleEvery( [this]() { this->DumpAddresses(); return true; }, DUMP_PEERS_INTERVAL); return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } }; static CNetCleanup instance_of_cnetcleanup; void CConnman::Interrupt() { { LOCK(mutexMsgProc); flagInterruptMsgProc = true; } condMsgProc.notify_all(); interruptNet(); InterruptSocks5(true); if (semOutbound) { for (int i = 0; i < m_max_outbound; i++) { semOutbound->post(); } } if (semAddnode) { for (int i = 0; i < nMaxAddnode; i++) { semAddnode->post(); } } } void CConnman::StopThreads() { if (threadI2PAcceptIncoming.joinable()) { threadI2PAcceptIncoming.join(); } if (threadMessageHandler.joinable()) { threadMessageHandler.join(); } if (threadOpenConnections.joinable()) { threadOpenConnections.join(); } if (threadOpenAddedConnections.joinable()) { threadOpenAddedConnections.join(); } if (threadDNSAddressSeed.joinable()) { threadDNSAddressSeed.join(); } if (threadSocketHandler.joinable()) { threadSocketHandler.join(); } } void CConnman::StopNodes() { if (fAddressesInitialized) { DumpAddresses(); fAddressesInitialized = false; if (m_use_addrman_outgoing) { // Anchor connections are only dumped during clean shutdown. std::vector anchors_to_dump = GetCurrentBlockRelayOnlyConns(); if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) { anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS); } DumpAnchors(config->GetChainParams(), gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME, anchors_to_dump); } } // Delete peer connections. std::vector nodes; WITH_LOCK(cs_vNodes, nodes.swap(vNodes)); for (CNode *pnode : nodes) { pnode->CloseSocketDisconnect(); DeleteNode(pnode); } // Close listening sockets. for (ListenSocket &hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET) { if (!CloseSocket(hListenSocket.socket)) { LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); } } } for (CNode *pnode : vNodesDisconnected) { DeleteNode(pnode); } vNodesDisconnected.clear(); vhListenSocket.clear(); semOutbound.reset(); semAddnode.reset(); } void CConnman::DeleteNode(CNode *pnode) { assert(pnode); for (auto interface : m_msgproc) { interface->FinalizeNode(*config, *pnode); } delete pnode; } CConnman::~CConnman() { Interrupt(); Stop(); } std::vector CConnman::GetAddresses(size_t max_addresses, size_t max_pct, std::optional network) { std::vector addresses = addrman.GetAddr(max_addresses, max_pct, network); if (m_banman) { addresses.erase(std::remove_if(addresses.begin(), addresses.end(), [this](const CAddress &addr) { return m_banman->IsDiscouraged( addr) || m_banman->IsBanned(addr); }), addresses.end()); } return addresses; } std::vector CConnman::GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct) { auto local_socket_bytes = requestor.addrBind.GetAddrBytes(); uint64_t cache_id = GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE) .Write(requestor.addr.GetNetwork()) .Write(local_socket_bytes.data(), local_socket_bytes.size()) .Finalize(); const auto current_time = GetTime(); auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{}); CachedAddrResponse &cache_entry = r.first->second; // New CachedAddrResponse have expiration 0. if (cache_entry.m_cache_entry_expiration < current_time) { cache_entry.m_addrs_response_cache = GetAddresses(max_addresses, max_pct, /* network */ std::nullopt); // Choosing a proper cache lifetime is a trade-off between the privacy // leak minimization and the usefulness of ADDR responses to honest // users. // // Longer cache lifetime makes it more difficult for an attacker to // scrape enough AddrMan data to maliciously infer something useful. By // the time an attacker scraped enough AddrMan records, most of the // records should be old enough to not leak topology info by e.g. // analyzing real-time changes in timestamps. // // It takes only several hundred requests to scrape everything from an // AddrMan containing 100,000 nodes, so ~24 hours of cache lifetime // indeed makes the data less inferable by the time most of it could be // scraped (considering that timestamps are updated via ADDR // self-announcements and when nodes communicate). We also should be // robust to those attacks which may not require scraping *full* // victim's AddrMan (because even several timestamps of the same handful // of nodes may leak privacy). // // On the other hand, longer cache lifetime makes ADDR responses // outdated and less useful for an honest requestor, e.g. if most nodes // in the ADDR response are no longer active. // // However, the churn in the network is known to be rather low. Since we // consider nodes to be "terrible" (see IsTerrible()) if the timestamps // are older than 30 days, max. 24 hours of "penalty" due to cache // shouldn't make any meaningful difference in terms of the freshness of // the response. cache_entry.m_cache_entry_expiration = current_time + std::chrono::hours(21) + GetRandMillis(std::chrono::hours(6)); } return cache_entry.m_addrs_response_cache; } bool CConnman::AddNode(const std::string &strNode) { LOCK(cs_vAddedNodes); for (const std::string &it : vAddedNodes) { if (strNode == it) { return false; } } vAddedNodes.push_back(strNode); return true; } bool CConnman::RemoveAddedNode(const std::string &strNode) { LOCK(cs_vAddedNodes); for (std::vector::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { if (strNode == *it) { vAddedNodes.erase(it); return true; } } return false; } size_t CConnman::GetNodeCount(NumConnections flags) { LOCK(cs_vNodes); // Shortcut if we want total if (flags == CConnman::CONNECTIONS_ALL) { return vNodes.size(); } int nNum = 0; for (const auto &pnode : vNodes) { if (flags & (pnode->IsInboundConn() ? CONNECTIONS_IN : CONNECTIONS_OUT)) { nNum++; } } return nNum; } void CConnman::GetNodeStats(std::vector &vstats) { vstats.clear(); LOCK(cs_vNodes); vstats.reserve(vNodes.size()); for (CNode *pnode : vNodes) { vstats.emplace_back(); pnode->copyStats(vstats.back()); vstats.back().m_mapped_as = pnode->addr.GetMappedAS(addrman.GetAsmap()); } } bool CConnman::DisconnectNode(const std::string &strNode) { LOCK(cs_vNodes); if (CNode *pnode = FindNode(strNode)) { LogPrint(BCLog::NET, "disconnect by address%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId()); pnode->fDisconnect = true; return true; } return false; } bool CConnman::DisconnectNode(const CSubNet &subnet) { bool disconnected = false; LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (subnet.Match(pnode->addr)) { LogPrint(BCLog::NET, "disconnect by subnet%s matched peer=%d; disconnecting\n", (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""), pnode->GetId()); pnode->fDisconnect = true; disconnected = true; } } return disconnected; } bool CConnman::DisconnectNode(const CNetAddr &addr) { return DisconnectNode(CSubNet(addr)); } bool CConnman::DisconnectNode(NodeId id) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (id == pnode->GetId()) { LogPrint(BCLog::NET, "disconnect by id peer=%d; disconnecting\n", pnode->GetId()); pnode->fDisconnect = true; return true; } } return false; } void CConnman::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CConnman::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; const auto now = GetTime(); if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now) { // timeframe expired, reset cycle nMaxOutboundCycleStartTime = now; nMaxOutboundTotalBytesSentInCycle = 0; } // TODO, exclude peers with download permission nMaxOutboundTotalBytesSentInCycle += bytes; } uint64_t CConnman::GetMaxOutboundTarget() { LOCK(cs_totalBytesSent); return nMaxOutboundLimit; } std::chrono::seconds CConnman::GetMaxOutboundTimeframe() { return MAX_UPLOAD_TIMEFRAME; } std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return 0s; } if (nMaxOutboundCycleStartTime.count() == 0) { return MAX_UPLOAD_TIMEFRAME; } const std::chrono::seconds cycleEndTime = nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME; const auto now = GetTime(); return (cycleEndTime < now) ? 0s : cycleEndTime - now; } bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return false; } if (historicalBlockServingLimit) { // keep a large enough buffer to at least relay each block once. const std::chrono::seconds timeLeftInCycle = GetMaxOutboundTimeLeftInCycle(); const uint64_t buffer = timeLeftInCycle / std::chrono::minutes{10} * ONE_MEGABYTE; if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) { return true; } } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) { return true; } return false; } uint64_t CConnman::GetOutboundTargetBytesLeft() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return 0; } return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle; } uint64_t CConnman::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CConnman::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } ServiceFlags CConnman::GetLocalServices() const { return nLocalServices; } unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; } -void CNode::AvalancheState::invsPolled(uint32_t count) { +void CNode::invsPolled(uint32_t count) { invCounters += count; } -void CNode::AvalancheState::invsVoted(uint32_t count) { +void CNode::invsVoted(uint32_t count) { invCounters += uint64_t(count) << 32; } -void CNode::AvalancheState::updateAvailabilityScore() { - LOCK(cs_statistics); +void CNode::updateAvailabilityScore() { + if (!m_avalanche_enabled) { + return; + } uint64_t windowInvCounters = invCounters.exchange(0); double previousScore = availabilityScore; int64_t polls = windowInvCounters & std::numeric_limits::max(); int64_t votes = windowInvCounters >> 32; availabilityScore = AVALANCHE_STATISTICS_DECAY_FACTOR * (2 * votes - polls) + (1. - AVALANCHE_STATISTICS_DECAY_FACTOR) * previousScore; } -double CNode::AvalancheState::getAvailabilityScore() const { +double CNode::getAvailabilityScore() const { // The score is set atomically so there is no need to lock the statistics // when reading. return availabilityScore; } CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, uint64_t nLocalExtraEntropyIn, const CAddress &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion) : m_connected(GetTime()), addr(addrIn), addrBind(addrBindIn), m_inbound_onion(inbound_onion), nKeyedNetGroup(nKeyedNetGroupIn), m_tx_relay(conn_type_in != ConnectionType::BLOCK_RELAY ? std::make_unique() : nullptr), m_proof_relay(isAvalancheEnabled(gArgs) ? std::make_unique() : nullptr), // Don't relay addr messages to peers that we connect to as // block-relay-only peers (to prevent adversaries from inferring these // links from addr traffic). id(idIn), nLocalHostNonce(nLocalHostNonceIn), nLocalExtraEntropy(nLocalExtraEntropyIn), m_conn_type(conn_type_in), nLocalServices(nLocalServicesIn) { if (inbound_onion) { assert(conn_type_in == ConnectionType::INBOUND); } hSocket = hSocketIn; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; for (const std::string &msg : getAllNetMessageTypes()) { mapRecvBytesPerMsgCmd[msg] = 0; } mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0; if (fLogIPs) { LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id); } else { LogPrint(BCLog::NET, "Added connection peer=%d\n", id); } m_deserializer = std::make_unique( V1TransportDeserializer(GetConfig().GetChainParams().NetMagic(), SER_NETWORK, INIT_PROTO_VERSION)); m_serializer = std::make_unique(V1TransportSerializer()); } CNode::~CNode() { CloseSocket(hSocket); } bool CConnman::NodeFullyConnected(const CNode *pnode) { return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect; } void CConnman::PushMessage(CNode *pnode, CSerializedNetMsg &&msg) { size_t nMessageSize = msg.data.size(); LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.m_type), nMessageSize, pnode->GetId()); // make sure we use the appropriate network transport format std::vector serializedHeader; pnode->m_serializer->prepareForTransport(*config, msg, serializedHeader); size_t nTotalSize = nMessageSize + serializedHeader.size(); size_t nBytesSent = 0; { LOCK(pnode->cs_vSend); bool optimisticSend(pnode->vSendMsg.empty()); // log total amount of bytes per message type pnode->mapSendBytesPerMsgCmd[msg.m_type] += nTotalSize; pnode->nSendSize += nTotalSize; if (pnode->nSendSize > nSendBufferMaxSize) { pnode->fPauseSend = true; } pnode->vSendMsg.push_back(std::move(serializedHeader)); if (nMessageSize) { pnode->vSendMsg.push_back(std::move(msg.data)); } // If write queue empty, attempt "optimistic write" if (optimisticSend == true) { nBytesSent = SocketSendData(*pnode); } } if (nBytesSent) { RecordBytesSent(nBytesSent); } } bool CConnman::ForNode(NodeId id, std::function func) { CNode *found = nullptr; LOCK(cs_vNodes); for (auto &&pnode : vNodes) { if (pnode->GetId() == id) { found = pnode; break; } } return found != nullptr && NodeFullyConnected(found) && func(found); } std::chrono::microseconds CConnman::PoissonNextSendInbound(std::chrono::microseconds now, std::chrono::seconds average_interval) { if (m_next_send_inv_to_incoming.load() < now) { // If this function were called from multiple threads simultaneously // it would be possible that both update the next send variable, and // return a different result to their caller. This is not possible in // practice as only the net processing thread invokes this function. m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval); } return m_next_send_inv_to_incoming; } std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval) { double unscaled = -log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */); return now + std::chrono::duration_cast( unscaled * average_interval + 0.5us); } CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const { return CSipHasher(nSeed0, nSeed1).Write(id); } uint64_t CConnman::CalculateKeyedNetGroup(const CAddress &ad) const { std::vector vchNetGroup(ad.GetGroup(addrman.GetAsmap())); return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP) .Write(vchNetGroup.data(), vchNetGroup.size()) .Finalize(); } /** * This function convert MaxBlockSize from byte to * MB with a decimal precision one digit rounded down * E.g. * 1660000 -> 1.6 * 2010000 -> 2.0 * 1000000 -> 1.0 * 230000 -> 0.2 * 50000 -> 0.0 * * NB behavior for EB<1MB not standardized yet still * the function applies the same algo used for * EB greater or equal to 1MB */ std::string getSubVersionEB(uint64_t MaxBlockSize) { // Prepare EB string we are going to add to SubVer: // 1) translate from byte to MB and convert to string // 2) limit the EB string to the first decimal digit (floored) std::stringstream ebMBs; ebMBs << (MaxBlockSize / (ONE_MEGABYTE / 10)); std::string eb = ebMBs.str(); eb.insert(eb.size() - 1, ".", 1); if (eb.substr(0, 1) == ".") { eb = "0" + eb; } return eb; } std::string userAgent(const Config &config) { // format excessive blocksize value std::string eb = getSubVersionEB(config.GetMaxBlockSize()); std::vector uacomments; uacomments.push_back("EB" + eb); // Comments are checked for char compliance at startup, it is safe to add // them to the user agent string for (const std::string &cmt : gArgs.GetArgs("-uacomment")) { uacomments.push_back(cmt); } const std::string client_name = gArgs.GetArg("-uaclientname", CLIENT_NAME); const std::string client_version = gArgs.GetArg("-uaclientversion", FormatVersion(CLIENT_VERSION)); // Size compliance is checked at startup, it is safe to not check it again return FormatUserAgent(client_name, client_version, uacomments); } diff --git a/src/net.h b/src/net.h index f6ac535d8..e4eca1b28 100644 --- a/src/net.h +++ b/src/net.h @@ -1,1508 +1,1493 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2019 The Bitcoin Core developers // Copyright (c) 2017-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NET_H #define BITCOIN_NET_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // For cs_main #include #include #include #include #include #include #include #include #include class BanMan; class Config; class CNode; class CScheduler; struct bilingual_str; /** Default for -whitelistrelay. */ static const bool DEFAULT_WHITELISTRELAY = true; /** Default for -whitelistforcerelay. */ static const bool DEFAULT_WHITELISTFORCERELAY = false; /** * Time after which to disconnect, after waiting for a ping response (or * inactivity). */ static constexpr std::chrono::minutes TIMEOUT_INTERVAL{20}; /** Run the feeler connection loop once every 2 minutes. **/ static constexpr auto FEELER_INTERVAL = 2min; /** Run the extra block-relay-only connection loop once every 5 minutes. **/ static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL = 5min; /** Maximum length of the user agent string in `version` message */ static const unsigned int MAX_SUBVERSION_LENGTH = 256; /** * Maximum number of automatic outgoing nodes over which we'll relay everything * (blocks, tx, addrs, etc) */ static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 16; /** Maximum number of addnode outgoing nodes */ static const int MAX_ADDNODE_CONNECTIONS = 8; /** Maximum number of block-relay-only outgoing connections */ static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2; /** * Maximum number of avalanche enabled outgoing connections by default. * Can be overridden with the -maxavalancheoutbound option. */ static const int DEFAULT_MAX_AVALANCHE_OUTBOUND_CONNECTIONS = 300; /** Maximum number of feeler connections */ static const int MAX_FEELER_CONNECTIONS = 1; /** -listen default */ static const bool DEFAULT_LISTEN = true; /** * The maximum number of peer connections to maintain. * This quantity might not be reachable on some systems, especially on platforms * that do not provide a working poll() interface. */ static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 4096; /** The default for -maxuploadtarget. 0 = Unlimited */ static constexpr uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0; /** Default for blocks only*/ static const bool DEFAULT_BLOCKSONLY = false; /** -peertimeout default */ static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60; static const bool DEFAULT_FORCEDNSSEED = false; static const bool DEFAULT_DNSSEED = true; static const bool DEFAULT_FIXEDSEEDS = true; static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000; static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000; /** Refresh period for the avalanche statistics computation */ static constexpr std::chrono::minutes AVALANCHE_STATISTICS_REFRESH_PERIOD{10}; /** Time constant for the avalanche statistics computation */ static constexpr std::chrono::minutes AVALANCHE_STATISTICS_TIME_CONSTANT{10}; /** * Pre-computed decay factor for the avalanche statistics computation. * There is currently no constexpr variant of std::exp, so use a const. */ static const double AVALANCHE_STATISTICS_DECAY_FACTOR = 1. - std::exp(-1. * AVALANCHE_STATISTICS_REFRESH_PERIOD.count() / AVALANCHE_STATISTICS_TIME_CONSTANT.count()); struct AddedNodeInfo { std::string strAddedNode; CService resolvedAddress; bool fConnected; bool fInbound; }; struct CNodeStats; class CClientUIInterface; struct CSerializedNetMsg { CSerializedNetMsg() = default; CSerializedNetMsg(CSerializedNetMsg &&) = default; CSerializedNetMsg &operator=(CSerializedNetMsg &&) = default; // No copying, only moves. CSerializedNetMsg(const CSerializedNetMsg &msg) = delete; CSerializedNetMsg &operator=(const CSerializedNetMsg &) = delete; std::vector data; std::string m_type; }; const std::vector CONNECTION_TYPE_DOC{ "outbound-full-relay (default automatic connections)", "block-relay-only (does not relay transactions or addresses)", "inbound (initiated by the peer)", "manual (added via addnode RPC or -addnode/-connect configuration options)", "addr-fetch (short-lived automatic connection for soliciting addresses)", "feeler (short-lived automatic connection for testing addresses)"}; /** * Different types of connections to a peer. This enum encapsulates the * information we have available at the time of opening or accepting the * connection. Aside from INBOUND, all types are initiated by us. */ enum class ConnectionType { /** * Inbound connections are those initiated by a peer. This is the only * property we know at the time of connection, until P2P messages are * exchanged. */ INBOUND, /** * These are the default connections that we use to connect with the * network. There is no restriction on what is relayed- by default we relay * blocks, addresses & transactions. We automatically attempt to open * MAX_OUTBOUND_FULL_RELAY_CONNECTIONS using addresses from our AddrMan. */ OUTBOUND_FULL_RELAY, /** * We open manual connections to addresses that users explicitly inputted * via the addnode RPC, or the -connect command line argument. Even if a * manual connection is misbehaving, we do not automatically disconnect or * add it to our discouragement filter. */ MANUAL, /** * Feeler connections are short-lived connections made to check that a node * is alive. They can be useful for: * - test-before-evict: if one of the peers is considered for eviction from * our AddrMan because another peer is mapped to the same slot in the * tried table, evict only if this longer-known peer is offline. * - move node addresses from New to Tried table, so that we have more * connectable addresses in our AddrMan. * Note that in the literature ("Eclipse Attacks on Bitcoin’s Peer-to-Peer * Network") only the latter feature is referred to as "feeler connections", * although in our codebase feeler connections encompass test-before-evict * as well. * We make these connections approximately every FEELER_INTERVAL: * first we resolve previously found collisions if they exist * (test-before-evict), otherwise connect to a node from the new table. */ FEELER, /** * We use block-relay-only connections to help prevent against partition * attacks. By not relaying transactions or addresses, these connections * are harder to detect by a third party, thus helping obfuscate the * network topology. We automatically attempt to open * MAX_BLOCK_RELAY_ONLY_ANCHORS using addresses from our anchors.dat. Then * addresses from our AddrMan if MAX_BLOCK_RELAY_ONLY_CONNECTIONS * isn't reached yet. */ BLOCK_RELAY, /** * AddrFetch connections are short lived connections used to solicit * addresses from peers. These are initiated to addresses submitted via the * -seednode command line argument, or under certain conditions when the * AddrMan is empty. */ ADDR_FETCH, /** * Special case of connection to a full relay outbound with avalanche * service enabled. */ AVALANCHE_OUTBOUND, }; void Discover(); uint16_t GetListenPort(); enum { // unknown LOCAL_NONE, // address a local interface listens on LOCAL_IF, // address explicit bound to LOCAL_BIND, // address reported by UPnP or NAT-PMP LOCAL_MAPPED, // address explicitly specified (-externalip=) LOCAL_MANUAL, LOCAL_MAX }; bool IsPeerAddrLocalGood(CNode *pnode); /** Returns a local address that we should advertise to this peer */ std::optional GetLocalAddrForPeer(CNode *pnode); /** * Mark a network as reachable or unreachable (no automatic connects to it) * @note Networks are reachable by default */ void SetReachable(enum Network net, bool reachable); /** @returns true if the network is reachable, false otherwise */ bool IsReachable(enum Network net); /** @returns true if the address is in a reachable network, false otherwise */ bool IsReachable(const CNetAddr &addr); bool AddLocal(const CService &addr, int nScore = LOCAL_NONE); bool AddLocal(const CNetAddr &addr, int nScore = LOCAL_NONE); void RemoveLocal(const CService &addr); bool SeenLocal(const CService &addr); bool IsLocal(const CService &addr); bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr); CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices); extern bool fDiscover; extern bool fListen; struct LocalServiceInfo { int nScore; uint16_t nPort; }; extern RecursiveMutex cs_mapLocalHost; extern std::map mapLocalHost GUARDED_BY(cs_mapLocalHost); extern const std::string NET_MESSAGE_COMMAND_OTHER; // Command, total bytes typedef std::map mapMsgCmdSize; /** * POD that contains various stats about a node. * Usually constructed from CConman::GetNodeStats. Stats are filled from the * node using CNode::copyStats. */ struct CNodeStats { NodeId nodeid; ServiceFlags nServices; bool fRelayTxes; std::chrono::seconds m_last_send; std::chrono::seconds m_last_recv; std::chrono::seconds m_last_tx_time; std::chrono::seconds m_last_proof_time; std::chrono::seconds m_last_block_time; std::chrono::seconds m_connected; int64_t nTimeOffset; std::string addrName; int nVersion; std::string cleanSubVer; bool fInbound; bool m_manual_connection; bool m_bip152_highbandwidth_to; bool m_bip152_highbandwidth_from; int m_starting_height; uint64_t nSendBytes; mapMsgCmdSize mapSendBytesPerMsgCmd; uint64_t nRecvBytes; mapMsgCmdSize mapRecvBytesPerMsgCmd; NetPermissionFlags m_permissionFlags; bool m_legacyWhitelisted; std::chrono::microseconds m_last_ping_time; std::chrono::microseconds m_min_ping_time; Amount minFeeFilter; // Our address, as reported by the peer std::string addrLocal; // Address of this peer CAddress addr; // Bind address of our side of the connection CAddress addrBind; // Network the peer connected through Network m_network; uint32_t m_mapped_as; std::string m_conn_type_string; std::optional m_availabilityScore; }; /** * Transport protocol agnostic message container. * Ideally it should only contain receive time, payload, * command and size. */ class CNetMessage { public: //! received message data CDataStream m_recv; //! time of message receipt std::chrono::microseconds m_time{0}; bool m_valid_netmagic = false; bool m_valid_header = false; bool m_valid_checksum = false; //! size of the payload uint32_t m_message_size{0}; //! used wire size of the message (including header/checksum) uint32_t m_raw_message_size{0}; std::string m_command; CNetMessage(CDataStream &&recv_in) : m_recv(std::move(recv_in)) {} void SetVersion(int nVersionIn) { m_recv.SetVersion(nVersionIn); } }; /** * The TransportDeserializer takes care of holding and deserializing the * network receive buffer. It can deserialize the network buffer into a * transport protocol agnostic CNetMessage (command & payload) */ class TransportDeserializer { public: // returns true if the current deserialization is complete virtual bool Complete() const = 0; // set the serialization context version virtual void SetVersion(int version) = 0; /** read and deserialize data, advances msg_bytes data pointer */ virtual int Read(const Config &config, Span &msg_bytes) = 0; // decomposes a message from the context virtual CNetMessage GetMessage(const Config &config, std::chrono::microseconds time) = 0; virtual ~TransportDeserializer() {} }; class V1TransportDeserializer final : public TransportDeserializer { private: mutable CHash256 hasher; mutable uint256 data_hash; // Parsing header (false) or data (true) bool in_data; // Partially received header. CDataStream hdrbuf; // Complete header. CMessageHeader hdr; // Received message data. CDataStream vRecv; uint32_t nHdrPos; uint32_t nDataPos; const uint256 &GetMessageHash() const; int readHeader(const Config &config, Span msg_bytes); int readData(Span msg_bytes); void Reset() { vRecv.clear(); hdrbuf.clear(); hdrbuf.resize(24); in_data = false; nHdrPos = 0; nDataPos = 0; data_hash.SetNull(); hasher.Reset(); } public: V1TransportDeserializer( const CMessageHeader::MessageMagic &pchMessageStartIn, int nTypeIn, int nVersionIn) : hdrbuf(nTypeIn, nVersionIn), hdr(pchMessageStartIn), vRecv(nTypeIn, nVersionIn) { Reset(); } bool Complete() const override { if (!in_data) { return false; } return (hdr.nMessageSize == nDataPos); } void SetVersion(int nVersionIn) override { hdrbuf.SetVersion(nVersionIn); vRecv.SetVersion(nVersionIn); } int Read(const Config &config, Span &msg_bytes) override { int ret = in_data ? readData(msg_bytes) : readHeader(config, msg_bytes); if (ret < 0) { Reset(); } else { msg_bytes = msg_bytes.subspan(ret); } return ret; } CNetMessage GetMessage(const Config &config, std::chrono::microseconds time) override; }; /** * The TransportSerializer prepares messages for the network transport */ class TransportSerializer { public: // prepare message for transport (header construction, error-correction // computation, payload encryption, etc.) virtual void prepareForTransport(const Config &config, CSerializedNetMsg &msg, std::vector &header) = 0; virtual ~TransportSerializer() {} }; class V1TransportSerializer : public TransportSerializer { public: void prepareForTransport(const Config &config, CSerializedNetMsg &msg, std::vector &header) override; }; /** Information about a peer */ class CNode { friend class CConnman; friend struct ConnmanTestMsg; public: std::unique_ptr m_deserializer; std::unique_ptr m_serializer; // socket std::atomic nServices{NODE_NONE}; SOCKET hSocket GUARDED_BY(cs_hSocket); // Total size of all vSendMsg entries. size_t nSendSize{0}; // Offset inside the first vSendMsg already sent. size_t nSendOffset{0}; uint64_t nSendBytes GUARDED_BY(cs_vSend){0}; std::deque> vSendMsg GUARDED_BY(cs_vSend); Mutex cs_vSend; Mutex cs_hSocket; Mutex cs_vRecv; RecursiveMutex cs_vProcessMsg; std::list vProcessMsg GUARDED_BY(cs_vProcessMsg); size_t nProcessQueueSize{0}; RecursiveMutex cs_sendProcessing; uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0}; std::atomic m_last_send{0s}; std::atomic m_last_recv{0s}; //! Unix epoch time at peer connection const std::chrono::seconds m_connected; std::atomic nTimeOffset{0}; // Address of this peer const CAddress addr; // Bind address of our side of the connection const CAddress addrBind; //! Whether this peer is an inbound onion, i.e. connected via our Tor onion //! service. const bool m_inbound_onion; std::atomic nVersion{0}; // The nonce provided by the remote host. uint64_t nRemoteHostNonce{0}; // The extra entropy provided by the remote host. uint64_t nRemoteExtraEntropy{0}; /** * cleanSubVer is a sanitized string of the user agent byte array we read * from the wire. This cleaned string can safely be logged or displayed. */ RecursiveMutex cs_SubVer; std::string cleanSubVer GUARDED_BY(cs_SubVer){}; // This peer is preferred for eviction. bool m_prefer_evict{false}; bool HasPermission(NetPermissionFlags permission) const { return NetPermissions::HasFlag(m_permissionFlags, permission); } // This boolean is unusued in actual processing, only present for backward // compatibility at RPC/QT level bool m_legacyWhitelisted{false}; // set by version message bool fClient{false}; // after BIP159, set by version message bool m_limited_node{false}; std::atomic_bool fSuccessfullyConnected{false}; // Setting fDisconnect to true will cause the node to be disconnected the // next time DisconnectNodes() runs std::atomic_bool fDisconnect{false}; CSemaphoreGrant grantOutbound; std::atomic nRefCount{0}; const uint64_t nKeyedNetGroup; std::atomic_bool fPauseRecv{false}; std::atomic_bool fPauseSend{false}; bool IsOutboundOrBlockRelayConn() const { switch (m_conn_type) { case ConnectionType::OUTBOUND_FULL_RELAY: case ConnectionType::BLOCK_RELAY: case ConnectionType::AVALANCHE_OUTBOUND: return true; case ConnectionType::INBOUND: case ConnectionType::MANUAL: case ConnectionType::ADDR_FETCH: case ConnectionType::FEELER: return false; } // no default case, so the compiler can warn about missing cases assert(false); } bool IsFullOutboundConn() const { return m_conn_type == ConnectionType::OUTBOUND_FULL_RELAY || m_conn_type == ConnectionType::AVALANCHE_OUTBOUND; } bool IsManualConn() const { return m_conn_type == ConnectionType::MANUAL; } bool IsBlockOnlyConn() const { return m_conn_type == ConnectionType::BLOCK_RELAY; } bool IsFeelerConn() const { return m_conn_type == ConnectionType::FEELER; } bool IsAddrFetchConn() const { return m_conn_type == ConnectionType::ADDR_FETCH; } bool IsInboundConn() const { return m_conn_type == ConnectionType::INBOUND; } bool IsAvalancheOutboundConnection() const { return m_conn_type == ConnectionType::AVALANCHE_OUTBOUND; } bool ExpectServicesFromConn() const { switch (m_conn_type) { case ConnectionType::INBOUND: case ConnectionType::MANUAL: case ConnectionType::FEELER: return false; case ConnectionType::OUTBOUND_FULL_RELAY: case ConnectionType::BLOCK_RELAY: case ConnectionType::ADDR_FETCH: case ConnectionType::AVALANCHE_OUTBOUND: return true; } // no default case, so the compiler can warn about missing cases assert(false); } /** * Get network the peer connected through. * * Returns Network::NET_ONION for *inbound* onion connections, * and CNetAddr::GetNetClass() otherwise. The latter cannot be used directly * because it doesn't detect the former, and it's not the responsibility of * the CNetAddr class to know the actual network a peer is connected * through. * * @return network the peer connected through. */ Network ConnectedThroughNetwork() const; protected: mapMsgCmdSize mapSendBytesPerMsgCmd; mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv); public: // We selected peer as (compact blocks) high-bandwidth peer (BIP152) std::atomic m_bip152_highbandwidth_to{false}; // Peer selected us as (compact blocks) high-bandwidth peer (BIP152) std::atomic m_bip152_highbandwidth_from{false}; struct TxRelay { mutable RecursiveMutex cs_filter; // We use fRelayTxes for two purposes - // a) it allows us to not relay tx invs before receiving the peer's // version message. // b) the peer may tell us in its version message that we should not // relay tx invs unless it loads a bloom filter. bool fRelayTxes GUARDED_BY(cs_filter){false}; std::unique_ptr pfilter PT_GUARDED_BY(cs_filter) GUARDED_BY(cs_filter){nullptr}; mutable RecursiveMutex cs_tx_inventory; CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_tx_inventory){ 50000, 0.000001}; // Set of transaction ids we still have to announce. // They are sorted by the mempool before relay, so the order is not // important. std::set setInventoryTxToSend GUARDED_BY(cs_tx_inventory); // Used for BIP35 mempool sending bool fSendMempool GUARDED_BY(cs_tx_inventory){false}; // Last time a "MEMPOOL" request was serviced. std::atomic m_last_mempool_req{0s}; std::chrono::microseconds nNextInvSend{0}; RecursiveMutex cs_feeFilter; // Minimum fee rate with which to filter inv's to this node Amount minFeeFilter GUARDED_BY(cs_feeFilter){Amount::zero()}; Amount lastSentFeeFilter{Amount::zero()}; std::chrono::microseconds m_next_send_feefilter{0}; }; // m_tx_relay == nullptr if we're not relaying transactions with this peer const std::unique_ptr m_tx_relay; struct ProofRelay { mutable RecursiveMutex cs_proof_inventory; std::set setInventoryProofToSend GUARDED_BY(cs_proof_inventory); // Prevent sending proof invs if the peer already knows about them CRollingBloomFilter filterProofKnown GUARDED_BY(cs_proof_inventory){ 10000, 0.000001}; std::chrono::microseconds nextInvSend{0}; RadixTree sharedProofs; std::atomic lastSharedProofsUpdate{0s}; std::atomic compactproofs_requested{false}; }; // m_proof_relay == nullptr if we're not relaying proofs with this peer const std::unique_ptr m_proof_relay; // True if we know this peer is using Avalanche (at least polling) std::atomic m_avalanche_enabled{false}; - class AvalancheState { - /** - * The inventories polled and voted couters since last score - * computation, stored as a pair of uint32_t with the poll counter - * being the 32 lowest bits and the vote counter the 32 highest bits. - */ - std::atomic invCounters; - - /** The last computed score */ - std::atomic availabilityScore; - - /** - * Protect the sequence of operations required for updating the - * statistics. - */ - Mutex cs_statistics; - - public: - AvalancheState() : invCounters(0), availabilityScore(0.) {} - - /** The node was polled for count invs */ - void invsPolled(uint32_t count); - - /** The node voted for count invs */ - void invsVoted(uint32_t count); - - /** - * The availability score is calculated using an exponentially weighted - * average. - * This has several interesting properties: - * - The most recent polls/responses have more weight than the previous - * ones. A node that recently stopped answering will see its ratio - * decrease quickly. - * - This is a low-pass filter, so it causes delay. This means that a - * node needs to have a track record for the ratio to be high. A node - * that has been little requested will have a lower ratio than a node - * that failed to answer a few polls but answered a lot of them. - * - It is cheap to compute. - * - * This is expected to be called at a fixed interval of - * AVALANCHE_STATISTICS_REFRESH_PERIOD. - */ - void updateAvailabilityScore(); - - double getAvailabilityScore() const; - }; - // Pubkey used to verify signatures on Avalanche messages from this peer std::optional m_avalanche_pubkey; - // m_avalanche_state == nullptr if we're not using avalanche with this peer - std::unique_ptr m_avalanche_state; + /** The node was polled for count invs */ + void invsPolled(uint32_t count); + + /** The node voted for count invs */ + void invsVoted(uint32_t count); + + /** + * The availability score is calculated using an exponentially weighted + * average. + * This has several interesting properties: + * - The most recent polls/responses have more weight than the previous + * ones. A node that recently stopped answering will see its ratio + * decrease quickly. + * - This is a low-pass filter, so it causes delay. This means that a + * node needs to have a track record for the ratio to be high. A node + * that has been little requested will have a lower ratio than a node + * that failed to answer a few polls but answered a lot of them. + * - It is cheap to compute. + * + * This is expected to be called at a fixed interval of + * AVALANCHE_STATISTICS_REFRESH_PERIOD. + */ + void updateAvailabilityScore(); + double getAvailabilityScore() const; // Store the next time we will consider a getavaaddr message from this peer std::chrono::seconds m_nextGetAvaAddr{0}; /** * UNIX epoch time of the last block received from this peer that we had * not yet seen (e.g. not already received from another peer), that passed * preliminary validity checks and was saved to disk, even if we don't * connect the block or it eventually fails connection. Used as an inbound * peer eviction criterium in CConnman::AttemptToEvictConnection. */ std::atomic m_last_block_time{0s}; /** * UNIX epoch time of the last transaction received from this peer that we * had not yet seen (e.g. not already received from another peer) and that * was accepted into our mempool. Used as an inbound peer eviction criterium * in CConnman::AttemptToEvictConnection. */ std::atomic m_last_tx_time{0s}; /** * UNIX epoch time of the last proof received from this peer that we * had not yet seen (e.g. not already received from another peer) and that * was accepted into our proof pool. Used as an inbound peer eviction * criterium in CConnman::AttemptToEvictConnection. */ std::atomic m_last_proof_time{0s}; /** Last measured round-trip time. Used only for RPC/GUI stats/debugging.*/ std::atomic m_last_ping_time{0us}; /** * Lowest measured round-trip time. Used as an inbound peer eviction * criterium in CConnman::AttemptToEvictConnection. */ std::atomic m_min_ping_time{ std::chrono::microseconds::max()}; CNode(NodeId id, ServiceFlags nLocalServicesIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, uint64_t nLocalExtraEntropyIn, const CAddress &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion); ~CNode(); CNode(const CNode &) = delete; CNode &operator=(const CNode &) = delete; /** * A ping-pong round trip has completed successfully. Update latest and * minimum ping times. */ void PongReceived(std::chrono::microseconds ping_time) { m_last_ping_time = ping_time; m_min_ping_time = std::min(m_min_ping_time.load(), ping_time); } private: const NodeId id; const uint64_t nLocalHostNonce; const uint64_t nLocalExtraEntropy; const ConnectionType m_conn_type; std::atomic m_greatest_common_version{INIT_PROTO_VERSION}; //! Services offered to this peer. //! //! This is supplied by the parent CConnman during peer connection //! (CConnman::ConnectNode()) from its attribute of the same name. //! //! This is const because there is no protocol defined for renegotiating //! services initially offered to a peer. The set of local services we //! offer should not change after initialization. //! //! An interesting example of this is NODE_NETWORK and initial block //! download: a node which starts up from scratch doesn't have any blocks //! to serve, but still advertises NODE_NETWORK because it will eventually //! fulfill this role after IBD completes. P2P code is written in such a //! way that it can gracefully handle peers who don't make good on their //! service advertisements. const ServiceFlags nLocalServices; NetPermissionFlags m_permissionFlags{PF_NONE}; // Used only by SocketHandler thread std::list vRecvMsg; mutable RecursiveMutex cs_addrName; std::string addrName GUARDED_BY(cs_addrName); // Our address, as reported by the peer CService addrLocal GUARDED_BY(cs_addrLocal); mutable RecursiveMutex cs_addrLocal; + /** + * The inventories polled and voted counters since last score + * computation, stored as a pair of uint32_t with the poll counter + * being the 32 lowest bits and the vote counter the 32 highest bits. + */ + std::atomic invCounters{0}; + + /** The last computed score */ + std::atomic availabilityScore{0.}; + public: NodeId GetId() const { return id; } uint64_t GetLocalNonce() const { return nLocalHostNonce; } uint64_t GetLocalExtraEntropy() const { return nLocalExtraEntropy; } int GetRefCount() const { assert(nRefCount >= 0); return nRefCount; } /** * Receive bytes from the buffer and deserialize them into messages. * * @param[in] msg_bytes The raw data * @param[out] complete Set True if at least one message has been * deserialized and is ready to be processed * @return True if the peer should stay connected, * False if the peer should be disconnected from. */ bool ReceiveMsgBytes(const Config &config, Span msg_bytes, bool &complete); void SetCommonVersion(int greatest_common_version) { Assume(m_greatest_common_version == INIT_PROTO_VERSION); m_greatest_common_version = greatest_common_version; } int GetCommonVersion() const { return m_greatest_common_version; } CService GetAddrLocal() const; //! May not be called more than once void SetAddrLocal(const CService &addrLocalIn); CNode *AddRef() { nRefCount++; return this; } void Release() { nRefCount--; } void AddKnownTx(const TxId &txid) { if (m_tx_relay != nullptr) { LOCK(m_tx_relay->cs_tx_inventory); m_tx_relay->filterInventoryKnown.insert(txid); } } void PushTxInventory(const TxId &txid) { if (m_tx_relay == nullptr) { return; } LOCK(m_tx_relay->cs_tx_inventory); if (!m_tx_relay->filterInventoryKnown.contains(txid)) { m_tx_relay->setInventoryTxToSend.insert(txid); } } void AddKnownProof(const avalanche::ProofId &proofid) { if (m_proof_relay != nullptr) { LOCK(m_proof_relay->cs_proof_inventory); m_proof_relay->filterProofKnown.insert(proofid); } } void PushProofInventory(const avalanche::ProofId &proofid) { if (m_proof_relay == nullptr) { return; } LOCK(m_proof_relay->cs_proof_inventory); if (!m_proof_relay->filterProofKnown.contains(proofid)) { m_proof_relay->setInventoryProofToSend.insert(proofid); } } void CloseSocketDisconnect(); void copyStats(CNodeStats &stats); ServiceFlags GetLocalServices() const { return nLocalServices; } std::string GetAddrName() const; //! Sets the addrName only if it was not previously set void MaybeSetAddrName(const std::string &addrNameIn); std::string ConnectionTypeAsString() const; }; /** * Interface for message handling */ class NetEventsInterface { public: /** Initialize a peer (setup state, queue any initial messages) */ virtual void InitializeNode(const Config &config, CNode *pnode) = 0; /** Handle removal of a peer (clear state) */ virtual void FinalizeNode(const Config &config, const CNode &node) = 0; /** * Process protocol messages received from a given node * * @param[in] config The applicable configuration object. * @param[in] pnode The node which we have received messages * from. * @param[in] interrupt Interrupt condition for processing threads * @return True if there is more work to be done */ virtual bool ProcessMessages(const Config &config, CNode *pnode, std::atomic &interrupt) = 0; /** * Send queued protocol messages to a given node. * * @param[in] config The applicable configuration object. * @param[in] pnode The node which we are sending messages to. * @return True if there is more work to be done */ virtual bool SendMessages(const Config &config, CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_sendProcessing) = 0; protected: /** * Protected destructor so that instances can only be deleted by derived * classes. If that restriction is no longer desired, this should be made * public and virtual. */ ~NetEventsInterface() = default; }; namespace { struct CConnmanTest; } class NetEventsInterface; class CConnman { public: enum NumConnections { CONNECTIONS_NONE = 0, CONNECTIONS_IN = (1U << 0), CONNECTIONS_OUT = (1U << 1), CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT), }; struct Options { ServiceFlags nLocalServices = NODE_NONE; int nMaxConnections = 0; int m_max_outbound_full_relay = 0; int m_max_outbound_block_relay = 0; int m_max_avalanche_outbound = 0; int nMaxAddnode = 0; int nMaxFeeler = 0; CClientUIInterface *uiInterface = nullptr; std::vector m_msgproc; BanMan *m_banman = nullptr; unsigned int nSendBufferMaxSize = 0; unsigned int nReceiveFloodSize = 0; uint64_t nMaxOutboundLimit = 0; int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT; std::vector vSeedNodes; std::vector vWhitelistedRange; std::vector vWhiteBinds; std::vector vBinds; std::vector onion_binds; /// True if the user did not specify -bind= or -whitebind= and thus /// we should bind on `0.0.0.0` (IPv4) and `::` (IPv6). bool bind_on_any; bool m_use_addrman_outgoing = true; std::vector m_specified_outgoing; std::vector m_added_nodes; bool m_i2p_accept_incoming = true; }; void Init(const Options &connOptions) { nLocalServices = connOptions.nLocalServices; nMaxConnections = connOptions.nMaxConnections; m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing; nMaxAddnode = connOptions.nMaxAddnode; nMaxFeeler = connOptions.nMaxFeeler; { // Lock cs_main to prevent a potential race with the peer validation // logic thread. LOCK(::cs_main); m_max_outbound_full_relay = std::min(connOptions.m_max_outbound_full_relay, connOptions.nMaxConnections); m_max_avalanche_outbound = connOptions.m_max_avalanche_outbound; m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay; m_max_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + nMaxFeeler + m_max_avalanche_outbound; } clientInterface = connOptions.uiInterface; m_banman = connOptions.m_banman; m_msgproc = connOptions.m_msgproc; nSendBufferMaxSize = connOptions.nSendBufferMaxSize; nReceiveFloodSize = connOptions.nReceiveFloodSize; m_peer_connect_timeout = std::chrono::seconds{connOptions.m_peer_connect_timeout}; { LOCK(cs_totalBytesSent); nMaxOutboundLimit = connOptions.nMaxOutboundLimit; } vWhitelistedRange = connOptions.vWhitelistedRange; { LOCK(cs_vAddedNodes); vAddedNodes = connOptions.m_added_nodes; } m_onion_binds = connOptions.onion_binds; } CConnman(const Config &configIn, uint64_t seed0, uint64_t seed1, AddrMan &addrmanIn, bool network_active = true); ~CConnman(); bool Start(CScheduler &scheduler, const Options &options); void StopThreads(); void StopNodes(); void Stop() { StopThreads(); StopNodes(); }; void Interrupt(); bool GetNetworkActive() const { return fNetworkActive; }; bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; }; void SetNetworkActive(bool active); void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *strDest, ConnectionType conn_type); bool CheckIncomingNonce(uint64_t nonce); bool ForNode(NodeId id, std::function func); void PushMessage(CNode *pnode, CSerializedNetMsg &&msg); using NodeFn = std::function; void ForEachNode(const NodeFn &func) { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) { func(node); } } }; void ForEachNode(const NodeFn &func) const { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) { func(node); } } }; // Addrman functions /** * Return all or many randomly selected addresses, optionally by network. * * @param[in] max_addresses Maximum number of addresses to return * (0 = all). * @param[in] max_pct Maximum percentage of addresses to return * (0 = all). * @param[in] network Select only addresses of this network * (nullopt = all). */ std::vector GetAddresses(size_t max_addresses, size_t max_pct, std::optional network); /** * Cache is used to minimize topology leaks, so it should * be used for all non-trusted calls, for example, p2p. * A non-malicious call (from RPC or a peer with addr permission) should * call the function without a parameter to avoid using the cache. */ std::vector GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct); // This allows temporarily exceeding m_max_outbound_full_relay, with the // goal of finding a peer that is better than all our current peers. void SetTryNewOutboundPeer(bool flag); bool GetTryNewOutboundPeer(); void StartExtraBlockRelayPeers() { LogPrint(BCLog::NET, "net: enabling extra block-relay-only peers\n"); m_start_extra_block_relay_peers = true; } // Return the number of outbound peers we have in excess of our target (eg, // if we previously called SetTryNewOutboundPeer(true), and have since set // to false, we may have extra peers that we wish to disconnect). This may // return a value less than (num_outbound_connections - num_outbound_slots) // in cases where some outbound connections are not yet fully connected, or // not yet fully disconnected. int GetExtraFullOutboundCount(); // Count the number of block-relay-only peers we have over our limit. int GetExtraBlockRelayCount(); bool AddNode(const std::string &node); bool RemoveAddedNode(const std::string &node); std::vector GetAddedNodeInfo(); /** * Attempts to open a connection. Currently only used from tests. * * @param[in] address Address of node to try connecting to * @param[in] conn_type ConnectionType::OUTBOUND, * ConnectionType::BLOCK_RELAY, * ConnectionType::ADDR_FETCH, or * ConnectionType::FEELER * @return bool Returns false if there are no available * slots for this connection: * - conn_type not a supported ConnectionType * - Max total outbound connection capacity filled * - Max connection capacity for type is filled */ bool AddConnection(const std::string &address, ConnectionType conn_type); size_t GetNodeCount(NumConnections num); void GetNodeStats(std::vector &vstats); bool DisconnectNode(const std::string &node); bool DisconnectNode(const CSubNet &subnet); bool DisconnectNode(const CNetAddr &addr); bool DisconnectNode(NodeId id); //! Used to convey which local services we are offering peers during node //! connection. //! //! The data returned by this is used in CNode construction, //! which is used to advertise which services we are offering //! that peer during `net_processing.cpp:PushNodeVersion()`. ServiceFlags GetLocalServices() const; uint64_t GetMaxOutboundTarget(); std::chrono::seconds GetMaxOutboundTimeframe(); //! check if the outbound target is reached. If param //! historicalBlockServingLimit is set true, the function will response true //! if the limit for serving historical blocks has been reached. bool OutboundTargetReached(bool historicalBlockServingLimit); //! response the bytes left in the current max outbound cycle in case of no //! limit, it will always response 0 uint64_t GetOutboundTargetBytesLeft(); //! returns the time in second left in the current max outbound cycle in //! case of no limit, it will always return 0 std::chrono::seconds GetMaxOutboundTimeLeftInCycle(); uint64_t GetTotalBytesRecv(); uint64_t GetTotalBytesSent(); /** Get a unique deterministic randomizer. */ CSipHasher GetDeterministicRandomizer(uint64_t id) const; unsigned int GetReceiveFloodSize() const; void WakeMessageHandler(); /** * Attempts to obfuscate tx time through exponentially distributed emitting. * Works assuming that a single interval is used. * Variable intervals will result in privacy decrease. */ std::chrono::microseconds PoissonNextSendInbound(std::chrono::microseconds now, std::chrono::seconds average_interval); /** * Return true if we should disconnect the peer for failing an inactivity * check. */ bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const; private: struct ListenSocket { public: SOCKET socket; inline void AddSocketPermissionFlags(NetPermissionFlags &flags) const { NetPermissions::AddFlag(flags, m_permissions); } ListenSocket(SOCKET socket_, NetPermissionFlags permissions_) : socket(socket_), m_permissions(permissions_) {} private: NetPermissionFlags m_permissions; }; bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions); bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions); bool InitBinds(const Options &options); void ThreadOpenAddedConnections(); void AddAddrFetch(const std::string &strDest); void ProcessAddrFetch(); void ThreadOpenConnections(std::vector connect, std::function mockOpenConnection); void ThreadMessageHandler(); void ThreadI2PAcceptIncoming(); void AcceptConnection(const ListenSocket &hListenSocket); /** * Create a `CNode` object from a socket that has just been accepted and add * the node to the `vNodes` member. * @param[in] hSocket Connected socket to communicate with the peer. * @param[in] permissionFlags The peer's permissions. * @param[in] addr_bind The address and port at our side of the connection. * @param[in] addr The address and port at the peer's side of the connection */ void CreateNodeFromAcceptedSocket(SOCKET hSocket, NetPermissionFlags permissionFlags, const CAddress &addr_bind, const CAddress &addr); void DisconnectNodes(); void NotifyNumConnectionsChanged(); /** Return true if the peer is inactive and should be disconnected. */ bool InactivityCheck(const CNode &node) const; bool GenerateSelectSet(std::set &recv_set, std::set &send_set, std::set &error_set); void SocketEvents(std::set &recv_set, std::set &send_set, std::set &error_set); void SocketHandler(); void ThreadSocketHandler(); void ThreadDNSAddressSeed(); uint64_t CalculateKeyedNetGroup(const CAddress &ad) const; CNode *FindNode(const CNetAddr &ip); CNode *FindNode(const CSubNet &subNet); CNode *FindNode(const std::string &addrName); CNode *FindNode(const CService &addr); /** * Determine whether we're already connected to a given address, in order to * avoid initiating duplicate connections. */ bool AlreadyConnectedToAddress(const CAddress &addr); bool AttemptToEvictConnection(); CNode *ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type); void AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr) const; void DeleteNode(CNode *pnode); NodeId GetNewNodeId(); size_t SocketSendData(CNode &node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend); void DumpAddresses(); // Network stats void RecordBytesRecv(uint64_t bytes); void RecordBytesSent(uint64_t bytes); /** * Return vector of current BLOCK_RELAY peers. */ std::vector GetCurrentBlockRelayOnlyConns() const; // Whether the node should be passed out in ForEach* callbacks static bool NodeFullyConnected(const CNode *pnode); const Config *config; // Network usage totals RecursiveMutex cs_totalBytesRecv; RecursiveMutex cs_totalBytesSent; uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv){0}; uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent){0}; // outbound limit & stats uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent){0}; std::chrono::seconds nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent){0}; uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent); // P2P timeout in seconds std::chrono::seconds m_peer_connect_timeout; // Whitelisted ranges. Any node connecting from these is automatically // whitelisted (as well as those connecting to whitelisted binds). std::vector vWhitelistedRange; unsigned int nSendBufferMaxSize{0}; unsigned int nReceiveFloodSize{0}; std::vector vhListenSocket; std::atomic fNetworkActive{true}; bool fAddressesInitialized{false}; AddrMan &addrman; std::deque m_addr_fetches GUARDED_BY(m_addr_fetches_mutex); RecursiveMutex m_addr_fetches_mutex; std::vector vAddedNodes GUARDED_BY(cs_vAddedNodes); RecursiveMutex cs_vAddedNodes; std::vector vNodes GUARDED_BY(cs_vNodes); std::list vNodesDisconnected; mutable RecursiveMutex cs_vNodes; std::atomic nLastNodeId{0}; unsigned int nPrevNodeCount{0}; /** * Cache responses to addr requests to minimize privacy leak. * Attack example: scraping addrs in real-time may allow an attacker * to infer new connections of the victim by detecting new records * with fresh timestamps (per self-announcement). */ struct CachedAddrResponse { std::vector m_addrs_response_cache; std::chrono::microseconds m_cache_entry_expiration{0}; }; /** * Addr responses stored in different caches * per (network, local socket) prevent cross-network node identification. * If a node for example is multi-homed under Tor and IPv6, * a single cache (or no cache at all) would let an attacker * to easily detect that it is the same node by comparing responses. * Indexing by local socket prevents leakage when a node has multiple * listening addresses on the same network. * * The used memory equals to 1000 CAddress records (or around 40 bytes) per * distinct Network (up to 5) we have/had an inbound peer from, * resulting in at most ~196 KB. Every separate local socket may * add up to ~196 KB extra. */ std::map m_addr_response_caches; /** * Services this instance offers. * * This data is replicated in each CNode instance we create during peer * connection (in ConnectNode()) under a member also called * nLocalServices. * * This data is not marked const, but after being set it should not * change. See the note in CNode::nLocalServices documentation. * * \sa CNode::nLocalServices */ ServiceFlags nLocalServices; std::unique_ptr semOutbound; std::unique_ptr semAddnode; int nMaxConnections; // How many full-relay (tx, block, addr) outbound peers we want int m_max_outbound_full_relay; // How many block-relay only outbound peers we want // We do not relay tx or addr messages with these peers int m_max_outbound_block_relay; // How many avalanche enabled outbound peers we want int m_max_avalanche_outbound; int nMaxAddnode; int nMaxFeeler; int m_max_outbound; bool m_use_addrman_outgoing; CClientUIInterface *clientInterface; // FIXME m_msgproc is a terrible name std::vector m_msgproc; /** * Pointer to this node's banman. May be nullptr - check existence before * dereferencing. */ BanMan *m_banman; /** * Addresses that were saved during the previous clean shutdown. We'll * attempt to make block-relay-only connections to them. */ std::vector m_anchors; /** SipHasher seeds for deterministic randomness */ const uint64_t nSeed0, nSeed1; /** flag for waking the message processor. */ bool fMsgProcWake GUARDED_BY(mutexMsgProc); std::condition_variable condMsgProc; Mutex mutexMsgProc; std::atomic flagInterruptMsgProc{false}; /** * This is signaled when network activity should cease. * A pointer to it is saved in `m_i2p_sam_session`, so make sure that * the lifetime of `interruptNet` is not shorter than * the lifetime of `m_i2p_sam_session`. */ CThreadInterrupt interruptNet; /** * I2P SAM session. * Used to accept incoming and make outgoing I2P connections. */ std::unique_ptr m_i2p_sam_session; std::thread threadDNSAddressSeed; std::thread threadSocketHandler; std::thread threadOpenAddedConnections; std::thread threadOpenConnections; std::thread threadMessageHandler; std::thread threadI2PAcceptIncoming; /** * flag for deciding to connect to an extra outbound peer, in excess of * m_max_outbound_full_relay. This takes the place of a feeler connection. */ std::atomic_bool m_try_another_outbound_peer; /** * flag for initiating extra block-relay-only peer connections. * this should only be enabled after initial chain sync has occurred, * as these connections are intended to be short-lived and low-bandwidth. */ std::atomic_bool m_start_extra_block_relay_peers{false}; std::atomic m_next_send_inv_to_incoming{0us}; /** * A vector of -bind=
:=onion arguments each of which is * an address and port that are designated for incoming Tor connections. */ std::vector m_onion_binds; friend struct ::CConnmanTest; friend struct ConnmanTestMsg; }; /** * Return a timestamp in the future (in microseconds) for exponentially * distributed events. */ std::chrono::microseconds PoissonNextSend(std::chrono::microseconds now, std::chrono::seconds average_interval); std::string getSubVersionEB(uint64_t MaxBlockSize); std::string userAgent(const Config &config); struct NodeEvictionCandidate { NodeId id; std::chrono::seconds m_connected; std::chrono::microseconds m_min_ping_time; std::chrono::seconds m_last_block_time; std::chrono::seconds m_last_proof_time; std::chrono::seconds m_last_tx_time; bool fRelevantServices; bool fRelayTxes; bool fBloomFilter; uint64_t nKeyedNetGroup; bool prefer_evict; bool m_is_local; Network m_network; double availabilityScore; }; /** * Select an inbound peer to evict after filtering out (protecting) peers having * distinct, difficult-to-forge characteristics. The protection logic picks out * fixed numbers of desirable peers per various criteria, followed by (mostly) * ratios of desirable or disadvantaged peers. If any eviction candidates * remain, the selection logic chooses a peer to evict. */ [[nodiscard]] std::optional SelectNodeToEvict(std::vector &&vEvictionCandidates); /** * Protect desirable or disadvantaged inbound peers from eviction by ratio. * * This function protects half of the peers which have been connected the * longest, to replicate the non-eviction implicit behavior and preclude attacks * that start later. * * Half of these protected spots (1/4 of the total) are reserved for the * following categories of peers, sorted by longest uptime, even if they're not * longest uptime overall: * * - onion peers connected via our tor control service * * - localhost peers, as manually configured hidden services not using * `-bind=addr[:port]=onion` will not be detected as inbound onion connections * * - I2P peers * * This helps protect these privacy network peers, which tend to be otherwise * disadvantaged under our eviction criteria for their higher min ping times * relative to IPv4/IPv6 peers, and favorise the diversity of peer connections. */ void ProtectEvictionCandidatesByRatio( std::vector &vEvictionCandidates); #endif // BITCOIN_NET_H diff --git a/src/net_processing.cpp b/src/net_processing.cpp index 914b2098d..13c454f19 100644 --- a/src/net_processing.cpp +++ b/src/net_processing.cpp @@ -1,7185 +1,7170 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // For NDEBUG compile time check #include #include #include #include #include #include #include /** How long to cache transactions in mapRelay for normal relay */ static constexpr auto RELAY_TX_CACHE_TIME = 15min; /** * How long a transaction has to be in the mempool before it can * unconditionally be relayed (even when not in mapRelay). */ static constexpr auto UNCONDITIONAL_RELAY_DELAY = 2min; /** * Headers download timeout. * Timeout = base + per_header * (expected number of headers) */ static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min; static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms; /** * Protect at least this many outbound peers from disconnection due to * slow/behind headers chain. */ static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4; /** * Timeout for (unprotected) outbound peers to sync to our chainwork, in * seconds. */ // 20 minutes static constexpr int64_t CHAIN_SYNC_TIMEOUT = 20 * 60; /** How frequently to check for stale tips, in seconds */ // 10 minutes static constexpr int64_t STALE_CHECK_INTERVAL = 10 * 60; /** * How frequently to check for extra outbound peers and disconnect, in seconds. */ static constexpr int64_t EXTRA_PEER_CHECK_INTERVAL = 45; /** * Minimum time an outbound-peer-eviction candidate must be connected for, in * order to evict, in seconds. */ static constexpr std::chrono::seconds MINIMUM_CONNECT_TIME{30}; /** SHA256("main address relay")[0:8] */ static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL; /// Age after which a stale block will no longer be served if requested as /// protection against fingerprinting. Set to one month, denominated in seconds. static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60; /// Age after which a block is considered historical for purposes of rate /// limiting block relay. Set to one week, denominated in seconds. static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60; /** * Time between pings automatically sent out for latency probing and keepalive. */ static constexpr std::chrono::minutes PING_INTERVAL{2}; /** The maximum number of entries in a locator */ static const unsigned int MAX_LOCATOR_SZ = 101; /** The maximum number of entries in an 'inv' protocol message */ static const unsigned int MAX_INV_SZ = 50000; static_assert(MAX_PROTOCOL_MESSAGE_LENGTH > MAX_INV_SZ * sizeof(CInv), "Max protocol message length must be greater than largest " "possible INV message"); /** Minimum time between 2 successives getavaaddr messages from the same peer */ static constexpr std::chrono::minutes GETAVAADDR_INTERVAL{2}; /** * If no proof was requested from a compact proof message after this timeout * expired, the proof radix tree can be cleaned up. */ static constexpr std::chrono::minutes AVALANCHE_AVAPROOFS_TIMEOUT{2}; struct DataRequestParameters { /** * Maximum number of in-flight data requests from a peer. It is not a hard * limit, but the threshold at which point the overloaded_peer_delay kicks * in. */ const size_t max_peer_request_in_flight; /** * Maximum number of inventories to consider for requesting, per peer. It * provides a reasonable DoS limit to per-peer memory usage spent on * announcements, while covering peers continuously sending INVs at the * maximum rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for * several minutes, while not receiving the actual data (from any peer) in * response to requests for them. */ const size_t max_peer_announcements; /** How long to delay requesting data from non-preferred peers */ const std::chrono::seconds nonpref_peer_delay; /** * How long to delay requesting data from overloaded peers (see * max_peer_request_in_flight). */ const std::chrono::seconds overloaded_peer_delay; /** * How long to wait (in microseconds) before a data request from an * additional peer. */ const std::chrono::microseconds getdata_interval; /** * Permission flags a peer requires to bypass the request limits tracking * limits and delay penalty. */ const NetPermissionFlags bypass_request_limits_permissions; }; static constexpr DataRequestParameters TX_REQUEST_PARAMS{ 100, // max_peer_request_in_flight 5000, // max_peer_announcements std::chrono::seconds(2), // nonpref_peer_delay std::chrono::seconds(2), // overloaded_peer_delay std::chrono::seconds(60), // getdata_interval PF_RELAY, // bypass_request_limits_permissions }; static constexpr DataRequestParameters PROOF_REQUEST_PARAMS{ 100, // max_peer_request_in_flight 5000, // max_peer_announcements std::chrono::seconds(2), // nonpref_peer_delay std::chrono::seconds(2), // overloaded_peer_delay std::chrono::seconds(60), // getdata_interval PF_BYPASS_PROOF_REQUEST_LIMITS, // bypass_request_limits_permissions }; /** * Limit to avoid sending big packets. Not used in processing incoming GETDATA * for compatibility. */ static const unsigned int MAX_GETDATA_SZ = 1000; /** * Number of blocks that can be requested at any given time from a single peer. */ static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16; /** * Time during which a peer must stall block download progress before being * disconnected. */ static constexpr auto BLOCK_STALLING_TIMEOUT = 2s; /** * Number of headers sent in one getheaders result. We rely on the assumption * that if a peer sends * less than this number, we reached its tip. Changing this value is a protocol * upgrade. */ static const unsigned int MAX_HEADERS_RESULTS = 2000; /** * Maximum depth of blocks we're willing to serve as compact blocks to peers * when requested. For older blocks, a regular BLOCK response will be sent. */ static const int MAX_CMPCTBLOCK_DEPTH = 5; /** * Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests * for. */ static const int MAX_BLOCKTXN_DEPTH = 10; /** * Size of the "block download window": how far ahead of our current height do * we fetch? Larger windows tolerate larger download speed differences between * peer, but increase the potential degree of disordering of blocks on disk * (which make reindexing and pruning harder). We'll probably * want to make this a per-peer adaptive value at some point. */ static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024; /** * Block download timeout base, expressed in multiples of the block interval * (i.e. 10 min) */ static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1; /** * Additional block download timeout per parallel downloading peer (i.e. 5 min) */ static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5; /** * Maximum number of headers to announce when relaying blocks with headers * message. */ static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8; /** Maximum number of unconnecting headers announcements before DoS score */ static const int MAX_UNCONNECTING_HEADERS = 10; /** Minimum blocks required to signal NODE_NETWORK_LIMITED */ static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288; /** * Average delay between local address broadcasts. */ static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL = 24h; /** * Average delay between peer address broadcasts. */ static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL = 30s; /** * Average delay between trickled inventory transmissions for inbound peers. * Blocks and peers with noban permission bypass this. */ static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL = 5s; /** * Maximum rate of inventory items to send per second. * Limits the impact of low-fee transaction floods. */ static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7; /** Maximum number of inventory items to send per transmission. */ static constexpr unsigned int INVENTORY_BROADCAST_MAX_PER_MB = INVENTORY_BROADCAST_PER_SECOND * count_seconds(INBOUND_INVENTORY_BROADCAST_INTERVAL); /** The number of most recently announced transactions a peer can request. */ static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500; /** * Verify that INVENTORY_MAX_RECENT_RELAY is enough to cache everything * typically relayed before unconditional relay from the mempool kicks in. This * is only a lower bound, and it should be larger to account for higher inv rate * to outbound peers, and random variations in the broadcast mechanism. */ static_assert(INVENTORY_MAX_RECENT_RELAY >= INVENTORY_BROADCAST_PER_SECOND * UNCONDITIONAL_RELAY_DELAY / std::chrono::seconds{1}, "INVENTORY_RELAY_MAX too low"); /** * Average delay between feefilter broadcasts in seconds. */ static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL = 10min; /** * Maximum feefilter broadcast delay after significant change. */ static constexpr auto MAX_FEEFILTER_CHANGE_DELAY = 5min; /** * Maximum number of compact filters that may be requested with one * getcfilters. See BIP 157. */ static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000; /** * Maximum number of cf hashes that may be requested with one getcfheaders. See * BIP 157. */ static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000; /** * the maximum percentage of addresses from our addrman to return in response * to a getaddr message. */ static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23; /** The maximum number of address records permitted in an ADDR message. */ static constexpr size_t MAX_ADDR_TO_SEND{1000}; /** * The maximum rate of address records we're willing to process on average. Can * be bypassed using the NetPermissionFlags::Addr permission. */ static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1}; /** * The soft limit of the address processing token bucket (the regular * MAX_ADDR_RATE_PER_SECOND based increments won't go above this, but the * MAX_ADDR_TO_SEND increment following GETADDR is exempt from this limit). */ static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET{MAX_ADDR_TO_SEND}; inline size_t GetMaxAddrToSend() { return gArgs.GetIntArg("-maxaddrtosend", MAX_ADDR_TO_SEND); } // Internal stuff namespace { /** * Blocks that are in flight, and that are in the queue to be downloaded. */ struct QueuedBlock { BlockHash hash; //! Optional. const CBlockIndex *pindex; //! Whether this block has validated headers at the time of request. bool fValidatedHeaders; //! Optional, used for CMPCTBLOCK downloads std::unique_ptr partialBlock; }; /** * Data structure for an individual peer. This struct is not protected by * cs_main since it does not contain validation-critical data. * * Memory is owned by shared pointers and this object is destructed when * the refcount drops to zero. * * Mutexes inside this struct must not be held when locking m_peer_mutex. * * TODO: move most members from CNodeState to this structure. * TODO: move remaining application-layer data members from CNode to this * structure. */ struct Peer { /** Same id as the CNode object for this peer */ const NodeId m_id{0}; /** Protects misbehavior data members */ Mutex m_misbehavior_mutex; /** Accumulated misbehavior score for this peer */ int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0}; /** Whether this peer should be disconnected and marked as discouraged * (unless it has the noban permission). */ bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false}; /** Protects block inventory data members */ Mutex m_block_inv_mutex; /** * List of blocks that we'll anounce via an `inv` message. * There is no final sorting before sending, as they are always sent * immediately and in the order requested. */ std::vector m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex); /** * Unfiltered list of blocks that we'd like to announce via a `headers` * message. If we can't announce via a `headers` message, we'll fall back to * announcing via `inv`. */ std::vector m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex); /** * The final block hash that we sent in an `inv` message to this peer. * When the peer requests this block, we send an `inv` message to trigger * the peer to request the next sequence of block hashes. * Most peers use headers-first syncing, which doesn't use this mechanism */ BlockHash m_continuation_block GUARDED_BY(m_block_inv_mutex){}; /** This peer's reported block height when we connected */ std::atomic m_starting_height{-1}; /** The pong reply we're expecting, or 0 if no pong expected. */ std::atomic m_ping_nonce_sent{0}; /** When the last ping was sent, or 0 if no ping was ever sent */ std::atomic m_ping_start{0us}; /** Whether a ping has been requested by the user */ std::atomic m_ping_queued{false}; /** * A vector of addresses to send to the peer, limited to MAX_ADDR_TO_SEND. */ std::vector m_addrs_to_send; /** * Probabilistic filter to track recent addr messages relayed with this * peer. Used to avoid relaying redundant addresses to this peer. * * We initialize this filter for outbound peers (other than * block-relay-only connections) or when an inbound peer sends us an * address related message (ADDR, ADDRV2, GETADDR). * * Presence of this filter must correlate with m_addr_relay_enabled. **/ std::unique_ptr m_addr_known; /** * Whether we are participating in address relay with this connection. * * We set this bool to true for outbound peers (other than * block-relay-only connections), or when an inbound peer sends us an * address related message (ADDR, ADDRV2, GETADDR). * * We use this bool to decide whether a peer is eligible for gossiping * addr messages. This avoids relaying to peers that are unlikely to * forward them, effectively blackholing self announcements. Reasons * peers might support addr relay on the link include that they connected * to us as a block-relay-only peer or they are a light client. * * This field must correlate with whether m_addr_known has been * initialized. */ std::atomic_bool m_addr_relay_enabled{false}; /** Whether a getaddr request to this peer is outstanding. */ bool m_getaddr_sent{false}; /** Guards address sending timers. */ mutable Mutex m_addr_send_times_mutex; /** Time point to send the next ADDR message to this peer. */ std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0}; /** Time point to possibly re-announce our local address to this peer. */ std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0}; /** * Whether the peer has signaled support for receiving ADDRv2 (BIP155) * messages, indicating a preference to receive ADDRv2 instead of ADDR ones. */ std::atomic_bool m_wants_addrv2{false}; /** Whether this peer has already sent us a getaddr message. */ bool m_getaddr_recvd{false}; /** Guards m_addr_token_bucket */ mutable Mutex m_addr_token_bucket_mutex; /** * Number of addresses that can be processed from this peer. Start at 1 * to permit self-announcement. */ double m_addr_token_bucket GUARDED_BY(m_addr_token_bucket_mutex){1.0}; /** When m_addr_token_bucket was last updated */ std::chrono::microseconds m_addr_token_timestamp{ GetTime()}; /** Total number of addresses that were dropped due to rate limiting. */ std::atomic m_addr_rate_limited{0}; /** * Total number of addresses that were processed (excludes rate-limited * ones). */ std::atomic m_addr_processed{0}; /** * Set of txids to reconsider once their parent transactions have been * accepted */ std::set m_orphan_work_set GUARDED_BY(g_cs_orphans); /** Protects m_getdata_requests **/ Mutex m_getdata_requests_mutex; /** Work queue of items requested by this peer **/ std::deque m_getdata_requests GUARDED_BY(m_getdata_requests_mutex); explicit Peer(NodeId id) : m_id(id) {} }; using PeerRef = std::shared_ptr; class PeerManagerImpl final : public PeerManager { public: PeerManagerImpl(const CChainParams &chainparams, CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, bool ignore_incoming_txs); /** Overridden from CValidationInterface. */ void BlockConnected(const std::shared_ptr &pblock, const CBlockIndex *pindexConnected) override; void BlockDisconnected(const std::shared_ptr &block, const CBlockIndex *pindex) override; void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override; void BlockChecked(const CBlock &block, const BlockValidationState &state) override; void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr &pblock) override; /** Implement NetEventsInterface */ void InitializeNode(const Config &config, CNode *pnode) override; void FinalizeNode(const Config &config, const CNode &node) override; bool ProcessMessages(const Config &config, CNode *pfrom, std::atomic &interrupt) override; bool SendMessages(const Config &config, CNode *pto) override EXCLUSIVE_LOCKS_REQUIRED(pto->cs_sendProcessing); /** Implement PeerManager */ void StartScheduledTasks(CScheduler &scheduler) override; void CheckForStaleTipAndEvictPeers() override; bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) override; bool IgnoresIncomingTxs() override { return m_ignore_incoming_txs; } void SendPings() override; void RelayTransaction(const TxId &txid) override; void RelayProof(const avalanche::ProofId &proofid) override; void SetBestHeight(int height) override { m_best_height = height; }; void Misbehaving(const NodeId pnode, const int howmuch, const std::string &message) override; void ProcessMessage(const Config &config, CNode &pfrom, const std::string &msg_type, CDataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic &interruptMsgProc) override; private: /** * Consider evicting an outbound peer based on the amount of time they've * been behind our tip. */ void ConsiderEviction(CNode &pto, int64_t time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * If we have extra outbound peers, try to disconnect the one with the * oldest block announcement. */ void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Retrieve unbroadcast transactions from the mempool and reattempt * sending to peers */ void ReattemptInitialBroadcast(CScheduler &scheduler); /** * Update the avalanche statistics for all the nodes */ void UpdateAvalancheStatistics() const; /** * Process periodic avalanche network messaging and cleanups. */ void AvalanchePeriodicNetworking(CScheduler &scheduler) const; /** * Get a shared pointer to the Peer object. * May return an empty shared_ptr if the Peer object can't be found. */ PeerRef GetPeerRef(NodeId id) const; /** * Get a shared pointer to the Peer object and remove it from m_peer_map. * May return an empty shared_ptr if the Peer object can't be found. */ PeerRef RemovePeer(NodeId id); // overloaded variant of above to operate on CNode*s void Misbehaving(const CNode &node, int howmuch, const std::string &message) { Misbehaving(node.GetId(), howmuch, message); } /** * Potentially mark a node discouraged based on the contents of a * BlockValidationState object * * @param[in] via_compact_block this bool is passed in because * net_processing should punish peers differently depending on whether the * data was provided in a compact block message or not. If the compact block * had a valid header, but contained invalid txs, the peer should not be * punished. See BIP 152. * * @return Returns true if the peer was punished (probably disconnected) */ bool MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState &state, bool via_compact_block, const std::string &message = ""); /** * Potentially disconnect and discourage a node based on the contents of a * TxValidationState object * * @return Returns true if the peer was punished (probably disconnected) */ bool MaybePunishNodeForTx(NodeId nodeid, const TxValidationState &state, const std::string &message = ""); /** * Maybe disconnect a peer and discourage future connections from its * address. * * @param[in] pnode The node to check. * @param[in] peer The peer object to check. * @return True if the peer was marked for disconnection in * this function */ bool MaybeDiscourageAndDisconnect(CNode &pnode, Peer &peer); void ProcessOrphanTx(const Config &config, std::set &orphan_work_set) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans); /** Process a single headers message from a peer. */ void ProcessHeadersMessage(const Config &config, CNode &pfrom, const Peer &peer, const std::vector &headers, bool via_compact_block); void SendBlockTransactions(CNode &pfrom, const CBlock &block, const BlockTransactionsRequest &req); /** * Register with InvRequestTracker that a TX INV has been received from a * peer. The announcement parameters are decided in PeerManager and then * passed to InvRequestTracker. */ void AddTxAnnouncement(const CNode &node, const TxId &txid, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); /** * Register with InvRequestTracker that a PROOF INV has been received from a * peer. The announcement parameters are decided in PeerManager and then * passed to InvRequestTracker. */ void AddProofAnnouncement(const CNode &node, const avalanche::ProofId &proofid, std::chrono::microseconds current_time, bool preferred) EXCLUSIVE_LOCKS_REQUIRED(cs_proofrequest); /** Send a version message to a peer */ void PushNodeVersion(const Config &config, CNode &pnode, int64_t nTime); /** * Send a ping message every PING_INTERVAL or if requested via RPC. May mark * the peer to be disconnected if a ping has timed out. * We use mockable time for ping timeouts, so setmocktime may cause pings * to time out. */ void MaybeSendPing(CNode &node_to, Peer &peer, std::chrono::microseconds now); /** Send `addr` messages on a regular schedule. */ void MaybeSendAddr(CNode &node, Peer &peer, std::chrono::microseconds current_time); /** Send `feefilter` message. */ void MaybeSendFeefilter(CNode &node, std::chrono::microseconds current_time); /** * Relay (gossip) an address to a few randomly chosen nodes. * * @param[in] originator The id of the peer that sent us the address. We * don't want to relay it back. * @param[in] addr Address to relay. * @param[in] fReachable Whether the address' network is reachable. We * relay unreachable addresses less. */ void RelayAddress(NodeId originator, const CAddress &addr, bool fReachable); const CChainParams &m_chainparams; CConnman &m_connman; AddrMan &m_addrman; /** * Pointer to this node's banman. May be nullptr - check existence before * dereferencing. */ BanMan *const m_banman; ChainstateManager &m_chainman; CTxMemPool &m_mempool; InvRequestTracker m_txrequest GUARDED_BY(::cs_main); Mutex cs_proofrequest; InvRequestTracker m_proofrequest GUARDED_BY(cs_proofrequest); /** The height of the best chain */ std::atomic m_best_height{-1}; //! Next time to check for stale tip int64_t m_stale_tip_check_time; /** Whether this node is running in blocks only mode */ const bool m_ignore_incoming_txs; /** * Whether we've completed initial sync yet, for determining when to turn * on extra block-relay-only peers. */ bool m_initial_sync_finished{false}; /** * Protects m_peer_map. This mutex must not be locked while holding a lock * on any of the mutexes inside a Peer object. */ mutable Mutex m_peer_mutex; /** * Map of all Peer objects, keyed by peer id. This map is protected * by the m_peer_mutex. Once a shared pointer reference is * taken, the lock may be released. Individual fields are protected by * their own locks. */ std::map m_peer_map GUARDED_BY(m_peer_mutex); /** Number of nodes with fSyncStarted. */ int nSyncStarted GUARDED_BY(cs_main) = 0; /** * Sources of received blocks, saved to be able to punish them when * processing happens afterwards. * Set mapBlockSource[hash].second to false if the node should not be * punished if the block is invalid. */ std::map> mapBlockSource GUARDED_BY(cs_main); /** Number of outbound peers with m_chain_sync.m_protect. */ int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0; bool AlreadyHaveTx(const TxId &txid) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Filter for transactions that were recently rejected by the mempool. * These are not rerequested until the chain tip changes, at which point * the entire filter is reset. * * Without this filter we'd be re-requesting txs from each of our peers, * increasing bandwidth consumption considerably. For instance, with 100 * peers, half of which relay a tx we don't accept, that might be a 50x * bandwidth increase. A flooding attacker attempting to roll-over the * filter using minimum-sized, 60byte, transactions might manage to send * 1000/sec if we have fast peers, so we pick 120,000 to give our peers a * two minute window to send invs to us. * * Decreasing the false positive rate is fairly cheap, so we pick one in a * million to make it highly unlikely for users to have issues with this * filter. * * Memory used: 1.3 MB */ std::unique_ptr recentRejects GUARDED_BY(cs_main); uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main); /** * Filter for transactions that have been recently confirmed. * We use this to avoid requesting transactions that have already been * confirmed. */ Mutex m_recent_confirmed_transactions_mutex; std::unique_ptr m_recent_confirmed_transactions GUARDED_BY(m_recent_confirmed_transactions_mutex); /** * Returns a bool indicating whether we requested this block. * Also used if a block was /not/ received and timed out or started with * another peer */ bool MarkBlockAsReceived(const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Mark a block as in flight * Returns false, still setting pit, if the block was already in flight from * the same peer pit will only be valid as long as the same cs_main lock is * being held */ bool MarkBlockAsInFlight(const Config &config, NodeId nodeid, const BlockHash &hash, const CBlockIndex *pindex = nullptr, std::list::iterator **pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Update pindexLastCommonBlock and add not-in-flight missing successors to * vBlocks, until it has at most count entries. */ void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector &vBlocks, NodeId &nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main); std::map::iterator>> mapBlocksInFlight GUARDED_BY(cs_main); /** When our tip was last updated. */ std::atomic m_last_tip_update{0}; /** * Determine whether or not a peer can request a transaction, and return it * (or nullptr if not found or not allowed). */ CTransactionRef FindTxForGetData(const CNode &peer, const TxId &txid, const std::chrono::seconds mempool_req, const std::chrono::seconds now) LOCKS_EXCLUDED(cs_main); void ProcessGetData(const Config &config, CNode &pfrom, Peer &peer, const std::atomic &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(peer.m_getdata_requests_mutex) LOCKS_EXCLUDED(cs_main); /** Process a new block. Perform any post-processing housekeeping */ void ProcessBlock(const Config &config, CNode &node, const std::shared_ptr &block, bool force_processing); /** Relay map. */ typedef std::map MapRelay; MapRelay mapRelay GUARDED_BY(cs_main); /** * Expiration-time ordered list of (expire time, relay map entry) pairs, * protected by cs_main). */ std::deque> g_relay_expiration GUARDED_BY(cs_main); /** * When a peer sends us a valid block, instruct it to announce blocks to us * using CMPCTBLOCK if possible by adding its nodeid to the end of * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size * by removing the first element if necessary. */ void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Stack of nodes which we have set to announce using compact blocks */ std::list lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main); /** Number of peers from which we're downloading blocks. */ int nPeersWithValidatedDownloads GUARDED_BY(cs_main) = 0; /** Storage for orphan information */ TxOrphanage m_orphanage; void AddToCompactExtraTransactions(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans); /** * Orphan/conflicted/etc transactions that are kept for compact block * reconstruction. * The last * -blockreconstructionextratxn/DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN of * these are kept in a ring buffer */ std::vector> vExtraTxnForCompact GUARDED_BY(g_cs_orphans); /** Offset into vExtraTxnForCompact to insert the next tx */ size_t vExtraTxnForCompactIt GUARDED_BY(g_cs_orphans) = 0; /** * Check whether the last unknown block a peer advertised is not yet known. */ void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Update tracking information about which blocks a peer is assumed to have. */ void UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool CanDirectFetch(const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * To prevent fingerprinting attacks, only send blocks/headers outside of * the active chain if they are no more than a month older (both in time, * and in best equivalent proof of work) than the best header chain we know * about and we fully-validated them at some point. */ bool BlockRequestAllowed(const CBlockIndex *pindex, const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool AlreadyHaveBlock(const BlockHash &block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool AlreadyHaveProof(const avalanche::ProofId &proofid); void ProcessGetBlockData(const Config &config, CNode &pfrom, Peer &peer, const CInv &inv, CConnman &connman); /** * Validation logic for compact filters request handling. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] chain_params Chain parameters * @param[in] filter_type The filter type the request is for. Must be * basic filters. * @param[in] start_height The start height for the request * @param[in] stop_hash The stop_hash for the request * @param[in] max_height_diff The maximum number of items permitted to * request, as specified in BIP 157 * @param[out] stop_index The CBlockIndex for the stop_hash block, if * the request can be serviced. * @param[out] filter_index The filter index, if the request can be * serviced. * @return True if the request can be serviced. */ bool PrepareBlockFilterRequest( CNode &peer, const CChainParams &chain_params, BlockFilterType filter_type, uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff, const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index); /** * Handle a cfilters request. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received * @param[in] chain_params Chain parameters * @param[in] connman Pointer to the connection manager */ void ProcessGetCFilters(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman); /** * Handle a cfheaders request. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received * @param[in] chain_params Chain parameters * @param[in] connman Pointer to the connection manager */ void ProcessGetCFHeaders(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman); /** * Handle a getcfcheckpt request. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received * @param[in] chain_params Chain parameters * @param[in] connman Pointer to the connection manager */ void ProcessGetCFCheckPt(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman); /** * Decide a response for an Avalanche poll about the given block. * * @param[in] hash The hash of the block being polled for * @return Our current vote for the block */ uint32_t GetAvalancheVoteForBlock(const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Checks if address relay is permitted with peer. If needed, initializes * the m_addr_known bloom filter and sets m_addr_relay_enabled to true. * * @return True if address relay is enabled with peer * False if address relay is disallowed */ bool SetupAddressRelay(CNode &node, Peer &peer); /** * Manage reception of an avalanche proof. * * @return False if the peer is misbehaving, true otherwise */ bool ReceivedAvalancheProof(CNode &peer, const avalanche::ProofRef &proof); }; } // namespace namespace { /** * Filter for proofs that are consensus-invalid or were recently invalidated * by avalanche (finalized rejection). These are not rerequested until they are * rolled out of the filter. * * Without this filter we'd be re-requesting proofs from each of our peers, * increasing bandwidth consumption considerably. * * Decreasing the false positive rate is fairly cheap, so we pick one in a * million to make it highly unlikely for users to have issues with this filter. */ Mutex cs_invalidProofs; std::unique_ptr invalidProofs GUARDED_BY(cs_invalidProofs); /** Number of preferable block download peers. */ int nPreferredDownload GUARDED_BY(cs_main) = 0; } // namespace namespace { /** * Maintain validation-specific state about nodes, protected by cs_main, instead * by CNode's own locks. This simplifies asynchronous operation, where * processing of incoming data is done after the ProcessMessage call returns, * and we're no longer holding the node's locks. */ struct CNodeState { //! The peer's address const CService address; //! The best known block we know this peer has announced. const CBlockIndex *pindexBestKnownBlock; //! The hash of the last unknown block this peer has announced. BlockHash hashLastUnknownBlock; //! The last full block we both have. const CBlockIndex *pindexLastCommonBlock; //! The best header we have sent our peer. const CBlockIndex *pindexBestHeaderSent; //! Length of current-streak of unconnecting headers announcements int nUnconnectingHeaders; //! Whether we've started headers synchronization with this peer. bool fSyncStarted; //! When to potentially disconnect peer for stalling headers download std::chrono::microseconds m_headers_sync_timeout{0us}; //! Since when we're stalling block download progress (in microseconds), or //! 0. std::chrono::microseconds m_stalling_since{0us}; std::list vBlocksInFlight; //! When the first entry in vBlocksInFlight started downloading. Don't care //! when vBlocksInFlight is empty. std::chrono::microseconds m_downloading_since{0us}; int nBlocksInFlight; int nBlocksInFlightValidHeaders; //! Whether we consider this a preferred download peer. bool fPreferredDownload; //! Whether this peer wants invs or headers (when possible) for block //! announcements. bool fPreferHeaders; //! Whether this peer wants invs or cmpctblocks (when possible) for block //! announcements. bool fPreferHeaderAndIDs; /** * Whether this peer will send us cmpctblocks if we request them. * This is not used to gate request logic, as we really only care about * fSupportsDesiredCmpctVersion, but is used as a flag to "lock in" the * version of compact blocks we send. */ bool fProvidesHeaderAndIDs; /** * If we've announced NODE_WITNESS to this peer: whether the peer sends * witnesses in cmpctblocks/blocktxns, otherwise: whether this peer sends * non-witnesses in cmpctblocks/blocktxns. */ bool fSupportsDesiredCmpctVersion; /** * State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL * logic. * * Both are only in effect for outbound, non-manual, non-protected * connections. Any peer protected (m_protect = true) is not chosen for * eviction. A peer is marked as protected if all of these are true: * - its connection type is IsBlockOnlyConn() == false * - it gave us a valid connecting header * - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet * - it has a better chain than we have * * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our * tip, set a timeout CHAIN_SYNC_TIMEOUT seconds in the future: * - If at timeout their best known block now has more work than our tip * when the timeout was set, then either reset the timeout or clear it * (after comparing against our current tip's work) * - If at timeout their best known block still has less work than our tip * did when the timeout was set, then send a getheaders message, and set a * shorter timeout, HEADERS_RESPONSE_TIME seconds in future. If their best * known block is still behind when that new timeout is reached, disconnect. * * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many * outbound peers, drop the outbound one that least recently announced us a * new block. */ struct ChainSyncTimeoutState { //! A timeout used for checking whether our peer has sufficiently //! synced. int64_t m_timeout; //! A header with the work we require on our peer's chain. const CBlockIndex *m_work_header; //! After timeout is reached, set to true after sending getheaders. bool m_sent_getheaders; //! Whether this peer is protected from disconnection due to a bad/slow //! chain. bool m_protect; }; ChainSyncTimeoutState m_chain_sync; //! Time of last new block announcement int64_t m_last_block_announcement; struct AvalancheState { std::chrono::time_point last_poll; }; AvalancheState m_avalanche_state; //! Whether this peer is an inbound connection bool m_is_inbound; //! A rolling bloom filter of all announced tx CInvs to this peer. CRollingBloomFilter m_recently_announced_invs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; //! A rolling bloom filter of all announced Proofs CInvs to this peer. CRollingBloomFilter m_recently_announced_proofs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; CNodeState(CAddress addrIn, bool is_inbound) : address(addrIn), m_is_inbound(is_inbound) { pindexBestKnownBlock = nullptr; hashLastUnknownBlock = BlockHash(); pindexLastCommonBlock = nullptr; pindexBestHeaderSent = nullptr; nUnconnectingHeaders = 0; fSyncStarted = false; nBlocksInFlight = 0; nBlocksInFlightValidHeaders = 0; fPreferredDownload = false; fPreferHeaders = false; fPreferHeaderAndIDs = false; fProvidesHeaderAndIDs = false; fSupportsDesiredCmpctVersion = false; m_chain_sync = {0, nullptr, false, false}; m_last_block_announcement = 0; m_recently_announced_invs.reset(); m_recently_announced_proofs.reset(); } }; /** Map maintaining per-node state. */ static std::map mapNodeState GUARDED_BY(cs_main); static CNodeState *State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { std::map::iterator it = mapNodeState.find(pnode); if (it == mapNodeState.end()) { return nullptr; } return &it->second; } /** * Whether the peer supports the address. For example, a peer that does not * implement BIP155 cannot receive Tor v3 addresses because it requires * ADDRv2 (BIP155) encoding. */ static bool IsAddrCompatible(const Peer &peer, const CAddress &addr) { return peer.m_wants_addrv2 || addr.IsAddrV1Compatible(); } static void AddAddressKnown(Peer &peer, const CAddress &addr) { assert(peer.m_addr_known); peer.m_addr_known->insert(addr.GetKey()); } static void PushAddress(Peer &peer, const CAddress &addr, FastRandomContext &insecure_rand) { // Known checking here is only to save space from duplicates. // Before sending, we'll filter it again for known addresses that were // added after addresses were pushed. assert(peer.m_addr_known); if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) { if (peer.m_addrs_to_send.size() >= GetMaxAddrToSend()) { peer.m_addrs_to_send[insecure_rand.randrange( peer.m_addrs_to_send.size())] = addr; } else { peer.m_addrs_to_send.push_back(addr); } } } static bool isPreferredDownloadPeer(const CNode &pfrom) { LOCK(cs_main); const CNodeState *state = State(pfrom.GetId()); return state && state->fPreferredDownload; } static void UpdatePreferredDownload(const CNode &node, CNodeState *state) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { nPreferredDownload -= state->fPreferredDownload; // Whether this node should be marked as a preferred download node. state->fPreferredDownload = (!node.IsInboundConn() || node.HasPermission(PF_NOBAN)) && !node.IsAddrFetchConn() && !node.fClient; nPreferredDownload += state->fPreferredDownload; } bool PeerManagerImpl::MarkBlockAsReceived(const BlockHash &hash) { std::map::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end()) { CNodeState *state = State(itInFlight->second.first); assert(state != nullptr); state->nBlocksInFlightValidHeaders -= itInFlight->second.second->fValidatedHeaders; if (state->nBlocksInFlightValidHeaders == 0 && itInFlight->second.second->fValidatedHeaders) { // Last validated block on the queue was received. nPeersWithValidatedDownloads--; } if (state->vBlocksInFlight.begin() == itInFlight->second.second) { // First block on the queue was received, update the start download // time for the next one state->m_downloading_since = std::max(state->m_downloading_since, GetTime()); } state->vBlocksInFlight.erase(itInFlight->second.second); state->nBlocksInFlight--; state->m_stalling_since = 0us; mapBlocksInFlight.erase(itInFlight); return true; } return false; } bool PeerManagerImpl::MarkBlockAsInFlight( const Config &config, NodeId nodeid, const BlockHash &hash, const CBlockIndex *pindex, std::list::iterator **pit) { CNodeState *state = State(nodeid); assert(state != nullptr); // Short-circuit most stuff in case it is from the same node. std::map::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end() && itInFlight->second.first == nodeid) { if (pit) { *pit = &itInFlight->second.second; } return false; } // Make sure it's not listed somewhere already. MarkBlockAsReceived(hash); std::list::iterator it = state->vBlocksInFlight.insert( state->vBlocksInFlight.end(), {hash, pindex, pindex != nullptr, std::unique_ptr( pit ? new PartiallyDownloadedBlock(config, &m_mempool) : nullptr)}); state->nBlocksInFlight++; state->nBlocksInFlightValidHeaders += it->fValidatedHeaders; if (state->nBlocksInFlight == 1) { // We're starting a block download (batch) from this peer. state->m_downloading_since = GetTime(); } if (state->nBlocksInFlightValidHeaders == 1 && pindex != nullptr) { nPeersWithValidatedDownloads++; } itInFlight = mapBlocksInFlight .insert(std::make_pair(hash, std::make_pair(nodeid, it))) .first; if (pit) { *pit = &itInFlight->second.second; } return true; } void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) { AssertLockHeld(cs_main); CNodeState *nodestate = State(nodeid); if (!nodestate) { LogPrint(BCLog::NET, "node state unavailable: peer=%d\n", nodeid); return; } if (!nodestate->fProvidesHeaderAndIDs) { return; } for (std::list::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) { if (*it == nodeid) { lNodesAnnouncingHeaderAndIDs.erase(it); lNodesAnnouncingHeaderAndIDs.push_back(nodeid); return; } } m_connman.ForNode(nodeid, [this](CNode *pfrom) EXCLUSIVE_LOCKS_REQUIRED( ::cs_main) { AssertLockHeld(::cs_main); uint64_t nCMPCTBLOCKVersion = 1; if (lNodesAnnouncingHeaderAndIDs.size() >= 3) { // As per BIP152, we only get 3 of our peers to announce // blocks using compact encodings. m_connman.ForNode( lNodesAnnouncingHeaderAndIDs.front(), [this, nCMPCTBLOCKVersion](CNode *pnodeStop) { m_connman.PushMessage( pnodeStop, CNetMsgMaker(pnodeStop->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*fAnnounceUsingCMPCTBLOCK=*/false, nCMPCTBLOCKVersion)); // save BIP152 bandwidth state: we select peer to be // low-bandwidth pnodeStop->m_bip152_highbandwidth_to = false; return true; }); lNodesAnnouncingHeaderAndIDs.pop_front(); } m_connman.PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*fAnnounceUsingCMPCTBLOCK=*/true, nCMPCTBLOCKVersion)); // save BIP152 bandwidth state: we select peer to be high-bandwidth pfrom->m_bip152_highbandwidth_to = true; lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId()); return true; }); } bool PeerManagerImpl::TipMayBeStale() { AssertLockHeld(cs_main); const Consensus::Params &consensusParams = m_chainparams.GetConsensus(); if (m_last_tip_update == 0) { m_last_tip_update = GetTime(); } return m_last_tip_update < GetTime() - consensusParams.nPowTargetSpacing * 3 && mapBlocksInFlight.empty(); } bool PeerManagerImpl::CanDirectFetch(const Consensus::Params &consensusParams) { return m_chainman.ActiveChain().Tip()->GetBlockTime() > GetAdjustedTime() - consensusParams.nPowTargetSpacing * 20; } static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight)) { return true; } if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight)) { return true; } return false; } void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) { CNodeState *state = State(nodeid); assert(state != nullptr); if (!state->hashLastUnknownBlock.IsNull()) { const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock); if (pindex && pindex->nChainWork > 0) { if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } state->hashLastUnknownBlock.SetNull(); } } } void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash) { CNodeState *state = State(nodeid); assert(state != nullptr); ProcessBlockAvailability(nodeid); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); if (pindex && pindex->nChainWork > 0) { // An actually better block was announced. if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } } else { // An unknown block was announced; just assume that the latest one is // the best one. state->hashLastUnknownBlock = hash; } } void PeerManagerImpl::FindNextBlocksToDownload( NodeId nodeid, unsigned int count, std::vector &vBlocks, NodeId &nodeStaller) { if (count == 0) { return; } vBlocks.reserve(vBlocks.size() + count); CNodeState *state = State(nodeid); assert(state != nullptr); // Make sure pindexBestKnownBlock is up to date, we'll need it. ProcessBlockAvailability(nodeid); if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has nothing interesting. return; } if (state->pindexLastCommonBlock == nullptr) { // Bootstrap quickly by guessing a parent of our best tip is the forking // point. Guessing wrong in either direction is not a problem. state->pindexLastCommonBlock = m_chainman .ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())]; } // If the peer reorganized, our previous pindexLastCommonBlock may not be an // ancestor of its current tip anymore. Go back enough to fix that. state->pindexLastCommonBlock = LastCommonAncestor( state->pindexLastCommonBlock, state->pindexBestKnownBlock); if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) { return; } std::vector vToFetch; const CBlockIndex *pindexWalk = state->pindexLastCommonBlock; // Never fetch further than the best block we know the peer has, or more // than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last linked block we have in // common with this peer. The +1 is so we can detect stalling, namely if we // would be able to download that next block if the window were 1 larger. int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW; int nMaxHeight = std::min(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1); NodeId waitingfor = -1; while (pindexWalk->nHeight < nMaxHeight) { // Read up to 128 (or more, if more blocks than that are needed) // successors of pindexWalk (towards pindexBestKnownBlock) into // vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as // expensive as iterating over ~100 CBlockIndex* entries anyway. int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max(count - vBlocks.size(), 128)); vToFetch.resize(nToFetch); pindexWalk = state->pindexBestKnownBlock->GetAncestor( pindexWalk->nHeight + nToFetch); vToFetch[nToFetch - 1] = pindexWalk; for (unsigned int i = nToFetch - 1; i > 0; i--) { vToFetch[i - 1] = vToFetch[i]->pprev; } // Iterate over those blocks in vToFetch (in forward direction), adding // the ones that are not yet downloaded and not in flight to vBlocks. In // the meantime, update pindexLastCommonBlock as long as all ancestors // are already downloaded, or if it's already part of our chain (and // therefore don't need it even if pruned). for (const CBlockIndex *pindex : vToFetch) { if (!pindex->IsValid(BlockValidity::TREE)) { // We consider the chain that this peer is on invalid. return; } if (pindex->nStatus.hasData() || m_chainman.ActiveChain().Contains(pindex)) { if (pindex->HaveTxsDownloaded()) { state->pindexLastCommonBlock = pindex; } } else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) { // The block is not already downloaded, and not yet in flight. if (pindex->nHeight > nWindowEnd) { // We reached the end of the window. if (vBlocks.size() == 0 && waitingfor != nodeid) { // We aren't able to fetch anything, but we would be if // the download window was one larger. nodeStaller = waitingfor; } return; } vBlocks.push_back(pindex); if (vBlocks.size() == count) { return; } } else if (waitingfor == -1) { // This is the first already-in-flight block. waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first; } } } } } // namespace template static bool TooManyAnnouncements(const CNode &node, const InvRequestTracker &requestTracker, const DataRequestParameters &requestParams) { return !node.HasPermission( requestParams.bypass_request_limits_permissions) && requestTracker.Count(node.GetId()) >= requestParams.max_peer_announcements; } /** * Compute the request time for this announcement, current time plus delays for: * - nonpref_peer_delay for announcements from non-preferred connections * - overloaded_peer_delay for announcements from peers which have at least * max_peer_request_in_flight requests in flight (and don't have PF_RELAY). */ template static std::chrono::microseconds ComputeRequestTime(const CNode &node, const InvRequestTracker &requestTracker, const DataRequestParameters &requestParams, std::chrono::microseconds current_time, bool preferred) { auto delay = std::chrono::microseconds{0}; if (!preferred) { delay += requestParams.nonpref_peer_delay; } if (!node.HasPermission(requestParams.bypass_request_limits_permissions) && requestTracker.CountInFlight(node.GetId()) >= requestParams.max_peer_request_in_flight) { delay += requestParams.overloaded_peer_delay; } return current_time + delay; } void PeerManagerImpl::PushNodeVersion(const Config &config, CNode &pnode, int64_t nTime) { // Note that pnode.GetLocalServices() is a reflection of the local // services we were offering when the CNode object was created for this // peer. ServiceFlags nLocalNodeServices = pnode.GetLocalServices(); uint64_t nonce = pnode.GetLocalNonce(); const int nNodeStartingHeight{m_best_height}; NodeId nodeid = pnode.GetId(); CAddress addr = pnode.addr; uint64_t extraEntropy = pnode.GetLocalExtraEntropy(); CAddress addrYou = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CAddress(CService(), addr.nServices); CAddress addrMe = CAddress(CService(), nLocalNodeServices); const bool tx_relay = !m_ignore_incoming_txs && pnode.m_tx_relay != nullptr && !pnode.IsFeelerConn(); m_connman.PushMessage( &pnode, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::VERSION, PROTOCOL_VERSION, uint64_t(nLocalNodeServices), nTime, addrYou, addrMe, nonce, userAgent(config), nNodeStartingHeight, tx_relay, extraEntropy)); if (fLogIPs) { LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, us=%s, them=%s, " "txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), addrYou.ToString(), tx_relay, nodeid); } else { LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, us=%s, " "txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), tx_relay, nodeid); } } void PeerManagerImpl::AddTxAnnouncement( const CNode &node, const TxId &txid, std::chrono::microseconds current_time) { // For m_txrequest and state AssertLockHeld(::cs_main); if (TooManyAnnouncements(node, m_txrequest, TX_REQUEST_PARAMS)) { return; } const bool preferred = isPreferredDownloadPeer(node); auto reqtime = ComputeRequestTime(node, m_txrequest, TX_REQUEST_PARAMS, current_time, preferred); m_txrequest.ReceivedInv(node.GetId(), txid, preferred, reqtime); } void PeerManagerImpl::AddProofAnnouncement( const CNode &node, const avalanche::ProofId &proofid, std::chrono::microseconds current_time, bool preferred) { // For m_proofrequest AssertLockHeld(cs_proofrequest); if (TooManyAnnouncements(node, m_proofrequest, PROOF_REQUEST_PARAMS)) { return; } auto reqtime = ComputeRequestTime( node, m_proofrequest, PROOF_REQUEST_PARAMS, current_time, preferred); m_proofrequest.ReceivedInv(node.GetId(), proofid, preferred, reqtime); } // This function is used for testing the stale tip eviction logic, see // denialofservice_tests.cpp void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) { LOCK(cs_main); CNodeState *state = State(node); if (state) { state->m_last_block_announcement = time_in_seconds; } } void PeerManagerImpl::InitializeNode(const Config &config, CNode *pnode) { CAddress addr = pnode->addr; std::string addrName = pnode->GetAddrName(); NodeId nodeid = pnode->GetId(); { LOCK(cs_main); mapNodeState.emplace_hint( mapNodeState.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(addr, pnode->IsInboundConn())); assert(m_txrequest.Count(nodeid) == 0); } { PeerRef peer = std::make_shared(nodeid); LOCK(m_peer_mutex); m_peer_map.emplace_hint(m_peer_map.end(), nodeid, std::move(peer)); } if (!pnode->IsInboundConn()) { PushNodeVersion(config, *pnode, GetTime()); } } void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler &scheduler) { std::set unbroadcast_txids = m_mempool.GetUnbroadcastTxs(); for (const TxId &txid : unbroadcast_txids) { // Sanity check: all unbroadcast txns should exist in the mempool if (m_mempool.exists(txid)) { RelayTransaction(txid); } else { m_mempool.RemoveUnbroadcastTx(txid, true); } } if (g_avalanche && isAvalancheEnabled(gArgs)) { // Get and sanitize the list of proofids to broadcast. The RelayProof // call is done in a second loop to avoid locking cs_vNodes while // cs_peerManager is locked which would cause a potential deadlock due // to reversed lock order. auto unbroadcasted_proofids = g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { auto unbroadcasted_proofids = pm.getUnbroadcastProofs(); auto it = unbroadcasted_proofids.begin(); while (it != unbroadcasted_proofids.end()) { // Sanity check: all unbroadcast proofs should be bound to a // peer in the peermanager if (!pm.isBoundToPeer(*it)) { pm.removeUnbroadcastProof(*it); it = unbroadcasted_proofids.erase(it); continue; } ++it; } return unbroadcasted_proofids; }); // Remaining proofids are the ones to broadcast for (const auto &proofid : unbroadcasted_proofids) { RelayProof(proofid); } } // Schedule next run for 10-15 minutes in the future. // We add randomness on every cycle to avoid the possibility of P2P // fingerprinting. const auto reattemptBroadcastInterval = 10min + GetRandMillis(5min); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, reattemptBroadcastInterval); } void PeerManagerImpl::UpdateAvalancheStatistics() const { - m_connman.ForEachNode([](CNode *pnode) { - if (pnode->m_avalanche_state) { - pnode->m_avalanche_state->updateAvailabilityScore(); - } - }); + m_connman.ForEachNode( + [](CNode *pnode) { pnode->updateAvailabilityScore(); }); } void PeerManagerImpl::AvalanchePeriodicNetworking(CScheduler &scheduler) const { const auto now = GetTime(); std::vector avanode_ids; bool fQuorumEstablished; bool fShouldRequestMoreNodes; if (!g_avalanche) { // Not enabled or not ready yet, retry later goto scheduleLater; } fQuorumEstablished = g_avalanche->isQuorumEstablished(); fShouldRequestMoreNodes = g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.shouldRequestMoreNodes(); }); m_connman.ForEachNode([&](CNode *pnode) { // Build a list of the avalanche peers nodeids if (pnode->m_avalanche_enabled && (!fQuorumEstablished || !pnode->IsInboundConn())) { avanode_ids.push_back(pnode->GetId()); } // If a proof radix tree timed out, cleanup if (pnode->m_proof_relay && now > (pnode->m_proof_relay->lastSharedProofsUpdate.load() + AVALANCHE_AVAPROOFS_TIMEOUT)) { pnode->m_proof_relay->sharedProofs = {}; } }); if (avanode_ids.empty()) { // No node is available for messaging, retry later goto scheduleLater; } Shuffle(avanode_ids.begin(), avanode_ids.end(), FastRandomContext()); // Request avalanche addresses from our peers for (NodeId avanodeId : avanode_ids) { m_connman.ForNode(avanodeId, [&](CNode *pavanode) { LogPrint(BCLog::AVALANCHE, "Requesting more avalanche addresses from peer %d\n", avanodeId); m_connman.PushMessage(pavanode, CNetMsgMaker(pavanode->GetCommonVersion()) .Make(NetMsgType::GETAVAADDR)); PeerRef peer = GetPeerRef(avanodeId); WITH_LOCK(peer->m_addr_token_bucket_mutex, peer->m_addr_token_bucket += GetMaxAddrToSend()); return true; }); // If we have no reason to believe that we need more nodes, only request // addresses from one of our peers. if (fQuorumEstablished && !fShouldRequestMoreNodes) { break; } } if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // Don't request proofs while in IBD. We're likely to orphan them // because we don't have the UTXOs. goto scheduleLater; } // If we never had an avaproofs message yet, be kind and only request to a // subset of our peers as we expect a ton of avaproofs message in the // process. if (g_avalanche->getAvaproofsNodeCounter() == 0) { avanode_ids.resize(std::min(avanode_ids.size(), 3)); } for (NodeId nodeid : avanode_ids) { // Send a getavaproofs to one of our peers m_connman.ForNode(nodeid, [&](CNode *pavanode) { LogPrint(BCLog::AVALANCHE, "Requesting compact proofs from peer %d\n", pavanode->GetId()); if (pavanode->m_proof_relay) { m_connman.PushMessage(pavanode, CNetMsgMaker(pavanode->GetCommonVersion()) .Make(NetMsgType::GETAVAPROOFS)); pavanode->m_proof_relay->compactproofs_requested = true; } return true; }); } scheduleLater: // Schedule next run for 2-5 minutes in the future. // We add randomness on every cycle to avoid the possibility of P2P // fingerprinting. const auto avalanchePeriodicNetworkingInterval = 2min + GetRandMillis(3min); scheduler.scheduleFromNow([&] { AvalanchePeriodicNetworking(scheduler); }, avalanchePeriodicNetworkingInterval); } void PeerManagerImpl::FinalizeNode(const Config &config, const CNode &node) { NodeId nodeid = node.GetId(); int misbehavior{0}; { LOCK(cs_main); { // We remove the PeerRef from g_peer_map here, but we don't always // destruct the Peer. Sometimes another thread is still holding a // PeerRef, so the refcount is >= 1. Be careful not to do any // processing here that assumes Peer won't be changed before it's // destructed. PeerRef peer = RemovePeer(nodeid); assert(peer != nullptr); misbehavior = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score); LOCK(m_peer_mutex); m_peer_map.erase(nodeid); } CNodeState *state = State(nodeid); assert(state != nullptr); if (state->fSyncStarted) { nSyncStarted--; } for (const QueuedBlock &entry : state->vBlocksInFlight) { mapBlocksInFlight.erase(entry.hash); } WITH_LOCK(g_cs_orphans, m_orphanage.EraseForPeer(nodeid)); m_txrequest.DisconnectedPeer(nodeid); nPreferredDownload -= state->fPreferredDownload; nPeersWithValidatedDownloads -= (state->nBlocksInFlightValidHeaders != 0); assert(nPeersWithValidatedDownloads >= 0); m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect; assert(m_outbound_peers_with_protect_from_disconnect >= 0); mapNodeState.erase(nodeid); if (mapNodeState.empty()) { // Do a consistency check after the last peer is removed. assert(mapBlocksInFlight.empty()); assert(nPreferredDownload == 0); assert(nPeersWithValidatedDownloads == 0); assert(m_outbound_peers_with_protect_from_disconnect == 0); assert(m_txrequest.Size() == 0); } } if (node.fSuccessfullyConnected && misbehavior == 0 && !node.IsBlockOnlyConn() && !node.IsInboundConn()) { // Only change visible addrman state for full outbound peers. We don't // call Connected() for feeler connections since they don't have // fSuccessfullyConnected set. m_addrman.Connected(node.addr); } WITH_LOCK(cs_proofrequest, m_proofrequest.DisconnectedPeer(nodeid)); LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid); } PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const { LOCK(m_peer_mutex); auto it = m_peer_map.find(id); return it != m_peer_map.end() ? it->second : nullptr; } PeerRef PeerManagerImpl::RemovePeer(NodeId id) { PeerRef ret; LOCK(m_peer_mutex); auto it = m_peer_map.find(id); if (it != m_peer_map.end()) { ret = std::move(it->second); m_peer_map.erase(it); } return ret; } bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) { { LOCK(cs_main); CNodeState *state = State(nodeid); if (state == nullptr) { return false; } stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1; stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1; for (const QueuedBlock &queue : state->vBlocksInFlight) { if (queue.pindex) { stats.vHeightInFlight.push_back(queue.pindex->nHeight); } } } PeerRef peer = GetPeerRef(nodeid); if (peer == nullptr) { return false; } stats.m_starting_height = peer->m_starting_height; // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node // was still responsive, since pingtime does not update until the ping is // complete, which might take a while. So, if a ping is taking an unusually // long time in flight, the caller can immediately detect that this is // happening. std::chrono::microseconds ping_wait{0}; if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) { ping_wait = GetTime() - peer->m_ping_start.load(); } stats.m_ping_wait = ping_wait; stats.m_addr_processed = peer->m_addr_processed.load(); stats.m_addr_rate_limited = peer->m_addr_rate_limited.load(); stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load(); return true; } void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef &tx) { size_t max_extra_txn = gArgs.GetIntArg( "-blockreconstructionextratxn", DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN); if (max_extra_txn <= 0) { return; } if (!vExtraTxnForCompact.size()) { vExtraTxnForCompact.resize(max_extra_txn); } vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetHash(), tx); vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % max_extra_txn; } void PeerManagerImpl::Misbehaving(const NodeId pnode, const int howmuch, const std::string &message) { assert(howmuch > 0); PeerRef peer = GetPeerRef(pnode); if (peer == nullptr) { return; } LOCK(peer->m_misbehavior_mutex); peer->m_misbehavior_score += howmuch; const std::string message_prefixed = message.empty() ? "" : (": " + message); if (peer->m_misbehavior_score >= DISCOURAGEMENT_THRESHOLD && peer->m_misbehavior_score - howmuch < DISCOURAGEMENT_THRESHOLD) { LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d) BAN THRESHOLD EXCEEDED%s\n", pnode, peer->m_misbehavior_score - howmuch, peer->m_misbehavior_score, message_prefixed); peer->m_should_discourage = true; } else { LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s\n", pnode, peer->m_misbehavior_score - howmuch, peer->m_misbehavior_score, message_prefixed); } } bool PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState &state, bool via_compact_block, const std::string &message) { switch (state.GetResult()) { case BlockValidationResult::BLOCK_RESULT_UNSET: break; // The node is providing invalid data: case BlockValidationResult::BLOCK_CONSENSUS: case BlockValidationResult::BLOCK_MUTATED: if (!via_compact_block) { Misbehaving(nodeid, 100, message); return true; } break; case BlockValidationResult::BLOCK_CACHED_INVALID: { LOCK(cs_main); CNodeState *node_state = State(nodeid); if (node_state == nullptr) { break; } // Ban outbound (but not inbound) peers if on an invalid chain. // Exempt HB compact block peers. Manual connections are always // protected from discouragement. if (!via_compact_block && !node_state->m_is_inbound) { Misbehaving(nodeid, 100, message); return true; } break; } case BlockValidationResult::BLOCK_INVALID_HEADER: case BlockValidationResult::BLOCK_CHECKPOINT: case BlockValidationResult::BLOCK_INVALID_PREV: Misbehaving(nodeid, 100, message); return true; case BlockValidationResult::BLOCK_FINALIZATION: // TODO: Use the state object to report this is probably not the // best idea. This is effectively unreachable, unless there is a bug // somewhere. Misbehaving(nodeid, 20, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case BlockValidationResult::BLOCK_MISSING_PREV: // TODO: Handle this much more gracefully (10 DoS points is super // arbitrary) Misbehaving(nodeid, 10, message); return true; case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE: case BlockValidationResult::BLOCK_TIME_FUTURE: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } bool PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState &state, const std::string &message) { switch (state.GetResult()) { case TxValidationResult::TX_RESULT_UNSET: break; // The node is providing invalid data: case TxValidationResult::TX_CONSENSUS: Misbehaving(nodeid, 100, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE: case TxValidationResult::TX_INPUTS_NOT_STANDARD: case TxValidationResult::TX_NOT_STANDARD: case TxValidationResult::TX_MISSING_INPUTS: case TxValidationResult::TX_PREMATURE_SPEND: case TxValidationResult::TX_CONFLICT: case TxValidationResult::TX_MEMPOOL_POLICY: case TxValidationResult::TX_NO_MEMPOOL: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } bool PeerManagerImpl::BlockRequestAllowed( const CBlockIndex *pindex, const Consensus::Params &consensusParams) { AssertLockHeld(cs_main); if (m_chainman.ActiveChain().Contains(pindex)) { return true; } return pindex->IsValid(BlockValidity::SCRIPTS) && (pindexBestHeader != nullptr) && (pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) && (GetBlockProofEquivalentTime(*pindexBestHeader, *pindex, *pindexBestHeader, consensusParams) < STALE_RELAY_AGE_LIMIT); } std::unique_ptr PeerManager::make(const CChainParams &chainparams, CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, bool ignore_incoming_txs) { return std::make_unique(chainparams, connman, addrman, banman, chainman, pool, ignore_incoming_txs); } PeerManagerImpl::PeerManagerImpl(const CChainParams &chainparams, CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, bool ignore_incoming_txs) : m_chainparams(chainparams), m_connman(connman), m_addrman(addrman), m_banman(banman), m_chainman(chainman), m_mempool(pool), m_stale_tip_check_time(0), m_ignore_incoming_txs(ignore_incoming_txs) { // Initialize global variables that cannot be constructed at startup. recentRejects.reset(new CRollingBloomFilter(120000, 0.000001)); { LOCK(cs_invalidProofs); invalidProofs = std::make_unique(100000, 0.000001); } // Blocks don't typically have more than 4000 transactions, so this should // be at least six blocks (~1 hr) worth of transactions that we can store. // If the number of transactions appearing in a block goes up, or if we are // seeing getdata requests more than an hour after initial announcement, we // can increase this number. // The false positive rate of 1/1M should come out to less than 1 // transaction per day that would be inadvertently ignored (which is the // same probability that we have in the reject filter). m_recent_confirmed_transactions.reset( new CRollingBloomFilter(24000, 0.000001)); } void PeerManagerImpl::StartScheduledTasks(CScheduler &scheduler) { // Stale tip checking and peer eviction are on two different timers, but we // don't want them to get out of sync due to drift in the scheduler, so we // combine them in one function and schedule at the quicker (peer-eviction) // timer. static_assert( EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer"); scheduler.scheduleEvery( [this]() { this->CheckForStaleTipAndEvictPeers(); return true; }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL}); // schedule next run for 10-15 minutes in the future const auto reattemptBroadcastInterval = 10min + GetRandMillis(5min); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, reattemptBroadcastInterval); // Update the avalanche statistics on a schedule scheduler.scheduleEvery( [this]() { UpdateAvalancheStatistics(); return true; }, AVALANCHE_STATISTICS_REFRESH_PERIOD); // schedule next run for 2-5 minutes in the future const auto avalanchePeriodicNetworkingInterval = 2min + GetRandMillis(3min); scheduler.scheduleFromNow([&] { AvalanchePeriodicNetworking(scheduler); }, avalanchePeriodicNetworkingInterval); } /** * Evict orphan txn pool entries based on a newly connected * block, remember the recently confirmed transactions, and delete tracked * announcements for them. Also save the time of the last tip update. */ void PeerManagerImpl::BlockConnected( const std::shared_ptr &pblock, const CBlockIndex *pindex) { m_orphanage.EraseForBlock(*pblock); m_last_tip_update = GetTime(); { LOCK(m_recent_confirmed_transactions_mutex); for (const CTransactionRef &ptx : pblock->vtx) { m_recent_confirmed_transactions->insert(ptx->GetId()); } } { LOCK(cs_main); for (const auto &ptx : pblock->vtx) { m_txrequest.ForgetInvId(ptx->GetId()); } } } void PeerManagerImpl::BlockDisconnected( const std::shared_ptr &block, const CBlockIndex *pindex) { // To avoid relay problems with transactions that were previously // confirmed, clear our filter of recently confirmed transactions whenever // there's a reorg. // This means that in a 1-block reorg (where 1 block is disconnected and // then another block reconnected), our filter will drop to having only one // block's worth of transactions in it, but that should be fine, since // presumably the most common case of relaying a confirmed transaction // should be just after a new block containing it is found. LOCK(m_recent_confirmed_transactions_mutex); m_recent_confirmed_transactions->reset(); } // All of the following cache a recent block, and are protected by // cs_most_recent_block static RecursiveMutex cs_most_recent_block; static std::shared_ptr most_recent_block GUARDED_BY(cs_most_recent_block); static std::shared_ptr most_recent_compact_block GUARDED_BY(cs_most_recent_block); static uint256 most_recent_block_hash GUARDED_BY(cs_most_recent_block); /** * Maintain state about the best-seen block and fast-announce a compact block * to compatible peers. */ void PeerManagerImpl::NewPoWValidBlock( const CBlockIndex *pindex, const std::shared_ptr &pblock) { std::shared_ptr pcmpctblock = std::make_shared(*pblock); const CNetMsgMaker msgMaker(PROTOCOL_VERSION); LOCK(cs_main); static int nHighestFastAnnounce = 0; if (pindex->nHeight <= nHighestFastAnnounce) { return; } nHighestFastAnnounce = pindex->nHeight; uint256 hashBlock(pblock->GetHash()); { LOCK(cs_most_recent_block); most_recent_block_hash = hashBlock; most_recent_block = pblock; most_recent_compact_block = pcmpctblock; } m_connman.ForEachNode( [this, &pcmpctblock, pindex, &msgMaker, &hashBlock](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); // TODO: Avoid the repeated-serialization here if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect) { return; } ProcessBlockAvailability(pnode->GetId()); CNodeState &state = *State(pnode->GetId()); // If the peer has, or we announced to them the previous block // already, but we don't think they have this one, go ahead and // announce it. if (state.fPreferHeaderAndIDs && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) { LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock", hashBlock.ToString(), pnode->GetId()); m_connman.PushMessage( pnode, msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock)); state.pindexBestHeaderSent = pindex; } }); } /** * Update our best height and announce any block hashes which weren't previously * in m_chainman.ActiveChain() to our peers. */ void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { SetBestHeight(pindexNew->nHeight); SetServiceFlagsIBDCache(!fInitialDownload); // Don't relay inventory during initial block download. if (fInitialDownload) { return; } // Find the hashes of all blocks that weren't previously in the best chain. std::vector vHashes; const CBlockIndex *pindexToAnnounce = pindexNew; while (pindexToAnnounce != pindexFork) { vHashes.push_back(pindexToAnnounce->GetBlockHash()); pindexToAnnounce = pindexToAnnounce->pprev; if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) { // Limit announcements in case of a huge reorganization. Rely on the // peer's synchronization mechanism in that case. break; } } { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { Peer &peer = *it.second; LOCK(peer.m_block_inv_mutex); for (const BlockHash &hash : reverse_iterate(vHashes)) { peer.m_blocks_for_headers_relay.push_back(hash); } } } m_connman.WakeMessageHandler(); } /** * Handle invalid block rejection and consequent peer banning, maintain which * peers announce compact blocks. */ void PeerManagerImpl::BlockChecked(const CBlock &block, const BlockValidationState &state) { LOCK(cs_main); const BlockHash hash = block.GetHash(); std::map>::iterator it = mapBlockSource.find(hash); // If the block failed validation, we know where it came from and we're // still connected to that peer, maybe punish. if (state.IsInvalid() && it != mapBlockSource.end() && State(it->second.first)) { MaybePunishNodeForBlock(/*nodeid=*/it->second.first, state, /*via_compact_block=*/!it->second.second); } // Check that: // 1. The block is valid // 2. We're not in initial block download // 3. This is currently the best block we're aware of. We haven't updated // the tip yet so we have no way to check this directly here. Instead we // just check that there are currently no other blocks in flight. else if (state.IsValid() && !m_chainman.ActiveChainstate().IsInitialBlockDownload() && mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) { if (it != mapBlockSource.end()) { MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first); } } if (it != mapBlockSource.end()) { mapBlockSource.erase(it); } } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool PeerManagerImpl::AlreadyHaveTx(const TxId &txid) { assert(recentRejects); if (m_chainman.ActiveChain().Tip()->GetBlockHash() != hashRecentRejectsChainTip) { // If the chain tip has changed previously rejected transactions // might be now valid, e.g. due to a nLockTime'd tx becoming // valid, or a double-spend. Reset the rejects filter and give // those txs a second chance. hashRecentRejectsChainTip = m_chainman.ActiveChain().Tip()->GetBlockHash(); recentRejects->reset(); } if (m_orphanage.HaveTx(txid)) { return true; } { LOCK(m_recent_confirmed_transactions_mutex); if (m_recent_confirmed_transactions->contains(txid)) { return true; } } return recentRejects->contains(txid) || m_mempool.exists(txid); } bool PeerManagerImpl::AlreadyHaveBlock(const BlockHash &block_hash) { return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr; } bool PeerManagerImpl::AlreadyHaveProof(const avalanche::ProofId &proofid) { assert(g_avalanche); auto localProof = g_avalanche->getLocalProof(); if (localProof && localProof->getId() == proofid) { return true; } const bool hasProof = g_avalanche->withPeerManager( [&proofid](avalanche::PeerManager &pm) { return pm.exists(proofid); }); LOCK(cs_invalidProofs); return hasProof || invalidProofs->contains(proofid); } void PeerManagerImpl::SendPings() { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { it.second->m_ping_queued = true; } } void PeerManagerImpl::RelayTransaction(const TxId &txid) { m_connman.ForEachNode( [&txid](CNode *pnode) { pnode->PushTxInventory(txid); }); } void PeerManagerImpl::RelayProof(const avalanche::ProofId &proofid) { m_connman.ForEachNode( [&proofid](CNode *pnode) { pnode->PushProofInventory(proofid); }); } void PeerManagerImpl::RelayAddress(NodeId originator, const CAddress &addr, bool fReachable) { // We choose the same nodes within a given 24h window (if the list of // connected nodes does not change) and we don't relay to nodes that already // know an address. So within 24h we will likely relay a given address once. // This is to prevent a peer from unjustly giving their address better // propagation by sending it to us repeatedly. if (!fReachable && !addr.IsRelayable()) { return; } // Relay to a limited number of other nodes // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the m_addr_knowns of the chosen nodes prevent repeats const uint64_t hash_addr{CServiceHash(0, 0)(addr)}; const CSipHasher hasher{ m_connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY) .Write(hash_addr) .Write((GetTime() + hash_addr) / (24 * 60 * 60))}; FastRandomContext insecure_rand; // Relay reachable addresses to 2 peers. Unreachable addresses are relayed // randomly to 1 or 2 peers. unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1; std::array, 2> best{ {{0, nullptr}, {0, nullptr}}}; assert(nRelayNodes <= best.size()); LOCK(m_peer_mutex); for (auto &[id, peer] : m_peer_map) { if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) { uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize(); for (unsigned int i = 0; i < nRelayNodes; i++) { if (hashKey > best[i].first) { std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1); best[i] = std::make_pair(hashKey, peer.get()); break; } } } }; for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) { PushAddress(*best[i].second, addr, insecure_rand); } } void PeerManagerImpl::ProcessGetBlockData(const Config &config, CNode &pfrom, Peer &peer, const CInv &inv, CConnman &connman) { const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); const BlockHash hash(inv.hash); bool send = false; std::shared_ptr a_recent_block; std::shared_ptr a_recent_compact_block; { LOCK(cs_most_recent_block); a_recent_block = most_recent_block; a_recent_compact_block = most_recent_compact_block; } bool need_activate_chain = false; { LOCK(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); if (pindex) { if (pindex->HaveTxsDownloaded() && !pindex->IsValid(BlockValidity::SCRIPTS) && pindex->IsValid(BlockValidity::TREE)) { // If we have the block and all of its parents, but have not yet // validated it, we might be in the middle of connecting it (ie // in the unlock of cs_main before ActivateBestChain but after // AcceptBlock). In this case, we need to run ActivateBestChain // prior to checking the relay conditions below. need_activate_chain = true; } } } // release cs_main before calling ActivateBestChain if (need_activate_chain) { BlockValidationState state; if (!m_chainman.ActiveChainstate().ActivateBestChain(config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); if (pindex) { send = BlockRequestAllowed(pindex, consensusParams); if (!send) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old " "block that isn't in the main chain\n", __func__, pfrom.GetId()); } } const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); // Disconnect node in case we have reached the outbound limit for serving // historical blocks. if (send && connman.OutboundTargetReached(true) && (((pindexBestHeader != nullptr) && (pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) && // nodes with the download permission may exceed target !pfrom.HasPermission(PF_DOWNLOAD)) { LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId()); // disconnect node pfrom.fDisconnect = true; send = false; } // Avoid leaking prune-height by never sending blocks below the // NODE_NETWORK_LIMITED threshold. // Add two blocks buffer extension for possible races if (send && !pfrom.HasPermission(PF_NOBAN) && ((((pfrom.GetLocalServices() & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((pfrom.GetLocalServices() & NODE_NETWORK) != NODE_NETWORK) && (m_chainman.ActiveChain().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2)))) { LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED " "threshold from peer=%d\n", pfrom.GetId()); // disconnect node and prevent it from stalling (would otherwise wait // for the missing block) pfrom.fDisconnect = true; send = false; } // Pruned nodes may have deleted the block, so check whether it's available // before trying to send. if (send && pindex->nStatus.hasData()) { std::shared_ptr pblock; if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) { pblock = a_recent_block; } else { // Send block from disk std::shared_ptr pblockRead = std::make_shared(); if (!ReadBlockFromDisk(*pblockRead, pindex, consensusParams)) { assert(!"cannot load block from disk"); } pblock = pblockRead; } if (inv.IsMsgBlk()) { connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock)); } else if (inv.IsMsgFilteredBlk()) { bool sendMerkleBlock = false; CMerkleBlock merkleBlock; if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); if (pfrom.m_tx_relay->pfilter) { sendMerkleBlock = true; merkleBlock = CMerkleBlock(*pblock, *pfrom.m_tx_relay->pfilter); } } if (sendMerkleBlock) { connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock)); // CMerkleBlock just contains hashes, so also push any // transactions in the block the client did not see. This avoids // hurting performance by pointlessly requiring a round-trip. // Note that there is currently no way for a node to request any // single transactions we didn't send here - they must either // disconnect and retry or request the full block. Thus, the // protocol spec specified allows for us to provide duplicate // txn here, however we MUST always provide at least what the // remote peer needs. typedef std::pair PairType; for (PairType &pair : merkleBlock.vMatchedTxn) { connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::TX, *pblock->vtx[pair.first])); } } // else // no response } else if (inv.IsMsgCmpctBlk()) { // If a peer is asking for old blocks, we're almost guaranteed they // won't have a useful mempool to match against a compact block, and // we don't feel like constructing the object for them, so instead // we respond with the full, non-compact block. int nSendFlags = 0; if (CanDirectFetch(consensusParams) && pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_CMPCTBLOCK_DEPTH) { CBlockHeaderAndShortTxIDs cmpctblock(*pblock); connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } else { connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCK, *pblock)); } } { LOCK(peer.m_block_inv_mutex); // Trigger the peer node to send a getblocks request for the next // batch of inventory. if (hash == peer.m_continuation_block) { // Send immediately. This must send even if redundant, and // we want it right after the last block so they don't wait for // other stuff first. std::vector vInv; vInv.push_back(CInv( MSG_BLOCK, m_chainman.ActiveChain().Tip()->GetBlockHash())); connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::INV, vInv)); peer.m_continuation_block = BlockHash(); } } } } CTransactionRef PeerManagerImpl::FindTxForGetData(const CNode &peer, const TxId &txid, const std::chrono::seconds mempool_req, const std::chrono::seconds now) { auto txinfo = m_mempool.info(txid); if (txinfo.tx) { // If a TX could have been INVed in reply to a MEMPOOL request, // or is older than UNCONDITIONAL_RELAY_DELAY, permit the request // unconditionally. if ((mempool_req.count() && txinfo.m_time <= mempool_req) || txinfo.m_time <= now - UNCONDITIONAL_RELAY_DELAY) { return std::move(txinfo.tx); } } { LOCK(cs_main); // Otherwise, the transaction must have been announced recently. if (State(peer.GetId())->m_recently_announced_invs.contains(txid)) { // If it was, it can be relayed from either the mempool... if (txinfo.tx) { return std::move(txinfo.tx); } // ... or the relay pool. auto mi = mapRelay.find(txid); if (mi != mapRelay.end()) { return mi->second; } } } return {}; } //! Determine whether or not a peer can request a proof, and return it (or //! nullptr if not found or not allowed). static avalanche::ProofRef FindProofForGetData(const CNode &peer, const avalanche::ProofId &proofid, const std::chrono::seconds now) { avalanche::ProofRef proof; bool send_unconditionally = g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { return pm.forPeer(proofid, [&](const avalanche::Peer &peer) { proof = peer.proof; // If we know that proof for long enough, allow for requesting // it. return peer.registration_time <= now - UNCONDITIONAL_RELAY_DELAY; }); }); if (!proof) { // Always send our local proof if it gets requested, assuming it's // valid. This will make it easier to bind with peers upon startup where // the status of our proof is unknown pending for a block. Note that it // still needs to have been announced first (presumably via an avahello // message). proof = g_avalanche->getLocalProof(); } // We don't have this proof if (!proof) { return avalanche::ProofRef(); } if (send_unconditionally) { return proof; } // Otherwise, the proofs must have been announced recently. LOCK(cs_main); if (State(peer.GetId())->m_recently_announced_proofs.contains(proofid)) { return proof; } return avalanche::ProofRef(); } void PeerManagerImpl::ProcessGetData( const Config &config, CNode &pfrom, Peer &peer, const std::atomic &interruptMsgProc) { AssertLockNotHeld(cs_main); std::deque::iterator it = peer.m_getdata_requests.begin(); std::vector vNotFound; const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); const std::chrono::seconds now = GetTime(); // Get last mempool request time const std::chrono::seconds mempool_req = pfrom.m_tx_relay != nullptr ? pfrom.m_tx_relay->m_last_mempool_req.load() : std::chrono::seconds::min(); // Process as many TX or AVA_PROOF items from the front of the getdata // queue as possible, since they're common and it's efficient to batch // process them. while (it != peer.m_getdata_requests.end()) { if (interruptMsgProc) { return; } // The send buffer provides backpressure. If there's no space in // the buffer, pause processing until the next call. if (pfrom.fPauseSend) { break; } const CInv &inv = *it; if (it->IsMsgProof()) { const avalanche::ProofId proofid(inv.hash); auto proof = FindProofForGetData(pfrom, proofid, now); if (proof) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOF, *proof)); g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { pm.removeUnbroadcastProof(proofid); }); } else { vNotFound.push_back(inv); } ++it; continue; } if (it->IsMsgTx()) { if (pfrom.m_tx_relay == nullptr) { // Ignore GETDATA requests for transactions from blocks-only // peers. continue; } const TxId txid(inv.hash); CTransactionRef tx = FindTxForGetData(pfrom, txid, mempool_req, now); if (tx) { int nSendFlags = 0; m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *tx)); m_mempool.RemoveUnbroadcastTx(txid); // As we're going to send tx, make sure its unconfirmed parents // are made requestable. std::vector parent_ids_to_add; { LOCK(m_mempool.cs); auto txiter = m_mempool.GetIter(tx->GetId()); if (txiter) { const CTxMemPoolEntry::Parents &parents = (*txiter)->GetMemPoolParentsConst(); parent_ids_to_add.reserve(parents.size()); for (const CTxMemPoolEntry &parent : parents) { if (parent.GetTime() > now - UNCONDITIONAL_RELAY_DELAY) { parent_ids_to_add.push_back( parent.GetTx().GetId()); } } } } for (const TxId &parent_txid : parent_ids_to_add) { // Relaying a transaction with a recent but unconfirmed // parent. if (WITH_LOCK(pfrom.m_tx_relay->cs_tx_inventory, return !pfrom.m_tx_relay->filterInventoryKnown .contains(parent_txid))) { LOCK(cs_main); State(pfrom.GetId()) ->m_recently_announced_invs.insert(parent_txid); } } } else { vNotFound.push_back(inv); } ++it; continue; } // It's neither a proof nor a transaction break; } // Only process one BLOCK item per call, since they're uncommon and can be // expensive to process. if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) { const CInv &inv = *it++; if (inv.IsGenBlkMsg()) { ProcessGetBlockData(config, pfrom, peer, inv, m_connman); } // else: If the first item on the queue is an unknown type, we erase it // and continue processing the queue on the next call. } peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it // doesn't have to wait around forever. SPV clients care about this // message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want // to do that because they want to know about (and store and rebroadcast // and risk analyze) the dependencies of transactions relevant to them, // without having to download the entire memory pool. Also, other nodes // can use these messages to automatically request a transaction from // some other peer that annnounced it, and stop waiting for us to // respond. In normal operation, we often send NOTFOUND messages for // parents of transactions that we relay; if a peer is missing a parent, // they may assume we have them and request the parents from us. m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::NOTFOUND, vNotFound)); } } void PeerManagerImpl::SendBlockTransactions( CNode &pfrom, const CBlock &block, const BlockTransactionsRequest &req) { BlockTransactions resp(req); for (size_t i = 0; i < req.indices.size(); i++) { if (req.indices[i] >= block.vtx.size()) { Misbehaving(pfrom, 100, "getblocktxn with out-of-bounds tx indices"); return; } resp.txn[i] = block.vtx[req.indices[i]]; } LOCK(cs_main); const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); int nSendFlags = 0; m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCKTXN, resp)); } void PeerManagerImpl::ProcessHeadersMessage( const Config &config, CNode &pfrom, const Peer &peer, const std::vector &headers, bool via_compact_block) { const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); size_t nCount = headers.size(); if (nCount == 0) { // Nothing interesting. Stop asking this peers for more headers. return; } bool received_new_header = false; const CBlockIndex *pindexLast = nullptr; { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); // If this looks like it could be a block announcement (nCount < // MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that // don't connect: // - Send a getheaders message in response to try to connect the chain. // - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that // don't connect before giving DoS points // - Once a headers message is received that is valid and does connect, // nUnconnectingHeaders gets reset back to 0. if (!m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock) && nCount < MAX_BLOCKS_TO_ANNOUNCE) { nodestate->nUnconnectingHeaders++; m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( pindexBestHeader), uint256())); LogPrint( BCLog::NET, "received header %s: missing prev block %s, sending getheaders " "(%d) to end (peer=%d, nUnconnectingHeaders=%d)\n", headers[0].GetHash().ToString(), headers[0].hashPrevBlock.ToString(), pindexBestHeader->nHeight, pfrom.GetId(), nodestate->nUnconnectingHeaders); // Set hashLastUnknownBlock for this peer, so that if we eventually // get the headers - even from a different peer - we can use this // peer to download. UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()); if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS == 0) { // The peer is sending us many headers we can't connect. Misbehaving(pfrom, 20, strprintf("%d non-connecting headers", nodestate->nUnconnectingHeaders)); } return; } BlockHash hashLastBlock; for (const CBlockHeader &header : headers) { if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) { Misbehaving(pfrom, 20, "non-continuous headers sequence"); return; } hashLastBlock = header.GetHash(); } // If we don't have the last header, then they'll have given us // something new (if these headers are valid). if (!m_chainman.m_blockman.LookupBlockIndex(hashLastBlock)) { received_new_header = true; } } BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, headers, state, &pindexLast)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received"); return; } } { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); if (nodestate->nUnconnectingHeaders > 0) { LogPrint(BCLog::NET, "peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n", pfrom.GetId(), nodestate->nUnconnectingHeaders); } nodestate->nUnconnectingHeaders = 0; assert(pindexLast); UpdateBlockAvailability(pfrom.GetId(), pindexLast->GetBlockHash()); // From here, pindexBestKnownBlock should be guaranteed to be non-null, // because it is set in UpdateBlockAvailability. Some nullptr checks are // still present, however, as belt-and-suspenders. if (received_new_header && pindexLast->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } if (nCount == MAX_HEADERS_RESULTS) { // Headers message had its maximum size; the peer may have more // headers. // TODO: optimize: if pindexLast is an ancestor of // m_chainman.ActiveChain().Tip or pindexBestHeader, continue from // there instead. LogPrint( BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator(pindexLast), uint256())); } bool fCanDirectFetch = CanDirectFetch(m_chainparams.GetConsensus()); // If this set of headers is valid and ends in a block with at least as // much work as our tip, download as much as possible. if (fCanDirectFetch && pindexLast->IsValid(BlockValidity::TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= pindexLast->nChainWork) { std::vector vToFetch; const CBlockIndex *pindexWalk = pindexLast; // Calculate all the blocks we'd need to switch to pindexLast, up to // a limit. while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { if (!pindexWalk->nStatus.hasData() && !mapBlocksInFlight.count(pindexWalk->GetBlockHash())) { // We don't have this block, and it's not yet in flight. vToFetch.push_back(pindexWalk); } pindexWalk = pindexWalk->pprev; } // If pindexWalk still isn't on our main chain, we're looking at a // very large reorg at a time we think we're close to caught up to // the main chain -- this shouldn't really happen. Bail out on the // direct fetch and rely on parallel download instead. if (!m_chainman.ActiveChain().Contains(pindexWalk)) { LogPrint( BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } else { std::vector vGetData; // Download as much as possible, from earliest to latest. for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) { if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { // Can't download any more from this peer break; } vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); MarkBlockAsInFlight(config, pfrom.GetId(), pindex->GetBlockHash(), pindex); LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n", pindex->GetBlockHash().ToString(), pfrom.GetId()); } if (vGetData.size() > 1) { LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers " "direct fetch\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } if (vGetData.size() > 0) { if (nodestate->fSupportsDesiredCmpctVersion && vGetData.size() == 1 && mapBlocksInFlight.size() == 1 && pindexLast->pprev->IsValid(BlockValidity::CHAIN)) { // In any case, we want to download using a compact // block, not a regular one. vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash); } m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } } } // If we're in IBD, we want outbound peers that will serve us a useful // chain. Disconnect peers that are on chains with insufficient work. if (m_chainman.ActiveChainstate().IsInitialBlockDownload() && nCount != MAX_HEADERS_RESULTS) { // When nCount < MAX_HEADERS_RESULTS, we know we have no more // headers to fetch from this peer. if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has too little work on their headers chain to help // us sync -- disconnect if it is an outbound disconnection // candidate. // Note: We compare their tip to nMinimumChainWork (rather than // m_chainman.ActiveChain().Tip()) because we won't start block // download until we have a headers chain that has at least // nMinimumChainWork, even if a peer has a chain past our tip, // as an anti-DoS measure. if (pfrom.IsOutboundOrBlockRelayConn()) { LogPrintf("Disconnecting outbound peer %d -- headers " "chain has insufficient work\n", pfrom.GetId()); pfrom.fDisconnect = true; } } } // If this is an outbound full-relay peer, check to see if we should // protect it from the bad/lagging chain logic. // Note that outbound block-relay peers are excluded from this // protection, and thus always subject to eviction under the bad/lagging // chain logic. // See ChainSyncTimeoutState. if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) { if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) { LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId()); nodestate->m_chain_sync.m_protect = true; ++m_outbound_peers_with_protect_from_disconnect; } } } } /** * Reconsider orphan transactions after a parent has been accepted to the * mempool. * * @param[in,out] orphan_work_set The set of orphan transactions to * reconsider. Generally only one orphan will be reconsidered on each call of * this function. This set may be added to if accepting an orphan causes its * children to be reconsidered. */ void PeerManagerImpl::ProcessOrphanTx(const Config &config, std::set &orphan_work_set) { AssertLockHeld(cs_main); AssertLockHeld(g_cs_orphans); while (!orphan_work_set.empty()) { const TxId orphanTxId = *orphan_work_set.begin(); orphan_work_set.erase(orphan_work_set.begin()); const auto [porphanTx, from_peer] = m_orphanage.GetTx(orphanTxId); if (porphanTx == nullptr) { continue; } const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx); const TxValidationState &state = result.m_state; if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) { LogPrint(BCLog::MEMPOOL, " accepted orphan tx %s\n", orphanTxId.ToString()); RelayTransaction(orphanTxId); m_orphanage.AddChildrenToWorkSet(*porphanTx, orphan_work_set); m_orphanage.EraseTx(orphanTxId); break; } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) { if (state.IsInvalid()) { LogPrint(BCLog::MEMPOOL, " invalid orphan tx %s from peer=%d. %s\n", orphanTxId.ToString(), from_peer, state.ToString()); // Punish peer that gave us an invalid orphan tx MaybePunishNodeForTx(from_peer, state); } // Has inputs but not accepted to mempool // Probably non-standard or insufficient fee LogPrint(BCLog::MEMPOOL, " removed orphan tx %s\n", orphanTxId.ToString()); assert(recentRejects); recentRejects->insert(orphanTxId); m_orphanage.EraseTx(orphanTxId); break; } } } bool PeerManagerImpl::PrepareBlockFilterRequest( CNode &peer, const CChainParams &chain_params, BlockFilterType filter_type, uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff, const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index) { const bool supported_filter_type = (filter_type == BlockFilterType::BASIC && (peer.GetLocalServices() & NODE_COMPACT_FILTERS)); if (!supported_filter_type) { LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n", peer.GetId(), static_cast(filter_type)); peer.fDisconnect = true; return false; } { LOCK(cs_main); stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash); // Check that the stop block exists and the peer would be allowed to // fetch it. if (!stop_index || !BlockRequestAllowed(stop_index, chain_params.GetConsensus())) { LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n", peer.GetId(), stop_hash.ToString()); peer.fDisconnect = true; return false; } } uint32_t stop_height = stop_index->nHeight; if (start_height > stop_height) { LogPrint( BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with " /* Continued */ "start height %d and stop height %d\n", peer.GetId(), start_height, stop_height); peer.fDisconnect = true; return false; } if (stop_height - start_height >= max_height_diff) { LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n", peer.GetId(), stop_height - start_height + 1, max_height_diff); peer.fDisconnect = true; return false; } filter_index = GetBlockFilterIndex(filter_type); if (!filter_index) { LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type)); return false; } return true; } void PeerManagerImpl::ProcessGetCFilters(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( peer, chain_params, filter_type, start_height, stop_hash, MAX_GETCFILTERS_SIZE, stop_index, filter_index)) { return; } std::vector filters; if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) { LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } for (const auto &filter : filters) { CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion()) .Make(NetMsgType::CFILTER, filter); connman.PushMessage(&peer, std::move(msg)); } } void PeerManagerImpl::ProcessGetCFHeaders(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( peer, chain_params, filter_type, start_height, stop_hash, MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) { return; } uint256 prev_header; if (start_height > 0) { const CBlockIndex *const prev_block = stop_index->GetAncestor(static_cast(start_height - 1)); if (!filter_index->LookupFilterHeader(prev_block, prev_header)) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString()); return; } } std::vector filter_hashes; if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) { LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion()) .Make(NetMsgType::CFHEADERS, filter_type_ser, stop_index->GetBlockHash(), prev_header, filter_hashes); connman.PushMessage(&peer, std::move(msg)); } void PeerManagerImpl::ProcessGetCFCheckPt(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman) { uint8_t filter_type_ser; BlockHash stop_hash; vRecv >> filter_type_ser >> stop_hash; const BlockFilterType filter_type = static_cast(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( peer, chain_params, filter_type, /*start_height=*/0, stop_hash, /*max_height_diff=*/std::numeric_limits::max(), stop_index, filter_index)) { return; } std::vector headers(stop_index->nHeight / CFCHECKPT_INTERVAL); // Populate headers. const CBlockIndex *block_index = stop_index; for (int i = headers.size() - 1; i >= 0; i--) { int height = (i + 1) * CFCHECKPT_INTERVAL; block_index = block_index->GetAncestor(height); if (!filter_index->LookupFilterHeader(block_index, headers[i])) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString()); return; } } CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion()) .Make(NetMsgType::CFCHECKPT, filter_type_ser, stop_index->GetBlockHash(), headers); connman.PushMessage(&peer, std::move(msg)); } bool IsAvalancheMessageType(const std::string &msg_type) { return msg_type == NetMsgType::AVAHELLO || msg_type == NetMsgType::AVAPOLL || msg_type == NetMsgType::AVARESPONSE || msg_type == NetMsgType::AVAPROOF || msg_type == NetMsgType::GETAVAADDR || msg_type == NetMsgType::GETAVAPROOFS || msg_type == NetMsgType::AVAPROOFS || msg_type == NetMsgType::AVAPROOFSREQ; } uint32_t PeerManagerImpl::GetAvalancheVoteForBlock(const BlockHash &hash) { AssertLockHeld(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); // Unknown block. if (!pindex) { return -1; } // Invalid block if (pindex->nStatus.isInvalid()) { return 1; } // Parked block if (pindex->nStatus.isOnParkedChain()) { return 2; } const CBlockIndex *pindexTip = m_chainman.ActiveChain().Tip(); const CBlockIndex *pindexFork = LastCommonAncestor(pindex, pindexTip); // Active block. if (pindex == pindexFork) { return 0; } // Fork block. if (pindexFork != pindexTip) { return 3; } // Missing block data. if (!pindex->nStatus.hasData()) { return -2; } // This block is built on top of the tip, we have the data, it // is pending connection or rejection. return -3; }; /** * Decide a response for an Avalanche poll about the given transaction. * * FIXME This function should be expanded to return different vote responses * based on inspection of mempool. * * @param[in] mempool The mempool to base our votes on * @param[in] id The id of the transaction being polled for * @return Our current vote for the proof */ static uint32_t getAvalancheVoteForTx(CTxMemPool &mempool, const TxId &id) { return -1; }; /** * Decide a response for an Avalanche poll about the given proof. * * @param[in] id The id of the proof being polled for * @return Our current vote for the proof */ static uint32_t getAvalancheVoteForProof(const avalanche::ProofId &id) { assert(g_avalanche); // Rejected proof if (WITH_LOCK(cs_invalidProofs, return invalidProofs->contains(id))) { return 1; } return g_avalanche->withPeerManager([&id](avalanche::PeerManager &pm) { // The proof is actively bound to a peer if (pm.isBoundToPeer(id)) { return 0; } // Unknown proof if (!pm.exists(id)) { return -1; } // Immature proof if (pm.isImmature(id)) { return 2; } // Not immature, but in conflict with an actively bound proof if (pm.isInConflictingPool(id)) { return 3; } // The proof is known, not rejected, not immature, not a conflict, but // for some reason unbound. This should not happen if the above pools // are managed correctly, but added for robustness. return -2; }); }; void PeerManagerImpl::ProcessBlock(const Config &config, CNode &node, const std::shared_ptr &block, bool force_processing) { bool new_block{false}; m_chainman.ProcessNewBlock(config, block, force_processing, &new_block); if (new_block) { node.m_last_block_time = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(block->GetHash()); } } void PeerManagerImpl::ProcessMessage( const Config &config, CNode &pfrom, const std::string &msg_type, CDataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic &interruptMsgProc) { LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId()); PeerRef peer = GetPeerRef(pfrom.GetId()); if (peer == nullptr) { return; } if (IsAvalancheMessageType(msg_type)) { if (!g_avalanche) { LogPrint(BCLog::AVALANCHE, "Avalanche is not initialized, ignoring %s message\n", msg_type); return; } if (!isAvalancheEnabled(gArgs)) { // If avalanche is not enabled, ignore avalanche messages return; } } if (msg_type == NetMsgType::VERSION) { // Each connection can only send one version message if (pfrom.nVersion != 0) { Misbehaving(pfrom, 1, "redundant version message"); return; } int64_t nTime; CAddress addrMe; CAddress addrFrom; uint64_t nNonce = 1; uint64_t nServiceInt; ServiceFlags nServices; int nVersion; std::string cleanSubVer; int starting_height = -1; bool fRelay = true; uint64_t nExtraEntropy = 1; vRecv >> nVersion >> nServiceInt >> nTime >> addrMe; if (nTime < 0) { nTime = 0; } nServices = ServiceFlags(nServiceInt); if (!pfrom.IsInboundConn()) { m_addrman.SetServices(pfrom.addr, nServices); } if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices)) { LogPrint(BCLog::NET, "peer=%d does not offer the expected services " "(%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices)); pfrom.fDisconnect = true; return; } if (pfrom.IsAvalancheOutboundConnection() && !(nServices & NODE_AVALANCHE)) { LogPrint( BCLog::AVALANCHE, "peer=%d does not offer the avalanche service; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } if (nVersion < MIN_PEER_PROTO_VERSION) { // disconnect from peers older than this proto version LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion); pfrom.fDisconnect = true; return; } if (!vRecv.empty()) { vRecv >> addrFrom >> nNonce; } if (!vRecv.empty()) { std::string strSubVer; vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH); cleanSubVer = SanitizeString(strSubVer); } if (!vRecv.empty()) { vRecv >> starting_height; } if (!vRecv.empty()) { vRecv >> fRelay; } if (!vRecv.empty()) { vRecv >> nExtraEntropy; } // Disconnect if we connected to ourself if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce)) { LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToString()); pfrom.fDisconnect = true; return; } if (pfrom.IsInboundConn() && addrMe.IsRoutable()) { SeenLocal(addrMe); } // Inbound peers send us their version message when they connect. // We send our version message in response. if (pfrom.IsInboundConn()) { PushNodeVersion(config, pfrom, GetAdjustedTime()); } // Change version const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION); pfrom.SetCommonVersion(greatest_common_version); pfrom.nVersion = nVersion; const CNetMsgMaker msg_maker(greatest_common_version); m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::VERACK)); // Signal ADDRv2 support (BIP155). m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDADDRV2)); pfrom.nServices = nServices; pfrom.SetAddrLocal(addrMe); { LOCK(pfrom.cs_SubVer); pfrom.cleanSubVer = cleanSubVer; } peer->m_starting_height = starting_height; // set nodes not relaying blocks and tx and not serving (parts) of the // historical blockchain as "clients" pfrom.fClient = (!(nServices & NODE_NETWORK) && !(nServices & NODE_NETWORK_LIMITED)); // set nodes not capable of serving the complete blockchain history as // "limited nodes" pfrom.m_limited_node = (!(nServices & NODE_NETWORK) && (nServices & NODE_NETWORK_LIMITED)); if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); // set to true after we get the first filter* message pfrom.m_tx_relay->fRelayTxes = fRelay; } pfrom.nRemoteHostNonce = nNonce; pfrom.nRemoteExtraEntropy = nExtraEntropy; // Potentially mark this peer as a preferred download peer. { LOCK(cs_main); UpdatePreferredDownload(pfrom, State(pfrom.GetId())); } // Self advertisement & GETADDR logic if (!pfrom.IsInboundConn() && SetupAddressRelay(pfrom, *peer)) { // For outbound peers, we try to relay our address (so that other // nodes can try to find us more quickly, as we have no guarantee // that an outbound peer is even aware of how to reach us) and do a // one-time address fetch (to help populate/update our addrman). If // we're starting up for the first time, our addrman may be pretty // empty and no one will know who we are, so these mechanisms are // important to help us connect to the network. // // We skip this for block-relay-only peers. We want to avoid // potentially leaking addr information and we do not want to // indicate to the peer that we will participate in addr relay. if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) { CAddress addr = GetLocalAddress(&pfrom.addr, pfrom.GetLocalServices()); FastRandomContext insecure_rand; if (addr.IsRoutable()) { LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); PushAddress(*peer, addr, insecure_rand); } else if (IsPeerAddrLocalGood(&pfrom)) { addr.SetIP(addrMe); LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); PushAddress(*peer, addr, insecure_rand); } } // Get recent addresses m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version) .Make(NetMsgType::GETADDR)); peer->m_getaddr_sent = true; // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND // addresses in response (bypassing the // MAX_ADDR_PROCESSING_TOKEN_BUCKET limit). WITH_LOCK(peer->m_addr_token_bucket_mutex, peer->m_addr_token_bucket += GetMaxAddrToSend()); } if (!pfrom.IsInboundConn()) { // For non-inbound connections, we update the addrman to record // connection success so that addrman will have an up-to-date // notion of which peers are online and available. // // While we strive to not leak information about block-relay-only // connections via the addrman, not moving an address to the tried // table is also potentially detrimental because new-table entries // are subject to eviction in the event of addrman collisions. We // mitigate the information-leak by never calling // AddrMan::Connected() on block-relay-only peers; see // FinalizeNode(). // // This moves an address from New to Tried table in Addrman, // resolves tried-table collisions, etc. m_addrman.Good(pfrom.addr); } std::string remoteAddr; if (fLogIPs) { remoteAddr = ", peeraddr=" + pfrom.addr.ToString(); } LogPrint(BCLog::NET, "receive version message: [%s] %s: version %d, blocks=%d, " "us=%s, txrelay=%d, peer=%d%s\n", pfrom.addr.ToString(), cleanSubVer, pfrom.nVersion, peer->m_starting_height, addrMe.ToString(), fRelay, pfrom.GetId(), remoteAddr); // Ignore time offsets that are improbable (before the Genesis block) // and may underflow the nTimeOffset calculation. int64_t currentTime = GetTime(); if (nTime >= int64_t(m_chainparams.GenesisBlock().nTime)) { int64_t nTimeOffset = nTime - currentTime; pfrom.nTimeOffset = nTimeOffset; AddTimeData(pfrom.addr, nTimeOffset); } else { Misbehaving(pfrom, 20, "Ignoring invalid timestamp in version message"); } // Feeler connections exist only to verify if address is online. if (pfrom.IsFeelerConn()) { LogPrint(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (pfrom.nVersion == 0) { // Must have a version message before anything else Misbehaving(pfrom, 10, "non-version message before version handshake"); return; } // At this point, the outgoing message serialization version can't change. const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); if (msg_type == NetMsgType::VERACK) { if (pfrom.fSuccessfullyConnected) { LogPrint(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId()); return; } if (!pfrom.IsInboundConn()) { LogPrintf( "New outbound peer connected: version: %d, blocks=%d, " "peer=%d%s (%s)\n", pfrom.nVersion.load(), peer->m_starting_height, pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToString()) : ""), pfrom.ConnectionTypeAsString()); } if (pfrom.GetCommonVersion() >= SENDHEADERS_VERSION) { // Tell our peer we prefer to receive headers rather than inv's // We send this to non-NODE NETWORK peers as well, because even // non-NODE NETWORK peers can announce blocks (such as pruning // nodes) m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDHEADERS)); } if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) { // Tell our peer we are willing to provide version 1 or 2 // cmpctblocks. However, we do not request new block announcements // using cmpctblock messages. We send this to non-NODE NETWORK peers // as well, because they may wish to request compact blocks from us. bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 1; m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion)); } if (g_avalanche && isAvalancheEnabled(gArgs)) { if (g_avalanche->sendHello(&pfrom)) { LogPrint(BCLog::AVALANCHE, "Send avahello to peer %d\n", pfrom.GetId()); auto localProof = g_avalanche->getLocalProof(); if (localProof) { // Add our proof id to the list or the recently announced // proof INVs to this peer. This is used for filtering which // INV can be requested for download. LOCK(cs_main); State(pfrom.GetId()) ->m_recently_announced_proofs.insert( localProof->getId()); } } } pfrom.fSuccessfullyConnected = true; return; } if (!pfrom.fSuccessfullyConnected) { // Must have a verack message before anything else Misbehaving(pfrom, 10, "non-verack message before version handshake"); return; } if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) { int stream_version = vRecv.GetVersion(); if (msg_type == NetMsgType::ADDRV2) { // Add ADDRV2_FORMAT to the version so that the CNetAddr and // CAddress unserialize methods know that an address in v2 format is // coming. stream_version |= ADDRV2_FORMAT; } OverrideStream s(&vRecv, vRecv.GetType(), stream_version); std::vector vAddr; s >> vAddr; if (!SetupAddressRelay(pfrom, *peer)) { LogPrint(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } if (vAddr.size() > GetMaxAddrToSend()) { Misbehaving( pfrom, 20, strprintf("%s message size = %u", msg_type, vAddr.size())); return; } // Store the new addresses std::vector vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; // Update/increment addr rate limiting bucket. const auto current_time = GetTime(); { LOCK(peer->m_addr_token_bucket_mutex); if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) { // Don't increment bucket if it's already full const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us); const double increment = CountSecondsDouble(time_diff) * MAX_ADDR_RATE_PER_SECOND; peer->m_addr_token_bucket = std::min(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET); } } peer->m_addr_token_timestamp = current_time; const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::PF_ADDR); uint64_t num_proc = 0; uint64_t num_rate_limit = 0; Shuffle(vAddr.begin(), vAddr.end(), FastRandomContext()); for (CAddress &addr : vAddr) { if (interruptMsgProc) { return; } { LOCK(peer->m_addr_token_bucket_mutex); // Apply rate limiting. if (peer->m_addr_token_bucket < 1.0) { if (rate_limited) { ++num_rate_limit; continue; } } else { peer->m_addr_token_bucket -= 1.0; } } // We only bother storing full nodes, though this may include things // which we would not make an outbound connection to, in part // because we may make feeler connections to them. if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) { addr.nTime = nNow - 5 * 24 * 60 * 60; } AddAddressKnown(*peer, addr); if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) { // Do not process banned/discouraged addresses beyond // remembering we received them continue; } ++num_proc; bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes RelayAddress(pfrom.GetId(), addr, fReachable); } // Do not store addresses outside our network if (fReachable) { vAddrOk.push_back(addr); } } peer->m_addr_processed += num_proc; peer->m_addr_rate_limited += num_rate_limit; LogPrint(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) " "from peer=%d\n", vAddr.size(), num_proc, num_rate_limit, pfrom.GetId()); m_addrman.Add(vAddrOk, pfrom.addr, 2 * 60 * 60); if (vAddr.size() < 1000) { peer->m_getaddr_sent = false; } // AddrFetch: Require multiple addresses to avoid disconnecting on // self-announcements if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) { LogPrint(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (msg_type == NetMsgType::SENDADDRV2) { peer->m_wants_addrv2 = true; return; } if (msg_type == NetMsgType::SENDHEADERS) { LOCK(cs_main); State(pfrom.GetId())->fPreferHeaders = true; return; } if (msg_type == NetMsgType::SENDCMPCT) { bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 0; vRecv >> fAnnounceUsingCMPCTBLOCK >> nCMPCTBLOCKVersion; if (nCMPCTBLOCKVersion == 1) { LOCK(cs_main); // fProvidesHeaderAndIDs is used to "lock in" version of compact // blocks we send. if (!State(pfrom.GetId())->fProvidesHeaderAndIDs) { State(pfrom.GetId())->fProvidesHeaderAndIDs = true; } State(pfrom.GetId())->fPreferHeaderAndIDs = fAnnounceUsingCMPCTBLOCK; // save whether peer selects us as BIP152 high-bandwidth peer // (receiving sendcmpct(1) signals high-bandwidth, // sendcmpct(0) low-bandwidth) pfrom.m_bip152_highbandwidth_from = fAnnounceUsingCMPCTBLOCK; if (!State(pfrom.GetId())->fSupportsDesiredCmpctVersion) { State(pfrom.GetId())->fSupportsDesiredCmpctVersion = true; } } return; } if (msg_type == NetMsgType::INV) { std::vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("inv message size = %u", vInv.size())); return; } // We won't accept tx inv's if we're in blocks-only mode, or this is a // block-relay-only peer bool fBlocksOnly = m_ignore_incoming_txs || (pfrom.m_tx_relay == nullptr); // Allow peers with relay permission to send data other than blocks // in blocks only mode if (pfrom.HasPermission(PF_RELAY)) { fBlocksOnly = false; } const auto current_time = GetTime(); std::optional best_block; auto logInv = [&](const CInv &inv, bool fAlreadyHave) { LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId()); }; for (CInv &inv : vInv) { if (interruptMsgProc) { return; } if (inv.IsMsgBlk()) { LOCK(cs_main); const bool fAlreadyHave = AlreadyHaveBlock(BlockHash(inv.hash)); logInv(inv, fAlreadyHave); const BlockHash hash{inv.hash}; UpdateBlockAvailability(pfrom.GetId(), hash); if (!fAlreadyHave && !fImporting && !fReindex && !mapBlocksInFlight.count(hash)) { // Headers-first is the primary method of announcement on // the network. If a node fell back to sending blocks by // inv, it's probably for a re-org. The final block hash // provided should be the highest, so send a getheaders and // then fetch the blocks we need to catch up. best_block = std::move(hash); } continue; } if (inv.IsMsgProof()) { const avalanche::ProofId proofid(inv.hash); const bool fAlreadyHave = AlreadyHaveProof(proofid); logInv(inv, fAlreadyHave); pfrom.AddKnownProof(proofid); if (!fAlreadyHave && g_avalanche && isAvalancheEnabled(gArgs) && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) { const bool preferred = isPreferredDownloadPeer(pfrom); LOCK(cs_proofrequest); AddProofAnnouncement(pfrom, proofid, current_time, preferred); } continue; } if (inv.IsMsgTx()) { LOCK(cs_main); const TxId txid(inv.hash); const bool fAlreadyHave = AlreadyHaveTx(txid); logInv(inv, fAlreadyHave); pfrom.AddKnownTx(txid); if (fBlocksOnly) { LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of " "protocol, disconnecting peer=%d\n", txid.ToString(), pfrom.GetId()); pfrom.fDisconnect = true; return; } else if (!fAlreadyHave && !m_chainman.ActiveChainstate() .IsInitialBlockDownload()) { AddTxAnnouncement(pfrom, txid, current_time); } continue; } LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId()); } if (best_block) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( pindexBestHeader), *best_block)); LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n", pindexBestHeader->nHeight, best_block->ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETDATA) { std::vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("getdata message size = %u", vInv.size())); return; } LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId()); if (vInv.size() > 0) { LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId()); } { LOCK(peer->m_getdata_requests_mutex); peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end()); ProcessGetData(config, pfrom, *peer, interruptMsgProc); } return; } if (msg_type == NetMsgType::GETBLOCKS) { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } // We might have announced the currently-being-connected tip using a // compact block, which resulted in the peer sending a getblocks // request, which we would otherwise respond to without the new block. // To avoid this situation we simply verify that we are on our best // known chain now. This is super overkill, but we handle it better // for getheaders requests, and there are no known nodes which support // compact blocks but still use getblocks to request blocks. { std::shared_ptr a_recent_block; { LOCK(cs_most_recent_block); a_recent_block = most_recent_block; } BlockValidationState state; if (!m_chainman.ActiveChainstate().ActivateBestChain( config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); // Find the last block the caller has in the main chain const CBlockIndex *pindex = m_chainman.m_blockman.FindForkInGlobalIndex( m_chainman.ActiveChain(), locator); // Send the rest of the chain if (pindex) { pindex = m_chainman.ActiveChain().Next(pindex); } int nLimit = 500; LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId()); for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex)) { if (pindex->GetBlockHash() == hashStop) { LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } // If pruning, don't inv blocks unless we have on disk and are // likely to still have for some reasonable time window (1 hour) // that block relay might require. const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing; if (fPruneMode && (!pindex->nStatus.hasData() || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) { LogPrint( BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } WITH_LOCK( peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll // trigger the peer to getblocks the next batch of inventory. LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); WITH_LOCK(peer->m_block_inv_mutex, { peer->m_continuation_block = pindex->GetBlockHash(); }); break; } } return; } if (msg_type == NetMsgType::GETBLOCKTXN) { BlockTransactionsRequest req; vRecv >> req; std::shared_ptr recent_block; { LOCK(cs_most_recent_block); if (most_recent_block_hash == req.blockhash) { recent_block = most_recent_block; } // Unlock cs_most_recent_block to avoid cs_main lock inversion } if (recent_block) { SendBlockTransactions(pfrom, *recent_block, req); return; } { LOCK(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash); if (!pindex || !pindex->nStatus.hasData()) { LogPrint( BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId()); return; } if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) { CBlock block; bool ret = ReadBlockFromDisk(block, pindex, m_chainparams.GetConsensus()); assert(ret); SendBlockTransactions(pfrom, block, req); return; } } // If an older block is requested (should never happen in practice, // but can happen in tests) send a block response instead of a // blocktxn response. Sending a full block response instead of a // small blocktxn response is preferable in the case where a peer // might maliciously send lots of getblocktxn requests to trigger // expensive disk reads, because it will require the peer to // actually receive all the data read from disk over the network. LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH); CInv inv; inv.type = MSG_BLOCK; inv.hash = req.blockhash; WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv)); // The message processing loop will go around again (without pausing) // and we'll respond then (without cs_main) return; } if (msg_type == NetMsgType::GETHEADERS) { CBlockLocator locator; BlockHash hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } LOCK(cs_main); if (m_chainman.ActiveChainstate().IsInitialBlockDownload() && !pfrom.HasPermission(PF_DOWNLOAD)) { LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because node is in " "initial block download\n", pfrom.GetId()); return; } CNodeState *nodestate = State(pfrom.GetId()); const CBlockIndex *pindex = nullptr; if (locator.IsNull()) { // If locator is null, return the hashStop block pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop); if (!pindex) { return; } if (!BlockRequestAllowed(pindex, m_chainparams.GetConsensus())) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block " "header that isn't in the main chain\n", __func__, pfrom.GetId()); return; } } else { // Find the last block the caller has in the main chain pindex = m_chainman.m_blockman.FindForkInGlobalIndex( m_chainman.ActiveChain(), locator); if (pindex) { pindex = m_chainman.ActiveChain().Next(pindex); } } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx // count at the end std::vector vHeaders; int nLimit = MAX_HEADERS_RESULTS; LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId()); for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex)) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) { break; } } // pindex can be nullptr either if we sent // m_chainman.ActiveChain().Tip() OR if our peer has // m_chainman.ActiveChain().Tip() (and thus we are sending an empty // headers message). In both cases it's safe to update // pindexBestHeaderSent to be our tip. // // It is important that we simply reset the BestHeaderSent value here, // and not max(BestHeaderSent, newHeaderSent). We might have announced // the currently-being-connected tip using a compact block, which // resulted in the peer sending a headers request, which we respond to // without the new block. By resetting the BestHeaderSent, we ensure we // will re-announce the new block via headers (or compact blocks again) // in the SendMessages logic. nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip(); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); return; } if (msg_type == NetMsgType::TX) { // Stop processing the transaction early if // 1) We are in blocks only mode and peer has no relay permission // 2) This peer is a block-relay-only peer if ((m_ignore_incoming_txs && !pfrom.HasPermission(PF_RELAY)) || (pfrom.m_tx_relay == nullptr)) { LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } CTransactionRef ptx; vRecv >> ptx; const CTransaction &tx = *ptx; const TxId &txid = tx.GetId(); pfrom.AddKnownTx(txid); LOCK2(cs_main, g_cs_orphans); m_txrequest.ReceivedResponse(pfrom.GetId(), txid); if (AlreadyHaveTx(txid)) { if (pfrom.HasPermission(PF_FORCERELAY)) { // Always relay transactions received from peers with // forcerelay permission, even if they were already in the // mempool, allowing the node to function as a gateway for // nodes hidden behind it. if (!m_mempool.exists(tx.GetId())) { LogPrintf("Not relaying non-mempool transaction %s from " "forcerelay peer=%d\n", tx.GetId().ToString(), pfrom.GetId()); } else { LogPrintf("Force relaying tx %s from peer=%d\n", tx.GetId().ToString(), pfrom.GetId()); RelayTransaction(tx.GetId()); } } return; } const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx); const TxValidationState &state = result.m_state; if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) { // As this version of the transaction was acceptable, we can forget // about any requests for it. m_txrequest.ForgetInvId(tx.GetId()); RelayTransaction(tx.GetId()); m_orphanage.AddChildrenToWorkSet(tx, peer->m_orphan_work_set); pfrom.m_last_tx_time = GetTime(); LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s " "(poolsz %u txn, %u kB)\n", pfrom.GetId(), tx.GetId().ToString(), m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000); // Recursively process any orphan transactions that depended on this // one ProcessOrphanTx(config, peer->m_orphan_work_set); } else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS) { // It may be the case that the orphans parents have all been // rejected. bool fRejectedParents = false; // Deduplicate parent txids, so that we don't have to loop over // the same parent txid more than once down below. std::vector unique_parents; unique_parents.reserve(tx.vin.size()); for (const CTxIn &txin : tx.vin) { // We start with all parents, and then remove duplicates below. unique_parents.push_back(txin.prevout.GetTxId()); } std::sort(unique_parents.begin(), unique_parents.end()); unique_parents.erase( std::unique(unique_parents.begin(), unique_parents.end()), unique_parents.end()); for (const TxId &parent_txid : unique_parents) { if (recentRejects->contains(parent_txid)) { fRejectedParents = true; break; } } if (!fRejectedParents) { const auto current_time = GetTime(); for (const TxId &parent_txid : unique_parents) { // FIXME: MSG_TX should use a TxHash, not a TxId. pfrom.AddKnownTx(parent_txid); if (!AlreadyHaveTx(parent_txid)) { AddTxAnnouncement(pfrom, parent_txid, current_time); } } if (m_orphanage.AddTx(ptx, pfrom.GetId())) { AddToCompactExtraTransactions(ptx); } // Once added to the orphan pool, a tx is considered // AlreadyHave, and we shouldn't request it anymore. m_txrequest.ForgetInvId(tx.GetId()); // DoS prevention: do not allow m_orphanage to grow // unbounded (see CVE-2012-3789) unsigned int nMaxOrphanTx = (unsigned int)std::max( int64_t(0), gArgs.GetIntArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS)); unsigned int nEvicted = m_orphanage.LimitOrphans(nMaxOrphanTx); if (nEvicted > 0) { LogPrint(BCLog::MEMPOOL, "orphanage overflow, removed %u tx\n", nEvicted); } } else { LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s\n", tx.GetId().ToString()); // We will continue to reject this tx since it has rejected // parents so avoid re-requesting it from other peers. recentRejects->insert(tx.GetId()); m_txrequest.ForgetInvId(tx.GetId()); } } else { assert(recentRejects); recentRejects->insert(tx.GetId()); m_txrequest.ForgetInvId(tx.GetId()); if (RecursiveDynamicUsage(*ptx) < 100000) { AddToCompactExtraTransactions(ptx); } } // If a tx has been detected by recentRejects, we will have reached // this point and the tx will have been ignored. Because we haven't // submitted the tx to our mempool, we won't have computed a DoS // score for it or determined exactly why we consider it invalid. // // This means we won't penalize any peer subsequently relaying a DoSy // tx (even if we penalized the first peer who gave it to us) because // we have to account for recentRejects showing false positives. In // other words, we shouldn't penalize a peer if we aren't *sure* they // submitted a DoSy tx. // // Note that recentRejects doesn't just record DoSy or invalid // transactions, but any tx not accepted by the mempool, which may be // due to node policy (vs. consensus). So we can't blanket penalize a // peer simply for relaying a tx that our recentRejects has caught, // regardless of false positives. if (state.IsInvalid()) { LogPrint(BCLog::MEMPOOLREJ, "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(), pfrom.GetId(), state.ToString()); MaybePunishNodeForTx(pfrom.GetId(), state); } return; } if (msg_type == NetMsgType::CMPCTBLOCK) { // Ignore cmpctblock received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId()); return; } CBlockHeaderAndShortTxIDs cmpctblock; try { vRecv >> cmpctblock; } catch (std::ios_base::failure &e) { // This block has non contiguous or overflowing indexes Misbehaving(pfrom, 100, "cmpctblock-bad-indexes"); return; } bool received_new_header = false; { LOCK(cs_main); if (!m_chainman.m_blockman.LookupBlockIndex( cmpctblock.header.hashPrevBlock)) { // Doesn't connect (or is genesis), instead of DoSing in // AcceptBlockHeader, request deeper headers if (!m_chainman.ActiveChainstate().IsInitialBlockDownload()) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( pindexBestHeader), uint256())); } return; } if (!m_chainman.m_blockman.LookupBlockIndex( cmpctblock.header.GetHash())) { received_new_header = true; } } const CBlockIndex *pindex = nullptr; BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, {cmpctblock.header}, state, &pindex)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block*/ true, "invalid header via cmpctblock"); return; } } // When we succeed in decoding a block's txids from a cmpctblock // message we typically jump to the BLOCKTXN handling code, with a // dummy (empty) BLOCKTXN message, to re-use the logic there in // completing processing of the putative block (without cs_main). bool fProcessBLOCKTXN = false; CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION); // If we end up treating this as a plain headers message, call that as // well // without cs_main. bool fRevertToHeaderProcessing = false; // Keep a CBlock for "optimistic" compactblock reconstructions (see // below) std::shared_ptr pblock = std::make_shared(); bool fBlockReconstructed = false; { LOCK2(cs_main, g_cs_orphans); // If AcceptBlockHeader returned true, it set pindex assert(pindex); UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash()); CNodeState *nodestate = State(pfrom.GetId()); // If this was a new header with more work than our tip, update the // peer's last block announcement time if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } std::map::iterator>>:: iterator blockInFlightIt = mapBlocksInFlight.find(pindex->GetBlockHash()); bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end(); if (pindex->nStatus.hasData()) { // Nothing to do here return; } if (pindex->nChainWork <= m_chainman.ActiveChain() .Tip() ->nChainWork || // We know something better pindex->nTx != 0) { // We had this block at some point, but pruned it if (fAlreadyInFlight) { // We requested this block for some reason, but our mempool // will probably be useless so we just grab the block via // normal getdata. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); } return; } // If we're not close to tip yet, give up and let parallel block // fetch work its magic. if (!fAlreadyInFlight && !CanDirectFetch(m_chainparams.GetConsensus())) { return; } // We want to be a bit conservative just to be extra careful about // DoS possibilities in compact block processing... if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) { if ((!fAlreadyInFlight && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) || (fAlreadyInFlight && blockInFlightIt->second.first == pfrom.GetId())) { std::list::iterator *queuedBlockIt = nullptr; if (!MarkBlockAsInFlight(config, pfrom.GetId(), pindex->GetBlockHash(), pindex, &queuedBlockIt)) { if (!(*queuedBlockIt)->partialBlock) { (*queuedBlockIt) ->partialBlock.reset( new PartiallyDownloadedBlock(config, &m_mempool)); } else { // The block was already in flight using compact // blocks from the same peer. LogPrint(BCLog::NET, "Peer sent us compact block " "we were already syncing!\n"); return; } } PartiallyDownloadedBlock &partialBlock = *(*queuedBlockIt)->partialBlock; ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case Misbehaving does not // result in a disconnect MarkBlockAsReceived(pindex->GetBlockHash()); Misbehaving(pfrom, 100, "invalid compact block"); return; } else if (status == READ_STATUS_FAILED) { // Duplicate txindices, the block is now in-flight, so // just request it. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } BlockTransactionsRequest req; for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) { if (!partialBlock.IsTxAvailable(i)) { req.indices.push_back(i); } } if (req.indices.empty()) { // Dirty hack to jump to BLOCKTXN code (TODO: move // message handling into their own functions) BlockTransactions txn; txn.blockhash = cmpctblock.header.GetHash(); blockTxnMsg << txn; fProcessBLOCKTXN = true; } else { req.blockhash = pindex->GetBlockHash(); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETBLOCKTXN, req)); } } else { // This block is either already in flight from a different // peer, or this peer has too many blocks outstanding to // download from. Optimistically try to reconstruct anyway // since we might be able to without any round trips. PartiallyDownloadedBlock tempBlock(config, &m_mempool); ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status != READ_STATUS_OK) { // TODO: don't ignore failures return; } std::vector dummy; status = tempBlock.FillBlock(*pblock, dummy); if (status == READ_STATUS_OK) { fBlockReconstructed = true; } } } else { if (fAlreadyInFlight) { // We requested this block, but its far into the future, so // our mempool will probably be useless - request the block // normally. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } else { // If this was an announce-cmpctblock, we want the same // treatment as a header message. fRevertToHeaderProcessing = true; } } } // cs_main if (fProcessBLOCKTXN) { return ProcessMessage(config, pfrom, NetMsgType::BLOCKTXN, blockTxnMsg, time_received, interruptMsgProc); } if (fRevertToHeaderProcessing) { // Headers received from HB compact block peers are permitted to be // relayed before full validation (see BIP 152), so we don't want to // disconnect the peer if the header turns out to be for an invalid // block. Note that if a peer tries to build on an invalid chain, // that will be detected and the peer will be banned. return ProcessHeadersMessage(config, pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true); } if (fBlockReconstructed) { // If we got here, we were able to optimistically reconstruct a // block that is in flight from some other peer. { LOCK(cs_main); mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false)); } // Setting force_processing to true means that we bypass some of // our anti-DoS protections in AcceptBlock, which filters // unrequested blocks that might be trying to waste our resources // (eg disk space). Because we only try to reconstruct blocks when // we're close to caught up (via the CanDirectFetch() requirement // above, combined with the behavior of not requesting blocks until // we have a chain with at least nMinimumChainWork), and we ignore // compact blocks with less work than our tip, it is safe to treat // reconstructed compact blocks as having been requested. ProcessBlock(config, pfrom, pblock, /*force_processing=*/true); // hold cs_main for CBlockIndex::IsValid() LOCK(cs_main); if (pindex->IsValid(BlockValidity::TRANSACTIONS)) { // Clear download state for this block, which is in process from // some other peer. We do this after calling. ProcessNewBlock so // that a malleated cmpctblock announcement can't be used to // interfere with block relay. MarkBlockAsReceived(pblock->GetHash()); } } return; } if (msg_type == NetMsgType::BLOCKTXN) { // Ignore blocktxn received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId()); return; } BlockTransactions resp; vRecv >> resp; std::shared_ptr pblock = std::make_shared(); bool fBlockRead = false; { LOCK(cs_main); std::map::iterator>>:: iterator it = mapBlocksInFlight.find(resp.blockhash); if (it == mapBlocksInFlight.end() || !it->second.second->partialBlock || it->second.first != pfrom.GetId()) { LogPrint(BCLog::NET, "Peer %d sent us block transactions for block " "we weren't expecting\n", pfrom.GetId()); return; } PartiallyDownloadedBlock &partialBlock = *it->second.second->partialBlock; ReadStatus status = partialBlock.FillBlock(*pblock, resp.txn); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case of Misbehaving does not // result in a disconnect. MarkBlockAsReceived(resp.blockhash); Misbehaving( pfrom, 100, "invalid compact block/non-matching block transactions"); return; } else if (status == READ_STATUS_FAILED) { // Might have collided, fall back to getdata now :( std::vector invs; invs.push_back(CInv(MSG_BLOCK, resp.blockhash)); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, invs)); } else { // Block is either okay, or possibly we received // READ_STATUS_CHECKBLOCK_FAILED. // Note that CheckBlock can only fail for one of a few reasons: // 1. bad-proof-of-work (impossible here, because we've already // accepted the header) // 2. merkleroot doesn't match the transactions given (already // caught in FillBlock with READ_STATUS_FAILED, so // impossible here) // 3. the block is otherwise invalid (eg invalid coinbase, // block is too big, too many legacy sigops, etc). // So if CheckBlock failed, #3 is the only possibility. // Under BIP 152, we don't DoS-ban unless proof of work is // invalid (we don't require all the stateless checks to have // been run). This is handled below, so just treat this as // though the block was successfully read, and rely on the // handling in ProcessNewBlock to ensure the block index is // updated, etc. // it is now an empty pointer MarkBlockAsReceived(resp.blockhash); fBlockRead = true; // mapBlockSource is used for potentially punishing peers and // updating which peers send us compact blocks, so the race // between here and cs_main in ProcessNewBlock is fine. // BIP 152 permits peers to relay compact blocks after // validating the header only; we should not punish peers // if the block turns out to be invalid. mapBlockSource.emplace(resp.blockhash, std::make_pair(pfrom.GetId(), false)); } } // Don't hold cs_main when we call into ProcessNewBlock if (fBlockRead) { // Since we requested this block (it was in mapBlocksInFlight), // force it to be processed, even if it would not be a candidate for // new tip (missing previous block, chain not long enough, etc) // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent // disk-space attacks), but this should be safe due to the // protections in the compact block handler -- see related comment // in compact block optimistic reconstruction handling. ProcessBlock(config, pfrom, pblock, /*force_processing=*/true); } return; } if (msg_type == NetMsgType::HEADERS) { // Ignore headers received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId()); return; } std::vector headers; // Bypass the normal CBlock deserialization, as we don't want to risk // deserializing 2000 full blocks. unsigned int nCount = ReadCompactSize(vRecv); if (nCount > MAX_HEADERS_RESULTS) { Misbehaving(pfrom, 20, strprintf("too-many-headers: headers message size = %u", nCount)); return; } headers.resize(nCount); for (unsigned int n = 0; n < nCount; n++) { vRecv >> headers[n]; // Ignore tx count; assume it is 0. ReadCompactSize(vRecv); } return ProcessHeadersMessage(config, pfrom, *peer, headers, /*via_compact_block=*/false); } if (msg_type == NetMsgType::BLOCK) { // Ignore block received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId()); return; } std::shared_ptr pblock = std::make_shared(); vRecv >> *pblock; LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId()); // Process all blocks from whitelisted peers, even if not requested, // unless we're still syncing with the network. Such an unrequested // block may still be processed, subject to the conditions in // AcceptBlock(). bool forceProcessing = pfrom.HasPermission(PF_NOBAN) && !m_chainman.ActiveChainstate().IsInitialBlockDownload(); const BlockHash hash = pblock->GetHash(); { LOCK(cs_main); // Also always process if we requested the block explicitly, as we // may need it even though it is not a candidate for a new best tip. forceProcessing |= MarkBlockAsReceived(hash); // mapBlockSource is only used for punishing peers and setting // which peers send us compact blocks, so the race between here and // cs_main in ProcessNewBlock is fine. mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true)); } ProcessBlock(config, pfrom, pblock, forceProcessing); return; } if (msg_type == NetMsgType::AVAHELLO) { { bool expected = false; if (!pfrom.m_avalanche_enabled.compare_exchange_strong(expected, true)) { LogPrint( BCLog::AVALANCHE, "Ignoring avahello from peer %d: already in our node set\n", pfrom.GetId()); return; } } - pfrom.m_avalanche_state = std::make_unique(); - avalanche::Delegation delegation; vRecv >> delegation; // A delegation with an all zero limited id indicates that the peer has // no proof, so we're done. if (delegation.getLimitedProofId() != uint256::ZERO) { avalanche::DelegationState state; CPubKey pubkey; if (!delegation.verify(state, pubkey)) { Misbehaving(pfrom, 100, "invalid-delegation"); return; } pfrom.m_avalanche_pubkey = std::move(pubkey); CHashWriter sighasher(SER_GETHASH, 0); sighasher << delegation.getId(); sighasher << pfrom.nRemoteHostNonce; sighasher << pfrom.GetLocalNonce(); sighasher << pfrom.nRemoteExtraEntropy; sighasher << pfrom.GetLocalExtraEntropy(); SchnorrSig sig; vRecv >> sig; if (!(*pfrom.m_avalanche_pubkey) .VerifySchnorr(sighasher.GetHash(), sig)) { Misbehaving(pfrom, 100, "invalid-avahello-signature"); return; } // If we don't know this proof already, add it to the tracker so it // can be requested. const avalanche::ProofId proofid(delegation.getProofId()); if (!AlreadyHaveProof(proofid)) { const bool preferred = isPreferredDownloadPeer(pfrom); LOCK(cs_proofrequest); AddProofAnnouncement(pfrom, proofid, GetTime(), preferred); } // Don't check the return value. If it fails we probably don't // know about the proof yet. g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.addNode(pfrom.GetId(), proofid); }); } // Send getavaaddr and getavaproofs to our avalanche outbound or // manual connections if (!pfrom.IsInboundConn()) { m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETAVAADDR)); WITH_LOCK(peer->m_addr_token_bucket_mutex, peer->m_addr_token_bucket += GetMaxAddrToSend()); if (pfrom.m_proof_relay && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) { m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETAVAPROOFS)); pfrom.m_proof_relay->compactproofs_requested = true; } } return; } if (msg_type == NetMsgType::AVAPOLL) { auto now = std::chrono::steady_clock::now(); int64_t cooldown = gArgs.GetIntArg("-avacooldown", AVALANCHE_DEFAULT_COOLDOWN); { LOCK(cs_main); auto &node_state = State(pfrom.GetId())->m_avalanche_state; if (now < node_state.last_poll + std::chrono::milliseconds(cooldown)) { Misbehaving(pfrom, 20, "avapool-cooldown"); } node_state.last_poll = now; } const bool quorum_established = g_avalanche && g_avalanche->isQuorumEstablished(); uint64_t round; Unserialize(vRecv, round); unsigned int nCount = ReadCompactSize(vRecv); if (nCount > AVALANCHE_MAX_ELEMENT_POLL) { Misbehaving( pfrom, 20, strprintf("too-many-ava-poll: poll message size = %u", nCount)); return; } std::vector votes; votes.reserve(nCount); for (unsigned int n = 0; n < nCount; n++) { CInv inv; vRecv >> inv; // Default vote for unknown inv type uint32_t vote = -1; // We don't vote definitively until we have an established quorum if (!quorum_established) { votes.emplace_back(vote, inv.hash); continue; } // If inv's type is known, get a vote for its hash switch (inv.type) { case MSG_TX: { vote = getAvalancheVoteForTx(m_mempool, TxId(inv.hash)); } break; case MSG_BLOCK: { vote = WITH_LOCK(cs_main, return GetAvalancheVoteForBlock( BlockHash(inv.hash))); } break; case MSG_AVA_PROOF: { vote = getAvalancheVoteForProof(avalanche::ProofId(inv.hash)); } break; default: { LogPrint(BCLog::AVALANCHE, "poll inv type unknown from peer=%d\n", inv.type); } } votes.emplace_back(vote, inv.hash); } // Send the query to the node. g_avalanche->sendResponse( &pfrom, avalanche::Response(round, cooldown, std::move(votes))); return; } if (msg_type == NetMsgType::AVARESPONSE) { // As long as QUIC is not implemented, we need to sign response and // verify response's signatures in order to avoid any manipulation of // messages at the transport level. CHashVerifier verifier(&vRecv); avalanche::Response response; verifier >> response; SchnorrSig sig; vRecv >> sig; if (!pfrom.m_avalanche_pubkey.has_value() || !(*pfrom.m_avalanche_pubkey) .VerifySchnorr(verifier.GetHash(), sig)) { Misbehaving(pfrom, 100, "invalid-ava-response-signature"); return; } std::vector blockUpdates; std::vector proofUpdates; int banscore; std::string error; if (!g_avalanche->registerVotes(pfrom.GetId(), response, blockUpdates, proofUpdates, banscore, error)) { Misbehaving(pfrom, banscore, error); return; } - pfrom.m_avalanche_state->invsVoted(response.GetVotes().size()); + pfrom.invsVoted(response.GetVotes().size()); auto logVoteUpdate = [](const auto &voteUpdate, const std::string &voteItemTypeStr, const auto &voteItemId) { std::string voteOutcome; switch (voteUpdate.getStatus()) { case avalanche::VoteStatus::Invalid: voteOutcome = "invalidated"; break; case avalanche::VoteStatus::Rejected: voteOutcome = "rejected"; break; case avalanche::VoteStatus::Accepted: voteOutcome = "accepted"; break; case avalanche::VoteStatus::Finalized: voteOutcome = "finalized"; break; case avalanche::VoteStatus::Stale: voteOutcome = "stalled"; break; // No default case, so the compiler can warn about missing // cases } LogPrint(BCLog::AVALANCHE, "Avalanche %s %s %s\n", voteOutcome, voteItemTypeStr, voteItemId.ToString()); }; for (avalanche::ProofUpdate &u : proofUpdates) { avalanche::ProofRef proof = u.getVoteItem(); const avalanche::ProofId &proofid = proof->getId(); logVoteUpdate(u, "proof", proofid); auto rejectionMode = avalanche::PeerManager::RejectionMode::DEFAULT; auto nextCooldownTimePoint = GetTime(); switch (u.getStatus()) { case avalanche::VoteStatus::Invalid: WITH_LOCK(cs_invalidProofs, invalidProofs->insert(proofid)); // Fallthrough case avalanche::VoteStatus::Stale: // Invalidate mode removes the proof from all proof pools rejectionMode = avalanche::PeerManager::RejectionMode::INVALIDATE; // Fallthrough case avalanche::VoteStatus::Rejected: if (!g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { return pm.rejectProof(proofid, rejectionMode); })) { LogPrint(BCLog::AVALANCHE, "ERROR: Failed to reject proof: %s\n", proofid.GetHex()); } break; case avalanche::VoteStatus::Finalized: nextCooldownTimePoint += std::chrono::seconds(gArgs.GetIntArg( "-avalanchepeerreplacementcooldown", AVALANCHE_DEFAULT_PEER_REPLACEMENT_COOLDOWN)); case avalanche::VoteStatus::Accepted: if (!g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { pm.registerProof( proof, avalanche::PeerManager:: RegistrationMode::FORCE_ACCEPT); return pm.forPeer( proofid, [&](const avalanche::Peer &peer) { pm.updateNextPossibleConflictTime( peer.peerid, nextCooldownTimePoint); if (u.getStatus() == avalanche::VoteStatus::Finalized) { pm.setFinalized(peer.peerid); } // Only fail if the peer was not // created return true; }); })) { LogPrint(BCLog::AVALANCHE, "ERROR: Failed to accept proof: %s\n", proofid.GetHex()); } break; } } if (blockUpdates.size()) { for (avalanche::BlockUpdate &u : blockUpdates) { CBlockIndex *pindex = u.getVoteItem(); logVoteUpdate(u, "block", pindex->GetBlockHash()); switch (u.getStatus()) { case avalanche::VoteStatus::Invalid: case avalanche::VoteStatus::Rejected: { BlockValidationState state; m_chainman.ActiveChainstate().ParkBlock(config, state, pindex); if (!state.IsValid()) { LogPrintf("ERROR: Database error: %s\n", state.GetRejectReason()); return; } } break; case avalanche::VoteStatus::Accepted: { LOCK(cs_main); m_chainman.ActiveChainstate().UnparkBlock(pindex); } break; case avalanche::VoteStatus::Finalized: { { LOCK(cs_main); m_chainman.ActiveChainstate().UnparkBlock(pindex); } m_chainman.ActiveChainstate().AvalancheFinalizeBlock( pindex); } break; case avalanche::VoteStatus::Stale: // Fall back on Nakamoto consensus in the absence of // Avalanche votes for other competing or descendant // blocks. break; } } BlockValidationState state; if (!m_chainman.ActiveChainstate().ActivateBestChain(config, state)) { LogPrintf("failed to activate chain (%s)\n", state.ToString()); } } return; } if (msg_type == NetMsgType::AVAPROOF) { auto proof = RCUPtr::make(); vRecv >> *proof; ReceivedAvalancheProof(pfrom, proof); return; } if (msg_type == NetMsgType::GETAVAPROOFS) { if (pfrom.m_proof_relay == nullptr) { return; } pfrom.m_proof_relay->lastSharedProofsUpdate = GetTime(); pfrom.m_proof_relay->sharedProofs = g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { return pm.getShareableProofsSnapshot(); }); avalanche::CompactProofs compactProofs( pfrom.m_proof_relay->sharedProofs); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOFS, compactProofs)); return; } if (msg_type == NetMsgType::AVAPROOFS) { if (pfrom.m_proof_relay == nullptr) { return; } // Only process the compact proofs if we requested them if (!pfrom.m_proof_relay->compactproofs_requested) { LogPrint(BCLog::AVALANCHE, "Ignoring unsollicited avaproofs\n"); return; } pfrom.m_proof_relay->compactproofs_requested = false; avalanche::CompactProofs compactProofs; try { vRecv >> compactProofs; } catch (std::ios_base::failure &e) { // This compact proofs have non contiguous or overflowing indexes Misbehaving(pfrom, 100, "avaproofs-bad-indexes"); return; } // If there are prefilled proofs, process them first std::set prefilledIndexes; for (const auto &prefilledProof : compactProofs.getPrefilledProofs()) { if (!ReceivedAvalancheProof(pfrom, prefilledProof.proof)) { // If we got an invalid proof, the peer is getting banned and we // can bail out. return; } } // If there is no shortid, avoid parsing/responding/accounting for the // message. if (compactProofs.getShortIDs().size() == 0) { LogPrint(BCLog::AVALANCHE, "Got an avaproofs message with no shortid (peer %d)\n", pfrom.GetId()); return; } // To determine the chance that the number of entries in a bucket // exceeds N, we use the fact that the number of elements in a single // bucket is binomially distributed (with n = the number of shorttxids // S, and p = 1 / the number of buckets), that in the worst case the // number of buckets is equal to S (due to std::unordered_map having a // default load factor of 1.0), and that the chance for any bucket to // exceed N elements is at most buckets * (the chance that any given // bucket is above N elements). Thus: // P(max_elements_per_bucket > N) <= // S * (1 - cdf(binomial(n=S,p=1/S), N)) // If we assume up to 21000000, allowing 15 elements per bucket should // only fail once per ~2.5 million avaproofs transfers (per peer and // connection). // TODO re-evaluate the bucket count to a more realistic value. // TODO: In the case of a shortid-collision, we should request all the // proofs which collided. For now, we only request one, which is not // that bad considering this event is expected to be very rare. auto shortIdProcessor = avalanche::ProofShortIdProcessor(compactProofs.getPrefilledProofs(), compactProofs.getShortIDs(), 15); if (shortIdProcessor.hasOutOfBoundIndex()) { // This should be catched by deserialization, but catch it here as // well as a good measure. Misbehaving(pfrom, 100, "avaproofs-bad-indexes"); return; } if (!shortIdProcessor.isEvenlyDistributed()) { // This is suspicious, don't ban but bail out return; } const auto &proofs = g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { return pm.getShareableProofsSnapshot(); }); size_t proofCount = 0; proofs.forEachLeaf([&](const avalanche::ProofRef &proof) { uint64_t shortid = compactProofs.getShortID(proof->getId()); proofCount += shortIdProcessor.matchKnownItem(shortid, proof); // Though ideally we'd continue scanning for the // two-proofs-match-shortid case, the performance win of an early // exit here is too good to pass up and worth the extra risk. return proofCount != shortIdProcessor.getShortIdCount(); }); avalanche::ProofsRequest req; for (size_t i = 0; i < compactProofs.size(); i++) { if (shortIdProcessor.getItem(i) == nullptr) { req.indices.push_back(i); } } m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::AVAPROOFSREQ, req)); // We want to keep a count of how many nodes we successfully requested // avaproofs from as this is used to determine when we are confident our // quorum is close enough to the other participants. g_avalanche->avaproofsSent(pfrom.GetId()); return; } if (msg_type == NetMsgType::AVAPROOFSREQ) { if (pfrom.m_proof_relay == nullptr) { return; } avalanche::ProofsRequest proofreq; vRecv >> proofreq; auto requestedIndiceIt = proofreq.indices.begin(); uint32_t treeIndice = 0; pfrom.m_proof_relay->sharedProofs.forEachLeaf([&](const auto &proof) { if (requestedIndiceIt == proofreq.indices.end()) { // No more indice to process return false; } if (treeIndice++ == *requestedIndiceIt) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOF, *proof)); requestedIndiceIt++; } return true; }); pfrom.m_proof_relay->sharedProofs = {}; return; } if (msg_type == NetMsgType::GETADDR) { // This asymmetric behavior for inbound and outbound connections was // introduced to prevent a fingerprinting attack: an attacker can send // specific fake addresses to users' AddrMan and later request them by // sending getaddr messages. Making nodes which are behind NAT and can // only make outgoing connections ignore the getaddr message mitigates // the attack. if (!pfrom.IsInboundConn()) { LogPrint(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } // Since this must be an inbound connection, SetupAddressRelay will // never fail. Assume(SetupAddressRelay(pfrom, *peer)); // Only send one GetAddr response per connection to reduce resource // waste and discourage addr stamping of INV announcements. if (peer->m_getaddr_recvd) { LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId()); return; } peer->m_getaddr_recvd = true; peer->m_addrs_to_send.clear(); std::vector vAddr; const size_t maxAddrToSend = GetMaxAddrToSend(); if (pfrom.HasPermission(PF_ADDR)) { vAddr = m_connman.GetAddresses(maxAddrToSend, MAX_PCT_ADDR_TO_SEND, /* network */ std::nullopt); } else { vAddr = m_connman.GetAddresses(pfrom, maxAddrToSend, MAX_PCT_ADDR_TO_SEND); } FastRandomContext insecure_rand; for (const CAddress &addr : vAddr) { PushAddress(*peer, addr, insecure_rand); } return; } if (msg_type == NetMsgType::GETAVAADDR) { auto now = GetTime(); if (now < pfrom.m_nextGetAvaAddr) { // Prevent a peer from exhausting our resources by spamming // getavaaddr messages. LogPrint(BCLog::AVALANCHE, "Ignoring repeated getavaaddr from peer %d\n", pfrom.GetId()); return; } // Only accept a getavaaddr every GETAVAADDR_INTERVAL at most pfrom.m_nextGetAvaAddr = now + GETAVAADDR_INTERVAL; if (!SetupAddressRelay(pfrom, *peer)) { LogPrint(BCLog::AVALANCHE, "Ignoring getavaaddr message from %s peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } auto availabilityScoreComparator = [](const CNode *lhs, const CNode *rhs) { - double scoreLhs = - lhs->m_avalanche_state - ? lhs->m_avalanche_state->getAvailabilityScore() - : 0.; - double scoreRhs = - rhs->m_avalanche_state - ? rhs->m_avalanche_state->getAvailabilityScore() - : 0.; + double scoreLhs = lhs->getAvailabilityScore(); + double scoreRhs = rhs->getAvailabilityScore(); if (scoreLhs != scoreRhs) { return scoreLhs > scoreRhs; } return lhs < rhs; }; // Get up to MAX_ADDR_TO_SEND addresses of the nodes which are the // most active in the avalanche network. Account for 0 availability as // well so we can send addresses even if we did not start polling yet. std::set avaNodes( availabilityScoreComparator); m_connman.ForEachNode([&](const CNode *pnode) { - if (!pnode->m_avalanche_enabled) { - return; - } - - if (pnode->m_avalanche_state && - pnode->m_avalanche_state->getAvailabilityScore() < 0.) { + if (!pnode->m_avalanche_enabled || + pnode->getAvailabilityScore() < 0.) { return; } avaNodes.insert(pnode); if (avaNodes.size() > GetMaxAddrToSend()) { avaNodes.erase(std::prev(avaNodes.end())); } }); peer->m_addrs_to_send.clear(); FastRandomContext insecure_rand; for (const CNode *pnode : avaNodes) { PushAddress(*peer, pnode->addr, insecure_rand); } return; } if (msg_type == NetMsgType::MEMPOOL) { if (!(pfrom.GetLocalServices() & NODE_BLOOM) && !pfrom.HasPermission(PF_MEMPOOL)) { if (!pfrom.HasPermission(PF_NOBAN)) { LogPrint(BCLog::NET, "mempool request with bloom filters disabled, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(PF_MEMPOOL)) { if (!pfrom.HasPermission(PF_NOBAN)) { LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_tx_inventory); pfrom.m_tx_relay->fSendMempool = true; } return; } if (msg_type == NetMsgType::PING) { if (pfrom.GetCommonVersion() > BIP0031_VERSION) { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful // features: // // 1) A remote node can quickly check if the connection is // operational. // 2) Remote nodes can measure the latency of the network thread. If // this node is overloaded it won't respond to pings quickly and the // remote node can avoid sending us more work, like chain download // requests. // // The nonce stops the remote getting confused between different // pings: without it, if the remote node sends a ping once per // second and this node takes 5 seconds to respond to each, the 5th // ping the remote sends would appear to return very quickly. m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::PONG, nonce)); } return; } if (msg_type == NetMsgType::PONG) { const auto ping_end = time_received; uint64_t nonce = 0; size_t nAvail = vRecv.in_avail(); bool bPingFinished = false; std::string sProblem; if (nAvail >= sizeof(nonce)) { vRecv >> nonce; // Only process pong message if there is an outstanding ping (old // ping without nonce should never pong) if (peer->m_ping_nonce_sent != 0) { if (nonce == peer->m_ping_nonce_sent) { // Matching pong received, this ping is no longer // outstanding bPingFinished = true; const auto ping_time = ping_end - peer->m_ping_start.load(); if (ping_time.count() >= 0) { // Let connman know about this successful ping-pong pfrom.PongReceived(ping_time); } else { // This should never happen sProblem = "Timing mishap"; } } else { // Nonce mismatches are normal when pings are overlapping sProblem = "Nonce mismatch"; if (nonce == 0) { // This is most likely a bug in another implementation // somewhere; cancel this ping bPingFinished = true; sProblem = "Nonce zero"; } } } else { sProblem = "Unsolicited pong without ping"; } } else { // This is most likely a bug in another implementation somewhere; // cancel this ping bPingFinished = true; sProblem = "Short payload"; } if (!(sProblem.empty())) { LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n", pfrom.GetId(), sProblem, peer->m_ping_nonce_sent, nonce, nAvail); } if (bPingFinished) { peer->m_ping_nonce_sent = 0; } return; } if (msg_type == NetMsgType::FILTERLOAD) { if (!(pfrom.GetLocalServices() & NODE_BLOOM)) { LogPrint(BCLog::NET, "filterload received despite not offering bloom services " "from peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) { // There is no excuse for sending a too-large filter Misbehaving(pfrom, 100, "too-large bloom filter"); } else if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); pfrom.m_tx_relay->pfilter.reset(new CBloomFilter(filter)); pfrom.m_tx_relay->fRelayTxes = true; } return; } if (msg_type == NetMsgType::FILTERADD) { if (!(pfrom.GetLocalServices() & NODE_BLOOM)) { LogPrint(BCLog::NET, "filteradd received despite not offering bloom services " "from peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } std::vector vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a // script data object, and thus, the maximum size any matched object can // have) in a filteradd message. bool bad = false; if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { bad = true; } else if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); if (pfrom.m_tx_relay->pfilter) { pfrom.m_tx_relay->pfilter->insert(vData); } else { bad = true; } } if (bad) { // The structure of this code doesn't really allow for a good error // code. We'll go generic. Misbehaving(pfrom, 100, "bad filteradd message"); } return; } if (msg_type == NetMsgType::FILTERCLEAR) { if (!(pfrom.GetLocalServices() & NODE_BLOOM)) { LogPrint(BCLog::NET, "filterclear received despite not offering bloom services " "from peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } if (pfrom.m_tx_relay == nullptr) { return; } LOCK(pfrom.m_tx_relay->cs_filter); pfrom.m_tx_relay->pfilter = nullptr; pfrom.m_tx_relay->fRelayTxes = true; return; } if (msg_type == NetMsgType::FEEFILTER) { Amount newFeeFilter = Amount::zero(); vRecv >> newFeeFilter; if (MoneyRange(newFeeFilter)) { if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_feeFilter); pfrom.m_tx_relay->minFeeFilter = newFeeFilter; } LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETCFILTERS) { ProcessGetCFilters(pfrom, vRecv, m_chainparams, m_connman); return; } if (msg_type == NetMsgType::GETCFHEADERS) { ProcessGetCFHeaders(pfrom, vRecv, m_chainparams, m_connman); return; } if (msg_type == NetMsgType::GETCFCHECKPT) { ProcessGetCFCheckPt(pfrom, vRecv, m_chainparams, m_connman); return; } if (msg_type == NetMsgType::NOTFOUND) { std::vector vInv; vRecv >> vInv; // A peer might send up to 1 notfound per getdata request, but no more if (vInv.size() <= PROOF_REQUEST_PARAMS.max_peer_announcements + TX_REQUEST_PARAMS.max_peer_announcements + MAX_BLOCKS_IN_TRANSIT_PER_PEER) { for (CInv &inv : vInv) { if (inv.IsMsgTx()) { // If we receive a NOTFOUND message for a tx we requested, // mark the announcement for it as completed in // InvRequestTracker. LOCK(::cs_main); m_txrequest.ReceivedResponse(pfrom.GetId(), TxId(inv.hash)); continue; } if (inv.IsMsgProof()) { LOCK(cs_proofrequest); m_proofrequest.ReceivedResponse( pfrom.GetId(), avalanche::ProofId(inv.hash)); } } } return; } // Ignore unknown commands for extensibility LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId()); return; } bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode &pnode, Peer &peer) { { LOCK(peer.m_misbehavior_mutex); // There's nothing to do if the m_should_discourage flag isn't set if (!peer.m_should_discourage) { return false; } peer.m_should_discourage = false; } // peer.m_misbehavior_mutex if (pnode.HasPermission(PF_NOBAN)) { // We never disconnect or discourage peers for bad behavior if they have // the NOBAN permission flag LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id); return false; } if (pnode.IsManualConn()) { // We never disconnect or discourage manual peers for bad behavior LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id); return false; } if (pnode.addr.IsLocal()) { // We disconnect local peers for bad behavior but don't discourage // (since that would discourage all peers on the same local address) LogPrintf( "Warning: disconnecting but not discouraging local peer %d!\n", peer.m_id); pnode.fDisconnect = true; return true; } // Normal case: Disconnect the peer and discourage all nodes sharing the // address LogPrint(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id); if (m_banman) { m_banman->Discourage(pnode.addr); } m_connman.DisconnectNode(pnode.addr); return true; } bool PeerManagerImpl::ProcessMessages(const Config &config, CNode *pfrom, std::atomic &interruptMsgProc) { // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fMoreWork = false; PeerRef peer = GetPeerRef(pfrom->GetId()); if (peer == nullptr) { return false; } { LOCK(peer->m_getdata_requests_mutex); if (!peer->m_getdata_requests.empty()) { ProcessGetData(config, *pfrom, *peer, interruptMsgProc); } } { LOCK2(cs_main, g_cs_orphans); if (!peer->m_orphan_work_set.empty()) { ProcessOrphanTx(config, peer->m_orphan_work_set); } } if (pfrom->fDisconnect) { return false; } // this maintains the order of responses and prevents m_getdata_requests // from growing unbounded { LOCK(peer->m_getdata_requests_mutex); if (!peer->m_getdata_requests.empty()) { return true; } } { LOCK(g_cs_orphans); if (!peer->m_orphan_work_set.empty()) { return true; } } // Don't bother if send buffer is too full to respond anyway if (pfrom->fPauseSend) { return false; } std::list msgs; { LOCK(pfrom->cs_vProcessMsg); if (pfrom->vProcessMsg.empty()) { return false; } // Just take one message msgs.splice(msgs.begin(), pfrom->vProcessMsg, pfrom->vProcessMsg.begin()); pfrom->nProcessQueueSize -= msgs.front().m_raw_message_size; pfrom->fPauseRecv = pfrom->nProcessQueueSize > m_connman.GetReceiveFloodSize(); fMoreWork = !pfrom->vProcessMsg.empty(); } CNetMessage &msg(msgs.front()); msg.SetVersion(pfrom->GetCommonVersion()); // Check network magic if (!msg.m_valid_netmagic) { LogPrint(BCLog::NET, "PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", SanitizeString(msg.m_command), pfrom->GetId()); // Make sure we discourage where that come from for some time. if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); pfrom->fDisconnect = true; return false; } // Check header if (!msg.m_valid_header) { LogPrint(BCLog::NET, "PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", SanitizeString(msg.m_command), pfrom->GetId()); return fMoreWork; } const std::string &msg_type = msg.m_command; // Message size unsigned int nMessageSize = msg.m_message_size; // Checksum CDataStream &vRecv = msg.m_recv; if (!msg.m_valid_checksum) { LogPrint(BCLog::NET, "%s(%s, %u bytes): CHECKSUM ERROR peer=%d\n", __func__, SanitizeString(msg_type), nMessageSize, pfrom->GetId()); if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); return fMoreWork; } try { ProcessMessage(config, *pfrom, msg_type, vRecv, msg.m_time, interruptMsgProc); if (interruptMsgProc) { return false; } { LOCK(peer->m_getdata_requests_mutex); if (!peer->m_getdata_requests.empty()) { fMoreWork = true; } } } catch (const std::exception &e) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg_type), nMessageSize, e.what(), typeid(e).name()); } catch (...) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg_type), nMessageSize); } return fMoreWork; } void PeerManagerImpl::ConsiderEviction(CNode &pto, int64_t time_in_seconds) { AssertLockHeld(cs_main); CNodeState &state = *State(pto.GetId()); const CNetMsgMaker msgMaker(pto.GetCommonVersion()); if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) { // This is an outbound peer subject to disconnection if they don't // announce a block with as much work as the current tip within // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if their // chain has more work than ours, we should sync to it, unless it's // invalid, in which case we should find that out and disconnect from // them elsewhere). if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) { if (state.m_chain_sync.m_timeout != 0) { state.m_chain_sync.m_timeout = 0; state.m_chain_sync.m_work_header = nullptr; state.m_chain_sync.m_sent_getheaders = false; } } else if (state.m_chain_sync.m_timeout == 0 || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) { // Our best block known by this peer is behind our tip, and we're // either noticing that for the first time, OR this peer was able to // catch up to some earlier point where we checked against our tip. // Either way, set a new timeout based on current tip. state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT; state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip(); state.m_chain_sync.m_sent_getheaders = false; } else if (state.m_chain_sync.m_timeout > 0 && time_in_seconds > state.m_chain_sync.m_timeout) { // No evidence yet that our peer has synced to a chain with work // equal to that of our tip, when we first detected it was behind. // Send a single getheaders message to give the peer a chance to // update us. if (state.m_chain_sync.m_sent_getheaders) { // They've run out of time to catch up! LogPrintf( "Disconnecting outbound peer %d for old chain, best known " "block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : ""); pto.fDisconnect = true; } else { assert(state.m_chain_sync.m_work_header); LogPrint( BCLog::NET, "sending getheaders to outbound peer=%d to verify chain " "work (current best known block:%s, benchmark blockhash: " "%s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "", state.m_chain_sync.m_work_header->GetBlockHash() .ToString()); m_connman.PushMessage( &pto, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( state.m_chain_sync.m_work_header->pprev), uint256())); state.m_chain_sync.m_sent_getheaders = true; // 2 minutes constexpr int64_t HEADERS_RESPONSE_TIME = 120; // Bump the timeout to allow a response, which could clear the // timeout (if the response shows the peer has synced), reset // the timeout (if the peer syncs to the required work but not // to our tip), or result in disconnect (if we advance to the // timeout and pindexBestKnownBlock has not sufficiently // progressed) state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME; } } } } void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now) { // If we have any extra block-relay-only peers, disconnect the youngest // unless it's given us a block -- in which case, compare with the // second-youngest, and out of those two, disconnect the peer who least // recently gave us a block. // The youngest block-relay-only peer would be the extra peer we connected // to temporarily in order to sync our tip; see net.cpp. // Note that we use higher nodeid as a measure for most recent connection. if (m_connman.GetExtraBlockRelayCount() > 0) { std::pair youngest_peer{-1, 0}, next_youngest_peer{-1, 0}; m_connman.ForEachNode([&](CNode *pnode) { if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) { return; } if (pnode->GetId() > youngest_peer.first) { next_youngest_peer = youngest_peer; youngest_peer.first = pnode->GetId(); youngest_peer.second = pnode->m_last_block_time; } }); NodeId to_disconnect = youngest_peer.first; if (youngest_peer.second > next_youngest_peer.second) { // Our newest block-relay-only peer gave us a block more recently; // disconnect our second youngest. to_disconnect = next_youngest_peer.first; } m_connman.ForNode( to_disconnect, [&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); // Make sure we're not getting a block right now, and that we've // been connected long enough for this eviction to happen at // all. Note that we only request blocks from a peer if we learn // of a valid headers chain with at least as much work as our // tip. CNodeState *node_state = State(pnode->GetId()); if (node_state == nullptr || (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->nBlocksInFlight == 0)) { pnode->fDisconnect = true; LogPrint(BCLog::NET, "disconnecting extra block-relay-only peer=%d " "(last block received at time %d)\n", pnode->GetId(), count_seconds(pnode->m_last_block_time)); return true; } else { LogPrint( BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction " "(connect time: %d, blocks_in_flight: %d)\n", pnode->GetId(), count_seconds(pnode->m_connected), node_state->nBlocksInFlight); } return false; }); } // Check whether we have too many OUTBOUND_FULL_RELAY peers if (m_connman.GetExtraFullOutboundCount() <= 0) { return; } // If we have more OUTBOUND_FULL_RELAY peers than we target, disconnect one. // Pick the OUTBOUND_FULL_RELAY peer that least recently announced us a new // block, with ties broken by choosing the more recent connection (higher // node id) NodeId worst_peer = -1; int64_t oldest_block_announcement = std::numeric_limits::max(); m_connman.ForEachNode([&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED( ::cs_main) { AssertLockHeld(::cs_main); // Only consider OUTBOUND_FULL_RELAY peers that are not already marked // for disconnection if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) { return; } CNodeState *state = State(pnode->GetId()); if (state == nullptr) { // shouldn't be possible, but just in case return; } // Don't evict our protected peers if (state->m_chain_sync.m_protect) { return; } if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) { worst_peer = pnode->GetId(); oldest_block_announcement = state->m_last_block_announcement; } }); if (worst_peer == -1) { return; } bool disconnected = m_connman.ForNode( worst_peer, [&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); // Only disconnect a peer that has been connected to us for some // reasonable fraction of our check-frequency, to give it time for // new information to have arrived. Also don't disconnect any peer // we're trying to download a block from. CNodeState &state = *State(pnode->GetId()); if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.nBlocksInFlight == 0) { LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block " "announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement); pnode->fDisconnect = true; return true; } else { LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction " "(connect time: %d, blocks_in_flight: %d)\n", pnode->GetId(), count_seconds(pnode->m_connected), state.nBlocksInFlight); return false; } }); if (disconnected) { // If we disconnected an extra peer, that means we successfully // connected to at least one peer after the last time we detected a // stale tip. Don't try any more extra peers until we next detect a // stale tip, to limit the load we put on the network from these extra // connections. m_connman.SetTryNewOutboundPeer(false); } } void PeerManagerImpl::CheckForStaleTipAndEvictPeers() { LOCK(cs_main); int64_t time_in_seconds = GetTime(); EvictExtraOutboundPeers(std::chrono::seconds{time_in_seconds}); if (time_in_seconds > m_stale_tip_check_time) { // Check whether our tip is stale, and if so, allow using an extra // outbound peer. if (!fImporting && !fReindex && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) { LogPrintf("Potential stale tip detected, will try using extra " "outbound peer (last tip update: %d seconds ago)\n", time_in_seconds - m_last_tip_update); m_connman.SetTryNewOutboundPeer(true); } else if (m_connman.GetTryNewOutboundPeer()) { m_connman.SetTryNewOutboundPeer(false); } m_stale_tip_check_time = time_in_seconds + STALE_CHECK_INTERVAL; } if (!m_initial_sync_finished && CanDirectFetch(m_chainparams.GetConsensus())) { m_connman.StartExtraBlockRelayPeers(); m_initial_sync_finished = true; } } void PeerManagerImpl::MaybeSendPing(CNode &node_to, Peer &peer, std::chrono::microseconds now) { if (m_connman.ShouldRunInactivityChecks( node_to, std::chrono::duration_cast(now)) && peer.m_ping_nonce_sent && now > peer.m_ping_start.load() + TIMEOUT_INTERVAL) { // The ping timeout is using mocktime. To disable the check during // testing, increase -peertimeout. LogPrint(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id); node_to.fDisconnect = true; return; } const CNetMsgMaker msgMaker(node_to.GetCommonVersion()); bool pingSend = false; if (peer.m_ping_queued) { // RPC ping request by user pingSend = true; } if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) { // Ping automatically sent as a latency probe & keepalive. pingSend = true; } if (pingSend) { uint64_t nonce = 0; while (nonce == 0) { GetRandBytes((uint8_t *)&nonce, sizeof(nonce)); } peer.m_ping_queued = false; peer.m_ping_start = now; if (node_to.GetCommonVersion() > BIP0031_VERSION) { peer.m_ping_nonce_sent = nonce; m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING, nonce)); } else { // Peer is too old to support ping command with nonce, pong will // never arrive. peer.m_ping_nonce_sent = 0; m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING)); } } } void PeerManagerImpl::MaybeSendAddr(CNode &node, Peer &peer, std::chrono::microseconds current_time) { // Nothing to do for non-address-relay peers if (!peer.m_addr_relay_enabled) { return; } LOCK(peer.m_addr_send_times_mutex); if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload() && peer.m_next_local_addr_send < current_time) { // If we've sent before, clear the bloom filter for the peer, so // that our self-announcement will actually go out. This might // be unnecessary if the bloom filter has already rolled over // since our last self-announcement, but there is only a small // bandwidth cost that we can incur by doing this (which happens // once a day on average). if (peer.m_next_local_addr_send != 0us) { peer.m_addr_known->reset(); } if (std::optional local_addr = GetLocalAddrForPeer(&node)) { FastRandomContext insecure_rand; PushAddress(peer, *local_addr, insecure_rand); } peer.m_next_local_addr_send = PoissonNextSend(current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL); } // We sent an `addr` message to this peer recently. Nothing more to do. if (current_time <= peer.m_next_addr_send) { return; } peer.m_next_addr_send = PoissonNextSend(current_time, AVG_ADDRESS_BROADCAST_INTERVAL); const size_t max_addr_to_send = GetMaxAddrToSend(); if (!Assume(peer.m_addrs_to_send.size() <= max_addr_to_send)) { // Should be impossible since we always check size before adding to // m_addrs_to_send. Recover by trimming the vector. peer.m_addrs_to_send.resize(max_addr_to_send); } // Remove addr records that the peer already knows about, and add new // addrs to the m_addr_known filter on the same pass. auto addr_already_known = [&peer](const CAddress &addr) { bool ret = peer.m_addr_known->contains(addr.GetKey()); if (!ret) { peer.m_addr_known->insert(addr.GetKey()); } return ret; }; peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known), peer.m_addrs_to_send.end()); // No addr messages to send if (peer.m_addrs_to_send.empty()) { return; } const char *msg_type; int make_flags; if (peer.m_wants_addrv2) { msg_type = NetMsgType::ADDRV2; make_flags = ADDRV2_FORMAT; } else { msg_type = NetMsgType::ADDR; make_flags = 0; } m_connman.PushMessage( &node, CNetMsgMaker(node.GetCommonVersion()) .Make(make_flags, msg_type, peer.m_addrs_to_send)); peer.m_addrs_to_send.clear(); // we only send the big addr message once if (peer.m_addrs_to_send.capacity() > 40) { peer.m_addrs_to_send.shrink_to_fit(); } } void PeerManagerImpl::MaybeSendFeefilter( CNode &pto, std::chrono::microseconds current_time) { if (m_ignore_incoming_txs) { return; } if (!pto.m_tx_relay) { return; } if (pto.GetCommonVersion() < FEEFILTER_VERSION) { return; } // peers with the forcerelay permission should not filter txs to us if (pto.HasPermission(PF_FORCERELAY)) { return; } Amount currentFilter = m_mempool .GetMinFee( gArgs.GetIntArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000) .GetFeePerK(); static FeeFilterRounder g_filter_rounder{ CFeeRate{DEFAULT_MIN_RELAY_TX_FEE_PER_KB}}; if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // Received tx-inv messages are discarded when the active // chainstate is in IBD, so tell the peer to not send them. currentFilter = MAX_MONEY; } else { static const Amount MAX_FILTER{g_filter_rounder.round(MAX_MONEY)}; if (pto.m_tx_relay->lastSentFeeFilter == MAX_FILTER) { // Send the current filter if we sent MAX_FILTER previously // and made it out of IBD. pto.m_tx_relay->m_next_send_feefilter = 0us; } } if (current_time > pto.m_tx_relay->m_next_send_feefilter) { Amount filterToSend = g_filter_rounder.round(currentFilter); // We always have a fee filter of at least minRelayTxFee filterToSend = std::max(filterToSend, ::minRelayTxFee.GetFeePerK()); if (filterToSend != pto.m_tx_relay->lastSentFeeFilter) { m_connman.PushMessage( &pto, CNetMsgMaker(pto.GetCommonVersion()) .Make(NetMsgType::FEEFILTER, filterToSend)); pto.m_tx_relay->lastSentFeeFilter = filterToSend; } pto.m_tx_relay->m_next_send_feefilter = PoissonNextSend(current_time, AVG_FEEFILTER_BROADCAST_INTERVAL); } // If the fee filter has changed substantially and it's still more than // MAX_FEEFILTER_CHANGE_DELAY until scheduled broadcast, then move the // broadcast to within MAX_FEEFILTER_CHANGE_DELAY. else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < pto.m_tx_relay->m_next_send_feefilter && (currentFilter < 3 * pto.m_tx_relay->lastSentFeeFilter / 4 || currentFilter > 4 * pto.m_tx_relay->lastSentFeeFilter / 3)) { pto.m_tx_relay->m_next_send_feefilter = current_time + GetRandomDuration( MAX_FEEFILTER_CHANGE_DELAY); } } namespace { class CompareInvMempoolOrder { CTxMemPool *mp; public: explicit CompareInvMempoolOrder(CTxMemPool *_mempool) { mp = _mempool; } bool operator()(std::set::iterator a, std::set::iterator b) { /** * As std::make_heap produces a max-heap, we want the entries with the * fewest ancestors/highest fee to sort later. */ return mp->CompareDepthAndScore(*b, *a); } }; } // namespace bool PeerManagerImpl::SetupAddressRelay(CNode &node, Peer &peer) { // We don't participate in addr relay with outbound block-relay-only // connections to prevent providing adversaries with the additional // information of addr traffic to infer the link. if (node.IsBlockOnlyConn()) { return false; } if (!peer.m_addr_relay_enabled.exchange(true)) { // First addr message we have received from the peer, initialize // m_addr_known peer.m_addr_known = std::make_unique(5000, 0.001); } return true; } bool PeerManagerImpl::SendMessages(const Config &config, CNode *pto) { PeerRef peer = GetPeerRef(pto->GetId()); if (!peer) { return false; } const Consensus::Params &consensusParams = m_chainparams.GetConsensus(); // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll // disconnect misbehaving peers even before the version handshake is // complete. if (MaybeDiscourageAndDisconnect(*pto, *peer)) { return true; } // Don't send anything until the version handshake is complete if (!pto->fSuccessfullyConnected || pto->fDisconnect) { return true; } // If we get here, the outgoing message serialization version is set and // can't change. const CNetMsgMaker msgMaker(pto->GetCommonVersion()); const auto current_time = GetTime(); if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) { LogPrint(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId()); pto->fDisconnect = true; return true; } MaybeSendPing(*pto, *peer, current_time); // MaybeSendPing may have marked peer for disconnection if (pto->fDisconnect) { return true; } bool fFetch; MaybeSendAddr(*pto, *peer, current_time); { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Start block sync if (pindexBestHeader == nullptr) { pindexBestHeader = m_chainman.ActiveChain().Tip(); } // Download if this is a nice peer, or we have no nice peers and this // one might do. fFetch = state.fPreferredDownload || (nPreferredDownload == 0 && !pto->fClient && !pto->IsAddrFetchConn()); if (!state.fSyncStarted && !pto->fClient && !fImporting && !fReindex) { // Only actively request headers from a single peer, unless we're // close to today. if ((nSyncStarted == 0 && fFetch) || pindexBestHeader->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) { state.fSyncStarted = true; state.m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE + ( // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to // microseconds before scaling to maintain precision std::chrono::microseconds{ HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} * (GetAdjustedTime() - pindexBestHeader->GetBlockTime()) / consensusParams.nPowTargetSpacing); nSyncStarted++; const CBlockIndex *pindexStart = pindexBestHeader; /** * If possible, start at the block preceding the currently best * known header. This ensures that we always get a non-empty * list of headers back as long as the peer is up-to-date. With * a non-empty response, we can initialise the peer's known best * block. This wouldn't be possible if we requested starting at * pindexBestHeader and got back an empty response. */ if (pindexStart->pprev) { pindexStart = pindexStart->pprev; } LogPrint( BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height); m_connman.PushMessage( pto, msgMaker.Make( NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator(pindexStart), uint256())); } } // // Try sending block announcements via headers // { // If we have less than MAX_BLOCKS_TO_ANNOUNCE in our list of block // hashes we're relaying, and our peer wants headers announcements, // then find the first header not yet known to our peer but would // connect, and send. If no header would connect, or if we have too // many blocks, or if the peer doesn't want headers, just add all to // the inv queue. LOCK(peer->m_block_inv_mutex); std::vector vHeaders; bool fRevertToInv = ((!state.fPreferHeaders && (!state.fPreferHeaderAndIDs || peer->m_blocks_for_headers_relay.size() > 1)) || peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE); // last header queued for delivery const CBlockIndex *pBestIndex = nullptr; // ensure pindexBestKnownBlock is up-to-date ProcessBlockAvailability(pto->GetId()); if (!fRevertToInv) { bool fFoundStartingHeader = false; // Try to find first header that our peer doesn't have, and then // send all headers past that one. If we come across an headers // that aren't on m_chainman.ActiveChain(), give up. for (const BlockHash &hash : peer->m_blocks_for_headers_relay) { const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); assert(pindex); if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) { // Bail out if we reorged away from this block fRevertToInv = true; break; } if (pBestIndex != nullptr && pindex->pprev != pBestIndex) { // This means that the list of blocks to announce don't // connect to each other. This shouldn't really be // possible to hit during regular operation (because // reorgs should take us to a chain that has some block // not on the prior chain, which should be caught by the // prior check), but one way this could happen is by // using invalidateblock / reconsiderblock repeatedly on // the tip, causing it to be added multiple times to // m_blocks_for_headers_relay. Robustly deal with this // rare situation by reverting to an inv. fRevertToInv = true; break; } pBestIndex = pindex; if (fFoundStartingHeader) { // add this to the headers message vHeaders.push_back(pindex->GetBlockHeader()); } else if (PeerHasHeader(&state, pindex)) { // Keep looking for the first new block. continue; } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) { // Peer doesn't have this header but they do have the // prior one. Start sending headers. fFoundStartingHeader = true; vHeaders.push_back(pindex->GetBlockHeader()); } else { // Peer doesn't have this header or the prior one -- // nothing will connect, so bail out. fRevertToInv = true; break; } } } if (!fRevertToInv && !vHeaders.empty()) { if (vHeaders.size() == 1 && state.fPreferHeaderAndIDs) { // We only send up to 1 block as header-and-ids, as // otherwise probably means we're doing an initial-ish-sync // or they're slow. LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); int nSendFlags = 0; bool fGotBlockFromCache = false; { LOCK(cs_most_recent_block); if (most_recent_block_hash == pBestIndex->GetBlockHash()) { CBlockHeaderAndShortTxIDs cmpctblock( *most_recent_block); m_connman.PushMessage( pto, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); fGotBlockFromCache = true; } } if (!fGotBlockFromCache) { CBlock block; bool ret = ReadBlockFromDisk(block, pBestIndex, consensusParams); assert(ret); CBlockHeaderAndShortTxIDs cmpctblock(block); m_connman.PushMessage( pto, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } state.pindexBestHeaderSent = pBestIndex; } else if (state.fPreferHeaders) { if (vHeaders.size() > 1) { LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__, vHeaders.size(), vHeaders.front().GetHash().ToString(), vHeaders.back().GetHash().ToString(), pto->GetId()); } else { LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); } m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); state.pindexBestHeaderSent = pBestIndex; } else { fRevertToInv = true; } } if (fRevertToInv) { // If falling back to using an inv, just try to inv the tip. The // last entry in m_blocks_for_headers_relay was our tip at some // point in the past. if (!peer->m_blocks_for_headers_relay.empty()) { const BlockHash &hashToAnnounce = peer->m_blocks_for_headers_relay.back(); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce); assert(pindex); // Warn if we're announcing a block that is not on the main // chain. This should be very rare and could be optimized // out. Just log for now. if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) { LogPrint( BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n", hashToAnnounce.ToString(), m_chainman.ActiveChain() .Tip() ->GetBlockHash() .ToString()); } // If the peer's chain has this block, don't inv it back. if (!PeerHasHeader(&state, pindex)) { peer->m_blocks_for_inv_relay.push_back(hashToAnnounce); LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__, pto->GetId(), hashToAnnounce.ToString()); } } } peer->m_blocks_for_headers_relay.clear(); } } // release cs_main // // Message: inventory // std::vector vInv; auto addInvAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { vInv.emplace_back(type, hash); if (vInv.size() == MAX_INV_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::INV, std::move(vInv))); vInv.clear(); } }; { LOCK(cs_main); { LOCK(peer->m_block_inv_mutex); vInv.reserve(std::max(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000)); // Add blocks for (const BlockHash &hash : peer->m_blocks_for_inv_relay) { addInvAndMaybeFlush(MSG_BLOCK, hash); } peer->m_blocks_for_inv_relay.clear(); } auto computeNextInvSendTime = [&](std::chrono::microseconds &next) -> bool { bool fSendTrickle = pto->HasPermission(PF_NOBAN); if (next < current_time) { fSendTrickle = true; if (pto->IsInboundConn()) { next = m_connman.PoissonNextSendInbound( current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL); } else { // Skip delay for outbound peers, as there is less privacy // concern for them. next = current_time; } } return fSendTrickle; }; // Add proofs to inventory if (pto->m_proof_relay != nullptr) { LOCK(pto->m_proof_relay->cs_proof_inventory); if (computeNextInvSendTime(pto->m_proof_relay->nextInvSend)) { auto it = pto->m_proof_relay->setInventoryProofToSend.begin(); while (it != pto->m_proof_relay->setInventoryProofToSend.end()) { const avalanche::ProofId proofid = *it; it = pto->m_proof_relay->setInventoryProofToSend.erase(it); if (pto->m_proof_relay->filterProofKnown.contains( proofid)) { continue; } pto->m_proof_relay->filterProofKnown.insert(proofid); addInvAndMaybeFlush(MSG_AVA_PROOF, proofid); State(pto->GetId()) ->m_recently_announced_proofs.insert(proofid); } } } if (pto->m_tx_relay != nullptr) { LOCK(pto->m_tx_relay->cs_tx_inventory); // Check whether periodic sends should happen const bool fSendTrickle = computeNextInvSendTime(pto->m_tx_relay->nNextInvSend); // Time to send but the peer has requested we not relay // transactions. if (fSendTrickle) { LOCK(pto->m_tx_relay->cs_filter); if (!pto->m_tx_relay->fRelayTxes) { pto->m_tx_relay->setInventoryTxToSend.clear(); } } // Respond to BIP35 mempool requests if (fSendTrickle && pto->m_tx_relay->fSendMempool) { auto vtxinfo = m_mempool.infoAll(); pto->m_tx_relay->fSendMempool = false; CFeeRate filterrate; { LOCK(pto->m_tx_relay->cs_feeFilter); filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter); } LOCK(pto->m_tx_relay->cs_filter); for (const auto &txinfo : vtxinfo) { const TxId &txid = txinfo.tx->GetId(); pto->m_tx_relay->setInventoryTxToSend.erase(txid); // Don't send transactions that peers will not put into // their mempool if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (pto->m_tx_relay->pfilter && !pto->m_tx_relay->pfilter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } pto->m_tx_relay->filterInventoryKnown.insert(txid); // Responses to MEMPOOL requests bypass the // m_recently_announced_invs filter. addInvAndMaybeFlush(MSG_TX, txid); } pto->m_tx_relay->m_last_mempool_req = std::chrono::duration_cast( current_time); } // Determine transactions to relay if (fSendTrickle) { // Produce a vector with all candidates for sending std::vector::iterator> vInvTx; vInvTx.reserve(pto->m_tx_relay->setInventoryTxToSend.size()); for (std::set::iterator it = pto->m_tx_relay->setInventoryTxToSend.begin(); it != pto->m_tx_relay->setInventoryTxToSend.end(); it++) { vInvTx.push_back(it); } CFeeRate filterrate; { LOCK(pto->m_tx_relay->cs_feeFilter); filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter); } // Topologically and fee-rate sort the inventory we send for // privacy and priority reasons. A heap is used so that not // all items need sorting if only a few are being sent. CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool); std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); // No reason to drain out at many times the network's // capacity, especially since we have many peers and some // will draw much shorter delays. unsigned int nRelayedTransactions = 0; LOCK(pto->m_tx_relay->cs_filter); while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000) { // Fetch the top element from the heap std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); std::set::iterator it = vInvTx.back(); vInvTx.pop_back(); const TxId txid = *it; // Remove it from the to-be-sent set pto->m_tx_relay->setInventoryTxToSend.erase(it); // Check if not in the filter already if (pto->m_tx_relay->filterInventoryKnown.contains(txid)) { continue; } // Not in the mempool anymore? don't bother sending it. auto txinfo = m_mempool.info(txid); if (!txinfo.tx) { continue; } // Peer told you to not send transactions at that // feerate? Don't bother sending it. if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (pto->m_tx_relay->pfilter && !pto->m_tx_relay->pfilter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } // Send State(pto->GetId())->m_recently_announced_invs.insert(txid); addInvAndMaybeFlush(MSG_TX, txid); nRelayedTransactions++; { // Expire old relay messages while (!g_relay_expiration.empty() && g_relay_expiration.front().first < current_time) { mapRelay.erase(g_relay_expiration.front().second); g_relay_expiration.pop_front(); } auto ret = mapRelay.insert( std::make_pair(txid, std::move(txinfo.tx))); if (ret.second) { g_relay_expiration.push_back(std::make_pair( current_time + RELAY_TX_CACHE_TIME, ret.first)); } } pto->m_tx_relay->filterInventoryKnown.insert(txid); } } } } // release cs_main if (!vInv.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv)); } { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Detect whether we're stalling if (state.m_stalling_since.count() && state.m_stalling_since < current_time - BLOCK_STALLING_TIMEOUT) { // Stalling only triggers when the block download window cannot // move. During normal steady state, the download window should be // much larger than the to-be-downloaded set of blocks, so // disconnection should only happen during initial block download. LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } // In case there is a block that has been in flight from this peer for // block_interval * (1 + 0.5 * N) (with N the number of peers from which // we're downloading validated blocks), disconnect due to timeout. // We compensate for other peers to prevent killing off peers due to our // own downstream link being saturated. We only count validated // in-flight blocks so peers can't advertise non-existing block hashes // to unreasonably increase our timeout. if (state.vBlocksInFlight.size() > 0) { QueuedBlock &queuedBlock = state.vBlocksInFlight.front(); int nOtherPeersWithValidatedDownloads = nPeersWithValidatedDownloads - (state.nBlocksInFlightValidHeaders > 0); if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) { LogPrintf("Timeout downloading block %s from peer=%d, " "disconnecting\n", queuedBlock.hash.ToString(), pto->GetId()); pto->fDisconnect = true; return true; } } // Check for headers sync timeouts if (state.fSyncStarted && state.m_headers_sync_timeout < std::chrono::microseconds::max()) { // Detect whether this is a stalling initial-headers-sync peer if (pindexBestHeader->GetBlockTime() <= GetAdjustedTime() - 24 * 60 * 60) { if (current_time > state.m_headers_sync_timeout && nSyncStarted == 1 && (nPreferredDownload - state.fPreferredDownload >= 1)) { // Disconnect a peer (without the noban permission) if it // is our only sync peer, and we have others we could be // using instead. // Note: If all our peers are inbound, then we won't // disconnect our sync peer for stalling; we have bigger // problems if we can't get any outbound peers. if (!pto->HasPermission(PF_NOBAN)) { LogPrintf("Timeout downloading headers from peer=%d, " "disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } else { LogPrintf("Timeout downloading headers from noban " "peer=%d, not disconnecting\n", pto->GetId()); // Reset the headers sync state so that we have a chance // to try downloading from a different peer. Note: this // will also result in at least one more getheaders // message to be sent to this peer (eventually). state.fSyncStarted = false; nSyncStarted--; state.m_headers_sync_timeout = 0us; } } } else { // After we've caught up once, reset the timeout so we can't // trigger disconnect later. state.m_headers_sync_timeout = std::chrono::microseconds::max(); } } // Check that outbound peers have reasonable chains GetTime() is used by // this anti-DoS logic so we can test this using mocktime. ConsiderEviction(*pto, GetTime()); } // release cs_main std::vector vGetData; // // Message: getdata (blocks) // { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); if (!pto->fClient && ((fFetch && !pto->m_limited_node) || !m_chainman.ActiveChainstate().IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) { std::vector vToDownload; NodeId staller = -1; FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller); for (const CBlockIndex *pindex : vToDownload) { vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); MarkBlockAsInFlight(config, pto->GetId(), pindex->GetBlockHash(), pindex); LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(), pindex->nHeight, pto->GetId()); } if (state.nBlocksInFlight == 0 && staller != -1) { if (State(staller)->m_stalling_since == 0us) { State(staller)->m_stalling_since = current_time; LogPrint(BCLog::NET, "Stall started peer=%d\n", staller); } } } } // release cs_main auto addGetDataAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { CInv inv(type, hash); LogPrint(BCLog::NET, "Requesting %s from peer=%d\n", inv.ToString(), pto->GetId()); vGetData.push_back(std::move(inv)); if (vGetData.size() >= MAX_GETDATA_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::GETDATA, std::move(vGetData))); vGetData.clear(); } }; // // Message: getdata (proof) // { LOCK(cs_proofrequest); std::vector> expired; auto requestable = m_proofrequest.GetRequestable(pto->GetId(), current_time, &expired); for (const auto &entry : expired) { LogPrint(BCLog::AVALANCHE, "timeout of inflight proof %s from peer=%d\n", entry.second.ToString(), entry.first); } for (const auto &proofid : requestable) { if (!AlreadyHaveProof(proofid)) { addGetDataAndMaybeFlush(MSG_AVA_PROOF, proofid); m_proofrequest.RequestedData( pto->GetId(), proofid, current_time + PROOF_REQUEST_PARAMS.getdata_interval); } else { // We have already seen this proof, no need to download. // This is just a belt-and-suspenders, as this should // already be called whenever a proof becomes // AlreadyHaveProof(). m_proofrequest.ForgetInvId(proofid); } } } // release cs_proofrequest // // Message: getdata (transactions) // { LOCK(cs_main); std::vector> expired; auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired); for (const auto &entry : expired) { LogPrint(BCLog::NET, "timeout of inflight tx %s from peer=%d\n", entry.second.ToString(), entry.first); } for (const TxId &txid : requestable) { if (!AlreadyHaveTx(txid)) { addGetDataAndMaybeFlush(MSG_TX, txid); m_txrequest.RequestedData( pto->GetId(), txid, current_time + TX_REQUEST_PARAMS.getdata_interval); } else { // We have already seen this transaction, no need to download. // This is just a belt-and-suspenders, as this should already be // called whenever a transaction becomes AlreadyHaveTx(). m_txrequest.ForgetInvId(txid); } } if (!vGetData.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } } // release cs_main MaybeSendFeefilter(*pto, current_time); return true; } bool PeerManagerImpl::ReceivedAvalancheProof(CNode &peer, const avalanche::ProofRef &proof) { assert(proof != nullptr); const avalanche::ProofId &proofid = proof->getId(); peer.AddKnownProof(proofid); if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // We cannot reliably verify proofs during IBD, so bail out early and // keep the inventory as pending so it can be requested when the node // has synced. return true; } const NodeId nodeid = peer.GetId(); { LOCK(cs_proofrequest); m_proofrequest.ReceivedResponse(nodeid, proofid); if (AlreadyHaveProof(proofid)) { m_proofrequest.ForgetInvId(proofid); return true; } } // registerProof should not be called while cs_proofrequest because it // holds cs_main and that creates a potential deadlock during shutdown avalanche::ProofRegistrationState state; if (g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.registerProof(proof, state); })) { WITH_LOCK(cs_proofrequest, m_proofrequest.ForgetInvId(proofid)); RelayProof(proofid); peer.m_last_proof_time = GetTime(); LogPrint(BCLog::NET, "New avalanche proof: peer=%d, proofid %s\n", nodeid, proofid.ToString()); } if (state.GetResult() == avalanche::ProofRegistrationResult::INVALID) { WITH_LOCK(cs_invalidProofs, invalidProofs->insert(proofid)); Misbehaving(nodeid, 100, state.GetRejectReason()); return false; } if (state.GetResult() == avalanche::ProofRegistrationResult::MISSING_UTXO) { // This is possible that a proof contains a utxo we don't know yet, so // don't ban for this. return false; } if (!g_avalanche->addProofToReconcile(proof)) { LogPrint(BCLog::AVALANCHE, "Not polling the avalanche proof (%s): peer=%d, proofid %s\n", state.IsValid() ? "not-worth-polling" : state.GetRejectReason(), nodeid, proofid.ToString()); } return true; } diff --git a/src/rpc/avalanche.cpp b/src/rpc/avalanche.cpp index 9846fb847..cca4b8e59 100644 --- a/src/rpc/avalanche.cpp +++ b/src/rpc/avalanche.cpp @@ -1,1340 +1,1336 @@ // Copyright (c) 2020 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static RPCHelpMan getavalanchekey() { return RPCHelpMan{ "getavalanchekey", "Returns the key used to sign avalanche messages.\n", {}, RPCResult{RPCResult::Type::STR_HEX, "", ""}, RPCExamples{HelpExampleRpc("getavalanchekey", "")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } return HexStr(g_avalanche->getSessionPubKey()); }, }; } static CPubKey ParsePubKey(const UniValue ¶m) { const std::string keyHex = param.get_str(); if ((keyHex.length() != 2 * CPubKey::COMPRESSED_SIZE && keyHex.length() != 2 * CPubKey::SIZE) || !IsHex(keyHex)) { throw JSONRPCError(RPC_INVALID_ADDRESS_OR_KEY, strprintf("Invalid public key: %s\n", keyHex)); } return HexToPubKey(keyHex); } static bool registerProofIfNeeded(avalanche::ProofRef proof, avalanche::ProofRegistrationState &state) { auto localProof = g_avalanche->getLocalProof(); if (localProof && localProof->getId() == proof->getId()) { return true; } return g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.getProof(proof->getId()) || pm.registerProof(std::move(proof), state); }); } static bool registerProofIfNeeded(avalanche::ProofRef proof) { avalanche::ProofRegistrationState state; return registerProofIfNeeded(std::move(proof), state); } static void verifyDelegationOrThrow(avalanche::Delegation &dg, const std::string &dgHex, CPubKey &auth) { bilingual_str error; if (!avalanche::Delegation::FromHex(dg, dgHex, error)) { throw JSONRPCError(RPC_DESERIALIZATION_ERROR, error.original); } avalanche::DelegationState state; if (!dg.verify(state, auth)) { throw JSONRPCError(RPC_INVALID_PARAMETER, "The delegation is invalid: " + state.ToString()); } } static void verifyProofOrThrow(const NodeContext &node, avalanche::Proof &proof, const std::string &proofHex) { bilingual_str error; if (!avalanche::Proof::FromHex(proof, proofHex, error)) { throw JSONRPCError(RPC_DESERIALIZATION_ERROR, error.original); } Amount stakeUtxoDustThreshold = avalanche::PROOF_DUST_THRESHOLD; if (g_avalanche) { // If Avalanche is enabled, use the configured dust threshold g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { stakeUtxoDustThreshold = pm.getStakeUtxoDustThreshold(); }); } avalanche::ProofValidationState state; { LOCK(cs_main); if (!proof.verify(stakeUtxoDustThreshold, *Assert(node.chainman), state)) { throw JSONRPCError(RPC_INVALID_PARAMETER, "The proof is invalid: " + state.ToString()); } } } static RPCHelpMan addavalanchenode() { return RPCHelpMan{ "addavalanchenode", "Add a node in the set of peers to poll for avalanche.\n", { {"nodeid", RPCArg::Type::NUM, RPCArg::Optional::NO, "Node to be added to avalanche."}, {"publickey", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The public key of the node."}, {"proof", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "Proof that the node is not a sybil."}, {"delegation", RPCArg::Type::STR_HEX, RPCArg::Optional::OMITTED, "The proof delegation the the node public key"}, }, RPCResult{RPCResult::Type::BOOL, "success", "Whether the addition succeeded or not."}, RPCExamples{ HelpExampleRpc("addavalanchenode", "5, \"\", \"\"")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { RPCTypeCheck(request.params, {UniValue::VNUM, UniValue::VSTR, UniValue::VSTR}); if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } const NodeId nodeid = request.params[0].get_int64(); CPubKey key = ParsePubKey(request.params[1]); auto proof = RCUPtr::make(); NodeContext &node = EnsureAnyNodeContext(request.context); verifyProofOrThrow(node, *proof, request.params[2].get_str()); const avalanche::ProofId &proofid = proof->getId(); if (key != proof->getMaster()) { if (request.params.size() < 4 || request.params[3].isNull()) { throw JSONRPCError( RPC_INVALID_ADDRESS_OR_KEY, "The public key does not match the proof"); } avalanche::Delegation dg; CPubKey auth; verifyDelegationOrThrow(dg, request.params[3].get_str(), auth); if (dg.getProofId() != proofid) { throw JSONRPCError( RPC_INVALID_PARAMETER, "The delegation does not match the proof"); } if (key != auth) { throw JSONRPCError( RPC_INVALID_ADDRESS_OR_KEY, "The public key does not match the delegation"); } } if (!registerProofIfNeeded(proof)) { throw JSONRPCError(RPC_INVALID_PARAMETER, "The proof has conflicting utxos"); } if (!node.connman->ForNode(nodeid, [&](CNode *pnode) { bool expected = false; if (pnode->m_avalanche_enabled.compare_exchange_strong( expected, true)) { pnode->m_avalanche_pubkey = std::move(key); - if (!pnode->m_avalanche_state) { - pnode->m_avalanche_state = - std::make_unique(); - } } return true; })) { throw JSONRPCError( RPC_INVALID_PARAMETER, strprintf("The node does not exist: %d", nodeid)); ; } return g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { if (!pm.addNode(nodeid, proofid)) { return false; } pm.addUnbroadcastProof(proofid); return true; }); }, }; } static RPCHelpMan buildavalancheproof() { return RPCHelpMan{ "buildavalancheproof", "Build a proof for avalanche's sybil resistance.\n", { {"sequence", RPCArg::Type::NUM, RPCArg::Optional::NO, "The proof's sequence"}, {"expiration", RPCArg::Type::NUM, RPCArg::Optional::NO, "A timestamp indicating when the proof expire"}, {"master", RPCArg::Type::STR, RPCArg::Optional::NO, "The master private key in base58-encoding"}, { "stakes", RPCArg::Type::ARR, RPCArg::Optional::NO, "The stakes to be signed and associated private keys", { { "stake", RPCArg::Type::OBJ, RPCArg::Optional::NO, "A stake to be attached to this proof", { {"txid", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The transaction id"}, {"vout", RPCArg::Type::NUM, RPCArg::Optional::NO, "The output number"}, {"amount", RPCArg::Type::AMOUNT, RPCArg::Optional::NO, "The amount in this UTXO"}, {"height", RPCArg::Type::NUM, RPCArg::Optional::NO, "The height at which this UTXO was mined"}, {"iscoinbase", RPCArg::Type::BOOL, /* default */ "false", "Indicate wether the UTXO is a coinbase"}, {"privatekey", RPCArg::Type::STR, RPCArg::Optional::NO, "private key in base58-encoding"}, }, }, }, }, {"payoutAddress", RPCArg::Type::STR, RPCArg::Optional::NO, "A payout address"}, }, RPCResult{RPCResult::Type::STR_HEX, "proof", "A string that is a serialized, hex-encoded proof data."}, RPCExamples{HelpExampleRpc("buildavalancheproof", "0 1234567800 \"\" []")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { RPCTypeCheck(request.params, {UniValue::VNUM, UniValue::VNUM, UniValue::VSTR, UniValue::VARR}); const uint64_t sequence = request.params[0].get_int64(); const int64_t expiration = request.params[1].get_int64(); CKey masterKey = DecodeSecret(request.params[2].get_str()); if (!masterKey.IsValid()) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Invalid master key"); } CTxDestination payoutAddress = DecodeDestination( request.params[4].get_str(), config.GetChainParams()); if (!IsValidDestination(payoutAddress)) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Invalid payout address"); } avalanche::ProofBuilder pb(sequence, expiration, masterKey, GetScriptForDestination(payoutAddress)); const UniValue &stakes = request.params[3].get_array(); for (size_t i = 0; i < stakes.size(); i++) { const UniValue &stake = stakes[i]; RPCTypeCheckObj( stake, { {"txid", UniValue::VSTR}, {"vout", UniValue::VNUM}, // "amount" is also required but check is done below // due to UniValue::VNUM erroneously not accepting // quoted numerics (which are valid JSON) {"height", UniValue::VNUM}, {"privatekey", UniValue::VSTR}, }); int nOut = find_value(stake, "vout").get_int(); if (nOut < 0) { throw JSONRPCError(RPC_DESERIALIZATION_ERROR, "vout cannot be negative"); } const int height = find_value(stake, "height").get_int(); if (height < 1) { throw JSONRPCError(RPC_DESERIALIZATION_ERROR, "height must be positive"); } const TxId txid(ParseHashO(stake, "txid")); const COutPoint utxo(txid, nOut); if (!stake.exists("amount")) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Missing amount"); } const Amount amount = AmountFromValue(find_value(stake, "amount")); const UniValue &iscbparam = find_value(stake, "iscoinbase"); const bool iscoinbase = iscbparam.isNull() ? false : iscbparam.get_bool(); CKey key = DecodeSecret(find_value(stake, "privatekey").get_str()); if (!key.IsValid()) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Invalid private key"); } if (!pb.addUTXO(utxo, amount, uint32_t(height), iscoinbase, std::move(key))) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Duplicated stake"); } } const avalanche::ProofRef proof = pb.build(); return proof->ToHex(); }, }; } static RPCHelpMan decodeavalancheproof() { return RPCHelpMan{ "decodeavalancheproof", "Convert a serialized, hex-encoded proof, into JSON object. " "The validity of the proof is not verified.\n", { {"proof", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The proof hex string"}, }, RPCResult{ RPCResult::Type::OBJ, "", "", { {RPCResult::Type::NUM, "sequence", "The proof's sequential number"}, {RPCResult::Type::NUM, "expiration", "A timestamp indicating when the proof expires"}, {RPCResult::Type::STR_HEX, "master", "The master public key"}, {RPCResult::Type::STR, "signature", "The proof signature (base64 encoded)"}, {RPCResult::Type::OBJ, "payoutscript", "The proof payout script", { {RPCResult::Type::STR, "asm", "Decoded payout script"}, {RPCResult::Type::STR_HEX, "hex", "Raw payout script in hex format"}, {RPCResult::Type::STR, "type", "The output type (e.g. " + GetAllOutputTypes() + ")"}, {RPCResult::Type::NUM, "reqSigs", "The required signatures"}, {RPCResult::Type::ARR, "addresses", "", { {RPCResult::Type::STR, "address", "eCash address"}, }}, }}, {RPCResult::Type::STR_HEX, "limitedid", "A hash of the proof data excluding the master key."}, {RPCResult::Type::STR_HEX, "proofid", "A hash of the limitedid and master key."}, {RPCResult::Type::STR_AMOUNT, "staked_amount", "The total staked amount of this proof in " + Currency::get().ticker + "."}, {RPCResult::Type::NUM, "score", "The score of this proof."}, {RPCResult::Type::ARR, "stakes", "", { {RPCResult::Type::OBJ, "", "", { {RPCResult::Type::STR_HEX, "txid", "The transaction id"}, {RPCResult::Type::NUM, "vout", "The output number"}, {RPCResult::Type::STR_AMOUNT, "amount", "The amount in this UTXO"}, {RPCResult::Type::NUM, "height", "The height at which this UTXO was mined"}, {RPCResult::Type::BOOL, "iscoinbase", "Indicate whether the UTXO is a coinbase"}, {RPCResult::Type::STR_HEX, "pubkey", "This UTXO's public key"}, {RPCResult::Type::STR, "signature", "Signature of the proofid with this UTXO's private " "key (base64 encoded)"}, }}, }}, }}, RPCExamples{HelpExampleCli("decodeavalancheproof", "\"\"") + HelpExampleRpc("decodeavalancheproof", "\"\"")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { RPCTypeCheck(request.params, {UniValue::VSTR}); avalanche::Proof proof; bilingual_str error; if (!avalanche::Proof::FromHex(proof, request.params[0].get_str(), error)) { throw JSONRPCError(RPC_DESERIALIZATION_ERROR, error.original); } UniValue result(UniValue::VOBJ); result.pushKV("sequence", proof.getSequence()); result.pushKV("expiration", proof.getExpirationTime()); result.pushKV("master", HexStr(proof.getMaster())); result.pushKV("signature", EncodeBase64(proof.getSignature())); const auto payoutScript = proof.getPayoutScript(); UniValue payoutScriptObj(UniValue::VOBJ); ScriptPubKeyToUniv(payoutScript, payoutScriptObj, /* fIncludeHex */ true); result.pushKV("payoutscript", payoutScriptObj); result.pushKV("limitedid", proof.getLimitedId().ToString()); result.pushKV("proofid", proof.getId().ToString()); result.pushKV("staked_amount", proof.getStakedAmount()); result.pushKV("score", uint64_t(proof.getScore())); UniValue stakes(UniValue::VARR); for (const avalanche::SignedStake &s : proof.getStakes()) { const COutPoint &utxo = s.getStake().getUTXO(); UniValue stake(UniValue::VOBJ); stake.pushKV("txid", utxo.GetTxId().ToString()); stake.pushKV("vout", uint64_t(utxo.GetN())); stake.pushKV("amount", s.getStake().getAmount()); stake.pushKV("height", uint64_t(s.getStake().getHeight())); stake.pushKV("iscoinbase", s.getStake().isCoinbase()); stake.pushKV("pubkey", HexStr(s.getStake().getPubkey())); // Only PKHash destination is supported, so this is safe stake.pushKV("address", EncodeDestination(PKHash(s.getStake().getPubkey()), config)); stake.pushKV("signature", EncodeBase64(s.getSignature())); stakes.push_back(stake); } result.pushKV("stakes", stakes); return result; }, }; } static RPCHelpMan delegateavalancheproof() { return RPCHelpMan{ "delegateavalancheproof", "Delegate the avalanche proof to another public key.\n", { {"limitedproofid", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The limited id of the proof to be delegated."}, {"privatekey", RPCArg::Type::STR, RPCArg::Optional::NO, "The private key in base58-encoding. Must match the proof master " "public key or the upper level parent delegation public key if " " supplied."}, {"publickey", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The public key to delegate the proof to."}, {"delegation", RPCArg::Type::STR_HEX, RPCArg::Optional::OMITTED, "A string that is the serialized, hex-encoded delegation for the " "proof and which is a parent for the delegation to build."}, }, RPCResult{RPCResult::Type::STR_HEX, "delegation", "A string that is a serialized, hex-encoded delegation."}, RPCExamples{ HelpExampleRpc("delegateavalancheproof", "\"\" \"\" \"\"")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { RPCTypeCheck(request.params, {UniValue::VSTR, UniValue::VSTR, UniValue::VSTR}); if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } avalanche::LimitedProofId limitedProofId{ ParseHashV(request.params[0], "limitedproofid")}; const CKey privkey = DecodeSecret(request.params[1].get_str()); if (!privkey.IsValid()) { throw JSONRPCError(RPC_INVALID_ADDRESS_OR_KEY, "The private key is invalid"); } const CPubKey pubkey = ParsePubKey(request.params[2]); std::unique_ptr dgb; if (request.params.size() >= 4 && !request.params[3].isNull()) { avalanche::Delegation dg; CPubKey auth; verifyDelegationOrThrow(dg, request.params[3].get_str(), auth); if (dg.getProofId() != limitedProofId.computeProofId(dg.getProofMaster())) { throw JSONRPCError( RPC_INVALID_PARAMETER, "The delegation does not match the proof"); } if (privkey.GetPubKey() != auth) { throw JSONRPCError( RPC_INVALID_ADDRESS_OR_KEY, "The private key does not match the delegation"); } dgb = std::make_unique(dg); } else { dgb = std::make_unique( limitedProofId, privkey.GetPubKey()); } if (!dgb->addLevel(privkey, pubkey)) { throw JSONRPCError(RPC_MISC_ERROR, "Unable to build the delegation"); } CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss << dgb->build(); return HexStr(ss); }, }; } static RPCHelpMan decodeavalanchedelegation() { return RPCHelpMan{ "decodeavalanchedelegation", "Convert a serialized, hex-encoded avalanche proof delegation, into " "JSON object. \n" "The validity of the delegation is not verified.\n", { {"delegation", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The delegation hex string"}, }, RPCResult{ RPCResult::Type::OBJ, "", "", { {RPCResult::Type::STR_HEX, "pubkey", "The public key the proof is delegated to."}, {RPCResult::Type::STR_HEX, "proofmaster", "The delegated proof master public key."}, {RPCResult::Type::STR_HEX, "delegationid", "The identifier of this delegation."}, {RPCResult::Type::STR_HEX, "limitedid", "A delegated proof data hash excluding the master key."}, {RPCResult::Type::STR_HEX, "proofid", "A hash of the delegated proof limitedid and master key."}, {RPCResult::Type::NUM, "depth", "The number of delegation levels."}, {RPCResult::Type::ARR, "levels", "", { {RPCResult::Type::OBJ, "", "", { {RPCResult::Type::NUM, "index", "The index of this delegation level."}, {RPCResult::Type::STR_HEX, "pubkey", "This delegated public key for this level"}, {RPCResult::Type::STR, "signature", "Signature of this delegation level (base64 " "encoded)"}, }}, }}, }}, RPCExamples{HelpExampleCli("decodeavalanchedelegation", "\"\"") + HelpExampleRpc("decodeavalanchedelegation", "\"\"")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { RPCTypeCheck(request.params, {UniValue::VSTR}); avalanche::Delegation delegation; bilingual_str error; if (!avalanche::Delegation::FromHex( delegation, request.params[0].get_str(), error)) { throw JSONRPCError(RPC_DESERIALIZATION_ERROR, error.original); } UniValue result(UniValue::VOBJ); result.pushKV("pubkey", HexStr(delegation.getDelegatedPubkey())); result.pushKV("proofmaster", HexStr(delegation.getProofMaster())); result.pushKV("delegationid", delegation.getId().ToString()); result.pushKV("limitedid", delegation.getLimitedProofId().ToString()); result.pushKV("proofid", delegation.getProofId().ToString()); auto levels = delegation.getLevels(); result.pushKV("depth", uint64_t(levels.size())); UniValue levelsArray(UniValue::VARR); for (auto &level : levels) { UniValue obj(UniValue::VOBJ); obj.pushKV("pubkey", HexStr(level.pubkey)); obj.pushKV("signature", EncodeBase64(level.sig)); levelsArray.push_back(std::move(obj)); } result.pushKV("levels", levelsArray); return result; }, }; } static RPCHelpMan getavalancheinfo() { return RPCHelpMan{ "getavalancheinfo", "Returns an object containing various state info regarding avalanche " "networking.\n", {}, RPCResult{ RPCResult::Type::OBJ, "", "", { {RPCResult::Type::BOOL, "ready_to_poll", "Whether the node is ready to start polling and voting."}, {RPCResult::Type::OBJ, "local", "Only available if -avaproof has been supplied to the node", { {RPCResult::Type::BOOL, "verified", "Whether the node local proof has been locally verified " "or not."}, {RPCResult::Type::STR_HEX, "proofid", "The node local proof id."}, {RPCResult::Type::STR_HEX, "limited_proofid", "The node local limited proof id."}, {RPCResult::Type::STR_HEX, "master", "The node local proof master public key."}, {RPCResult::Type::STR, "payout_address", "The node local proof payout address. This might be " "omitted if the payout script is not one of P2PK, P2PKH " "or P2SH, in which case decodeavalancheproof can be used " "to get more details."}, {RPCResult::Type::STR_AMOUNT, "stake_amount", "The node local proof staked amount."}, }}, {RPCResult::Type::OBJ, "network", "", { {RPCResult::Type::NUM, "proof_count", "The number of valid avalanche proofs we know exist " "(including this node's local proof if applicable)."}, {RPCResult::Type::NUM, "connected_proof_count", "The number of avalanche proofs with at least one node " "we are connected to (including this node's local proof " "if applicable)."}, {RPCResult::Type::NUM, "dangling_proof_count", "The number of avalanche proofs with no node attached."}, {RPCResult::Type::NUM, "finalized_proof_count", "The number of known avalanche proofs that have been " "finalized by avalanche."}, {RPCResult::Type::NUM, "conflicting_proof_count", "The number of known avalanche proofs that conflict with " "valid proofs."}, {RPCResult::Type::NUM, "immature_proof_count", "The number of known avalanche proofs that have immature " "utxos."}, {RPCResult::Type::STR_AMOUNT, "total_stake_amount", "The total staked amount over all the valid proofs in " + Currency::get().ticker + " (including this node's local proof if " "applicable)."}, {RPCResult::Type::STR_AMOUNT, "connected_stake_amount", "The total staked amount over all the connected proofs " "in " + Currency::get().ticker + " (including this node's local proof if " "applicable)."}, {RPCResult::Type::STR_AMOUNT, "dangling_stake_amount", "The total staked amount over all the dangling proofs " "in " + Currency::get().ticker + " (including this node's local proof if " "applicable)."}, {RPCResult::Type::STR_AMOUNT, "immature_stake_amount", "The total staked amount over all the immature proofs " "in " + Currency::get().ticker + " (including this node's local proof if " "applicable)."}, {RPCResult::Type::NUM, "node_count", "The number of avalanche nodes we are connected to " "(including this node if a local proof is set)."}, {RPCResult::Type::NUM, "connected_node_count", "The number of avalanche nodes associated with an " "avalanche proof (including this node if a local proof " "is set)."}, {RPCResult::Type::NUM, "pending_node_count", "The number of avalanche nodes pending for a proof."}, }}, }, }, RPCExamples{HelpExampleCli("getavalancheinfo", "") + HelpExampleRpc("getavalancheinfo", "")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } UniValue ret(UniValue::VOBJ); ret.pushKV("ready_to_poll", g_avalanche->isQuorumEstablished()); auto localProof = g_avalanche->getLocalProof(); if (localProof != nullptr) { UniValue local(UniValue::VOBJ); local.pushKV("verified", g_avalanche->withPeerManager( [&](const avalanche::PeerManager &pm) { return pm.isBoundToPeer( localProof->getId()); })); local.pushKV("proofid", localProof->getId().ToString()); local.pushKV("limited_proofid", localProof->getLimitedId().ToString()); local.pushKV("master", HexStr(localProof->getMaster())); CTxDestination destination; if (ExtractDestination(localProof->getPayoutScript(), destination)) { local.pushKV("payout_address", EncodeDestination(destination, config)); } local.pushKV("stake_amount", localProof->getStakedAmount()); ret.pushKV("local", local); } g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { UniValue network(UniValue::VOBJ); uint64_t proofCount{0}; uint64_t connectedProofCount{0}; uint64_t finalizedProofCount{0}; uint64_t connectedNodeCount{0}; Amount totalStakes = Amount::zero(); Amount connectedStakes = Amount::zero(); pm.forEachPeer([&](const avalanche::Peer &peer) { CHECK_NONFATAL(peer.proof != nullptr); const bool isLocalProof = peer.proof == localProof; ++proofCount; const Amount proofStake = peer.proof->getStakedAmount(); totalStakes += proofStake; if (peer.hasFinalized) { ++finalizedProofCount; } if (peer.node_count > 0 || isLocalProof) { ++connectedProofCount; connectedStakes += proofStake; } connectedNodeCount += peer.node_count + isLocalProof; }); Amount immatureStakes = Amount::zero(); pm.getImmatureProofPool().forEachProof( [&](const avalanche::ProofRef &proof) { immatureStakes += proof->getStakedAmount(); }); network.pushKV("proof_count", proofCount); network.pushKV("connected_proof_count", connectedProofCount); network.pushKV("dangling_proof_count", proofCount - connectedProofCount); network.pushKV("finalized_proof_count", finalizedProofCount); network.pushKV( "conflicting_proof_count", uint64_t(pm.getConflictingProofPool().countProofs())); network.pushKV( "immature_proof_count", uint64_t(pm.getImmatureProofPool().countProofs())); network.pushKV("total_stake_amount", totalStakes); network.pushKV("connected_stake_amount", connectedStakes); network.pushKV("dangling_stake_amount", totalStakes - connectedStakes); network.pushKV("immature_stake_amount", immatureStakes); const uint64_t pendingNodes = pm.getPendingNodeCount(); network.pushKV("node_count", connectedNodeCount + pendingNodes); network.pushKV("connected_node_count", connectedNodeCount); network.pushKV("pending_node_count", pendingNodes); ret.pushKV("network", network); }); return ret; }, }; } static RPCHelpMan getavalanchepeerinfo() { return RPCHelpMan{ "getavalanchepeerinfo", "Returns data about an avalanche peer as a json array of objects. If " "no proofid is provided, returns data about all the peers.\n", { {"proofid", RPCArg::Type::STR_HEX, RPCArg::Optional::OMITTED, "The hex encoded avalanche proof identifier."}, }, RPCResult{ RPCResult::Type::ARR, "", "", {{ RPCResult::Type::OBJ, "", "", {{ {RPCResult::Type::NUM, "avalanche_peerid", "The avalanche internal peer identifier"}, {RPCResult::Type::STR_HEX, "proofid", "The avalanche proof id used by this peer"}, {RPCResult::Type::STR_HEX, "proof", "The avalanche proof used by this peer"}, {RPCResult::Type::NUM, "nodecount", "The number of nodes for this peer"}, {RPCResult::Type::ARR, "node_list", "", { {RPCResult::Type::NUM, "nodeid", "Node id, as returned by getpeerinfo"}, }}, }}, }}, }, RPCExamples{HelpExampleCli("getavalanchepeerinfo", "") + HelpExampleCli("getavalanchepeerinfo", "\"proofid\"") + HelpExampleRpc("getavalanchepeerinfo", "") + HelpExampleRpc("getavalanchepeerinfo", "\"proofid\"")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { RPCTypeCheck(request.params, {UniValue::VSTR}); if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } auto peerToUniv = [](const avalanche::PeerManager &pm, const avalanche::Peer &peer) { UniValue obj(UniValue::VOBJ); obj.pushKV("avalanche_peerid", uint64_t(peer.peerid)); obj.pushKV("proofid", peer.getProofId().ToString()); obj.pushKV("proof", peer.proof->ToHex()); UniValue nodes(UniValue::VARR); pm.forEachNode(peer, [&](const avalanche::Node &n) { nodes.push_back(n.nodeid); }); obj.pushKV("nodecount", uint64_t(peer.node_count)); obj.pushKV("node_list", nodes); return obj; }; UniValue ret(UniValue::VARR); g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { // If a proofid is provided, only return the associated peer if (!request.params[0].isNull()) { const avalanche::ProofId proofid = avalanche::ProofId::fromHex( request.params[0].get_str()); if (!pm.isBoundToPeer(proofid)) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Proofid not found"); } pm.forPeer(proofid, [&](const avalanche::Peer &peer) { return ret.push_back(peerToUniv(pm, peer)); }); return; } // If no proofid is provided, return all the peers pm.forEachPeer([&](const avalanche::Peer &peer) { ret.push_back(peerToUniv(pm, peer)); }); }); return ret; }, }; } static RPCHelpMan getavalancheproofs() { return RPCHelpMan{ "getavalancheproofs", "Returns an object containing all tracked proofids.\n", {}, RPCResult{ RPCResult::Type::OBJ, "", "", { {RPCResult::Type::ARR, "valid", "", { {RPCResult::Type::STR_HEX, "proofid", "Avalanche proof id"}, }}, {RPCResult::Type::ARR, "conflicting", "", { {RPCResult::Type::STR_HEX, "proofid", "Avalanche proof id"}, }}, {RPCResult::Type::ARR, "immature", "", { {RPCResult::Type::STR_HEX, "proofid", "Avalanche proof id"}, }}, }, }, RPCExamples{HelpExampleCli("getavalancheproofs", "") + HelpExampleRpc("getavalancheproofs", "")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } UniValue ret(UniValue::VOBJ); g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { auto appendProofIds = [&ret](const avalanche::ProofPool &pool, const std::string &key) { UniValue arrOut(UniValue::VARR); for (const avalanche::ProofId &proofid : pool.getProofIds()) { arrOut.push_back(proofid.ToString()); } ret.pushKV(key, arrOut); }; appendProofIds(pm.getValidProofPool(), "valid"); appendProofIds(pm.getConflictingProofPool(), "conflicting"); appendProofIds(pm.getImmatureProofPool(), "immature"); }); return ret; }, }; } static RPCHelpMan getrawavalancheproof() { return RPCHelpMan{ "getrawavalancheproof", "Lookup for a known avalanche proof by id.\n", { {"proofid", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The hex encoded avalanche proof identifier."}, }, RPCResult{ RPCResult::Type::OBJ, "", "", {{ {RPCResult::Type::STR_HEX, "proof", "The hex encoded proof matching the identifier."}, {RPCResult::Type::BOOL, "immature", "Whether the proof has immature utxos."}, {RPCResult::Type::BOOL, "boundToPeer", "Whether the proof is bound to an avalanche peer."}, {RPCResult::Type::BOOL, "conflicting", "Whether the proof has a conflicting UTXO with an avalanche " "peer."}, {RPCResult::Type::BOOL, "finalized", "Whether the proof is finalized by vote."}, }}, }, RPCExamples{HelpExampleRpc("getrawavalancheproof", "")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } const avalanche::ProofId proofid = avalanche::ProofId::fromHex(request.params[0].get_str()); bool isImmature = false; bool isBoundToPeer = false; bool conflicting = false; bool finalized = false; auto proof = g_avalanche->withPeerManager( [&](const avalanche::PeerManager &pm) { isImmature = pm.isImmature(proofid); isBoundToPeer = pm.isBoundToPeer(proofid); conflicting = pm.isInConflictingPool(proofid); finalized = pm.forPeer(proofid, [&](const avalanche::Peer &p) { return p.hasFinalized; }); return pm.getProof(proofid); }); if (!proof) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Proof not found"); } UniValue ret(UniValue::VOBJ); CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss << *proof; ret.pushKV("proof", HexStr(ss)); ret.pushKV("immature", isImmature); ret.pushKV("boundToPeer", isBoundToPeer); ret.pushKV("conflicting", conflicting); ret.pushKV("finalized", finalized); return ret; }, }; } static RPCHelpMan isfinalblock() { return RPCHelpMan{ "isfinalblock", "Check if a block has been finalized by avalanche votes.\n", { {"blockhash", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The hash of the block."}, }, RPCResult{RPCResult::Type::BOOL, "success", "Whether the block has been finalized by avalanche votes."}, RPCExamples{HelpExampleRpc("isfinalblock", "") + HelpExampleCli("isfinalblock", "")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } // Deprecated since 0.26.2 if (!IsDeprecatedRPCEnabled(gArgs, "isfinalblock_noerror") && !g_avalanche->isQuorumEstablished()) { throw JSONRPCError(RPC_MISC_ERROR, "Avalanche is not ready to poll yet."); } ChainstateManager &chainman = EnsureAnyChainman(request.context); const BlockHash blockhash( ParseHashV(request.params[0], "blockhash")); const CBlockIndex *pindex; { LOCK(cs_main); pindex = chainman.m_blockman.LookupBlockIndex(blockhash); if (!pindex) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Block not found"); } } return chainman.ActiveChainstate().IsBlockAvalancheFinalized( pindex); }, }; } static RPCHelpMan isfinaltransaction() { return RPCHelpMan{ "isfinaltransaction", "Check if a transaction has been finalized by avalanche votes.\n", { {"txid", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The id of the transaction."}, {"blockhash", RPCArg::Type::STR_HEX, RPCArg::Optional::OMITTED, "The block in which to look for the transaction"}, }, RPCResult{ RPCResult::Type::BOOL, "success", "Whether the transaction has been finalized by avalanche votes."}, RPCExamples{HelpExampleRpc("isfinaltransaction", " ") + HelpExampleCli("isfinaltransaction", " ")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } const NodeContext &node = EnsureAnyNodeContext(request.context); ChainstateManager &chainman = EnsureChainman(node); const TxId txid = TxId(ParseHashV(request.params[0], "txid")); CBlockIndex *pindex = nullptr; if (!request.params[1].isNull()) { const BlockHash blockhash( ParseHashV(request.params[1], "blockhash")); LOCK(cs_main); pindex = chainman.m_blockman.LookupBlockIndex(blockhash); if (!pindex) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Block not found"); } } bool f_txindex_ready = false; if (g_txindex && !pindex) { f_txindex_ready = g_txindex->BlockUntilSyncedToCurrentChain(); } BlockHash hash_block; const CTransactionRef tx = GetTransaction( pindex, node.mempool.get(), txid, config.GetChainParams().GetConsensus(), hash_block); // Deprecated since 0.26.2 if (!IsDeprecatedRPCEnabled(gArgs, "isfinaltransaction_noerror")) { if (!g_avalanche->isQuorumEstablished()) { throw JSONRPCError(RPC_MISC_ERROR, "Avalanche is not ready to poll yet."); } if (!tx) { std::string errmsg; if (pindex) { if (!pindex->nStatus.hasData()) { throw JSONRPCError( RPC_MISC_ERROR, "Block data not downloaded yet."); } errmsg = "No such transaction found in the provided block."; } else if (!g_txindex) { errmsg = "No such transaction. Use -txindex or provide a " "block " "hash to enable blockchain transaction queries."; } else if (!f_txindex_ready) { errmsg = "No such transaction. Blockchain transactions are " "still in the process of being indexed."; } else { errmsg = "No such mempool or blockchain transaction."; } throw JSONRPCError(RPC_INVALID_ADDRESS_OR_KEY, errmsg); } } if (!pindex) { LOCK(cs_main); pindex = chainman.m_blockman.LookupBlockIndex(hash_block); } // The first 2 checks are redundant as we expect to throw a JSON RPC // error for these cases, but they are almost free so they are kept // as a safety net. return tx != nullptr && !node.mempool->exists(txid) && chainman.ActiveChainstate().IsBlockAvalancheFinalized( pindex); }, }; } static RPCHelpMan sendavalancheproof() { return RPCHelpMan{ "sendavalancheproof", "Broadcast an avalanche proof.\n", { {"proof", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The avalanche proof to broadcast."}, }, RPCResult{RPCResult::Type::BOOL, "success", "Whether the proof was sent successfully or not."}, RPCExamples{HelpExampleRpc("sendavalancheproof", "")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { if (!g_avalanche) { throw JSONRPCError(RPC_INTERNAL_ERROR, "Avalanche is not initialized"); } auto proof = RCUPtr::make(); NodeContext &node = EnsureAnyNodeContext(request.context); // Verify the proof. Note that this is redundant with the // verification done when adding the proof to the pool, but we get a // chance to give a better error message. verifyProofOrThrow(node, *proof, request.params[0].get_str()); // Add the proof to the pool if we don't have it already. Since the // proof verification has already been done, a failure likely // indicates that there already is a proof with conflicting utxos. const avalanche::ProofId &proofid = proof->getId(); avalanche::ProofRegistrationState state; if (!registerProofIfNeeded(proof, state)) { throw JSONRPCError(RPC_INVALID_PARAMETER, strprintf("%s (%s)\n", state.GetRejectReason(), state.GetDebugMessage())); } g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { pm.addUnbroadcastProof(proofid); }); if (node.peerman) { node.peerman->RelayProof(proofid); } return true; }, }; } static RPCHelpMan verifyavalancheproof() { return RPCHelpMan{ "verifyavalancheproof", "Verify an avalanche proof is valid and return the error otherwise.\n", { {"proof", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "Proof to verify."}, }, RPCResult{RPCResult::Type::BOOL, "success", "Whether the proof is valid or not."}, RPCExamples{HelpExampleRpc("verifyavalancheproof", "\"\"")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { RPCTypeCheck(request.params, {UniValue::VSTR}); avalanche::Proof proof; verifyProofOrThrow(EnsureAnyNodeContext(request.context), proof, request.params[0].get_str()); return true; }, }; } static RPCHelpMan verifyavalanchedelegation() { return RPCHelpMan{ "verifyavalanchedelegation", "Verify an avalanche delegation is valid and return the error " "otherwise.\n", { {"delegation", RPCArg::Type::STR_HEX, RPCArg::Optional::NO, "The avalanche proof delegation to verify."}, }, RPCResult{RPCResult::Type::BOOL, "success", "Whether the delegation is valid or not."}, RPCExamples{HelpExampleRpc("verifyavalanchedelegation", "\"\"")}, [&](const RPCHelpMan &self, const Config &config, const JSONRPCRequest &request) -> UniValue { RPCTypeCheck(request.params, {UniValue::VSTR}); avalanche::Delegation delegation; CPubKey dummy; verifyDelegationOrThrow(delegation, request.params[0].get_str(), dummy); return true; }, }; } void RegisterAvalancheRPCCommands(CRPCTable &t) { // clang-format off static const CRPCCommand commands[] = { // category actor (function) // ----------------- -------------------- { "avalanche", getavalanchekey, }, { "avalanche", addavalanchenode, }, { "avalanche", buildavalancheproof, }, { "avalanche", decodeavalancheproof, }, { "avalanche", delegateavalancheproof, }, { "avalanche", decodeavalanchedelegation, }, { "avalanche", getavalancheinfo, }, { "avalanche", getavalanchepeerinfo, }, { "avalanche", getavalancheproofs, }, { "avalanche", getrawavalancheproof, }, { "avalanche", isfinalblock, }, { "avalanche", isfinaltransaction, }, { "avalanche", sendavalancheproof, }, { "avalanche", verifyavalancheproof, }, { "avalanche", verifyavalanchedelegation, }, }; // clang-format on for (const auto &c : commands) { t.appendCommand(c.name, &c); } } diff --git a/src/test/net_tests.cpp b/src/test/net_tests.cpp index 5bf086f34..1643ec74c 100644 --- a/src/test/net_tests.cpp +++ b/src/test/net_tests.cpp @@ -1,1164 +1,1170 @@ // Copyright (c) 2012-2019 The Bitcoin Core developers // Copyright (c) 2017-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // for bilingual_str #include #include #include #include #include #include #include #include #include #include #include #include using namespace std::literals; static CNetAddr ip(uint32_t ip) { struct in_addr s; s.s_addr = ip; return CNetAddr(s); } namespace { struct CConnmanTest : public CConnman { using CConnman::CConnman; Mutex cs; size_t outboundFullRelayCount GUARDED_BY(cs); size_t avalancheOutboundsCount GUARDED_BY(cs); std::condition_variable cvar; NodeId nodeid = 0; void AddNode(ConnectionType type) { CAddress addr( CService(ip(GetRandInt(0xffffffff)), Params().GetDefaultPort()), NODE_NONE); return AddNode(addr, type); } void AddNode(const CAddress &addr, ConnectionType type) { ServiceFlags services = NODE_NETWORK; if (type == ConnectionType::AVALANCHE_OUTBOUND) { services = ServiceFlags(services | NODE_AVALANCHE); } CNode *pnode = new CNode(nodeid++, services, INVALID_SOCKET, addr, CalculateKeyedNetGroup(addr), /* nLocalHostNonceIn */ 0, /* nLocalExtraEntropyIn */ 0, addr, /* pszDest */ "", type, /* inbound_onion */ false); LOCK(cs_vNodes); vNodes.push_back(pnode); pnode->fSuccessfullyConnected = true; } void ClearNodes() { LOCK(cs_vNodes); for (CNode *node : vNodes) { delete node; } vNodes.clear(); } void SetMaxOutbounds(int maxFullRelayOutbounds, int maxAvalancheOutbounds) { Options options; options.nMaxConnections = DEFAULT_MAX_PEER_CONNECTIONS; options.m_max_outbound_full_relay = maxFullRelayOutbounds; options.m_max_avalanche_outbound = maxAvalancheOutbounds; Init(options); }; void MakeAddrmanDeterministic() { addrman.MakeDeterministic(); } void Init(const Options &connOptions) { CConnman::Init(connOptions); if (semOutbound == nullptr) { // initialize semaphore semOutbound = std::make_unique( std::min(m_max_outbound, nMaxConnections)); } if (semAddnode == nullptr) { // initialize semaphore semAddnode = std::make_unique(nMaxAddnode); } } void openNetworkConnection(const CAddress &addrConnect, ConnectionType connType) { bool newConnection = !AlreadyConnectedToAddress(addrConnect); addrman.Attempt(addrConnect, true); if (newConnection) { { LOCK(cs); if (connType == ConnectionType::AVALANCHE_OUTBOUND) { avalancheOutboundsCount++; } if (connType == ConnectionType::OUTBOUND_FULL_RELAY) { outboundFullRelayCount++; } } AddNode(addrConnect, connType); BOOST_CHECK(AlreadyConnectedToAddress(addrConnect)); addrman.Connected(addrConnect); } cvar.notify_all(); } struct TestAddresses { uint32_t group; uint32_t services; size_t quantity; }; bool checkContiguousAddressesConnection( const std::vector &testAddresses, size_t expectedOutboundFullRelayCount, size_t expectedAvalancheOutboundsCount) { { LOCK(cs); // Reset outboundFullRelayCount = 0; avalancheOutboundsCount = 0; } addrman.Clear(); ClearNodes(); struct IpGen { uint32_t baseIp; uint32_t offset; }; std::vector ipGroups{ {0x00010101, 1}, {0x00010164, 1}, {0x000101c8, 1}, {0x00010201, 1}, {0x00010264, 1}, {0x000102c8, 1}, {0x00010301, 1}, {0x00010364, 1}, {0x000103c8, 1}, {0x00010401, 1}, {0x00010464, 1}, {0x000104c8, 1}}; { // Make sure we produce addresses in different groups as expected std::set> groups; for (auto &[baseIp, _] : ipGroups) { for (uint32_t j = 0; j < 255; j++) { CNetAddr addr = ip(baseIp + (j << 24)); groups.insert(addr.GetGroup({})); } } BOOST_CHECK_EQUAL(groups.size(), ipGroups.size()); } // Generate contiguous addresses auto getAddrGroup = [&](size_t group, uint64_t services) { CNetAddr addr = ip(ipGroups[group].baseIp + (ipGroups[group].offset++ << 24)); return CAddress(CService(addr, Params().GetDefaultPort()), ServiceFlags(services)); }; size_t addressCount = 0; for (const TestAddresses &addresses : testAddresses) { assert(addresses.group < ipGroups.size()); addressCount += addresses.quantity; do { addrman.Add({getAddrGroup(addresses.group, ServiceFlags(addresses.services))}, CNetAddr()); } while (addrman.size() < addressCount); } interruptNet.reset(); std::vector empty; threadOpenConnections = std::thread( &CConnman::ThreadOpenConnections, this, empty, std::bind(&CConnmanTest::openNetworkConnection, this, std::placeholders::_1, std::placeholders::_2)); Mutex mutex; WAIT_LOCK(mutex, lock); bool ret = cvar.wait_for(lock, 10s, [&]() { LOCK(cs); return outboundFullRelayCount == expectedOutboundFullRelayCount && avalancheOutboundsCount == expectedAvalancheOutboundsCount; }); interruptNet(); if (threadOpenConnections.joinable()) { threadOpenConnections.join(); } // Check each non avalanche outbound node belongs to a different group std::set> groups; ForEachNode([&](const CNode *pnode) { if (!pnode->IsAvalancheOutboundConnection()) { groups.insert(pnode->addr.GetGroup({})); } }); BOOST_CHECK_EQUAL(groups.size(), expectedOutboundFullRelayCount); return ret; } }; } // namespace class NetTestConfig : public DummyConfig { public: bool SetMaxBlockSize(uint64_t maxBlockSize) override { nMaxBlockSize = maxBlockSize; return true; } uint64_t GetMaxBlockSize() const override { return nMaxBlockSize; } private: uint64_t nMaxBlockSize; }; // Use TestingSetup or a daughter class so that m_node.addrman is non-null BOOST_FIXTURE_TEST_SUITE(net_tests, RegTestingSetup) BOOST_AUTO_TEST_CASE(cnode_listen_port) { // test default uint16_t port{GetListenPort()}; BOOST_CHECK(port == Params().GetDefaultPort()); // test set port uint16_t altPort = 12345; BOOST_CHECK(gArgs.SoftSetArg("-port", ToString(altPort))); port = GetListenPort(); BOOST_CHECK(port == altPort); } BOOST_AUTO_TEST_CASE(cnode_simple_test) { SOCKET hSocket = INVALID_SOCKET; NodeId id = 0; in_addr ipv4Addr; ipv4Addr.s_addr = 0xa0b0c001; CAddress addr = CAddress(CService(ipv4Addr, 7777), NODE_NETWORK); std::string pszDest; auto pnode1 = std::make_unique(id++, NODE_NETWORK, hSocket, addr, /* nKeyedNetGroupIn = */ 0, /* nLocalHostNonceIn = */ 0, /* nLocalExtraEntropyIn */ 0, CAddress(), pszDest, ConnectionType::OUTBOUND_FULL_RELAY, /* inbound_onion = */ false); BOOST_CHECK(pnode1->IsFullOutboundConn() == true); BOOST_CHECK(pnode1->IsManualConn() == false); BOOST_CHECK(pnode1->IsBlockOnlyConn() == false); BOOST_CHECK(pnode1->IsFeelerConn() == false); BOOST_CHECK(pnode1->IsAddrFetchConn() == false); BOOST_CHECK(pnode1->IsInboundConn() == false); BOOST_CHECK(pnode1->m_inbound_onion == false); BOOST_CHECK_EQUAL(pnode1->ConnectedThroughNetwork(), Network::NET_IPV4); auto pnode2 = std::make_unique(id++, NODE_NETWORK, hSocket, addr, 1, 1, 1, CAddress(), pszDest, ConnectionType::INBOUND, false); BOOST_CHECK(pnode2->IsFullOutboundConn() == false); BOOST_CHECK(pnode2->IsManualConn() == false); BOOST_CHECK(pnode2->IsBlockOnlyConn() == false); BOOST_CHECK(pnode2->IsFeelerConn() == false); BOOST_CHECK(pnode2->IsAddrFetchConn() == false); BOOST_CHECK(pnode2->IsInboundConn() == true); BOOST_CHECK(pnode2->m_inbound_onion == false); BOOST_CHECK_EQUAL(pnode2->ConnectedThroughNetwork(), Network::NET_IPV4); auto pnode3 = std::make_unique( id++, NODE_NETWORK, hSocket, addr, 0, 0, 0, CAddress(), pszDest, ConnectionType::OUTBOUND_FULL_RELAY, false); BOOST_CHECK(pnode3->IsFullOutboundConn() == true); BOOST_CHECK(pnode3->IsManualConn() == false); BOOST_CHECK(pnode3->IsBlockOnlyConn() == false); BOOST_CHECK(pnode3->IsFeelerConn() == false); BOOST_CHECK(pnode3->IsAddrFetchConn() == false); BOOST_CHECK(pnode3->IsInboundConn() == false); BOOST_CHECK(pnode3->m_inbound_onion == false); BOOST_CHECK_EQUAL(pnode3->ConnectedThroughNetwork(), Network::NET_IPV4); auto pnode4 = std::make_unique(id++, NODE_NETWORK, hSocket, addr, 1, 1, 1, CAddress(), pszDest, ConnectionType::INBOUND, true); BOOST_CHECK(pnode4->IsFullOutboundConn() == false); BOOST_CHECK(pnode4->IsManualConn() == false); BOOST_CHECK(pnode4->IsBlockOnlyConn() == false); BOOST_CHECK(pnode4->IsFeelerConn() == false); BOOST_CHECK(pnode4->IsAddrFetchConn() == false); BOOST_CHECK(pnode4->IsInboundConn() == true); BOOST_CHECK(pnode4->m_inbound_onion == true); BOOST_CHECK_EQUAL(pnode4->ConnectedThroughNetwork(), Network::NET_ONION); } BOOST_AUTO_TEST_CASE(test_getSubVersionEB) { BOOST_CHECK_EQUAL(getSubVersionEB(13800000000), "13800.0"); BOOST_CHECK_EQUAL(getSubVersionEB(3800000000), "3800.0"); BOOST_CHECK_EQUAL(getSubVersionEB(14000000), "14.0"); BOOST_CHECK_EQUAL(getSubVersionEB(1540000), "1.5"); BOOST_CHECK_EQUAL(getSubVersionEB(1560000), "1.5"); BOOST_CHECK_EQUAL(getSubVersionEB(210000), "0.2"); BOOST_CHECK_EQUAL(getSubVersionEB(10000), "0.0"); BOOST_CHECK_EQUAL(getSubVersionEB(0), "0.0"); } BOOST_AUTO_TEST_CASE(test_userAgent) { NetTestConfig config; config.SetMaxBlockSize(8000000); const std::string uacomment = "A very nice comment"; gArgs.ForceSetMultiArg("-uacomment", {uacomment}); const std::string versionMessage = "/Bitcoin ABC:" + ToString(CLIENT_VERSION_MAJOR) + "." + ToString(CLIENT_VERSION_MINOR) + "." + ToString(CLIENT_VERSION_REVISION) + "(EB8.0; " + uacomment + ")/"; BOOST_CHECK_EQUAL(userAgent(config), versionMessage); } BOOST_AUTO_TEST_CASE(LimitedAndReachable_Network) { BOOST_CHECK_EQUAL(IsReachable(NET_IPV4), true); BOOST_CHECK_EQUAL(IsReachable(NET_IPV6), true); BOOST_CHECK_EQUAL(IsReachable(NET_ONION), true); SetReachable(NET_IPV4, false); SetReachable(NET_IPV6, false); SetReachable(NET_ONION, false); BOOST_CHECK_EQUAL(IsReachable(NET_IPV4), false); BOOST_CHECK_EQUAL(IsReachable(NET_IPV6), false); BOOST_CHECK_EQUAL(IsReachable(NET_ONION), false); SetReachable(NET_IPV4, true); SetReachable(NET_IPV6, true); SetReachable(NET_ONION, true); BOOST_CHECK_EQUAL(IsReachable(NET_IPV4), true); BOOST_CHECK_EQUAL(IsReachable(NET_IPV6), true); BOOST_CHECK_EQUAL(IsReachable(NET_ONION), true); } BOOST_AUTO_TEST_CASE(LimitedAndReachable_NetworkCaseUnroutableAndInternal) { BOOST_CHECK_EQUAL(IsReachable(NET_UNROUTABLE), true); BOOST_CHECK_EQUAL(IsReachable(NET_INTERNAL), true); SetReachable(NET_UNROUTABLE, false); SetReachable(NET_INTERNAL, false); // Ignored for both networks BOOST_CHECK_EQUAL(IsReachable(NET_UNROUTABLE), true); BOOST_CHECK_EQUAL(IsReachable(NET_INTERNAL), true); } CNetAddr UtilBuildAddress(uint8_t p1, uint8_t p2, uint8_t p3, uint8_t p4) { uint8_t ip[] = {p1, p2, p3, p4}; struct sockaddr_in sa; // initialize the memory block memset(&sa, 0, sizeof(sockaddr_in)); memcpy(&(sa.sin_addr), &ip, sizeof(ip)); return CNetAddr(sa.sin_addr); } BOOST_AUTO_TEST_CASE(LimitedAndReachable_CNetAddr) { // 1.1.1.1 CNetAddr addr = UtilBuildAddress(0x001, 0x001, 0x001, 0x001); SetReachable(NET_IPV4, true); BOOST_CHECK_EQUAL(IsReachable(addr), true); SetReachable(NET_IPV4, false); BOOST_CHECK_EQUAL(IsReachable(addr), false); // have to reset this, because this is stateful. SetReachable(NET_IPV4, true); } BOOST_AUTO_TEST_CASE(LocalAddress_BasicLifecycle) { // 2.1.1.1:1000 CService addr = CService(UtilBuildAddress(0x002, 0x001, 0x001, 0x001), 1000); SetReachable(NET_IPV4, true); BOOST_CHECK_EQUAL(IsLocal(addr), false); BOOST_CHECK_EQUAL(AddLocal(addr, 1000), true); BOOST_CHECK_EQUAL(IsLocal(addr), true); RemoveLocal(addr); BOOST_CHECK_EQUAL(IsLocal(addr), false); } BOOST_AUTO_TEST_CASE(cnetaddr_basic) { CNetAddr addr; // IPv4, INADDR_ANY BOOST_REQUIRE(LookupHost("0.0.0.0", addr, false)); BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsIPv4()); BOOST_CHECK(addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "0.0.0.0"); // IPv4, INADDR_NONE BOOST_REQUIRE(LookupHost("255.255.255.255", addr, false)); BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsIPv4()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "255.255.255.255"); // IPv4, casual BOOST_REQUIRE(LookupHost("12.34.56.78", addr, false)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv4()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "12.34.56.78"); // IPv6, in6addr_any BOOST_REQUIRE(LookupHost("::", addr, false)); BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "::"); // IPv6, casual BOOST_REQUIRE( LookupHost("1122:3344:5566:7788:9900:aabb:ccdd:eeff", addr, false)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "1122:3344:5566:7788:9900:aabb:ccdd:eeff"); // IPv6, scoped/link-local. See https://tools.ietf.org/html/rfc4007 // We support non-negative decimal integers (uint32_t) as zone id indices. // Test with a fairly-high value, e.g. 32, to avoid locally reserved ids. const std::string link_local{"fe80::1"}; const std::string scoped_addr{link_local + "%32"}; BOOST_REQUIRE(LookupHost(scoped_addr, addr, false)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(!addr.IsBindAny()); // Test that the delimiter "%" and default zone id of 0 can be omitted for // the default scope. BOOST_REQUIRE(LookupHost(link_local + "%0", addr, false)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK_EQUAL(addr.ToString(), link_local); // TORv2 BOOST_REQUIRE(addr.SetSpecial("6hzph5hv6337r6p2.onion")); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsTor()); BOOST_CHECK(!addr.IsI2P()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "6hzph5hv6337r6p2.onion"); // TORv3 const char *torv3_addr = "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion"; BOOST_REQUIRE(addr.SetSpecial(torv3_addr)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsTor()); BOOST_CHECK(!addr.IsI2P()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), torv3_addr); // TORv3, broken, with wrong checksum BOOST_CHECK(!addr.SetSpecial( "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscsad.onion")); // TORv3, broken, with wrong version BOOST_CHECK(!addr.SetSpecial( "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscrye.onion")); // TORv3, malicious BOOST_CHECK(!addr.SetSpecial(std::string{ "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd\0wtf.onion", 66})); // TOR, bogus length BOOST_CHECK(!addr.SetSpecial(std::string{"mfrggzak.onion"})); // TOR, invalid base32 BOOST_CHECK(!addr.SetSpecial(std::string{"mf*g zak.onion"})); // I2P const char *i2p_addr = "UDHDrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna.b32.I2P"; BOOST_REQUIRE(addr.SetSpecial(i2p_addr)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsI2P()); BOOST_CHECK(!addr.IsTor()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), ToLower(i2p_addr)); // I2P, correct length, but decodes to less than the expected number of // bytes. BOOST_CHECK(!addr.SetSpecial( "udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jn=.b32.i2p")); // I2P, extra unnecessary padding BOOST_CHECK(!addr.SetSpecial( "udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna=.b32.i2p")); // I2P, malicious BOOST_CHECK(!addr.SetSpecial( "udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v\0wtf.b32.i2p"s)); // I2P, valid but unsupported (56 Base32 characters) // See "Encrypted LS with Base 32 Addresses" in // https://geti2p.net/spec/encryptedleaseset.txt BOOST_CHECK(!addr.SetSpecial( "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscsad.b32.i2p")); // I2P, invalid base32 BOOST_CHECK(!addr.SetSpecial(std::string{"tp*szydbh4dp.b32.i2p"})); // Internal addr.SetInternal("esffpp"); // "internal" is considered invalid BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsInternal()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "esffpvrt3wpeaygy.internal"); // Totally bogus BOOST_CHECK(!addr.SetSpecial("totally bogus")); } BOOST_AUTO_TEST_CASE(cnetaddr_serialize_v1) { CNetAddr addr; CDataStream s(SER_NETWORK, PROTOCOL_VERSION); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "00000000000000000000000000000000"); s.clear(); BOOST_REQUIRE(LookupHost("1.2.3.4", addr, false)); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "00000000000000000000ffff01020304"); s.clear(); BOOST_REQUIRE( LookupHost("1a1b:2a2b:3a3b:4a4b:5a5b:6a6b:7a7b:8a8b", addr, false)); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "1a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b"); s.clear(); BOOST_REQUIRE(addr.SetSpecial("6hzph5hv6337r6p2.onion")); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "fd87d87eeb43f1f2f3f4f5f6f7f8f9fa"); s.clear(); BOOST_REQUIRE(addr.SetSpecial( "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion")); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "00000000000000000000000000000000"); s.clear(); addr.SetInternal("a"); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "fd6b88c08724ca978112ca1bbdcafac2"); s.clear(); } BOOST_AUTO_TEST_CASE(cnetaddr_serialize_v2) { CNetAddr addr; CDataStream s(SER_NETWORK, PROTOCOL_VERSION); // Add ADDRV2_FORMAT to the version so that the CNetAddr // serialize method produces an address in v2 format. s.SetVersion(s.GetVersion() | ADDRV2_FORMAT); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "021000000000000000000000000000000000"); s.clear(); BOOST_REQUIRE(LookupHost("1.2.3.4", addr, false)); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "010401020304"); s.clear(); BOOST_REQUIRE( LookupHost("1a1b:2a2b:3a3b:4a4b:5a5b:6a6b:7a7b:8a8b", addr, false)); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "02101a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b"); s.clear(); BOOST_REQUIRE(addr.SetSpecial("6hzph5hv6337r6p2.onion")); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "030af1f2f3f4f5f6f7f8f9fa"); s.clear(); BOOST_REQUIRE(addr.SetSpecial( "kpgvmscirrdqpekbqjsvw5teanhatztpp2gl6eee4zkowvwfxwenqaid.onion")); s << addr; BOOST_CHECK_EQUAL( HexStr(s), "042053cd5648488c4707914182655b7664034e09e66f7e8cbf1084e654eb56c5bd88"); s.clear(); BOOST_REQUIRE(addr.SetInternal("a")); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "0210fd6b88c08724ca978112ca1bbdcafac2"); s.clear(); } BOOST_AUTO_TEST_CASE(cnetaddr_unserialize_v2) { CNetAddr addr; CDataStream s(SER_NETWORK, PROTOCOL_VERSION); // Add ADDRV2_FORMAT to the version so that the CNetAddr // unserialize method expects an address in v2 format. s.SetVersion(s.GetVersion() | ADDRV2_FORMAT); // Valid IPv4. s << MakeSpan(ParseHex("01" // network type (IPv4) "04" // address length "01020304")); // address s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsIPv4()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "1.2.3.4"); BOOST_REQUIRE(s.empty()); // Invalid IPv4, valid length but address itself is shorter. s << MakeSpan(ParseHex("01" // network type (IPv4) "04" // address length "0102")); // address BOOST_CHECK_EXCEPTION(s >> addr, std::ios_base::failure, HasReason("end of data")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Invalid IPv4, with bogus length. s << MakeSpan(ParseHex("01" // network type (IPv4) "05" // address length "01020304")); // address BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 IPv4 address with length 5 (should be 4)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Invalid IPv4, with extreme length. s << MakeSpan(ParseHex("01" // network type (IPv4) "fd0102" // address length (513 as CompactSize) "01020304")); // address BOOST_CHECK_EXCEPTION(s >> addr, std::ios_base::failure, HasReason("Address too long: 513 > 512")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid IPv6. s << MakeSpan(ParseHex("02" // network type (IPv6) "10" // address length "0102030405060708090a0b0c0d0e0f10")); // address s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsIPv6()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "102:304:506:708:90a:b0c:d0e:f10"); BOOST_REQUIRE(s.empty()); // Valid IPv6, contains embedded "internal". s << MakeSpan( ParseHex("02" // network type (IPv6) "10" // address length "fd6b88c08724ca978112ca1bbdcafac2")); // address: 0xfd + // sha256("bitcoin")[0:5] // + sha256(name)[0:10] s >> addr; BOOST_CHECK(addr.IsInternal()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "zklycewkdo64v6wc.internal"); BOOST_REQUIRE(s.empty()); // Invalid IPv6, with bogus length. s << MakeSpan(ParseHex("02" // network type (IPv6) "04" // address length "00")); // address BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 IPv6 address with length 4 (should be 16)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Invalid IPv6, contains embedded IPv4. s << MakeSpan(ParseHex("02" // network type (IPv6) "10" // address length "00000000000000000000ffff01020304")); // address s >> addr; BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Invalid IPv6, contains embedded TORv2. s << MakeSpan(ParseHex("02" // network type (IPv6) "10" // address length "fd87d87eeb430102030405060708090a")); // address s >> addr; BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Valid TORv2. s << MakeSpan(ParseHex("03" // network type (TORv2) "0a" // address length "f1f2f3f4f5f6f7f8f9fa")); // address s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsTor()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "6hzph5hv6337r6p2.onion"); BOOST_REQUIRE(s.empty()); // Invalid TORv2, with bogus length. s << MakeSpan(ParseHex("03" // network type (TORv2) "07" // address length "00")); // address BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 TORv2 address with length 7 (should be 10)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid TORv3. s << MakeSpan(ParseHex("04" // network type (TORv3) "20" // address length "79bcc625184b05194975c28b66b66b04" // address "69f7f6556fb1ac3189a79b40dda32f1f")); s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsTor()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL( addr.ToString(), "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion"); BOOST_REQUIRE(s.empty()); // Invalid TORv3, with bogus length. s << MakeSpan(ParseHex("04" // network type (TORv3) "00" // address length "00" // address )); BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 TORv3 address with length 0 (should be 32)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid I2P. s << MakeSpan(ParseHex("05" // network type (I2P) "20" // address length "a2894dabaec08c0051a481a6dac88b64" // address "f98232ae42d4b6fd2fa81952dfe36a87")); s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsI2P()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL( addr.ToString(), "ukeu3k5oycgaauneqgtnvselmt4yemvoilkln7jpvamvfx7dnkdq.b32.i2p"); BOOST_REQUIRE(s.empty()); // Invalid I2P, with bogus length. s << MakeSpan(ParseHex("05" // network type (I2P) "03" // address length "00" // address )); BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 I2P address with length 3 (should be 32)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid CJDNS. s << MakeSpan(ParseHex("06" // network type (CJDNS) "10" // address length "fc000001000200030004000500060007" // address )); s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsCJDNS()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "fc00:1:2:3:4:5:6:7"); BOOST_REQUIRE(s.empty()); // Invalid CJDNS, with bogus length. s << MakeSpan(ParseHex("06" // network type (CJDNS) "01" // address length "00" // address )); BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 CJDNS address with length 1 (should be 16)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Unknown, with extreme length. s << MakeSpan( ParseHex("aa" // network type (unknown) "fe00000002" // address length (CompactSize's MAX_SIZE) "01020304050607" // address )); BOOST_CHECK_EXCEPTION(s >> addr, std::ios_base::failure, HasReason("Address too long: 33554432 > 512")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Unknown, with reasonable length. s << MakeSpan(ParseHex("aa" // network type (unknown) "04" // address length "01020304" // address )); s >> addr; BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Unknown, with zero length. s << MakeSpan(ParseHex("aa" // network type (unknown) "00" // address length "" // address )); s >> addr; BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); } // prior to PR #14728, this test triggers an undefined behavior BOOST_AUTO_TEST_CASE(ipv4_peer_with_ipv6_addrMe_test) { // set up local addresses; all that's necessary to reproduce the bug is // that a normal IPv4 address is among the entries, but if this address is // !IsRoutable the undefined behavior is easier to trigger deterministically { LOCK(cs_mapLocalHost); in_addr ipv4AddrLocal; ipv4AddrLocal.s_addr = 0x0100007f; CNetAddr addr = CNetAddr(ipv4AddrLocal); LocalServiceInfo lsi; lsi.nScore = 23; lsi.nPort = 42; mapLocalHost[addr] = lsi; } // create a peer with an IPv4 address in_addr ipv4AddrPeer; ipv4AddrPeer.s_addr = 0xa0b0c001; CAddress addr = CAddress(CService(ipv4AddrPeer, 7777), NODE_NETWORK); std::unique_ptr pnode = std::make_unique( 0, NODE_NETWORK, INVALID_SOCKET, addr, /* nKeyedNetGroupIn */ 0, /* nLocalHostNonceIn */ 0, /* nLocalExtraEntropyIn */ 0, CAddress{}, /* pszDest */ std::string{}, ConnectionType::OUTBOUND_FULL_RELAY, /* inbound_onion = */ false); pnode->fSuccessfullyConnected.store(true); // the peer claims to be reaching us via IPv6 in6_addr ipv6AddrLocal; memset(ipv6AddrLocal.s6_addr, 0, 16); ipv6AddrLocal.s6_addr[0] = 0xcc; CAddress addrLocal = CAddress(CService(ipv6AddrLocal, 7777), NODE_NETWORK); pnode->SetAddrLocal(addrLocal); // before patch, this causes undefined behavior detectable with clang's // -fsanitize=memory GetLocalAddrForPeer(&*pnode); // suppress no-checks-run warning; if this test fails, it's by triggering a // sanitizer BOOST_CHECK(1); } BOOST_AUTO_TEST_CASE(avalanche_statistics) { const uint32_t step = AVALANCHE_STATISTICS_REFRESH_PERIOD.count(); const uint32_t tau = AVALANCHE_STATISTICS_TIME_CONSTANT.count(); - CNode::AvalancheState avastats; + in_addr ipv4Addr; + ipv4Addr.s_addr = 0xa0b0c001; + CAddress addr = CAddress(CService(ipv4Addr, 7777), NODE_NETWORK); + std::unique_ptr pnode = std::make_unique( + 0, NODE_NETWORK, INVALID_SOCKET, addr, 0, 0, 0, CAddress(), + std::string{}, ConnectionType::OUTBOUND_FULL_RELAY, false); + pnode->m_avalanche_enabled = true; - double previousScore = avastats.getAvailabilityScore(); + double previousScore = pnode->getAvailabilityScore(); BOOST_CHECK_SMALL(previousScore, 1e-6); // Check the statistics follow an exponential response for 1 to 10 tau for (size_t i = 1; i <= 10; i++) { for (uint32_t j = 0; j < tau; j += step) { - avastats.invsPolled(1); + pnode->invsPolled(1); // Always respond to everything correctly - avastats.invsVoted(1); + pnode->invsVoted(1); - avastats.updateAvailabilityScore(); + pnode->updateAvailabilityScore(); // Expect a monotonic rise - double currentScore = avastats.getAvailabilityScore(); + double currentScore = pnode->getAvailabilityScore(); BOOST_CHECK_GE(currentScore, previousScore); previousScore = currentScore; } // We expect (1 - e^-i) after i * tau. The tolerance is expressed // as a percentage, and we add a (large) 0.1% margin to account for // floating point errors. BOOST_CHECK_CLOSE(previousScore, -1 * std::expm1(-1. * i), 100.1 / tau); } // After 10 tau we should be very close to 100% (about 99.995%) BOOST_CHECK_CLOSE(previousScore, 1., 0.01); for (size_t i = 1; i <= 3; i++) { for (uint32_t j = 0; j < tau; j += step) { - avastats.invsPolled(2); + pnode->invsPolled(2); // Stop responding to the polls. - avastats.invsVoted(1); + pnode->invsVoted(1); - avastats.updateAvailabilityScore(); + pnode->updateAvailabilityScore(); // Expect a monotonic fall - double currentScore = avastats.getAvailabilityScore(); + double currentScore = pnode->getAvailabilityScore(); BOOST_CHECK_LE(currentScore, previousScore); previousScore = currentScore; } // There is a slight error in the expected value because we did not // start the decay at exactly 100%, but the 0.1% margin is at least an // order of magnitude larger than the expected error so it doesn't // matter. BOOST_CHECK_CLOSE(previousScore, 1. + std::expm1(-1. * i), 100.1 / tau); } // After 3 more tau we should be under 5% BOOST_CHECK_LT(previousScore, .05); for (size_t i = 1; i <= 100; i++) { - avastats.invsPolled(10); + pnode->invsPolled(10); // Completely stop responding to the polls. - avastats.invsVoted(0); + pnode->invsVoted(0); - avastats.updateAvailabilityScore(); + pnode->updateAvailabilityScore(); // It's still a monotonic fall, and the score should turn negative. - double currentScore = avastats.getAvailabilityScore(); + double currentScore = pnode->getAvailabilityScore(); BOOST_CHECK_LE(currentScore, previousScore); BOOST_CHECK_LE(currentScore, 0.); previousScore = currentScore; } } BOOST_AUTO_TEST_CASE(get_extra_full_outbound_count) { CConnmanTest connman(GetConfig(), 0x1337, 0x1337, *m_node.addrman); auto checkExtraFullOutboundCount = [&](size_t fullOutboundCount, size_t avalancheOutboundCount, int expectedExtraCount) { connman.ClearNodes(); for (size_t i = 0; i < fullOutboundCount; i++) { connman.AddNode(ConnectionType::OUTBOUND_FULL_RELAY); } for (size_t i = 0; i < avalancheOutboundCount; i++) { connman.AddNode(ConnectionType::AVALANCHE_OUTBOUND); } BOOST_CHECK_EQUAL(connman.GetExtraFullOutboundCount(), expectedExtraCount); }; connman.SetMaxOutbounds(0, 0); checkExtraFullOutboundCount(0, 0, 0); checkExtraFullOutboundCount(1, 0, 1); checkExtraFullOutboundCount(0, 1, 1); checkExtraFullOutboundCount(5, 5, 10); connman.SetMaxOutbounds(4, 0); checkExtraFullOutboundCount(0, 0, 0); checkExtraFullOutboundCount(1, 0, 0); checkExtraFullOutboundCount(0, 1, 0); checkExtraFullOutboundCount(4, 0, 0); checkExtraFullOutboundCount(0, 4, 0); checkExtraFullOutboundCount(2, 2, 0); checkExtraFullOutboundCount(5, 5, 6); connman.SetMaxOutbounds(4, 4); checkExtraFullOutboundCount(0, 0, 0); checkExtraFullOutboundCount(1, 0, 0); checkExtraFullOutboundCount(0, 1, 0); checkExtraFullOutboundCount(4, 0, 0); checkExtraFullOutboundCount(0, 4, 0); checkExtraFullOutboundCount(4, 4, 0); checkExtraFullOutboundCount(5, 5, 2); } BOOST_FIXTURE_TEST_CASE(net_group_limit, TestChain100Setup) { const CChainParams ¶ms = GetConfig().GetChainParams(); m_node.connman = std::make_unique(GetConfig(), 0x1337, 0x1337, *m_node.addrman); m_node.peerman = PeerManager::make(params, *m_node.connman, *m_node.addrman, m_node.banman.get(), *m_node.chainman, *m_node.mempool, false); bilingual_str error; // Init the global avalanche object otherwise the avalanche outbound // slots are not allocated. g_avalanche = avalanche::Processor::MakeProcessor( *m_node.args, *m_node.chain, m_node.connman.get(), *m_node.chainman, *m_node.scheduler, error); BOOST_CHECK(g_avalanche); CConnman::Options options; options.nMaxConnections = 200; options.m_max_outbound_full_relay = 8; options.m_max_avalanche_outbound = 60; auto connman = static_cast(m_node.connman.get()); connman->MakeAddrmanDeterministic(); connman->Init(options); // Single full relay outbound is no problem BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK, 1}, }, 1, // Expected full-relay outbound count 0 // Expected avalanche outbound count )); // Adding more contiguous full relay outbounds fails due to network group // limitation BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK, 3}, }, 1, // Expected full-relay outbound count 0 // Expected avalanche outbound count )); // Outbounds from different groups can be connected BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK, 1}, {1, NODE_NETWORK, 1}, {2, NODE_NETWORK, 1}, }, 3, // Expected full-relay outbound count 0 // Expected avalanche outbound count )); // Up to the max BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK, 1}, {1, NODE_NETWORK, 1}, {2, NODE_NETWORK, 1}, {3, NODE_NETWORK, 1}, {4, NODE_NETWORK, 1}, {5, NODE_NETWORK, 1}, {6, NODE_NETWORK, 1}, {7, NODE_NETWORK, 1}, {8, NODE_NETWORK, 1}, {9, NODE_NETWORK, 1}, {10, NODE_NETWORK, 1}, {11, NODE_NETWORK, 1}, }, options.m_max_outbound_full_relay, // Expected full-relay outbound count 0 // Expected avalanche outbound count )); // Avalanche outbounds are prioritized, so contiguous full relay outbounds // will fail due to network group limitation BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK | NODE_AVALANCHE, 1}, {0, NODE_NETWORK, 3}, }, 0, // Expected full-relay outbound count 1 // Expected avalanche outbound count )); // Adding more avalanche outbounds is fine BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK | NODE_AVALANCHE, 3}, {0, NODE_NETWORK, 3}, }, 0, // Expected full-relay outbound count 3 // Expected avalanche outbound count )); // Group limit still applies to non avalanche outbounds, which also remain // capped to the max from the connman options. BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK | NODE_AVALANCHE, 50}, {1, NODE_NETWORK, 10}, {2, NODE_NETWORK, 10}, {3, NODE_NETWORK, 10}, {4, NODE_NETWORK, 10}, {5, NODE_NETWORK, 10}, {6, NODE_NETWORK, 10}, {7, NODE_NETWORK, 10}, {8, NODE_NETWORK, 10}, {9, NODE_NETWORK, 10}, {10, NODE_NETWORK, 10}, {11, NODE_NETWORK, 10}, }, options.m_max_outbound_full_relay, // Expected full-relay outbound count 50 // Expected avalanche outbound count )); g_avalanche.reset(); } BOOST_AUTO_TEST_SUITE_END()