diff --git a/src/merkleblock.cpp b/src/merkleblock.cpp index 48f2e8370..028b982fb 100644 --- a/src/merkleblock.cpp +++ b/src/merkleblock.cpp @@ -1,218 +1,218 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include CMerkleBlock::CMerkleBlock(const CBlock &block, CBloomFilter &filter) { header = block.GetBlockHeader(); std::vector vMatch; std::vector vHashes; vMatch.reserve(block.vtx.size()); vHashes.reserve(block.vtx.size()); for (size_t i = 0; i < block.vtx.size(); i++) { const CTransaction *tx = block.vtx[i].get(); const uint256 &txid = tx->GetId(); if (filter.IsRelevantAndUpdate(*tx)) { vMatch.push_back(true); vMatchedTxn.push_back(std::make_pair(i, txid)); } else { vMatch.push_back(false); } vHashes.push_back(txid); } txn = CPartialMerkleTree(vHashes, vMatch); } CMerkleBlock::CMerkleBlock(const CBlock &block, const std::set &txids) { header = block.GetBlockHeader(); std::vector vMatch; std::vector vHashes; vMatch.reserve(block.vtx.size()); vHashes.reserve(block.vtx.size()); for (const auto &tx : block.vtx) { const TxId &txid = tx->GetId(); vMatch.push_back(txids.count(txid)); vHashes.push_back(txid); } txn = CPartialMerkleTree(vHashes, vMatch); } uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector &vTxid) { if (height == 0) { // hash at height 0 is the txids themself. return vTxid[pos]; } // Calculate left hash. uint256 left = CalcHash(height - 1, pos * 2, vTxid), right; // Calculate right hash if not beyond the end of the array - copy left hash - // otherwise1. + // otherwise. if (pos * 2 + 1 < CalcTreeWidth(height - 1)) { right = CalcHash(height - 1, pos * 2 + 1, vTxid); } else { right = left; } // Combine subhashes. return Hash(BEGIN(left), END(left), BEGIN(right), END(right)); } void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector &vTxid, const std::vector &vMatch) { // Determine whether this node is the parent of at least one matched txid. bool fParentOfMatch = false; for (unsigned int p = pos << height; p < (pos + 1) << height && p < nTransactions; p++) { fParentOfMatch |= vMatch[p]; } // Store as flag bit. vBits.push_back(fParentOfMatch); if (height == 0 || !fParentOfMatch) { // If at height 0, or nothing interesting below, store hash and stop. vHash.push_back(CalcHash(height, pos, vTxid)); } else { // Otherwise, don't store any hash, but descend into the subtrees. TraverseAndBuild(height - 1, pos * 2, vTxid, vMatch); if (pos * 2 + 1 < CalcTreeWidth(height - 1)) { TraverseAndBuild(height - 1, pos * 2 + 1, vTxid, vMatch); } } } uint256 CPartialMerkleTree::TraverseAndExtract( int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector &vMatch, std::vector &vnIndex) { if (nBitsUsed >= vBits.size()) { // Overflowed the bits array - failure fBad = true; return uint256(); } bool fParentOfMatch = vBits[nBitsUsed++]; if (height == 0 || !fParentOfMatch) { // If at height 0, or nothing interesting below, use stored hash and do // not descend. if (nHashUsed >= vHash.size()) { // Overflowed the hash array - failure fBad = true; return uint256(); } const uint256 &hash = vHash[nHashUsed++]; // In case of height 0, we have a matched txid. if (height == 0 && fParentOfMatch) { vMatch.push_back(hash); vnIndex.push_back(pos); } return hash; } // Otherwise, descend into the subtrees to extract matched txids and hashes. uint256 left = TraverseAndExtract(height - 1, pos * 2, nBitsUsed, nHashUsed, vMatch, vnIndex), right; if (pos * 2 + 1 < CalcTreeWidth(height - 1)) { right = TraverseAndExtract(height - 1, pos * 2 + 1, nBitsUsed, nHashUsed, vMatch, vnIndex); if (right == left) { // The left and right branches should never be identical, as the // transaction hashes covered by them must each be unique. fBad = true; } } else { right = left; } // and combine them before returning. return Hash(BEGIN(left), END(left), BEGIN(right), END(right)); } CPartialMerkleTree::CPartialMerkleTree(const std::vector &vTxid, const std::vector &vMatch) : nTransactions(vTxid.size()), fBad(false) { // reset state vBits.clear(); vHash.clear(); // calculate height of tree int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) { nHeight++; } // traverse the partial tree TraverseAndBuild(nHeight, 0, vTxid, vMatch); } CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {} uint256 CPartialMerkleTree::ExtractMatches(std::vector &vMatch, std::vector &vnIndex) { vMatch.clear(); // An empty set will not work if (nTransactions == 0) { return uint256(); } // Check for excessively high numbers of transactions. // FIXME: Track the maximum block size we've seen and use it here. // There can never be more hashes provided than one for every txid. if (vHash.size() > nTransactions) { return uint256(); } // There must be at least one bit per node in the partial tree, and at least // one node per hash. if (vBits.size() < vHash.size()) { return uint256(); } // calculate height of tree. int nHeight = 0; while (CalcTreeWidth(nHeight) > 1) { nHeight++; } // traverse the partial tree. unsigned int nBitsUsed = 0, nHashUsed = 0; uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex); // verify that no problems occurred during the tree traversal. if (fBad) { return uint256(); } // verify that all bits were consumed (except for the padding caused by // serializing it as a byte sequence) if ((nBitsUsed + 7) / 8 != (vBits.size() + 7) / 8) { return uint256(); } // verify that all hashes were consumed. if (nHashUsed != vHash.size()) { return uint256(); } return hashMerkleRoot; }