diff --git a/test/functional/abc-replay-protection.py b/test/functional/abc-replay-protection.py index 45ccdff12..0cf0c2f53 100755 --- a/test/functional/abc-replay-protection.py +++ b/test/functional/abc-replay-protection.py @@ -1,307 +1,306 @@ #!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Copyright (c) 2017 The Bitcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """ This test checks activation of UAHF and the different consensus related to this activation. It is derived from the much more complex p2p-fullblocktest. """ from test_framework.test_framework import ComparisonTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error from test_framework.comptool import TestManager, TestInstance, RejectResult from test_framework.blocktools import * import time from test_framework.key import CECKey from test_framework.script import * # far into the future REPLAY_PROTECTION_START_TIME = 2000000000 # Error due to invalid signature INVALID_SIGNATURE_ERROR = b'mandatory-script-verify-flag-failed (Signature must be zero for failed CHECK(MULTI)SIG operation)' RPC_INVALID_SIGNATURE_ERROR = "16: " + \ INVALID_SIGNATURE_ERROR.decode("utf-8") class PreviousSpendableOutput(object): def __init__(self, tx=CTransaction(), n=-1): self.tx = tx - self.n = n # the output we're spending + self.n = n class ReplayProtectionTest(ComparisonTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True self.block_heights = {} self.tip = None self.blocks = {} self.extra_args = [['-whitelist=127.0.0.1', "-replayprotectionactivationtime=%d" % REPLAY_PROTECTION_START_TIME]] def run_test(self): self.test = TestManager(self, self.options.tmpdir) self.test.add_all_connections(self.nodes) network_thread_start() self.nodes[0].setmocktime(REPLAY_PROTECTION_START_TIME) self.test.run() def next_block(self, number): if self.tip == None: base_block_hash = self.genesis_hash block_time = int(time.time()) + 1 else: base_block_hash = self.tip.sha256 block_time = self.tip.nTime + 1 # First create the coinbase height = self.block_heights[base_block_hash] + 1 coinbase = create_coinbase(height) coinbase.rehash() block = create_block(base_block_hash, coinbase, block_time) # Do PoW, which is cheap on regnet block.solve() self.tip = block self.block_heights[block.sha256] = height assert number not in self.blocks self.blocks[number] = block return block def get_tests(self): self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) self.block_heights[self.genesis_hash] = 0 spendable_outputs = [] # save the current tip so it can be spent by a later block def save_spendable_output(): spendable_outputs.append(self.tip) # get an output that we previously marked as spendable def get_spendable_output(): return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0) # returns a test case that asserts that the current tip was accepted def accepted(): return TestInstance([[self.tip, True]]) # returns a test case that asserts that the current tip was rejected def rejected(reject=None): if reject is None: return TestInstance([[self.tip, False]]) else: return TestInstance([[self.tip, reject]]) # move the tip back to a previous block def tip(number): self.tip = self.blocks[number] # adds transactions to the block and updates state def update_block(block_number, new_transactions): - [tx.rehash() for tx in new_transactions] block = self.blocks[block_number] block.vtx.extend(new_transactions) old_sha256 = block.sha256 make_conform_to_ctor(block) block.hashMerkleRoot = block.calc_merkle_root() block.solve() # Update the internal state just like in next_block self.tip = block if block.sha256 != old_sha256: self.block_heights[ block.sha256] = self.block_heights[old_sha256] del self.block_heights[old_sha256] self.blocks[block_number] = block return block - # shorthand for functions + # shorthand block = self.next_block node = self.nodes[0] # Create a new block block(0) save_spendable_output() yield accepted() # Now we need that block to mature so we can spend the coinbase. test = TestInstance(sync_every_block=False) for i in range(99): block(5000 + i) test.blocks_and_transactions.append([self.tip, True]) save_spendable_output() yield test # collect spendable outputs now to avoid cluttering the code later on out = [] for i in range(100): out.append(get_spendable_output()) # Generate a key pair to test P2SH sigops count private_key = CECKey() private_key.set_secretbytes(b"replayprotection") public_key = private_key.get_pubkey() # This is a little handier to use than the version in blocktools.py def create_fund_and_spend_tx(spend, forkvalue=0): # Fund transaction script = CScript([public_key, OP_CHECKSIG]) txfund = create_transaction( spend.tx, spend.n, b'', 50 * COIN, script) txfund.rehash() # Spend transaction txspend = CTransaction() txspend.vout.append(CTxOut(50 * COIN - 1000, CScript([OP_TRUE]))) txspend.vin.append(CTxIn(COutPoint(txfund.sha256, 0), b'')) # Sign the transaction sighashtype = (forkvalue << 8) | SIGHASH_ALL | SIGHASH_FORKID sighash = SignatureHashForkId( script, txspend, 0, sighashtype, 50 * COIN) sig = private_key.sign(sighash) + \ bytes(bytearray([SIGHASH_ALL | SIGHASH_FORKID])) txspend.vin[0].scriptSig = CScript([sig]) txspend.rehash() return [txfund, txspend] def send_transaction_to_mempool(tx): tx_id = node.sendrawtransaction(ToHex(tx)) assert(tx_id in set(node.getrawmempool())) return tx_id # Before the fork, no replay protection required to get in the mempool. txns = create_fund_and_spend_tx(out[0]) send_transaction_to_mempool(txns[0]) send_transaction_to_mempool(txns[1]) # And txns get mined in a block properly. block(1) update_block(1, txns) yield accepted() # Replay protected transactions are rejected. replay_txns = create_fund_and_spend_tx(out[1], 0xffdead) send_transaction_to_mempool(replay_txns[0]) assert_raises_rpc_error(-26, RPC_INVALID_SIGNATURE_ERROR, node.sendrawtransaction, ToHex(replay_txns[1])) # And block containing them are rejected as well. block(2) update_block(2, replay_txns) yield rejected(RejectResult(16, b'blk-bad-inputs')) # Rewind bad block tip(1) # Create a block that would activate the replay protection. bfork = block(5555) bfork.nTime = REPLAY_PROTECTION_START_TIME - 1 update_block(5555, []) yield accepted() for i in range(5): block(5100 + i) test.blocks_and_transactions.append([self.tip, True]) yield test # Check we are just before the activation time assert_equal(node.getblockheader(node.getbestblockhash())['mediantime'], REPLAY_PROTECTION_START_TIME - 1) # We are just before the fork, replay protected txns still are rejected assert_raises_rpc_error(-26, RPC_INVALID_SIGNATURE_ERROR, node.sendrawtransaction, ToHex(replay_txns[1])) block(3) update_block(3, replay_txns) yield rejected(RejectResult(16, b'blk-bad-inputs')) # Rewind bad block tip(5104) # Send some non replay protected txns in the mempool to check # they get cleaned at activation. txns = create_fund_and_spend_tx(out[2]) send_transaction_to_mempool(txns[0]) tx_id = send_transaction_to_mempool(txns[1]) # Activate the replay protection block(5556) yield accepted() # Check we just activated the replay protection assert_equal(node.getblockheader(node.getbestblockhash())['mediantime'], REPLAY_PROTECTION_START_TIME) # Non replay protected transactions are not valid anymore, # so they should be removed from the mempool. assert(tx_id not in set(node.getrawmempool())) # Good old transactions are now invalid. send_transaction_to_mempool(txns[0]) assert_raises_rpc_error(-26, RPC_INVALID_SIGNATURE_ERROR, node.sendrawtransaction, ToHex(txns[1])) # They also cannot be mined block(4) update_block(4, txns) yield rejected(RejectResult(16, b'blk-bad-inputs')) # Rewind bad block tip(5556) # The replay protected transaction is now valid replay_tx0_id = send_transaction_to_mempool(replay_txns[0]) replay_tx1_id = send_transaction_to_mempool(replay_txns[1]) # Make sure the transaction are ready to be mined. tmpl = node.getblocktemplate() found_id0 = False found_id1 = False for txn in tmpl['transactions']: txid = txn['txid'] if txid == replay_tx0_id: found_id0 = True elif txid == replay_tx1_id: found_id1 = True assert(found_id0 and found_id1) # And the mempool is still in good shape. assert(replay_tx0_id in set(node.getrawmempool())) assert(replay_tx1_id in set(node.getrawmempool())) # They also can also be mined b5 = block(5) update_block(5, replay_txns) yield accepted() # Ok, now we check if a reorg work properly accross the activation. postforkblockid = node.getbestblockhash() node.invalidateblock(postforkblockid) assert(replay_tx0_id in set(node.getrawmempool())) assert(replay_tx1_id in set(node.getrawmempool())) # Deactivating replay protection. forkblockid = node.getbestblockhash() node.invalidateblock(forkblockid) assert(replay_tx0_id not in set(node.getrawmempool())) assert(replay_tx1_id not in set(node.getrawmempool())) # Check that we also do it properly on deeper reorg. node.reconsiderblock(forkblockid) node.reconsiderblock(postforkblockid) node.invalidateblock(forkblockid) assert(replay_tx0_id not in set(node.getrawmempool())) assert(replay_tx1_id not in set(node.getrawmempool())) if __name__ == '__main__': ReplayProtectionTest().main()