diff --git a/src/net_processing.h b/src/net_processing.h index 47d106756..f09a1f7e4 100644 --- a/src/net_processing.h +++ b/src/net_processing.h @@ -1,131 +1,131 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NET_PROCESSING_H #define BITCOIN_NET_PROCESSING_H #include #include #include class Config; /** * Default for -maxorphantx, maximum number of orphan transactions kept in * memory. */ static const unsigned int DEFAULT_MAX_ORPHAN_TRANSACTIONS = 100; /** * Default number of orphan+recently-replaced txn to keep around for block * reconstruction. */ static const unsigned int DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN = 100; /** Default for BIP61 (sending reject messages) */ static constexpr bool DEFAULT_ENABLE_BIP61 = true; class PeerLogicValidation final : public CValidationInterface, public NetEventsInterface { private: CConnman *const connman; BanMan *const m_banman; bool SendRejectsAndCheckIfBanned(CNode *pnode, bool enable_bip61) EXCLUSIVE_LOCKS_REQUIRED(cs_main); public: PeerLogicValidation(CConnman *connman, BanMan *banman, CScheduler &scheduler, bool enable_bip61); /** * Overridden from CValidationInterface. */ void BlockConnected(const std::shared_ptr &pblock, const CBlockIndex *pindexConnected, const std::vector &vtxConflicted) override; /** * Overridden from CValidationInterface. */ void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override; /** * Overridden from CValidationInterface. */ void BlockChecked(const CBlock &block, const CValidationState &state) override; /** * Overridden from CValidationInterface. */ void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr &pblock) override; /** * Initialize a peer by adding it to mapNodeState and pushing a message * requesting its version. */ void InitializeNode(const Config &config, CNode *pnode) override; /** * Handle removal of a peer by updating various state and removing it from * mapNodeState. */ void FinalizeNode(const Config &config, NodeId nodeid, bool &fUpdateConnectionTime) override; /** * Process protocol messages received from a given node. */ bool ProcessMessages(const Config &config, CNode *pfrom, std::atomic &interrupt) override; /** * Send queued protocol messages to be sent to a give node. * * @param[in] pto The node which we are sending messages to. * @param[in] interrupt Interrupt condition for processing threads * @return True if there is more work to be done */ bool SendMessages(const Config &config, CNode *pto, std::atomic &interrupt) override EXCLUSIVE_LOCKS_REQUIRED(pto->cs_sendProcessing); /** * Consider evicting an outbound peer based on the amount of time they've * been behind our tip. */ void ConsiderEviction(CNode *pto, int64_t time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Evict extra outbound peers. If we think our tip may be stale, connect to * an extra outbound. */ void CheckForStaleTipAndEvictPeers(const Consensus::Params &consensusParams); /** * If we have extra outbound peers, try to disconnect the one with the * oldest block announcement. */ void EvictExtraOutboundPeers(int64_t time_in_seconds); private: - //! Next time to check for stale tip + //!< Next time to check for stale tip int64_t m_stale_tip_check_time; /** Enable BIP61 (sending reject messages) */ const bool m_enable_bip61; }; struct CNodeStateStats { int nMisbehavior = 0; int nSyncHeight = -1; int nCommonHeight = -1; std::vector vHeightInFlight; }; /** Get statistics from node state */ bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats); /** Increase a node's misbehavior score. */ void Misbehaving(NodeId nodeid, int howmuch, const std::string &reason = ""); #endif // BITCOIN_NET_PROCESSING_H diff --git a/src/netbase.cpp b/src/netbase.cpp index 7b9abcdbd..4715d100f 100644 --- a/src/netbase.cpp +++ b/src/netbase.cpp @@ -1,805 +1,805 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #ifndef WIN32 #include #endif #if !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // Settings static CCriticalSection cs_proxyInfos; static proxyType proxyInfo[NET_MAX] GUARDED_BY(cs_proxyInfos); static proxyType nameProxy GUARDED_BY(cs_proxyInfos); int nConnectTimeout = DEFAULT_CONNECT_TIMEOUT; bool fNameLookup = DEFAULT_NAME_LOOKUP; // Need ample time for negotiation for very slow proxies such as Tor // (milliseconds) static const int SOCKS5_RECV_TIMEOUT = 20 * 1000; static std::atomic interruptSocks5Recv(false); enum Network ParseNetwork(std::string net) { Downcase(net); if (net == "ipv4") { return NET_IPV4; } if (net == "ipv6") { return NET_IPV6; } if (net == "onion") { return NET_ONION; } if (net == "tor") { LogPrintf("Warning: net name 'tor' is deprecated and will be removed " "in the future. You should use 'onion' instead.\n"); return NET_ONION; } return NET_UNROUTABLE; } std::string GetNetworkName(enum Network net) { switch (net) { case NET_IPV4: return "ipv4"; case NET_IPV6: return "ipv6"; case NET_ONION: return "onion"; default: return ""; } } static bool LookupIntern(const char *pszName, std::vector &vIP, unsigned int nMaxSolutions, bool fAllowLookup) { vIP.clear(); { CNetAddr addr; if (addr.SetSpecial(std::string(pszName))) { vIP.push_back(addr); return true; } } struct addrinfo aiHint; memset(&aiHint, 0, sizeof(struct addrinfo)); aiHint.ai_socktype = SOCK_STREAM; aiHint.ai_protocol = IPPROTO_TCP; aiHint.ai_family = AF_UNSPEC; #ifdef WIN32 aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST; #else aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST; #endif struct addrinfo *aiRes = nullptr; int nErr = getaddrinfo(pszName, nullptr, &aiHint, &aiRes); if (nErr) { return false; } struct addrinfo *aiTrav = aiRes; while (aiTrav != nullptr && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions)) { CNetAddr resolved; if (aiTrav->ai_family == AF_INET) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in)); resolved = CNetAddr(reinterpret_cast(aiTrav->ai_addr) ->sin_addr); } if (aiTrav->ai_family == AF_INET6) { assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6)); struct sockaddr_in6 *s6 = reinterpret_cast(aiTrav->ai_addr); resolved = CNetAddr(s6->sin6_addr, s6->sin6_scope_id); } // Never allow resolving to an internal address. Consider any such // result invalid. if (!resolved.IsInternal()) { vIP.push_back(resolved); } aiTrav = aiTrav->ai_next; } freeaddrinfo(aiRes); return (vIP.size() > 0); } bool LookupHost(const char *pszName, std::vector &vIP, unsigned int nMaxSolutions, bool fAllowLookup) { std::string strHost(pszName); if (strHost.empty()) { return false; } if (strHost.front() == '[' && strHost.back() == ']') { strHost = strHost.substr(1, strHost.size() - 2); } return LookupIntern(strHost.c_str(), vIP, nMaxSolutions, fAllowLookup); } bool LookupHost(const char *pszName, CNetAddr &addr, bool fAllowLookup) { std::vector vIP; LookupHost(pszName, vIP, 1, fAllowLookup); if (vIP.empty()) { return false; } addr = vIP.front(); return true; } bool Lookup(const char *pszName, std::vector &vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions) { if (pszName[0] == 0) { return false; } int port = portDefault; std::string hostname; SplitHostPort(std::string(pszName), port, hostname); std::vector vIP; bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup); if (!fRet) { return false; } vAddr.resize(vIP.size()); for (unsigned int i = 0; i < vIP.size(); i++) { vAddr[i] = CService(vIP[i], port); } return true; } bool Lookup(const char *pszName, CService &addr, int portDefault, bool fAllowLookup) { std::vector vService; bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1); if (!fRet) { return false; } addr = vService[0]; return true; } CService LookupNumeric(const char *pszName, int portDefault) { CService addr; // "1.2:345" will fail to resolve the ip, but will still set the port. // If the ip fails to resolve, re-init the result. if (!Lookup(pszName, addr, portDefault, false)) { addr = CService(); } return addr; } struct timeval MillisToTimeval(int64_t nTimeout) { struct timeval timeout; timeout.tv_sec = nTimeout / 1000; timeout.tv_usec = (nTimeout % 1000) * 1000; return timeout; } /** SOCKS version */ enum SOCKSVersion : uint8_t { SOCKS4 = 0x04, SOCKS5 = 0x05 }; /** Values defined for METHOD in RFC1928 */ enum SOCKS5Method : uint8_t { - NOAUTH = 0x00, //! No authentication required - GSSAPI = 0x01, //! GSSAPI - USER_PASS = 0x02, //! Username/password - NO_ACCEPTABLE = 0xff, //! No acceptable methods + NOAUTH = 0x00, //!< No authentication required + GSSAPI = 0x01, //!< GSSAPI + USER_PASS = 0x02, //!< Username/password + NO_ACCEPTABLE = 0xff, //!< No acceptable methods }; /** Values defined for CMD in RFC1928 */ enum SOCKS5Command : uint8_t { CONNECT = 0x01, BIND = 0x02, UDP_ASSOCIATE = 0x03 }; /** Values defined for REP in RFC1928 */ enum SOCKS5Reply : uint8_t { - SUCCEEDED = 0x00, //! Succeeded - GENFAILURE = 0x01, //! General failure - NOTALLOWED = 0x02, //! Connection not allowed by ruleset - NETUNREACHABLE = 0x03, //! Network unreachable - HOSTUNREACHABLE = 0x04, //! Network unreachable - CONNREFUSED = 0x05, //! Connection refused - TTLEXPIRED = 0x06, //! TTL expired - CMDUNSUPPORTED = 0x07, //! Command not supported - ATYPEUNSUPPORTED = 0x08, //! Address type not supported + SUCCEEDED = 0x00, //!< Succeeded + GENFAILURE = 0x01, //!< General failure + NOTALLOWED = 0x02, //!< Connection not allowed by ruleset + NETUNREACHABLE = 0x03, //!< Network unreachable + HOSTUNREACHABLE = 0x04, //!< Network unreachable + CONNREFUSED = 0x05, //!< Connection refused + TTLEXPIRED = 0x06, //!< TTL expired + CMDUNSUPPORTED = 0x07, //!< Command not supported + ATYPEUNSUPPORTED = 0x08, //!< Address type not supported }; /** Values defined for ATYPE in RFC1928 */ enum SOCKS5Atyp : uint8_t { IPV4 = 0x01, DOMAINNAME = 0x03, IPV6 = 0x04, }; /** Status codes that can be returned by InterruptibleRecv */ enum class IntrRecvError { OK, Timeout, Disconnected, NetworkError, Interrupted }; /** * Read bytes from socket. This will either read the full number of bytes * requested or return False on error or timeout. * This function can be interrupted by calling InterruptSocks5() * * @param data Buffer to receive into * @param len Length of data to receive * @param timeout Timeout in milliseconds for receive operation * * @note This function requires that hSocket is in non-blocking mode. */ static IntrRecvError InterruptibleRecv(uint8_t *data, size_t len, int timeout, const SOCKET &hSocket) { int64_t curTime = GetTimeMillis(); int64_t endTime = curTime + timeout; // Maximum time to wait in one select call. It will take up until this time // (in millis) to break off in case of an interruption. const int64_t maxWait = 1000; while (len > 0 && curTime < endTime) { // Optimistically try the recv first ssize_t ret = recv(hSocket, (char *)data, len, 0); if (ret > 0) { len -= ret; data += ret; } else if (ret == 0) { // Unexpected disconnection return IntrRecvError::Disconnected; } else { // Other error or blocking int nErr = WSAGetLastError(); if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) { if (!IsSelectableSocket(hSocket)) { return IntrRecvError::NetworkError; } struct timeval tval = MillisToTimeval(std::min(endTime - curTime, maxWait)); fd_set fdset; FD_ZERO(&fdset); FD_SET(hSocket, &fdset); int nRet = select(hSocket + 1, &fdset, nullptr, nullptr, &tval); if (nRet == SOCKET_ERROR) { return IntrRecvError::NetworkError; } } else { return IntrRecvError::NetworkError; } } if (interruptSocks5Recv) { return IntrRecvError::Interrupted; } curTime = GetTimeMillis(); } return len == 0 ? IntrRecvError::OK : IntrRecvError::Timeout; } /** Credentials for proxy authentication */ struct ProxyCredentials { std::string username; std::string password; }; /** Convert SOCKS5 reply to an error message */ static std::string Socks5ErrorString(uint8_t err) { switch (err) { case SOCKS5Reply::GENFAILURE: return "general failure"; case SOCKS5Reply::NOTALLOWED: return "connection not allowed"; case SOCKS5Reply::NETUNREACHABLE: return "network unreachable"; case SOCKS5Reply::HOSTUNREACHABLE: return "host unreachable"; case SOCKS5Reply::CONNREFUSED: return "connection refused"; case SOCKS5Reply::TTLEXPIRED: return "TTL expired"; case SOCKS5Reply::CMDUNSUPPORTED: return "protocol error"; case SOCKS5Reply::ATYPEUNSUPPORTED: return "address type not supported"; default: return "unknown"; } } /** Connect using SOCKS5 (as described in RFC1928) */ static bool Socks5(const std::string &strDest, int port, const ProxyCredentials *auth, const SOCKET &hSocket) { IntrRecvError recvr; LogPrint(BCLog::NET, "SOCKS5 connecting %s\n", strDest); if (strDest.size() > 255) { return error("Hostname too long"); } // Accepted authentication methods std::vector vSocks5Init; vSocks5Init.push_back(SOCKSVersion::SOCKS5); if (auth) { vSocks5Init.push_back(0x02); // Number of methods vSocks5Init.push_back(SOCKS5Method::NOAUTH); vSocks5Init.push_back(SOCKS5Method::USER_PASS); } else { vSocks5Init.push_back(0x01); // Number of methods vSocks5Init.push_back(SOCKS5Method::NOAUTH); } ssize_t ret = send(hSocket, (const char *)vSocks5Init.data(), vSocks5Init.size(), MSG_NOSIGNAL); if (ret != (ssize_t)vSocks5Init.size()) { return error("Error sending to proxy"); } uint8_t pchRet1[2]; if ((recvr = InterruptibleRecv(pchRet1, 2, SOCKS5_RECV_TIMEOUT, hSocket)) != IntrRecvError::OK) { LogPrintf("Socks5() connect to %s:%d failed: InterruptibleRecv() " "timeout or other failure\n", strDest, port); return false; } if (pchRet1[0] != SOCKSVersion::SOCKS5) { return error("Proxy failed to initialize"); } if (pchRet1[1] == SOCKS5Method::USER_PASS && auth) { // Perform username/password authentication (as described in RFC1929) std::vector vAuth; // Current (and only) version of user/pass subnegotiation vAuth.push_back(0x01); if (auth->username.size() > 255 || auth->password.size() > 255) { return error("Proxy username or password too long"); } vAuth.push_back(auth->username.size()); vAuth.insert(vAuth.end(), auth->username.begin(), auth->username.end()); vAuth.push_back(auth->password.size()); vAuth.insert(vAuth.end(), auth->password.begin(), auth->password.end()); ret = send(hSocket, (const char *)vAuth.data(), vAuth.size(), MSG_NOSIGNAL); if (ret != (ssize_t)vAuth.size()) { return error("Error sending authentication to proxy"); } LogPrint(BCLog::PROXY, "SOCKS5 sending proxy authentication %s:%s\n", auth->username, auth->password); uint8_t pchRetA[2]; if ((recvr = InterruptibleRecv(pchRetA, 2, SOCKS5_RECV_TIMEOUT, hSocket)) != IntrRecvError::OK) { return error("Error reading proxy authentication response"); } if (pchRetA[0] != 0x01 || pchRetA[1] != 0x00) { return error("Proxy authentication unsuccessful"); } } else if (pchRet1[1] == SOCKS5Method::NOAUTH) { // Perform no authentication } else { return error("Proxy requested wrong authentication method %02x", pchRet1[1]); } std::vector vSocks5; // VER protocol version vSocks5.push_back(SOCKSVersion::SOCKS5); // CMD CONNECT vSocks5.push_back(SOCKS5Command::CONNECT); // RSV Reserved must be 0 vSocks5.push_back(0x00); // ATYP DOMAINNAME vSocks5.push_back(SOCKS5Atyp::DOMAINNAME); // Length<=255 is checked at beginning of function vSocks5.push_back(strDest.size()); vSocks5.insert(vSocks5.end(), strDest.begin(), strDest.end()); vSocks5.push_back((port >> 8) & 0xFF); vSocks5.push_back((port >> 0) & 0xFF); ret = send(hSocket, (const char *)vSocks5.data(), vSocks5.size(), MSG_NOSIGNAL); if (ret != (ssize_t)vSocks5.size()) { return error("Error sending to proxy"); } uint8_t pchRet2[4]; if ((recvr = InterruptibleRecv(pchRet2, 4, SOCKS5_RECV_TIMEOUT, hSocket)) != IntrRecvError::OK) { if (recvr == IntrRecvError::Timeout) { /** * If a timeout happens here, this effectively means we timed out * while connecting to the remote node. This is very common for Tor, * so do not print an error message. */ return false; } else { return error("Error while reading proxy response"); } } if (pchRet2[0] != SOCKSVersion::SOCKS5) { return error("Proxy failed to accept request"); } if (pchRet2[1] != SOCKS5Reply::SUCCEEDED) { // Failures to connect to a peer that are not proxy errors LogPrintf("Socks5() connect to %s:%d failed: %s\n", strDest, port, Socks5ErrorString(pchRet2[1])); return false; } // Reserved field must be 0 if (pchRet2[2] != 0x00) { return error("Error: malformed proxy response"); } uint8_t pchRet3[256]; switch (pchRet2[3]) { case SOCKS5Atyp::IPV4: recvr = InterruptibleRecv(pchRet3, 4, SOCKS5_RECV_TIMEOUT, hSocket); break; case SOCKS5Atyp::IPV6: recvr = InterruptibleRecv(pchRet3, 16, SOCKS5_RECV_TIMEOUT, hSocket); break; case SOCKS5Atyp::DOMAINNAME: { recvr = InterruptibleRecv(pchRet3, 1, SOCKS5_RECV_TIMEOUT, hSocket); if (recvr != IntrRecvError::OK) { return error("Error reading from proxy"); } int nRecv = pchRet3[0]; recvr = InterruptibleRecv(pchRet3, nRecv, SOCKS5_RECV_TIMEOUT, hSocket); break; } default: return error("Error: malformed proxy response"); } if (recvr != IntrRecvError::OK) { return error("Error reading from proxy"); } if ((recvr = InterruptibleRecv(pchRet3, 2, SOCKS5_RECV_TIMEOUT, hSocket)) != IntrRecvError::OK) { return error("Error reading from proxy"); } LogPrint(BCLog::NET, "SOCKS5 connected %s\n", strDest); return true; } SOCKET CreateSocket(const CService &addrConnect) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrConnect.GetSockAddr((struct sockaddr *)&sockaddr, &len)) { LogPrintf("Cannot create socket for %s: unsupported network\n", addrConnect.ToString()); return INVALID_SOCKET; } SOCKET hSocket = socket(((struct sockaddr *)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hSocket == INVALID_SOCKET) { return INVALID_SOCKET; } if (!IsSelectableSocket(hSocket)) { CloseSocket(hSocket); LogPrintf("Cannot create connection: non-selectable socket created (fd " ">= FD_SETSIZE ?)\n"); return INVALID_SOCKET; } #ifdef SO_NOSIGPIPE int set = 1; // Different way of disabling SIGPIPE on BSD setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (sockopt_arg_type)&set, sizeof(int)); #endif // Disable Nagle's algorithm SetSocketNoDelay(hSocket); // Set to non-blocking if (!SetSocketNonBlocking(hSocket, true)) { CloseSocket(hSocket); LogPrintf("ConnectSocketDirectly: Setting socket to non-blocking " "failed, error %s\n", NetworkErrorString(WSAGetLastError())); } return hSocket; } template static void LogConnectFailure(bool manual_connection, const char *fmt, const Args &... args) { std::string error_message = tfm::format(fmt, args...); if (manual_connection) { LogPrintf("%s\n", error_message); } else { LogPrint(BCLog::NET, "%s\n", error_message); } } bool ConnectSocketDirectly(const CService &addrConnect, const SOCKET &hSocket, int nTimeout, bool manual_connection) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (hSocket == INVALID_SOCKET) { LogPrintf("Cannot connect to %s: invalid socket\n", addrConnect.ToString()); return false; } if (!addrConnect.GetSockAddr((struct sockaddr *)&sockaddr, &len)) { LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString()); return false; } if (connect(hSocket, (struct sockaddr *)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); // WSAEINVAL is here because some legacy version of winsock uses it if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) { struct timeval timeout = MillisToTimeval(nTimeout); fd_set fdset; FD_ZERO(&fdset); FD_SET(hSocket, &fdset); int nRet = select(hSocket + 1, nullptr, &fdset, nullptr, &timeout); if (nRet == 0) { LogPrint(BCLog::NET, "connection to %s timeout\n", addrConnect.ToString()); return false; } if (nRet == SOCKET_ERROR) { LogPrintf("select() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); return false; } socklen_t nRetSize = sizeof(nRet); if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (sockopt_arg_type)&nRet, &nRetSize) == SOCKET_ERROR) { LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); return false; } if (nRet != 0) { LogConnectFailure(manual_connection, "connect() to %s failed after select(): %s", addrConnect.ToString(), NetworkErrorString(nRet)); return false; } } #ifdef WIN32 else if (WSAGetLastError() != WSAEISCONN) #else else #endif { LogConnectFailure(manual_connection, "connect() to %s failed: %s", addrConnect.ToString(), NetworkErrorString(WSAGetLastError())); return false; } } return true; } bool SetProxy(enum Network net, const proxyType &addrProxy) { assert(net >= 0 && net < NET_MAX); if (!addrProxy.IsValid()) { return false; } LOCK(cs_proxyInfos); proxyInfo[net] = addrProxy; return true; } bool GetProxy(enum Network net, proxyType &proxyInfoOut) { assert(net >= 0 && net < NET_MAX); LOCK(cs_proxyInfos); if (!proxyInfo[net].IsValid()) { return false; } proxyInfoOut = proxyInfo[net]; return true; } bool SetNameProxy(const proxyType &addrProxy) { if (!addrProxy.IsValid()) { return false; } LOCK(cs_proxyInfos); nameProxy = addrProxy; return true; } bool GetNameProxy(proxyType &nameProxyOut) { LOCK(cs_proxyInfos); if (!nameProxy.IsValid()) { return false; } nameProxyOut = nameProxy; return true; } bool HaveNameProxy() { LOCK(cs_proxyInfos); return nameProxy.IsValid(); } bool IsProxy(const CNetAddr &addr) { LOCK(cs_proxyInfos); for (int i = 0; i < NET_MAX; i++) { if (addr == static_cast(proxyInfo[i].proxy)) { return true; } } return false; } bool ConnectThroughProxy(const proxyType &proxy, const std::string &strDest, int port, const SOCKET &hSocket, int nTimeout, bool *outProxyConnectionFailed) { // first connect to proxy server if (!ConnectSocketDirectly(proxy.proxy, hSocket, nTimeout, true)) { if (outProxyConnectionFailed) { *outProxyConnectionFailed = true; } return false; } // do socks negotiation if (proxy.randomize_credentials) { ProxyCredentials random_auth; static std::atomic_int counter(0); random_auth.username = random_auth.password = strprintf("%i", counter++); if (!Socks5(strDest, (unsigned short)port, &random_auth, hSocket)) { return false; } } else if (!Socks5(strDest, (unsigned short)port, 0, hSocket)) { return false; } return true; } bool LookupSubNet(const char *pszName, CSubNet &ret) { std::string strSubnet(pszName); size_t slash = strSubnet.find_last_of('/'); std::vector vIP; std::string strAddress = strSubnet.substr(0, slash); if (LookupHost(strAddress.c_str(), vIP, 1, false)) { CNetAddr network = vIP[0]; if (slash != strSubnet.npos) { std::string strNetmask = strSubnet.substr(slash + 1); int32_t n; // IPv4 addresses start at offset 12, and first 12 bytes must match, // so just offset n if (ParseInt32(strNetmask, &n)) { // If valid number, assume /24 syntax ret = CSubNet(network, n); return ret.IsValid(); } else { // If not a valid number, try full netmask syntax // Never allow lookup for netmask if (LookupHost(strNetmask.c_str(), vIP, 1, false)) { ret = CSubNet(network, vIP[0]); return ret.IsValid(); } } } else { ret = CSubNet(network); return ret.IsValid(); } } return false; } #ifdef WIN32 std::string NetworkErrorString(int err) { char buf[256]; buf[0] = 0; if (FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK, nullptr, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), buf, sizeof(buf), nullptr)) { return strprintf("%s (%d)", buf, err); } else { return strprintf("Unknown error (%d)", err); } } #else std::string NetworkErrorString(int err) { char buf[256]; buf[0] = 0; /** * Too bad there are two incompatible implementations of the * thread-safe strerror. */ const char *s; #ifdef STRERROR_R_CHAR_P /* GNU variant can return a pointer outside the passed buffer */ s = strerror_r(err, buf, sizeof(buf)); #else s = buf; /* POSIX variant always returns message in buffer */ if (strerror_r(err, buf, sizeof(buf))) { buf[0] = 0; } #endif return strprintf("%s (%d)", s, err); } #endif bool CloseSocket(SOCKET &hSocket) { if (hSocket == INVALID_SOCKET) { return false; } #ifdef WIN32 int ret = closesocket(hSocket); #else int ret = close(hSocket); #endif if (ret) { LogPrintf("Socket close failed: %d. Error: %s\n", hSocket, NetworkErrorString(WSAGetLastError())); } hSocket = INVALID_SOCKET; return ret != SOCKET_ERROR; } bool SetSocketNonBlocking(const SOCKET &hSocket, bool fNonBlocking) { if (fNonBlocking) { #ifdef WIN32 u_long nOne = 1; if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) { #else int fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) { #endif return false; } } else { #ifdef WIN32 u_long nZero = 0; if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) { #else int fFlags = fcntl(hSocket, F_GETFL, 0); if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) { #endif return false; } } return true; } bool SetSocketNoDelay(const SOCKET &hSocket) { int set = 1; int rc = setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (sockopt_arg_type)&set, sizeof(int)); return rc == 0; } void InterruptSocks5(bool interrupt) { interruptSocks5Recv = interrupt; } diff --git a/src/txmempool.h b/src/txmempool.h index 3d6b81343..ffd38da8d 100644 --- a/src/txmempool.h +++ b/src/txmempool.h @@ -1,948 +1,948 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_TXMEMPOOL_H #define BITCOIN_TXMEMPOOL_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class CBlockIndex; class Config; extern CCriticalSection cs_main; inline double AllowFreeThreshold() { return (144 * COIN) / (250 * SATOSHI); } inline bool AllowFree(double dPriority) { // Large (in bytes) low-priority (new, small-coin) transactions need a fee. return dPriority > AllowFreeThreshold(); } /** * Fake height value used in Coins to signify they are only in the memory * pool(since 0.8) */ static const uint32_t MEMPOOL_HEIGHT = 0x7FFFFFFF; struct LockPoints { // Will be set to the blockchain height and median time past values that // would be necessary to satisfy all relative locktime constraints (BIP68) // of this tx given our view of block chain history int height; int64_t time; // As long as the current chain descends from the highest height block // containing one of the inputs used in the calculation, then the cached // values are still valid even after a reorg. CBlockIndex *maxInputBlock; LockPoints() : height(0), time(0), maxInputBlock(nullptr) {} }; class CTxMemPool; /** \class CTxMemPoolEntry * * CTxMemPoolEntry stores data about the corresponding transaction, as well as * data about all in-mempool transactions that depend on the transaction * ("descendant" transactions). * * When a new entry is added to the mempool, we update the descendant state * (nCountWithDescendants, nSizeWithDescendants, and nModFeesWithDescendants) * for all ancestors of the newly added transaction. */ class CTxMemPoolEntry { private: CTransactionRef tx; //!< Cached to avoid expensive parent-transaction lookups Amount nFee; //!< ... and avoid recomputing tx size size_t nTxSize; //!< ... and modified size for priority size_t nModSize; //!< ... and total memory usage size_t nUsageSize; //!< Local time when entering the mempool int64_t nTime; //!< Priority when entering the mempool double entryPriority; //!< Chain height when entering the mempool unsigned int entryHeight; //!< Sum of all txin values that are already in blockchain Amount inChainInputValue; //!< keep track of transactions that spend a coinbase bool spendsCoinbase; //!< Total sigop plus P2SH sigops count int64_t sigOpCount; //!< Used for determining the priority of the transaction for mining in a //! block Amount feeDelta; //!< Track the height and time at which tx was final LockPoints lockPoints; // Information about descendants of this transaction that are in the // mempool; if we remove this transaction we must remove all of these // descendants as well. //!< number of descendant transactions uint64_t nCountWithDescendants; //!< ... and size uint64_t nSizeWithDescendants; //!< ... and total fees (all including us) Amount nModFeesWithDescendants; // Analogous statistics for ancestor transactions uint64_t nCountWithAncestors; uint64_t nSizeWithAncestors; Amount nModFeesWithAncestors; int64_t nSigOpCountWithAncestors; public: CTxMemPoolEntry(const CTransactionRef &_tx, const Amount _nFee, int64_t _nTime, double _entryPriority, unsigned int _entryHeight, Amount _inChainInputValue, bool spendsCoinbase, int64_t nSigOpsCost, LockPoints lp); const CTransaction &GetTx() const { return *this->tx; } CTransactionRef GetSharedTx() const { return this->tx; } /** * Fast calculation of lower bound of current priority as update from entry * priority. Only inputs that were originally in-chain will age. */ double GetPriority(unsigned int currentHeight) const; const Amount GetFee() const { return nFee; } size_t GetTxSize() const { return nTxSize; } int64_t GetTime() const { return nTime; } unsigned int GetHeight() const { return entryHeight; } int64_t GetSigOpCount() const { return sigOpCount; } Amount GetModifiedFee() const { return nFee + feeDelta; } size_t DynamicMemoryUsage() const { return nUsageSize; } const LockPoints &GetLockPoints() const { return lockPoints; } // Adjusts the descendant state. void UpdateDescendantState(int64_t modifySize, Amount modifyFee, int64_t modifyCount); // Adjusts the ancestor state void UpdateAncestorState(int64_t modifySize, Amount modifyFee, int64_t modifyCount, int modifySigOps); // Updates the fee delta used for mining priority score, and the // modified fees with descendants. void UpdateFeeDelta(Amount feeDelta); // Update the LockPoints after a reorg void UpdateLockPoints(const LockPoints &lp); uint64_t GetCountWithDescendants() const { return nCountWithDescendants; } uint64_t GetSizeWithDescendants() const { return nSizeWithDescendants; } Amount GetModFeesWithDescendants() const { return nModFeesWithDescendants; } bool GetSpendsCoinbase() const { return spendsCoinbase; } uint64_t GetCountWithAncestors() const { return nCountWithAncestors; } uint64_t GetSizeWithAncestors() const { return nSizeWithAncestors; } Amount GetModFeesWithAncestors() const { return nModFeesWithAncestors; } int64_t GetSigOpCountWithAncestors() const { return nSigOpCountWithAncestors; } //!< Index in mempool's vTxHashes mutable size_t vTxHashesIdx; }; // Helpers for modifying CTxMemPool::mapTx, which is a boost multi_index. struct update_descendant_state { update_descendant_state(int64_t _modifySize, Amount _modifyFee, int64_t _modifyCount) : modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount) {} void operator()(CTxMemPoolEntry &e) { e.UpdateDescendantState(modifySize, modifyFee, modifyCount); } private: int64_t modifySize; Amount modifyFee; int64_t modifyCount; }; struct update_ancestor_state { update_ancestor_state(int64_t _modifySize, Amount _modifyFee, int64_t _modifyCount, int64_t _modifySigOpsCost) : modifySize(_modifySize), modifyFee(_modifyFee), modifyCount(_modifyCount), modifySigOpsCost(_modifySigOpsCost) {} void operator()(CTxMemPoolEntry &e) { e.UpdateAncestorState(modifySize, modifyFee, modifyCount, modifySigOpsCost); } private: int64_t modifySize; Amount modifyFee; int64_t modifyCount; int64_t modifySigOpsCost; }; struct update_fee_delta { explicit update_fee_delta(Amount _feeDelta) : feeDelta(_feeDelta) {} void operator()(CTxMemPoolEntry &e) { e.UpdateFeeDelta(feeDelta); } private: Amount feeDelta; }; struct update_lock_points { explicit update_lock_points(const LockPoints &_lp) : lp(_lp) {} void operator()(CTxMemPoolEntry &e) { e.UpdateLockPoints(lp); } private: const LockPoints &lp; }; // extracts a transaction hash from CTxMempoolEntry or CTransactionRef struct mempoolentry_txid { typedef uint256 result_type; result_type operator()(const CTxMemPoolEntry &entry) const { return entry.GetTx().GetId(); } result_type operator()(const CTransactionRef &tx) const { return tx->GetId(); } }; /** \class CompareTxMemPoolEntryByDescendantScore * * Sort an entry by max(score/size of entry's tx, score/size with all * descendants). */ class CompareTxMemPoolEntryByDescendantScore { public: bool operator()(const CTxMemPoolEntry &a, const CTxMemPoolEntry &b) const { double a_mod_fee, a_size, b_mod_fee, b_size; GetModFeeAndSize(a, a_mod_fee, a_size); GetModFeeAndSize(b, b_mod_fee, b_size); // Avoid division by rewriting (a/b > c/d) as (a*d > c*b). double f1 = a_mod_fee * b_size; double f2 = a_size * b_mod_fee; if (f1 == f2) { return a.GetTime() >= b.GetTime(); } return f1 < f2; } // Return the fee/size we're using for sorting this entry. void GetModFeeAndSize(const CTxMemPoolEntry &a, double &mod_fee, double &size) const { // Compare feerate with descendants to feerate of the transaction, and // return the fee/size for the max. double f1 = a.GetSizeWithDescendants() * (a.GetModifiedFee() / SATOSHI); double f2 = a.GetTxSize() * (a.GetModFeesWithDescendants() / SATOSHI); if (f2 > f1) { mod_fee = a.GetModFeesWithDescendants() / SATOSHI; size = a.GetSizeWithDescendants(); } else { mod_fee = a.GetModifiedFee() / SATOSHI; size = a.GetTxSize(); } } }; /** \class CompareTxMemPoolEntryByScore * * Sort by feerate of entry (fee/size) in descending order * This is only used for transaction relay, so we use GetFee() * instead of GetModifiedFee() to avoid leaking prioritization * information via the sort order. */ class CompareTxMemPoolEntryByScore { public: bool operator()(const CTxMemPoolEntry &a, const CTxMemPoolEntry &b) const { double f1 = b.GetTxSize() * (a.GetFee() / SATOSHI); double f2 = a.GetTxSize() * (b.GetFee() / SATOSHI); if (f1 == f2) { return b.GetTx().GetId() < a.GetTx().GetId(); } return f1 > f2; } }; class CompareTxMemPoolEntryByEntryTime { public: bool operator()(const CTxMemPoolEntry &a, const CTxMemPoolEntry &b) const { return a.GetTime() < b.GetTime(); } }; /** \class CompareTxMemPoolEntryByAncestorScore * * Sort an entry by min(score/size of entry's tx, score/size with all * ancestors). */ class CompareTxMemPoolEntryByAncestorFee { public: template bool operator()(const T &a, const T &b) const { double a_mod_fee, a_size, b_mod_fee, b_size; GetModFeeAndSize(a, a_mod_fee, a_size); GetModFeeAndSize(b, b_mod_fee, b_size); // Avoid division by rewriting (a/b > c/d) as (a*d > c*b). double f1 = a_mod_fee * b_size; double f2 = a_size * b_mod_fee; if (f1 == f2) { return a.GetTx().GetId() < b.GetTx().GetId(); } return f1 > f2; } // Return the fee/size we're using for sorting this entry. template void GetModFeeAndSize(const T &a, double &mod_fee, double &size) const { // Compare feerate with ancestors to feerate of the transaction, and // return the fee/size for the min. double f1 = a.GetSizeWithAncestors() * (a.GetModifiedFee() / SATOSHI); double f2 = a.GetTxSize() * (a.GetModFeesWithAncestors() / SATOSHI); if (f1 > f2) { mod_fee = a.GetModFeesWithAncestors() / SATOSHI; size = a.GetSizeWithAncestors(); } else { mod_fee = a.GetModifiedFee() / SATOSHI; size = a.GetTxSize(); } } }; // Multi_index tag names struct descendant_score {}; struct entry_time {}; struct ancestor_score {}; /** * Information about a mempool transaction. */ struct TxMempoolInfo { /** The transaction itself */ CTransactionRef tx; /** Time the transaction entered the mempool. */ int64_t nTime; /** Feerate of the transaction. */ CFeeRate feeRate; /** The fee delta. */ Amount nFeeDelta; }; /** * Reason why a transaction was removed from the mempool, this is passed to the * notification signal. */ enum class MemPoolRemovalReason { - //! Manually removed or unknown reason + //!< Manually removed or unknown reason UNKNOWN = 0, - //! Expired from mempool + //!< Expired from mempool EXPIRY, - //! Removed in size limiting + //!< Removed in size limiting SIZELIMIT, - //! Removed for reorganization + //!< Removed for reorganization REORG, - //! Removed for block + //!< Removed for block BLOCK, - //! Removed for conflict with in-block transaction + //!< Removed for conflict with in-block transaction CONFLICT, - //! Removed for replacement + //!< Removed for replacement REPLACED }; class SaltedTxidHasher { private: /** Salt */ const uint64_t k0, k1; public: SaltedTxidHasher(); size_t operator()(const uint256 &txid) const { return SipHashUint256(k0, k1, txid); } }; typedef std::pair TXModifier; /** * CTxMemPool stores valid-according-to-the-current-best-chain transactions that * may be included in the next block. * * Transactions are added when they are seen on the network (or created by the * local node), but not all transactions seen are added to the pool. For * example, the following new transactions will not be added to the mempool: * - a transaction which doesn't meet the minimum fee requirements. * - a new transaction that double-spends an input of a transaction already in * the pool where the new transaction does not meet the Replace-By-Fee * requirements as defined in BIP 125. * - a non-standard transaction. * * CTxMemPool::mapTx, and CTxMemPoolEntry bookkeeping: * * mapTx is a boost::multi_index that sorts the mempool on 4 criteria: * - transaction hash * - descendant feerate [we use max(feerate of tx, feerate of tx with all * descendants)] * - time in mempool * - ancestor feerate [we use min(feerate of tx, feerate of tx with all * unconfirmed ancestors)] * * Note: the term "descendant" refers to in-mempool transactions that depend on * this one, while "ancestor" refers to in-mempool transactions that a given * transaction depends on. * * In order for the feerate sort to remain correct, we must update transactions * in the mempool when new descendants arrive. To facilitate this, we track the * set of in-mempool direct parents and direct children in mapLinks. Within each * CTxMemPoolEntry, we track the size and fees of all descendants. * * Usually when a new transaction is added to the mempool, it has no in-mempool * children (because any such children would be an orphan). So in * addUnchecked(), we: * - update a new entry's setMemPoolParents to include all in-mempool parents * - update the new entry's direct parents to include the new tx as a child * - update all ancestors of the transaction to include the new tx's size/fee * * When a transaction is removed from the mempool, we must: * - update all in-mempool parents to not track the tx in setMemPoolChildren * - update all ancestors to not include the tx's size/fees in descendant state * - update all in-mempool children to not include it as a parent * * These happen in UpdateForRemoveFromMempool(). (Note that when removing a * transaction along with its descendants, we must calculate that set of * transactions to be removed before doing the removal, or else the mempool can * be in an inconsistent state where it's impossible to walk the ancestors of a * transaction.) * * In the event of a reorg, the assumption that a newly added tx has no * in-mempool children is false. In particular, the mempool is in an * inconsistent state while new transactions are being added, because there may * be descendant transactions of a tx coming from a disconnected block that are * unreachable from just looking at transactions in the mempool (the linking * transactions may also be in the disconnected block, waiting to be added). * Because of this, there's not much benefit in trying to search for in-mempool * children in addUnchecked(). Instead, in the special case of transactions * being added from a disconnected block, we require the caller to clean up the * state, to account for in-mempool, out-of-block descendants for all the * in-block transactions by calling UpdateTransactionsFromBlock(). Note that * until this is called, the mempool state is not consistent, and in particular * mapLinks may not be correct (and therefore functions like * CalculateMemPoolAncestors() and CalculateDescendants() that rely on them to * walk the mempool are not generally safe to use). * * Computational limits: * * Updating all in-mempool ancestors of a newly added transaction can be slow, * if no bound exists on how many in-mempool ancestors there may be. * CalculateMemPoolAncestors() takes configurable limits that are designed to * prevent these calculations from being too CPU intensive. */ class CTxMemPool { private: //!< Value n means that n times in 2^32 we check. uint32_t nCheckFrequency GUARDED_BY(cs); //!< Used by getblocktemplate to trigger CreateNewBlock() invocation unsigned int nTransactionsUpdated; //!< sum of all mempool tx's virtual sizes. uint64_t totalTxSize; //!< sum of dynamic memory usage of all the map elements (NOT the maps //! themselves) uint64_t cachedInnerUsage; mutable int64_t lastRollingFeeUpdate; mutable bool blockSinceLastRollingFeeBump; //!< minimum fee to get into the pool, decreases exponentially mutable double rollingMinimumFeeRate; void trackPackageRemoved(const CFeeRate &rate) EXCLUSIVE_LOCKS_REQUIRED(cs); public: // public only for testing static const int ROLLING_FEE_HALFLIFE = 60 * 60 * 12; typedef boost::multi_index_container< CTxMemPoolEntry, boost::multi_index::indexed_by< // sorted by txid boost::multi_index::hashed_unique< mempoolentry_txid, SaltedTxidHasher>, // sorted by fee rate boost::multi_index::ordered_non_unique< boost::multi_index::tag, boost::multi_index::identity, CompareTxMemPoolEntryByDescendantScore>, // sorted by entry time boost::multi_index::ordered_non_unique< boost::multi_index::tag, boost::multi_index::identity, CompareTxMemPoolEntryByEntryTime>, // sorted by fee rate with ancestors boost::multi_index::ordered_non_unique< boost::multi_index::tag, boost::multi_index::identity, CompareTxMemPoolEntryByAncestorFee>>> indexed_transaction_set; mutable CCriticalSection cs; indexed_transaction_set mapTx GUARDED_BY(cs); typedef indexed_transaction_set::nth_index<0>::type::iterator txiter; //!< All tx hashes/entries in mapTx, in random order std::vector> vTxHashes; struct CompareIteratorByHash { bool operator()(const txiter &a, const txiter &b) const { return a->GetTx().GetId() < b->GetTx().GetId(); } }; typedef std::set setEntries; const setEntries &GetMemPoolParents(txiter entry) const EXCLUSIVE_LOCKS_REQUIRED(cs); const setEntries &GetMemPoolChildren(txiter entry) const EXCLUSIVE_LOCKS_REQUIRED(cs); uint64_t CalculateDescendantMaximum(txiter entry) const EXCLUSIVE_LOCKS_REQUIRED(cs); private: typedef std::map cacheMap; struct TxLinks { setEntries parents; setEntries children; }; typedef std::map txlinksMap; txlinksMap mapLinks; void UpdateParent(txiter entry, txiter parent, bool add); void UpdateChild(txiter entry, txiter child, bool add); std::vector GetSortedDepthAndScore() const EXCLUSIVE_LOCKS_REQUIRED(cs); public: indirectmap mapNextTx GUARDED_BY(cs); std::map mapDeltas; /** * Create a new CTxMemPool. */ CTxMemPool(); ~CTxMemPool(); /** * If sanity-checking is turned on, check makes sure the pool is consistent * (does not contain two transactions that spend the same inputs, all inputs * are in the mapNextTx array). If sanity-checking is turned off, check does * nothing. */ void check(const CCoinsViewCache *pcoins) const; void setSanityCheck(double dFrequency = 1.0) { LOCK(cs); nCheckFrequency = static_cast(dFrequency * 4294967295.0); } // addUnchecked must updated state for all ancestors of a given transaction, // to track size/count of descendant transactions. First version of // addUnchecked can be used to have it call CalculateMemPoolAncestors(), and // then invoke the second version. // Note that addUnchecked is ONLY called from ATMP outside of tests // and any other callers may break wallet's in-mempool tracking (due to // lack of CValidationInterface::TransactionAddedToMempool callbacks). bool addUnchecked(const uint256 &hash, const CTxMemPoolEntry &entry); bool addUnchecked(const uint256 &hash, const CTxMemPoolEntry &entry, setEntries &setAncestors); void removeRecursive( const CTransaction &tx, MemPoolRemovalReason reason = MemPoolRemovalReason::UNKNOWN); void removeForReorg(const Config &config, const CCoinsViewCache *pcoins, unsigned int nMemPoolHeight, int flags) EXCLUSIVE_LOCKS_REQUIRED(cs_main); void removeConflicts(const CTransaction &tx) EXCLUSIVE_LOCKS_REQUIRED(cs); void removeForBlock(const std::vector &vtx, unsigned int nBlockHeight); void clear(); // lock free void _clear() EXCLUSIVE_LOCKS_REQUIRED(cs); bool CompareDepthAndScore(const uint256 &hasha, const uint256 &hashb); void queryHashes(std::vector &vtxid); bool isSpent(const COutPoint &outpoint) const; unsigned int GetTransactionsUpdated() const; void AddTransactionsUpdated(unsigned int n); /** * Check that none of this transactions inputs are in the mempool, and thus * the tx is not dependent on other mempool transactions to be included in a * block. */ bool HasNoInputsOf(const CTransaction &tx) const; /** Affect CreateNewBlock prioritisation of transactions */ void PrioritiseTransaction(const uint256 &hash, double dPriorityDelta, const Amount nFeeDelta); void ApplyDeltas(const uint256 hash, double &dPriorityDelta, Amount &nFeeDelta) const; void ClearPrioritisation(const uint256 hash); public: /** * Remove a set of transactions from the mempool. If a transaction is in * this set, then all in-mempool descendants must also be in the set, unless * this transaction is being removed for being in a block. Set * updateDescendants to true when removing a tx that was in a block, so that * any in-mempool descendants have their ancestor state updated. */ void RemoveStaged(setEntries &stage, bool updateDescendants, MemPoolRemovalReason reason = MemPoolRemovalReason::UNKNOWN) EXCLUSIVE_LOCKS_REQUIRED(cs); /** * When adding transactions from a disconnected block back to the mempool, * new mempool entries may have children in the mempool (which is generally * not the case when otherwise adding transactions). * UpdateTransactionsFromBlock() will find child transactions and update the * descendant state for each transaction in txidsToUpdate (excluding any * child transactions present in txidsToUpdate, which are already accounted * for). * Note: txidsToUpdate should be the set of transactions from the * disconnected block that have been accepted back into the mempool. */ void UpdateTransactionsFromBlock(const std::vector &txidsToUpdate); /** * Try to calculate all in-mempool ancestors of entry. * (these are all calculated including the tx itself) * limitAncestorCount = max number of ancestors * limitAncestorSize = max size of ancestors * limitDescendantCount = max number of descendants any ancestor can have * limitDescendantSize = max size of descendants any ancestor can have * errString = populated with error reason if any limits are hit * fSearchForParents = whether to search a tx's vin for in-mempool parents, * or look up parents from mapLinks. Must be true for entries not in the * mempool */ bool CalculateMemPoolAncestors( const CTxMemPoolEntry &entry, setEntries &setAncestors, uint64_t limitAncestorCount, uint64_t limitAncestorSize, uint64_t limitDescendantCount, uint64_t limitDescendantSize, std::string &errString, bool fSearchForParents = true) const; /** * Populate setDescendants with all in-mempool descendants of hash. * Assumes that setDescendants includes all in-mempool descendants of * anything already in it. */ void CalculateDescendants(txiter it, setEntries &setDescendants) const EXCLUSIVE_LOCKS_REQUIRED(cs); /** * The minimum fee to get into the mempool, which may itself not be enough * for larger-sized transactions. The incrementalRelayFee policy variable is * used to bound the time it takes the fee rate to go back down all the way * to 0. When the feerate would otherwise be half of this, it is set to 0 * instead. */ CFeeRate GetMinFee(size_t sizelimit) const; /** * Remove transactions from the mempool until its dynamic size is <= * sizelimit. pvNoSpendsRemaining, if set, will be populated with the list * of outpoints which are not in mempool which no longer have any spends in * this mempool. */ void TrimToSize(size_t sizelimit, std::vector *pvNoSpendsRemaining = nullptr); /** * Expire all transaction (and their dependencies) in the mempool older than * time. Return the number of removed transactions. */ int Expire(int64_t time); /** * Reduce the size of the mempool by expiring and then trimming the mempool. */ void LimitSize(size_t limit, unsigned long age); /** * Calculate the ancestor and descendant count for the given transaction. * The counts include the transaction itself. */ void GetTransactionAncestry(const uint256 &txid, size_t &ancestors, size_t &descendants) const; unsigned long size() { LOCK(cs); return mapTx.size(); } uint64_t GetTotalTxSize() const { LOCK(cs); return totalTxSize; } bool exists(uint256 hash) const { LOCK(cs); return mapTx.count(hash) != 0; } CTransactionRef get(const uint256 &hash) const; TxMempoolInfo info(const uint256 &hash) const; std::vector infoAll() const; CFeeRate estimateFee() const; size_t DynamicMemoryUsage() const; boost::signals2::signal NotifyEntryAdded; boost::signals2::signal NotifyEntryRemoved; private: /** * UpdateForDescendants is used by UpdateTransactionsFromBlock to update the * descendants for a single transaction that has been added to the mempool * but may have child transactions in the mempool, eg during a chain reorg. * setExclude is the set of descendant transactions in the mempool that must * not be accounted for (because any descendants in setExclude were added to * the mempool after the transaction being updated and hence their state is * already reflected in the parent state). * * cachedDescendants will be updated with the descendants of the transaction * being updated, so that future invocations don't need to walk the same * transaction again, if encountered in another transaction chain. */ void UpdateForDescendants(txiter updateIt, cacheMap &cachedDescendants, const std::set &setExclude) EXCLUSIVE_LOCKS_REQUIRED(cs); /** * Update ancestors of hash to add/remove it as a descendant transaction. */ void UpdateAncestorsOf(bool add, txiter hash, setEntries &setAncestors) EXCLUSIVE_LOCKS_REQUIRED(cs); /** Set ancestor state for an entry */ void UpdateEntryForAncestors(txiter it, const setEntries &setAncestors) EXCLUSIVE_LOCKS_REQUIRED(cs); /** * For each transaction being removed, update ancestors and any direct * children. If updateDescendants is true, then also update in-mempool * descendants' ancestor state. */ void UpdateForRemoveFromMempool(const setEntries &entriesToRemove, bool updateDescendants) EXCLUSIVE_LOCKS_REQUIRED(cs); /** Sever link between specified transaction and direct children. */ void UpdateChildrenForRemoval(txiter entry) EXCLUSIVE_LOCKS_REQUIRED(cs); /** * Before calling removeUnchecked for a given transaction, * UpdateForRemoveFromMempool must be called on the entire (dependent) set * of transactions being removed at the same time. We use each * CTxMemPoolEntry's setMemPoolParents in order to walk ancestors of a given * transaction that is removed, so we can't remove intermediate transactions * in a chain before we've updated all the state for the removal. */ void removeUnchecked(txiter entry, MemPoolRemovalReason reason = MemPoolRemovalReason::UNKNOWN) EXCLUSIVE_LOCKS_REQUIRED(cs); }; /** * CCoinsView that brings transactions from a mempool into view. * It does not check for spendings by memory pool transactions. * Instead, it provides access to all Coins which are either unspent in the * base CCoinsView, or are outputs from any mempool transaction! * This allows transaction replacement to work as expected, as you want to * have all inputs "available" to check signatures, and any cycles in the * dependency graph are checked directly in AcceptToMemoryPool. * It also allows you to sign a double-spend directly in * signrawtransactionwithkey and signrawtransactionwithwallet, as long as the * conflicting transaction is not yet confirmed. */ class CCoinsViewMemPool : public CCoinsViewBacked { protected: const CTxMemPool &mempool; public: CCoinsViewMemPool(CCoinsView *baseIn, const CTxMemPool &mempoolIn); bool GetCoin(const COutPoint &outpoint, Coin &coin) const override; }; // We want to sort transactions by coin age priority typedef std::pair TxCoinAgePriority; struct TxCoinAgePriorityCompare { bool operator()(const TxCoinAgePriority &a, const TxCoinAgePriority &b) { if (a.first == b.first) { // Reverse order to make sort less than return CompareTxMemPoolEntryByScore()(*(b.second), *(a.second)); } return a.first < b.first; } }; /** * DisconnectedBlockTransactions * * During the reorg, it's desirable to re-add previously confirmed transactions * to the mempool, so that anything not re-confirmed in the new chain is * available to be mined. However, it's more efficient to wait until the reorg * is complete and process all still-unconfirmed transactions at that time, * since we expect most confirmed transactions to (typically) still be * confirmed in the new chain, and re-accepting to the memory pool is expensive * (and therefore better to not do in the middle of reorg-processing). * Instead, store the disconnected transactions (in order!) as we go, remove any * that are included in blocks in the new chain, and then process the remaining * still-unconfirmed transactions at the end. * * It also enables efficient reprocessing of current mempool entries, useful * when (de)activating forks that result in in-mempool transactions becoming * invalid */ // multi_index tag names struct txid_index {}; struct insertion_order {}; class DisconnectedBlockTransactions { private: typedef boost::multi_index_container< CTransactionRef, boost::multi_index::indexed_by< // sorted by txid boost::multi_index::hashed_unique< boost::multi_index::tag, mempoolentry_txid, SaltedTxidHasher>, // sorted by order in the blockchain boost::multi_index::sequenced< boost::multi_index::tag>>> indexed_disconnected_transactions; indexed_disconnected_transactions queuedTx; uint64_t cachedInnerUsage = 0; void addTransaction(const CTransactionRef &tx) { queuedTx.insert(tx); cachedInnerUsage += RecursiveDynamicUsage(tx); } public: // It's almost certainly a logic bug if we don't clear out queuedTx before // destruction, as we add to it while disconnecting blocks, and then we // need to re-process remaining transactions to ensure mempool consistency. // For now, assert() that we've emptied out this object on destruction. // This assert() can always be removed if the reorg-processing code were // to be refactored such that this assumption is no longer true (for // instance if there was some other way we cleaned up the mempool after a // reorg, besides draining this object). ~DisconnectedBlockTransactions() { assert(queuedTx.empty()); } // Estimate the overhead of queuedTx to be 6 pointers + an allocation, as // no exact formula for boost::multi_index_contained is implemented. size_t DynamicMemoryUsage() const { return memusage::MallocUsage(sizeof(CTransactionRef) + 6 * sizeof(void *)) * queuedTx.size() + cachedInnerUsage; } const indexed_disconnected_transactions &GetQueuedTx() const { return queuedTx; } // Import mempool entries in topological order into queuedTx and clear the // mempool. Caller should call updateMempoolForReorg to reprocess these // transactions void importMempool(CTxMemPool &pool); // Add entries for a block while reconstructing the topological ordering so // they can be added back to the mempool simply. void addForBlock(const std::vector &vtx); // Remove entries based on txid_index, and update memory usage. void removeForBlock(const std::vector &vtx) { // Short-circuit in the common case of a block being added to the tip if (queuedTx.empty()) { return; } for (auto const &tx : vtx) { auto it = queuedTx.find(tx->GetId()); if (it != queuedTx.end()) { cachedInnerUsage -= RecursiveDynamicUsage(*it); queuedTx.erase(it); } } } // Remove an entry by insertion_order index, and update memory usage. void removeEntry(indexed_disconnected_transactions::index< insertion_order>::type::iterator entry) { cachedInnerUsage -= RecursiveDynamicUsage(*entry); queuedTx.get().erase(entry); } bool isEmpty() const { return queuedTx.empty(); } void clear() { cachedInnerUsage = 0; queuedTx.clear(); } /** * Make mempool consistent after a reorg, by re-adding or recursively * erasing disconnected block transactions from the mempool, and also * removing any other transactions from the mempool that are no longer valid * given the new tip/height. * * Note: we assume that disconnectpool only contains transactions that are * NOT confirmed in the current chain nor already in the mempool (otherwise, * in-mempool descendants of such transactions would be removed). * * Passing fAddToMempool=false will skip trying to add the transactions * back, and instead just erase from the mempool as needed. */ void updateMempoolForReorg(const Config &config, bool fAddToMempool); }; #endif // BITCOIN_TXMEMPOOL_H