diff --git a/src/test/miner_tests.cpp b/src/test/miner_tests.cpp index 65dea9d3b..c55ef187d 100644 --- a/src/test/miner_tests.cpp +++ b/src/test/miner_tests.cpp @@ -1,779 +1,783 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "miner.h" #include "chainparams.h" #include "coins.h" #include "config.h" #include "consensus/consensus.h" #include "consensus/merkle.h" #include "consensus/validation.h" #include "policy/policy.h" #include "pubkey.h" #include "script/standard.h" #include "txmempool.h" #include "uint256.h" #include "util.h" #include "utilstrencodings.h" #include "validation.h" #include "test/test_bitcoin.h" #include #include BOOST_FIXTURE_TEST_SUITE(miner_tests, TestingSetup) static CFeeRate blockMinFeeRate = CFeeRate(DEFAULT_BLOCK_MIN_TX_FEE); static struct { uint8_t extranonce; unsigned int nonce; } blockinfo[] = { {4, 0xa4a3e223}, {2, 0x15c32f9e}, {1, 0x0375b547}, {1, 0x7004a8a5}, {2, 0xce440296}, {2, 0x52cfe198}, {1, 0x77a72cd0}, {2, 0xbb5d6f84}, {2, 0x83f30c2c}, {1, 0x48a73d5b}, {1, 0xef7dcd01}, {2, 0x6809c6c4}, {2, 0x0883ab3c}, {1, 0x087bbbe2}, {2, 0x2104a814}, {2, 0xdffb6daa}, {1, 0xee8a0a08}, {2, 0xba4237c1}, {1, 0xa70349dc}, {1, 0x344722bb}, {3, 0xd6294733}, {2, 0xec9f5c94}, {2, 0xca2fbc28}, {1, 0x6ba4f406}, {2, 0x015d4532}, {1, 0x6e119b7c}, {2, 0x43e8f314}, {2, 0x27962f38}, {2, 0xb571b51b}, {2, 0xb36bee23}, {2, 0xd17924a8}, {2, 0x6bc212d9}, {1, 0x630d4948}, {2, 0x9a4c4ebb}, {2, 0x554be537}, {1, 0xd63ddfc7}, {2, 0xa10acc11}, {1, 0x759a8363}, {2, 0xfb73090d}, {1, 0xe82c6a34}, {1, 0xe33e92d7}, {3, 0x658ef5cb}, {2, 0xba32ff22}, {5, 0x0227a10c}, {1, 0xa9a70155}, {5, 0xd096d809}, {1, 0x37176174}, {1, 0x830b8d0f}, {1, 0xc6e3910e}, {2, 0x823f3ca8}, {1, 0x99850849}, {1, 0x7521fb81}, {1, 0xaacaabab}, {1, 0xd645a2eb}, {5, 0x7aea1781}, {5, 0x9d6e4b78}, {1, 0x4ce90fd8}, {1, 0xabdc832d}, {6, 0x4a34f32a}, {2, 0xf2524c1c}, {2, 0x1bbeb08a}, {1, 0xad47f480}, {1, 0x9f026aeb}, {1, 0x15a95049}, {2, 0xd1cb95b2}, {2, 0xf84bbda5}, {1, 0x0fa62cd1}, {1, 0xe05f9169}, {1, 0x78d194a9}, {5, 0x3e38147b}, {5, 0x737ba0d4}, {1, 0x63378e10}, {1, 0x6d5f91cf}, {2, 0x88612eb8}, {2, 0xe9639484}, {1, 0xb7fabc9d}, {2, 0x19b01592}, {1, 0x5a90dd31}, {2, 0x5bd7e028}, {2, 0x94d00323}, {1, 0xa9b9c01a}, {1, 0x3a40de61}, {1, 0x56e7eec7}, {5, 0x859f7ef6}, {1, 0xfd8e5630}, {1, 0x2b0c9f7f}, {1, 0xba700e26}, {1, 0x7170a408}, {1, 0x70de86a8}, {1, 0x74d64cd5}, {1, 0x49e738a1}, {2, 0x6910b602}, {0, 0x643c565f}, {1, 0x54264b3f}, {2, 0x97ea6396}, {2, 0x55174459}, {2, 0x03e8779a}, {1, 0x98f34d8f}, {1, 0xc07b2b07}, {1, 0xdfe29668}, {1, 0x3141c7c1}, {1, 0xb3b595f4}, {1, 0x735abf08}, {5, 0x623bfbce}, {2, 0xd351e722}, {1, 0xf4ca48c9}, {1, 0x5b19c670}, {1, 0xa164bf0e}, {2, 0xbbbeb305}, {2, 0xfe1c810a}, }; CBlockIndex CreateBlockIndex(int nHeight) { CBlockIndex index; index.nHeight = nHeight; index.pprev = chainActive.Tip(); return index; } bool TestSequenceLocks(const CTransaction &tx, int flags) { LOCK(mempool.cs); return CheckSequenceLocks(tx, flags); } // Test suite for ancestor feerate transaction selection. // Implemented as an additional function, rather than a separate test case, to // allow reusing the blockchain created in CreateNewBlock_validity. // Note that this test assumes blockprioritypercentage is 0. void TestPackageSelection(const CChainParams &chainparams, CScript scriptPubKey, std::vector &txFirst) { // Test the ancestor feerate transaction selection. TestMemPoolEntryHelper entry; GlobalConfig config; // these 3 tests assume blockprioritypercentage is 0. config.SetBlockPriorityPercentage(0); // Test that a medium fee transaction will be selected after a higher fee // rate package with a low fee rate parent. CMutableTransaction tx; tx.vin.resize(1); tx.vin[0].scriptSig = CScript() << OP_1; tx.vin[0].prevout.hash = txFirst[0]->GetId(); tx.vin[0].prevout.n = 0; tx.vout.resize(1); - tx.vout[0].nValue = 5000000000LL - 1000; + tx.vout[0].nValue = Amount(5000000000LL - 1000); // This tx has a low fee: 1000 satoshis. // Save this txid for later use. uint256 hashParentTx = tx.GetId(); - mempool.addUnchecked( - hashParentTx, - entry.Fee(1000).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); + mempool.addUnchecked(hashParentTx, entry.Fee(Amount(1000)) + .Time(GetTime()) + .SpendsCoinbase(true) + .FromTx(tx)); // This tx has a medium fee: 10000 satoshis. tx.vin[0].prevout.hash = txFirst[1]->GetId(); - tx.vout[0].nValue = 5000000000LL - 10000; + tx.vout[0].nValue = Amount(5000000000LL - 10000); uint256 hashMediumFeeTx = tx.GetId(); - mempool.addUnchecked( - hashMediumFeeTx, - entry.Fee(10000).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); + mempool.addUnchecked(hashMediumFeeTx, entry.Fee(Amount(10000)) + .Time(GetTime()) + .SpendsCoinbase(true) + .FromTx(tx)); // This tx has a high fee, but depends on the first transaction. tx.vin[0].prevout.hash = hashParentTx; // 50k satoshi fee. - tx.vout[0].nValue = 5000000000LL - 1000 - 50000; + tx.vout[0].nValue = Amount(5000000000LL - 1000 - 50000); uint256 hashHighFeeTx = tx.GetId(); - mempool.addUnchecked( - hashHighFeeTx, - entry.Fee(50000).Time(GetTime()).SpendsCoinbase(false).FromTx(tx)); + mempool.addUnchecked(hashHighFeeTx, entry.Fee(Amount(50000)) + .Time(GetTime()) + .SpendsCoinbase(false) + .FromTx(tx)); std::unique_ptr pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey); BOOST_CHECK(pblocktemplate->block.vtx[1]->GetId() == hashParentTx); BOOST_CHECK(pblocktemplate->block.vtx[2]->GetId() == hashHighFeeTx); BOOST_CHECK(pblocktemplate->block.vtx[3]->GetId() == hashMediumFeeTx); // Test that a package below the block min tx fee doesn't get included tx.vin[0].prevout.hash = hashHighFeeTx; // 0 fee. - tx.vout[0].nValue = 5000000000LL - 1000 - 50000; + tx.vout[0].nValue = Amount(5000000000LL - 1000 - 50000); uint256 hashFreeTx = tx.GetId(); - mempool.addUnchecked(hashFreeTx, entry.Fee(0).FromTx(tx)); + mempool.addUnchecked(hashFreeTx, entry.Fee(Amount(0)).FromTx(tx)); size_t freeTxSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION); // Calculate a fee on child transaction that will put the package just // below the block min tx fee (assuming 1 child tx of the same size). Amount feeToUse = blockMinFeeRate.GetFee(2 * freeTxSize) - Amount(1); tx.vin[0].prevout.hash = hashFreeTx; - tx.vout[0].nValue = 5000000000LL - 1000 - 50000 - feeToUse; + tx.vout[0].nValue = Amount(5000000000LL - 1000 - 50000) - feeToUse; uint256 hashLowFeeTx = tx.GetId(); mempool.addUnchecked(hashLowFeeTx, entry.Fee(feeToUse).FromTx(tx)); pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey); // Verify that the free tx and the low fee tx didn't get selected. for (size_t i = 0; i < pblocktemplate->block.vtx.size(); ++i) { BOOST_CHECK(pblocktemplate->block.vtx[i]->GetId() != hashFreeTx); BOOST_CHECK(pblocktemplate->block.vtx[i]->GetId() != hashLowFeeTx); } // Test that packages above the min relay fee do get included, even if one // of the transactions is below the min relay fee. Remove the low fee // transaction and replace with a higher fee transaction mempool.removeRecursive(tx); // Now we should be just over the min relay fee. - tx.vout[0].nValue -= 2; + tx.vout[0].nValue -= Amount(2); hashLowFeeTx = tx.GetId(); - mempool.addUnchecked(hashLowFeeTx, entry.Fee(feeToUse + 2).FromTx(tx)); + mempool.addUnchecked(hashLowFeeTx, + entry.Fee(feeToUse + Amount(2)).FromTx(tx)); pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey); BOOST_CHECK(pblocktemplate->block.vtx[4]->GetId() == hashFreeTx); BOOST_CHECK(pblocktemplate->block.vtx[5]->GetId() == hashLowFeeTx); // Test that transaction selection properly updates ancestor fee // calculations as ancestor transactions get included in a block. Add a // 0-fee transaction that has 2 outputs. tx.vin[0].prevout.hash = txFirst[2]->GetId(); tx.vout.resize(2); - tx.vout[0].nValue = 5000000000LL - 100000000; - // 1BCH output. - tx.vout[1].nValue = 100000000; + tx.vout[0].nValue = Amount(5000000000LL - 100000000); + // 1BCC output. + tx.vout[1].nValue = Amount(100000000); uint256 hashFreeTx2 = tx.GetId(); mempool.addUnchecked(hashFreeTx2, - entry.Fee(0).SpendsCoinbase(true).FromTx(tx)); + entry.Fee(Amount(0)).SpendsCoinbase(true).FromTx(tx)); // This tx can't be mined by itself. tx.vin[0].prevout.hash = hashFreeTx2; tx.vout.resize(1); feeToUse = blockMinFeeRate.GetFee(freeTxSize); - tx.vout[0].nValue = 5000000000LL - 100000000 - feeToUse; + tx.vout[0].nValue = Amount(5000000000LL) - Amount(100000000) - feeToUse; uint256 hashLowFeeTx2 = tx.GetId(); mempool.addUnchecked(hashLowFeeTx2, entry.Fee(feeToUse).SpendsCoinbase(false).FromTx(tx)); pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey); // Verify that this tx isn't selected. for (size_t i = 0; i < pblocktemplate->block.vtx.size(); ++i) { BOOST_CHECK(pblocktemplate->block.vtx[i]->GetId() != hashFreeTx2); BOOST_CHECK(pblocktemplate->block.vtx[i]->GetId() != hashLowFeeTx2); } // This tx will be mineable, and should cause hashLowFeeTx2 to be selected // as well. tx.vin[0].prevout.n = 1; // 10k satoshi fee. - tx.vout[0].nValue = 100000000 - 10000; - mempool.addUnchecked(tx.GetId(), entry.Fee(10000).FromTx(tx)); + tx.vout[0].nValue = Amount(100000000 - 10000); + mempool.addUnchecked(tx.GetId(), entry.Fee(Amount(10000)).FromTx(tx)); pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey); BOOST_CHECK(pblocktemplate->block.vtx[8]->GetId() == hashLowFeeTx2); } void TestCoinbaseMessageEB(uint64_t eb, std::string cbmsg) { GlobalConfig config; config.SetMaxBlockSize(eb); const CChainParams &chainparams = config.GetChainParams(); CScript scriptPubKey = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112" "de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG; std::unique_ptr pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey); CBlock *pblock = &pblocktemplate->block; // IncrementExtraNonce creates a valid coinbase and merkleRoot unsigned int extraNonce = 0; IncrementExtraNonce(config, pblock, chainActive.Tip(), extraNonce); unsigned int nHeight = chainActive.Tip()->nHeight + 1; std::vector vec(cbmsg.begin(), cbmsg.end()); BOOST_CHECK(pblock->vtx[0]->vin[0].scriptSig == ((CScript() << nHeight << CScriptNum(extraNonce) << vec) + COINBASE_FLAGS)); } // Coinbase scriptSig has to contains the correct EB value // converted to MB, rounded down to the first decimal BOOST_AUTO_TEST_CASE(CheckCoinbase_EB) { TestCoinbaseMessageEB(1000001, "/EB1.0/"); TestCoinbaseMessageEB(2000000, "/EB2.0/"); TestCoinbaseMessageEB(8000000, "/EB8.0/"); TestCoinbaseMessageEB(8320000, "/EB8.3/"); } // NOTE: These tests rely on CreateNewBlock doing its own self-validation! BOOST_AUTO_TEST_CASE(CreateNewBlock_validity) { // Note that by default, these tests run with size accounting enabled. const CChainParams &chainparams = Params(CBaseChainParams::MAIN); CScript scriptPubKey = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112" "de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG; std::unique_ptr pblocktemplate; CMutableTransaction tx, tx2; CScript script; uint256 hash; TestMemPoolEntryHelper entry; - entry.nFee = 11; + entry.nFee = Amount(11); entry.dPriority = 111.0; entry.nHeight = 11; GlobalConfig config; LOCK(cs_main); fCheckpointsEnabled = false; // Simple block creation, nothing special yet: BOOST_CHECK( pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey)); // We can't make transactions until we have inputs. Therefore, load 100 // blocks :) int baseheight = 0; std::vector txFirst; for (unsigned int i = 0; i < sizeof(blockinfo) / sizeof(*blockinfo); ++i) { // pointer for convenience. CBlock *pblock = &pblocktemplate->block; pblock->nVersion = 1; pblock->nTime = chainActive.Tip()->GetMedianTimePast() + 1; CMutableTransaction txCoinbase(*pblock->vtx[0]); txCoinbase.nVersion = 1; txCoinbase.vin[0].scriptSig = CScript(); txCoinbase.vin[0].scriptSig.push_back(blockinfo[i].extranonce); txCoinbase.vin[0].scriptSig.push_back(chainActive.Height()); // Ignore the (optional) segwit commitment added by CreateNewBlock (as // the hardcoded nonces don't account for this) txCoinbase.vout.resize(1); txCoinbase.vout[0].scriptPubKey = CScript(); pblock->vtx[0] = MakeTransactionRef(std::move(txCoinbase)); if (txFirst.size() == 0) baseheight = chainActive.Height(); if (txFirst.size() < 4) txFirst.push_back(pblock->vtx[0]); pblock->hashMerkleRoot = BlockMerkleRoot(*pblock); pblock->nNonce = blockinfo[i].nonce; std::shared_ptr shared_pblock = std::make_shared(*pblock); BOOST_CHECK(ProcessNewBlock(GetConfig(), shared_pblock, true, nullptr)); pblock->hashPrevBlock = pblock->GetHash(); } // Just to make sure we can still make simple blocks. BOOST_CHECK( pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey)); const Amount BLOCKSUBSIDY = 50 * COIN; const Amount LOWFEE = CENT; const Amount HIGHFEE = COIN; const Amount HIGHERFEE = 4 * COIN; // block sigops > limit: 1000 CHECKMULTISIG + 1 tx.vin.resize(1); // NOTE: OP_NOP is used to force 20 SigOps for the CHECKMULTISIG tx.vin[0].scriptSig = CScript() << OP_0 << OP_0 << OP_0 << OP_NOP << OP_CHECKMULTISIG << OP_1; tx.vin[0].prevout.hash = txFirst[0]->GetId(); tx.vin[0].prevout.n = 0; tx.vout.resize(1); tx.vout[0].nValue = BLOCKSUBSIDY; for (unsigned int i = 0; i < 1001; ++i) { tx.vout[0].nValue -= LOWFEE; hash = tx.GetId(); // Only first tx spends coinbase. bool spendsCoinbase = (i == 0) ? true : false; // If we don't set the # of sig ops in the CTxMemPoolEntry, template // creation fails. mempool.addUnchecked(hash, entry.Fee(LOWFEE) .Time(GetTime()) .SpendsCoinbase(spendsCoinbase) .FromTx(tx)); tx.vin[0].prevout.hash = hash; } BOOST_CHECK_THROW( BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); tx.vin[0].prevout.hash = txFirst[0]->GetId(); tx.vout[0].nValue = BLOCKSUBSIDY; for (unsigned int i = 0; i < 1001; ++i) { tx.vout[0].nValue -= LOWFEE; hash = tx.GetId(); // Only first tx spends coinbase. bool spendsCoinbase = (i == 0) ? true : false; // If we do set the # of sig ops in the CTxMemPoolEntry, template // creation passes. mempool.addUnchecked(hash, entry.Fee(LOWFEE) .Time(GetTime()) .SpendsCoinbase(spendsCoinbase) .SigOpsCost(80) .FromTx(tx)); tx.vin[0].prevout.hash = hash; } BOOST_CHECK( pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey)); mempool.clear(); // block size > limit tx.vin[0].scriptSig = CScript(); // 18 * (520char + DROP) + OP_1 = 9433 bytes std::vector vchData(520); for (unsigned int i = 0; i < 18; ++i) tx.vin[0].scriptSig << vchData << OP_DROP; tx.vin[0].scriptSig << OP_1; tx.vin[0].prevout.hash = txFirst[0]->GetId(); tx.vout[0].nValue = BLOCKSUBSIDY; for (unsigned int i = 0; i < 128; ++i) { tx.vout[0].nValue -= LOWFEE; hash = tx.GetId(); // Only first tx spends coinbase. bool spendsCoinbase = (i == 0) ? true : false; mempool.addUnchecked(hash, entry.Fee(LOWFEE) .Time(GetTime()) .SpendsCoinbase(spendsCoinbase) .FromTx(tx)); tx.vin[0].prevout.hash = hash; } BOOST_CHECK( pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey)); mempool.clear(); // Orphan in mempool, template creation fails. hash = tx.GetId(); mempool.addUnchecked(hash, entry.Fee(LOWFEE).Time(GetTime()).FromTx(tx)); BOOST_CHECK_THROW( BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); // Child with higher priority than parent. tx.vin[0].scriptSig = CScript() << OP_1; tx.vin[0].prevout.hash = txFirst[1]->GetId(); tx.vout[0].nValue = BLOCKSUBSIDY - HIGHFEE; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); tx.vin[0].prevout.hash = hash; tx.vin.resize(2); tx.vin[1].scriptSig = CScript() << OP_1; tx.vin[1].prevout.hash = txFirst[0]->GetId(); tx.vin[1].prevout.n = 0; // First txn output + fresh coinbase - new txn fee. tx.vout[0].nValue = tx.vout[0].nValue + BLOCKSUBSIDY - HIGHERFEE; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHERFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); BOOST_CHECK( pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey)); mempool.clear(); // Coinbase in mempool, template creation fails. tx.vin.resize(1); tx.vin[0].prevout.SetNull(); tx.vin[0].scriptSig = CScript() << OP_0 << OP_1; - tx.vout[0].nValue = 0; + tx.vout[0].nValue = Amount(0); hash = tx.GetId(); // Give it a fee so it'll get mined. mempool.addUnchecked( hash, entry.Fee(LOWFEE).Time(GetTime()).SpendsCoinbase(false).FromTx(tx)); BOOST_CHECK_THROW( BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); // Invalid (pre-p2sh) txn in mempool, template creation fails. tx.vin[0].prevout.hash = txFirst[0]->GetId(); tx.vin[0].prevout.n = 0; tx.vin[0].scriptSig = CScript() << OP_1; tx.vout[0].nValue = BLOCKSUBSIDY - LOWFEE; script = CScript() << OP_0; tx.vout[0].scriptPubKey = GetScriptForDestination(CScriptID(script)); hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(LOWFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); tx.vin[0].prevout.hash = hash; tx.vin[0].scriptSig = CScript() << std::vector(script.begin(), script.end()); tx.vout[0].nValue -= LOWFEE; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(LOWFEE).Time(GetTime()).SpendsCoinbase(false).FromTx(tx)); BOOST_CHECK_THROW( BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); // Double spend txn pair in mempool, template creation fails. tx.vin[0].prevout.hash = txFirst[0]->GetId(); tx.vin[0].scriptSig = CScript() << OP_1; tx.vout[0].nValue = BLOCKSUBSIDY - HIGHFEE; tx.vout[0].scriptPubKey = CScript() << OP_1; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); tx.vout[0].scriptPubKey = CScript() << OP_2; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); BOOST_CHECK_THROW( BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey), std::runtime_error); mempool.clear(); // Subsidy changing. int nHeight = chainActive.Height(); // Create an actual 209999-long block chain (without valid blocks). while (chainActive.Tip()->nHeight < 209999) { CBlockIndex *prev = chainActive.Tip(); CBlockIndex *next = new CBlockIndex(); next->phashBlock = new uint256(GetRandHash()); pcoinsTip->SetBestBlock(next->GetBlockHash()); next->pprev = prev; next->nHeight = prev->nHeight + 1; next->BuildSkip(); chainActive.SetTip(next); } BOOST_CHECK( pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey)); // Extend to a 210000-long block chain. while (chainActive.Tip()->nHeight < 210000) { CBlockIndex *prev = chainActive.Tip(); CBlockIndex *next = new CBlockIndex(); next->phashBlock = new uint256(GetRandHash()); pcoinsTip->SetBestBlock(next->GetBlockHash()); next->pprev = prev; next->nHeight = prev->nHeight + 1; next->BuildSkip(); chainActive.SetTip(next); } BOOST_CHECK( pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey)); // Delete the dummy blocks again. while (chainActive.Tip()->nHeight > nHeight) { CBlockIndex *del = chainActive.Tip(); chainActive.SetTip(del->pprev); pcoinsTip->SetBestBlock(del->pprev->GetBlockHash()); delete del->phashBlock; delete del; } // non-final txs in mempool SetMockTime(chainActive.Tip()->GetMedianTimePast() + 1); int flags = LOCKTIME_VERIFY_SEQUENCE | LOCKTIME_MEDIAN_TIME_PAST; // height map std::vector prevheights; // Relative height locked. tx.nVersion = 2; tx.vin.resize(1); prevheights.resize(1); // Only 1 transaction. tx.vin[0].prevout.hash = txFirst[0]->GetId(); tx.vin[0].prevout.n = 0; tx.vin[0].scriptSig = CScript() << OP_1; // txFirst[0] is the 2nd block tx.vin[0].nSequence = chainActive.Tip()->nHeight + 1; prevheights[0] = baseheight + 1; tx.vout.resize(1); tx.vout[0].nValue = BLOCKSUBSIDY - HIGHFEE; tx.vout[0].scriptPubKey = CScript() << OP_1; tx.nLockTime = 0; hash = tx.GetId(); mempool.addUnchecked( hash, entry.Fee(HIGHFEE).Time(GetTime()).SpendsCoinbase(true).FromTx(tx)); { // Locktime passes. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransactionForCurrentBlock(config, tx, state, flags)); } // Sequence locks fail. BOOST_CHECK(!TestSequenceLocks(tx, flags)); // Sequence locks pass on 2nd block. BOOST_CHECK( SequenceLocks(tx, flags, &prevheights, CreateBlockIndex(chainActive.Tip()->nHeight + 2))); // Relative time locked. tx.vin[0].prevout.hash = txFirst[1]->GetId(); // txFirst[1] is the 3rd block. tx.vin[0].nSequence = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG | (((chainActive.Tip()->GetMedianTimePast() + 1 - chainActive[1]->GetMedianTimePast()) >> CTxIn::SEQUENCE_LOCKTIME_GRANULARITY) + 1); prevheights[0] = baseheight + 2; hash = tx.GetId(); mempool.addUnchecked(hash, entry.Time(GetTime()).FromTx(tx)); { // Locktime passes. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransactionForCurrentBlock(config, tx, state, flags)); } // Sequence locks fail. BOOST_CHECK(!TestSequenceLocks(tx, flags)); for (int i = 0; i < CBlockIndex::nMedianTimeSpan; i++) { // Trick the MedianTimePast. chainActive.Tip()->GetAncestor(chainActive.Tip()->nHeight - i)->nTime += 512; } // Sequence locks pass 512 seconds later. BOOST_CHECK( SequenceLocks(tx, flags, &prevheights, CreateBlockIndex(chainActive.Tip()->nHeight + 1))); for (int i = 0; i < CBlockIndex::nMedianTimeSpan; i++) { // Undo tricked MTP. chainActive.Tip()->GetAncestor(chainActive.Tip()->nHeight - i)->nTime -= 512; } // Absolute height locked. tx.vin[0].prevout.hash = txFirst[2]->GetId(); tx.vin[0].nSequence = CTxIn::SEQUENCE_FINAL - 1; prevheights[0] = baseheight + 3; tx.nLockTime = chainActive.Tip()->nHeight + 1; hash = tx.GetId(); mempool.addUnchecked(hash, entry.Time(GetTime()).FromTx(tx)); { // Locktime fails. GlobalConfig config; CValidationState state; BOOST_CHECK(!ContextualCheckTransactionForCurrentBlock(config, tx, state, flags)); BOOST_CHECK_EQUAL(state.GetRejectReason(), "bad-txns-nonfinal"); } // Sequence locks pass. BOOST_CHECK(TestSequenceLocks(tx, flags)); { // Locktime passes on 2nd block. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransaction( config, tx, state, chainActive.Tip()->nHeight + 2, chainActive.Tip()->GetMedianTimePast())); } // Absolute time locked. tx.vin[0].prevout.hash = txFirst[3]->GetId(); tx.nLockTime = chainActive.Tip()->GetMedianTimePast(); prevheights.resize(1); prevheights[0] = baseheight + 4; hash = tx.GetId(); mempool.addUnchecked(hash, entry.Time(GetTime()).FromTx(tx)); { // Locktime fails. GlobalConfig config; CValidationState state; BOOST_CHECK(!ContextualCheckTransactionForCurrentBlock(config, tx, state, flags)); BOOST_CHECK_EQUAL(state.GetRejectReason(), "bad-txns-nonfinal"); } // Sequence locks pass. BOOST_CHECK(TestSequenceLocks(tx, flags)); { // Locktime passes 1 second later. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransaction( config, tx, state, chainActive.Tip()->nHeight + 1, chainActive.Tip()->GetMedianTimePast() + 1)); } // mempool-dependent transactions (not added) tx.vin[0].prevout.hash = hash; prevheights[0] = chainActive.Tip()->nHeight + 1; tx.nLockTime = 0; tx.vin[0].nSequence = 0; { // Locktime passes. GlobalConfig config; CValidationState state; BOOST_CHECK(ContextualCheckTransactionForCurrentBlock(config, tx, state, flags)); } // Sequence locks pass. BOOST_CHECK(TestSequenceLocks(tx, flags)); tx.vin[0].nSequence = 1; // Sequence locks fail. BOOST_CHECK(!TestSequenceLocks(tx, flags)); tx.vin[0].nSequence = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG; // Sequence locks pass. BOOST_CHECK(TestSequenceLocks(tx, flags)); tx.vin[0].nSequence = CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG | 1; // Sequence locks fail. BOOST_CHECK(!TestSequenceLocks(tx, flags)); BOOST_CHECK( pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey)); // None of the of the absolute height/time locked tx should have made it // into the template because we still check IsFinalTx in CreateNewBlock, but // relative locked txs will if inconsistently added to mempool. For now // these will still generate a valid template until BIP68 soft fork. - BOOST_CHECK_EQUAL(pblocktemplate->block.vtx.size(), 3); + BOOST_CHECK_EQUAL(pblocktemplate->block.vtx.size(), 3UL); // However if we advance height by 1 and time by 512, all of them should be // mined. for (int i = 0; i < CBlockIndex::nMedianTimeSpan; i++) { // Trick the MedianTimePast. chainActive.Tip()->GetAncestor(chainActive.Tip()->nHeight - i)->nTime += 512; } chainActive.Tip()->nHeight++; SetMockTime(chainActive.Tip()->GetMedianTimePast() + 1); BOOST_CHECK( pblocktemplate = BlockAssembler(config, chainparams).CreateNewBlock(scriptPubKey)); - BOOST_CHECK_EQUAL(pblocktemplate->block.vtx.size(), 5); + BOOST_CHECK_EQUAL(pblocktemplate->block.vtx.size(), 5UL); chainActive.Tip()->nHeight--; SetMockTime(0); mempool.clear(); TestPackageSelection(chainparams, scriptPubKey, txFirst); fCheckpointsEnabled = true; } void CheckBlockMaxSize(const CChainParams &chainparams, uint64_t size, uint64_t expected) { GlobalConfig config; ForceSetArg("-blockmaxsize", std::to_string(size)); BlockAssembler ba(config, chainparams); BOOST_CHECK_EQUAL(ba.GetMaxGeneratedBlockSize(), expected); } BOOST_AUTO_TEST_CASE(BlockAssembler_construction) { GlobalConfig config; const CChainParams &chainparams = Params(); // We are working on a fake chain and need to protect ourselves. LOCK(cs_main); // Activate UAHF the dirty way const int64_t uahfHeight = config.GetChainParams().GetConsensus().uahfHeight; auto pindex = chainActive.Tip(); for (size_t i = 0; pindex && i < 5; i++) { pindex->nHeight = uahfHeight + 5 - i; pindex = pindex->pprev; } // Test around historical 1MB (plus one byte because that's mandatory) config.SetMaxBlockSize(ONE_MEGABYTE + 1); CheckBlockMaxSize(chainparams, 0, 1000); CheckBlockMaxSize(chainparams, 1000, 1000); CheckBlockMaxSize(chainparams, 1001, 1001); CheckBlockMaxSize(chainparams, 12345, 12345); CheckBlockMaxSize(chainparams, ONE_MEGABYTE - 1001, ONE_MEGABYTE - 1001); CheckBlockMaxSize(chainparams, ONE_MEGABYTE - 1000, ONE_MEGABYTE - 1000); CheckBlockMaxSize(chainparams, ONE_MEGABYTE - 999, ONE_MEGABYTE - 999); CheckBlockMaxSize(chainparams, ONE_MEGABYTE, ONE_MEGABYTE - 999); // Test around higher limit such as 8MB static const auto EIGHT_MEGABYTES = 8 * ONE_MEGABYTE; config.SetMaxBlockSize(EIGHT_MEGABYTES); CheckBlockMaxSize(chainparams, EIGHT_MEGABYTES - 1001, EIGHT_MEGABYTES - 1001); CheckBlockMaxSize(chainparams, EIGHT_MEGABYTES - 1000, EIGHT_MEGABYTES - 1000); CheckBlockMaxSize(chainparams, EIGHT_MEGABYTES - 999, EIGHT_MEGABYTES - 1000); CheckBlockMaxSize(chainparams, EIGHT_MEGABYTES, EIGHT_MEGABYTES - 1000); // Test around default cap config.SetMaxBlockSize(DEFAULT_MAX_BLOCK_SIZE); CheckBlockMaxSize(chainparams, DEFAULT_MAX_BLOCK_SIZE - 1001, DEFAULT_MAX_BLOCK_SIZE - 1001); CheckBlockMaxSize(chainparams, DEFAULT_MAX_BLOCK_SIZE - 1000, DEFAULT_MAX_BLOCK_SIZE - 1000); CheckBlockMaxSize(chainparams, DEFAULT_MAX_BLOCK_SIZE - 999, DEFAULT_MAX_BLOCK_SIZE - 1000); CheckBlockMaxSize(chainparams, DEFAULT_MAX_BLOCK_SIZE, DEFAULT_MAX_BLOCK_SIZE - 1000); // If the parameter is not specified, we use // DEFAULT_MAX_GENERATED_BLOCK_SIZE { ClearArg("-blockmaxsize"); BlockAssembler ba(config, chainparams); BOOST_CHECK_EQUAL(ba.GetMaxGeneratedBlockSize(), DEFAULT_MAX_GENERATED_BLOCK_SIZE); } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/multisig_tests.cpp b/src/test/multisig_tests.cpp index 659432cb9..b797d777e 100644 --- a/src/test/multisig_tests.cpp +++ b/src/test/multisig_tests.cpp @@ -1,359 +1,359 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "key.h" #include "keystore.h" #include "policy/policy.h" #include "script/interpreter.h" #include "script/ismine.h" #include "script/script.h" #include "script/script_error.h" #include "script/sign.h" #include "test/test_bitcoin.h" #include "uint256.h" #include typedef std::vector valtype; BOOST_FIXTURE_TEST_SUITE(multisig_tests, BasicTestingSetup) CScript sign_multisig(CScript scriptPubKey, std::vector keys, CTransaction transaction, int whichIn) { - uint256 hash = - SignatureHash(scriptPubKey, transaction, whichIn, SIGHASH_ALL, 0); + uint256 hash = SignatureHash(scriptPubKey, transaction, whichIn, + SIGHASH_ALL, Amount(0)); CScript result; // CHECKMULTISIG bug workaround result << OP_0; for (const CKey &key : keys) { std::vector vchSig; BOOST_CHECK(key.Sign(hash, vchSig)); vchSig.push_back(uint8_t(SIGHASH_ALL)); result << vchSig; } return result; } BOOST_AUTO_TEST_CASE(multisig_verify) { unsigned int flags = SCRIPT_VERIFY_P2SH | SCRIPT_VERIFY_STRICTENC; ScriptError err; CKey key[4]; Amount amount(0); for (int i = 0; i < 4; i++) key[i].MakeNewKey(true); CScript a_and_b; a_and_b << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CScript a_or_b; a_or_b << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CScript escrow; escrow << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; // Funding transaction CMutableTransaction txFrom; txFrom.vout.resize(3); txFrom.vout[0].scriptPubKey = a_and_b; txFrom.vout[1].scriptPubKey = a_or_b; txFrom.vout[2].scriptPubKey = escrow; // Spending transaction CMutableTransaction txTo[3]; for (int i = 0; i < 3; i++) { txTo[i].vin.resize(1); txTo[i].vout.resize(1); txTo[i].vin[0].prevout.n = i; txTo[i].vin[0].prevout.hash = txFrom.GetId(); - txTo[i].vout[0].nValue = 1; + txTo[i].vout[0].nValue = Amount(1); } std::vector keys; CScript s; // Test a AND b: keys.assign(1, key[0]); keys.push_back(key[1]); s = sign_multisig(a_and_b, keys, txTo[0], 0); BOOST_CHECK(VerifyScript( s, a_and_b, flags, MutableTransactionSignatureChecker(&txTo[0], 0, amount), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); for (int i = 0; i < 4; i++) { keys.assign(1, key[i]); s = sign_multisig(a_and_b, keys, txTo[0], 0); BOOST_CHECK_MESSAGE( !VerifyScript( s, a_and_b, flags, MutableTransactionSignatureChecker(&txTo[0], 0, amount), &err), strprintf("a&b 1: %d", i)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_INVALID_STACK_OPERATION, ScriptErrorString(err)); keys.assign(1, key[1]); keys.push_back(key[i]); s = sign_multisig(a_and_b, keys, txTo[0], 0); BOOST_CHECK_MESSAGE( !VerifyScript( s, a_and_b, flags, MutableTransactionSignatureChecker(&txTo[0], 0, amount), &err), strprintf("a&b 2: %d", i)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); } // Test a OR b: for (int i = 0; i < 4; i++) { keys.assign(1, key[i]); s = sign_multisig(a_or_b, keys, txTo[1], 0); if (i == 0 || i == 1) { BOOST_CHECK_MESSAGE(VerifyScript(s, a_or_b, flags, MutableTransactionSignatureChecker( &txTo[1], 0, amount), &err), strprintf("a|b: %d", i)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } else { BOOST_CHECK_MESSAGE( !VerifyScript( s, a_or_b, flags, MutableTransactionSignatureChecker(&txTo[1], 0, amount), &err), strprintf("a|b: %d", i)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); } } s.clear(); s << OP_0 << OP_1; BOOST_CHECK(!VerifyScript( s, a_or_b, flags, MutableTransactionSignatureChecker(&txTo[1], 0, amount), &err)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_SIG_DER, ScriptErrorString(err)); for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) { keys.assign(1, key[i]); keys.push_back(key[j]); s = sign_multisig(escrow, keys, txTo[2], 0); if (i < j && i < 3 && j < 3) { BOOST_CHECK_MESSAGE( VerifyScript( s, escrow, flags, MutableTransactionSignatureChecker(&txTo[2], 0, amount), &err), strprintf("escrow 1: %d %d", i, j)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_OK, ScriptErrorString(err)); } else { BOOST_CHECK_MESSAGE( !VerifyScript( s, escrow, flags, MutableTransactionSignatureChecker(&txTo[2], 0, amount), &err), strprintf("escrow 2: %d %d", i, j)); BOOST_CHECK_MESSAGE(err == SCRIPT_ERR_EVAL_FALSE, ScriptErrorString(err)); } } } BOOST_AUTO_TEST_CASE(multisig_IsStandard) { CKey key[4]; for (int i = 0; i < 4; i++) key[i].MakeNewKey(true); txnouttype whichType; CScript a_and_b; a_and_b << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; BOOST_CHECK(::IsStandard(a_and_b, whichType)); CScript a_or_b; a_or_b << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; BOOST_CHECK(::IsStandard(a_or_b, whichType)); CScript escrow; escrow << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; BOOST_CHECK(::IsStandard(escrow, whichType)); CScript one_of_four; one_of_four << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << ToByteVector(key[3].GetPubKey()) << OP_4 << OP_CHECKMULTISIG; BOOST_CHECK(!::IsStandard(one_of_four, whichType)); CScript malformed[6]; malformed[0] << OP_3 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; malformed[1] << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; malformed[2] << OP_0 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; malformed[3] << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_0 << OP_CHECKMULTISIG; malformed[4] << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_CHECKMULTISIG; malformed[5] << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()); for (int i = 0; i < 6; i++) BOOST_CHECK(!::IsStandard(malformed[i], whichType)); } BOOST_AUTO_TEST_CASE(multisig_Solver1) { // Tests Solver() that returns lists of keys that are required to satisfy a // ScriptPubKey // // Also tests IsMine() and ExtractDestination() // // Note: ExtractDestination for the multisignature transactions always // returns false for this release, even if you have one key that would // satisfy an (a|b) or 2-of-3 keys needed to spend an escrow transaction. // CBasicKeyStore keystore, emptykeystore, partialkeystore; CKey key[3]; CTxDestination keyaddr[3]; for (int i = 0; i < 3; i++) { key[i].MakeNewKey(true); keystore.AddKey(key[i]); keyaddr[i] = key[i].GetPubKey().GetID(); } partialkeystore.AddKey(key[0]); { std::vector solutions; txnouttype whichType; CScript s; s << ToByteVector(key[0].GetPubKey()) << OP_CHECKSIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK(solutions.size() == 1); CTxDestination addr; BOOST_CHECK(ExtractDestination(s, addr)); BOOST_CHECK(addr == keyaddr[0]); BOOST_CHECK(IsMine(keystore, s)); BOOST_CHECK(!IsMine(emptykeystore, s)); } { std::vector solutions; txnouttype whichType; CScript s; s << OP_DUP << OP_HASH160 << ToByteVector(key[0].GetPubKey().GetID()) << OP_EQUALVERIFY << OP_CHECKSIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK(solutions.size() == 1); CTxDestination addr; BOOST_CHECK(ExtractDestination(s, addr)); BOOST_CHECK(addr == keyaddr[0]); BOOST_CHECK(IsMine(keystore, s)); BOOST_CHECK(!IsMine(emptykeystore, s)); } { std::vector solutions; txnouttype whichType; CScript s; s << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK_EQUAL(solutions.size(), 4U); CTxDestination addr; BOOST_CHECK(!ExtractDestination(s, addr)); BOOST_CHECK(IsMine(keystore, s)); BOOST_CHECK(!IsMine(emptykeystore, s)); BOOST_CHECK(!IsMine(partialkeystore, s)); } { std::vector solutions; txnouttype whichType; CScript s; s << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK_EQUAL(solutions.size(), 4U); std::vector addrs; int nRequired; BOOST_CHECK(ExtractDestinations(s, whichType, addrs, nRequired)); BOOST_CHECK(addrs[0] == keyaddr[0]); BOOST_CHECK(addrs[1] == keyaddr[1]); BOOST_CHECK(nRequired == 1); BOOST_CHECK(IsMine(keystore, s)); BOOST_CHECK(!IsMine(emptykeystore, s)); BOOST_CHECK(!IsMine(partialkeystore, s)); } { std::vector solutions; txnouttype whichType; CScript s; s << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; BOOST_CHECK(Solver(s, whichType, solutions)); BOOST_CHECK(solutions.size() == 5); } } BOOST_AUTO_TEST_CASE(multisig_Sign) { // Test SignSignature() (and therefore the version of Solver() that signs // transactions) CBasicKeyStore keystore; CKey key[4]; for (int i = 0; i < 4; i++) { key[i].MakeNewKey(true); keystore.AddKey(key[i]); } CScript a_and_b; a_and_b << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CScript a_or_b; a_or_b << OP_1 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << OP_2 << OP_CHECKMULTISIG; CScript escrow; escrow << OP_2 << ToByteVector(key[0].GetPubKey()) << ToByteVector(key[1].GetPubKey()) << ToByteVector(key[2].GetPubKey()) << OP_3 << OP_CHECKMULTISIG; // Funding transaction CMutableTransaction txFrom; txFrom.vout.resize(3); txFrom.vout[0].scriptPubKey = a_and_b; txFrom.vout[1].scriptPubKey = a_or_b; txFrom.vout[2].scriptPubKey = escrow; // Spending transaction CMutableTransaction txTo[3]; for (int i = 0; i < 3; i++) { txTo[i].vin.resize(1); txTo[i].vout.resize(1); txTo[i].vin[0].prevout.n = i; txTo[i].vin[0].prevout.hash = txFrom.GetId(); - txTo[i].vout[0].nValue = 1; + txTo[i].vout[0].nValue = Amount(1); } for (int i = 0; i < 3; i++) { BOOST_CHECK_MESSAGE(SignSignature(keystore, txFrom, txTo[i], 0, SIGHASH_ALL | SIGHASH_FORKID), strprintf("SignSignature %d", i)); } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/policyestimator_tests.cpp b/src/test/policyestimator_tests.cpp index 0cbd5c2d7..1aca4591e 100644 --- a/src/test/policyestimator_tests.cpp +++ b/src/test/policyestimator_tests.cpp @@ -1,242 +1,242 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "policy/policy.h" #include "policy/fees.h" #include "txmempool.h" #include "uint256.h" #include "util.h" #include "test/test_bitcoin.h" #include BOOST_FIXTURE_TEST_SUITE(policyestimator_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(BlockPolicyEstimates) { - CTxMemPool mpool(CFeeRate(1000)); + CTxMemPool mpool(CFeeRate(Amount(1000))); TestMemPoolEntryHelper entry; Amount basefee(2000); Amount deltaFee(100); std::vector feeV; // Populate vectors of increasing fees for (int j = 0; j < 10; j++) { feeV.push_back((j + 1) * basefee); } // Store the hashes of transactions that have been added to the mempool by // their associate fee txHashes[j] is populated with transactions either of // fee = basefee * (j+1) std::vector txHashes[10]; // Create a transaction template CScript garbage; for (unsigned int i = 0; i < 128; i++) garbage.push_back('X'); CMutableTransaction tx; tx.vin.resize(1); tx.vin[0].scriptSig = garbage; tx.vout.resize(1); - tx.vout[0].nValue = 0LL; + tx.vout[0].nValue = Amount(0); CFeeRate baseRate(basefee, GetTransactionSize(tx)); // Create a fake block std::vector block; int blocknum = 0; // Loop through 200 blocks // At a decay .998 and 4 fee transactions per block // This makes the tx count about 1.33 per bucket, above the 1 threshold while (blocknum < 200) { // For each fee for (int j = 0; j < 10; j++) { // add 4 fee txs for (int k = 0; k < 4; k++) { // make transaction unique tx.vin[0].prevout.n = 10000 * blocknum + 100 * j + k; uint256 hash = tx.GetId(); mpool.addUnchecked(hash, entry.Fee(feeV[j]) .Time(GetTime()) .Priority(0) .Height(blocknum) .FromTx(tx, &mpool)); txHashes[j].push_back(hash); } } // Create blocks where higher fee txs are included more often for (int h = 0; h <= blocknum % 10; h++) { // 10/10 blocks add highest fee transactions // 9/10 blocks add 2nd highest and so on until ... // 1/10 blocks add lowest fee transactions while (txHashes[9 - h].size()) { CTransactionRef ptx = mpool.get(txHashes[9 - h].back()); if (ptx) block.push_back(ptx); txHashes[9 - h].pop_back(); } } mpool.removeForBlock(block, ++blocknum); block.clear(); if (blocknum == 30) { // At this point we should need to combine 5 buckets to get enough // data points. So estimateFee(1,2,3) should fail and estimateFee(4) // should return somewhere around 8*baserate. estimateFee(4) %'s // are 100,100,100,100,90 = average 98% - BOOST_CHECK(mpool.estimateFee(1) == CFeeRate(0)); - BOOST_CHECK(mpool.estimateFee(2) == CFeeRate(0)); - BOOST_CHECK(mpool.estimateFee(3) == CFeeRate(0)); + BOOST_CHECK(mpool.estimateFee(1) == CFeeRate(Amount(0))); + BOOST_CHECK(mpool.estimateFee(2) == CFeeRate(Amount(0))); + BOOST_CHECK(mpool.estimateFee(3) == CFeeRate(Amount(0))); BOOST_CHECK(mpool.estimateFee(4).GetFeePerK() < 8 * baseRate.GetFeePerK() + deltaFee); BOOST_CHECK(mpool.estimateFee(4).GetFeePerK() > 8 * baseRate.GetFeePerK() - deltaFee); int answerFound; BOOST_CHECK(mpool.estimateSmartFee(1, &answerFound) == mpool.estimateFee(4) && answerFound == 4); BOOST_CHECK(mpool.estimateSmartFee(3, &answerFound) == mpool.estimateFee(4) && answerFound == 4); BOOST_CHECK(mpool.estimateSmartFee(4, &answerFound) == mpool.estimateFee(4) && answerFound == 4); BOOST_CHECK(mpool.estimateSmartFee(8, &answerFound) == mpool.estimateFee(8) && answerFound == 8); } } std::vector origFeeEst; // Highest feerate is 10*baseRate and gets in all blocks, second highest // feerate is 9*baseRate and gets in 9/10 blocks = 90%, third highest // feerate is 8*base rate, and gets in 8/10 blocks = 80%, so estimateFee(1) // would return 10*baseRate but is hardcoded to return failure. Second // highest feerate has 100% chance of being included by 2 blocks, so // estimateFee(2) should return 9*baseRate etc... for (int i = 1; i < 10; i++) { origFeeEst.push_back(mpool.estimateFee(i).GetFeePerK()); // Fee estimates should be monotonically decreasing if (i > 2) { BOOST_CHECK(origFeeEst[i - 1] <= origFeeEst[i - 2]); } int mult = 11 - i; if (i > 1) { BOOST_CHECK(origFeeEst[i - 1] < mult * baseRate.GetFeePerK() + deltaFee); BOOST_CHECK(origFeeEst[i - 1] > mult * baseRate.GetFeePerK() - deltaFee); } else { - BOOST_CHECK(origFeeEst[i - 1] == CFeeRate(0).GetFeePerK()); + BOOST_CHECK(origFeeEst[i - 1] == CFeeRate(Amount(0)).GetFeePerK()); } } // Mine 50 more blocks with no transactions happening, estimates shouldn't // change. We haven't decayed the moving average enough so we still have // enough data points in every bucket while (blocknum < 250) mpool.removeForBlock(block, ++blocknum); - BOOST_CHECK(mpool.estimateFee(1) == CFeeRate(0)); + BOOST_CHECK(mpool.estimateFee(1) == CFeeRate(Amount(0))); for (int i = 2; i < 10; i++) { BOOST_CHECK(mpool.estimateFee(i).GetFeePerK() < origFeeEst[i - 1] + deltaFee); BOOST_CHECK(mpool.estimateFee(i).GetFeePerK() > origFeeEst[i - 1] - deltaFee); } // Mine 15 more blocks with lots of transactions happening and not getting // mined. Estimates should go up while (blocknum < 265) { // For each fee multiple for (int j = 0; j < 10; j++) { // add 4 fee txs for (int k = 0; k < 4; k++) { tx.vin[0].prevout.n = 10000 * blocknum + 100 * j + k; uint256 txid = tx.GetId(); mpool.addUnchecked(txid, entry.Fee(feeV[j]) .Time(GetTime()) .Priority(0) .Height(blocknum) .FromTx(tx, &mpool)); txHashes[j].push_back(txid); } } mpool.removeForBlock(block, ++blocknum); } int answerFound; for (int i = 1; i < 10; i++) { - BOOST_CHECK(mpool.estimateFee(i) == CFeeRate(0) || + BOOST_CHECK(mpool.estimateFee(i) == CFeeRate(Amount(0)) || mpool.estimateFee(i).GetFeePerK() > origFeeEst[i - 1] - deltaFee); Amount a1 = mpool.estimateSmartFee(i, &answerFound).GetFeePerK(); Amount a2 = origFeeEst[answerFound - 1] - deltaFee; BOOST_CHECK(a1 > a2); } // Mine all those transactions // Estimates should still not be below original for (int j = 0; j < 10; j++) { while (txHashes[j].size()) { CTransactionRef ptx = mpool.get(txHashes[j].back()); if (ptx) block.push_back(ptx); txHashes[j].pop_back(); } } mpool.removeForBlock(block, 265); block.clear(); - BOOST_CHECK(mpool.estimateFee(1) == CFeeRate(0)); + BOOST_CHECK(mpool.estimateFee(1) == CFeeRate(Amount(0))); for (int i = 2; i < 10; i++) { BOOST_CHECK(mpool.estimateFee(i).GetFeePerK() > origFeeEst[i - 1] - deltaFee); } // Mine 200 more blocks where everything is mined every block // Estimates should be below original estimates while (blocknum < 465) { // For each fee multiple for (int j = 0; j < 10; j++) { // add 4 fee txs for (int k = 0; k < 4; k++) { tx.vin[0].prevout.n = 10000 * blocknum + 100 * j + k; uint256 txid = tx.GetId(); mpool.addUnchecked(txid, entry.Fee(feeV[j]) .Time(GetTime()) .Priority(0) .Height(blocknum) .FromTx(tx, &mpool)); CTransactionRef ptx = mpool.get(txid); if (ptx) block.push_back(ptx); } } mpool.removeForBlock(block, ++blocknum); block.clear(); } - BOOST_CHECK(mpool.estimateFee(1) == CFeeRate(0)); + BOOST_CHECK(mpool.estimateFee(1) == CFeeRate(Amount(0))); for (int i = 2; i < 10; i++) { BOOST_CHECK(mpool.estimateFee(i).GetFeePerK() < origFeeEst[i - 1] - deltaFee); } // Test that if the mempool is limited, estimateSmartFee won't return a // value below the mempool min fee and that estimateSmartPriority returns // essentially an infinite value mpool.addUnchecked( tx.GetId(), entry.Fee(feeV[5]).Time(GetTime()).Priority(0).Height(blocknum).FromTx( tx, &mpool)); // evict that transaction which should set a mempool min fee of // minRelayTxFee + feeV[5] mpool.TrimToSize(1); BOOST_CHECK(mpool.GetMinFee(1).GetFeePerK() > feeV[5]); for (int i = 1; i < 10; i++) { BOOST_CHECK(mpool.estimateSmartFee(i).GetFeePerK() >= mpool.estimateFee(i).GetFeePerK()); BOOST_CHECK(mpool.estimateSmartFee(i).GetFeePerK() >= mpool.GetMinFee(1).GetFeePerK()); BOOST_CHECK(mpool.estimateSmartPriority(i) == double(INF_PRIORITY.GetSatoshis())); } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/random_tests.cpp b/src/test/random_tests.cpp index bb4618f00..b01259369 100644 --- a/src/test/random_tests.cpp +++ b/src/test/random_tests.cpp @@ -1,51 +1,51 @@ // Copyright (c) 2017 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "random.h" #include "test/test_bitcoin.h" #include BOOST_FIXTURE_TEST_SUITE(random_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(osrandom_tests) { BOOST_CHECK(Random_SanityCheck()); } BOOST_AUTO_TEST_CASE(fastrandom_tests) { // Check that deterministic FastRandomContexts are deterministic FastRandomContext ctx1(true); FastRandomContext ctx2(true); BOOST_CHECK_EQUAL(ctx1.rand32(), ctx2.rand32()); BOOST_CHECK_EQUAL(ctx1.rand32(), ctx2.rand32()); BOOST_CHECK_EQUAL(ctx1.rand64(), ctx2.rand64()); BOOST_CHECK_EQUAL(ctx1.randbits(3), ctx2.randbits(3)); BOOST_CHECK_EQUAL(ctx1.randbits(7), ctx2.randbits(7)); BOOST_CHECK_EQUAL(ctx1.rand32(), ctx2.rand32()); BOOST_CHECK_EQUAL(ctx1.randbits(3), ctx2.randbits(3)); // Check that a nondeterministic ones are not FastRandomContext ctx3; FastRandomContext ctx4; // extremely unlikely to be equal BOOST_CHECK(ctx3.rand64() != ctx4.rand64()); } BOOST_AUTO_TEST_CASE(fastrandom_randbits) { FastRandomContext ctx1; FastRandomContext ctx2; for (int bits = 0; bits < 63; ++bits) { for (int j = 0; j < 1000; ++j) { uint64_t rangebits = ctx1.randbits(bits); - BOOST_CHECK_EQUAL(rangebits >> bits, 0); + BOOST_CHECK_EQUAL(rangebits >> bits, uint64_t(0)); uint64_t range = uint64_t(1) << bits | rangebits; uint64_t rand = ctx2.randrange(range); BOOST_CHECK(rand < range); } } } BOOST_AUTO_TEST_SUITE_END()