diff --git a/src/coins.h b/src/coins.h index f7d142327..3b1530863 100644 --- a/src/coins.h +++ b/src/coins.h @@ -1,298 +1,298 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_COINS_H #define BITCOIN_COINS_H #include "compressor.h" #include "core_memusage.h" #include "hash.h" #include "memusage.h" #include "serialize.h" #include "uint256.h" #include #include #include /** * A UTXO entry. * * Serialized format: * - VARINT((coinbase ? 1 : 0) | (height << 1)) * - the non-spent CTxOut (via CTxOutCompressor) */ class Coin { //! Unspent transaction output. CTxOut out; //! Whether containing transaction was a coinbase and height at which the //! transaction was included into a block. uint32_t nHeightAndIsCoinBase; public: //! Empty constructor Coin() : nHeightAndIsCoinBase(0) {} //! Constructor from a CTxOut and height/coinbase information. Coin(CTxOut outIn, uint32_t nHeightIn, bool IsCoinbase) : out(std::move(outIn)), nHeightAndIsCoinBase((nHeightIn << 1) | IsCoinbase) {} uint32_t GetHeight() const { return nHeightAndIsCoinBase >> 1; } bool IsCoinBase() const { return nHeightAndIsCoinBase & 0x01; } bool IsSpent() const { return out.IsNull(); } CTxOut &GetTxOut() { return out; } const CTxOut &GetTxOut() const { return out; } void Clear() { out.SetNull(); nHeightAndIsCoinBase = 0; } template void Serialize(Stream &s) const { assert(!IsSpent()); ::Serialize(s, VARINT(nHeightAndIsCoinBase)); ::Serialize(s, CTxOutCompressor(REF(out))); } template void Unserialize(Stream &s) { ::Unserialize(s, VARINT(nHeightAndIsCoinBase)); ::Unserialize(s, REF(CTxOutCompressor(out))); } size_t DynamicMemoryUsage() const { return memusage::DynamicUsage(out.scriptPubKey); } }; class SaltedOutpointHasher { private: /** Salt */ const uint64_t k0, k1; public: SaltedOutpointHasher(); /** * This *must* return size_t. With Boost 1.46 on 32-bit systems the * unordered_map will behave unpredictably if the custom hasher returns a * uint64_t, resulting in failures when syncing the chain (#4634). * Note: This information above might be outdated as the unordered map * container type has meanwhile been switched to the C++ standard library * implementation. */ size_t operator()(const COutPoint &outpoint) const { return SipHashUint256Extra(k0, k1, outpoint.hash, outpoint.n); } }; struct CCoinsCacheEntry { // The actual cached data. Coin coin; uint8_t flags; enum Flags { // This cache entry is potentially different from the version in the // parent view. DIRTY = (1 << 0), // The parent view does not have this entry (or it is pruned). FRESH = (1 << 1), /* Note that FRESH is a performance optimization with which we can erase coins that are fully spent if we know we do not need to flush the changes to the parent cache. It is always safe to not mark FRESH if that condition is not guaranteed. */ }; CCoinsCacheEntry() : flags(0) {} explicit CCoinsCacheEntry(Coin coinIn) : coin(std::move(coinIn)), flags(0) {} }; typedef std::unordered_map CCoinsMap; /** Cursor for iterating over CoinsView state */ class CCoinsViewCursor { public: CCoinsViewCursor(const uint256 &hashBlockIn) : hashBlock(hashBlockIn) {} virtual ~CCoinsViewCursor() {} virtual bool GetKey(COutPoint &key) const = 0; virtual bool GetValue(Coin &coin) const = 0; virtual unsigned int GetValueSize() const = 0; virtual bool Valid() const = 0; virtual void Next() = 0; //! Get best block at the time this cursor was created const uint256 &GetBestBlock() const { return hashBlock; } private: uint256 hashBlock; }; /** Abstract view on the open txout dataset. */ class CCoinsView { public: //! Retrieve the Coin (unspent transaction output) for a given outpoint. virtual bool GetCoin(const COutPoint &outpoint, Coin &coin) const; //! Just check whether we have data for a given outpoint. //! This may (but cannot always) return true for spent outputs. virtual bool HaveCoin(const COutPoint &outpoint) const; //! Retrieve the block hash whose state this CCoinsView currently represents virtual uint256 GetBestBlock() const; //! Do a bulk modification (multiple Coin changes + BestBlock change). //! The passed mapCoins can be modified. virtual bool BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock); //! Get a cursor to iterate over the whole state virtual CCoinsViewCursor *Cursor() const; //! As we use CCoinsViews polymorphically, have a virtual destructor virtual ~CCoinsView() {} //! Estimate database size (0 if not implemented) virtual size_t EstimateSize() const { return 0; } }; /** CCoinsView backed by another CCoinsView */ class CCoinsViewBacked : public CCoinsView { protected: CCoinsView *base; public: CCoinsViewBacked(CCoinsView *viewIn); - bool GetCoin(const COutPoint &outpoint, Coin &coin) const; - bool HaveCoin(const COutPoint &outpoint) const; - uint256 GetBestBlock() const; + bool GetCoin(const COutPoint &outpoint, Coin &coin) const override; + bool HaveCoin(const COutPoint &outpoint) const override; + uint256 GetBestBlock() const override; void SetBackend(CCoinsView &viewIn); - bool BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock); - CCoinsViewCursor *Cursor() const; + bool BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) override; + CCoinsViewCursor *Cursor() const override; size_t EstimateSize() const override; }; /** * CCoinsView that adds a memory cache for transactions to another CCoinsView */ class CCoinsViewCache : public CCoinsViewBacked { protected: /** * Make mutable so that we can "fill the cache" even from Get-methods * declared as "const". */ mutable uint256 hashBlock; mutable CCoinsMap cacheCoins; /* Cached dynamic memory usage for the inner Coin objects. */ mutable size_t cachedCoinsUsage; public: CCoinsViewCache(CCoinsView *baseIn); // Standard CCoinsView methods bool GetCoin(const COutPoint &outpoint, Coin &coin) const; bool HaveCoin(const COutPoint &outpoint) const; uint256 GetBestBlock() const; void SetBestBlock(const uint256 &hashBlock); bool BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock); /** * Check if we have the given utxo already loaded in this cache. * The semantics are the same as HaveCoin(), but no calls to the backing * CCoinsView are made. */ bool HaveCoinInCache(const COutPoint &outpoint) const; /** * Return a reference to a Coin in the cache, or a pruned one if not found. * This is more efficient than GetCoin. Modifications to other cache entries * are allowed while accessing the returned pointer. */ const Coin &AccessCoin(const COutPoint &output) const; /** * Add a coin. Set potential_overwrite to true if a non-pruned version may * already exist. */ void AddCoin(const COutPoint &outpoint, Coin coin, bool potential_overwrite); /** * Spend a coin. Pass moveto in order to get the deleted data. * If no unspent output exists for the passed outpoint, this call has no * effect. */ bool SpendCoin(const COutPoint &outpoint, Coin *moveto = nullptr); /** * Push the modifications applied to this cache to its base. * Failure to call this method before destruction will cause the changes to * be forgotten. If false is returned, the state of this cache (and its * backing view) will be undefined. */ bool Flush(); /** * Removes the UTXO with the given outpoint from the cache, if it is not * modified. */ void Uncache(const COutPoint &outpoint); //! Calculate the size of the cache (in number of transaction outputs) unsigned int GetCacheSize() const; //! Calculate the size of the cache (in bytes) size_t DynamicMemoryUsage() const; /** * Amount of bitcoins coming in to a transaction * Note that lightweight clients may not know anything besides the hash of * previous transactions, so may not be able to calculate this. * * @param[in] tx transaction for which we are checking input total * @return Sum of value of all inputs (scriptSigs) */ CAmount GetValueIn(const CTransaction &tx) const; //! Check whether all prevouts of the transaction are present in the UTXO //! set represented by this view bool HaveInputs(const CTransaction &tx) const; /** * Return priority of tx at height nHeight. Also calculate the sum of the * values of the inputs that are already in the chain. These are the inputs * that will age and increase priority as new blocks are added to the chain. */ double GetPriority(const CTransaction &tx, int nHeight, CAmount &inChainInputValue) const; const CTxOut &GetOutputFor(const CTxIn &input) const; private: CCoinsMap::iterator FetchCoin(const COutPoint &outpoint) const; /** * By making the copy constructor private, we prevent accidentally using it * when one intends to create a cache on top of a base cache. */ CCoinsViewCache(const CCoinsViewCache &); }; //! Utility function to add all of a transaction's outputs to a cache. // It assumes that overwrites are only possible for coinbase transactions. // TODO: pass in a boolean to limit these possible overwrites to known // (pre-BIP34) cases. void AddCoins(CCoinsViewCache &cache, const CTransaction &tx, int nHeight); //! Utility function to find any unspent output with a given txid. const Coin &AccessByTxid(const CCoinsViewCache &cache, const uint256 &txid); #endif // BITCOIN_COINS_H diff --git a/src/test/coins_tests.cpp b/src/test/coins_tests.cpp index 53789f577..e5816c090 100644 --- a/src/test/coins_tests.cpp +++ b/src/test/coins_tests.cpp @@ -1,898 +1,898 @@ // Copyright (c) 2014-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "coins.h" #include "consensus/validation.h" #include "script/standard.h" #include "test/test_bitcoin.h" #include "test/test_random.h" #include "uint256.h" #include "undo.h" #include "utilstrencodings.h" #include "validation.h" #include #include #include namespace { //! equality test bool operator==(const Coin &a, const Coin &b) { // Empty Coin objects are always equal. if (a.IsSpent() && b.IsSpent()) { return true; } return a.IsCoinBase() == b.IsCoinBase() && a.GetHeight() == b.GetHeight() && a.GetTxOut() == b.GetTxOut(); } class CCoinsViewTest : public CCoinsView { uint256 hashBestBlock_; std::map map_; public: bool GetCoin(const COutPoint &outpoint, Coin &coin) const { std::map::const_iterator it = map_.find(outpoint); if (it == map_.end()) { return false; } coin = it->second; if (coin.IsSpent() && insecure_rand() % 2 == 0) { // Randomly return false in case of an empty entry. return false; } return true; } - bool HaveCoin(const COutPoint outpoint) const { + bool HaveCoin(const COutPoint &outpoint) const { Coin coin; return GetCoin(outpoint, coin); } uint256 GetBestBlock() const { return hashBestBlock_; } bool BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) { for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end();) { if (it->second.flags & CCoinsCacheEntry::DIRTY) { // Same optimization used in CCoinsViewDB is to only write dirty // entries. map_[it->first] = it->second.coin; if (it->second.coin.IsSpent() && insecure_rand() % 3 == 0) { // Randomly delete empty entries on write. map_.erase(it->first); } } mapCoins.erase(it++); } if (!hashBlock.IsNull()) { hashBestBlock_ = hashBlock; } return true; } }; class CCoinsViewCacheTest : public CCoinsViewCache { public: CCoinsViewCacheTest(CCoinsView *base) : CCoinsViewCache(base) {} void SelfTest() const { // Manually recompute the dynamic usage of the whole data, and compare // it. size_t ret = memusage::DynamicUsage(cacheCoins); size_t count = 0; for (CCoinsMap::iterator it = cacheCoins.begin(); it != cacheCoins.end(); it++) { ret += it->second.coin.DynamicMemoryUsage(); count++; } BOOST_CHECK_EQUAL(GetCacheSize(), count); BOOST_CHECK_EQUAL(DynamicMemoryUsage(), ret); } CCoinsMap &map() { return cacheCoins; } size_t &usage() { return cachedCoinsUsage; } }; -} +} // namespace BOOST_FIXTURE_TEST_SUITE(coins_tests, BasicTestingSetup) static const unsigned int NUM_SIMULATION_ITERATIONS = 40000; // This is a large randomized insert/remove simulation test on a variable-size // stack of caches on top of CCoinsViewTest. // // It will randomly create/update/delete Coin entries to a tip of caches, with // txids picked from a limited list of random 256-bit hashes. Occasionally, a // new tip is added to the stack of caches, or the tip is flushed and removed. // // During the process, booleans are kept to make sure that the randomized // operation hits all branches. BOOST_AUTO_TEST_CASE(coins_cache_simulation_test) { // Various coverage trackers. bool removed_all_caches = false; bool reached_4_caches = false; bool added_an_entry = false; bool added_an_unspendable_entry = false; bool removed_an_entry = false; bool updated_an_entry = false; bool found_an_entry = false; bool missed_an_entry = false; bool uncached_an_entry = false; // A simple map to track what we expect the cache stack to represent. std::map result; // The cache stack. // A CCoinsViewTest at the bottom. CCoinsViewTest base; // A stack of CCoinsViewCaches on top. std::vector stack; // Start with one cache. stack.push_back(new CCoinsViewCacheTest(&base)); // Use a limited set of random transaction ids, so we do test overwriting // entries. std::vector txids; txids.resize(NUM_SIMULATION_ITERATIONS / 8); for (size_t i = 0; i < txids.size(); i++) { txids[i] = GetRandHash(); } for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) { // Do a random modification. { // txid we're going to modify in this iteration. uint256 txid = txids[insecure_rand() % txids.size()]; Coin &coin = result[COutPoint(txid, 0)]; const Coin &entry = (insecure_rand() % 500 == 0) ? AccessByTxid(*stack.back(), txid) : stack.back()->AccessCoin(COutPoint(txid, 0)); BOOST_CHECK(coin == entry); if (insecure_rand() % 5 == 0 || coin.IsSpent()) { CTxOut txout; txout.nValue = insecure_rand(); if (insecure_rand() % 16 == 0 && coin.IsSpent()) { txout.scriptPubKey.assign(1 + (insecure_rand() & 0x3F), OP_RETURN); BOOST_CHECK(txout.scriptPubKey.IsUnspendable()); added_an_unspendable_entry = true; } else { // Random sizes so we can test memory usage accounting txout.scriptPubKey.assign(insecure_rand() & 0x3F, 0); (coin.IsSpent() ? added_an_entry : updated_an_entry) = true; coin = Coin(txout, 1, false); } Coin newcoin(txout, 1, false); stack.back()->AddCoin(COutPoint(txid, 0), newcoin, !coin.IsSpent() || insecure_rand() & 1); } else { removed_an_entry = true; coin.Clear(); stack.back()->SpendCoin(COutPoint(txid, 0)); } } // One every 10 iterations, remove a random entry from the cache if (insecure_rand() % 10) { COutPoint out(txids[insecure_rand() % txids.size()], 0); int cacheid = insecure_rand() % stack.size(); stack[cacheid]->Uncache(out); uncached_an_entry |= !stack[cacheid]->HaveCoinInCache(out); } // Once every 1000 iterations and at the end, verify the full cache. if (insecure_rand() % 1000 == 1 || i == NUM_SIMULATION_ITERATIONS - 1) { for (auto it = result.begin(); it != result.end(); it++) { bool have = stack.back()->HaveCoin(it->first); const Coin &coin = stack.back()->AccessCoin(it->first); BOOST_CHECK(have == !coin.IsSpent()); BOOST_CHECK(coin == it->second); if (coin.IsSpent()) { missed_an_entry = true; } else { BOOST_CHECK(stack.back()->HaveCoinInCache(it->first)); found_an_entry = true; } } for (const CCoinsViewCacheTest *test : stack) { test->SelfTest(); } } // Every 100 iterations, flush an intermediate cache if (insecure_rand() % 100 == 0) { if (stack.size() > 1 && insecure_rand() % 2 == 0) { unsigned int flushIndex = insecure_rand() % (stack.size() - 1); stack[flushIndex]->Flush(); } } if (insecure_rand() % 100 == 0) { // Every 100 iterations, change the cache stack. if (stack.size() > 0 && insecure_rand() % 2 == 0) { // Remove the top cache stack.back()->Flush(); delete stack.back(); stack.pop_back(); } if (stack.size() == 0 || (stack.size() < 4 && insecure_rand() % 2)) { // Add a new cache CCoinsView *tip = &base; if (stack.size() > 0) { tip = stack.back(); } else { removed_all_caches = true; } stack.push_back(new CCoinsViewCacheTest(tip)); if (stack.size() == 4) { reached_4_caches = true; } } } } // Clean up the stack. while (stack.size() > 0) { delete stack.back(); stack.pop_back(); } // Verify coverage. BOOST_CHECK(removed_all_caches); BOOST_CHECK(reached_4_caches); BOOST_CHECK(added_an_entry); BOOST_CHECK(added_an_unspendable_entry); BOOST_CHECK(removed_an_entry); BOOST_CHECK(updated_an_entry); BOOST_CHECK(found_an_entry); BOOST_CHECK(missed_an_entry); BOOST_CHECK(uncached_an_entry); } // Store of all necessary tx and undo data for next test typedef std::map> UtxoData; UtxoData utxoData; UtxoData::iterator FindRandomFrom(const std::set &utxoSet) { assert(utxoSet.size()); auto utxoSetIt = utxoSet.lower_bound(COutPoint(GetRandHash(), 0)); if (utxoSetIt == utxoSet.end()) { utxoSetIt = utxoSet.begin(); } auto utxoDataIt = utxoData.find(*utxoSetIt); assert(utxoDataIt != utxoData.end()); return utxoDataIt; } // This test is similar to the previous test except the emphasis is on testing // the functionality of UpdateCoins random txs are created and UpdateCoins is // used to update the cache stack. In particular it is tested that spending a // duplicate coinbase tx has the expected effect (the other duplicate is // overwitten at all cache levels) BOOST_AUTO_TEST_CASE(updatecoins_simulation_test) { bool spent_a_duplicate_coinbase = false; // A simple map to track what we expect the cache stack to represent. std::map result; // The cache stack. // A CCoinsViewTest at the bottom. CCoinsViewTest base; // A stack of CCoinsViewCaches on top. std::vector stack; // Start with one cache. stack.push_back(new CCoinsViewCacheTest(&base)); // Track the txids we've used in various sets std::set coinbase_coins; std::set disconnected_coins; std::set duplicate_coins; std::set utxoset; for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) { uint32_t randiter = insecure_rand(); // 19/20 txs add a new transaction if (randiter % 20 < 19) { CMutableTransaction tx; tx.vin.resize(1); tx.vout.resize(1); // Keep txs unique unless intended to duplicate. tx.vout[0].nValue = i; // Random sizes so we can test memory usage accounting tx.vout[0].scriptPubKey.assign(insecure_rand() & 0x3F, 0); unsigned int height = insecure_rand(); Coin old_coin; // 2/20 times create a new coinbase if (randiter % 20 < 2 || coinbase_coins.size() < 10) { // 1/10 of those times create a duplicate coinbase if (insecure_rand() % 10 == 0 && coinbase_coins.size()) { auto utxod = FindRandomFrom(coinbase_coins); // Reuse the exact same coinbase tx = std::get<0>(utxod->second); // shouldn't be available for reconnection if its been // duplicated disconnected_coins.erase(utxod->first); duplicate_coins.insert(utxod->first); } else { coinbase_coins.insert(COutPoint(tx.GetId(), 0)); } assert(CTransaction(tx).IsCoinBase()); } // 17/20 times reconnect previous or add a regular tx else { COutPoint prevout; // 1/20 times reconnect a previously disconnected tx if (randiter % 20 == 2 && disconnected_coins.size()) { auto utxod = FindRandomFrom(disconnected_coins); tx = std::get<0>(utxod->second); prevout = tx.vin[0].prevout; if (!CTransaction(tx).IsCoinBase() && !utxoset.count(prevout)) { disconnected_coins.erase(utxod->first); continue; } // If this tx is already IN the UTXO, then it must be a // coinbase, and it must be a duplicate if (utxoset.count(utxod->first)) { assert(CTransaction(tx).IsCoinBase()); assert(duplicate_coins.count(utxod->first)); } disconnected_coins.erase(utxod->first); } // 16/20 times create a regular tx else { auto utxod = FindRandomFrom(utxoset); prevout = utxod->first; // Construct the tx to spend the coins of prevouthash tx.vin[0].prevout = prevout; tx.vin[0].prevout.n = 0; assert(!CTransaction(tx).IsCoinBase()); } // In this simple test coins only have two states, spent or // unspent, save the unspent state to restore old_coin = result[prevout]; // Update the expected result of prevouthash to know these coins // are spent result[prevout].Clear(); utxoset.erase(prevout); // The test is designed to ensure spending a duplicate coinbase // will work properly if that ever happens and not resurrect the // previously overwritten coinbase if (duplicate_coins.count(prevout)) { spent_a_duplicate_coinbase = true; } } // Update the expected result to know about the new output coins assert(tx.vout.size() == 1); const COutPoint outpoint(tx.GetId(), 0); result[outpoint] = Coin(tx.vout[0], height, CTransaction(tx).IsCoinBase()); // Call UpdateCoins on the top cache CTxUndo undo; UpdateCoins(tx, *(stack.back()), undo, height); // Update the utxo set for future spends utxoset.insert(outpoint); // Track this tx and undo info to use later utxoData.emplace(outpoint, std::make_tuple(tx, undo, old_coin)); } // 1/20 times undo a previous transaction else if (utxoset.size()) { auto utxod = FindRandomFrom(utxoset); CTransaction &tx = std::get<0>(utxod->second); CTxUndo &undo = std::get<1>(utxod->second); Coin &orig_coin = std::get<2>(utxod->second); // Update the expected result // Remove new outputs result[utxod->first].Clear(); // If not coinbase restore prevout if (!tx.IsCoinBase()) { result[tx.vin[0].prevout] = orig_coin; } // Disconnect the tx from the current UTXO // See code in DisconnectBlock // remove outputs stack.back()->SpendCoin(utxod->first); // restore inputs if (!tx.IsCoinBase()) { const COutPoint &out = tx.vin[0].prevout; UndoCoinSpend(undo.vprevout[0], *(stack.back()), out); } // Store as a candidate for reconnection disconnected_coins.insert(utxod->first); // Update the utxoset utxoset.erase(utxod->first); if (!tx.IsCoinBase()) { utxoset.insert(tx.vin[0].prevout); } } // Once every 1000 iterations and at the end, verify the full cache. if (insecure_rand() % 1000 == 1 || i == NUM_SIMULATION_ITERATIONS - 1) { for (auto it = result.begin(); it != result.end(); it++) { bool have = stack.back()->HaveCoin(it->first); const Coin &coin = stack.back()->AccessCoin(it->first); BOOST_CHECK(have == !coin.IsSpent()); BOOST_CHECK(coin == it->second); } } // One every 10 iterations, remove a random entry from the cache if (utxoset.size() > 1 && insecure_rand() % 30) { stack[insecure_rand() % stack.size()]->Uncache( FindRandomFrom(utxoset)->first); } if (disconnected_coins.size() > 1 && insecure_rand() % 30) { stack[insecure_rand() % stack.size()]->Uncache( FindRandomFrom(disconnected_coins)->first); } if (duplicate_coins.size() > 1 && insecure_rand() % 30) { stack[insecure_rand() % stack.size()]->Uncache( FindRandomFrom(duplicate_coins)->first); } if (insecure_rand() % 100 == 0) { // Every 100 iterations, flush an intermediate cache if (stack.size() > 1 && insecure_rand() % 2 == 0) { unsigned int flushIndex = insecure_rand() % (stack.size() - 1); stack[flushIndex]->Flush(); } } if (insecure_rand() % 100 == 0) { // Every 100 iterations, change the cache stack. if (stack.size() > 0 && insecure_rand() % 2 == 0) { stack.back()->Flush(); delete stack.back(); stack.pop_back(); } if (stack.size() == 0 || (stack.size() < 4 && insecure_rand() % 2)) { CCoinsView *tip = &base; if (stack.size() > 0) { tip = stack.back(); } stack.push_back(new CCoinsViewCacheTest(tip)); } } } // Clean up the stack. while (stack.size() > 0) { delete stack.back(); stack.pop_back(); } // Verify coverage. BOOST_CHECK(spent_a_duplicate_coinbase); } BOOST_AUTO_TEST_CASE(coin_serialization) { // Good example CDataStream ss1( ParseHex("97f23c835800816115944e077fe7c803cfa57f29b36bf87c1d35"), SER_DISK, CLIENT_VERSION); Coin c1; ss1 >> c1; BOOST_CHECK_EQUAL(c1.IsCoinBase(), false); BOOST_CHECK_EQUAL(c1.GetHeight(), 203998); BOOST_CHECK_EQUAL(c1.GetTxOut().nValue, 60000000000ULL); BOOST_CHECK_EQUAL(HexStr(c1.GetTxOut().scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex( "816115944e077fe7c803cfa57f29b36bf87c1d35")))))); // Good example CDataStream ss2( ParseHex("8ddf77bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4"), SER_DISK, CLIENT_VERSION); Coin c2; ss2 >> c2; BOOST_CHECK_EQUAL(c2.IsCoinBase(), true); BOOST_CHECK_EQUAL(c2.GetHeight(), 120891); BOOST_CHECK_EQUAL(c2.GetTxOut().nValue, 110397ULL); BOOST_CHECK_EQUAL(HexStr(c2.GetTxOut().scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex( "8c988f1a4a4de2161e0f50aac7f17e7f9555caa4")))))); // Smallest possible example CDataStream ss3(ParseHex("000006"), SER_DISK, CLIENT_VERSION); Coin c3; ss3 >> c3; BOOST_CHECK_EQUAL(c3.IsCoinBase(), false); BOOST_CHECK_EQUAL(c3.GetHeight(), 0); BOOST_CHECK_EQUAL(c3.GetTxOut().nValue, 0); BOOST_CHECK_EQUAL(c3.GetTxOut().scriptPubKey.size(), 0); // scriptPubKey that ends beyond the end of the stream CDataStream ss4(ParseHex("000007"), SER_DISK, CLIENT_VERSION); try { Coin c4; ss4 >> c4; BOOST_CHECK_MESSAGE(false, "We should have thrown"); } catch (const std::ios_base::failure &e) { } // Very large scriptPubKey (3*10^9 bytes) past the end of the stream CDataStream tmp(SER_DISK, CLIENT_VERSION); uint64_t x = 3000000000ULL; tmp << VARINT(x); BOOST_CHECK_EQUAL(HexStr(tmp.begin(), tmp.end()), "8a95c0bb00"); CDataStream ss5(ParseHex("00008a95c0bb00"), SER_DISK, CLIENT_VERSION); try { Coin c5; ss5 >> c5; BOOST_CHECK_MESSAGE(false, "We should have thrown"); } catch (const std::ios_base::failure &e) { } } static const COutPoint OUTPOINT; static const CAmount PRUNED = -1; static const CAmount ABSENT = -2; static const CAmount FAIL = -3; static const CAmount VALUE1 = 100; static const CAmount VALUE2 = 200; static const CAmount VALUE3 = 300; static const char DIRTY = CCoinsCacheEntry::DIRTY; static const char FRESH = CCoinsCacheEntry::FRESH; static const char NO_ENTRY = -1; static const auto FLAGS = {char(0), FRESH, DIRTY, char(DIRTY | FRESH)}; static const auto CLEAN_FLAGS = {char(0), FRESH}; static const auto ABSENT_FLAGS = {NO_ENTRY}; static void SetCoinValue(CAmount value, Coin &coin) { assert(value != ABSENT); coin.Clear(); assert(coin.IsSpent()); if (value != PRUNED) { CTxOut out; out.nValue = value; coin = Coin(std::move(out), 1, false); assert(!coin.IsSpent()); } } size_t InsertCoinMapEntry(CCoinsMap &map, CAmount value, char flags) { if (value == ABSENT) { assert(flags == NO_ENTRY); return 0; } assert(flags != NO_ENTRY); CCoinsCacheEntry entry; entry.flags = flags; SetCoinValue(value, entry.coin); auto inserted = map.emplace(OUTPOINT, std::move(entry)); assert(inserted.second); return inserted.first->second.coin.DynamicMemoryUsage(); } void GetCoinMapEntry(const CCoinsMap &map, CAmount &value, char &flags) { auto it = map.find(OUTPOINT); if (it == map.end()) { value = ABSENT; flags = NO_ENTRY; } else { if (it->second.coin.IsSpent()) { value = PRUNED; } else { value = it->second.coin.GetTxOut().nValue; } flags = it->second.flags; assert(flags != NO_ENTRY); } } void WriteCoinViewEntry(CCoinsView &view, CAmount value, char flags) { CCoinsMap map; InsertCoinMapEntry(map, value, flags); view.BatchWrite(map, {}); } class SingleEntryCacheTest { public: SingleEntryCacheTest(CAmount base_value, CAmount cache_value, char cache_flags) { WriteCoinViewEntry(base, base_value, base_value == ABSENT ? NO_ENTRY : DIRTY); cache.usage() += InsertCoinMapEntry(cache.map(), cache_value, cache_flags); } CCoinsView root; CCoinsViewCacheTest base{&root}; CCoinsViewCacheTest cache{&base}; }; void CheckAccessCoin(CAmount base_value, CAmount cache_value, CAmount expected_value, char cache_flags, char expected_flags) { SingleEntryCacheTest test(base_value, cache_value, cache_flags); test.cache.AccessCoin(OUTPOINT); test.cache.SelfTest(); CAmount result_value; char result_flags; GetCoinMapEntry(test.cache.map(), result_value, result_flags); BOOST_CHECK_EQUAL(result_value, expected_value); BOOST_CHECK_EQUAL(result_flags, expected_flags); } BOOST_AUTO_TEST_CASE(coin_access) { /* Check AccessCoin behavior, requesting a coin from a cache view layered on * top of a base view, and checking the resulting entry in the cache after * the access. * * Base Cache Result Cache Result * Value Value Value Flags Flags */ CheckAccessCoin(ABSENT, ABSENT, ABSENT, NO_ENTRY, NO_ENTRY); CheckAccessCoin(ABSENT, PRUNED, PRUNED, 0, 0); CheckAccessCoin(ABSENT, PRUNED, PRUNED, FRESH, FRESH); CheckAccessCoin(ABSENT, PRUNED, PRUNED, DIRTY, DIRTY); CheckAccessCoin(ABSENT, PRUNED, PRUNED, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(ABSENT, VALUE2, VALUE2, 0, 0); CheckAccessCoin(ABSENT, VALUE2, VALUE2, FRESH, FRESH); CheckAccessCoin(ABSENT, VALUE2, VALUE2, DIRTY, DIRTY); CheckAccessCoin(ABSENT, VALUE2, VALUE2, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(PRUNED, ABSENT, PRUNED, NO_ENTRY, FRESH); CheckAccessCoin(PRUNED, PRUNED, PRUNED, 0, 0); CheckAccessCoin(PRUNED, PRUNED, PRUNED, FRESH, FRESH); CheckAccessCoin(PRUNED, PRUNED, PRUNED, DIRTY, DIRTY); CheckAccessCoin(PRUNED, PRUNED, PRUNED, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(PRUNED, VALUE2, VALUE2, 0, 0); CheckAccessCoin(PRUNED, VALUE2, VALUE2, FRESH, FRESH); CheckAccessCoin(PRUNED, VALUE2, VALUE2, DIRTY, DIRTY); CheckAccessCoin(PRUNED, VALUE2, VALUE2, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(VALUE1, ABSENT, VALUE1, NO_ENTRY, 0); CheckAccessCoin(VALUE1, PRUNED, PRUNED, 0, 0); CheckAccessCoin(VALUE1, PRUNED, PRUNED, FRESH, FRESH); CheckAccessCoin(VALUE1, PRUNED, PRUNED, DIRTY, DIRTY); CheckAccessCoin(VALUE1, PRUNED, PRUNED, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(VALUE1, VALUE2, VALUE2, 0, 0); CheckAccessCoin(VALUE1, VALUE2, VALUE2, FRESH, FRESH); CheckAccessCoin(VALUE1, VALUE2, VALUE2, DIRTY, DIRTY); CheckAccessCoin(VALUE1, VALUE2, VALUE2, DIRTY | FRESH, DIRTY | FRESH); } void CheckSpendCoin(CAmount base_value, CAmount cache_value, CAmount expected_value, char cache_flags, char expected_flags) { SingleEntryCacheTest test(base_value, cache_value, cache_flags); test.cache.SpendCoin(OUTPOINT); test.cache.SelfTest(); CAmount result_value; char result_flags; GetCoinMapEntry(test.cache.map(), result_value, result_flags); BOOST_CHECK_EQUAL(result_value, expected_value); BOOST_CHECK_EQUAL(result_flags, expected_flags); }; BOOST_AUTO_TEST_CASE(coin_spend) { /** * Check SpendCoin behavior, requesting a coin from a cache view layered on * top of a base view, spending, and then checking the resulting entry in * the cache after the modification. * * Base Cache Result Cache Result * Value Value Value Flags Flags */ CheckSpendCoin(ABSENT, ABSENT, ABSENT, NO_ENTRY, NO_ENTRY); CheckSpendCoin(ABSENT, PRUNED, PRUNED, 0, DIRTY); CheckSpendCoin(ABSENT, PRUNED, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(ABSENT, PRUNED, PRUNED, DIRTY, DIRTY); CheckSpendCoin(ABSENT, PRUNED, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(ABSENT, VALUE2, PRUNED, 0, DIRTY); CheckSpendCoin(ABSENT, VALUE2, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(ABSENT, VALUE2, PRUNED, DIRTY, DIRTY); CheckSpendCoin(ABSENT, VALUE2, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(PRUNED, ABSENT, ABSENT, NO_ENTRY, NO_ENTRY); CheckSpendCoin(PRUNED, PRUNED, PRUNED, 0, DIRTY); CheckSpendCoin(PRUNED, PRUNED, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(PRUNED, PRUNED, PRUNED, DIRTY, DIRTY); CheckSpendCoin(PRUNED, PRUNED, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(PRUNED, VALUE2, PRUNED, 0, DIRTY); CheckSpendCoin(PRUNED, VALUE2, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(PRUNED, VALUE2, PRUNED, DIRTY, DIRTY); CheckSpendCoin(PRUNED, VALUE2, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(VALUE1, ABSENT, PRUNED, NO_ENTRY, DIRTY); CheckSpendCoin(VALUE1, PRUNED, PRUNED, 0, DIRTY); CheckSpendCoin(VALUE1, PRUNED, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(VALUE1, PRUNED, PRUNED, DIRTY, DIRTY); CheckSpendCoin(VALUE1, PRUNED, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(VALUE1, VALUE2, PRUNED, 0, DIRTY); CheckSpendCoin(VALUE1, VALUE2, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(VALUE1, VALUE2, PRUNED, DIRTY, DIRTY); CheckSpendCoin(VALUE1, VALUE2, ABSENT, DIRTY | FRESH, NO_ENTRY); } void CheckAddCoinBase(CAmount base_value, CAmount cache_value, CAmount modify_value, CAmount expected_value, char cache_flags, char expected_flags, bool coinbase) { SingleEntryCacheTest test(base_value, cache_value, cache_flags); CAmount result_value; char result_flags; try { CTxOut output; output.nValue = modify_value; test.cache.AddCoin(OUTPOINT, Coin(std::move(output), 1, coinbase), coinbase); test.cache.SelfTest(); GetCoinMapEntry(test.cache.map(), result_value, result_flags); } catch (std::logic_error &e) { result_value = FAIL; result_flags = NO_ENTRY; } BOOST_CHECK_EQUAL(result_value, expected_value); BOOST_CHECK_EQUAL(result_flags, expected_flags); } // Simple wrapper for CheckAddCoinBase function above that loops through // different possible base_values, making sure each one gives the same results. // This wrapper lets the coin_add test below be shorter and less repetitive, // while still verifying that the CoinsViewCache::AddCoin implementation ignores // base values. template void CheckAddCoin(Args &&... args) { for (CAmount base_value : {ABSENT, PRUNED, VALUE1}) { CheckAddCoinBase(base_value, std::forward(args)...); } } BOOST_AUTO_TEST_CASE(coin_add) { /** * Check AddCoin behavior, requesting a new coin from a cache view, writing * a modification to the coin, and then checking the resulting entry in the * cache after the modification. Verify behavior with the with the AddCoin * potential_overwrite argument set to false, and to true. * * Cache Write Result Cache Result potential_overwrite * Value Value Value Flags Flags */ CheckAddCoin(ABSENT, VALUE3, VALUE3, NO_ENTRY, DIRTY | FRESH, false); CheckAddCoin(ABSENT, VALUE3, VALUE3, NO_ENTRY, DIRTY, true); CheckAddCoin(PRUNED, VALUE3, VALUE3, 0, DIRTY | FRESH, false); CheckAddCoin(PRUNED, VALUE3, VALUE3, 0, DIRTY, true); CheckAddCoin(PRUNED, VALUE3, VALUE3, FRESH, DIRTY | FRESH, false); CheckAddCoin(PRUNED, VALUE3, VALUE3, FRESH, DIRTY | FRESH, true); CheckAddCoin(PRUNED, VALUE3, VALUE3, DIRTY, DIRTY, false); CheckAddCoin(PRUNED, VALUE3, VALUE3, DIRTY, DIRTY, true); CheckAddCoin(PRUNED, VALUE3, VALUE3, DIRTY | FRESH, DIRTY | FRESH, false); CheckAddCoin(PRUNED, VALUE3, VALUE3, DIRTY | FRESH, DIRTY | FRESH, true); CheckAddCoin(VALUE2, VALUE3, FAIL, 0, NO_ENTRY, false); CheckAddCoin(VALUE2, VALUE3, VALUE3, 0, DIRTY, true); CheckAddCoin(VALUE2, VALUE3, FAIL, FRESH, NO_ENTRY, false); CheckAddCoin(VALUE2, VALUE3, VALUE3, FRESH, DIRTY | FRESH, true); CheckAddCoin(VALUE2, VALUE3, FAIL, DIRTY, NO_ENTRY, false); CheckAddCoin(VALUE2, VALUE3, VALUE3, DIRTY, DIRTY, true); CheckAddCoin(VALUE2, VALUE3, FAIL, DIRTY | FRESH, NO_ENTRY, false); CheckAddCoin(VALUE2, VALUE3, VALUE3, DIRTY | FRESH, DIRTY | FRESH, true); } void CheckWriteCoin(CAmount parent_value, CAmount child_value, CAmount expected_value, char parent_flags, char child_flags, char expected_flags) { SingleEntryCacheTest test(ABSENT, parent_value, parent_flags); CAmount result_value; char result_flags; try { WriteCoinViewEntry(test.cache, child_value, child_flags); test.cache.SelfTest(); GetCoinMapEntry(test.cache.map(), result_value, result_flags); } catch (std::logic_error &e) { result_value = FAIL; result_flags = NO_ENTRY; } BOOST_CHECK_EQUAL(result_value, expected_value); BOOST_CHECK_EQUAL(result_flags, expected_flags); } BOOST_AUTO_TEST_CASE(coin_write) { /* Check BatchWrite behavior, flushing one entry from a child cache to a * parent cache, and checking the resulting entry in the parent cache * after the write. * * Parent Child Result Parent Child Result * Value Value Value Flags Flags Flags */ CheckWriteCoin(ABSENT, ABSENT, ABSENT, NO_ENTRY, NO_ENTRY, NO_ENTRY); CheckWriteCoin(ABSENT, PRUNED, PRUNED, NO_ENTRY, DIRTY, DIRTY); CheckWriteCoin(ABSENT, PRUNED, ABSENT, NO_ENTRY, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(ABSENT, VALUE2, VALUE2, NO_ENTRY, DIRTY, DIRTY); CheckWriteCoin(ABSENT, VALUE2, VALUE2, NO_ENTRY, DIRTY | FRESH, DIRTY | FRESH); CheckWriteCoin(PRUNED, ABSENT, PRUNED, 0, NO_ENTRY, 0); CheckWriteCoin(PRUNED, ABSENT, PRUNED, FRESH, NO_ENTRY, FRESH); CheckWriteCoin(PRUNED, ABSENT, PRUNED, DIRTY, NO_ENTRY, DIRTY); CheckWriteCoin(PRUNED, ABSENT, PRUNED, DIRTY | FRESH, NO_ENTRY, DIRTY | FRESH); CheckWriteCoin(PRUNED, PRUNED, PRUNED, 0, DIRTY, DIRTY); CheckWriteCoin(PRUNED, PRUNED, PRUNED, 0, DIRTY | FRESH, DIRTY); CheckWriteCoin(PRUNED, PRUNED, ABSENT, FRESH, DIRTY, NO_ENTRY); CheckWriteCoin(PRUNED, PRUNED, ABSENT, FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(PRUNED, PRUNED, PRUNED, DIRTY, DIRTY, DIRTY); CheckWriteCoin(PRUNED, PRUNED, PRUNED, DIRTY, DIRTY | FRESH, DIRTY); CheckWriteCoin(PRUNED, PRUNED, ABSENT, DIRTY | FRESH, DIRTY, NO_ENTRY); CheckWriteCoin(PRUNED, PRUNED, ABSENT, DIRTY | FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, 0, DIRTY, DIRTY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, 0, DIRTY | FRESH, DIRTY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, FRESH, DIRTY, DIRTY | FRESH); CheckWriteCoin(PRUNED, VALUE2, VALUE2, FRESH, DIRTY | FRESH, DIRTY | FRESH); CheckWriteCoin(PRUNED, VALUE2, VALUE2, DIRTY, DIRTY, DIRTY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, DIRTY, DIRTY | FRESH, DIRTY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, DIRTY | FRESH, DIRTY, DIRTY | FRESH); CheckWriteCoin(PRUNED, VALUE2, VALUE2, DIRTY | FRESH, DIRTY | FRESH, DIRTY | FRESH); CheckWriteCoin(VALUE1, ABSENT, VALUE1, 0, NO_ENTRY, 0); CheckWriteCoin(VALUE1, ABSENT, VALUE1, FRESH, NO_ENTRY, FRESH); CheckWriteCoin(VALUE1, ABSENT, VALUE1, DIRTY, NO_ENTRY, DIRTY); CheckWriteCoin(VALUE1, ABSENT, VALUE1, DIRTY | FRESH, NO_ENTRY, DIRTY | FRESH); CheckWriteCoin(VALUE1, PRUNED, PRUNED, 0, DIRTY, DIRTY); CheckWriteCoin(VALUE1, PRUNED, FAIL, 0, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, ABSENT, FRESH, DIRTY, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, FAIL, FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, PRUNED, DIRTY, DIRTY, DIRTY); CheckWriteCoin(VALUE1, PRUNED, FAIL, DIRTY, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, ABSENT, DIRTY | FRESH, DIRTY, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, FAIL, DIRTY | FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, VALUE2, VALUE2, 0, DIRTY, DIRTY); CheckWriteCoin(VALUE1, VALUE2, FAIL, 0, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, VALUE2, VALUE2, FRESH, DIRTY, DIRTY | FRESH); CheckWriteCoin(VALUE1, VALUE2, FAIL, FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, VALUE2, VALUE2, DIRTY, DIRTY, DIRTY); CheckWriteCoin(VALUE1, VALUE2, FAIL, DIRTY, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, VALUE2, VALUE2, DIRTY | FRESH, DIRTY, DIRTY | FRESH); CheckWriteCoin(VALUE1, VALUE2, FAIL, DIRTY | FRESH, DIRTY | FRESH, NO_ENTRY); // The checks above omit cases where the child flags are not DIRTY, since // they would be too repetitive (the parent cache is never updated in these // cases). The loop below covers these cases and makes sure the parent cache // is always left unchanged. for (CAmount parent_value : {ABSENT, PRUNED, VALUE1}) { for (CAmount child_value : {ABSENT, PRUNED, VALUE2}) { for (char parent_flags : parent_value == ABSENT ? ABSENT_FLAGS : FLAGS) { for (char child_flags : child_value == ABSENT ? ABSENT_FLAGS : CLEAN_FLAGS) { CheckWriteCoin(parent_value, child_value, parent_value, parent_flags, child_flags, parent_flags); } } } } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/txdb.h b/src/txdb.h index fe64802b8..8d9d0f27b 100644 --- a/src/txdb.h +++ b/src/txdb.h @@ -1,132 +1,132 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_TXDB_H #define BITCOIN_TXDB_H #include "chain.h" #include "coins.h" #include "dbwrapper.h" #include #include #include #include class CBlockIndex; class CCoinsViewDBCursor; class uint256; //! Compensate for extra memory peak (x1.5-x1.9) at flush time. static constexpr int DB_PEAK_USAGE_FACTOR = 2; //! No need to periodic flush if at least this much space still available. static constexpr int MAX_BLOCK_COINSDB_USAGE = 200 * DB_PEAK_USAGE_FACTOR; //! Always periodic flush if less than this much space still available. static constexpr int MIN_BLOCK_COINSDB_USAGE = 50 * DB_PEAK_USAGE_FACTOR; //! -dbcache default (MiB) static const int64_t nDefaultDbCache = 450; //! max. -dbcache (MiB) static const int64_t nMaxDbCache = sizeof(void *) > 4 ? 16384 : 1024; //! min. -dbcache (MiB) static const int64_t nMinDbCache = 4; //! Max memory allocated to block tree DB specific cache, if no -txindex (MiB) static const int64_t nMaxBlockDBCache = 2; //! Max memory allocated to block tree DB specific cache, if -txindex (MiB) // Unlike for the UTXO database, for the txindex scenario the leveldb cache make // a meaningful difference: // https://github.com/bitcoin/bitcoin/pull/8273#issuecomment-229601991 static const int64_t nMaxBlockDBAndTxIndexCache = 1024; //! Max memory allocated to coin DB specific cache (MiB) static const int64_t nMaxCoinsDBCache = 8; struct CDiskTxPos : public CDiskBlockPos { unsigned int nTxOffset; // after header ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(*(CDiskBlockPos *)this); READWRITE(VARINT(nTxOffset)); } CDiskTxPos(const CDiskBlockPos &blockIn, unsigned int nTxOffsetIn) : CDiskBlockPos(blockIn.nFile, blockIn.nPos), nTxOffset(nTxOffsetIn) {} CDiskTxPos() { SetNull(); } void SetNull() { CDiskBlockPos::SetNull(); nTxOffset = 0; } }; /** CCoinsView backed by the coin database (chainstate/) */ class CCoinsViewDB : public CCoinsView { protected: CDBWrapper db; public: CCoinsViewDB(size_t nCacheSize, bool fMemory = false, bool fWipe = false); - bool GetCoin(const COutPoint &outpoint, Coin &coin) const; - bool HaveCoin(const COutPoint &outpoint) const; - uint256 GetBestBlock() const; - bool BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock); - CCoinsViewCursor *Cursor() const; + bool GetCoin(const COutPoint &outpoint, Coin &coin) const override; + bool HaveCoin(const COutPoint &outpoint) const override; + uint256 GetBestBlock() const override; + bool BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) override; + CCoinsViewCursor *Cursor() const override; //! Attempt to update from an older database format. //! Returns whether an error occurred. bool Upgrade(); size_t EstimateSize() const override; }; /** Specialization of CCoinsViewCursor to iterate over a CCoinsViewDB */ class CCoinsViewDBCursor : public CCoinsViewCursor { public: ~CCoinsViewDBCursor() {} bool GetKey(COutPoint &key) const; bool GetValue(Coin &coin) const; unsigned int GetValueSize() const; bool Valid() const; void Next(); private: CCoinsViewDBCursor(CDBIterator *pcursorIn, const uint256 &hashBlockIn) : CCoinsViewCursor(hashBlockIn), pcursor(pcursorIn) {} std::unique_ptr pcursor; std::pair keyTmp; friend class CCoinsViewDB; }; /** Access to the block database (blocks/index/) */ class CBlockTreeDB : public CDBWrapper { public: CBlockTreeDB(size_t nCacheSize, bool fMemory = false, bool fWipe = false); private: CBlockTreeDB(const CBlockTreeDB &); void operator=(const CBlockTreeDB &); public: bool WriteBatchSync( const std::vector> &fileInfo, int nLastFile, const std::vector &blockinfo); bool ReadBlockFileInfo(int nFile, CBlockFileInfo &fileinfo); bool ReadLastBlockFile(int &nFile); bool WriteReindexing(bool fReindex); bool ReadReindexing(bool &fReindex); bool ReadTxIndex(const uint256 &txid, CDiskTxPos &pos); bool WriteTxIndex(const std::vector> &list); bool WriteFlag(const std::string &name, bool fValue); bool ReadFlag(const std::string &name, bool &fValue); bool LoadBlockIndexGuts( std::function insertBlockIndex); }; #endif // BITCOIN_TXDB_H