diff --git a/src/net.cpp b/src/net.cpp
index 2d6573f7f..16d9527ee 100644
--- a/src/net.cpp
+++ b/src/net.cpp
@@ -1,2707 +1,2671 @@
 // Copyright (c) 2009-2010 Satoshi Nakamoto
 // Copyright (c) 2009-2015 The Bitcoin Core developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #if defined(HAVE_CONFIG_H)
 #include "config/bitcoin-config.h"
 #endif
 
 #include "net.h"
 
 #include "addrman.h"
 #include "chainparams.h"
 #include "clientversion.h"
 #include "consensus/consensus.h"
 #include "crypto/common.h"
 #include "crypto/sha256.h"
 #include "hash.h"
 #include "primitives/transaction.h"
 #include "netbase.h"
 #include "scheduler.h"
 #include "ui_interface.h"
 #include "utilstrencodings.h"
 
 #ifdef WIN32
 #include <string.h>
 #else
 #include <fcntl.h>
 #endif
 
 #ifdef USE_UPNP
 #include <miniupnpc/miniupnpc.h>
 #include <miniupnpc/miniwget.h>
 #include <miniupnpc/upnpcommands.h>
 #include <miniupnpc/upnperrors.h>
 #endif
 
 #include <boost/filesystem.hpp>
 #include <boost/thread.hpp>
 
 #include <math.h>
 
 // Dump addresses to peers.dat and banlist.dat every 15 minutes (900s)
 #define DUMP_ADDRESSES_INTERVAL 900
 
 // We add a random period time (0 to 1 seconds) to feeler connections to prevent synchronization.
 #define FEELER_SLEEP_WINDOW 1
 
 #if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
 #define MSG_NOSIGNAL 0
 #endif
 
 // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h.
 // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version.
 #ifdef WIN32
 #ifndef PROTECTION_LEVEL_UNRESTRICTED
 #define PROTECTION_LEVEL_UNRESTRICTED 10
 #endif
 #ifndef IPV6_PROTECTION_LEVEL
 #define IPV6_PROTECTION_LEVEL 23
 #endif
 #endif
 
 const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
 
 static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("netgroup")[0:8]
 static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // SHA256("localhostnonce")[0:8]
 //
 // Global state variables
 //
 bool fDiscover = true;
 bool fListen = true;
 bool fRelayTxes = true;
 CCriticalSection cs_mapLocalHost;
 std::map<CNetAddr, LocalServiceInfo> mapLocalHost;
 static bool vfLimited[NET_MAX] = {};
 static CNode* pnodeLocalHost = NULL;
 std::string strSubVersion;
 
 limitedmap<uint256, int64_t> mapAlreadyAskedFor(MAX_INV_SZ);
 
 // Signals for message handling
 static CNodeSignals g_signals;
 CNodeSignals& GetNodeSignals() { return g_signals; }
 
 void CConnman::AddOneShot(const std::string& strDest)
 {
     LOCK(cs_vOneShots);
     vOneShots.push_back(strDest);
 }
 
 unsigned short GetListenPort()
 {
     return (unsigned short)(GetArg("-port", Params().GetDefaultPort()));
 }
 
 // find 'best' local address for a particular peer
 bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
 {
     if (!fListen)
         return false;
 
     int nBestScore = -1;
     int nBestReachability = -1;
     {
         LOCK(cs_mapLocalHost);
         for (std::map<CNetAddr, LocalServiceInfo>::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++)
         {
             int nScore = (*it).second.nScore;
             int nReachability = (*it).first.GetReachabilityFrom(paddrPeer);
             if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
             {
                 addr = CService((*it).first, (*it).second.nPort);
                 nBestReachability = nReachability;
                 nBestScore = nScore;
             }
         }
     }
     return nBestScore >= 0;
 }
 
 //! Convert the pnSeeds6 array into usable address objects.
 static std::vector<CAddress> convertSeed6(const std::vector<SeedSpec6> &vSeedsIn)
 {
     // It'll only connect to one or two seed nodes because once it connects,
     // it'll get a pile of addresses with newer timestamps.
     // Seed nodes are given a random 'last seen time' of between one and two
     // weeks ago.
     const int64_t nOneWeek = 7*24*60*60;
     std::vector<CAddress> vSeedsOut;
     vSeedsOut.reserve(vSeedsIn.size());
     for (std::vector<SeedSpec6>::const_iterator i(vSeedsIn.begin()); i != vSeedsIn.end(); ++i)
     {
         struct in6_addr ip;
         memcpy(&ip, i->addr, sizeof(ip));
         CAddress addr(CService(ip, i->port), NODE_NETWORK);
         addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek;
         vSeedsOut.push_back(addr);
     }
     return vSeedsOut;
 }
 
 // get best local address for a particular peer as a CAddress
 // Otherwise, return the unroutable 0.0.0.0 but filled in with
 // the normal parameters, since the IP may be changed to a useful
 // one by discovery.
 CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices)
 {
     CAddress ret(CService(CNetAddr(),GetListenPort()), NODE_NONE);
     CService addr;
     if (GetLocal(addr, paddrPeer))
     {
         ret = CAddress(addr, nLocalServices);
     }
     ret.nTime = GetAdjustedTime();
     return ret;
 }
 
 int GetnScore(const CService& addr)
 {
     LOCK(cs_mapLocalHost);
     if (mapLocalHost.count(addr) == LOCAL_NONE)
         return 0;
     return mapLocalHost[addr].nScore;
 }
 
 // Is our peer's addrLocal potentially useful as an external IP source?
 bool IsPeerAddrLocalGood(CNode *pnode)
 {
     return fDiscover && pnode->addr.IsRoutable() && pnode->addrLocal.IsRoutable() &&
            !IsLimited(pnode->addrLocal.GetNetwork());
 }
 
 // pushes our own address to a peer
 void AdvertiseLocal(CNode *pnode)
 {
     if (fListen && pnode->fSuccessfullyConnected)
     {
         CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
         // If discovery is enabled, sometimes give our peer the address it
         // tells us that it sees us as in case it has a better idea of our
         // address than we do.
         if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
              GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0))
         {
             addrLocal.SetIP(pnode->addrLocal);
         }
         if (addrLocal.IsRoutable())
         {
             LogPrint("net", "AdvertiseLocal: advertising address %s\n", addrLocal.ToString());
             FastRandomContext insecure_rand;
             pnode->PushAddress(addrLocal, insecure_rand);
         }
     }
 }
 
 // learn a new local address
 bool AddLocal(const CService& addr, int nScore)
 {
     if (!addr.IsRoutable())
         return false;
 
     if (!fDiscover && nScore < LOCAL_MANUAL)
         return false;
 
     if (IsLimited(addr))
         return false;
 
     LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
 
     {
         LOCK(cs_mapLocalHost);
         bool fAlready = mapLocalHost.count(addr) > 0;
         LocalServiceInfo &info = mapLocalHost[addr];
         if (!fAlready || nScore >= info.nScore) {
             info.nScore = nScore + (fAlready ? 1 : 0);
             info.nPort = addr.GetPort();
         }
     }
 
     return true;
 }
 
 bool AddLocal(const CNetAddr &addr, int nScore)
 {
     return AddLocal(CService(addr, GetListenPort()), nScore);
 }
 
 bool RemoveLocal(const CService& addr)
 {
     LOCK(cs_mapLocalHost);
     LogPrintf("RemoveLocal(%s)\n", addr.ToString());
     mapLocalHost.erase(addr);
     return true;
 }
 
 /** Make a particular network entirely off-limits (no automatic connects to it) */
 void SetLimited(enum Network net, bool fLimited)
 {
     if (net == NET_UNROUTABLE)
         return;
     LOCK(cs_mapLocalHost);
     vfLimited[net] = fLimited;
 }
 
 bool IsLimited(enum Network net)
 {
     LOCK(cs_mapLocalHost);
     return vfLimited[net];
 }
 
 bool IsLimited(const CNetAddr &addr)
 {
     return IsLimited(addr.GetNetwork());
 }
 
 /** vote for a local address */
 bool SeenLocal(const CService& addr)
 {
     {
         LOCK(cs_mapLocalHost);
         if (mapLocalHost.count(addr) == 0)
             return false;
         mapLocalHost[addr].nScore++;
     }
     return true;
 }
 
 
 /** check whether a given address is potentially local */
 bool IsLocal(const CService& addr)
 {
     LOCK(cs_mapLocalHost);
     return mapLocalHost.count(addr) > 0;
 }
 
 /** check whether a given network is one we can probably connect to */
 bool IsReachable(enum Network net)
 {
     LOCK(cs_mapLocalHost);
     return !vfLimited[net];
 }
 
 /** check whether a given address is in a network we can probably connect to */
 bool IsReachable(const CNetAddr& addr)
 {
     enum Network net = addr.GetNetwork();
     return IsReachable(net);
 }
 
 
 CNode* CConnman::FindNode(const CNetAddr& ip)
 {
     LOCK(cs_vNodes);
     BOOST_FOREACH(CNode* pnode, vNodes)
         if ((CNetAddr)pnode->addr == ip)
             return (pnode);
     return NULL;
 }
 
 CNode* CConnman::FindNode(const CSubNet& subNet)
 {
     LOCK(cs_vNodes);
     BOOST_FOREACH(CNode* pnode, vNodes)
     if (subNet.Match((CNetAddr)pnode->addr))
         return (pnode);
     return NULL;
 }
 
 CNode* CConnman::FindNode(const std::string& addrName)
 {
     LOCK(cs_vNodes);
     BOOST_FOREACH(CNode* pnode, vNodes)
         if (pnode->addrName == addrName)
             return (pnode);
     return NULL;
 }
 
 CNode* CConnman::FindNode(const CService& addr)
 {
     LOCK(cs_vNodes);
     BOOST_FOREACH(CNode* pnode, vNodes)
         if ((CService)pnode->addr == addr)
             return (pnode);
     return NULL;
 }
 
 bool CConnman::CheckIncomingNonce(uint64_t nonce)
 {
     LOCK(cs_vNodes);
     BOOST_FOREACH(CNode* pnode, vNodes) {
         if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce)
             return false;
     }
     return true;
 }
 
 CNode* CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure)
 {
     if (pszDest == NULL) {
         if (IsLocal(addrConnect))
             return NULL;
 
         // Look for an existing connection
         CNode* pnode = FindNode((CService)addrConnect);
         if (pnode)
         {
             pnode->AddRef();
             return pnode;
         }
     }
 
     /// debug print
     LogPrint("net", "trying connection %s lastseen=%.1fhrs\n",
         pszDest ? pszDest : addrConnect.ToString(),
         pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);
 
     // Connect
     SOCKET hSocket;
     bool proxyConnectionFailed = false;
     if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed) :
                   ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed))
     {
         if (!IsSelectableSocket(hSocket)) {
             LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n");
             CloseSocket(hSocket);
             return NULL;
         }
 
         if (pszDest && addrConnect.IsValid()) {
             // It is possible that we already have a connection to the IP/port pszDest resolved to.
             // In that case, drop the connection that was just created, and return the existing CNode instead.
             // Also store the name we used to connect in that CNode, so that future FindNode() calls to that
             // name catch this early.
             CNode* pnode = FindNode((CService)addrConnect);
             if (pnode)
             {
                 pnode->AddRef();
                 {
                     LOCK(cs_vNodes);
                     if (pnode->addrName.empty()) {
                         pnode->addrName = std::string(pszDest);
                     }
                 }
                 CloseSocket(hSocket);
                 return pnode;
             }
         }
 
         addrman.Attempt(addrConnect, fCountFailure);
 
         // Add node
         NodeId id = GetNewNodeId();
         uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
         CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, pszDest ? pszDest : "", false);
 
 
         PushVersion(pnode, GetTime());
 
         GetNodeSignals().InitializeNode(pnode->GetId(), pnode);
         pnode->AddRef();
 
         {
             LOCK(cs_vNodes);
             vNodes.push_back(pnode);
         }
 
         pnode->nServicesExpected = ServiceFlags(addrConnect.nServices & nRelevantServices);
         pnode->nTimeConnected = GetTime();
 
         return pnode;
     } else if (!proxyConnectionFailed) {
         // If connecting to the node failed, and failure is not caused by a problem connecting to
         // the proxy, mark this as an attempt.
         addrman.Attempt(addrConnect, fCountFailure);
     }
 
     return NULL;
 }
 
 void CConnman::PushVersion(CNode* pnode, int64_t nTime)
 {
     ServiceFlags nLocalNodeServices = pnode->GetLocalServices();
     CAddress addrYou = (pnode->addr.IsRoutable() && !IsProxy(pnode->addr) ? pnode->addr : CAddress(CService(), pnode->addr.nServices));
     CAddress addrMe = CAddress(CService(), nLocalNodeServices);
     uint64_t nonce = pnode->GetLocalNonce();
     int nNodeStartingHeight = pnode->nMyStartingHeight;
     NodeId id = pnode->GetId();
 
     PushMessageWithVersion(pnode, INIT_PROTO_VERSION, NetMsgType::VERSION, PROTOCOL_VERSION, (uint64_t)nLocalNodeServices, nTime, addrYou, addrMe,
             nonce, strSubVersion, nNodeStartingHeight, ::fRelayTxes);
 
     if (fLogIPs)
         LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), addrYou.ToString(), id);
     else
         LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), id);
 }
 
 void CConnman::DumpBanlist()
 {
     SweepBanned(); // clean unused entries (if bantime has expired)
 
     if (!BannedSetIsDirty())
         return;
 
     int64_t nStart = GetTimeMillis();
 
     CBanDB bandb;
     banmap_t banmap;
     SetBannedSetDirty(false);
     GetBanned(banmap);
     if (!bandb.Write(banmap))
         SetBannedSetDirty(true);
 
     LogPrint("net", "Flushed %d banned node ips/subnets to banlist.dat  %dms\n",
         banmap.size(), GetTimeMillis() - nStart);
 }
 
 void CNode::CloseSocketDisconnect()
 {
     fDisconnect = true;
     if (hSocket != INVALID_SOCKET)
     {
         LogPrint("net", "disconnecting peer=%d\n", id);
         CloseSocket(hSocket);
     }
 
     // in case this fails, we'll empty the recv buffer when the CNode is deleted
     TRY_LOCK(cs_vRecvMsg, lockRecv);
     if (lockRecv)
         vRecvMsg.clear();
 }
 
 void CConnman::ClearBanned()
 {
     {
         LOCK(cs_setBanned);
         setBanned.clear();
         setBannedIsDirty = true;
     }
     DumpBanlist(); //store banlist to disk
     if(clientInterface)
         clientInterface->BannedListChanged();
 }
 
 bool CConnman::IsBanned(CNetAddr ip)
 {
     bool fResult = false;
     {
         LOCK(cs_setBanned);
         for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end(); it++)
         {
             CSubNet subNet = (*it).first;
             CBanEntry banEntry = (*it).second;
 
             if(subNet.Match(ip) && GetTime() < banEntry.nBanUntil)
                 fResult = true;
         }
     }
     return fResult;
 }
 
 bool CConnman::IsBanned(CSubNet subnet)
 {
     bool fResult = false;
     {
         LOCK(cs_setBanned);
         banmap_t::iterator i = setBanned.find(subnet);
         if (i != setBanned.end())
         {
             CBanEntry banEntry = (*i).second;
             if (GetTime() < banEntry.nBanUntil)
                 fResult = true;
         }
     }
     return fResult;
 }
 
 void CConnman::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
     CSubNet subNet(addr);
     Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch);
 }
 
 void CConnman::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
     CBanEntry banEntry(GetTime());
     banEntry.banReason = banReason;
     if (bantimeoffset <= 0)
     {
         bantimeoffset = GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME);
         sinceUnixEpoch = false;
     }
     banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset;
 
     {
         LOCK(cs_setBanned);
         if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) {
             setBanned[subNet] = banEntry;
             setBannedIsDirty = true;
         }
         else
             return;
     }
     if(clientInterface)
         clientInterface->BannedListChanged();
     {
         LOCK(cs_vNodes);
         BOOST_FOREACH(CNode* pnode, vNodes) {
             if (subNet.Match((CNetAddr)pnode->addr))
                 pnode->fDisconnect = true;
         }
     }
     if(banReason == BanReasonManuallyAdded)
         DumpBanlist(); //store banlist to disk immediately if user requested ban
 }
 
 bool CConnman::Unban(const CNetAddr &addr) {
     CSubNet subNet(addr);
     return Unban(subNet);
 }
 
 bool CConnman::Unban(const CSubNet &subNet) {
     {
         LOCK(cs_setBanned);
         if (!setBanned.erase(subNet))
             return false;
         setBannedIsDirty = true;
     }
     if(clientInterface)
         clientInterface->BannedListChanged();
     DumpBanlist(); //store banlist to disk immediately
     return true;
 }
 
 void CConnman::GetBanned(banmap_t &banMap)
 {
     LOCK(cs_setBanned);
     banMap = setBanned; //create a thread safe copy
 }
 
 void CConnman::SetBanned(const banmap_t &banMap)
 {
     LOCK(cs_setBanned);
     setBanned = banMap;
     setBannedIsDirty = true;
 }
 
 void CConnman::SweepBanned()
 {
     int64_t now = GetTime();
 
     LOCK(cs_setBanned);
     banmap_t::iterator it = setBanned.begin();
     while(it != setBanned.end())
     {
         CSubNet subNet = (*it).first;
         CBanEntry banEntry = (*it).second;
         if(now > banEntry.nBanUntil)
         {
             setBanned.erase(it++);
             setBannedIsDirty = true;
             LogPrint("net", "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString());
         }
         else
             ++it;
     }
 }
 
 bool CConnman::BannedSetIsDirty()
 {
     LOCK(cs_setBanned);
     return setBannedIsDirty;
 }
 
 void CConnman::SetBannedSetDirty(bool dirty)
 {
     LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag
     setBannedIsDirty = dirty;
 }
 
 
 bool CConnman::IsWhitelistedRange(const CNetAddr &addr) {
     LOCK(cs_vWhitelistedRange);
     BOOST_FOREACH(const CSubNet& subnet, vWhitelistedRange) {
         if (subnet.Match(addr))
             return true;
     }
     return false;
 }
 
 void CConnman::AddWhitelistedRange(const CSubNet &subnet) {
     LOCK(cs_vWhitelistedRange);
     vWhitelistedRange.push_back(subnet);
 }
 
 #undef X
 #define X(name) stats.name = name
 void CNode::copyStats(CNodeStats &stats)
 {
     stats.nodeid = this->GetId();
     X(nServices);
     X(addr);
     X(fRelayTxes);
     X(nLastSend);
     X(nLastRecv);
     X(nTimeConnected);
     X(nTimeOffset);
     X(addrName);
     X(nVersion);
     X(cleanSubVer);
     X(fInbound);
     X(nStartingHeight);
     X(nSendBytes);
     X(mapSendBytesPerMsgCmd);
     X(nRecvBytes);
     X(mapRecvBytesPerMsgCmd);
     X(fWhitelisted);
 
     // It is common for nodes with good ping times to suddenly become lagged,
     // due to a new block arriving or other large transfer.
     // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
     // since pingtime does not update until the ping is complete, which might take a while.
     // So, if a ping is taking an unusually long time in flight,
     // the caller can immediately detect that this is happening.
     int64_t nPingUsecWait = 0;
     if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
         nPingUsecWait = GetTimeMicros() - nPingUsecStart;
     }
 
     // Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :)
     stats.dPingTime = (((double)nPingUsecTime) / 1e6);
     stats.dMinPing  = (((double)nMinPingUsecTime) / 1e6);
     stats.dPingWait = (((double)nPingUsecWait) / 1e6);
 
     // Leave string empty if addrLocal invalid (not filled in yet)
     stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : "";
 }
 #undef X
 
 // requires LOCK(cs_vRecvMsg)
 bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete)
 {
     complete = false;
     while (nBytes > 0) {
 
         // get current incomplete message, or create a new one
         if (vRecvMsg.empty() ||
             vRecvMsg.back().complete())
             vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, nRecvVersion));
 
         CNetMessage& msg = vRecvMsg.back();
 
         // absorb network data
         int handled;
         if (!msg.in_data)
             handled = msg.readHeader(pch, nBytes);
         else
             handled = msg.readData(pch, nBytes);
 
         if (handled < 0)
                 return false;
 
         if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
             LogPrint("net", "Oversized message from peer=%i, disconnecting\n", GetId());
             return false;
         }
 
         pch += handled;
         nBytes -= handled;
 
         if (msg.complete()) {
 
             //store received bytes per message command
             //to prevent a memory DOS, only allow valid commands
             mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand);
             if (i == mapRecvBytesPerMsgCmd.end())
                 i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
             assert(i != mapRecvBytesPerMsgCmd.end());
             i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
 
             msg.nTime = GetTimeMicros();
             complete = true;
         }
     }
 
     return true;
 }
 
 int CNetMessage::readHeader(const char *pch, unsigned int nBytes)
 {
     // copy data to temporary parsing buffer
     unsigned int nRemaining = 24 - nHdrPos;
     unsigned int nCopy = std::min(nRemaining, nBytes);
 
     memcpy(&hdrbuf[nHdrPos], pch, nCopy);
     nHdrPos += nCopy;
 
     // if header incomplete, exit
     if (nHdrPos < 24)
         return nCopy;
 
     // deserialize to CMessageHeader
     try {
         hdrbuf >> hdr;
     }
     catch (const std::exception&) {
         return -1;
     }
 
     // reject messages larger than MAX_SIZE
     if (hdr.nMessageSize > MAX_SIZE)
             return -1;
 
     // switch state to reading message data
     in_data = true;
 
     return nCopy;
 }
 
 int CNetMessage::readData(const char *pch, unsigned int nBytes)
 {
     unsigned int nRemaining = hdr.nMessageSize - nDataPos;
     unsigned int nCopy = std::min(nRemaining, nBytes);
 
     if (vRecv.size() < nDataPos + nCopy) {
         // Allocate up to 256 KiB ahead, but never more than the total message size.
         vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
     }
 
     memcpy(&vRecv[nDataPos], pch, nCopy);
     nDataPos += nCopy;
 
     return nCopy;
 }
 
 
 
 
 
 
 
 
 
 // requires LOCK(cs_vSend)
 size_t SocketSendData(CNode *pnode)
 {
     std::deque<CSerializeData>::iterator it = pnode->vSendMsg.begin();
     size_t nSentSize = 0;
 
     while (it != pnode->vSendMsg.end()) {
         const CSerializeData &data = *it;
         assert(data.size() > pnode->nSendOffset);
         int nBytes = send(pnode->hSocket, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
         if (nBytes > 0) {
             pnode->nLastSend = GetTime();
             pnode->nSendBytes += nBytes;
             pnode->nSendOffset += nBytes;
             nSentSize += nBytes;
             if (pnode->nSendOffset == data.size()) {
                 pnode->nSendOffset = 0;
                 pnode->nSendSize -= data.size();
                 it++;
             } else {
                 // could not send full message; stop sending more
                 break;
             }
         } else {
             if (nBytes < 0) {
                 // error
                 int nErr = WSAGetLastError();
                 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
                 {
                     LogPrintf("socket send error %s\n", NetworkErrorString(nErr));
                     pnode->CloseSocketDisconnect();
                 }
             }
             // couldn't send anything at all
             break;
         }
     }
 
     if (it == pnode->vSendMsg.end()) {
         assert(pnode->nSendOffset == 0);
         assert(pnode->nSendSize == 0);
     }
     pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
     return nSentSize;
 }
 
 struct NodeEvictionCandidate
 {
     NodeId id;
     int64_t nTimeConnected;
     int64_t nMinPingUsecTime;
     int64_t nLastBlockTime;
     int64_t nLastTXTime;
     bool fNetworkNode;
     bool fRelayTxes;
     bool fBloomFilter;
     CAddress addr;
     uint64_t nKeyedNetGroup;
 };
 
 static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
 {
     return a.nMinPingUsecTime > b.nMinPingUsecTime;
 }
 
 static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
 {
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) {
     return a.nKeyedNetGroup < b.nKeyedNetGroup;
 }
 
 static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
 {
     // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block.
     if (a.nLastBlockTime != b.nLastBlockTime) return a.nLastBlockTime < b.nLastBlockTime;
     if (a.fNetworkNode != b.fNetworkNode) return b.fNetworkNode;
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
 {
     // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn.
     if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime;
     if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes;
     if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 /** Try to find a connection to evict when the node is full.
  *  Extreme care must be taken to avoid opening the node to attacker
  *   triggered network partitioning.
  *  The strategy used here is to protect a small number of peers
  *   for each of several distinct characteristics which are difficult
  *   to forge.  In order to partition a node the attacker must be
  *   simultaneously better at all of them than honest peers.
  */
 bool CConnman::AttemptToEvictConnection()
 {
     std::vector<NodeEvictionCandidate> vEvictionCandidates;
     {
         LOCK(cs_vNodes);
 
         BOOST_FOREACH(CNode *node, vNodes) {
             if (node->fWhitelisted)
                 continue;
             if (!node->fInbound)
                 continue;
             if (node->fDisconnect)
                 continue;
             NodeEvictionCandidate candidate = {node->id, node->nTimeConnected, node->nMinPingUsecTime,
                                                node->nLastBlockTime, node->nLastTXTime, node->fNetworkNode,
                                                node->fRelayTxes, node->pfilter != NULL, node->addr, node->nKeyedNetGroup};
             vEvictionCandidates.push_back(candidate);
         }
     }
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect connections with certain characteristics
 
     // Deterministically select 4 peers to protect by netgroup.
     // An attacker cannot predict which netgroups will be protected
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNetGroupKeyed);
     vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect the 8 nodes with the lowest minimum ping time.
     // An attacker cannot manipulate this metric without physically moving nodes closer to the target.
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime);
     vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect 4 nodes that most recently sent us transactions.
     // An attacker cannot manipulate this metric without performing useful work.
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeTXTime);
     vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect 4 nodes that most recently sent us blocks.
     // An attacker cannot manipulate this metric without performing useful work.
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), CompareNodeBlockTime);
     vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect the half of the remaining nodes which have been connected the longest.
     // This replicates the non-eviction implicit behavior, and precludes attacks that start later.
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected);
     vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast<int>(vEvictionCandidates.size() / 2), vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Identify the network group with the most connections and youngest member.
     // (vEvictionCandidates is already sorted by reverse connect time)
     uint64_t naMostConnections;
     unsigned int nMostConnections = 0;
     int64_t nMostConnectionsTime = 0;
     std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes;
     BOOST_FOREACH(const NodeEvictionCandidate &node, vEvictionCandidates) {
         mapNetGroupNodes[node.nKeyedNetGroup].push_back(node);
         int64_t grouptime = mapNetGroupNodes[node.nKeyedNetGroup][0].nTimeConnected;
         size_t groupsize = mapNetGroupNodes[node.nKeyedNetGroup].size();
 
         if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) {
             nMostConnections = groupsize;
             nMostConnectionsTime = grouptime;
             naMostConnections = node.nKeyedNetGroup;
         }
     }
 
     // Reduce to the network group with the most connections
     vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
 
     // Disconnect from the network group with the most connections
     NodeId evicted = vEvictionCandidates.front().id;
     LOCK(cs_vNodes);
     for(std::vector<CNode*>::const_iterator it(vNodes.begin()); it != vNodes.end(); ++it) {
         if ((*it)->GetId() == evicted) {
             (*it)->fDisconnect = true;
             return true;
         }
     }
     return false;
 }
 
 void CConnman::AcceptConnection(const ListenSocket& hListenSocket) {
     struct sockaddr_storage sockaddr;
     socklen_t len = sizeof(sockaddr);
     SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
     CAddress addr;
     int nInbound = 0;
     int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler);
 
     if (hSocket != INVALID_SOCKET)
         if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr))
             LogPrintf("Warning: Unknown socket family\n");
 
     bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr);
     {
         LOCK(cs_vNodes);
         BOOST_FOREACH(CNode* pnode, vNodes)
             if (pnode->fInbound)
                 nInbound++;
     }
 
     if (hSocket == INVALID_SOCKET)
     {
         int nErr = WSAGetLastError();
         if (nErr != WSAEWOULDBLOCK)
             LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
         return;
     }
 
     if (!IsSelectableSocket(hSocket))
     {
         LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     // According to the internet TCP_NODELAY is not carried into accepted sockets
     // on all platforms.  Set it again here just to be sure.
     int set = 1;
 #ifdef WIN32
     setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int));
 #else
     setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int));
 #endif
 
     if (IsBanned(addr) && !whitelisted)
     {
         LogPrintf("connection from %s dropped (banned)\n", addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     if (nInbound >= nMaxInbound)
     {
         if (!AttemptToEvictConnection()) {
             // No connection to evict, disconnect the new connection
             LogPrint("net", "failed to find an eviction candidate - connection dropped (full)\n");
             CloseSocket(hSocket);
             return;
         }
     }
 
     NodeId id = GetNewNodeId();
     uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
 
     CNode* pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, "", true);
     GetNodeSignals().InitializeNode(pnode->GetId(), pnode);
     pnode->AddRef();
     pnode->fWhitelisted = whitelisted;
 
     LogPrint("net", "connection from %s accepted\n", addr.ToString());
 
     {
         LOCK(cs_vNodes);
         vNodes.push_back(pnode);
     }
 }
 
 void CConnman::ThreadSocketHandler()
 {
     unsigned int nPrevNodeCount = 0;
     while (true)
     {
         //
         // Disconnect nodes
         //
         {
             LOCK(cs_vNodes);
             // Disconnect unused nodes
             std::vector<CNode*> vNodesCopy = vNodes;
             BOOST_FOREACH(CNode* pnode, vNodesCopy)
             {
                 if (pnode->fDisconnect ||
-                    (pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0 && pnode->ssSend.empty()))
+                    (pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0))
                 {
                     // remove from vNodes
                     vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end());
 
                     // release outbound grant (if any)
                     pnode->grantOutbound.Release();
 
                     // close socket and cleanup
                     pnode->CloseSocketDisconnect();
 
                     // hold in disconnected pool until all refs are released
                     if (pnode->fNetworkNode || pnode->fInbound)
                         pnode->Release();
                     vNodesDisconnected.push_back(pnode);
                 }
             }
         }
         {
             // Delete disconnected nodes
             std::list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
             BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy)
             {
                 // wait until threads are done using it
                 if (pnode->GetRefCount() <= 0)
                 {
                     bool fDelete = false;
                     {
                         TRY_LOCK(pnode->cs_vSend, lockSend);
                         if (lockSend)
                         {
                             TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
                             if (lockRecv)
                             {
                                 TRY_LOCK(pnode->cs_inventory, lockInv);
                                 if (lockInv)
                                     fDelete = true;
                             }
                         }
                     }
                     if (fDelete)
                     {
                         vNodesDisconnected.remove(pnode);
                         DeleteNode(pnode);
                     }
                 }
             }
         }
         if(vNodes.size() != nPrevNodeCount) {
             nPrevNodeCount = vNodes.size();
             if(clientInterface)
                 clientInterface->NotifyNumConnectionsChanged(nPrevNodeCount);
         }
 
         //
         // Find which sockets have data to receive
         //
         struct timeval timeout;
         timeout.tv_sec  = 0;
         timeout.tv_usec = 50000; // frequency to poll pnode->vSend
 
         fd_set fdsetRecv;
         fd_set fdsetSend;
         fd_set fdsetError;
         FD_ZERO(&fdsetRecv);
         FD_ZERO(&fdsetSend);
         FD_ZERO(&fdsetError);
         SOCKET hSocketMax = 0;
         bool have_fds = false;
 
         BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) {
             FD_SET(hListenSocket.socket, &fdsetRecv);
             hSocketMax = std::max(hSocketMax, hListenSocket.socket);
             have_fds = true;
         }
 
         {
             LOCK(cs_vNodes);
             BOOST_FOREACH(CNode* pnode, vNodes)
             {
                 if (pnode->hSocket == INVALID_SOCKET)
                     continue;
                 FD_SET(pnode->hSocket, &fdsetError);
                 hSocketMax = std::max(hSocketMax, pnode->hSocket);
                 have_fds = true;
 
                 // Implement the following logic:
                 // * If there is data to send, select() for sending data. As this only
                 //   happens when optimistic write failed, we choose to first drain the
                 //   write buffer in this case before receiving more. This avoids
                 //   needlessly queueing received data, if the remote peer is not themselves
                 //   receiving data. This means properly utilizing TCP flow control signalling.
                 // * Otherwise, if there is no (complete) message in the receive buffer,
                 //   or there is space left in the buffer, select() for receiving data.
                 // * (if neither of the above applies, there is certainly one message
                 //   in the receiver buffer ready to be processed).
                 // Together, that means that at least one of the following is always possible,
                 // so we don't deadlock:
                 // * We send some data.
                 // * We wait for data to be received (and disconnect after timeout).
                 // * We process a message in the buffer (message handler thread).
                 {
                     TRY_LOCK(pnode->cs_vSend, lockSend);
                     if (lockSend) {
                         if (!pnode->vSendMsg.empty()) {
                             FD_SET(pnode->hSocket, &fdsetSend);
                             continue;
                         }
                     }
                 }
                 {
                     TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
                     if (lockRecv && (
                         pnode->vRecvMsg.empty() || !pnode->vRecvMsg.front().complete() ||
                         pnode->GetTotalRecvSize() <= GetReceiveFloodSize()))
                         FD_SET(pnode->hSocket, &fdsetRecv);
                 }
             }
         }
 
         int nSelect = select(have_fds ? hSocketMax + 1 : 0,
                              &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
         boost::this_thread::interruption_point();
 
         if (nSelect == SOCKET_ERROR)
         {
             if (have_fds)
             {
                 int nErr = WSAGetLastError();
                 LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
                 for (unsigned int i = 0; i <= hSocketMax; i++)
                     FD_SET(i, &fdsetRecv);
             }
             FD_ZERO(&fdsetSend);
             FD_ZERO(&fdsetError);
             MilliSleep(timeout.tv_usec/1000);
         }
 
         //
         // Accept new connections
         //
         BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket)
         {
             if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv))
             {
                 AcceptConnection(hListenSocket);
             }
         }
 
         //
         // Service each socket
         //
         std::vector<CNode*> vNodesCopy;
         {
             LOCK(cs_vNodes);
             vNodesCopy = vNodes;
             BOOST_FOREACH(CNode* pnode, vNodesCopy)
                 pnode->AddRef();
         }
         BOOST_FOREACH(CNode* pnode, vNodesCopy)
         {
             boost::this_thread::interruption_point();
 
             //
             // Receive
             //
             if (pnode->hSocket == INVALID_SOCKET)
                 continue;
             if (FD_ISSET(pnode->hSocket, &fdsetRecv) || FD_ISSET(pnode->hSocket, &fdsetError))
             {
                 TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
                 if (lockRecv)
                 {
                     {
                         // typical socket buffer is 8K-64K
                         char pchBuf[0x10000];
                         int nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
                         if (nBytes > 0)
                         {
                             bool notify = false;
                             if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify))
                                 pnode->CloseSocketDisconnect();
                             if(notify)
                                 messageHandlerCondition.notify_one();
                             pnode->nLastRecv = GetTime();
                             pnode->nRecvBytes += nBytes;
                             RecordBytesRecv(nBytes);
                         }
                         else if (nBytes == 0)
                         {
                             // socket closed gracefully
                             if (!pnode->fDisconnect)
                                 LogPrint("net", "socket closed\n");
                             pnode->CloseSocketDisconnect();
                         }
                         else if (nBytes < 0)
                         {
                             // error
                             int nErr = WSAGetLastError();
                             if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
                             {
                                 if (!pnode->fDisconnect)
                                     LogPrintf("socket recv error %s\n", NetworkErrorString(nErr));
                                 pnode->CloseSocketDisconnect();
                             }
                         }
                     }
                 }
             }
 
             //
             // Send
             //
             if (pnode->hSocket == INVALID_SOCKET)
                 continue;
             if (FD_ISSET(pnode->hSocket, &fdsetSend))
             {
                 TRY_LOCK(pnode->cs_vSend, lockSend);
                 if (lockSend) {
                     size_t nBytes = SocketSendData(pnode);
                     if (nBytes)
                         RecordBytesSent(nBytes);
                 }
             }
 
             //
             // Inactivity checking
             //
             int64_t nTime = GetTime();
             if (nTime - pnode->nTimeConnected > 60)
             {
                 if (pnode->nLastRecv == 0 || pnode->nLastSend == 0)
                 {
                     LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id);
                     pnode->fDisconnect = true;
                 }
                 else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL)
                 {
                     LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend);
                     pnode->fDisconnect = true;
                 }
                 else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60))
                 {
                     LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv);
                     pnode->fDisconnect = true;
                 }
                 else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros())
                 {
                     LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart));
                     pnode->fDisconnect = true;
                 }
             }
         }
         {
             LOCK(cs_vNodes);
             BOOST_FOREACH(CNode* pnode, vNodesCopy)
                 pnode->Release();
         }
     }
 }
 
 
 
 
 
 
 
 
 
 #ifdef USE_UPNP
 void ThreadMapPort()
 {
     std::string port = strprintf("%u", GetListenPort());
     const char * multicastif = 0;
     const char * minissdpdpath = 0;
     struct UPNPDev * devlist = 0;
     char lanaddr[64];
 
 #ifndef UPNPDISCOVER_SUCCESS
     /* miniupnpc 1.5 */
     devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0);
 #elif MINIUPNPC_API_VERSION < 14
     /* miniupnpc 1.6 */
     int error = 0;
     devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
 #else
     /* miniupnpc 1.9.20150730 */
     int error = 0;
     devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
 #endif
 
     struct UPNPUrls urls;
     struct IGDdatas data;
     int r;
 
     r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
     if (r == 1)
     {
         if (fDiscover) {
             char externalIPAddress[40];
             r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress);
             if(r != UPNPCOMMAND_SUCCESS)
                 LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
             else
             {
                 if(externalIPAddress[0])
                 {
                     CNetAddr resolved;
                     if(LookupHost(externalIPAddress, resolved, false)) {
                         LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str());
                         AddLocal(resolved, LOCAL_UPNP);
                     }
                 }
                 else
                     LogPrintf("UPnP: GetExternalIPAddress failed.\n");
             }
         }
 
         std::string strDesc = "Bitcoin " + FormatFullVersion();
 
         try {
             while (true) {
 #ifndef UPNPDISCOVER_SUCCESS
                 /* miniupnpc 1.5 */
                 r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
                                     port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0);
 #else
                 /* miniupnpc 1.6 */
                 r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
                                     port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0");
 #endif
 
                 if(r!=UPNPCOMMAND_SUCCESS)
                     LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n",
                         port, port, lanaddr, r, strupnperror(r));
                 else
                     LogPrintf("UPnP Port Mapping successful.\n");
 
                 MilliSleep(20*60*1000); // Refresh every 20 minutes
             }
         }
         catch (const boost::thread_interrupted&)
         {
             r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0);
             LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
             freeUPNPDevlist(devlist); devlist = 0;
             FreeUPNPUrls(&urls);
             throw;
         }
     } else {
         LogPrintf("No valid UPnP IGDs found\n");
         freeUPNPDevlist(devlist); devlist = 0;
         if (r != 0)
             FreeUPNPUrls(&urls);
     }
 }
 
 void MapPort(bool fUseUPnP)
 {
     static boost::thread* upnp_thread = NULL;
 
     if (fUseUPnP)
     {
         if (upnp_thread) {
             upnp_thread->interrupt();
             upnp_thread->join();
             delete upnp_thread;
         }
         upnp_thread = new boost::thread(boost::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort));
     }
     else if (upnp_thread) {
         upnp_thread->interrupt();
         upnp_thread->join();
         delete upnp_thread;
         upnp_thread = NULL;
     }
 }
 
 #else
 void MapPort(bool)
 {
     // Intentionally left blank.
 }
 #endif
 
 
 
 
 
 
 static std::string GetDNSHost(const CDNSSeedData& data, ServiceFlags* requiredServiceBits)
 {
     //use default host for non-filter-capable seeds or if we use the default service bits (NODE_NETWORK)
     if (!data.supportsServiceBitsFiltering || *requiredServiceBits == NODE_NETWORK) {
         *requiredServiceBits = NODE_NETWORK;
         return data.host;
     }
 
     // See chainparams.cpp, most dnsseeds only support one or two possible servicebits hostnames
     return strprintf("x%x.%s", *requiredServiceBits, data.host);
 }
 
 
 void CConnman::ThreadDNSAddressSeed()
 {
     // goal: only query DNS seeds if address need is acute
     // Avoiding DNS seeds when we don't need them improves user privacy by
     //  creating fewer identifying DNS requests, reduces trust by giving seeds
     //  less influence on the network topology, and reduces traffic to the seeds.
     if ((addrman.size() > 0) &&
         (!GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) {
         MilliSleep(11 * 1000);
 
         LOCK(cs_vNodes);
         int nRelevant = 0;
         for (auto pnode : vNodes) {
             nRelevant += pnode->fSuccessfullyConnected && ((pnode->nServices & nRelevantServices) == nRelevantServices);
         }
         if (nRelevant >= 2) {
             LogPrintf("P2P peers available. Skipped DNS seeding.\n");
             return;
         }
     }
 
     const std::vector<CDNSSeedData> &vSeeds = Params().DNSSeeds();
     int found = 0;
 
     LogPrintf("Loading addresses from DNS seeds (could take a while)\n");
 
     BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) {
         if (HaveNameProxy()) {
             AddOneShot(seed.host);
         } else {
             std::vector<CNetAddr> vIPs;
             std::vector<CAddress> vAdd;
             ServiceFlags requiredServiceBits = nRelevantServices;
             if (LookupHost(GetDNSHost(seed, &requiredServiceBits).c_str(), vIPs, 0, true))
             {
                 BOOST_FOREACH(const CNetAddr& ip, vIPs)
                 {
                     int nOneDay = 24*3600;
                     CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()), requiredServiceBits);
                     addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old
                     vAdd.push_back(addr);
                     found++;
                 }
             }
             // TODO: The seed name resolve may fail, yielding an IP of [::], which results in
             // addrman assigning the same source to results from different seeds.
             // This should switch to a hard-coded stable dummy IP for each seed name, so that the
             // resolve is not required at all.
             if (!vIPs.empty()) {
                 CService seedSource;
                 Lookup(seed.name.c_str(), seedSource, 0, true);
                 addrman.Add(vAdd, seedSource);
             }
         }
     }
 
     LogPrintf("%d addresses found from DNS seeds\n", found);
 }
 
 
 
 
 
 
 
 
 
 
 
 
 void CConnman::DumpAddresses()
 {
     int64_t nStart = GetTimeMillis();
 
     CAddrDB adb;
     adb.Write(addrman);
 
     LogPrint("net", "Flushed %d addresses to peers.dat  %dms\n",
            addrman.size(), GetTimeMillis() - nStart);
 }
 
 void CConnman::DumpData()
 {
     DumpAddresses();
     DumpBanlist();
 }
 
 void CConnman::ProcessOneShot()
 {
     std::string strDest;
     {
         LOCK(cs_vOneShots);
         if (vOneShots.empty())
             return;
         strDest = vOneShots.front();
         vOneShots.pop_front();
     }
     CAddress addr;
     CSemaphoreGrant grant(*semOutbound, true);
     if (grant) {
         if (!OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true))
             AddOneShot(strDest);
     }
 }
 
 void CConnman::ThreadOpenConnections()
 {
     // Connect to specific addresses
     if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0)
     {
         for (int64_t nLoop = 0;; nLoop++)
         {
             ProcessOneShot();
             BOOST_FOREACH(const std::string& strAddr, mapMultiArgs["-connect"])
             {
                 CAddress addr(CService(), NODE_NONE);
                 OpenNetworkConnection(addr, false, NULL, strAddr.c_str());
                 for (int i = 0; i < 10 && i < nLoop; i++)
                 {
                     MilliSleep(500);
                 }
             }
             MilliSleep(500);
         }
     }
 
     // Initiate network connections
     int64_t nStart = GetTime();
 
     // Minimum time before next feeler connection (in microseconds).
     int64_t nNextFeeler = PoissonNextSend(nStart*1000*1000, FEELER_INTERVAL);
     while (true)
     {
         ProcessOneShot();
 
         MilliSleep(500);
 
         CSemaphoreGrant grant(*semOutbound);
         boost::this_thread::interruption_point();
 
         // Add seed nodes if DNS seeds are all down (an infrastructure attack?).
         if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
             static bool done = false;
             if (!done) {
                 LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n");
                 CNetAddr local;
                 LookupHost("127.0.0.1", local, false);
                 addrman.Add(convertSeed6(Params().FixedSeeds()), local);
                 done = true;
             }
         }
 
         //
         // Choose an address to connect to based on most recently seen
         //
         CAddress addrConnect;
 
         // Only connect out to one peer per network group (/16 for IPv4).
         // Do this here so we don't have to critsect vNodes inside mapAddresses critsect.
         int nOutbound = 0;
         std::set<std::vector<unsigned char> > setConnected;
         {
             LOCK(cs_vNodes);
             BOOST_FOREACH(CNode* pnode, vNodes) {
                 if (!pnode->fInbound) {
                     setConnected.insert(pnode->addr.GetGroup());
                     nOutbound++;
                 }
             }
         }
 
         // Feeler Connections
         //
         // Design goals:
         //  * Increase the number of connectable addresses in the tried table.
         //
         // Method:
         //  * Choose a random address from new and attempt to connect to it if we can connect 
         //    successfully it is added to tried.
         //  * Start attempting feeler connections only after node finishes making outbound 
         //    connections.
         //  * Only make a feeler connection once every few minutes.
         //
         bool fFeeler = false;
         if (nOutbound >= nMaxOutbound) {
             int64_t nTime = GetTimeMicros(); // The current time right now (in microseconds).
             if (nTime > nNextFeeler) {
                 nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
                 fFeeler = true;
             } else {
                 continue;
             }
         }
 
         int64_t nANow = GetAdjustedTime();
         int nTries = 0;
         while (true)
         {
             CAddrInfo addr = addrman.Select(fFeeler);
 
             // if we selected an invalid address, restart
             if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr))
                 break;
 
             // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
             // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
             // already-connected network ranges, ...) before trying new addrman addresses.
             nTries++;
             if (nTries > 100)
                 break;
 
             if (IsLimited(addr))
                 continue;
 
             // only connect to full nodes
             if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES)
                 continue;
 
             // only consider very recently tried nodes after 30 failed attempts
             if (nANow - addr.nLastTry < 600 && nTries < 30)
                 continue;
 
             // only consider nodes missing relevant services after 40 failed attempts and only if less than half the outbound are up.
             if ((addr.nServices & nRelevantServices) != nRelevantServices && (nTries < 40 || nOutbound >= (nMaxOutbound >> 1)))
                 continue;
 
             // do not allow non-default ports, unless after 50 invalid addresses selected already
             if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50)
                 continue;
 
             addrConnect = addr;
             break;
         }
 
         if (addrConnect.IsValid()) {
 
             if (fFeeler) {
                 // Add small amount of random noise before connection to avoid synchronization.
                 int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
                 MilliSleep(randsleep);
                 LogPrint("net", "Making feeler connection to %s\n", addrConnect.ToString());
             }
 
             OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, NULL, false, fFeeler);
         }
     }
 }
 
 std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo()
 {
     std::vector<AddedNodeInfo> ret;
 
     std::list<std::string> lAddresses(0);
     {
         LOCK(cs_vAddedNodes);
         ret.reserve(vAddedNodes.size());
         BOOST_FOREACH(const std::string& strAddNode, vAddedNodes)
             lAddresses.push_back(strAddNode);
     }
 
 
     // Build a map of all already connected addresses (by IP:port and by name) to inbound/outbound and resolved CService
     std::map<CService, bool> mapConnected;
     std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
     {
         LOCK(cs_vNodes);
         for (const CNode* pnode : vNodes) {
             if (pnode->addr.IsValid()) {
                 mapConnected[pnode->addr] = pnode->fInbound;
             }
             if (!pnode->addrName.empty()) {
                 mapConnectedByName[pnode->addrName] = std::make_pair(pnode->fInbound, static_cast<const CService&>(pnode->addr));
             }
         }
     }
 
     BOOST_FOREACH(const std::string& strAddNode, lAddresses) {
         CService service(LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort()));
         if (service.IsValid()) {
             // strAddNode is an IP:port
             auto it = mapConnected.find(service);
             if (it != mapConnected.end()) {
                 ret.push_back(AddedNodeInfo{strAddNode, service, true, it->second});
             } else {
                 ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false});
             }
         } else {
             // strAddNode is a name
             auto it = mapConnectedByName.find(strAddNode);
             if (it != mapConnectedByName.end()) {
                 ret.push_back(AddedNodeInfo{strAddNode, it->second.second, true, it->second.first});
             } else {
                 ret.push_back(AddedNodeInfo{strAddNode, CService(), false, false});
             }
         }
     }
 
     return ret;
 }
 
 void CConnman::ThreadOpenAddedConnections()
 {
     {
         LOCK(cs_vAddedNodes);
         vAddedNodes = mapMultiArgs["-addnode"];
     }
 
     for (unsigned int i = 0; true; i++)
     {
         std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
         for (const AddedNodeInfo& info : vInfo) {
             if (!info.fConnected) {
                 CSemaphoreGrant grant(*semOutbound);
                 // If strAddedNode is an IP/port, decode it immediately, so
                 // OpenNetworkConnection can detect existing connections to that IP/port.
                 CService service(LookupNumeric(info.strAddedNode.c_str(), Params().GetDefaultPort()));
                 OpenNetworkConnection(CAddress(service, NODE_NONE), false, &grant, info.strAddedNode.c_str(), false);
                 MilliSleep(500);
             }
         }
 
         MilliSleep(120000); // Retry every 2 minutes
     }
 }
 
 // if successful, this moves the passed grant to the constructed node
 bool CConnman::OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler)
 {
     //
     // Initiate outbound network connection
     //
     boost::this_thread::interruption_point();
     if (!pszDest) {
         if (IsLocal(addrConnect) ||
             FindNode((CNetAddr)addrConnect) || IsBanned(addrConnect) ||
             FindNode(addrConnect.ToStringIPPort()))
             return false;
     } else if (FindNode(std::string(pszDest)))
         return false;
 
     CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure);
     boost::this_thread::interruption_point();
 
     if (!pnode)
         return false;
     if (grantOutbound)
         grantOutbound->MoveTo(pnode->grantOutbound);
     pnode->fNetworkNode = true;
     if (fOneShot)
         pnode->fOneShot = true;
     if (fFeeler)
         pnode->fFeeler = true;
 
     return true;
 }
 
 
 void CConnman::ThreadMessageHandler()
 {
     boost::mutex condition_mutex;
     boost::unique_lock<boost::mutex> lock(condition_mutex);
 
     while (true)
     {
         std::vector<CNode*> vNodesCopy;
         {
             LOCK(cs_vNodes);
             vNodesCopy = vNodes;
             BOOST_FOREACH(CNode* pnode, vNodesCopy) {
                 pnode->AddRef();
             }
         }
 
         bool fSleep = true;
 
         BOOST_FOREACH(CNode* pnode, vNodesCopy)
         {
             if (pnode->fDisconnect)
                 continue;
 
             // Receive messages
             {
                 TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
                 if (lockRecv)
                 {
                     if (!GetNodeSignals().ProcessMessages(pnode, *this))
                         pnode->CloseSocketDisconnect();
 
                     if (pnode->nSendSize < GetSendBufferSize())
                     {
                         if (!pnode->vRecvGetData.empty() || (!pnode->vRecvMsg.empty() && pnode->vRecvMsg[0].complete()))
                         {
                             fSleep = false;
                         }
                     }
                 }
             }
             boost::this_thread::interruption_point();
 
             // Send messages
             {
                 TRY_LOCK(pnode->cs_vSend, lockSend);
                 if (lockSend)
                     GetNodeSignals().SendMessages(pnode, *this);
             }
             boost::this_thread::interruption_point();
         }
 
         {
             LOCK(cs_vNodes);
             BOOST_FOREACH(CNode* pnode, vNodesCopy)
                 pnode->Release();
         }
 
         if (fSleep)
             messageHandlerCondition.timed_wait(lock, boost::posix_time::microsec_clock::universal_time() + boost::posix_time::milliseconds(100));
     }
 }
 
 
 
 
 
 
 bool CConnman::BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted)
 {
     strError = "";
     int nOne = 1;
 
     // Create socket for listening for incoming connections
     struct sockaddr_storage sockaddr;
     socklen_t len = sizeof(sockaddr);
     if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
     {
         strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString());
         LogPrintf("%s\n", strError);
         return false;
     }
 
     SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
     if (hListenSocket == INVALID_SOCKET)
     {
         strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError);
         return false;
     }
     if (!IsSelectableSocket(hListenSocket))
     {
         strError = "Error: Couldn't create a listenable socket for incoming connections";
         LogPrintf("%s\n", strError);
         return false;
     }
 
 
 #ifndef WIN32
 #ifdef SO_NOSIGPIPE
     // Different way of disabling SIGPIPE on BSD
     setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int));
 #endif
     // Allow binding if the port is still in TIME_WAIT state after
     // the program was closed and restarted.
     setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int));
     // Disable Nagle's algorithm
     setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int));
 #else
     setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int));
     setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int));
 #endif
 
     // Set to non-blocking, incoming connections will also inherit this
     if (!SetSocketNonBlocking(hListenSocket, true)) {
         strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError);
         return false;
     }
 
     // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
     // and enable it by default or not. Try to enable it, if possible.
     if (addrBind.IsIPv6()) {
 #ifdef IPV6_V6ONLY
 #ifdef WIN32
         setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int));
 #else
         setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int));
 #endif
 #endif
 #ifdef WIN32
         int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
         setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int));
 #endif
     }
 
     if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
     {
         int nErr = WSAGetLastError();
         if (nErr == WSAEADDRINUSE)
             strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME));
         else
             strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
         LogPrintf("%s\n", strError);
         CloseSocket(hListenSocket);
         return false;
     }
     LogPrintf("Bound to %s\n", addrBind.ToString());
 
     // Listen for incoming connections
     if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR)
     {
         strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError);
         CloseSocket(hListenSocket);
         return false;
     }
 
     vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted));
 
     if (addrBind.IsRoutable() && fDiscover && !fWhitelisted)
         AddLocal(addrBind, LOCAL_BIND);
 
     return true;
 }
 
 void Discover(boost::thread_group& threadGroup)
 {
     if (!fDiscover)
         return;
 
 #ifdef WIN32
     // Get local host IP
     char pszHostName[256] = "";
     if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
     {
         std::vector<CNetAddr> vaddr;
         if (LookupHost(pszHostName, vaddr, 0, true))
         {
             BOOST_FOREACH (const CNetAddr &addr, vaddr)
             {
                 if (AddLocal(addr, LOCAL_IF))
                     LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
             }
         }
     }
 #else
     // Get local host ip
     struct ifaddrs* myaddrs;
     if (getifaddrs(&myaddrs) == 0)
     {
         for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next)
         {
             if (ifa->ifa_addr == NULL) continue;
             if ((ifa->ifa_flags & IFF_UP) == 0) continue;
             if (strcmp(ifa->ifa_name, "lo") == 0) continue;
             if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
             if (ifa->ifa_addr->sa_family == AF_INET)
             {
                 struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
                 CNetAddr addr(s4->sin_addr);
                 if (AddLocal(addr, LOCAL_IF))
                     LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
             }
             else if (ifa->ifa_addr->sa_family == AF_INET6)
             {
                 struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
                 CNetAddr addr(s6->sin6_addr);
                 if (AddLocal(addr, LOCAL_IF))
                     LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
             }
         }
         freeifaddrs(myaddrs);
     }
 #endif
 }
 
 CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In) : nSeed0(nSeed0In), nSeed1(nSeed1In)
 {
     setBannedIsDirty = false;
     fAddressesInitialized = false;
     nLastNodeId = 0;
     nSendBufferMaxSize = 0;
     nReceiveFloodSize = 0;
     semOutbound = NULL;
     nMaxConnections = 0;
     nMaxOutbound = 0;
     nBestHeight = 0;
     clientInterface = NULL;
 }
 
 NodeId CConnman::GetNewNodeId()
 {
     return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
 }
 
 bool CConnman::Start(boost::thread_group& threadGroup, CScheduler& scheduler, std::string& strNodeError, Options connOptions)
 {
     nTotalBytesRecv = 0;
     nTotalBytesSent = 0;
     nMaxOutboundTotalBytesSentInCycle = 0;
     nMaxOutboundCycleStartTime = 0;
 
     nRelevantServices = connOptions.nRelevantServices;
     nLocalServices = connOptions.nLocalServices;
     nMaxConnections = connOptions.nMaxConnections;
     nMaxOutbound = std::min((connOptions.nMaxOutbound), nMaxConnections);
     nMaxFeeler = connOptions.nMaxFeeler;
 
     nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
     nReceiveFloodSize = connOptions.nSendBufferMaxSize;
 
     nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
     nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe;
 
     SetBestHeight(connOptions.nBestHeight);
 
     clientInterface = connOptions.uiInterface;
     if (clientInterface)
         clientInterface->InitMessage(_("Loading addresses..."));
     // Load addresses from peers.dat
     int64_t nStart = GetTimeMillis();
     {
         CAddrDB adb;
         if (adb.Read(addrman))
             LogPrintf("Loaded %i addresses from peers.dat  %dms\n", addrman.size(), GetTimeMillis() - nStart);
         else {
             addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it
             LogPrintf("Invalid or missing peers.dat; recreating\n");
             DumpAddresses();
         }
     }
     if (clientInterface)
         clientInterface->InitMessage(_("Loading banlist..."));
     // Load addresses from banlist.dat
     nStart = GetTimeMillis();
     CBanDB bandb;
     banmap_t banmap;
     if (bandb.Read(banmap)) {
         SetBanned(banmap); // thread save setter
         SetBannedSetDirty(false); // no need to write down, just read data
         SweepBanned(); // sweep out unused entries
 
         LogPrint("net", "Loaded %d banned node ips/subnets from banlist.dat  %dms\n",
             banmap.size(), GetTimeMillis() - nStart);
     } else {
         LogPrintf("Invalid or missing banlist.dat; recreating\n");
         SetBannedSetDirty(true); // force write
         DumpBanlist();
     }
 
     uiInterface.InitMessage(_("Starting network threads..."));
 
     fAddressesInitialized = true;
 
     if (semOutbound == NULL) {
         // initialize semaphore
         semOutbound = new CSemaphore(std::min((nMaxOutbound + nMaxFeeler), nMaxConnections));
     }
 
     if (pnodeLocalHost == NULL) {
         CNetAddr local;
         LookupHost("127.0.0.1", local, false);
 
         NodeId id = GetNewNodeId();
         uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE).Write(id).Finalize();
 
         pnodeLocalHost = new CNode(id, nLocalServices, GetBestHeight(), INVALID_SOCKET, CAddress(CService(local, 0), nLocalServices), 0, nonce);
         GetNodeSignals().InitializeNode(pnodeLocalHost->GetId(), pnodeLocalHost);
     }
 
     //
     // Start threads
     //
 
     if (!GetBoolArg("-dnsseed", true))
         LogPrintf("DNS seeding disabled\n");
     else
         threadGroup.create_thread(boost::bind(&TraceThread<boost::function<void()> >, "dnsseed", boost::function<void()>(boost::bind(&CConnman::ThreadDNSAddressSeed, this))));
 
     // Send and receive from sockets, accept connections
     threadGroup.create_thread(boost::bind(&TraceThread<boost::function<void()> >, "net", boost::function<void()>(boost::bind(&CConnman::ThreadSocketHandler, this))));
 
     // Initiate outbound connections from -addnode
     threadGroup.create_thread(boost::bind(&TraceThread<boost::function<void()> >, "addcon", boost::function<void()>(boost::bind(&CConnman::ThreadOpenAddedConnections, this))));
 
     // Initiate outbound connections unless connect=0
     if (!mapArgs.count("-connect") || mapMultiArgs["-connect"].size() != 1 || mapMultiArgs["-connect"][0] != "0")
         threadGroup.create_thread(boost::bind(&TraceThread<boost::function<void()> >, "opencon", boost::function<void()>(boost::bind(&CConnman::ThreadOpenConnections, this))));
 
     // Process messages
     threadGroup.create_thread(boost::bind(&TraceThread<boost::function<void()> >, "msghand", boost::function<void()>(boost::bind(&CConnman::ThreadMessageHandler, this))));
 
     // Dump network addresses
     scheduler.scheduleEvery(boost::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL);
 
     return true;
 }
 
 class CNetCleanup
 {
 public:
     CNetCleanup() {}
 
     ~CNetCleanup()
     {
 #ifdef WIN32
         // Shutdown Windows Sockets
         WSACleanup();
 #endif
     }
 }
 instance_of_cnetcleanup;
 
 void CConnman::Stop()
 {
     LogPrintf("%s\n",__func__);
     if (semOutbound)
         for (int i=0; i<(nMaxOutbound + nMaxFeeler); i++)
             semOutbound->post();
 
     if (fAddressesInitialized)
     {
         DumpData();
         fAddressesInitialized = false;
     }
 
     // Close sockets
     BOOST_FOREACH(CNode* pnode, vNodes)
         if (pnode->hSocket != INVALID_SOCKET)
             CloseSocket(pnode->hSocket);
     BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket)
         if (hListenSocket.socket != INVALID_SOCKET)
             if (!CloseSocket(hListenSocket.socket))
                 LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError()));
 
     // clean up some globals (to help leak detection)
     BOOST_FOREACH(CNode *pnode, vNodes) {
         DeleteNode(pnode);
     }
     BOOST_FOREACH(CNode *pnode, vNodesDisconnected) {
         DeleteNode(pnode);
     }
     vNodes.clear();
     vNodesDisconnected.clear();
     vhListenSocket.clear();
     delete semOutbound;
     semOutbound = NULL;
     if(pnodeLocalHost)
         DeleteNode(pnodeLocalHost);
     pnodeLocalHost = NULL;
 }
 
 void CConnman::DeleteNode(CNode* pnode)
 {
     assert(pnode);
     bool fUpdateConnectionTime = false;
     GetNodeSignals().FinalizeNode(pnode->GetId(), fUpdateConnectionTime);
     if(fUpdateConnectionTime)
         addrman.Connected(pnode->addr);
     delete pnode;
 }
 
 CConnman::~CConnman()
 {
     Stop();
 }
 
 size_t CConnman::GetAddressCount() const
 {
     return addrman.size();
 }
 
 void CConnman::SetServices(const CService &addr, ServiceFlags nServices)
 {
     addrman.SetServices(addr, nServices);
 }
 
 void CConnman::MarkAddressGood(const CAddress& addr)
 {
     addrman.Good(addr);
 }
 
 void CConnman::AddNewAddress(const CAddress& addr, const CAddress& addrFrom, int64_t nTimePenalty)
 {
     addrman.Add(addr, addrFrom, nTimePenalty);
 }
 
 void CConnman::AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty)
 {
     addrman.Add(vAddr, addrFrom, nTimePenalty);
 }
 
 std::vector<CAddress> CConnman::GetAddresses()
 {
     return addrman.GetAddr();
 }
 
 bool CConnman::AddNode(const std::string& strNode)
 {
     LOCK(cs_vAddedNodes);
     for(std::vector<std::string>::const_iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
         if (strNode == *it)
             return false;
     }
 
     vAddedNodes.push_back(strNode);
     return true;
 }
 
 bool CConnman::RemoveAddedNode(const std::string& strNode)
 {
     LOCK(cs_vAddedNodes);
     for(std::vector<std::string>::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) {
         if (strNode == *it) {
             vAddedNodes.erase(it);
             return true;
         }
     }
     return false;
 }
 
 size_t CConnman::GetNodeCount(NumConnections flags)
 {
     LOCK(cs_vNodes);
     if (flags == CConnman::CONNECTIONS_ALL) // Shortcut if we want total
         return vNodes.size();
 
     int nNum = 0;
     for(std::vector<CNode*>::const_iterator it = vNodes.begin(); it != vNodes.end(); ++it)
         if (flags & ((*it)->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT))
             nNum++;
 
     return nNum;
 }
 
 void CConnman::GetNodeStats(std::vector<CNodeStats>& vstats)
 {
     vstats.clear();
     LOCK(cs_vNodes);
     vstats.reserve(vNodes.size());
     for(std::vector<CNode*>::iterator it = vNodes.begin(); it != vNodes.end(); ++it) {
         CNode* pnode = *it;
         CNodeStats stats;
         pnode->copyStats(stats);
         vstats.push_back(stats);
     }
 }
 
 bool CConnman::DisconnectAddress(const CNetAddr& netAddr)
 {
     if (CNode* pnode = FindNode(netAddr)) {
         pnode->fDisconnect = true;
         return true;
     }
     return false;
 }
 
 bool CConnman::DisconnectSubnet(const CSubNet& subNet)
 {
     if (CNode* pnode = FindNode(subNet)) {
         pnode->fDisconnect = true;
         return true;
     }
     return false;
 }
 
 bool CConnman::DisconnectNode(const std::string& strNode)
 {
     if (CNode* pnode = FindNode(strNode)) {
         pnode->fDisconnect = true;
         return true;
     }
     return false;
 }
 bool CConnman::DisconnectNode(NodeId id)
 {
     LOCK(cs_vNodes);
     for(CNode* pnode : vNodes) {
         if (id == pnode->id) {
             pnode->fDisconnect = true;
             return true;
         }
     }
     return false;
 }
 
 void CConnman::RelayTransaction(const CTransaction& tx)
 {
     CInv inv(MSG_TX, tx.GetHash());
     LOCK(cs_vNodes);
     BOOST_FOREACH(CNode* pnode, vNodes)
     {
         pnode->PushInventory(inv);
     }
 }
 
 void CConnman::RecordBytesRecv(uint64_t bytes)
 {
     LOCK(cs_totalBytesRecv);
     nTotalBytesRecv += bytes;
 }
 
 void CConnman::RecordBytesSent(uint64_t bytes)
 {
     LOCK(cs_totalBytesSent);
     nTotalBytesSent += bytes;
 
     uint64_t now = GetTime();
     if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now)
     {
         // timeframe expired, reset cycle
         nMaxOutboundCycleStartTime = now;
         nMaxOutboundTotalBytesSentInCycle = 0;
     }
 
     // TODO, exclude whitebind peers
     nMaxOutboundTotalBytesSentInCycle += bytes;
 }
 
 void CConnman::SetMaxOutboundTarget(uint64_t limit)
 {
     LOCK(cs_totalBytesSent);
     nMaxOutboundLimit = limit;
 }
 
 uint64_t CConnman::GetMaxOutboundTarget()
 {
     LOCK(cs_totalBytesSent);
     return nMaxOutboundLimit;
 }
 
 uint64_t CConnman::GetMaxOutboundTimeframe()
 {
     LOCK(cs_totalBytesSent);
     return nMaxOutboundTimeframe;
 }
 
 uint64_t CConnman::GetMaxOutboundTimeLeftInCycle()
 {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0)
         return 0;
 
     if (nMaxOutboundCycleStartTime == 0)
         return nMaxOutboundTimeframe;
 
     uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
     uint64_t now = GetTime();
     return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
 }
 
 void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe)
 {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundTimeframe != timeframe)
     {
         // reset measure-cycle in case of changing
         // the timeframe
         nMaxOutboundCycleStartTime = GetTime();
     }
     nMaxOutboundTimeframe = timeframe;
 }
 
 bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit)
 {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0)
         return false;
 
     if (historicalBlockServingLimit)
     {
         // keep a large enough buffer to at least relay each block once
         uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
         uint64_t buffer = timeLeftInCycle / 600 * MAX_BLOCK_SERIALIZED_SIZE;
         if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
             return true;
     }
     else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
         return true;
 
     return false;
 }
 
 uint64_t CConnman::GetOutboundTargetBytesLeft()
 {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0)
         return 0;
 
     return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
 }
 
 uint64_t CConnman::GetTotalBytesRecv()
 {
     LOCK(cs_totalBytesRecv);
     return nTotalBytesRecv;
 }
 
 uint64_t CConnman::GetTotalBytesSent()
 {
     LOCK(cs_totalBytesSent);
     return nTotalBytesSent;
 }
 
 ServiceFlags CConnman::GetLocalServices() const
 {
     return nLocalServices;
 }
 
 void CConnman::SetBestHeight(int height)
 {
     nBestHeight.store(height, std::memory_order_release);
 }
 
 int CConnman::GetBestHeight() const
 {
     return nBestHeight.load(std::memory_order_acquire);
 }
 
-void CNode::Fuzz(int nChance)
-{
-    if (!fSuccessfullyConnected) return; // Don't fuzz initial handshake
-    if (GetRand(nChance) != 0) return; // Fuzz 1 of every nChance messages
-
-    switch (GetRand(3))
-    {
-    case 0:
-        // xor a random byte with a random value:
-        if (!ssSend.empty()) {
-            CDataStream::size_type pos = GetRand(ssSend.size());
-            ssSend[pos] ^= (unsigned char)(GetRand(256));
-        }
-        break;
-    case 1:
-        // delete a random byte:
-        if (!ssSend.empty()) {
-            CDataStream::size_type pos = GetRand(ssSend.size());
-            ssSend.erase(ssSend.begin()+pos);
-        }
-        break;
-    case 2:
-        // insert a random byte at a random position
-        {
-            CDataStream::size_type pos = GetRand(ssSend.size());
-            char ch = (char)GetRand(256);
-            ssSend.insert(ssSend.begin()+pos, ch);
-        }
-        break;
-    }
-    // Chance of more than one change half the time:
-    // (more changes exponentially less likely):
-    Fuzz(2);
-}
-
 unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; }
 unsigned int CConnman::GetSendBufferSize() const{ return nSendBufferMaxSize; }
 
 CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress& addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const std::string& addrNameIn, bool fInboundIn) :
-    ssSend(SER_NETWORK, INIT_PROTO_VERSION),
     addr(addrIn),
     fInbound(fInboundIn),
     id(idIn),
     nKeyedNetGroup(nKeyedNetGroupIn),
     addrKnown(5000, 0.001),
     filterInventoryKnown(50000, 0.000001),
     nLocalHostNonce(nLocalHostNonceIn),
     nLocalServices(nLocalServicesIn),
     nMyStartingHeight(nMyStartingHeightIn),
     nSendVersion(0)
 {
     nServices = NODE_NONE;
     nServicesExpected = NODE_NONE;
     hSocket = hSocketIn;
     nRecvVersion = INIT_PROTO_VERSION;
     nLastSend = 0;
     nLastRecv = 0;
     nSendBytes = 0;
     nRecvBytes = 0;
     nTimeConnected = GetTime();
     nTimeOffset = 0;
     addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
     nVersion = 0;
     strSubVer = "";
     fWhitelisted = false;
     fOneShot = false;
     fClient = false; // set by version message
     fFeeler = false;
     fNetworkNode = false;
     fSuccessfullyConnected = false;
     fDisconnect = false;
     nRefCount = 0;
     nSendSize = 0;
     nSendOffset = 0;
     hashContinue = uint256();
     nStartingHeight = -1;
     filterInventoryKnown.reset();
     fSendMempool = false;
     fGetAddr = false;
     nNextLocalAddrSend = 0;
     nNextAddrSend = 0;
     nNextInvSend = 0;
     fRelayTxes = false;
     fSentAddr = false;
     pfilter = new CBloomFilter();
     timeLastMempoolReq = 0;
     nLastBlockTime = 0;
     nLastTXTime = 0;
     nPingNonceSent = 0;
     nPingUsecStart = 0;
     nPingUsecTime = 0;
     fPingQueued = false;
     nMinPingUsecTime = std::numeric_limits<int64_t>::max();
     minFeeFilter = 0;
     lastSentFeeFilter = 0;
     nextSendTimeFeeFilter = 0;
 
     BOOST_FOREACH(const std::string &msg, getAllNetMessageTypes())
         mapRecvBytesPerMsgCmd[msg] = 0;
     mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
 
     if (fLogIPs)
         LogPrint("net", "Added connection to %s peer=%d\n", addrName, id);
     else
         LogPrint("net", "Added connection peer=%d\n", id);
 }
 
 CNode::~CNode()
 {
     CloseSocket(hSocket);
 
     if (pfilter)
         delete pfilter;
 }
 
 void CNode::AskFor(const CInv& inv)
 {
     if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ)
         return;
     // a peer may not have multiple non-responded queue positions for a single inv item
     if (!setAskFor.insert(inv.hash).second)
         return;
 
     // We're using mapAskFor as a priority queue,
     // the key is the earliest time the request can be sent
     int64_t nRequestTime;
     limitedmap<uint256, int64_t>::const_iterator it = mapAlreadyAskedFor.find(inv.hash);
     if (it != mapAlreadyAskedFor.end())
         nRequestTime = it->second;
     else
         nRequestTime = 0;
     LogPrint("net", "askfor %s  %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id);
 
     // Make sure not to reuse time indexes to keep things in the same order
     int64_t nNow = GetTimeMicros() - 1000000;
     static int64_t nLastTime;
     ++nLastTime;
     nNow = std::max(nNow, nLastTime);
     nLastTime = nNow;
 
     // Each retry is 2 minutes after the last
     nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow);
     if (it != mapAlreadyAskedFor.end())
         mapAlreadyAskedFor.update(it, nRequestTime);
     else
         mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime));
     mapAskFor.insert(std::make_pair(nRequestTime, inv));
 }
 
 CDataStream CConnman::BeginMessage(CNode* pnode, int nVersion, int flags, const std::string& sCommand)
 {
     return {SER_NETWORK, (nVersion ? nVersion : pnode->GetSendVersion()) | flags, CMessageHeader(Params().MessageStart(), sCommand.c_str(), 0) };
 }
 
 void CConnman::EndMessage(CDataStream& strm)
 {
     // Set the size
     assert(strm.size () >= CMessageHeader::HEADER_SIZE);
     unsigned int nSize = strm.size() - CMessageHeader::HEADER_SIZE;
     WriteLE32((uint8_t*)&strm[CMessageHeader::MESSAGE_SIZE_OFFSET], nSize);
     // Set the checksum
     uint256 hash = Hash(strm.begin() + CMessageHeader::HEADER_SIZE, strm.end());
     memcpy((char*)&strm[CMessageHeader::CHECKSUM_OFFSET], hash.begin(), CMessageHeader::CHECKSUM_SIZE);
 
 }
 
 void CConnman::PushMessage(CNode* pnode, CDataStream& strm, const std::string& sCommand)
 {
     if(strm.empty())
         return;
 
     unsigned int nSize = strm.size() - CMessageHeader::HEADER_SIZE;
     LogPrint("net", "sending %s (%d bytes) peer=%d\n",  SanitizeString(sCommand.c_str()), nSize, pnode->id);
 
     size_t nBytesSent = 0;
     {
         LOCK(pnode->cs_vSend);
         if(pnode->hSocket == INVALID_SOCKET) {
             return;
         }
         bool optimisticSend(pnode->vSendMsg.empty());
         pnode->vSendMsg.emplace_back(strm.begin(), strm.end());
 
         //log total amount of bytes per command
         pnode->mapSendBytesPerMsgCmd[sCommand] += strm.size();
         pnode->nSendSize += strm.size();
 
         // If write queue empty, attempt "optimistic write"
         if (optimisticSend == true)
             nBytesSent = SocketSendData(pnode);
     }
     if (nBytesSent)
         RecordBytesSent(nBytesSent);
 }
 
 bool CConnman::ForNode(NodeId id, std::function<bool(CNode* pnode)> func)
 {
     CNode* found = nullptr;
     LOCK(cs_vNodes);
     for (auto&& pnode : vNodes) {
         if(pnode->id == id) {
             found = pnode;
             break;
         }
     }
     return found != nullptr && func(found);
 }
 
 int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) {
     return nNow + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
 }
 
 CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id)
 {
     return CSipHasher(nSeed0, nSeed1).Write(id);
 }
 
 uint64_t CConnman::CalculateKeyedNetGroup(const CAddress& ad)
 {
     std::vector<unsigned char> vchNetGroup(ad.GetGroup());
 
     return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP).Write(&vchNetGroup[0], vchNetGroup.size()).Finalize();
 }
diff --git a/src/net.h b/src/net.h
index 3f9efbbea..99ca5bc0d 100644
--- a/src/net.h
+++ b/src/net.h
@@ -1,852 +1,848 @@
 // Copyright (c) 2009-2010 Satoshi Nakamoto
 // Copyright (c) 2009-2015 The Bitcoin Core developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #ifndef BITCOIN_NET_H
 #define BITCOIN_NET_H
 
 #include "addrdb.h"
 #include "addrman.h"
 #include "amount.h"
 #include "bloom.h"
 #include "compat.h"
 #include "hash.h"
 #include "limitedmap.h"
 #include "netaddress.h"
 #include "protocol.h"
 #include "random.h"
 #include "streams.h"
 #include "sync.h"
 #include "uint256.h"
 
 #include <atomic>
 #include <deque>
 #include <stdint.h>
 #include <memory>
 
 #ifndef WIN32
 #include <arpa/inet.h>
 #endif
 
 #include <boost/filesystem/path.hpp>
 #include <boost/foreach.hpp>
 #include <boost/signals2/signal.hpp>
 
 class CAddrMan;
 class CScheduler;
 class CNode;
 
 namespace boost {
     class thread_group;
 } // namespace boost
 
 /** Time between pings automatically sent out for latency probing and keepalive (in seconds). */
 static const int PING_INTERVAL = 2 * 60;
 /** Time after which to disconnect, after waiting for a ping response (or inactivity). */
 static const int TIMEOUT_INTERVAL = 20 * 60;
 /** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
 static const int FEELER_INTERVAL = 120;
 /** The maximum number of entries in an 'inv' protocol message */
 static const unsigned int MAX_INV_SZ = 50000;
 /** The maximum number of new addresses to accumulate before announcing. */
 static const unsigned int MAX_ADDR_TO_SEND = 1000;
 /** Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable). */
 static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 4 * 1000 * 1000;
 /** Maximum length of strSubVer in `version` message */
 static const unsigned int MAX_SUBVERSION_LENGTH = 256;
 /** Maximum number of outgoing nodes */
 static const int MAX_OUTBOUND_CONNECTIONS = 8;
 /** -listen default */
 static const bool DEFAULT_LISTEN = true;
 /** -upnp default */
 #ifdef USE_UPNP
 static const bool DEFAULT_UPNP = USE_UPNP;
 #else
 static const bool DEFAULT_UPNP = false;
 #endif
 /** The maximum number of entries in mapAskFor */
 static const size_t MAPASKFOR_MAX_SZ = MAX_INV_SZ;
 /** The maximum number of entries in setAskFor (larger due to getdata latency)*/
 static const size_t SETASKFOR_MAX_SZ = 2 * MAX_INV_SZ;
 /** The maximum number of peer connections to maintain. */
 static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125;
 /** The default for -maxuploadtarget. 0 = Unlimited */
 static const uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
 /** The default timeframe for -maxuploadtarget. 1 day. */
 static const uint64_t MAX_UPLOAD_TIMEFRAME = 60 * 60 * 24;
 /** Default for blocks only*/
 static const bool DEFAULT_BLOCKSONLY = false;
 
 static const bool DEFAULT_FORCEDNSSEED = false;
 static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
 static const size_t DEFAULT_MAXSENDBUFFER    = 1 * 1000;
 
 static const ServiceFlags REQUIRED_SERVICES = NODE_NETWORK;
 
 // NOTE: When adjusting this, update rpcnet:setban's help ("24h")
 static const unsigned int DEFAULT_MISBEHAVING_BANTIME = 60 * 60 * 24;  // Default 24-hour ban
 
 typedef int NodeId;
 
 struct AddedNodeInfo
 {
     std::string strAddedNode;
     CService resolvedAddress;
     bool fConnected;
     bool fInbound;
 };
 
 class CTransaction;
 class CNodeStats;
 class CClientUIInterface;
 
 class CConnman
 {
 public:
 
     enum NumConnections {
         CONNECTIONS_NONE = 0,
         CONNECTIONS_IN = (1U << 0),
         CONNECTIONS_OUT = (1U << 1),
         CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT),
     };
 
     struct Options
     {
         ServiceFlags nLocalServices = NODE_NONE;
         ServiceFlags nRelevantServices = NODE_NONE;
         int nMaxConnections = 0;
         int nMaxOutbound = 0;
         int nMaxFeeler = 0;
         int nBestHeight = 0;
         CClientUIInterface* uiInterface = nullptr;
         unsigned int nSendBufferMaxSize = 0;
         unsigned int nReceiveFloodSize = 0;
         uint64_t nMaxOutboundTimeframe = 0;
         uint64_t nMaxOutboundLimit = 0;
     };
     CConnman(uint64_t seed0, uint64_t seed1);
     ~CConnman();
     bool Start(boost::thread_group& threadGroup, CScheduler& scheduler, std::string& strNodeError, Options options);
     void Stop();
     bool BindListenPort(const CService &bindAddr, std::string& strError, bool fWhitelisted = false);
     bool OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound = NULL, const char *strDest = NULL, bool fOneShot = false, bool fFeeler = false);
     bool CheckIncomingNonce(uint64_t nonce);
 
     bool ForNode(NodeId id, std::function<bool(CNode* pnode)> func);
 
     template <typename... Args>
     void PushMessageWithVersionAndFlag(CNode* pnode, int nVersion, int flag, const std::string& sCommand, Args&&... args)
     {
         auto msg(BeginMessage(pnode, nVersion, flag, sCommand));
         ::SerializeMany(msg, msg.nType, msg.nVersion, std::forward<Args>(args)...);
         EndMessage(msg);
         PushMessage(pnode, msg, sCommand);
     }
 
     template <typename... Args>
     void PushMessageWithFlag(CNode* pnode, int flag, const std::string& sCommand, Args&&... args)
     {
         PushMessageWithVersionAndFlag(pnode, 0, flag, sCommand, std::forward<Args>(args)...);
     }
 
     template <typename... Args>
     void PushMessageWithVersion(CNode* pnode, int nVersion, const std::string& sCommand, Args&&... args)
     {
         PushMessageWithVersionAndFlag(pnode, nVersion, 0, sCommand, std::forward<Args>(args)...);
     }
 
     template <typename... Args>
     void PushMessage(CNode* pnode, const std::string& sCommand, Args&&... args)
     {
         PushMessageWithVersionAndFlag(pnode, 0, 0, sCommand, std::forward<Args>(args)...);
     }
 
     void PushVersion(CNode* pnode, int64_t nTime);
 
 
     template<typename Callable>
     bool ForEachNodeContinueIf(Callable&& func)
     {
         LOCK(cs_vNodes);
         for (auto&& node : vNodes)
             if(!func(node))
                 return false;
         return true;
     };
 
     template<typename Callable>
     bool ForEachNodeContinueIf(Callable&& func) const
     {
         LOCK(cs_vNodes);
         for (const auto& node : vNodes)
             if(!func(node))
                 return false;
         return true;
     };
 
     template<typename Callable, typename CallableAfter>
     bool ForEachNodeContinueIfThen(Callable&& pre, CallableAfter&& post)
     {
         bool ret = true;
         LOCK(cs_vNodes);
         for (auto&& node : vNodes)
             if(!pre(node)) {
                 ret = false;
                 break;
             }
         post();
         return ret;
     };
 
     template<typename Callable, typename CallableAfter>
     bool ForEachNodeContinueIfThen(Callable&& pre, CallableAfter&& post) const
     {
         bool ret = true;
         LOCK(cs_vNodes);
         for (const auto& node : vNodes)
             if(!pre(node)) {
                 ret = false;
                 break;
             }
         post();
         return ret;
     };
 
     template<typename Callable>
     void ForEachNode(Callable&& func)
     {
         LOCK(cs_vNodes);
         for (auto&& node : vNodes)
             func(node);
     };
 
     template<typename Callable>
     void ForEachNode(Callable&& func) const
     {
         LOCK(cs_vNodes);
         for (const auto& node : vNodes)
             func(node);
     };
 
     template<typename Callable, typename CallableAfter>
     void ForEachNodeThen(Callable&& pre, CallableAfter&& post)
     {
         LOCK(cs_vNodes);
         for (auto&& node : vNodes)
             pre(node);
         post();
     };
 
     template<typename Callable, typename CallableAfter>
     void ForEachNodeThen(Callable&& pre, CallableAfter&& post) const
     {
         LOCK(cs_vNodes);
         for (const auto& node : vNodes)
             pre(node);
         post();
     };
 
     void RelayTransaction(const CTransaction& tx);
 
     // Addrman functions
     size_t GetAddressCount() const;
     void SetServices(const CService &addr, ServiceFlags nServices);
     void MarkAddressGood(const CAddress& addr);
     void AddNewAddress(const CAddress& addr, const CAddress& addrFrom, int64_t nTimePenalty = 0);
     void AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty = 0);
     std::vector<CAddress> GetAddresses();
     void AddressCurrentlyConnected(const CService& addr);
 
     // Denial-of-service detection/prevention
     // The idea is to detect peers that are behaving
     // badly and disconnect/ban them, but do it in a
     // one-coding-mistake-won't-shatter-the-entire-network
     // way.
     // IMPORTANT:  There should be nothing I can give a
     // node that it will forward on that will make that
     // node's peers drop it. If there is, an attacker
     // can isolate a node and/or try to split the network.
     // Dropping a node for sending stuff that is invalid
     // now but might be valid in a later version is also
     // dangerous, because it can cause a network split
     // between nodes running old code and nodes running
     // new code.
     void Ban(const CNetAddr& netAddr, const BanReason& reason, int64_t bantimeoffset = 0, bool sinceUnixEpoch = false);
     void Ban(const CSubNet& subNet, const BanReason& reason, int64_t bantimeoffset = 0, bool sinceUnixEpoch = false);
     void ClearBanned(); // needed for unit testing
     bool IsBanned(CNetAddr ip);
     bool IsBanned(CSubNet subnet);
     bool Unban(const CNetAddr &ip);
     bool Unban(const CSubNet &ip);
     void GetBanned(banmap_t &banmap);
     void SetBanned(const banmap_t &banmap);
 
     void AddOneShot(const std::string& strDest);
 
     bool AddNode(const std::string& node);
     bool RemoveAddedNode(const std::string& node);
     std::vector<AddedNodeInfo> GetAddedNodeInfo();
 
     size_t GetNodeCount(NumConnections num);
     void GetNodeStats(std::vector<CNodeStats>& vstats);
     bool DisconnectAddress(const CNetAddr& addr);
     bool DisconnectNode(const std::string& node);
     bool DisconnectNode(NodeId id);
     bool DisconnectSubnet(const CSubNet& subnet);
 
     unsigned int GetSendBufferSize() const;
 
     void AddWhitelistedRange(const CSubNet &subnet);
 
     ServiceFlags GetLocalServices() const;
 
     //!set the max outbound target in bytes
     void SetMaxOutboundTarget(uint64_t limit);
     uint64_t GetMaxOutboundTarget();
 
     //!set the timeframe for the max outbound target
     void SetMaxOutboundTimeframe(uint64_t timeframe);
     uint64_t GetMaxOutboundTimeframe();
 
     //!check if the outbound target is reached
     // if param historicalBlockServingLimit is set true, the function will
     // response true if the limit for serving historical blocks has been reached
     bool OutboundTargetReached(bool historicalBlockServingLimit);
 
     //!response the bytes left in the current max outbound cycle
     // in case of no limit, it will always response 0
     uint64_t GetOutboundTargetBytesLeft();
 
     //!response the time in second left in the current max outbound cycle
     // in case of no limit, it will always response 0
     uint64_t GetMaxOutboundTimeLeftInCycle();
 
     uint64_t GetTotalBytesRecv();
     uint64_t GetTotalBytesSent();
 
     void SetBestHeight(int height);
     int GetBestHeight() const;
 
     /** Get a unique deterministic randomizer. */
     CSipHasher GetDeterministicRandomizer(uint64_t id);
 
 private:
     struct ListenSocket {
         SOCKET socket;
         bool whitelisted;
 
         ListenSocket(SOCKET socket_, bool whitelisted_) : socket(socket_), whitelisted(whitelisted_) {}
     };
 
     void ThreadOpenAddedConnections();
     void ProcessOneShot();
     void ThreadOpenConnections();
     void ThreadMessageHandler();
     void AcceptConnection(const ListenSocket& hListenSocket);
     void ThreadSocketHandler();
     void ThreadDNSAddressSeed();
 
     uint64_t CalculateKeyedNetGroup(const CAddress& ad);
 
     CNode* FindNode(const CNetAddr& ip);
     CNode* FindNode(const CSubNet& subNet);
     CNode* FindNode(const std::string& addrName);
     CNode* FindNode(const CService& addr);
 
     bool AttemptToEvictConnection();
     CNode* ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure);
     bool IsWhitelistedRange(const CNetAddr &addr);
 
     void DeleteNode(CNode* pnode);
 
     NodeId GetNewNodeId();
 
     //!check is the banlist has unwritten changes
     bool BannedSetIsDirty();
     //!set the "dirty" flag for the banlist
     void SetBannedSetDirty(bool dirty=true);
     //!clean unused entries (if bantime has expired)
     void SweepBanned();
     void DumpAddresses();
     void DumpData();
     void DumpBanlist();
 
     unsigned int GetReceiveFloodSize() const;
 
     CDataStream BeginMessage(CNode* node, int nVersion, int flags, const std::string& sCommand);
     void PushMessage(CNode* pnode, CDataStream& strm, const std::string& sCommand);
     void EndMessage(CDataStream& strm);
 
     // Network stats
     void RecordBytesRecv(uint64_t bytes);
     void RecordBytesSent(uint64_t bytes);
 
     // Network usage totals
     CCriticalSection cs_totalBytesRecv;
     CCriticalSection cs_totalBytesSent;
     uint64_t nTotalBytesRecv;
     uint64_t nTotalBytesSent;
 
     // outbound limit & stats
     uint64_t nMaxOutboundTotalBytesSentInCycle;
     uint64_t nMaxOutboundCycleStartTime;
     uint64_t nMaxOutboundLimit;
     uint64_t nMaxOutboundTimeframe;
 
     // Whitelisted ranges. Any node connecting from these is automatically
     // whitelisted (as well as those connecting to whitelisted binds).
     std::vector<CSubNet> vWhitelistedRange;
     CCriticalSection cs_vWhitelistedRange;
 
     unsigned int nSendBufferMaxSize;
     unsigned int nReceiveFloodSize;
 
     std::vector<ListenSocket> vhListenSocket;
     banmap_t setBanned;
     CCriticalSection cs_setBanned;
     bool setBannedIsDirty;
     bool fAddressesInitialized;
     CAddrMan addrman;
     std::deque<std::string> vOneShots;
     CCriticalSection cs_vOneShots;
     std::vector<std::string> vAddedNodes;
     CCriticalSection cs_vAddedNodes;
     std::vector<CNode*> vNodes;
     std::list<CNode*> vNodesDisconnected;
     mutable CCriticalSection cs_vNodes;
     std::atomic<NodeId> nLastNodeId;
     boost::condition_variable messageHandlerCondition;
 
     /** Services this instance offers */
     ServiceFlags nLocalServices;
 
     /** Services this instance cares about */
     ServiceFlags nRelevantServices;
 
     CSemaphore *semOutbound;
     int nMaxConnections;
     int nMaxOutbound;
     int nMaxFeeler;
     std::atomic<int> nBestHeight;
     CClientUIInterface* clientInterface;
 
     /** SipHasher seeds for deterministic randomness */
     const uint64_t nSeed0, nSeed1;
 };
 extern std::unique_ptr<CConnman> g_connman;
 void Discover(boost::thread_group& threadGroup);
 void MapPort(bool fUseUPnP);
 unsigned short GetListenPort();
 bool BindListenPort(const CService &bindAddr, std::string& strError, bool fWhitelisted = false);
 size_t SocketSendData(CNode *pnode);
 
 struct CombinerAll
 {
     typedef bool result_type;
 
     template<typename I>
     bool operator()(I first, I last) const
     {
         while (first != last) {
             if (!(*first)) return false;
             ++first;
         }
         return true;
     }
 };
 
 // Signals for message handling
 struct CNodeSignals
 {
     boost::signals2::signal<bool (CNode*, CConnman&), CombinerAll> ProcessMessages;
     boost::signals2::signal<bool (CNode*, CConnman&), CombinerAll> SendMessages;
     boost::signals2::signal<void (NodeId, const CNode*)> InitializeNode;
     boost::signals2::signal<void (NodeId, bool&)> FinalizeNode;
 };
 
 
 CNodeSignals& GetNodeSignals();
 
 
 enum
 {
     LOCAL_NONE,   // unknown
     LOCAL_IF,     // address a local interface listens on
     LOCAL_BIND,   // address explicit bound to
     LOCAL_UPNP,   // address reported by UPnP
     LOCAL_MANUAL, // address explicitly specified (-externalip=)
 
     LOCAL_MAX
 };
 
 bool IsPeerAddrLocalGood(CNode *pnode);
 void AdvertiseLocal(CNode *pnode);
 void SetLimited(enum Network net, bool fLimited = true);
 bool IsLimited(enum Network net);
 bool IsLimited(const CNetAddr& addr);
 bool AddLocal(const CService& addr, int nScore = LOCAL_NONE);
 bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE);
 bool RemoveLocal(const CService& addr);
 bool SeenLocal(const CService& addr);
 bool IsLocal(const CService& addr);
 bool GetLocal(CService &addr, const CNetAddr *paddrPeer = NULL);
 bool IsReachable(enum Network net);
 bool IsReachable(const CNetAddr &addr);
 CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices);
 
 
 extern bool fDiscover;
 extern bool fListen;
 extern bool fRelayTxes;
 
 extern limitedmap<uint256, int64_t> mapAlreadyAskedFor;
 
 /** Subversion as sent to the P2P network in `version` messages */
 extern std::string strSubVersion;
 
 struct LocalServiceInfo {
     int nScore;
     int nPort;
 };
 
 extern CCriticalSection cs_mapLocalHost;
 extern std::map<CNetAddr, LocalServiceInfo> mapLocalHost;
 typedef std::map<std::string, uint64_t> mapMsgCmdSize; //command, total bytes
 
 class CNodeStats
 {
 public:
     NodeId nodeid;
     ServiceFlags nServices;
     bool fRelayTxes;
     int64_t nLastSend;
     int64_t nLastRecv;
     int64_t nTimeConnected;
     int64_t nTimeOffset;
     std::string addrName;
     int nVersion;
     std::string cleanSubVer;
     bool fInbound;
     int nStartingHeight;
     uint64_t nSendBytes;
     mapMsgCmdSize mapSendBytesPerMsgCmd;
     uint64_t nRecvBytes;
     mapMsgCmdSize mapRecvBytesPerMsgCmd;
     bool fWhitelisted;
     double dPingTime;
     double dPingWait;
     double dMinPing;
     std::string addrLocal;
     CAddress addr;
 };
 
 
 
 
 class CNetMessage {
 public:
     bool in_data;                   // parsing header (false) or data (true)
 
     CDataStream hdrbuf;             // partially received header
     CMessageHeader hdr;             // complete header
     unsigned int nHdrPos;
 
     CDataStream vRecv;              // received message data
     unsigned int nDataPos;
 
     int64_t nTime;                  // time (in microseconds) of message receipt.
 
     CNetMessage(const CMessageHeader::MessageStartChars& pchMessageStartIn, int nTypeIn, int nVersionIn) : hdrbuf(nTypeIn, nVersionIn), hdr(pchMessageStartIn), vRecv(nTypeIn, nVersionIn) {
         hdrbuf.resize(24);
         in_data = false;
         nHdrPos = 0;
         nDataPos = 0;
         nTime = 0;
     }
 
     bool complete() const
     {
         if (!in_data)
             return false;
         return (hdr.nMessageSize == nDataPos);
     }
 
     void SetVersion(int nVersionIn)
     {
         hdrbuf.SetVersion(nVersionIn);
         vRecv.SetVersion(nVersionIn);
     }
 
     int readHeader(const char *pch, unsigned int nBytes);
     int readData(const char *pch, unsigned int nBytes);
 };
 
 
 /** Information about a peer */
 class CNode
 {
     friend class CConnman;
 public:
     // socket
     ServiceFlags nServices;
     ServiceFlags nServicesExpected;
     SOCKET hSocket;
-    CDataStream ssSend;
     size_t nSendSize; // total size of all vSendMsg entries
     size_t nSendOffset; // offset inside the first vSendMsg already sent
     uint64_t nSendBytes;
     std::deque<CSerializeData> vSendMsg;
     CCriticalSection cs_vSend;
 
     std::deque<CInv> vRecvGetData;
     std::deque<CNetMessage> vRecvMsg;
     CCriticalSection cs_vRecvMsg;
     uint64_t nRecvBytes;
     int nRecvVersion;
 
     int64_t nLastSend;
     int64_t nLastRecv;
     int64_t nTimeConnected;
     int64_t nTimeOffset;
     const CAddress addr;
     std::string addrName;
     CService addrLocal;
     int nVersion;
     // strSubVer is whatever byte array we read from the wire. However, this field is intended
     // to be printed out, displayed to humans in various forms and so on. So we sanitize it and
     // store the sanitized version in cleanSubVer. The original should be used when dealing with
     // the network or wire types and the cleaned string used when displayed or logged.
     std::string strSubVer, cleanSubVer;
     bool fWhitelisted; // This peer can bypass DoS banning.
     bool fFeeler; // If true this node is being used as a short lived feeler.
     bool fOneShot;
     bool fClient;
     const bool fInbound;
     bool fNetworkNode;
     bool fSuccessfullyConnected;
     bool fDisconnect;
     // We use fRelayTxes for two purposes -
     // a) it allows us to not relay tx invs before receiving the peer's version message
     // b) the peer may tell us in its version message that we should not relay tx invs
     //    unless it loads a bloom filter.
     bool fRelayTxes; //protected by cs_filter
     bool fSentAddr;
     CSemaphoreGrant grantOutbound;
     CCriticalSection cs_filter;
     CBloomFilter* pfilter;
     int nRefCount;
     const NodeId id;
 
     const uint64_t nKeyedNetGroup;
 protected:
 
     mapMsgCmdSize mapSendBytesPerMsgCmd;
     mapMsgCmdSize mapRecvBytesPerMsgCmd;
 
-    // Basic fuzz-testing
-    void Fuzz(int nChance); // modifies ssSend
-
 public:
     uint256 hashContinue;
     int nStartingHeight;
 
     // flood relay
     std::vector<CAddress> vAddrToSend;
     CRollingBloomFilter addrKnown;
     bool fGetAddr;
     std::set<uint256> setKnown;
     int64_t nNextAddrSend;
     int64_t nNextLocalAddrSend;
 
     // inventory based relay
     CRollingBloomFilter filterInventoryKnown;
     // Set of transaction ids we still have to announce.
     // They are sorted by the mempool before relay, so the order is not important.
     std::set<uint256> setInventoryTxToSend;
     // List of block ids we still have announce.
     // There is no final sorting before sending, as they are always sent immediately
     // and in the order requested.
     std::vector<uint256> vInventoryBlockToSend;
     CCriticalSection cs_inventory;
     std::set<uint256> setAskFor;
     std::multimap<int64_t, CInv> mapAskFor;
     int64_t nNextInvSend;
     // Used for headers announcements - unfiltered blocks to relay
     // Also protected by cs_inventory
     std::vector<uint256> vBlockHashesToAnnounce;
     // Used for BIP35 mempool sending, also protected by cs_inventory
     bool fSendMempool;
 
     // Last time a "MEMPOOL" request was serviced.
     std::atomic<int64_t> timeLastMempoolReq;
 
     // Block and TXN accept times
     std::atomic<int64_t> nLastBlockTime;
     std::atomic<int64_t> nLastTXTime;
 
     // Ping time measurement:
     // The pong reply we're expecting, or 0 if no pong expected.
     uint64_t nPingNonceSent;
     // Time (in usec) the last ping was sent, or 0 if no ping was ever sent.
     int64_t nPingUsecStart;
     // Last measured round-trip time.
     int64_t nPingUsecTime;
     // Best measured round-trip time.
     int64_t nMinPingUsecTime;
     // Whether a ping is requested.
     bool fPingQueued;
     // Minimum fee rate with which to filter inv's to this node
     CAmount minFeeFilter;
     CCriticalSection cs_feeFilter;
     CAmount lastSentFeeFilter;
     int64_t nextSendTimeFeeFilter;
 
     CNode(NodeId id, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const std::string &addrNameIn = "", bool fInboundIn = false);
     ~CNode();
 
 private:
     CNode(const CNode&);
     void operator=(const CNode&);
 
 
     const uint64_t nLocalHostNonce;
     // Services offered to this peer
     const ServiceFlags nLocalServices;
     const int nMyStartingHeight;
     int nSendVersion;
 public:
 
     NodeId GetId() const {
       return id;
     }
 
     uint64_t GetLocalNonce() const {
       return nLocalHostNonce;
     }
 
     int GetRefCount()
     {
         assert(nRefCount >= 0);
         return nRefCount;
     }
 
     // requires LOCK(cs_vRecvMsg)
     unsigned int GetTotalRecvSize()
     {
         unsigned int total = 0;
         BOOST_FOREACH(const CNetMessage &msg, vRecvMsg)
             total += msg.vRecv.size() + 24;
         return total;
     }
 
     // requires LOCK(cs_vRecvMsg)
     bool ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete);
 
     // requires LOCK(cs_vRecvMsg)
     void SetRecvVersion(int nVersionIn)
     {
         nRecvVersion = nVersionIn;
         BOOST_FOREACH(CNetMessage &msg, vRecvMsg)
             msg.SetVersion(nVersionIn);
     }
     void SetSendVersion(int nVersionIn)
     {
         // Send version may only be changed in the version message, and
         // only one version message is allowed per session. We can therefore
         // treat this value as const and even atomic as long as it's only used
         // once the handshake is complete. Any attempt to set this twice is an
         // error.
         assert(nSendVersion == 0);
         nSendVersion = nVersionIn;
     }
 
     int GetSendVersion() const
     {
         // The send version should always be explicitly set to
         // INIT_PROTO_VERSION rather than using this value until the handshake
         // is complete. See PushMessageWithVersion().
         assert(nSendVersion != 0);
         return nSendVersion;
     }
 
     CNode* AddRef()
     {
         nRefCount++;
         return this;
     }
 
     void Release()
     {
         nRefCount--;
     }
 
 
 
     void AddAddressKnown(const CAddress& _addr)
     {
         addrKnown.insert(_addr.GetKey());
     }
 
     void PushAddress(const CAddress& _addr, FastRandomContext &insecure_rand)
     {
         // Known checking here is only to save space from duplicates.
         // SendMessages will filter it again for knowns that were added
         // after addresses were pushed.
         if (_addr.IsValid() && !addrKnown.contains(_addr.GetKey())) {
             if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) {
                 vAddrToSend[insecure_rand.rand32() % vAddrToSend.size()] = _addr;
             } else {
                 vAddrToSend.push_back(_addr);
             }
         }
     }
 
 
     void AddInventoryKnown(const CInv& inv)
     {
         {
             LOCK(cs_inventory);
             filterInventoryKnown.insert(inv.hash);
         }
     }
 
     void PushInventory(const CInv& inv)
     {
         LOCK(cs_inventory);
         if (inv.type == MSG_TX) {
             if (!filterInventoryKnown.contains(inv.hash)) {
                 setInventoryTxToSend.insert(inv.hash);
             }
         } else if (inv.type == MSG_BLOCK) {
             vInventoryBlockToSend.push_back(inv.hash);
         }
     }
 
     void PushBlockHash(const uint256 &hash)
     {
         LOCK(cs_inventory);
         vBlockHashesToAnnounce.push_back(hash);
     }
 
     void AskFor(const CInv& inv);
 
     void CloseSocketDisconnect();
 
     void copyStats(CNodeStats &stats);
 
     ServiceFlags GetLocalServices() const
     {
         return nLocalServices;
     }
 };
 
 
 
 
 
 /** Return a timestamp in the future (in microseconds) for exponentially distributed events. */
 int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds);
 
 #endif // BITCOIN_NET_H