diff --git a/src/txrequest.cpp b/src/txrequest.cpp index c39643eba..00109b63d 100644 --- a/src/txrequest.cpp +++ b/src/txrequest.cpp @@ -1,916 +1,933 @@ // Copyright (c) 2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include +#include #include #include namespace { /** * The various states a (txid, peer) pair can be in. * * Note that CANDIDATE is split up into 3 substates (DELAYED, BEST, READY), * allowing more efficient implementation. Also note that the sorting order of * ByTxIdView relies on the specific order of values in this enum. * * Expected behaviour is: * - When first announced by a peer, the state is CANDIDATE_DELAYED until * reqtime is reached. * - Announcements that have reached their reqtime but not been requested will * be either CANDIDATE_READY or CANDIDATE_BEST. Neither of those has an * expiration time; they remain in that state until they're requested or no * longer needed. CANDIDATE_READY announcements are promoted to * CANDIDATE_BEST when they're the best one left. * - When requested, an announcement will be in state REQUESTED until expiry * is reached. * - If expiry is reached, or the peer replies to the request (either with * NOTFOUND or the tx), the state becomes COMPLETED. */ enum class State : uint8_t { /** A CANDIDATE announcement whose reqtime is in the future. */ CANDIDATE_DELAYED, /** * A CANDIDATE announcement that's not CANDIDATE_DELAYED or CANDIDATE_BEST. */ CANDIDATE_READY, /** * The best CANDIDATE for a given txid; only if there is no REQUESTED * announcement already for that txid. The CANDIDATE_BEST is the * highest-priority announcement among all CANDIDATE_READY (and _BEST) ones * for that txid. */ CANDIDATE_BEST, /** A REQUESTED announcement. */ REQUESTED, /** A COMPLETED announcement. */ COMPLETED, }; //! Type alias for sequence numbers. using SequenceNumber = uint64_t; /** * An announcement. This is the data we track for each txid that is announced * to us by each peer. */ struct Announcement { /** TxId that was announced. */ - const TxId m_txid; + const uint256 m_txid; /** * For CANDIDATE_{DELAYED,BEST,READY} the reqtime; for REQUESTED the * expiry. */ std::chrono::microseconds m_time; /** What peer the request was from. */ const NodeId m_peer; /** What sequence number this announcement has. */ const SequenceNumber m_sequence : 60; /** Whether the request is preferred. */ const bool m_preferred : 1; /** * What state this announcement is in. * This is a uint8_t instead of a State to silence a GCC warning in versions * prior to 8.4 and 9.3. See * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414 */ uint8_t m_state : 3; /** Convert m_state to a State enum. */ State GetState() const { return static_cast(m_state); } /** Convert a State enum to a uint8_t and store it in m_state. */ void SetState(State state) { m_state = static_cast(state); } /** * Whether this announcement is selected. There can be at most 1 selected * peer per txid. */ bool IsSelected() const { return GetState() == State::CANDIDATE_BEST || GetState() == State::REQUESTED; } /** Whether this announcement is waiting for a certain time to pass. */ bool IsWaiting() const { return GetState() == State::REQUESTED || GetState() == State::CANDIDATE_DELAYED; } /** * Whether this announcement can feasibly be selected if the current * IsSelected() one disappears. */ bool IsSelectable() const { return GetState() == State::CANDIDATE_READY || GetState() == State::CANDIDATE_BEST; } /** * Construct a new announcement from scratch, initially in * CANDIDATE_DELAYED state. */ - Announcement(const TxId &txid, NodeId peer, bool preferred, + Announcement(const uint256 &txid, NodeId peer, bool preferred, std::chrono::microseconds reqtime, SequenceNumber sequence) : m_txid(txid), m_time(reqtime), m_peer(peer), m_sequence(sequence), m_preferred(preferred), m_state(static_cast(State::CANDIDATE_DELAYED)) {} }; //! Type alias for priorities. using Priority = uint64_t; /** * A functor with embedded salt that computes priority of an announcement. * * Higher priorities are selected first. */ class PriorityComputer { const uint64_t m_k0, m_k1; public: explicit PriorityComputer(bool deterministic) : m_k0{deterministic ? 0 : GetRand(0xFFFFFFFFFFFFFFFF)}, m_k1{deterministic ? 0 : GetRand(0xFFFFFFFFFFFFFFFF)} {} - Priority operator()(const TxId &txid, NodeId peer, bool preferred) const { + Priority operator()(const uint256 &txid, NodeId peer, + bool preferred) const { uint64_t low_bits = CSipHasher(m_k0, m_k1) .Write(txid.begin(), txid.size()) .Write(peer) .Finalize() >> 1; return low_bits | uint64_t{preferred} << 63; } Priority operator()(const Announcement &ann) const { return operator()(ann.m_txid, ann.m_peer, ann.m_preferred); } }; // Definitions for the 3 indexes used in the main data structure. // // Each index has a By* type to identify it, a By*View data type to represent // the view of announcement it is sorted by, and an By*ViewExtractor type to // convert an announcement into the By*View type. See // https://www.boost.org/doc/libs/1_58_0/libs/multi_index/doc/reference/key_extraction.html#key_extractors // for more information about the key extraction concept. // The ByPeer index is sorted by (peer, state == CANDIDATE_BEST, txid) // // Uses: // * Looking up existing announcements by peer/txid, by checking both (peer, // false, txid) and (peer, true, txid). // * Finding all CANDIDATE_BEST announcements for a given peer in // GetRequestable. struct ByPeer {}; -using ByPeerView = std::tuple; +using ByPeerView = std::tuple; struct ByPeerViewExtractor { using result_type = ByPeerView; result_type operator()(const Announcement &ann) const { return ByPeerView{ann.m_peer, ann.GetState() == State::CANDIDATE_BEST, ann.m_txid}; } }; // The ByTxId index is sorted by (txid, state, priority). // // Note: priority == 0 whenever state != CANDIDATE_READY. // // Uses: // * Deleting all announcements with a given txid in ForgetTxId. // * Finding the best CANDIDATE_READY to convert to CANDIDATE_BEST, when no // other CANDIDATE_READY or REQUESTED announcement exists for that txid. // * Determining when no more non-COMPLETED announcements for a given txid // exist, so the COMPLETED ones can be deleted. struct ByTxId {}; -using ByTxIdView = std::tuple; +using ByTxIdView = std::tuple; class ByTxIdViewExtractor { const PriorityComputer &m_computer; public: ByTxIdViewExtractor(const PriorityComputer &computer) : m_computer(computer) {} using result_type = ByTxIdView; result_type operator()(const Announcement &ann) const { const Priority prio = (ann.GetState() == State::CANDIDATE_READY) ? m_computer(ann) : 0; return ByTxIdView{ann.m_txid, ann.GetState(), prio}; } }; enum class WaitState { //! Used for announcements that need efficient testing of "is their //! timestamp in the future?". FUTURE_EVENT, //! Used for announcements whose timestamp is not relevant. NO_EVENT, //! Used for announcements that need efficient testing of "is their //! timestamp in the past?". PAST_EVENT, }; WaitState GetWaitState(const Announcement &ann) { if (ann.IsWaiting()) { return WaitState::FUTURE_EVENT; } if (ann.IsSelectable()) { return WaitState::PAST_EVENT; } return WaitState::NO_EVENT; } // The ByTime index is sorted by (wait_state, time). // // All announcements with a timestamp in the future can be found by iterating // the index forward from the beginning. All announcements with a timestamp in // the past can be found by iterating the index backwards from the end. // // Uses: // * Finding CANDIDATE_DELAYED announcements whose reqtime has passed, and // REQUESTED announcements whose expiry has passed. // * Finding CANDIDATE_READY/BEST announcements whose reqtime is in the future // (when the clock time went backwards). struct ByTime {}; using ByTimeView = std::pair; struct ByTimeViewExtractor { using result_type = ByTimeView; result_type operator()(const Announcement &ann) const { return ByTimeView{GetWaitState(ann), ann.m_time}; } }; /** * Data type for the main data structure (Announcement objects with * ByPeer/ByTxId/ByTime indexes). */ using Index = boost::multi_index_container< Announcement, boost::multi_index::indexed_by< boost::multi_index::ordered_unique, ByPeerViewExtractor>, boost::multi_index::ordered_non_unique, ByTxIdViewExtractor>, boost::multi_index::ordered_non_unique, ByTimeViewExtractor>>>; /** Helper type to simplify syntax of iterator types. */ template using Iter = typename Index::index::type::iterator; /** Per-peer statistics object. */ struct PeerInfo { //! Total number of announcements for this peer. size_t m_total = 0; //! Number of COMPLETED announcements for this peer. size_t m_completed = 0; //! Number of REQUESTED announcements for this peer. size_t m_requested = 0; }; /** Per-txid statistics object. Only used for sanity checking. */ struct TxIdInfo { //! Number of CANDIDATE_DELAYED announcements for this txid. size_t m_candidate_delayed = 0; //! Number of CANDIDATE_READY announcements for this txid. size_t m_candidate_ready = 0; //! Number of CANDIDATE_BEST announcements for this txid (at most one). size_t m_candidate_best = 0; //! Number of REQUESTED announcements for this txid (at most one; mutually //! exclusive with CANDIDATE_BEST). size_t m_requested = 0; //! The priority of the CANDIDATE_BEST announcement if one exists, or max() //! otherwise. Priority m_priority_candidate_best = std::numeric_limits::max(); //! The highest priority of all CANDIDATE_READY announcements (or min() if //! none exist). Priority m_priority_best_candidate_ready = std::numeric_limits::min(); //! All peers we have an announcement for this txid for. std::vector m_peers; }; /** Compare two PeerInfo objects. Only used for sanity checking. */ bool operator==(const PeerInfo &a, const PeerInfo &b) { return std::tie(a.m_total, a.m_completed, a.m_requested) == std::tie(b.m_total, b.m_completed, b.m_requested); }; /** * (Re)compute the PeerInfo map from the index. Only used for sanity checking. */ std::unordered_map RecomputePeerInfo(const Index &index) { std::unordered_map ret; for (const Announcement &ann : index) { PeerInfo &info = ret[ann.m_peer]; ++info.m_total; info.m_requested += (ann.GetState() == State::REQUESTED); info.m_completed += (ann.GetState() == State::COMPLETED); } return ret; } /** Compute the TxIdInfo map. Only used for sanity checking. */ -std::map ComputeTxIdInfo(const Index &index, - const PriorityComputer &computer) { - std::map ret; +std::map ComputeTxIdInfo(const Index &index, + const PriorityComputer &computer) { + std::map ret; for (const Announcement &ann : index) { TxIdInfo &info = ret[ann.m_txid]; // Classify how many announcements of each state we have for this txid. info.m_candidate_delayed += (ann.GetState() == State::CANDIDATE_DELAYED); info.m_candidate_ready += (ann.GetState() == State::CANDIDATE_READY); info.m_candidate_best += (ann.GetState() == State::CANDIDATE_BEST); info.m_requested += (ann.GetState() == State::REQUESTED); // And track the priority of the best CANDIDATE_READY/CANDIDATE_BEST // announcements. if (ann.GetState() == State::CANDIDATE_BEST) { info.m_priority_candidate_best = computer(ann); } if (ann.GetState() == State::CANDIDATE_READY) { info.m_priority_best_candidate_ready = std::max(info.m_priority_best_candidate_ready, computer(ann)); } // Also keep track of which peers this txid has an announcement for // (so we can detect duplicates). info.m_peers.push_back(ann.m_peer); } return ret; } +using clearExpiredFun = const std::function &; +using emplaceExpiredFun = + const std::function &; + } // namespace /** Actual implementation for TxRequestTracker's data structure. */ class TxRequestTracker::Impl { //! The current sequence number. Increases for every announcement. This is //! used to sort txid returned by GetRequestable in announcement order. SequenceNumber m_current_sequence{0}; //! This tracker's priority computer. const PriorityComputer m_computer; //! This tracker's main data structure. See SanityCheck() for the invariants //! that apply to it. Index m_index; //! Map with this tracker's per-peer statistics. std::unordered_map m_peerinfo; public: void SanityCheck() const { // Recompute m_peerdata from m_index. This verifies the data in it as it // should just be caching statistics on m_index. It also verifies the // invariant that no PeerInfo announcements with m_total==0 exist. assert(m_peerinfo == RecomputePeerInfo(m_index)); // Calculate per-txid statistics from m_index, and validate // invariants. for (auto &item : ComputeTxIdInfo(m_index, m_computer)) { TxIdInfo &info = item.second; // Cannot have only COMPLETED peer (txid should have been forgotten // already) assert(info.m_candidate_delayed + info.m_candidate_ready + info.m_candidate_best + info.m_requested > 0); // Can have at most 1 CANDIDATE_BEST/REQUESTED peer assert(info.m_candidate_best + info.m_requested <= 1); // If there are any CANDIDATE_READY announcements, there must be // exactly one CANDIDATE_BEST or REQUESTED announcement. if (info.m_candidate_ready > 0) { assert(info.m_candidate_best + info.m_requested == 1); } // If there is both a CANDIDATE_READY and a CANDIDATE_BEST // announcement, the CANDIDATE_BEST one must be at least as good // (equal or higher priority) as the best CANDIDATE_READY. if (info.m_candidate_ready && info.m_candidate_best) { assert(info.m_priority_candidate_best >= info.m_priority_best_candidate_ready); } // No txid can have been announced by the same peer twice. std::sort(info.m_peers.begin(), info.m_peers.end()); assert( std::adjacent_find(info.m_peers.begin(), info.m_peers.end()) == info.m_peers.end()); } } void PostGetRequestableSanityCheck(std::chrono::microseconds now) const { for (const Announcement &ann : m_index) { if (ann.IsWaiting()) { // REQUESTED and CANDIDATE_DELAYED must have a time in the // future (they should have been converted to // COMPLETED/CANDIDATE_READY respectively). assert(ann.m_time > now); } else if (ann.IsSelectable()) { // CANDIDATE_READY and CANDIDATE_BEST cannot have a time in the // future (they should have remained CANDIDATE_DELAYED, or // should have been converted back to it if time went // backwards). assert(ann.m_time <= now); } } } private: //! Wrapper around Index::...::erase that keeps m_peerinfo up to date. template Iter Erase(Iter it) { auto peerit = m_peerinfo.find(it->m_peer); peerit->second.m_completed -= it->GetState() == State::COMPLETED; peerit->second.m_requested -= it->GetState() == State::REQUESTED; if (--peerit->second.m_total == 0) { m_peerinfo.erase(peerit); } return m_index.get().erase(it); } //! Wrapper around Index::...::modify that keeps m_peerinfo up to date. template void Modify(Iter it, Modifier modifier) { auto peerit = m_peerinfo.find(it->m_peer); peerit->second.m_completed -= it->GetState() == State::COMPLETED; peerit->second.m_requested -= it->GetState() == State::REQUESTED; m_index.get().modify(it, std::move(modifier)); peerit->second.m_completed += it->GetState() == State::COMPLETED; peerit->second.m_requested += it->GetState() == State::REQUESTED; } //! Convert a CANDIDATE_DELAYED announcement into a CANDIDATE_READY. If this //! makes it the new best CANDIDATE_READY (and no REQUESTED exists) and //! better than the CANDIDATE_BEST (if any), it becomes the new //! CANDIDATE_BEST. void PromoteCandidateReady(Iter it) { assert(it != m_index.get().end()); assert(it->GetState() == State::CANDIDATE_DELAYED); // Convert CANDIDATE_DELAYED to CANDIDATE_READY first. Modify(it, [](Announcement &ann) { ann.SetState(State::CANDIDATE_READY); }); // The following code relies on the fact that the ByTxId is sorted by // txid, and then by state (first _DELAYED, then _READY, then // _BEST/REQUESTED). Within the _READY announcements, the best one // (highest priority) comes last. Thus, if an existing _BEST exists for // the same txid that this announcement may be preferred over, it must // immediately follow the newly created _READY. auto it_next = std::next(it); if (it_next == m_index.get().end() || it_next->m_txid != it->m_txid || it_next->GetState() == State::COMPLETED) { // This is the new best CANDIDATE_READY, and there is no // IsSelected() announcement for this txid already. Modify(it, [](Announcement &ann) { ann.SetState(State::CANDIDATE_BEST); }); } else if (it_next->GetState() == State::CANDIDATE_BEST) { Priority priority_old = m_computer(*it_next); Priority priority_new = m_computer(*it); if (priority_new > priority_old) { // There is a CANDIDATE_BEST announcement already, but this one // is better. Modify(it_next, [](Announcement &ann) { ann.SetState(State::CANDIDATE_READY); }); Modify(it, [](Announcement &ann) { ann.SetState(State::CANDIDATE_BEST); }); } } } //! Change the state of an announcement to something non-IsSelected(). If it //! was IsSelected(), the next best announcement will be marked //! CANDIDATE_BEST. void ChangeAndReselect(Iter it, State new_state) { assert(new_state == State::COMPLETED || new_state == State::CANDIDATE_DELAYED); assert(it != m_index.get().end()); if (it->IsSelected() && it != m_index.get().begin()) { auto it_prev = std::prev(it); // The next best CANDIDATE_READY, if any, immediately precedes the // REQUESTED or CANDIDATE_BEST announcement in the ByTxId index. if (it_prev->m_txid == it->m_txid && it_prev->GetState() == State::CANDIDATE_READY) { // If one such CANDIDATE_READY exists (for this txid), convert // it to CANDIDATE_BEST. Modify(it_prev, [](Announcement &ann) { ann.SetState(State::CANDIDATE_BEST); }); } } Modify( it, [new_state](Announcement &ann) { ann.SetState(new_state); }); } //! Check if 'it' is the only announcement for a given txid that isn't //! COMPLETED. bool IsOnlyNonCompleted(Iter it) { assert(it != m_index.get().end()); // Not allowed to call this on COMPLETED announcements. assert(it->GetState() != State::COMPLETED); // This announcement has a predecessor that belongs to the same txid. // Due to ordering, and the fact that 'it' is not COMPLETED, its // predecessor cannot be COMPLETED here. if (it != m_index.get().begin() && std::prev(it)->m_txid == it->m_txid) { return false; } // This announcement has a successor that belongs to the same txid, // and is not COMPLETED. if (std::next(it) != m_index.get().end() && std::next(it)->m_txid == it->m_txid && std::next(it)->GetState() != State::COMPLETED) { return false; } return true; } /** * Convert any announcement to a COMPLETED one. If there are no * non-COMPLETED announcements left for this txid, they are deleted. If * this was a REQUESTED announcement, and there are other CANDIDATEs left, * the best one is made CANDIDATE_BEST. Returns whether the announcement * still exists. */ bool MakeCompleted(Iter it) { assert(it != m_index.get().end()); // Nothing to be done if it's already COMPLETED. if (it->GetState() == State::COMPLETED) { return true; } if (IsOnlyNonCompleted(it)) { // This is the last non-COMPLETED announcement for this txid. // Delete all. - TxId txid = it->m_txid; + uint256 txid = it->m_txid; do { it = Erase(it); } while (it != m_index.get().end() && it->m_txid == txid); return false; } // Mark the announcement COMPLETED, and select the next best // announcement (the first CANDIDATE_READY) if needed. ChangeAndReselect(it, State::COMPLETED); return true; } //! Make the data structure consistent with a given point in time: //! - REQUESTED annoucements with expiry <= now are turned into COMPLETED. //! - CANDIDATE_DELAYED announcements with reqtime <= now are turned into //! CANDIDATE_{READY,BEST}. //! - CANDIDATE_{READY,BEST} announcements with reqtime > now are turned //! into CANDIDATE_DELAYED. void SetTimePoint(std::chrono::microseconds now, - std::vector> *expired) { - if (expired) { - expired->clear(); - } + clearExpiredFun clearExpired, + emplaceExpiredFun emplaceExpired) { + clearExpired(); // Iterate over all CANDIDATE_DELAYED and REQUESTED from old to new, as // long as they're in the past, and convert them to CANDIDATE_READY and // COMPLETED respectively. while (!m_index.empty()) { auto it = m_index.get().begin(); if (it->GetState() == State::CANDIDATE_DELAYED && it->m_time <= now) { PromoteCandidateReady(m_index.project(it)); } else if (it->GetState() == State::REQUESTED && it->m_time <= now) { - if (expired) { - expired->emplace_back(it->m_peer, it->m_txid); - } + emplaceExpired(it->m_peer, it->m_txid); MakeCompleted(m_index.project(it)); } else { break; } } while (!m_index.empty()) { // If time went backwards, we may need to demote CANDIDATE_BEST and // CANDIDATE_READY announcements back to CANDIDATE_DELAYED. This is // an unusual edge case, and unlikely to matter in production. // However, it makes it much easier to specify and test // TxRequestTracker::Impl's behaviour. auto it = std::prev(m_index.get().end()); if (it->IsSelectable() && it->m_time > now) { ChangeAndReselect(m_index.project(it), State::CANDIDATE_DELAYED); } else { break; } } } public: Impl(bool deterministic) : m_computer(deterministic), // Explicitly initialize m_index as we need to pass a reference to // m_computer to ByTxHashViewExtractor. m_index(boost::make_tuple( boost::make_tuple(ByPeerViewExtractor(), std::less()), boost::make_tuple(ByTxIdViewExtractor(m_computer), std::less()), boost::make_tuple(ByTimeViewExtractor(), std::less()))) {} // Disable copying and assigning (a default copy won't work due the stateful // ByTxIdViewExtractor). Impl(const Impl &) = delete; Impl &operator=(const Impl &) = delete; void DisconnectedPeer(NodeId peer) { auto &index = m_index.get(); auto it = - index.lower_bound(ByPeerView{peer, false, TxId(uint256::ZERO)}); + index.lower_bound(ByPeerView{peer, false, uint256(uint256::ZERO)}); while (it != index.end() && it->m_peer == peer) { // Check what to continue with after this iteration. 'it' will be // deleted in what follows, so we need to decide what to continue // with afterwards. There are a number of cases to consider: // - std::next(it) is end() or belongs to a different peer. In that // case, this is the last iteration of the loop (denote this by // setting it_next to end()). // - 'it' is not the only non-COMPLETED announcement for its txid. // This means it will be deleted, but no other Announcement // objects will be modified. Continue with std::next(it) if it // belongs to the same peer, but decide this ahead of time (as // 'it' may change position in what follows). // - 'it' is the only non-COMPLETED announcement for its txid. This // means it will be deleted along with all other announcements for // the same txid - which may include std::next(it). However, other // than 'it', no announcements for the same peer can be affected // (due to (peer, txid) uniqueness). In other words, the situation // where std::next(it) is deleted can only occur if std::next(it) // belongs to a different peer but the same txid as 'it'. This is // covered by the first bulletpoint already, and we'll have set // it_next to end(). auto it_next = (std::next(it) == index.end() || std::next(it)->m_peer != peer) ? index.end() : std::next(it); // If the announcement isn't already COMPLETED, first make it // COMPLETED (which will mark other CANDIDATEs as CANDIDATE_BEST, or // delete all of a txid's announcements if no non-COMPLETED ones are // left). if (MakeCompleted(m_index.project(it))) { // Then actually delete the announcement (unless it was already // deleted by MakeCompleted). Erase(it); } it = it_next; } } - void ForgetTxId(const TxId &txid) { + void ForgetTxId(const uint256 &txid) { auto it = m_index.get().lower_bound( ByTxIdView{txid, State::CANDIDATE_DELAYED, 0}); while (it != m_index.get().end() && it->m_txid == txid) { it = Erase(it); } } - void ReceivedInv(NodeId peer, const TxId &txid, bool preferred, + void ReceivedInv(NodeId peer, const uint256 &txid, bool preferred, std::chrono::microseconds reqtime) { // Bail out if we already have a CANDIDATE_BEST announcement for this // (txid, peer) combination. The case where there is a // non-CANDIDATE_BEST announcement already will be caught by the // uniqueness property of the ByPeer index when we try to emplace the // new object below. if (m_index.get().count(ByPeerView{peer, true, txid})) { return; } // Try creating the announcement with CANDIDATE_DELAYED state (which // will fail due to the uniqueness of the ByPeer index if a // non-CANDIDATE_BEST announcement already exists with the same txid // and peer). Bail out in that case. auto ret = m_index.get().emplace(txid, peer, preferred, reqtime, m_current_sequence); if (!ret.second) { return; } // Update accounting metadata. ++m_peerinfo[peer].m_total; ++m_current_sequence; } //! Find the TxIds to request now from peer. - std::vector - GetRequestable(NodeId peer, std::chrono::microseconds now, - std::vector> *expired) { + std::vector GetRequestable(NodeId peer, + std::chrono::microseconds now, + clearExpiredFun clearExpired, + emplaceExpiredFun emplaceExpired) { // Move time. - SetTimePoint(now, expired); + SetTimePoint(now, clearExpired, emplaceExpired); // Find all CANDIDATE_BEST announcements for this peer. std::vector selected; auto it_peer = m_index.get().lower_bound( - ByPeerView{peer, true, TxId(uint256::ZERO)}); + ByPeerView{peer, true, uint256(uint256::ZERO)}); while (it_peer != m_index.get().end() && it_peer->m_peer == peer && it_peer->GetState() == State::CANDIDATE_BEST) { selected.emplace_back(&*it_peer); ++it_peer; } // Sort by sequence number. std::sort(selected.begin(), selected.end(), [](const Announcement *a, const Announcement *b) { return a->m_sequence < b->m_sequence; }); // Convert to TxId and return. - std::vector ret; + std::vector ret; ret.reserve(selected.size()); std::transform(selected.begin(), selected.end(), std::back_inserter(ret), [](const Announcement *ann) { return ann->m_txid; }); return ret; } - void RequestedTx(NodeId peer, const TxId &txid, + void RequestedTx(NodeId peer, const uint256 &txid, std::chrono::microseconds expiry) { auto it = m_index.get().find(ByPeerView{peer, true, txid}); if (it == m_index.get().end()) { // There is no CANDIDATE_BEST announcement, look for a _READY or // _DELAYED instead. If the caller only ever invokes RequestedTx // with the values returned by GetRequestable, and no other // non-const functions other than ForgetTxHash and GetRequestable in // between, this branch will never execute (as txids returned by // GetRequestable always correspond to CANDIDATE_BEST // announcements). it = m_index.get().find(ByPeerView{peer, false, txid}); if (it == m_index.get().end() || (it->GetState() != State::CANDIDATE_DELAYED && it->GetState() != State::CANDIDATE_READY)) { // There is no CANDIDATE announcement tracked for this peer, so // we have nothing to do. Either this txid wasn't tracked at // all (and the caller should have called ReceivedInv), or it // was already requested and/or completed for other reasons and // this is just a superfluous RequestedTx call. return; } // Look for an existing CANDIDATE_BEST or REQUESTED with the same // txid. We only need to do this if the found announcement had a // different state than CANDIDATE_BEST. If it did, invariants // guarantee that no other CANDIDATE_BEST or REQUESTED can exist. auto it_old = m_index.get().lower_bound( ByTxIdView{txid, State::CANDIDATE_BEST, 0}); if (it_old != m_index.get().end() && it_old->m_txid == txid) { if (it_old->GetState() == State::CANDIDATE_BEST) { // The data structure's invariants require that there can be // at most one CANDIDATE_BEST or one REQUESTED announcement // per txid (but not both simultaneously), so we have to // convert any existing CANDIDATE_BEST to another // CANDIDATE_* when constructing another REQUESTED. It // doesn't matter whether we pick CANDIDATE_READY or // _DELAYED here, as SetTimePoint() will correct it at // GetRequestable() time. If time only goes forward, it will // always be _READY, so pick that to avoid extra work in // SetTimePoint(). Modify(it_old, [](Announcement &ann) { ann.SetState(State::CANDIDATE_READY); }); } else if (it_old->GetState() == State::REQUESTED) { // As we're no longer waiting for a response to the previous // REQUESTED announcement, convert it to COMPLETED. This // also helps guaranteeing progress. Modify(it_old, [](Announcement &ann) { ann.SetState(State::COMPLETED); }); } } } Modify(it, [expiry](Announcement &ann) { ann.SetState(State::REQUESTED); ann.m_time = expiry; }); } - void ReceivedResponse(NodeId peer, const TxId &txid) { + void ReceivedResponse(NodeId peer, const uint256 &txid) { // We need to search the ByPeer index for both (peer, false, txid) and // (peer, true, txid). auto it = m_index.get().find(ByPeerView{peer, false, txid}); if (it == m_index.get().end()) { it = m_index.get().find(ByPeerView{peer, true, txid}); } if (it != m_index.get().end()) { MakeCompleted(m_index.project(it)); } } size_t CountInFlight(NodeId peer) const { auto it = m_peerinfo.find(peer); if (it != m_peerinfo.end()) { return it->second.m_requested; } return 0; } size_t CountCandidates(NodeId peer) const { auto it = m_peerinfo.find(peer); if (it != m_peerinfo.end()) { return it->second.m_total - it->second.m_requested - it->second.m_completed; } return 0; } size_t Count(NodeId peer) const { auto it = m_peerinfo.find(peer); if (it != m_peerinfo.end()) { return it->second.m_total; } return 0; } //! Count how many announcements are being tracked in total across all peers //! and transactions. size_t Size() const { return m_index.size(); } - uint64_t ComputePriority(const TxId &txid, NodeId peer, + uint64_t ComputePriority(const uint256 &txid, NodeId peer, bool preferred) const { // Return Priority as a uint64_t as Priority is internal. return uint64_t{m_computer(txid, peer, preferred)}; } }; TxRequestTracker::TxRequestTracker(bool deterministic) : m_impl{std::make_unique(deterministic)} {} TxRequestTracker::~TxRequestTracker() = default; void TxRequestTracker::ForgetTxId(const TxId &txid) { m_impl->ForgetTxId(txid); } void TxRequestTracker::DisconnectedPeer(NodeId peer) { m_impl->DisconnectedPeer(peer); } size_t TxRequestTracker::CountInFlight(NodeId peer) const { return m_impl->CountInFlight(peer); } size_t TxRequestTracker::CountCandidates(NodeId peer) const { return m_impl->CountCandidates(peer); } size_t TxRequestTracker::Count(NodeId peer) const { return m_impl->Count(peer); } size_t TxRequestTracker::Size() const { return m_impl->Size(); } void TxRequestTracker::SanityCheck() const { m_impl->SanityCheck(); } void TxRequestTracker::PostGetRequestableSanityCheck( std::chrono::microseconds now) const { m_impl->PostGetRequestableSanityCheck(now); } void TxRequestTracker::ReceivedInv(NodeId peer, const TxId &txid, bool preferred, std::chrono::microseconds reqtime) { m_impl->ReceivedInv(peer, txid, preferred, reqtime); } void TxRequestTracker::RequestedTx(NodeId peer, const TxId &txid, std::chrono::microseconds expiry) { m_impl->RequestedTx(peer, txid, expiry); } void TxRequestTracker::ReceivedResponse(NodeId peer, const TxId &txid) { m_impl->ReceivedResponse(peer, txid); } std::vector TxRequestTracker::GetRequestable( NodeId peer, std::chrono::microseconds now, std::vector> *expired) { - return m_impl->GetRequestable(peer, now, expired); + clearExpiredFun clearExpired = [expired]() { + if (expired) { + expired->clear(); + } + }; + emplaceExpiredFun emplaceExpired = [expired](const NodeId &nodeid, + const uint256 &txid) { + if (expired) { + expired->emplace_back(nodeid, TxId(txid)); + } + }; + std::vector hashes = + m_impl->GetRequestable(peer, now, clearExpired, emplaceExpired); + return std::vector(hashes.begin(), hashes.end()); } uint64_t TxRequestTracker::ComputePriority(const TxId &txid, NodeId peer, bool preferred) const { return m_impl->ComputePriority(txid, peer, preferred); }