diff --git a/src/scheduler.h b/src/scheduler.h index 1e62f32b3..c8c668bb0 100644 --- a/src/scheduler.h +++ b/src/scheduler.h @@ -1,152 +1,158 @@ // Copyright (c) 2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SCHEDULER_H #define BITCOIN_SCHEDULER_H #include <sync.h> #include <condition_variable> #include <functional> #include <list> #include <map> -// -// Simple class for background tasks that should be run periodically or once -// "after a while" -// -// Usage: -// -// CScheduler* s = new CScheduler(); -// // Assuming a: void doSomething() { } -// s->scheduleFromNow(doSomething, std::chrono::milliseconds{11}); -// s->scheduleFromNow([=] { this->func(argument); }, -// std::chrono::milliseconds{3}); -// std::thread *t = new std::thread([?] { s->serviceQueue(); }); -// -// ... then at program shutdown, make sure to call stop() to clean up the -// thread(s) running serviceQueue: -// s->stop(); -// t->join(); -// delete t; -// delete s; // Must be done after thread is interrupted/joined. -// +/** + * Simple class for background tasks that should be run periodically or once + * "after a while" + * + * Usage: + * + * CScheduler* s = new CScheduler(); + * * Assuming a: void doSomething() { } + * s->scheduleFromNow(doSomething, std::chrono::milliseconds{11}); + * s->scheduleFromNow([=] { this->func(argument); }, + * std::chrono::milliseconds{3}); + * std::thread *t = new std::thread([?] { s->serviceQueue(); }); + * + * ... then at program shutdown, make sure to call stop() to clean up the + * thread(s) running serviceQueue: + * s->stop(); + * t->join(); + * delete t; + * delete s; // Must be done after thread is interrupted/joined. + */ class CScheduler { public: CScheduler(); ~CScheduler(); typedef std::function<void()> Function; typedef std::function<bool()> Predicate; - // Call func at/after time t + /** Call func at/after time t */ void schedule(Function f, std::chrono::system_clock::time_point t); /** Call f once after the delta has passed */ void scheduleFromNow(Function f, std::chrono::milliseconds delta) { schedule(std::move(f), std::chrono::system_clock::now() + delta); } /** * Repeat p until it return false. First run is after delta has passed once. * * The timing is not exact: Every time p is finished, it is rescheduled to * run again after delta. If you need more accurate scheduling, don't use * this method. */ void scheduleEvery(Predicate p, std::chrono::milliseconds delta); /** * Mock the scheduler to fast forward in time. * Iterates through items on taskQueue and reschedules them * to be delta_seconds sooner. */ void MockForward(std::chrono::seconds delta_seconds); - // Services the queue 'forever'. Should be run in a thread, and interrupted - // using boost::interrupt_thread + /** + * Services the queue 'forever'. Should be run in a thread, and interrupted + * using boost::interrupt_thread + */ void serviceQueue(); /** * Tell any threads running serviceQueue to stop as soon as the current * task is done */ void stop() { WITH_LOCK(newTaskMutex, stopRequested = true); newTaskScheduled.notify_all(); } /** * Tell any threads running serviceQueue to stop when there is no work * left to be done */ void StopWhenDrained() { WITH_LOCK(newTaskMutex, stopWhenEmpty = true); newTaskScheduled.notify_all(); } - // Returns number of tasks waiting to be serviced, - // and first and last task times + /** + * Returns number of tasks waiting to be serviced, + * and first and last task times + */ size_t getQueueInfo(std::chrono::system_clock::time_point &first, std::chrono::system_clock::time_point &last) const; - // Returns true if there are threads actively running in serviceQueue() + /** Returns true if there are threads actively running in serviceQueue() */ bool AreThreadsServicingQueue() const; private: mutable Mutex newTaskMutex; std::condition_variable newTaskScheduled; std::multimap<std::chrono::system_clock::time_point, Function> taskQueue GUARDED_BY(newTaskMutex); int nThreadsServicingQueue GUARDED_BY(newTaskMutex){0}; bool stopRequested GUARDED_BY(newTaskMutex){false}; bool stopWhenEmpty GUARDED_BY(newTaskMutex){false}; bool shouldStop() const EXCLUSIVE_LOCKS_REQUIRED(newTaskMutex) { return stopRequested || (stopWhenEmpty && taskQueue.empty()); } }; /** * Class used by CScheduler clients which may schedule multiple jobs * which are required to be run serially. Jobs may not be run on the * same thread, but no two jobs will be executed * at the same time and memory will be release-acquire consistent * (the scheduler will internally do an acquire before invoking a callback * as well as a release at the end). In practice this means that a callback * B() will be able to observe all of the effects of callback A() which executed * before it. */ class SingleThreadedSchedulerClient { private: CScheduler *m_pscheduler; RecursiveMutex m_cs_callbacks_pending; std::list<std::function<void()>> m_callbacks_pending GUARDED_BY(m_cs_callbacks_pending); bool m_are_callbacks_running GUARDED_BY(m_cs_callbacks_pending) = false; void MaybeScheduleProcessQueue(); void ProcessQueue(); public: explicit SingleThreadedSchedulerClient(CScheduler *pschedulerIn) : m_pscheduler(pschedulerIn) {} /** * Add a callback to be executed. Callbacks are executed serially * and memory is release-acquire consistent between callback executions. * Practially, this means that callbacks can behave as if they are executed * in order by a single thread. */ void AddToProcessQueue(std::function<void()> func); - // Processes all remaining queue members on the calling thread, blocking - // until queue is empty. Must be called after the CScheduler has no - // remaining processing threads! + /** + * Processes all remaining queue members on the calling thread, blocking + * until queue is empty. + * Must be called after the CScheduler has no remaining processing threads! + */ void EmptyQueue(); size_t CallbacksPending(); }; #endif // BITCOIN_SCHEDULER_H