diff --git a/configure.ac b/configure.ac index 87639f87f..f105bd007 100644 --- a/configure.ac +++ b/configure.ac @@ -1,1375 +1,1376 @@ dnl require autoconf 2.60 (AS_ECHO/AS_ECHO_N) AC_PREREQ([2.60]) define(_CLIENT_VERSION_MAJOR, 0) define(_CLIENT_VERSION_MINOR, 18) define(_CLIENT_VERSION_REVISION, 3) define(_CLIENT_VERSION_BUILD, 0) define(_CLIENT_VERSION_IS_RELEASE, true) define(_COPYRIGHT_YEAR, 2018) define(_COPYRIGHT_HOLDERS,[The %s developers]) define(_COPYRIGHT_HOLDERS_SUBSTITUTION,[[Bitcoin]]) AC_INIT([Bitcoin ABC],[_CLIENT_VERSION_MAJOR._CLIENT_VERSION_MINOR._CLIENT_VERSION_REVISION],[https://github.com/Bitcoin-ABC/bitcoin-abc/issues],[bitcoin-abc],[https://bitcoinabc.org/]) AC_CONFIG_SRCDIR([src/validation.cpp]) AC_CONFIG_HEADERS([src/config/bitcoin-config.h]) AC_CONFIG_AUX_DIR([build-aux]) AC_CONFIG_MACRO_DIR([build-aux/m4]) BITCOIN_DAEMON_NAME=bitcoind BITCOIN_GUI_NAME=bitcoin-qt BITCOIN_CLI_NAME=bitcoin-cli BITCOIN_TX_NAME=bitcoin-tx BITCOIN_SEEDER_NAME=bitcoin-seeder AC_CANONICAL_HOST AH_TOP([#ifndef BITCOIN_BITCOIN_CONFIG_H]) AH_TOP([#define BITCOIN_BITCOIN_CONFIG_H]) AH_BOTTOM([#endif // BITCOIN_BITCOIN_CONFIG_H]) dnl faketime breaks configure and is only needed for make. Disable it here. unset FAKETIME dnl Automake init set-up and checks AM_INIT_AUTOMAKE([no-define subdir-objects foreign]) dnl faketime messes with timestamps and causes configure to be re-run. dnl --disable-maintainer-mode can be used to bypass this. AM_MAINTAINER_MODE([enable]) dnl make the compilation flags quiet unless V=1 is used m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])]) dnl Compiler checks (here before libtool). if test "x${CXXFLAGS+set}" = "xset"; then CXXFLAGS_overridden=yes else CXXFLAGS_overridden=no fi AC_PROG_CXX dnl By default, libtool for mingw refuses to link static libs into a dll for dnl fear of mixing pic/non-pic objects, and import/export complications. Since dnl we have those under control, re-enable that functionality. case $host in *mingw*) lt_cv_deplibs_check_method="pass_all" ;; esac dnl Require C++11 compiler (no GNU extensions) AX_CXX_COMPILE_STDCXX([11], [noext], [mandatory], [nodefault]) dnl Check if -latomic is required for CHECK_ATOMIC dnl Unless the user specified OBJCXX, force it to be the same as CXX. This ensures dnl that we get the same -std flags for both. m4_ifdef([AC_PROG_OBJCXX],[ if test "x${OBJCXX+set}" = "x"; then OBJCXX="${CXX}" fi AC_PROG_OBJCXX ]) dnl Libtool init checks. LT_INIT([pic-only]) dnl Check/return PATH for base programs. AC_PATH_TOOL(AR, ar) AC_PATH_TOOL(RANLIB, ranlib) AC_PATH_TOOL(STRIP, strip) AC_PATH_TOOL(GCOV, gcov) AC_PATH_PROG(LCOV, lcov) dnl Python 3.x is supported from 3.4 on (see https://github.com/bitcoin/bitcoin/issues/7893) AC_PATH_PROGS([PYTHON], [python3.6 python3.5 python3.4 python3 python2.7 python2 python]) AC_PATH_PROG(GENHTML, genhtml) AC_PATH_PROG([GIT], [git]) AC_PATH_PROG(CCACHE,ccache) AC_PATH_PROG(XGETTEXT,xgettext) AC_PATH_PROG(HEXDUMP,hexdump) AC_PATH_TOOL(READELF, readelf) AC_PATH_TOOL(CPPFILT, c++filt) AC_PATH_TOOL(OBJCOPY, objcopy) AC_ARG_VAR(PYTHONPATH, Augments the default search path for python module files) # Enable wallet AC_ARG_ENABLE([wallet], [AS_HELP_STRING([--disable-wallet], [disable wallet (enabled by default)])], [enable_wallet=$enableval], [enable_wallet=yes]) AC_ARG_WITH([miniupnpc], [AS_HELP_STRING([--with-miniupnpc], [enable UPNP (default is yes if libminiupnpc is found)])], [use_upnp=$withval], [use_upnp=auto]) AC_ARG_ENABLE([upnp-default], [AS_HELP_STRING([--enable-upnp-default], [if UPNP is enabled, turn it on at startup (default is no)])], [use_upnp_default=$enableval], [use_upnp_default=no]) AC_ARG_ENABLE(tests, AS_HELP_STRING([--disable-tests],[do not compile tests (default is to compile)]), [use_tests=$enableval], [use_tests=yes]) AC_ARG_ENABLE(gui-tests, AS_HELP_STRING([--disable-gui-tests],[do not compile GUI tests (default is to compile if GUI and tests enabled)]), [use_gui_tests=$enableval], [use_gui_tests=$use_tests]) AC_ARG_ENABLE(bench, AS_HELP_STRING([--disable-bench],[do not compile benchmarks (default is to compile)]), [use_bench=$enableval], [use_bench=yes]) AC_ARG_ENABLE([extended-functional-tests], AS_HELP_STRING([--enable-extended-functional-tests],[enable expensive functional tests when using lcov (default no)]), [use_extended_functional_tests=$enableval], [use_extended_functional_tests=no]) AC_ARG_WITH([qrencode], [AS_HELP_STRING([--with-qrencode], [enable QR code support (default is yes if qt is enabled and libqrencode is found)])], [use_qr=$withval], [use_qr=auto]) AC_ARG_ENABLE([hardening], [AS_HELP_STRING([--disable-hardening], [do not attempt to harden the resulting executables (default is to harden)])], [use_hardening=$enableval], [use_hardening=yes]) AC_ARG_ENABLE([reduce-exports], [AS_HELP_STRING([--enable-reduce-exports], [attempt to reduce exported symbols in the resulting executables (default is no)])], [use_reduce_exports=$enableval], [use_reduce_exports=no]) AC_ARG_ENABLE([ccache], [AS_HELP_STRING([--disable-ccache], [do not use ccache for building (default is to use if found)])], [use_ccache=$enableval], [use_ccache=auto]) AC_ARG_ENABLE([lcov], [AS_HELP_STRING([--enable-lcov], [enable lcov testing (default is no)])], [use_lcov=yes], [use_lcov=no]) AC_ARG_ENABLE([glibc-back-compat], [AS_HELP_STRING([--enable-glibc-back-compat], [enable backwards compatibility with glibc])], [use_glibc_compat=$enableval], [use_glibc_compat=no]) AC_ARG_ENABLE([asm], [AS_HELP_STRING([--enable-asm], [Enable assembly routines (default is yes)])], [use_asm=$enableval], [use_asm=yes]) if test "x$use_asm" = xyes; then AC_DEFINE(USE_ASM, 1, [Define this symbol to build in assembly routines]) fi AC_ARG_WITH([system-univalue], [AS_HELP_STRING([--with-system-univalue], [Build with system UniValue (default is no)])], [system_univalue=$withval], [system_univalue=no] ) AC_ARG_ENABLE([zmq], [AS_HELP_STRING([--disable-zmq], [disable ZMQ notifications])], [use_zmq=$enableval], [use_zmq=yes]) AC_ARG_WITH([protoc-bindir],[AS_HELP_STRING([--with-protoc-bindir=BIN_DIR],[specify protoc bin path])], [protoc_bin_path=$withval], []) AC_ARG_ENABLE(man, [AS_HELP_STRING([--disable-man], [do not install man pages (default is to install)])],, enable_man=yes) AM_CONDITIONAL(ENABLE_MAN, test "$enable_man" != no) # Enable debug AC_ARG_ENABLE([debug], [AS_HELP_STRING([--enable-debug], [use debug compiler flags and macros (default is no)])], [enable_debug=$enableval], [enable_debug=no]) # Enable ASAN AC_ARG_ENABLE([asan], [AS_HELP_STRING([--enable-asan], [enable address sanitizer compiler flags (implies --enable-debug, default is no)])], [enable_asan=$enableval], [enable_asan=no]) # Enable TSAN AC_ARG_ENABLE([tsan], [AS_HELP_STRING([--enable-tsan], [enable thread sanitizer compiler flags; requires 64-bit target architecture (implies --enable-debug, default is no)])], [enable_tsan=$enableval], [enable_tsan=no]) # Enable UBSAN AC_ARG_ENABLE([ubsan], [AS_HELP_STRING([--enable-ubsan], [enable undefined behavior sanitizer compiler flags (implies --enable-debug, default is no)])], [enable_ubsan=$enableval], [enable_ubsan=no]) # Turn warnings into errors AC_ARG_ENABLE([werror], [AS_HELP_STRING([--enable-werror], [Treat certain compiler warnings as errors (default is no)])], [enable_werror=$enableval], [enable_werror=no]) AC_LANG_PUSH([C++]) AX_CHECK_COMPILE_FLAG([-Werror],[CXXFLAG_WERROR="-Werror"],[CXXFLAG_WERROR=""]) if test "x$enable_asan" = xyes; then enable_debug=yes asan_failed=no AX_CHECK_COMPILE_FLAG([-fsanitize=address], [CXXFLAGS="$CXXFLAGS -fsanitize=address"], [asan_failed=yes]) AX_CHECK_LINK_FLAG([-fsanitize=address], [LDFLAGS="$LDFLAGS -fsanitize=address"], [asan_failed=yes]) AX_CHECK_COMPILE_FLAG([-fno-omit-frame-pointer], [CXXFLAGS="$CXXFLAGS -fno-omit-frame-pointer"], [asan_failed=yes]) if test "x$asan_failed" = xyes; then AC_MSG_ERROR("ASAN is not supported") fi # fix linkage in MacOs [LIBTOOL_APP_LDFLAGS="$LIBTOOL_APP_LDFLAGS -fsanitize=address"], fi if test "x$enable_tsan" = xyes; then enable_debug=yes tsan_failed=no AX_CHECK_COMPILE_FLAG([-fsanitize=thread], [CXXFLAGS="$CXXFLAGS -fsanitize=thread"], [tsan_failed=yes]) AX_CHECK_LINK_FLAG([-fsanitize=thread], [LDFLAGS="$LDFLAGS -fsanitize=thread"], [tsan_failed=yes]) AX_CHECK_COMPILE_FLAG([-fno-omit-frame-pointer], [CXXFLAGS="$CXXFLAGS -fno-omit-frame-pointer"], [tsan_failed=yes]) if test "x$tsan_failed" = xyes; then AC_MSG_ERROR("TSAN is not supported") fi fi if test "x$enable_ubsan" = xyes; then enable_debug=yes ubsan_failed=no AX_CHECK_COMPILE_FLAG([-fsanitize=undefined], [CXXFLAGS="$CXXFLAGS -fsanitize=undefined"], [ubsan_failed=yes]) AX_CHECK_LINK_FLAG([-fsanitize=undefined], [LDFLAGS="$LDFLAGS -fsanitize=undefined"], [ubsan_failed=yes]) AX_CHECK_COMPILE_FLAG([-fno-omit-frame-pointer], [CXXFLAGS="$CXXFLAGS -fno-omit-frame-pointer"], [ubsan_failed=yes]) if test "x$ubsan_failed" = xyes; then AC_MSG_ERROR("UBSAN is not supported") fi fi if test "x$enable_debug" = xyes; then CPPFLAGS="$CPPFLAGS -DDEBUG -DDEBUG_LOCKORDER" if test "x$GCC" = xyes; then CFLAGS="$CFLAGS -g3 -O0" fi if test "x$GXX" = xyes; then CXXFLAGS="$CXXFLAGS -g3 -O0" fi fi ERROR_CXXFLAGS= if test "x$enable_werror" = "xyes"; then if test "x$CXXFLAG_WERROR" = "x"; then AC_MSG_ERROR("enable-werror set but -Werror is not usable") fi AX_CHECK_COMPILE_FLAG([-Werror=vla],[ERROR_CXXFLAGS="$ERROR_CXXFLAGS -Werror=vla"],,[[$CXXFLAG_WERROR]]) fi if test "x$CXXFLAGS_overridden" = "xno"; then AX_CHECK_COMPILE_FLAG([-Wall],[CXXFLAGS="$CXXFLAGS -Wall"],,[[$CXXFLAG_WERROR]]) AX_CHECK_COMPILE_FLAG([-Wextra],[CXXFLAGS="$CXXFLAGS -Wextra"],,[[$CXXFLAG_WERROR]]) AX_CHECK_COMPILE_FLAG([-Wformat],[CXXFLAGS="$CXXFLAGS -Wformat"],,[[$CXXFLAG_WERROR]]) AX_CHECK_COMPILE_FLAG([-Wvla],[CXXFLAGS="$CXXFLAGS -Wvla"],,[[$CXXFLAG_WERROR]]) AX_CHECK_COMPILE_FLAG([-Wformat-security],[CXXFLAGS="$CXXFLAGS -Wformat-security"],,[[$CXXFLAG_WERROR]]) + AX_CHECK_COMPILE_FLAG([-Wshadow],[CXXFLAGS="$CXXFLAGS -Wshadow"],,[[$CXXFLAG_WERROR]]) ## Some compilers (gcc) ignore unknown -Wno-* options, but warn about all ## unknown options if any other warning is produced. Test the -Wfoo case, and ## set the -Wno-foo case if it works. AX_CHECK_COMPILE_FLAG([-Wunused-parameter],[CXXFLAGS="$CXXFLAGS -Wno-unused-parameter"],,[[$CXXFLAG_WERROR]]) fi # Check for optional instruction set support. Enabling these does _not_ imply that all code will # be compiled with them, rather that specific objects/libs may use them after checking for runtime # compatibility. AX_CHECK_COMPILE_FLAG([-msse4.2],[[SSE42_CXXFLAGS="-msse4.2"]],,[[$CXXFLAG_WERROR]]) TEMP_CXXFLAGS="$CXXFLAGS" CXXFLAGS="$CXXFLAGS $SSE42_CXXFLAGS" AC_MSG_CHECKING(for assembler crc32 support) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[ #include #if defined(_MSC_VER) #include #elif defined(__GNUC__) && defined(__SSE4_2__) #include #endif ]],[[ uint64_t l = 0; l = _mm_crc32_u8(l, 0); l = _mm_crc32_u32(l, 0); l = _mm_crc32_u64(l, 0); return l; ]])], [ AC_MSG_RESULT(yes); enable_hwcrc32=yes], [ AC_MSG_RESULT(no)] ) CXXFLAGS="$TEMP_CXXFLAGS" CPPFLAGS="$CPPFLAGS -DHAVE_BUILD_INFO -D__STDC_FORMAT_MACROS" AC_ARG_WITH([utils], [AS_HELP_STRING([--with-utils], [build bitcoin-cli bitcoin-tx (default=yes)])], [build_bitcoin_utils=$withval], [build_bitcoin_utils=yes]) AC_ARG_WITH([libs], [AS_HELP_STRING([--with-libs], [build libraries (default=yes)])], [build_bitcoin_libs=$withval], [build_bitcoin_libs=yes]) AC_ARG_WITH([daemon], [AS_HELP_STRING([--with-daemon], [build bitcoind daemon (default=yes)])], [build_bitcoind=$withval], [build_bitcoind=yes]) AC_ARG_WITH([seeder], [AS_HELP_STRING([--with-seeder], [build seeder (default=yes)])], [build_bitcoin_seeder=$withval], [build_bitcoin_seeder=yes]) use_pkgconfig=yes case $host in *mingw*) #pkgconfig does more harm than good with MinGW use_pkgconfig=no TARGET_OS=windows AC_CHECK_LIB([mingwthrd], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([kernel32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([user32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([gdi32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([comdlg32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([winspool], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([winmm], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([shell32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([comctl32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([ole32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([oleaut32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([uuid], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([rpcrt4], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([advapi32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([ws2_32], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([mswsock], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([shlwapi], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([iphlpapi], [main],, AC_MSG_ERROR(lib missing)) AC_CHECK_LIB([crypt32], [main],, AC_MSG_ERROR(lib missing)) # -static is interpreted by libtool, where it has a different meaning. # In libtool-speak, it's -all-static. AX_CHECK_LINK_FLAG([[-static]],[LIBTOOL_APP_LDFLAGS="$LIBTOOL_APP_LDFLAGS -all-static"]) AC_PATH_PROG([MAKENSIS], [makensis], none) if test x$MAKENSIS = xnone; then AC_MSG_WARN("makensis not found. Cannot create installer.") fi AC_PATH_TOOL(WINDRES, windres, none) if test x$WINDRES = xnone; then AC_MSG_ERROR("windres not found") fi CPPFLAGS="$CPPFLAGS -D_MT -DWIN32 -D_WINDOWS -DBOOST_THREAD_USE_LIB" LEVELDB_TARGET_FLAGS="-DOS_WINDOWS" if test "x$CXXFLAGS_overridden" = "xno"; then CXXFLAGS="$CXXFLAGS -w" fi case $host in i?86-*) WINDOWS_BITS=32 ;; x86_64-*) WINDOWS_BITS=64 ;; *) AC_MSG_ERROR("Could not determine win32/win64 for installer") ;; esac AC_SUBST(WINDOWS_BITS) dnl libtool insists upon adding -nostdlib and a list of objects/libs to link against. dnl That breaks our ability to build dll's with static libgcc/libstdc++/libssp. Override dnl its command here, with the predeps/postdeps removed, and -static inserted. Postdeps are dnl also overridden to prevent their insertion later. dnl This should only affect dll's. archive_cmds_CXX="\$CC -shared \$libobjs \$deplibs \$compiler_flags -static -o \$output_objdir/\$soname \${wl}--enable-auto-image-base -Xlinker --out-implib -Xlinker \$lib" postdeps_CXX= ;; *darwin*) TARGET_OS=darwin LEVELDB_TARGET_FLAGS="-DOS_MACOSX" if test x$cross_compiling != xyes; then BUILD_OS=darwin AC_CHECK_PROG([PORT],port, port) if test x$PORT = xport; then dnl add default macports paths CPPFLAGS="$CPPFLAGS -isystem /opt/local/include" LIBS="$LIBS -L/opt/local/lib" if test -d /opt/local/include/db48; then CPPFLAGS="$CPPFLAGS -I/opt/local/include/db48" LIBS="$LIBS -L/opt/local/lib/db48" fi fi AC_PATH_PROGS([RSVG_CONVERT], [rsvg-convert rsvg],rsvg-convert) AC_CHECK_PROG([BREW],brew, brew) if test x$BREW = xbrew; then dnl These Homebrew packages may be keg-only, meaning that they won't be found dnl in expected paths because they may conflict with system files. Ask dnl Homebrew where each one is located, then adjust paths accordingly. dnl It's safe to add these paths even if the functionality is disabled by dnl the user (--without-wallet or --without-gui for example). openssl_prefix=`$BREW --prefix openssl 2>/dev/null` bdb_prefix=`$BREW --prefix berkeley-db 2>/dev/null` qt5_prefix=`$BREW --prefix qt5 2>/dev/null` if test x$openssl_prefix != x; then PKG_CONFIG_PATH="$openssl_prefix/lib/pkgconfig:$PKG_CONFIG_PATH" export PKG_CONFIG_PATH fi if test x$bdb_prefix != x; then CPPFLAGS="$CPPFLAGS -I$bdb_prefix/include" LIBS="$LIBS -L$bdb_prefix/lib" fi if test x$qt5_prefix != x; then PKG_CONFIG_PATH="$qt5_prefix/lib/pkgconfig:$PKG_CONFIG_PATH" export PKG_CONFIG_PATH fi fi else case $build_os in *darwin*) BUILD_OS=darwin ;; *) AC_PATH_TOOL([INSTALLNAMETOOL], [install_name_tool], install_name_tool) AC_PATH_TOOL([OTOOL], [otool], otool) AC_PATH_PROGS([GENISOIMAGE], [genisoimage mkisofs],genisoimage) AC_PATH_PROGS([RSVG_CONVERT], [rsvg-convert rsvg],rsvg-convert) AC_PATH_PROGS([IMAGEMAGICK_CONVERT], [convert],convert) AC_PATH_PROGS([TIFFCP], [tiffcp],tiffcp) dnl libtool will try to strip the static lib, which is a problem for dnl cross-builds because strip attempts to call a hard-coded ld, dnl which may not exist in the path. Stripping the .a is not dnl necessary, so just disable it. old_striplib= ;; esac fi AX_CHECK_LINK_FLAG([[-Wl,-headerpad_max_install_names]], [LDFLAGS="$LDFLAGS -Wl,-headerpad_max_install_names"]) CPPFLAGS="$CPPFLAGS -DMAC_OSX" OBJCXXFLAGS="$CXXFLAGS" ;; *linux*) TARGET_OS=linux LEVELDB_TARGET_FLAGS="-DOS_LINUX" ;; *freebsd*) LEVELDB_TARGET_FLAGS="-DOS_FREEBSD" ;; *openbsd*) LEVELDB_TARGET_FLAGS="-DOS_OPENBSD" ;; *) OTHER_OS=`echo ${host_os} | awk '{print toupper($0)}'` AC_MSG_WARN([Guessing LevelDB OS as OS_${OTHER_OS}, please check whether this is correct, if not add an entry to configure.ac.]) LEVELDB_TARGET_FLAGS="-DOS_${OTHER_OS}" ;; esac if test x$use_pkgconfig = xyes; then m4_ifndef([PKG_PROG_PKG_CONFIG], [AC_MSG_ERROR(PKG_PROG_PKG_CONFIG macro not found. Please install pkg-config and re-run autogen.sh.)]) m4_ifdef([PKG_PROG_PKG_CONFIG], [ PKG_PROG_PKG_CONFIG if test x"$PKG_CONFIG" = "x"; then AC_MSG_ERROR(pkg-config not found.) fi ]) fi if test x$use_extended_functional_tests != xno; then AC_SUBST(EXTENDED_FUNCTIONAL_TESTS, --extended) fi if test x$use_lcov = xyes; then if test x$LCOV = x; then AC_MSG_ERROR("lcov testing requested but lcov not found") fi if test x$GCOV = x; then AC_MSG_ERROR("lcov testing requested but gcov not found") fi if test x$PYTHON = x; then AC_MSG_ERROR("lcov testing requested but python not found") fi if test x$GENHTML = x; then AC_MSG_ERROR("lcov testing requested but genhtml not found") fi LCOV="$LCOV --gcov-tool=$GCOV" AX_CHECK_LINK_FLAG([[--coverage]], [LDFLAGS="$LDFLAGS --coverage"], [AC_MSG_ERROR("lcov testing requested but --coverage linker flag does not work")]) AX_CHECK_COMPILE_FLAG([--coverage],[CXXFLAGS="$CXXFLAGS --coverage"], [AC_MSG_ERROR("lcov testing requested but --coverage flag does not work")]) fi dnl Check for endianness AC_C_BIGENDIAN dnl Check for pthread compile/link requirements AX_PTHREAD # The following macro will add the necessary defines to bitcoin-config.h, but # they also need to be passed down to any subprojects. Pull the results out of # the cache and add them to CPPFLAGS. AC_SYS_LARGEFILE # detect POSIX or GNU variant of strerror_r AC_FUNC_STRERROR_R if test x$ac_cv_sys_file_offset_bits != x && test x$ac_cv_sys_file_offset_bits != xno && test x$ac_cv_sys_file_offset_bits != xunknown; then CPPFLAGS="$CPPFLAGS -D_FILE_OFFSET_BITS=$ac_cv_sys_file_offset_bits" fi if test x$ac_cv_sys_large_files != x && test x$ac_cv_sys_large_files != xno && test x$ac_cv_sys_large_files != xunknown; then CPPFLAGS="$CPPFLAGS -D_LARGE_FILES=$ac_cv_sys_large_files" fi AX_CHECK_LINK_FLAG([[-Wl,--large-address-aware]], [LDFLAGS="$LDFLAGS -Wl,--large-address-aware"]) AX_GCC_FUNC_ATTRIBUTE([visibility]) AX_GCC_FUNC_ATTRIBUTE([dllexport]) AX_GCC_FUNC_ATTRIBUTE([dllimport]) if test x$use_glibc_compat != xno; then #glibc absorbed clock_gettime in 2.17. librt (its previous location) is safe to link #in anyway for back-compat. AC_CHECK_LIB([rt],[clock_gettime],, AC_MSG_ERROR(lib missing)) #__fdelt_chk's params and return type have changed from long unsigned int to long int. # See which one is present here. AC_MSG_CHECKING(__fdelt_chk type) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#ifdef _FORTIFY_SOURCE #undef _FORTIFY_SOURCE #endif #define _FORTIFY_SOURCE 2 #include extern "C" long unsigned int __fdelt_warn(long unsigned int);]],[[]])], [ fdelt_type="long unsigned int"], [ fdelt_type="long int"]) AC_MSG_RESULT($fdelt_type) AC_DEFINE_UNQUOTED(FDELT_TYPE, $fdelt_type,[parameter and return value type for __fdelt_chk]) else AC_SEARCH_LIBS([clock_gettime],[rt]) fi if test x$TARGET_OS != xwindows; then # All windows code is PIC, forcing it on just adds useless compile warnings AX_CHECK_COMPILE_FLAG([-fPIC],[PIC_FLAGS="-fPIC"]) fi if test x$use_hardening != xno; then AX_CHECK_COMPILE_FLAG([-Wstack-protector],[HARDENED_CXXFLAGS="$HARDENED_CXXFLAGS -Wstack-protector"]) AX_CHECK_COMPILE_FLAG([-fstack-protector-all],[HARDENED_CXXFLAGS="$HARDENED_CXXFLAGS -fstack-protector-all"]) AX_CHECK_PREPROC_FLAG([-D_FORTIFY_SOURCE=2],[ AX_CHECK_PREPROC_FLAG([-U_FORTIFY_SOURCE],[ HARDENED_CPPFLAGS="$HARDENED_CPPFLAGS -U_FORTIFY_SOURCE" ]) HARDENED_CPPFLAGS="$HARDENED_CPPFLAGS -D_FORTIFY_SOURCE=2" ]) AX_CHECK_LINK_FLAG([[-Wl,--dynamicbase]], [HARDENED_LDFLAGS="$HARDENED_LDFLAGS -Wl,--dynamicbase"]) AX_CHECK_LINK_FLAG([[-Wl,--nxcompat]], [HARDENED_LDFLAGS="$HARDENED_LDFLAGS -Wl,--nxcompat"]) AX_CHECK_LINK_FLAG([[-Wl,--high-entropy-va]], [HARDENED_LDFLAGS="$HARDENED_LDFLAGS -Wl,--high-entropy-va"]) AX_CHECK_LINK_FLAG([[-Wl,-z,relro]], [HARDENED_LDFLAGS="$HARDENED_LDFLAGS -Wl,-z,relro"]) AX_CHECK_LINK_FLAG([[-Wl,-z,now]], [HARDENED_LDFLAGS="$HARDENED_LDFLAGS -Wl,-z,now"]) if test x$TARGET_OS != xwindows; then AX_CHECK_COMPILE_FLAG([-fPIE],[PIE_FLAGS="-fPIE"]) AX_CHECK_LINK_FLAG([[-pie]], [HARDENED_LDFLAGS="$HARDENED_LDFLAGS -pie"]) fi case $host in *mingw*) AC_CHECK_LIB([ssp], [main],, AC_MSG_ERROR(lib missing)) ;; esac fi dnl this flag screws up non-darwin gcc even when the check fails. special-case it. if test x$TARGET_OS = xdarwin; then AX_CHECK_LINK_FLAG([[-Wl,-dead_strip]], [LDFLAGS="$LDFLAGS -Wl,-dead_strip"]) fi AC_CHECK_HEADERS([endian.h sys/endian.h byteswap.h stdio.h stdlib.h unistd.h strings.h sys/types.h sys/stat.h sys/select.h sys/prctl.h]) AC_CHECK_DECLS([strnlen]) # Check for daemon(3), unrelated to --with-daemon (although used by it) AC_CHECK_DECLS([daemon]) AC_CHECK_DECLS([le16toh, le32toh, le64toh, htole16, htole32, htole64, be16toh, be32toh, be64toh, htobe16, htobe32, htobe64],,, [#if HAVE_ENDIAN_H #include #elif HAVE_SYS_ENDIAN_H #include #endif]) AC_CHECK_DECLS([bswap_16, bswap_32, bswap_64],,, [#if HAVE_BYTESWAP_H #include #endif]) AC_CHECK_DECLS([__builtin_clz, __builtin_clzl, __builtin_clzll]) dnl Check for MSG_NOSIGNAL AC_MSG_CHECKING(for MSG_NOSIGNAL) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include ]], [[ int f = MSG_NOSIGNAL; ]])], [ AC_MSG_RESULT(yes); AC_DEFINE(HAVE_MSG_NOSIGNAL, 1,[Define this symbol if you have MSG_NOSIGNAL]) ], [ AC_MSG_RESULT(no)] ) dnl Check for MSG_DONTWAIT AC_MSG_CHECKING(for MSG_DONTWAIT) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include ]], [[ int f = MSG_DONTWAIT; ]])], [ AC_MSG_RESULT(yes); AC_DEFINE(HAVE_MSG_DONTWAIT, 1,[Define this symbol if you have MSG_DONTWAIT]) ], [ AC_MSG_RESULT(no)] ) dnl Check for mallopt(M_ARENA_MAX) (to set glibc arenas) AC_MSG_CHECKING(for mallopt M_ARENA_MAX) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include ]], [[ mallopt(M_ARENA_MAX, 1); ]])], [ AC_MSG_RESULT(yes); AC_DEFINE(HAVE_MALLOPT_ARENA_MAX, 1,[Define this symbol if you have mallopt with M_ARENA_MAX]) ], [ AC_MSG_RESULT(no)] ) AC_MSG_CHECKING([for visibility attribute]) AC_LINK_IFELSE([AC_LANG_SOURCE([ int foo_def( void ) __attribute__((visibility("default"))); int main(){} ])], [ AC_DEFINE(HAVE_VISIBILITY_ATTRIBUTE,1,[Define if the visibility attribute is supported.]) AC_MSG_RESULT(yes) ], [ AC_MSG_RESULT(no) if test x$use_reduce_exports = xyes; then AC_MSG_ERROR([Cannot find a working visibility attribute. Use --disable-reduce-exports.]) fi ] ) # Check for different ways of gathering OS randomness AC_MSG_CHECKING(for Linux getrandom syscall) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include #include #include ]], [[ syscall(SYS_getrandom, nullptr, 32, 0); ]])], [ AC_MSG_RESULT(yes); AC_DEFINE(HAVE_SYS_GETRANDOM, 1,[Define this symbol if the Linux getrandom system call is available]) ], [ AC_MSG_RESULT(no)] ) AC_MSG_CHECKING(for getentropy) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include ]], [[ getentropy(nullptr, 32) ]])], [ AC_MSG_RESULT(yes); AC_DEFINE(HAVE_GETENTROPY, 1,[Define this symbol if the BSD getentropy system call is available]) ], [ AC_MSG_RESULT(no)] ) AC_MSG_CHECKING(for getentropy via random.h) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include #include ]], [[ getentropy(nullptr, 32) ]])], [ AC_MSG_RESULT(yes); AC_DEFINE(HAVE_GETENTROPY_RAND, 1,[Define this symbol if the BSD getentropy system call is available with sys/random.h]) ], [ AC_MSG_RESULT(no)] ) AC_MSG_CHECKING(for sysctl KERN_ARND) AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[#include #include ]], [[ static const int name[2] = {CTL_KERN, KERN_ARND}; sysctl(name, 2, nullptr, nullptr, nullptr, 0); ]])], [ AC_MSG_RESULT(yes); AC_DEFINE(HAVE_SYSCTL_ARND, 1,[Define this symbol if the BSD sysctl(KERN_ARND) is available]) ], [ AC_MSG_RESULT(no)] ) # Check for reduced exports if test x$use_reduce_exports = xyes; then AX_CHECK_COMPILE_FLAG([-fvisibility=hidden],[RE_CXXFLAGS="-fvisibility=hidden"], [AC_MSG_ERROR([Cannot set default symbol visibility. Use --disable-reduce-exports.])]) fi LEVELDB_CPPFLAGS= LIBLEVELDB= LIBMEMENV= AM_CONDITIONAL([EMBEDDED_LEVELDB],[true]) AC_SUBST(LEVELDB_CPPFLAGS) AC_SUBST(LIBLEVELDB) AC_SUBST(LIBMEMENV) if test x$enable_wallet != xno; then dnl Check for libdb_cxx only if wallet enabled BITCOIN_FIND_BDB53 fi dnl Check for libminiupnpc (optional) if test x$use_upnp != xno; then AC_CHECK_HEADERS( [miniupnpc/miniwget.h miniupnpc/miniupnpc.h miniupnpc/upnpcommands.h miniupnpc/upnperrors.h], [AC_CHECK_LIB([miniupnpc], [main],[MINIUPNPC_LIBS=-lminiupnpc], [have_miniupnpc=no])], [have_miniupnpc=no] ) fi BITCOIN_QT_INIT dnl sets $bitcoin_enable_qt, $bitcoin_enable_qt_test, $bitcoin_enable_qt_dbus BITCOIN_QT_CONFIGURE([$use_pkgconfig]) if test x$build_bitcoin_utils$build_bitcoind$bitcoin_enable_qt$build_bitcoin_seeder$use_tests$use_bench = xnononononono; then use_boost=no else use_boost=yes fi if test x$use_boost = xyes; then dnl Minimum required Boost version define(MINIMUM_REQUIRED_BOOST, 1.58.0) dnl Check for boost libs AX_BOOST_BASE([MINIMUM_REQUIRED_BOOST]) AX_BOOST_SYSTEM AX_BOOST_FILESYSTEM AX_BOOST_PROGRAM_OPTIONS AX_BOOST_THREAD AX_BOOST_CHRONO dnl Boost 1.56 through 1.62 allow using std::atomic instead of its own atomic dnl counter implementations. In 1.63 and later the std::atomic approach is default. m4_pattern_allow(DBOOST_AC_USE_STD_ATOMIC) dnl otherwise it's treated like a macro BOOST_CPPFLAGS="-DBOOST_SP_USE_STD_ATOMIC -DBOOST_AC_USE_STD_ATOMIC $BOOST_CPPFLAGS" if test x$use_reduce_exports = xyes; then AC_MSG_CHECKING([for working boost reduced exports]) TEMP_CPPFLAGS="$CPPFLAGS" CPPFLAGS="$BOOST_CPPFLAGS $CPPFLAGS" AC_PREPROC_IFELSE([AC_LANG_PROGRAM([[ @%:@include ]], [[ #if BOOST_VERSION >= 104900 // Everything is okay #else # error Boost version is too old #endif ]])],[ AC_MSG_RESULT(yes) ],[ AC_MSG_ERROR([boost versions < 1.49 are known to be broken with reduced exports. Use --disable-reduce-exports.]) ]) CPPFLAGS="$TEMP_CPPFLAGS" fi fi if test x$use_reduce_exports = xyes; then CXXFLAGS="$CXXFLAGS $RE_CXXFLAGS" AX_CHECK_LINK_FLAG([[-Wl,--exclude-libs,ALL]], [RELDFLAGS="-Wl,--exclude-libs,ALL"]) fi if test x$use_tests = xyes; then if test x$HEXDUMP = x; then AC_MSG_ERROR(hexdump is required for tests) fi if test x$use_boost = xyes; then AX_BOOST_UNIT_TEST_FRAMEWORK dnl Determine if -DBOOST_TEST_DYN_LINK is needed AC_MSG_CHECKING([for dynamic linked boost test]) TEMP_LIBS="$LIBS" LIBS="$LIBS $BOOST_LDFLAGS $BOOST_UNIT_TEST_FRAMEWORK_LIB" TEMP_CPPFLAGS="$CPPFLAGS" CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS" AC_LINK_IFELSE([AC_LANG_SOURCE([ #define BOOST_TEST_DYN_LINK #define BOOST_TEST_MAIN #include ])], [AC_MSG_RESULT(yes)] [TESTDEFS="$TESTDEFS -DBOOST_TEST_DYN_LINK"], [AC_MSG_RESULT(no)]) LIBS="$TEMP_LIBS" CPPFLAGS="$TEMP_CPPFLAGS" fi fi if test x$use_boost = xyes; then BOOST_LIBS="$BOOST_LDFLAGS $BOOST_SYSTEM_LIB $BOOST_FILESYSTEM_LIB $BOOST_PROGRAM_OPTIONS_LIB $BOOST_THREAD_LIB $BOOST_CHRONO_LIB" dnl If boost (prior to 1.57) was built without c++11, it emulated scoped enums dnl using c++98 constructs. Unfortunately, this implementation detail leaked into dnl the abi. This was fixed in 1.57. dnl When building against that installed version using c++11, the headers pick up dnl on the native c++11 scoped enum support and enable it, however it will fail to dnl link. This can be worked around by disabling c++11 scoped enums if linking will dnl fail. dnl BOOST_NO_SCOPED_ENUMS was changed to BOOST_NO_CXX11_SCOPED_ENUMS in 1.51. TEMP_LIBS="$LIBS" LIBS="$BOOST_LIBS $LIBS" TEMP_CPPFLAGS="$CPPFLAGS" CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS" AC_MSG_CHECKING([for mismatched boost c++11 scoped enums]) AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #include #include #if !defined(BOOST_NO_SCOPED_ENUMS) && !defined(BOOST_NO_CXX11_SCOPED_ENUMS) && BOOST_VERSION < 105700 #define BOOST_NO_SCOPED_ENUMS #define BOOST_NO_CXX11_SCOPED_ENUMS #define CHECK #endif #include ]],[[ #if defined(CHECK) boost::filesystem::copy_file("foo", "bar"); #else choke; #endif ]])], [AC_MSG_RESULT(mismatched); BOOST_CPPFLAGS="$BOOST_CPPFLAGS -DBOOST_NO_SCOPED_ENUMS -DBOOST_NO_CXX11_SCOPED_ENUMS"], [AC_MSG_RESULT(ok)]) LIBS="$TEMP_LIBS" CPPFLAGS="$TEMP_CPPFLAGS" dnl Boost >= 1.50 uses sleep_for rather than the now-deprecated sleep, however dnl it was broken from 1.50 to 1.52 when backed by nanosleep. Use sleep_for if dnl a working version is available, else fall back to sleep. sleep was removed dnl after 1.56. dnl If neither is available, abort. TEMP_LIBS="$LIBS" LIBS="$BOOST_LIBS $LIBS" TEMP_CPPFLAGS="$CPPFLAGS" CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS" AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #include #include ]],[[ #if BOOST_VERSION >= 105000 && (!defined(BOOST_HAS_NANOSLEEP) || BOOST_VERSION >= 105200) boost::this_thread::sleep_for(boost::chrono::milliseconds(0)); #else choke me #endif ]])], [boost_sleep=yes; AC_DEFINE(HAVE_WORKING_BOOST_SLEEP_FOR, 1, [Define this symbol if boost sleep_for works])], [boost_sleep=no]) LIBS="$TEMP_LIBS" CPPFLAGS="$TEMP_CPPFLAGS" if test x$boost_sleep != xyes; then TEMP_LIBS="$LIBS" LIBS="$BOOST_LIBS $LIBS" TEMP_CPPFLAGS="$CPPFLAGS" CPPFLAGS="$CPPFLAGS $BOOST_CPPFLAGS" AC_LINK_IFELSE([AC_LANG_PROGRAM([[ #include #include #include ]],[[ #if BOOST_VERSION <= 105600 boost::this_thread::sleep(boost::posix_time::milliseconds(0)); #else choke me #endif ]])], [boost_sleep=yes; AC_DEFINE(HAVE_WORKING_BOOST_SLEEP, 1, [Define this symbol if boost sleep works])], [boost_sleep=no]) LIBS="$TEMP_LIBS" CPPFLAGS="$TEMP_CPPFLAGS" fi if test x$boost_sleep != xyes; then AC_MSG_ERROR(No working boost sleep implementation found.) fi fi if test x$use_pkgconfig = xyes; then : dnl m4_ifdef( [PKG_CHECK_MODULES], [ PKG_CHECK_MODULES([SSL], [libssl],, [AC_MSG_ERROR(openssl not found.)]) PKG_CHECK_MODULES([CRYPTO], [libcrypto],,[AC_MSG_ERROR(libcrypto not found.)]) BITCOIN_QT_CHECK([PKG_CHECK_MODULES([PROTOBUF], [protobuf], [have_protobuf=yes], [BITCOIN_QT_FAIL(libprotobuf not found)])]) if test x$use_qr != xno; then BITCOIN_QT_CHECK([PKG_CHECK_MODULES([QR], [libqrencode], [have_qrencode=yes], [have_qrencode=no])]) fi if test x$build_bitcoin_utils$build_bitcoind$bitcoin_enable_qt$use_tests != xnononono; then PKG_CHECK_MODULES([EVENT], [libevent],, [AC_MSG_ERROR(libevent not found.)]) if test x$TARGET_OS != xwindows; then PKG_CHECK_MODULES([EVENT_PTHREADS], [libevent_pthreads],, [AC_MSG_ERROR(libevent_pthreads not found.)]) fi fi if test "x$use_zmq" = "xyes"; then PKG_CHECK_MODULES([ZMQ],[libzmq >= 4], [AC_DEFINE([ENABLE_ZMQ],[1],[Define to 1 to enable ZMQ functions])], [AC_DEFINE([ENABLE_ZMQ],[0],[Define to 1 to enable ZMQ functions]) AC_MSG_WARN([libzmq version 4.x or greater not found, disabling]) use_zmq=no]) else AC_DEFINE_UNQUOTED([ENABLE_ZMQ],[0],[Define to 1 to enable ZMQ functions]) fi ] ) else AC_CHECK_HEADER([openssl/crypto.h],,AC_MSG_ERROR(libcrypto headers missing)) AC_CHECK_LIB([crypto], [main],CRYPTO_LIBS=-lcrypto, AC_MSG_ERROR(libcrypto missing)) AC_CHECK_HEADER([openssl/ssl.h],, AC_MSG_ERROR(libssl headers missing),) AC_CHECK_LIB([ssl], [main],SSL_LIBS=-lssl, AC_MSG_ERROR(libssl missing)) if test x$build_bitcoin_utils$build_bitcoind$bitcoin_enable_qt$use_tests != xnononono; then AC_CHECK_HEADER([event2/event.h],, AC_MSG_ERROR(libevent headers missing),) AC_CHECK_LIB([event],[main],EVENT_LIBS=-levent,AC_MSG_ERROR(libevent missing)) if test x$TARGET_OS != xwindows; then AC_CHECK_LIB([event_pthreads],[main],EVENT_PTHREADS_LIBS=-levent_pthreads,AC_MSG_ERROR(libevent_pthreads missing)) fi fi if test "x$use_zmq" = "xyes"; then AC_CHECK_HEADER([zmq.h], [AC_DEFINE([ENABLE_ZMQ],[1],[Define to 1 to enable ZMQ functions])], [AC_MSG_WARN([zmq.h not found, disabling zmq support]) use_zmq=no AC_DEFINE([ENABLE_ZMQ],[0],[Define to 1 to enable ZMQ functions])]) AC_CHECK_LIB([zmq],[zmq_ctx_shutdown],ZMQ_LIBS=-lzmq, [AC_MSG_WARN([libzmq >= 4.0 not found, disabling zmq support]) use_zmq=no AC_DEFINE([ENABLE_ZMQ],[0],[Define to 1 to enable ZMQ functions])]) else AC_DEFINE_UNQUOTED([ENABLE_ZMQ],[0],[Define to 1 to enable ZMQ functions]) fi if test "x$use_zmq" = "xyes"; then dnl Assume libzmq was built for static linking case $host in *mingw*) ZMQ_CFLAGS="$ZMQ_CFLAGS -DZMQ_STATIC" ;; esac fi BITCOIN_QT_CHECK(AC_CHECK_LIB([protobuf] ,[main],[PROTOBUF_LIBS=-lprotobuf], BITCOIN_QT_FAIL(libprotobuf not found))) if test x$use_qr != xno; then BITCOIN_QT_CHECK([AC_CHECK_LIB([qrencode], [main],[QR_LIBS=-lqrencode], [have_qrencode=no])]) BITCOIN_QT_CHECK([AC_CHECK_HEADER([qrencode.h],, have_qrencode=no)]) fi fi save_CXXFLAGS="${CXXFLAGS}" CXXFLAGS="${CXXFLAGS} ${CRYPTO_CFLAGS} ${SSL_CFLAGS}" AC_CHECK_DECLS([EVP_MD_CTX_new],,,[AC_INCLUDES_DEFAULT #include ]) CXXFLAGS="${save_CXXFLAGS}" dnl univalue check need_bundled_univalue=yes if test x$build_bitcoin_utils$build_bitcoind$bitcoin_enable_qt$use_tests$use_bench = xnonononono; then need_bundled_univalue=no else if test x$system_univalue != xno ; then found_univalue=no if test x$use_pkgconfig = xyes; then : #NOP m4_ifdef( [PKG_CHECK_MODULES], [ PKG_CHECK_MODULES([UNIVALUE],[libunivalue],[found_univalue=yes],[true]) ] ) else AC_CHECK_HEADER([univalue.h],[ AC_CHECK_LIB([univalue], [main],[ UNIVALUE_LIBS=-lunivalue found_univalue=yes ],[true]) ],[true]) fi if test x$found_univalue = xyes ; then system_univalue=yes need_bundled_univalue=no elif test x$system_univalue = xyes ; then AC_MSG_ERROR([univalue not found]) else system_univalue=no fi fi if test x$need_bundled_univalue = xyes ; then UNIVALUE_CFLAGS='-I$(srcdir)/univalue/include' UNIVALUE_LIBS='univalue/libunivalue.la' fi fi AM_CONDITIONAL([EMBEDDED_UNIVALUE],[test x$need_bundled_univalue = xyes]) AC_SUBST(UNIVALUE_CFLAGS) AC_SUBST(UNIVALUE_LIBS) BITCOIN_QT_PATH_PROGS([PROTOC], [protoc],$protoc_bin_path) AC_MSG_CHECKING([whether to build bitcoind]) AM_CONDITIONAL([BUILD_BITCOIND], [test x$build_bitcoind = xyes]) AC_MSG_RESULT($build_bitcoind) AC_MSG_CHECKING([whether to build bitcoin-seeder]) AM_CONDITIONAL([BUILD_BITCOIN_SEEDER], [test x$build_bitcoin_seeder = xyes]) AC_MSG_RESULT($build_bitcoin_seeder) AC_MSG_CHECKING([whether to build utils (bitcoin-cli bitcoin-tx)]) AM_CONDITIONAL([BUILD_BITCOIN_UTILS], [test x$build_bitcoin_utils = xyes]) AC_MSG_RESULT($build_bitcoin_utils) AC_MSG_CHECKING([whether to build libraries]) AM_CONDITIONAL([BUILD_BITCOIN_LIBS], [test x$build_bitcoin_libs = xyes]) if test x$build_bitcoin_libs = xyes; then AC_DEFINE(HAVE_CONSENSUS_LIB, 1, [Define this symbol if the consensus lib has been built]) AC_CONFIG_FILES([libbitcoinconsensus.pc:libbitcoinconsensus.pc.in]) fi AC_MSG_RESULT($build_bitcoin_libs) AC_LANG_POP if test "x$use_ccache" != "xno"; then AC_MSG_CHECKING(if ccache should be used) if test x$CCACHE = x; then if test "x$use_ccache" = "xyes"; then AC_MSG_ERROR([ccache not found.]); else use_ccache=no fi else use_ccache=yes CC="$ac_cv_path_CCACHE $CC" CXX="$ac_cv_path_CCACHE $CXX" fi AC_MSG_RESULT($use_ccache) fi if test "x$use_ccache" = "xyes"; then AX_CHECK_PREPROC_FLAG([-Qunused-arguments],[CPPFLAGS="-Qunused-arguments $CPPFLAGS"]) fi dnl enable wallet AC_MSG_CHECKING([if wallet should be enabled]) if test x$enable_wallet != xno; then AC_MSG_RESULT(yes) AC_DEFINE_UNQUOTED([ENABLE_WALLET],[1],[Define to 1 to enable wallet functions]) else AC_MSG_RESULT(no) fi dnl enable upnp support AC_MSG_CHECKING([whether to build with support for UPnP]) if test x$have_miniupnpc = xno; then if test x$use_upnp = xyes; then AC_MSG_ERROR("UPnP requested but cannot be built. use --without-miniupnpc") fi AC_MSG_RESULT(no) else if test x$use_upnp != xno; then AC_MSG_RESULT(yes) AC_MSG_CHECKING([whether to build with UPnP enabled by default]) use_upnp=yes upnp_setting=0 if test x$use_upnp_default != xno; then use_upnp_default=yes upnp_setting=1 fi AC_MSG_RESULT($use_upnp_default) AC_DEFINE_UNQUOTED([USE_UPNP],[$upnp_setting],[UPnP support not compiled if undefined, otherwise value (0 or 1) determines default state]) if test x$TARGET_OS = xwindows; then MINIUPNPC_CPPFLAGS="-DSTATICLIB -DMINIUPNP_STATICLIB" fi else AC_MSG_RESULT(no) fi fi dnl these are only used when qt is enabled BUILD_TEST_QT="" if test x$bitcoin_enable_qt != xno; then dnl enable dbus support AC_MSG_CHECKING([whether to build GUI with support for D-Bus]) if test x$bitcoin_enable_qt_dbus != xno; then AC_DEFINE([USE_DBUS],[1],[Define if dbus support should be compiled in]) fi AC_MSG_RESULT($bitcoin_enable_qt_dbus) dnl enable qr support AC_MSG_CHECKING([whether to build GUI with support for QR codes]) if test x$have_qrencode = xno; then if test x$use_qr = xyes; then AC_MSG_ERROR("QR support requested but cannot be built. use --without-qrencode") fi AC_MSG_RESULT(no) else if test x$use_qr != xno; then AC_MSG_RESULT(yes) AC_DEFINE([USE_QRCODE],[1],[Define if QR support should be compiled in]) use_qr=yes else AC_MSG_RESULT(no) fi fi if test x$XGETTEXT = x; then AC_MSG_WARN("xgettext is required to update qt translations") fi AC_MSG_CHECKING([whether to build test_bitcoin-qt]) if test x$use_gui_tests$bitcoin_enable_qt_test = xyesyes; then AC_MSG_RESULT([yes]) BUILD_TEST_QT="yes" else AC_MSG_RESULT([no]) fi fi AM_CONDITIONAL([ENABLE_ZMQ], [test "x$use_zmq" = "xyes"]) AC_MSG_CHECKING([whether to build test_bitcoin]) if test x$use_tests = xyes; then AC_MSG_RESULT([yes]) BUILD_TEST="yes" else AC_MSG_RESULT([no]) BUILD_TEST="" fi AC_MSG_CHECKING([whether to reduce exports]) if test x$use_reduce_exports = xyes; then AC_MSG_RESULT([yes]) else AC_MSG_RESULT([no]) fi if test x$build_bitcoin_utils$build_bitcoin_libs$build_bitcoind$bitcoin_enable_qt$use_bench$use_tests = xnononononono; then AC_MSG_ERROR([No targets! Please specify at least one of: --with-utils --with-libs --with-daemon --with-seeder --with-gui --enable-bench or --enable-tests]) fi AM_CONDITIONAL([TARGET_DARWIN], [test x$TARGET_OS = xdarwin]) AM_CONDITIONAL([BUILD_DARWIN], [test x$BUILD_OS = xdarwin]) AM_CONDITIONAL([TARGET_WINDOWS], [test x$TARGET_OS = xwindows]) AM_CONDITIONAL([ENABLE_WALLET],[test x$enable_wallet = xyes]) AM_CONDITIONAL([ENABLE_TESTS],[test x$BUILD_TEST = xyes]) AM_CONDITIONAL([ENABLE_QT],[test x$bitcoin_enable_qt = xyes]) AM_CONDITIONAL([ENABLE_QT_TESTS],[test x$BUILD_TEST_QT = xyes]) AM_CONDITIONAL([ENABLE_BENCH],[test x$use_bench = xyes]) AM_CONDITIONAL([USE_QRCODE], [test x$use_qr = xyes]) AM_CONDITIONAL([USE_LCOV],[test x$use_lcov = xyes]) AM_CONDITIONAL([GLIBC_BACK_COMPAT],[test x$use_glibc_compat = xyes]) AM_CONDITIONAL([HARDEN],[test x$use_hardening = xyes]) AM_CONDITIONAL([ENABLE_HWCRC32],[test x$enable_hwcrc32 = xyes]) AM_CONDITIONAL([USE_ASM],[test x$use_asm = xyes]) AC_DEFINE(CLIENT_VERSION_MAJOR, _CLIENT_VERSION_MAJOR, [Major version]) AC_DEFINE(CLIENT_VERSION_MINOR, _CLIENT_VERSION_MINOR, [Minor version]) AC_DEFINE(CLIENT_VERSION_REVISION, _CLIENT_VERSION_REVISION, [Build revision]) AC_DEFINE(CLIENT_VERSION_BUILD, _CLIENT_VERSION_BUILD, [Version Build]) AC_DEFINE(CLIENT_VERSION_IS_RELEASE, _CLIENT_VERSION_IS_RELEASE, [Version is release]) AC_DEFINE(COPYRIGHT_YEAR, _COPYRIGHT_YEAR, [Copyright year]) AC_DEFINE(COPYRIGHT_HOLDERS, "_COPYRIGHT_HOLDERS", [Copyright holder(s) before %s replacement]) AC_DEFINE(COPYRIGHT_HOLDERS_SUBSTITUTION, "_COPYRIGHT_HOLDERS_SUBSTITUTION", [Replacement for %s in copyright holders string]) define(_COPYRIGHT_HOLDERS_FINAL, [patsubst(_COPYRIGHT_HOLDERS, [%s], [_COPYRIGHT_HOLDERS_SUBSTITUTION])]) AC_DEFINE(COPYRIGHT_HOLDERS_FINAL, "_COPYRIGHT_HOLDERS_FINAL", [Copyright holder(s)]) AC_SUBST(CLIENT_VERSION_MAJOR, _CLIENT_VERSION_MAJOR) AC_SUBST(CLIENT_VERSION_MINOR, _CLIENT_VERSION_MINOR) AC_SUBST(CLIENT_VERSION_REVISION, _CLIENT_VERSION_REVISION) AC_SUBST(CLIENT_VERSION_BUILD, _CLIENT_VERSION_BUILD) AC_SUBST(CLIENT_VERSION_IS_RELEASE, _CLIENT_VERSION_IS_RELEASE) AC_SUBST(COPYRIGHT_YEAR, _COPYRIGHT_YEAR) AC_SUBST(COPYRIGHT_HOLDERS, "_COPYRIGHT_HOLDERS") AC_SUBST(COPYRIGHT_HOLDERS_SUBSTITUTION, "_COPYRIGHT_HOLDERS_SUBSTITUTION") AC_SUBST(COPYRIGHT_HOLDERS_FINAL, "_COPYRIGHT_HOLDERS_FINAL") AC_SUBST(BITCOIN_DAEMON_NAME) AC_SUBST(BITCOIN_GUI_NAME) AC_SUBST(BITCOIN_CLI_NAME) AC_SUBST(BITCOIN_TX_NAME) AC_SUBST(BITCOIN_SEEDER_NAME) AC_SUBST(RELDFLAGS) AC_SUBST(ERROR_CXXFLAGS) AC_SUBST(HARDENED_CXXFLAGS) AC_SUBST(HARDENED_CPPFLAGS) AC_SUBST(HARDENED_LDFLAGS) AC_SUBST(PIC_FLAGS) AC_SUBST(PIE_FLAGS) AC_SUBST(SSE42_CXXFLAGS) AC_SUBST(LIBTOOL_APP_LDFLAGS) AC_SUBST(USE_UPNP) AC_SUBST(USE_QRCODE) AC_SUBST(BOOST_LIBS) AC_SUBST(TESTDEFS) AC_SUBST(LEVELDB_TARGET_FLAGS) AC_SUBST(MINIUPNPC_CPPFLAGS) AC_SUBST(MINIUPNPC_LIBS) AC_SUBST(CRYPTO_LIBS) AC_SUBST(SSL_LIBS) AC_SUBST(EVENT_LIBS) AC_SUBST(EVENT_PTHREADS_LIBS) AC_SUBST(ZMQ_LIBS) AC_SUBST(PROTOBUF_LIBS) AC_SUBST(QR_LIBS) AC_CONFIG_FILES([Makefile src/Makefile doc/man/Makefile share/setup.nsi share/qt/Info.plist test/config.ini]) AC_CONFIG_FILES([contrib/devtools/split-debug.sh],[chmod +x contrib/devtools/split-debug.sh]) AC_CONFIG_LINKS([test/functional/test_runner.py:test/functional/test_runner.py]) AC_CONFIG_LINKS([test/util/bitcoin-util-test.py:test/util/bitcoin-util-test.py]) dnl boost's m4 checks do something really nasty: they export these vars. As a dnl result, they leak into secp256k1's configure and crazy things happen. dnl Until this is fixed upstream and we've synced, we'll just un-export them. CPPFLAGS_TEMP="$CPPFLAGS" unset CPPFLAGS CPPFLAGS="$CPPFLAGS_TEMP" LDFLAGS_TEMP="$LDFLAGS" unset LDFLAGS LDFLAGS="$LDFLAGS_TEMP" LIBS_TEMP="$LIBS" unset LIBS LIBS="$LIBS_TEMP" PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH" unset PKG_CONFIG_PATH PKG_CONFIG_PATH="$PKGCONFIG_PATH_TEMP" PKGCONFIG_LIBDIR_TEMP="$PKG_CONFIG_LIBDIR" unset PKG_CONFIG_LIBDIR PKG_CONFIG_LIBDIR="$PKGCONFIG_LIBDIR_TEMP" if test x$need_bundled_univalue = xyes; then AC_CONFIG_SUBDIRS([src/univalue]) fi ac_configure_args="${ac_configure_args} --disable-shared --with-pic --with-bignum=no --enable-module-recovery --enable-module-multiset --disable-jni" AC_CONFIG_SUBDIRS([src/secp256k1]) AC_OUTPUT dnl Taken from https://wiki.debian.org/RpathIssue case $host in *-*-linux-gnu) AC_MSG_RESULT([Fixing libtool for -rpath problems.]) sed < libtool > libtool-2 \ 's/^hardcode_libdir_flag_spec.*$'/'hardcode_libdir_flag_spec=" -D__LIBTOOL_IS_A_FOOL__ "/' mv libtool-2 libtool chmod 755 libtool ;; esac dnl Replace the BUILDDIR path with the correct Windows path if compiling on Native Windows case ${OS} in *Windows*) sed 's/BUILDDIR="\/\([[a-z]]\)/BUILDDIR="\1:/' test/config.ini > test/config-2.ini mv test/config-2.ini test/config.ini ;; esac echo echo "Options used to compile and link:" echo " with wallet = $enable_wallet" echo " with gui / qt = $bitcoin_enable_qt" if test x$bitcoin_enable_qt != xno; then echo " with qr = $use_qr" fi echo " with zmq = $use_zmq" echo " with test = $use_tests" echo " with bench = $use_bench" echo " with upnp = $use_upnp" echo " use asm = $use_asm" echo " debug enabled = $enable_debug" echo " werror = $enable_werror" echo echo " sanitizers " echo " asan = $enable_asan" echo " tsan = $enable_tsan" echo " ubsan = $enable_ubsan" echo echo " target os = $TARGET_OS" echo " build os = $BUILD_OS" echo echo " CC = $CC" echo " CFLAGS = $CFLAGS" echo " CPPFLAGS = $CPPFLAGS" echo " CXX = $CXX" echo " CXXFLAGS = $CXXFLAGS" echo " LDFLAGS = $LDFLAGS" echo diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index 02c253e17..a8c60434c 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -1,290 +1,291 @@ # Copyright (c) 2017 The Bitcoin developers cmake_minimum_required(VERSION 3.5) project(BitcoinABC) set(CMAKE_CXX_STANDARD 11) # Default visibility is hidden on all targets. set(CMAKE_C_VISIBILITY_PRESET hidden) set(CMAKE_CXX_VISIBILITY_PRESET hidden) option(BUILD_BITCOIN_WALLET "Activate the wallet functionality" ON) option(BUILD_BITCOIN_ZMQ "Activate the ZeroMQ functionalities" ON) option(BUILD_BITCOIN_SEEDER "Build bitcoin-seeder" ON) option(BUILD_BITCOIN_CLI "Build bitcoin-cli" ON) option(BUILD_BITCOIN_TX "Build bitcoin-tx" ON) option(BUILD_BITCOIN_QT "Build bitcoin-qt" ON) # Ensure that WINDRES_PREPROC is enabled when using windres. if(${CMAKE_SYSTEM_NAME} MATCHES "Windows") list(APPEND CMAKE_RC_FLAGS "-DWINDRES_PREPROC") endif() # Enable warning include(AddCompilerFlags) add_c_compiler_flag(-Wnested-externs -Wstrict-prototypes) add_compiler_flag( -Wall -Wextra -Wformat -Wvla -Wformat-security -Wcast-align -Wunused-parameter + -Wshadow ) option(EXTRA_WARNINGS "Enable extra warnings" OFF) if(EXTRA_WARNINGS) add_compiler_flag(-Wshadow) add_cxx_compiler_flag(-Wsuggest-override) else() add_compiler_flag(-Wno-unused-parameter) endif() # Create a target for OpenSSL include(BrewHelper) find_brew_prefix(OPENSSL_ROOT_DIR openssl) find_package(OpenSSL REQUIRED) # libtool style configure add_subdirectory(config) # libraries add_subdirectory(crypto) add_subdirectory(leveldb) add_subdirectory(secp256k1) add_subdirectory(univalue) # Because the Bitcoin ABc source code is disorganised, we # end up with a bunch of libraries without any aparent # cohesive structure. This is inherited from Bitcoin Core # and reflecting this. # TODO: Improve the structure once cmake is rocking. # Various completely unrelated features shared by all executables. add_library(util chainparamsbase.cpp clientversion.cpp compat/glibc_sanity.cpp compat/glibcxx_sanity.cpp compat/strnlen.cpp fs.cpp logging.cpp random.cpp rpc/protocol.cpp support/cleanse.cpp support/lockedpool.cpp sync.cpp threadinterrupt.cpp uint256.cpp util.cpp utilmoneystr.cpp utilstrencodings.cpp utiltime.cpp ) target_compile_definitions(util PUBLIC HAVE_CONFIG_H) target_include_directories(util PUBLIC . # To access the config. ${CMAKE_CURRENT_BINARY_DIR} ) # Target specific configs if(${CMAKE_SYSTEM_NAME} MATCHES "Windows") set(Boost_USE_STATIC_LIBS ON) set(Boost_THREADAPI win32) find_package(SHLWAPI REQUIRED) target_link_libraries(util ${SHLWAPI_LIBRARY}) target_include_directories(util PUBLIC ${SHLWAPI_INCLUDE_DIR}) find_library(WS2_32_LIBRARY NAMES ws2_32) target_link_libraries(util ${WS2_32_LIBRARY}) target_compile_definitions(util PUBLIC BOOST_THREAD_USE_LIB) endif() # Boost packages set(BOOST_PACKAGES_REQUIRED chrono filesystem program_options thread) function(prepend var prefix) set(listVar "") foreach(f ${ARGN}) list(APPEND listVar "${prefix}${f}") endforeach(f) set(${var} "${listVar}" PARENT_SCOPE) endfunction(prepend) prepend(BOOST_LIBRARIES "Boost::" ${BOOST_PACKAGES_REQUIRED}) find_package(Boost 1.58 REQUIRED ${BOOST_PACKAGES_REQUIRED}) target_link_libraries(util univalue crypto ${BOOST_LIBRARIES}) # Make sure boost uses std::atomic (it doesn't before 1.63) target_compile_definitions(util PUBLIC BOOST_SP_USE_STD_ATOMIC BOOST_AC_USE_STD_ATOMIC) # More completely unrelated features shared by all executables. # Because nothing says this is different from util than "common" add_library(common amount.cpp base58.cpp cashaddr.cpp cashaddrenc.cpp chainparams.cpp config.cpp consensus/merkle.cpp coins.cpp compressor.cpp dstencode.cpp feerate.cpp globals.cpp core_read.cpp core_write.cpp key.cpp keystore.cpp netaddress.cpp netbase.cpp primitives/block.cpp protocol.cpp scheduler.cpp script/sign.cpp script/standard.cpp warnings.cpp ) target_link_libraries(common util secp256k1) # libbitcoinconsensus add_library(bitcoinconsensus arith_uint256.cpp hash.cpp primitives/transaction.cpp pubkey.cpp script/bitcoinconsensus.cpp script/interpreter.cpp script/script.cpp script/script_error.cpp script/sigencoding.cpp uint256.cpp utilstrencodings.cpp ) target_link_libraries(bitcoinconsensus common) # Bitcoin server facilities add_library(server addrman.cpp addrdb.cpp bloom.cpp blockencodings.cpp chain.cpp checkpoints.cpp config.cpp consensus/activation.cpp consensus/tx_verify.cpp globals.cpp httprpc.cpp httpserver.cpp init.cpp dbwrapper.cpp merkleblock.cpp miner.cpp net.cpp net_processing.cpp noui.cpp policy/fees.cpp policy/policy.cpp pow.cpp rest.cpp rpc/abc.cpp rpc/blockchain.cpp rpc/jsonrpcrequest.cpp rpc/mining.cpp rpc/misc.cpp rpc/net.cpp rpc/rawtransaction.cpp rpc/server.cpp script/scriptcache.cpp script/sigcache.cpp script/ismine.cpp timedata.cpp torcontrol.cpp txdb.cpp txmempool.cpp ui_interface.cpp validation.cpp validationinterface.cpp versionbits.cpp ) # This require libevent find_package(Event REQUIRED) target_include_directories(server PRIVATE leveldb/helpers/memenv) target_link_libraries(server Event bitcoinconsensus leveldb memenv ) # Test suite. add_subdirectory(test) # Wallet if(BUILD_BITCOIN_WALLET) add_subdirectory(wallet) target_link_libraries(server wallet) endif() # ZeroMQ if(BUILD_BITCOIN_ZMQ) add_subdirectory(zmq) target_link_libraries(server zmq) endif() # RPC client support add_library(rpcclient rpc/client.cpp) target_link_libraries(rpcclient univalue util) # bitcoin-seeder if(BUILD_BITCOIN_SEEDER) add_subdirectory(seeder) endif() # bitcoin-cli if(BUILD_BITCOIN_CLI) add_executable(bitcoin-cli bitcoin-cli.cpp) if(${CMAKE_SYSTEM_NAME} MATCHES "Windows") target_sources(bitcoin-cli PRIVATE bitcoin-cli-res.rc) endif() target_link_libraries(bitcoin-cli common rpcclient Event) endif() # bitcoin-tx if(BUILD_BITCOIN_TX) add_executable(bitcoin-tx bitcoin-tx.cpp) if(${CMAKE_SYSTEM_NAME} MATCHES "Windows") target_sources(bitcoin-tx PRIVATE bitcoin-tx-res.rc) endif() target_link_libraries(bitcoin-tx bitcoinconsensus) endif() # bitcoind add_executable(bitcoind bitcoind.cpp) target_link_libraries(bitcoind server) if(${CMAKE_SYSTEM_NAME} MATCHES "Windows") target_sources(bitcoind PRIVATE bitcoind-res.rc) endif() # Bitcoin-qt if(BUILD_BITCOIN_QT) add_subdirectory(qt) endif() diff --git a/src/arith_uint256.cpp b/src/arith_uint256.cpp index 3857e87a3..e441b7d57 100644 --- a/src/arith_uint256.cpp +++ b/src/arith_uint256.cpp @@ -1,234 +1,236 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "arith_uint256.h" #include "crypto/common.h" #include "uint256.h" #include "utilstrencodings.h" #include #include template base_uint::base_uint(const std::string &str) { SetHex(str); } template base_uint &base_uint::operator<<=(unsigned int shift) { base_uint a(*this); for (int i = 0; i < WIDTH; i++) pn[i] = 0; int k = shift / 32; shift = shift % 32; for (int i = 0; i < WIDTH; i++) { if (i + k + 1 < WIDTH && shift != 0) pn[i + k + 1] |= (a.pn[i] >> (32 - shift)); if (i + k < WIDTH) pn[i + k] |= (a.pn[i] << shift); } return *this; } template base_uint &base_uint::operator>>=(unsigned int shift) { base_uint a(*this); for (int i = 0; i < WIDTH; i++) pn[i] = 0; int k = shift / 32; shift = shift % 32; for (int i = 0; i < WIDTH; i++) { if (i - k - 1 >= 0 && shift != 0) pn[i - k - 1] |= (a.pn[i] << (32 - shift)); if (i - k >= 0) pn[i - k] |= (a.pn[i] >> shift); } return *this; } template base_uint &base_uint::operator*=(uint32_t b32) { uint64_t carry = 0; for (int i = 0; i < WIDTH; i++) { uint64_t n = carry + (uint64_t)b32 * pn[i]; pn[i] = n & 0xffffffff; carry = n >> 32; } return *this; } template base_uint &base_uint::operator*=(const base_uint &b) { base_uint a = *this; *this = 0; for (int j = 0; j < WIDTH; j++) { uint64_t carry = 0; for (int i = 0; i + j < WIDTH; i++) { uint64_t n = carry + pn[i + j] + (uint64_t)a.pn[j] * b.pn[i]; pn[i + j] = n & 0xffffffff; carry = n >> 32; } } return *this; } template base_uint &base_uint::operator/=(const base_uint &b) { // make a copy, so we can shift. base_uint div = b; // make a copy, so we can subtract. base_uint num = *this; // the quotient. *this = 0; int num_bits = num.bits(); int div_bits = div.bits(); if (div_bits == 0) throw uint_error("Division by zero"); // the result is certainly 0. if (div_bits > num_bits) return *this; int shift = num_bits - div_bits; // shift so that div and num align. div <<= shift; while (shift >= 0) { if (num >= div) { num -= div; // set a bit of the result. pn[shift / 32] |= (1 << (shift & 31)); } // shift back. div >>= 1; shift--; } // num now contains the remainder of the division. return *this; } template int base_uint::CompareTo(const base_uint &b) const { for (int i = WIDTH - 1; i >= 0; i--) { if (pn[i] < b.pn[i]) return -1; if (pn[i] > b.pn[i]) return 1; } return 0; } template bool base_uint::EqualTo(uint64_t b) const { for (int i = WIDTH - 1; i >= 2; i--) { if (pn[i]) return false; } if (pn[1] != (b >> 32)) return false; if (pn[0] != (b & 0xfffffffful)) return false; return true; } template double base_uint::getdouble() const { double ret = 0.0; double fact = 1.0; for (int i = 0; i < WIDTH; i++) { ret += fact * pn[i]; fact *= 4294967296.0; } return ret; } template std::string base_uint::GetHex() const { return ArithToUint256(*this).GetHex(); } template void base_uint::SetHex(const char *psz) { *this = UintToArith256(uint256S(psz)); } template void base_uint::SetHex(const std::string &str) { SetHex(str.c_str()); } template std::string base_uint::ToString() const { return (GetHex()); } template unsigned int base_uint::bits() const { for (int pos = WIDTH - 1; pos >= 0; pos--) { if (pn[pos]) { - for (int bits = 31; bits > 0; bits--) { - if (pn[pos] & 1 << bits) return 32 * pos + bits + 1; + for (int nbits = 31; nbits > 0; nbits--) { + if (pn[pos] & 1 << nbits) { + return 32 * pos + nbits + 1; + } } return 32 * pos + 1; } } return 0; } // Explicit instantiations for base_uint<256> template base_uint<256>::base_uint(const std::string &); template base_uint<256> &base_uint<256>::operator<<=(unsigned int); template base_uint<256> &base_uint<256>::operator>>=(unsigned int); template base_uint<256> &base_uint<256>::operator*=(uint32_t b32); template base_uint<256> &base_uint<256>::operator*=(const base_uint<256> &b); template base_uint<256> &base_uint<256>::operator/=(const base_uint<256> &b); template int base_uint<256>::CompareTo(const base_uint<256> &) const; template bool base_uint<256>::EqualTo(uint64_t) const; template double base_uint<256>::getdouble() const; template std::string base_uint<256>::GetHex() const; template std::string base_uint<256>::ToString() const; template void base_uint<256>::SetHex(const char *); template void base_uint<256>::SetHex(const std::string &); template unsigned int base_uint<256>::bits() const; // This implementation directly uses shifts instead of going through an // intermediate MPI representation. arith_uint256 &arith_uint256::SetCompact(uint32_t nCompact, bool *pfNegative, bool *pfOverflow) { int nSize = nCompact >> 24; uint32_t nWord = nCompact & 0x007fffff; if (nSize <= 3) { nWord >>= 8 * (3 - nSize); *this = nWord; } else { *this = nWord; *this <<= 8 * (nSize - 3); } if (pfNegative) *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0; if (pfOverflow) *pfOverflow = nWord != 0 && ((nSize > 34) || (nWord > 0xff && nSize > 33) || (nWord > 0xffff && nSize > 32)); return *this; } uint32_t arith_uint256::GetCompact(bool fNegative) const { int nSize = (bits() + 7) / 8; uint32_t nCompact = 0; if (nSize <= 3) { nCompact = GetLow64() << 8 * (3 - nSize); } else { arith_uint256 bn = *this >> 8 * (nSize - 3); nCompact = bn.GetLow64(); } // The 0x00800000 bit denotes the sign. // Thus, if it is already set, divide the mantissa by 256 and increase the // exponent. if (nCompact & 0x00800000) { nCompact >>= 8; nSize++; } assert((nCompact & ~0x007fffff) == 0); assert(nSize < 256); nCompact |= nSize << 24; nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0); return nCompact; } uint256 ArithToUint256(const arith_uint256 &a) { uint256 b; for (int x = 0; x < a.WIDTH; ++x) WriteLE32(b.begin() + x * 4, a.pn[x]); return b; } arith_uint256 UintToArith256(const uint256 &a) { arith_uint256 b; for (int x = 0; x < b.WIDTH; ++x) b.pn[x] = ReadLE32(a.begin() + x * 4); return b; } diff --git a/src/bench/lockedpool.cpp b/src/bench/lockedpool.cpp index 2b9f47bdc..8cf4cfc57 100644 --- a/src/bench/lockedpool.cpp +++ b/src/bench/lockedpool.cpp @@ -1,44 +1,44 @@ // Copyright (c) 2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "bench.h" #include "support/lockedpool.h" #include #include #define ASIZE 2048 #define BITER 5000 #define MSIZE 2048 -static void LockedPool(benchmark::State &state) { +static void BenchLockedPool(benchmark::State &state) { void *synth_base = reinterpret_cast(0x08000000); const size_t synth_size = 1024 * 1024; Arena b(synth_base, synth_size, 16); std::vector addr; for (int x = 0; x < ASIZE; ++x) addr.push_back(0); uint32_t s = 0x12345678; while (state.KeepRunning()) { for (int x = 0; x < BITER; ++x) { int idx = s & (addr.size() - 1); if (s & 0x80000000) { b.free(addr[idx]); addr[idx] = 0; } else if (!addr[idx]) { addr[idx] = b.alloc((s >> 16) & (MSIZE - 1)); } bool lsb = s & 1; s >>= 1; if (lsb) s ^= 0xf00f00f0; // LFSR period 0xf7ffffe0 } } for (void *ptr : addr) b.free(ptr); addr.clear(); } -BENCHMARK(LockedPool); +BENCHMARK(BenchLockedPool); diff --git a/src/chain.h b/src/chain.h index be5839751..42a80a1e2 100644 --- a/src/chain.h +++ b/src/chain.h @@ -1,410 +1,410 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CHAIN_H #define BITCOIN_CHAIN_H #include "arith_uint256.h" #include "blockstatus.h" #include "blockvalidity.h" #include "consensus/params.h" #include "diskblockpos.h" #include "pow.h" #include "primitives/block.h" #include "tinyformat.h" #include "uint256.h" #include #include /** * Maximum amount of time that a block timestamp is allowed to exceed the * current network-adjusted time before the block will be accepted. */ static const int64_t MAX_FUTURE_BLOCK_TIME = 2 * 60 * 60; /** * Timestamp window used as a grace period by code that compares external * timestamps (such as timestamps passed to RPCs, or wallet key creation times) * to block timestamps. This should be set at least as high as * MAX_FUTURE_BLOCK_TIME. */ static const int64_t TIMESTAMP_WINDOW = MAX_FUTURE_BLOCK_TIME; /** * The block chain is a tree shaped structure starting with the genesis block at * the root, with each block potentially having multiple candidates to be the * next block. A blockindex may have multiple pprev pointing to it, but at most * one of them can be part of the currently active branch. */ class CBlockIndex { public: //! pointer to the hash of the block, if any. Memory is owned by this //! CBlockIndex const uint256 *phashBlock; //! pointer to the index of the predecessor of this block CBlockIndex *pprev; //! pointer to the index of some further predecessor of this block CBlockIndex *pskip; //! height of the entry in the chain. The genesis block has height 0 int nHeight; //! Which # file this block is stored in (blk?????.dat) int nFile; //! Byte offset within blk?????.dat where this block's data is stored unsigned int nDataPos; //! Byte offset within rev?????.dat where this block's undo data is stored unsigned int nUndoPos; //! (memory only) Total amount of work (expected number of hashes) in the //! chain up to and including this block arith_uint256 nChainWork; //! Number of transactions in this block. //! Note: in a potential headers-first mode, this number cannot be relied //! upon unsigned int nTx; //! (memory only) Number of transactions in the chain up to and including //! this block. //! This value will be non-zero only if and only if transactions for this //! block and all its parents are available. Change to 64-bit type when //! necessary; won't happen before 2030 unsigned int nChainTx; //! Verification status of this block. See enum BlockStatus BlockStatus nStatus; //! block header int32_t nVersion; uint256 hashMerkleRoot; uint32_t nTime; uint32_t nBits; uint32_t nNonce; //! (memory only) Sequential id assigned to distinguish order in which //! blocks are received. int32_t nSequenceId; //! (memory only) block header metadata uint64_t nTimeReceived; //! (memory only) Maximum nTime in the chain upto and including this block. unsigned int nTimeMax; void SetNull() { phashBlock = nullptr; pprev = nullptr; pskip = nullptr; nHeight = 0; nFile = 0; nDataPos = 0; nUndoPos = 0; nChainWork = arith_uint256(); nTx = 0; nChainTx = 0; nStatus = BlockStatus(); nSequenceId = 0; nTimeMax = 0; nVersion = 0; hashMerkleRoot = uint256(); nTime = 0; nTimeReceived = 0; nBits = 0; nNonce = 0; } CBlockIndex() { SetNull(); } CBlockIndex(const CBlockHeader &block) { SetNull(); nVersion = block.nVersion; hashMerkleRoot = block.hashMerkleRoot; nTime = block.nTime; // Default to block time if nTimeReceived is never set, which // in effect assumes that this block is honestly mined. // Note that nTimeReceived isn't written to disk, so blocks read from // disk will be assumed to be honestly mined. nTimeReceived = block.nTime; nBits = block.nBits; nNonce = block.nNonce; } CDiskBlockPos GetBlockPos() const { CDiskBlockPos ret; if (nStatus.hasData()) { ret.nFile = nFile; ret.nPos = nDataPos; } return ret; } CDiskBlockPos GetUndoPos() const { CDiskBlockPos ret; if (nStatus.hasUndo()) { ret.nFile = nFile; ret.nPos = nUndoPos; } return ret; } CBlockHeader GetBlockHeader() const { CBlockHeader block; block.nVersion = nVersion; if (pprev) { block.hashPrevBlock = pprev->GetBlockHash(); } block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block; } uint256 GetBlockHash() const { return *phashBlock; } int64_t GetBlockTime() const { return int64_t(nTime); } int64_t GetBlockTimeMax() const { return int64_t(nTimeMax); } int64_t GetHeaderReceivedTime() const { return nTimeReceived; } int64_t GetReceivedTimeDiff() const { return GetHeaderReceivedTime() - GetBlockTime(); } enum { nMedianTimeSpan = 11 }; int64_t GetMedianTimePast() const { int64_t pmedian[nMedianTimeSpan]; int64_t *pbegin = &pmedian[nMedianTimeSpan]; int64_t *pend = &pmedian[nMedianTimeSpan]; const CBlockIndex *pindex = this; for (int i = 0; i < nMedianTimeSpan && pindex; i++, pindex = pindex->pprev) { *(--pbegin) = pindex->GetBlockTime(); } std::sort(pbegin, pend); return pbegin[(pend - pbegin) / 2]; } std::string ToString() const { return strprintf( "CBlockIndex(pprev=%p, nHeight=%d, merkle=%s, hashBlock=%s)", pprev, nHeight, hashMerkleRoot.ToString(), GetBlockHash().ToString()); } //! Check whether this block index entry is valid up to the passed validity //! level. bool IsValid(enum BlockValidity nUpTo = BlockValidity::TRANSACTIONS) const { return nStatus.isValid(nUpTo); } //! Raise the validity level of this block index entry. //! Returns true if the validity was changed. bool RaiseValidity(enum BlockValidity nUpTo) { // Only validity flags allowed. if (nStatus.isInvalid()) { return false; } if (nStatus.getValidity() >= nUpTo) { return false; } nStatus = nStatus.withValidity(nUpTo); return true; } //! Build the skiplist pointer for this entry. void BuildSkip(); //! Efficiently find an ancestor of this block. CBlockIndex *GetAncestor(int height); const CBlockIndex *GetAncestor(int height) const; }; /** * Maintain a map of CBlockIndex for all known headers. */ struct BlockHasher { size_t operator()(const uint256 &hash) const { return hash.GetCheapHash(); } }; typedef std::unordered_map BlockMap; extern BlockMap mapBlockIndex; arith_uint256 GetBlockProof(const CBlockIndex &block); /** * Return the time it would take to redo the work difference between from and * to, assuming the current hashrate corresponds to the difficulty at tip, in * seconds. */ int64_t GetBlockProofEquivalentTime(const CBlockIndex &to, const CBlockIndex &from, const CBlockIndex &tip, const Consensus::Params &); /** * Find the forking point between two chain tips. */ const CBlockIndex *LastCommonAncestor(const CBlockIndex *pa, const CBlockIndex *pb); /** Used to marshal pointers into hashes for db storage. */ class CDiskBlockIndex : public CBlockIndex { public: uint256 hashPrev; CDiskBlockIndex() { hashPrev = uint256(); } explicit CDiskBlockIndex(const CBlockIndex *pindex) : CBlockIndex(*pindex) { hashPrev = (pprev ? pprev->GetBlockHash() : uint256()); } ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { - int version = s.GetVersion(); + int _nVersion = s.GetVersion(); if (!(s.GetType() & SER_GETHASH)) { - READWRITE(VARINT(version)); + READWRITE(VARINT(_nVersion)); } READWRITE(VARINT(nHeight)); READWRITE(nStatus); READWRITE(VARINT(nTx)); if (nStatus.hasData() || nStatus.hasUndo()) { READWRITE(VARINT(nFile)); } if (nStatus.hasData()) { READWRITE(VARINT(nDataPos)); } if (nStatus.hasUndo()) { READWRITE(VARINT(nUndoPos)); } // block header READWRITE(this->nVersion); READWRITE(hashPrev); READWRITE(hashMerkleRoot); READWRITE(nTime); READWRITE(nBits); READWRITE(nNonce); } uint256 GetBlockHash() const { CBlockHeader block; block.nVersion = nVersion; block.hashPrevBlock = hashPrev; block.hashMerkleRoot = hashMerkleRoot; block.nTime = nTime; block.nBits = nBits; block.nNonce = nNonce; return block.GetHash(); } std::string ToString() const { std::string str = "CDiskBlockIndex("; str += CBlockIndex::ToString(); str += strprintf("\n hashBlock=%s, hashPrev=%s)", GetBlockHash().ToString(), hashPrev.ToString()); return str; } }; /** * An in-memory indexed chain of blocks. */ class CChain { private: std::vector vChain; public: /** * Returns the index entry for the genesis block of this chain, or nullptr * if none. */ CBlockIndex *Genesis() const { return vChain.size() > 0 ? vChain[0] : nullptr; } /** * Returns the index entry for the tip of this chain, or nullptr if none. */ CBlockIndex *Tip() const { return vChain.size() > 0 ? vChain[vChain.size() - 1] : nullptr; } /** * Returns the index entry at a particular height in this chain, or nullptr * if no such height exists. */ CBlockIndex *operator[](int nHeight) const { if (nHeight < 0 || nHeight >= (int)vChain.size()) { return nullptr; } return vChain[nHeight]; } /** Compare two chains efficiently. */ friend bool operator==(const CChain &a, const CChain &b) { return a.vChain.size() == b.vChain.size() && a.vChain[a.vChain.size() - 1] == b.vChain[b.vChain.size() - 1]; } /** Efficiently check whether a block is present in this chain. */ bool Contains(const CBlockIndex *pindex) const { return (*this)[pindex->nHeight] == pindex; } /** * Find the successor of a block in this chain, or nullptr if the given * index is not found or is the tip. */ CBlockIndex *Next(const CBlockIndex *pindex) const { if (!Contains(pindex)) { return nullptr; } return (*this)[pindex->nHeight + 1]; } /** * Return the maximal height in the chain. Is equal to chain.Tip() ? * chain.Tip()->nHeight : -1. */ int Height() const { return vChain.size() - 1; } /** Set/initialize a chain with a given tip. */ void SetTip(CBlockIndex *pindex); /** * Return a CBlockLocator that refers to a block in this chain (by default * the tip). */ CBlockLocator GetLocator(const CBlockIndex *pindex = nullptr) const; /** * Find the last common block between this chain and a block index entry. */ const CBlockIndex *FindFork(const CBlockIndex *pindex) const; /** * Find the earliest block with timestamp equal or greater than the given. */ CBlockIndex *FindEarliestAtLeast(int64_t nTime) const; }; #endif // BITCOIN_CHAIN_H diff --git a/src/script/script.cpp b/src/script/script.cpp index 9a15469b0..5983a32dc 100644 --- a/src/script/script.cpp +++ b/src/script/script.cpp @@ -1,478 +1,478 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "script.h" #include "script/script_flags.h" #include "tinyformat.h" #include "utilstrencodings.h" #include const char *GetOpName(opcodetype opcode) { switch (opcode) { // push value case OP_0: return "0"; case OP_PUSHDATA1: return "OP_PUSHDATA1"; case OP_PUSHDATA2: return "OP_PUSHDATA2"; case OP_PUSHDATA4: return "OP_PUSHDATA4"; case OP_1NEGATE: return "-1"; case OP_RESERVED: return "OP_RESERVED"; case OP_1: return "1"; case OP_2: return "2"; case OP_3: return "3"; case OP_4: return "4"; case OP_5: return "5"; case OP_6: return "6"; case OP_7: return "7"; case OP_8: return "8"; case OP_9: return "9"; case OP_10: return "10"; case OP_11: return "11"; case OP_12: return "12"; case OP_13: return "13"; case OP_14: return "14"; case OP_15: return "15"; case OP_16: return "16"; // control case OP_NOP: return "OP_NOP"; case OP_VER: return "OP_VER"; case OP_IF: return "OP_IF"; case OP_NOTIF: return "OP_NOTIF"; case OP_VERIF: return "OP_VERIF"; case OP_VERNOTIF: return "OP_VERNOTIF"; case OP_ELSE: return "OP_ELSE"; case OP_ENDIF: return "OP_ENDIF"; case OP_VERIFY: return "OP_VERIFY"; case OP_RETURN: return "OP_RETURN"; // stack ops case OP_TOALTSTACK: return "OP_TOALTSTACK"; case OP_FROMALTSTACK: return "OP_FROMALTSTACK"; case OP_2DROP: return "OP_2DROP"; case OP_2DUP: return "OP_2DUP"; case OP_3DUP: return "OP_3DUP"; case OP_2OVER: return "OP_2OVER"; case OP_2ROT: return "OP_2ROT"; case OP_2SWAP: return "OP_2SWAP"; case OP_IFDUP: return "OP_IFDUP"; case OP_DEPTH: return "OP_DEPTH"; case OP_DROP: return "OP_DROP"; case OP_DUP: return "OP_DUP"; case OP_NIP: return "OP_NIP"; case OP_OVER: return "OP_OVER"; case OP_PICK: return "OP_PICK"; case OP_ROLL: return "OP_ROLL"; case OP_ROT: return "OP_ROT"; case OP_SWAP: return "OP_SWAP"; case OP_TUCK: return "OP_TUCK"; // splice ops case OP_CAT: return "OP_CAT"; case OP_SPLIT: return "OP_SPLIT"; case OP_NUM2BIN: return "OP_NUM2BIN"; case OP_BIN2NUM: return "OP_BIN2NUM"; case OP_SIZE: return "OP_SIZE"; // bit logic case OP_INVERT: return "OP_INVERT"; case OP_AND: return "OP_AND"; case OP_OR: return "OP_OR"; case OP_XOR: return "OP_XOR"; case OP_EQUAL: return "OP_EQUAL"; case OP_EQUALVERIFY: return "OP_EQUALVERIFY"; case OP_RESERVED1: return "OP_RESERVED1"; case OP_RESERVED2: return "OP_RESERVED2"; // numeric case OP_1ADD: return "OP_1ADD"; case OP_1SUB: return "OP_1SUB"; case OP_2MUL: return "OP_2MUL"; case OP_2DIV: return "OP_2DIV"; case OP_NEGATE: return "OP_NEGATE"; case OP_ABS: return "OP_ABS"; case OP_NOT: return "OP_NOT"; case OP_0NOTEQUAL: return "OP_0NOTEQUAL"; case OP_ADD: return "OP_ADD"; case OP_SUB: return "OP_SUB"; case OP_MUL: return "OP_MUL"; case OP_DIV: return "OP_DIV"; case OP_MOD: return "OP_MOD"; case OP_LSHIFT: return "OP_LSHIFT"; case OP_RSHIFT: return "OP_RSHIFT"; case OP_BOOLAND: return "OP_BOOLAND"; case OP_BOOLOR: return "OP_BOOLOR"; case OP_NUMEQUAL: return "OP_NUMEQUAL"; case OP_NUMEQUALVERIFY: return "OP_NUMEQUALVERIFY"; case OP_NUMNOTEQUAL: return "OP_NUMNOTEQUAL"; case OP_LESSTHAN: return "OP_LESSTHAN"; case OP_GREATERTHAN: return "OP_GREATERTHAN"; case OP_LESSTHANOREQUAL: return "OP_LESSTHANOREQUAL"; case OP_GREATERTHANOREQUAL: return "OP_GREATERTHANOREQUAL"; case OP_MIN: return "OP_MIN"; case OP_MAX: return "OP_MAX"; case OP_WITHIN: return "OP_WITHIN"; // crypto case OP_RIPEMD160: return "OP_RIPEMD160"; case OP_SHA1: return "OP_SHA1"; case OP_SHA256: return "OP_SHA256"; case OP_HASH160: return "OP_HASH160"; case OP_HASH256: return "OP_HASH256"; case OP_CODESEPARATOR: return "OP_CODESEPARATOR"; case OP_CHECKSIG: return "OP_CHECKSIG"; case OP_CHECKSIGVERIFY: return "OP_CHECKSIGVERIFY"; case OP_CHECKMULTISIG: return "OP_CHECKMULTISIG"; case OP_CHECKMULTISIGVERIFY: return "OP_CHECKMULTISIGVERIFY"; case OP_CHECKDATASIG: return "OP_CHECKDATASIG"; case OP_CHECKDATASIGVERIFY: return "OP_CHECKDATASIGVERIFY"; // expansion case OP_NOP1: return "OP_NOP1"; case OP_CHECKLOCKTIMEVERIFY: return "OP_CHECKLOCKTIMEVERIFY"; case OP_CHECKSEQUENCEVERIFY: return "OP_CHECKSEQUENCEVERIFY"; case OP_NOP4: return "OP_NOP4"; case OP_NOP5: return "OP_NOP5"; case OP_NOP6: return "OP_NOP6"; case OP_NOP7: return "OP_NOP7"; case OP_NOP8: return "OP_NOP8"; case OP_NOP9: return "OP_NOP9"; case OP_NOP10: return "OP_NOP10"; case OP_INVALIDOPCODE: return "OP_INVALIDOPCODE"; // Note: // The template matching params OP_SMALLINTEGER/etc are defined in // opcodetype enum as kind of implementation hack, they are *NOT* // real opcodes. If found in real Script, just let the default: // case deal with them. default: return "OP_UNKNOWN"; } } bool CScriptNum::IsMinimallyEncoded(const std::vector &vch, const size_t nMaxNumSize) { if (vch.size() > nMaxNumSize) { return false; } if (vch.size() > 0) { // Check that the number is encoded with the minimum possible number // of bytes. // // If the most-significant-byte - excluding the sign bit - is zero // then we're not minimal. Note how this test also rejects the // negative-zero encoding, 0x80. if ((vch.back() & 0x7f) == 0) { // One exception: if there's more than one byte and the most // significant bit of the second-most-significant-byte is set it // would conflict with the sign bit. An example of this case is // +-255, which encode to 0xff00 and 0xff80 respectively. // (big-endian). if (vch.size() <= 1 || (vch[vch.size() - 2] & 0x80) == 0) { return false; } } } return true; } bool CScriptNum::MinimallyEncode(std::vector &data) { if (data.size() == 0) { return false; } // If the last byte is not 0x00 or 0x80, we are minimally encoded. uint8_t last = data.back(); if (last & 0x7f) { return false; } // If the script is one byte long, then we have a zero, which encodes as an // empty array. if (data.size() == 1) { data = {}; return true; } // If the next byte has it sign bit set, then we are minimaly encoded. if (data[data.size() - 2] & 0x80) { return false; } // We are not minimally encoded, we need to figure out how much to trim. for (size_t i = data.size() - 1; i > 0; i--) { // We found a non zero byte, time to encode. if (data[i - 1] != 0) { if (data[i - 1] & 0x80) { // We found a byte with it sign bit set so we need one more // byte. data[i++] = last; } else { // the sign bit is clear, we can use it. data[i - 1] |= last; } data.resize(i); return true; } } // If we the whole thing is zeros, then we have a zero. data = {}; return true; } uint32_t CScript::GetSigOpCount(uint32_t flags, bool fAccurate) const { uint32_t n = 0; const_iterator pc = begin(); opcodetype lastOpcode = OP_INVALIDOPCODE; while (pc < end()) { opcodetype opcode; if (!GetOp(pc, opcode)) { break; } switch (opcode) { case OP_CHECKSIG: case OP_CHECKSIGVERIFY: n++; break; case OP_CHECKDATASIG: case OP_CHECKDATASIGVERIFY: if (flags & SCRIPT_ENABLE_CHECKDATASIG) { n++; } break; case OP_CHECKMULTISIG: case OP_CHECKMULTISIGVERIFY: if (fAccurate && lastOpcode >= OP_1 && lastOpcode <= OP_16) { n += DecodeOP_N(lastOpcode); } else { n += MAX_PUBKEYS_PER_MULTISIG; } break; default: break; } lastOpcode = opcode; } return n; } uint32_t CScript::GetSigOpCount(uint32_t flags, const CScript &scriptSig) const { if ((flags & SCRIPT_VERIFY_P2SH) == 0 || !IsPayToScriptHash()) { return GetSigOpCount(flags, true); } // This is a pay-to-script-hash scriptPubKey; // get the last item that the scriptSig // pushes onto the stack: const_iterator pc = scriptSig.begin(); - std::vector data; + std::vector vData; while (pc < scriptSig.end()) { opcodetype opcode; - if (!scriptSig.GetOp(pc, opcode, data)) { + if (!scriptSig.GetOp(pc, opcode, vData)) { return 0; } if (opcode > OP_16) { return 0; } } /// ... and return its opcount: - CScript subscript(data.begin(), data.end()); + CScript subscript(vData.begin(), vData.end()); return subscript.GetSigOpCount(flags, true); } bool CScript::IsPayToScriptHash() const { // Extra-fast test for pay-to-script-hash CScripts: return (this->size() == 23 && (*this)[0] == OP_HASH160 && (*this)[1] == 0x14 && (*this)[22] == OP_EQUAL); } bool CScript::IsCommitment(const std::vector &data) const { // To ensure we have an immediate push, we limit the commitment size to 64 // bytes. In addition to the data themselves, we have 2 extra bytes: // OP_RETURN and the push opcode itself. if (data.size() > 64 || this->size() != data.size() + 2) { return false; } if ((*this)[0] != OP_RETURN || (*this)[1] != data.size()) { return false; } for (size_t i = 0; i < data.size(); i++) { if ((*this)[i + 2] != data[i]) { return false; } } return true; } // A witness program is any valid CScript that consists of a 1-byte push opcode // followed by a data push between 2 and 40 bytes. bool CScript::IsWitnessProgram(int &version, std::vector &program) const { if (this->size() < 4 || this->size() > 42) { return false; } if ((*this)[0] != OP_0 && ((*this)[0] < OP_1 || (*this)[0] > OP_16)) { return false; } if (size_t((*this)[1] + 2) == this->size()) { version = DecodeOP_N((opcodetype)(*this)[0]); program = std::vector(this->begin() + 2, this->end()); return true; } return false; } bool CScript::IsPushOnly(const_iterator pc) const { while (pc < end()) { opcodetype opcode; if (!GetOp(pc, opcode)) { return false; } // Note that IsPushOnly() *does* consider OP_RESERVED to be a push-type // opcode, however execution of OP_RESERVED fails, so it's not relevant // to P2SH/BIP62 as the scriptSig would fail prior to the P2SH special // validation code being executed. if (opcode > OP_16) { return false; } } return true; } bool CScript::IsPushOnly() const { return this->IsPushOnly(begin()); } diff --git a/src/script/script.h b/src/script/script.h index cc1315e6e..6c50251d6 100644 --- a/src/script/script.h +++ b/src/script/script.h @@ -1,670 +1,670 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SCRIPT_SCRIPT_H #define BITCOIN_SCRIPT_SCRIPT_H #include "crypto/common.h" #include "prevector.h" #include "serialize.h" #include #include #include #include #include #include #include #include // Maximum number of bytes pushable to the stack static const unsigned int MAX_SCRIPT_ELEMENT_SIZE = 520; // Maximum number of non-push operations per script static const int MAX_OPS_PER_SCRIPT = 201; // Maximum number of public keys per multisig static const int MAX_PUBKEYS_PER_MULTISIG = 20; // Maximum script length in bytes static const int MAX_SCRIPT_SIZE = 10000; // Threshold for nLockTime: below this value it is interpreted as block number, // otherwise as UNIX timestamp. Thresold is Tue Nov 5 00:53:20 1985 UTC static const unsigned int LOCKTIME_THRESHOLD = 500000000; template std::vector ToByteVector(const T &in) { return std::vector(in.begin(), in.end()); } /** Script opcodes */ enum opcodetype { // push value OP_0 = 0x00, OP_FALSE = OP_0, OP_PUSHDATA1 = 0x4c, OP_PUSHDATA2 = 0x4d, OP_PUSHDATA4 = 0x4e, OP_1NEGATE = 0x4f, OP_RESERVED = 0x50, OP_1 = 0x51, OP_TRUE = OP_1, OP_2 = 0x52, OP_3 = 0x53, OP_4 = 0x54, OP_5 = 0x55, OP_6 = 0x56, OP_7 = 0x57, OP_8 = 0x58, OP_9 = 0x59, OP_10 = 0x5a, OP_11 = 0x5b, OP_12 = 0x5c, OP_13 = 0x5d, OP_14 = 0x5e, OP_15 = 0x5f, OP_16 = 0x60, // control OP_NOP = 0x61, OP_VER = 0x62, OP_IF = 0x63, OP_NOTIF = 0x64, OP_VERIF = 0x65, OP_VERNOTIF = 0x66, OP_ELSE = 0x67, OP_ENDIF = 0x68, OP_VERIFY = 0x69, OP_RETURN = 0x6a, // stack ops OP_TOALTSTACK = 0x6b, OP_FROMALTSTACK = 0x6c, OP_2DROP = 0x6d, OP_2DUP = 0x6e, OP_3DUP = 0x6f, OP_2OVER = 0x70, OP_2ROT = 0x71, OP_2SWAP = 0x72, OP_IFDUP = 0x73, OP_DEPTH = 0x74, OP_DROP = 0x75, OP_DUP = 0x76, OP_NIP = 0x77, OP_OVER = 0x78, OP_PICK = 0x79, OP_ROLL = 0x7a, OP_ROT = 0x7b, OP_SWAP = 0x7c, OP_TUCK = 0x7d, // splice ops OP_CAT = 0x7e, OP_SPLIT = 0x7f, // after monolith upgrade (May 2018) OP_NUM2BIN = 0x80, // after monolith upgrade (May 2018) OP_BIN2NUM = 0x81, // after monolith upgrade (May 2018) OP_SIZE = 0x82, // bit logic OP_INVERT = 0x83, OP_AND = 0x84, OP_OR = 0x85, OP_XOR = 0x86, OP_EQUAL = 0x87, OP_EQUALVERIFY = 0x88, OP_RESERVED1 = 0x89, OP_RESERVED2 = 0x8a, // numeric OP_1ADD = 0x8b, OP_1SUB = 0x8c, OP_2MUL = 0x8d, OP_2DIV = 0x8e, OP_NEGATE = 0x8f, OP_ABS = 0x90, OP_NOT = 0x91, OP_0NOTEQUAL = 0x92, OP_ADD = 0x93, OP_SUB = 0x94, OP_MUL = 0x95, OP_DIV = 0x96, OP_MOD = 0x97, OP_LSHIFT = 0x98, OP_RSHIFT = 0x99, OP_BOOLAND = 0x9a, OP_BOOLOR = 0x9b, OP_NUMEQUAL = 0x9c, OP_NUMEQUALVERIFY = 0x9d, OP_NUMNOTEQUAL = 0x9e, OP_LESSTHAN = 0x9f, OP_GREATERTHAN = 0xa0, OP_LESSTHANOREQUAL = 0xa1, OP_GREATERTHANOREQUAL = 0xa2, OP_MIN = 0xa3, OP_MAX = 0xa4, OP_WITHIN = 0xa5, // crypto OP_RIPEMD160 = 0xa6, OP_SHA1 = 0xa7, OP_SHA256 = 0xa8, OP_HASH160 = 0xa9, OP_HASH256 = 0xaa, OP_CODESEPARATOR = 0xab, OP_CHECKSIG = 0xac, OP_CHECKSIGVERIFY = 0xad, OP_CHECKMULTISIG = 0xae, OP_CHECKMULTISIGVERIFY = 0xaf, // expansion OP_NOP1 = 0xb0, OP_CHECKLOCKTIMEVERIFY = 0xb1, OP_NOP2 = OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY = 0xb2, OP_NOP3 = OP_CHECKSEQUENCEVERIFY, OP_NOP4 = 0xb3, OP_NOP5 = 0xb4, OP_NOP6 = 0xb5, OP_NOP7 = 0xb6, OP_NOP8 = 0xb7, OP_NOP9 = 0xb8, OP_NOP10 = 0xb9, // More crypto OP_CHECKDATASIG = 0xba, OP_CHECKDATASIGVERIFY = 0xbb, // The first op_code value after all defined opcodes FIRST_UNDEFINED_OP_VALUE, // multi-byte opcodes OP_PREFIX_BEGIN = 0xf0, OP_PREFIX_END = 0xf7, // template matching params OP_SMALLINTEGER = 0xfa, OP_PUBKEYS = 0xfb, OP_PUBKEYHASH = 0xfd, OP_PUBKEY = 0xfe, OP_INVALIDOPCODE = 0xff, }; const char *GetOpName(opcodetype opcode); class scriptnum_error : public std::runtime_error { public: explicit scriptnum_error(const std::string &str) : std::runtime_error(str) {} }; class CScriptNum { /** * Numeric opcodes (OP_1ADD, etc) are restricted to operating on 4-byte * integers. The semantics are subtle, though: operands must be in the range * [-2^31 +1...2^31 -1], but results may overflow (and are valid as long as * they are not used in a subsequent numeric operation). CScriptNum enforces * those semantics by storing results as an int64 and allowing out-of-range * values to be returned as a vector of bytes but throwing an exception if * arithmetic is done or the result is interpreted as an integer. */ public: static const size_t MAXIMUM_ELEMENT_SIZE = 4; explicit CScriptNum(const int64_t &n) { m_value = n; } explicit CScriptNum(const std::vector &vch, bool fRequireMinimal, const size_t nMaxNumSize = MAXIMUM_ELEMENT_SIZE) { if (vch.size() > nMaxNumSize) { throw scriptnum_error("script number overflow"); } if (fRequireMinimal && !IsMinimallyEncoded(vch, nMaxNumSize)) { throw scriptnum_error("non-minimally encoded script number"); } m_value = set_vch(vch); } static bool IsMinimallyEncoded( const std::vector &vch, const size_t nMaxNumSize = CScriptNum::MAXIMUM_ELEMENT_SIZE); static bool MinimallyEncode(std::vector &data); inline bool operator==(const int64_t &rhs) const { return m_value == rhs; } inline bool operator!=(const int64_t &rhs) const { return m_value != rhs; } inline bool operator<=(const int64_t &rhs) const { return m_value <= rhs; } inline bool operator<(const int64_t &rhs) const { return m_value < rhs; } inline bool operator>=(const int64_t &rhs) const { return m_value >= rhs; } inline bool operator>(const int64_t &rhs) const { return m_value > rhs; } inline bool operator==(const CScriptNum &rhs) const { return operator==(rhs.m_value); } inline bool operator!=(const CScriptNum &rhs) const { return operator!=(rhs.m_value); } inline bool operator<=(const CScriptNum &rhs) const { return operator<=(rhs.m_value); } inline bool operator<(const CScriptNum &rhs) const { return operator<(rhs.m_value); } inline bool operator>=(const CScriptNum &rhs) const { return operator>=(rhs.m_value); } inline bool operator>(const CScriptNum &rhs) const { return operator>(rhs.m_value); } inline CScriptNum operator+(const int64_t &rhs) const { return CScriptNum(m_value + rhs); } inline CScriptNum operator-(const int64_t &rhs) const { return CScriptNum(m_value - rhs); } inline CScriptNum operator+(const CScriptNum &rhs) const { return operator+(rhs.m_value); } inline CScriptNum operator-(const CScriptNum &rhs) const { return operator-(rhs.m_value); } inline CScriptNum operator/(const int64_t &rhs) const { return CScriptNum(m_value / rhs); } inline CScriptNum operator/(const CScriptNum &rhs) const { return operator/(rhs.m_value); } inline CScriptNum operator%(const int64_t &rhs) const { return CScriptNum(m_value % rhs); } inline CScriptNum operator%(const CScriptNum &rhs) const { return operator%(rhs.m_value); } inline CScriptNum &operator+=(const CScriptNum &rhs) { return operator+=(rhs.m_value); } inline CScriptNum &operator-=(const CScriptNum &rhs) { return operator-=(rhs.m_value); } inline CScriptNum operator&(const int64_t &rhs) const { return CScriptNum(m_value & rhs); } inline CScriptNum operator&(const CScriptNum &rhs) const { return operator&(rhs.m_value); } inline CScriptNum &operator&=(const CScriptNum &rhs) { return operator&=(rhs.m_value); } inline CScriptNum operator-() const { assert(m_value != std::numeric_limits::min()); return CScriptNum(-m_value); } inline CScriptNum &operator=(const int64_t &rhs) { m_value = rhs; return *this; } inline CScriptNum &operator+=(const int64_t &rhs) { assert( rhs == 0 || (rhs > 0 && m_value <= std::numeric_limits::max() - rhs) || (rhs < 0 && m_value >= std::numeric_limits::min() - rhs)); m_value += rhs; return *this; } inline CScriptNum &operator-=(const int64_t &rhs) { assert( rhs == 0 || (rhs > 0 && m_value >= std::numeric_limits::min() + rhs) || (rhs < 0 && m_value <= std::numeric_limits::max() + rhs)); m_value -= rhs; return *this; } inline CScriptNum &operator&=(const int64_t &rhs) { m_value &= rhs; return *this; } int getint() const { if (m_value > std::numeric_limits::max()) return std::numeric_limits::max(); else if (m_value < std::numeric_limits::min()) return std::numeric_limits::min(); return m_value; } std::vector getvch() const { return serialize(m_value); } static std::vector serialize(const int64_t &value) { if (value == 0) { return {}; } std::vector result; const bool neg = value < 0; uint64_t absvalue = neg ? -value : value; while (absvalue) { result.push_back(absvalue & 0xff); absvalue >>= 8; } // - If the most significant byte is >= 0x80 and the value is positive, // push a new zero-byte to make the significant byte < 0x80 again. // - If the most significant byte is >= 0x80 and the value is negative, // push a new 0x80 byte that will be popped off when converting to an // integral. // - If the most significant byte is < 0x80 and the value is negative, // add 0x80 to it, since it will be subtracted and interpreted as a // negative when converting to an integral. if (result.back() & 0x80) { result.push_back(neg ? 0x80 : 0); } else if (neg) { result.back() |= 0x80; } return result; } private: static int64_t set_vch(const std::vector &vch) { if (vch.empty()) { return 0; } int64_t result = 0; for (size_t i = 0; i != vch.size(); ++i) { result |= int64_t(vch[i]) << 8 * i; } // If the input vector's most significant byte is 0x80, remove it from // the result's msb and return a negative. if (vch.back() & 0x80) { return -int64_t(result & ~(0x80ULL << (8 * (vch.size() - 1)))); } return result; } int64_t m_value; }; typedef prevector<28, uint8_t> CScriptBase; /** Serialized script, used inside transaction inputs and outputs */ class CScript : public CScriptBase { protected: CScript &push_int64(int64_t n) { if (n == -1 || (n >= 1 && n <= 16)) { push_back(n + (OP_1 - 1)); } else if (n == 0) { push_back(OP_0); } else { *this << CScriptNum::serialize(n); } return *this; } public: CScript() {} CScript(const_iterator pbegin, const_iterator pend) : CScriptBase(pbegin, pend) {} CScript(std::vector::const_iterator pbegin, std::vector::const_iterator pend) : CScriptBase(pbegin, pend) {} CScript(const uint8_t *pbegin, const uint8_t *pend) : CScriptBase(pbegin, pend) {} ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(static_cast(*this)); } CScript &operator+=(const CScript &b) { insert(end(), b.begin(), b.end()); return *this; } friend CScript operator+(const CScript &a, const CScript &b) { CScript ret = a; ret += b; return ret; } CScript(int64_t b) { operator<<(b); } explicit CScript(opcodetype b) { operator<<(b); } explicit CScript(const CScriptNum &b) { operator<<(b); } explicit CScript(const std::vector &b) { operator<<(b); } CScript &operator<<(int64_t b) { return push_int64(b); } CScript &operator<<(opcodetype opcode) { if (opcode < 0 || opcode > 0xff) { throw std::runtime_error("CScript::operator<<(): invalid opcode"); } insert(end(), uint8_t(opcode)); return *this; } CScript &operator<<(const CScriptNum &b) { *this << b.getvch(); return *this; } CScript &operator<<(const std::vector &b) { if (b.size() < OP_PUSHDATA1) { insert(end(), uint8_t(b.size())); } else if (b.size() <= 0xff) { insert(end(), OP_PUSHDATA1); insert(end(), uint8_t(b.size())); } else if (b.size() <= 0xffff) { insert(end(), OP_PUSHDATA2); - uint8_t data[2]; - WriteLE16(data, b.size()); - insert(end(), data, data + sizeof(data)); + uint8_t _data[2]; + WriteLE16(_data, b.size()); + insert(end(), _data, _data + sizeof(_data)); } else { insert(end(), OP_PUSHDATA4); - uint8_t data[4]; - WriteLE32(data, b.size()); - insert(end(), data, data + sizeof(data)); + uint8_t _data[4]; + WriteLE32(_data, b.size()); + insert(end(), _data, _data + sizeof(_data)); } insert(end(), b.begin(), b.end()); return *this; } CScript &operator<<(const CScript &b) { // I'm not sure if this should push the script or concatenate scripts. // If there's ever a use for pushing a script onto a script, delete this // member fn. assert(!"Warning: Pushing a CScript onto a CScript with << is probably " "not intended, use + to concatenate!"); return *this; } bool GetOp(iterator &pc, opcodetype &opcodeRet, std::vector &vchRet) { // Wrapper so it can be called with either iterator or const_iterator. const_iterator pc2 = pc; bool fRet = GetOp2(pc2, opcodeRet, &vchRet); pc = begin() + (pc2 - begin()); return fRet; } bool GetOp(iterator &pc, opcodetype &opcodeRet) { const_iterator pc2 = pc; bool fRet = GetOp2(pc2, opcodeRet, nullptr); pc = begin() + (pc2 - begin()); return fRet; } bool GetOp(const_iterator &pc, opcodetype &opcodeRet, std::vector &vchRet) const { return GetOp2(pc, opcodeRet, &vchRet); } bool GetOp(const_iterator &pc, opcodetype &opcodeRet) const { return GetOp2(pc, opcodeRet, nullptr); } bool GetOp2(const_iterator &pc, opcodetype &opcodeRet, std::vector *pvchRet) const { opcodeRet = OP_INVALIDOPCODE; if (pvchRet) pvchRet->clear(); if (pc >= end()) return false; // Read instruction if (end() - pc < 1) return false; uint32_t opcode = *pc++; // Immediate operand if (opcode <= OP_PUSHDATA4) { uint32_t nSize = 0; if (opcode < OP_PUSHDATA1) { nSize = opcode; } else if (opcode == OP_PUSHDATA1) { if (end() - pc < 1) return false; nSize = *pc++; } else if (opcode == OP_PUSHDATA2) { if (end() - pc < 2) return false; nSize = ReadLE16(&pc[0]); pc += 2; } else if (opcode == OP_PUSHDATA4) { if (end() - pc < 4) return false; nSize = ReadLE32(&pc[0]); pc += 4; } if (end() - pc < 0 || uint32_t(end() - pc) < nSize) { return false; } if (pvchRet) pvchRet->assign(pc, pc + nSize); pc += nSize; } opcodeRet = (opcodetype)opcode; return true; } /** Encode/decode small integers: */ static int DecodeOP_N(opcodetype opcode) { if (opcode == OP_0) { return 0; } assert(opcode >= OP_1 && opcode <= OP_16); return int(opcode) - int(OP_1 - 1); } static opcodetype EncodeOP_N(int n) { assert(n >= 0 && n <= 16); if (n == 0) { return OP_0; } return (opcodetype)(OP_1 + n - 1); } int FindAndDelete(const CScript &b) { int nFound = 0; if (b.empty()) { return nFound; } CScript result; iterator pc = begin(), pc2 = begin(); opcodetype opcode; do { result.insert(result.end(), pc2, pc); while (size_t(end() - pc) >= b.size() && std::equal(b.begin(), b.end(), pc)) { pc = pc + b.size(); ++nFound; } pc2 = pc; } while (GetOp(pc, opcode)); if (nFound > 0) { result.insert(result.end(), pc2, end()); *this = result; } return nFound; } int Find(opcodetype op) const { int nFound = 0; opcodetype opcode; for (const_iterator pc = begin(); pc != end() && GetOp(pc, opcode);) { if (opcode == op) { ++nFound; } } return nFound; } /** * Pre-version-0.6, Bitcoin always counted CHECKMULTISIGs as 20 sigops. With * pay-to-script-hash, that changed: CHECKMULTISIGs serialized in scriptSigs * are counted more accurately, assuming they are of the form * ... OP_N CHECKMULTISIG ... */ uint32_t GetSigOpCount(uint32_t flags, bool fAccurate) const; /** * Accurately count sigOps, including sigOps in pay-to-script-hash * transactions: */ uint32_t GetSigOpCount(uint32_t flags, const CScript &scriptSig) const; bool IsPayToScriptHash() const; bool IsCommitment(const std::vector &data) const; bool IsWitnessProgram(int &version, std::vector &program) const; /** * Called by IsStandardTx and P2SH/BIP62 VerifyScript (which makes it * consensus-critical). */ bool IsPushOnly(const_iterator pc) const; bool IsPushOnly() const; /** * Returns whether the script is guaranteed to fail at execution, regardless * of the initial stack. This allows outputs to be pruned instantly when * entering the UTXO set. */ bool IsUnspendable() const { return (size() > 0 && *begin() == OP_RETURN) || (size() > MAX_SCRIPT_SIZE); } void clear() { // The default prevector::clear() does not release memory CScriptBase::clear(); shrink_to_fit(); } }; class CReserveScript { public: CScript reserveScript; virtual void KeepScript() {} CReserveScript() {} virtual ~CReserveScript() {} }; #endif // BITCOIN_SCRIPT_SCRIPT_H diff --git a/src/streams.h b/src/streams.h index d96934184..14df745b1 100644 --- a/src/streams.h +++ b/src/streams.h @@ -1,662 +1,662 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_STREAMS_H #define BITCOIN_STREAMS_H #include "serialize.h" #include "support/allocators/zeroafterfree.h" #include #include #include #include #include #include #include #include #include #include #include #include template class OverrideStream { Stream *stream; const int nType; const int nVersion; public: OverrideStream(Stream *stream_, int nType_, int nVersion_) : stream(stream_), nType(nType_), nVersion(nVersion_) {} template OverrideStream &operator<<(const T &obj) { // Serialize to this stream ::Serialize(*this, obj); return (*this); } template OverrideStream &operator>>(T &obj) { // Unserialize from this stream ::Unserialize(*this, obj); return (*this); } void write(const char *pch, size_t nSize) { stream->write(pch, nSize); } void read(char *pch, size_t nSize) { stream->read(pch, nSize); } int GetVersion() const { return nVersion; } int GetType() const { return nType; } }; template OverrideStream WithOrVersion(S *s, int nVersionFlag) { return OverrideStream(s, s->GetType(), s->GetVersion() | nVersionFlag); } /** * Minimal stream for overwriting and/or appending to an existing byte vector. * * The referenced vector will grow as necessary. */ class CVectorWriter { public: /** * @param[in] nTypeIn Serialization Type * @param[in] nVersionIn Serialization Version (including any flags) * @param[in] vchDataIn Referenced byte vector to overwrite/append * @param[in] nPosIn Starting position. Vector index where writes should * start. The vector will initially grow as necessary to max(index, * vec.size()). So to append, use vec.size(). */ CVectorWriter(int nTypeIn, int nVersionIn, std::vector &vchDataIn, size_t nPosIn) : nType(nTypeIn), nVersion(nVersionIn), vchData(vchDataIn), nPos(nPosIn) { if (nPos > vchData.size()) vchData.resize(nPos); } /** * (other params same as above) * @param[in] args A list of items to serialize starting at nPos. */ template CVectorWriter(int nTypeIn, int nVersionIn, std::vector &vchDataIn, size_t nPosIn, Args &&... args) : CVectorWriter(nTypeIn, nVersionIn, vchDataIn, nPosIn) { ::SerializeMany(*this, std::forward(args)...); } void write(const char *pch, size_t nSize) { assert(nPos <= vchData.size()); size_t nOverwrite = std::min(nSize, vchData.size() - nPos); if (nOverwrite) { memcpy(vchData.data() + nPos, reinterpret_cast(pch), nOverwrite); } if (nOverwrite < nSize) { vchData.insert(vchData.end(), reinterpret_cast(pch) + nOverwrite, reinterpret_cast(pch) + nSize); } nPos += nSize; } template CVectorWriter &operator<<(const T &obj) { // Serialize to this stream ::Serialize(*this, obj); return (*this); } int GetVersion() const { return nVersion; } int GetType() const { return nType; } void seek(size_t nSize) { nPos += nSize; if (nPos > vchData.size()) vchData.resize(nPos); } private: const int nType; const int nVersion; std::vector &vchData; size_t nPos; }; /** * Double ended buffer combining vector and stream-like interfaces. * * >> and << read and write unformatted data using the above serialization * templates. Fills with data in linear time; some stringstream implementations * take N^2 time. */ class CDataStream { protected: typedef CSerializeData vector_type; vector_type vch; unsigned int nReadPos; int nType; int nVersion; public: typedef vector_type::allocator_type allocator_type; typedef vector_type::size_type size_type; typedef vector_type::difference_type difference_type; typedef vector_type::reference reference; typedef vector_type::const_reference const_reference; typedef vector_type::value_type value_type; typedef vector_type::iterator iterator; typedef vector_type::const_iterator const_iterator; typedef vector_type::reverse_iterator reverse_iterator; explicit CDataStream(int nTypeIn, int nVersionIn) { Init(nTypeIn, nVersionIn); } CDataStream(const_iterator pbegin, const_iterator pend, int nTypeIn, int nVersionIn) : vch(pbegin, pend) { Init(nTypeIn, nVersionIn); } CDataStream(const char *pbegin, const char *pend, int nTypeIn, int nVersionIn) : vch(pbegin, pend) { Init(nTypeIn, nVersionIn); } CDataStream(const vector_type &vchIn, int nTypeIn, int nVersionIn) : vch(vchIn.begin(), vchIn.end()) { Init(nTypeIn, nVersionIn); } CDataStream(const std::vector &vchIn, int nTypeIn, int nVersionIn) : vch(vchIn.begin(), vchIn.end()) { Init(nTypeIn, nVersionIn); } CDataStream(const std::vector &vchIn, int nTypeIn, int nVersionIn) : vch(vchIn.begin(), vchIn.end()) { Init(nTypeIn, nVersionIn); } template CDataStream(int nTypeIn, int nVersionIn, Args &&... args) { Init(nTypeIn, nVersionIn); ::SerializeMany(*this, std::forward(args)...); } void Init(int nTypeIn, int nVersionIn) { nReadPos = 0; nType = nTypeIn; nVersion = nVersionIn; } CDataStream &operator+=(const CDataStream &b) { vch.insert(vch.end(), b.begin(), b.end()); return *this; } friend CDataStream operator+(const CDataStream &a, const CDataStream &b) { CDataStream ret = a; ret += b; return (ret); } std::string str() const { return (std::string(begin(), end())); } // // Vector subset // const_iterator begin() const { return vch.begin() + nReadPos; } iterator begin() { return vch.begin() + nReadPos; } const_iterator end() const { return vch.end(); } iterator end() { return vch.end(); } size_type size() const { return vch.size() - nReadPos; } bool empty() const { return vch.size() == nReadPos; } void resize(size_type n, value_type c = 0) { vch.resize(n + nReadPos, c); } void reserve(size_type n) { vch.reserve(n + nReadPos); } const_reference operator[](size_type pos) const { return vch[pos + nReadPos]; } reference operator[](size_type pos) { return vch[pos + nReadPos]; } void clear() { vch.clear(); nReadPos = 0; } iterator insert(iterator it, const char &x = char()) { return vch.insert(it, x); } void insert(iterator it, size_type n, const char &x) { vch.insert(it, n, x); } value_type *data() { return vch.data() + nReadPos; } const value_type *data() const { return vch.data() + nReadPos; } void insert(iterator it, std::vector::const_iterator first, std::vector::const_iterator last) { if (last == first) { return; } assert(last - first > 0); if (it == vch.begin() + nReadPos && (unsigned int)(last - first) <= nReadPos) { // special case for inserting at the front when there's room nReadPos -= (last - first); memcpy(&vch[nReadPos], &first[0], last - first); } else { vch.insert(it, first, last); } } void insert(iterator it, const char *first, const char *last) { if (last == first) { return; } assert(last - first > 0); if (it == vch.begin() + nReadPos && (unsigned int)(last - first) <= nReadPos) { // special case for inserting at the front when there's room nReadPos -= (last - first); memcpy(&vch[nReadPos], &first[0], last - first); } else { vch.insert(it, first, last); } } iterator erase(iterator it) { if (it == vch.begin() + nReadPos) { // special case for erasing from the front if (++nReadPos >= vch.size()) { // whenever we reach the end, we take the opportunity to clear // the buffer nReadPos = 0; return vch.erase(vch.begin(), vch.end()); } return vch.begin() + nReadPos; } else { return vch.erase(it); } } iterator erase(iterator first, iterator last) { if (first == vch.begin() + nReadPos) { // special case for erasing from the front if (last == vch.end()) { nReadPos = 0; return vch.erase(vch.begin(), vch.end()); } else { nReadPos = (last - vch.begin()); return last; } } else return vch.erase(first, last); } inline void Compact() { vch.erase(vch.begin(), vch.begin() + nReadPos); nReadPos = 0; } bool Rewind(size_type n) { // Rewind by n characters if the buffer hasn't been compacted yet if (n > nReadPos) return false; nReadPos -= n; return true; } // // Stream subset // bool eof() const { return size() == 0; } CDataStream *rdbuf() { return this; } int in_avail() { return size(); } void SetType(int n) { nType = n; } int GetType() const { return nType; } void SetVersion(int n) { nVersion = n; } int GetVersion() const { return nVersion; } void read(char *pch, size_t nSize) { if (nSize == 0) { return; } // Read from the beginning of the buffer unsigned int nReadPosNext = nReadPos + nSize; if (nReadPosNext >= vch.size()) { if (nReadPosNext > vch.size()) { throw std::ios_base::failure( "CDataStream::read(): end of data"); } memcpy(pch, &vch[nReadPos], nSize); nReadPos = 0; vch.clear(); return; } memcpy(pch, &vch[nReadPos], nSize); nReadPos = nReadPosNext; } void ignore(int nSize) { // Ignore from the beginning of the buffer if (nSize < 0) { throw std::ios_base::failure( "CDataStream::ignore(): nSize negative"); } unsigned int nReadPosNext = nReadPos + nSize; if (nReadPosNext >= vch.size()) { if (nReadPosNext > vch.size()) throw std::ios_base::failure( "CDataStream::ignore(): end of data"); nReadPos = 0; vch.clear(); return; } nReadPos = nReadPosNext; } void write(const char *pch, size_t nSize) { // Write to the end of the buffer vch.insert(vch.end(), pch, pch + nSize); } template void Serialize(Stream &s) const { // Special case: stream << stream concatenates like stream += stream if (!vch.empty()) s.write((char *)&vch[0], vch.size() * sizeof(vch[0])); } template CDataStream &operator<<(const T &obj) { // Serialize to this stream ::Serialize(*this, obj); return (*this); } template CDataStream &operator>>(T &obj) { // Unserialize from this stream ::Unserialize(*this, obj); return (*this); } void GetAndClear(CSerializeData &d) { d.insert(d.end(), begin(), end()); clear(); } /** * XOR the contents of this stream with a certain key. * * @param[in] key The key used to XOR the data in this stream. */ void Xor(const std::vector &key) { if (key.size() == 0) { return; } for (size_type i = 0, j = 0; i != size(); i++) { vch[i] ^= key[j++]; // This potentially acts on very many bytes of data, so it's // important that we calculate `j`, i.e. the `key` index in this way // instead of doing a %, which would effectively be a division for // each byte Xor'd -- much slower than need be. if (j == key.size()) j = 0; } } }; /** * Non-refcounted RAII wrapper for FILE* * * Will automatically close the file when it goes out of scope if not null. If * you're returning the file pointer, return file.release(). If you need to * close the file early, use file.fclose() instead of fclose(file). */ class CAutoFile { private: // Disallow copies CAutoFile(const CAutoFile &); CAutoFile &operator=(const CAutoFile &); const int nType; const int nVersion; FILE *file; public: CAutoFile(FILE *filenew, int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) { file = filenew; } ~CAutoFile() { fclose(); } void fclose() { if (file) { ::fclose(file); file = nullptr; } } /** * Get wrapped FILE* with transfer of ownership. * @note This will invalidate the CAutoFile object, and makes it the * responsibility of the caller of this function to clean up the returned * FILE*. */ FILE *release() { FILE *ret = file; file = nullptr; return ret; } /** * Get wrapped FILE* without transfer of ownership. * @note Ownership of the FILE* will remain with this class. Use this only * if the scope of the CAutoFile outlives use of the passed pointer. */ FILE *Get() const { return file; } /** Return true if the wrapped FILE* is nullptr, false otherwise. */ bool IsNull() const { return (file == nullptr); } // // Stream subset // int GetType() const { return nType; } int GetVersion() const { return nVersion; } void read(char *pch, size_t nSize) { if (!file) throw std::ios_base::failure( "CAutoFile::read: file handle is nullptr"); if (fread(pch, 1, nSize, file) != nSize) throw std::ios_base::failure(feof(file) ? "CAutoFile::read: end of file" : "CAutoFile::read: fread failed"); } void ignore(size_t nSize) { if (!file) throw std::ios_base::failure( "CAutoFile::ignore: file handle is nullptr"); uint8_t data[4096]; while (nSize > 0) { size_t nNow = std::min(nSize, sizeof(data)); if (fread(data, 1, nNow, file) != nNow) throw std::ios_base::failure( feof(file) ? "CAutoFile::ignore: end of file" : "CAutoFile::read: fread failed"); nSize -= nNow; } } void write(const char *pch, size_t nSize) { if (!file) throw std::ios_base::failure( "CAutoFile::write: file handle is nullptr"); if (fwrite(pch, 1, nSize, file) != nSize) throw std::ios_base::failure("CAutoFile::write: write failed"); } template CAutoFile &operator<<(const T &obj) { // Serialize to this stream if (!file) throw std::ios_base::failure( "CAutoFile::operator<<: file handle is nullptr"); ::Serialize(*this, obj); return (*this); } template CAutoFile &operator>>(T &obj) { // Unserialize from this stream if (!file) throw std::ios_base::failure( "CAutoFile::operator>>: file handle is nullptr"); ::Unserialize(*this, obj); return (*this); } }; /** * Non-refcounted RAII wrapper around a FILE* that implements a ring buffer to * deserialize from. It guarantees the ability to rewind a given number of * bytes. * * Will automatically close the file when it goes out of scope if not null. If * you need to close the file early, use file.fclose() instead of fclose(file). */ class CBufferedFile { private: // Disallow copies CBufferedFile(const CBufferedFile &); CBufferedFile &operator=(const CBufferedFile &); const int nType; const int nVersion; // source file FILE *src; // how many bytes have been read from source uint64_t nSrcPos; // how many bytes have been read from this uint64_t nReadPos; // up to which position we're allowed to read uint64_t nReadLimit; // how many bytes we guarantee to rewind uint64_t nRewind; // the buffer std::vector vchBuf; protected: // read data from the source to fill the buffer bool Fill() { unsigned int pos = nSrcPos % vchBuf.size(); unsigned int readNow = vchBuf.size() - pos; unsigned int nAvail = vchBuf.size() - (nSrcPos - nReadPos) - nRewind; if (nAvail < readNow) readNow = nAvail; if (readNow == 0) return false; - size_t read = fread((void *)&vchBuf[pos], 1, readNow, src); - if (read == 0) { + size_t nBytes = fread((void *)&vchBuf[pos], 1, readNow, src); + if (nBytes == 0) { throw std::ios_base::failure( feof(src) ? "CBufferedFile::Fill: end of file" : "CBufferedFile::Fill: fread failed"); } else { - nSrcPos += read; + nSrcPos += nBytes; return true; } } public: CBufferedFile(FILE *fileIn, uint64_t nBufSize, uint64_t nRewindIn, int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn), nSrcPos(0), nReadPos(0), nReadLimit((uint64_t)(-1)), nRewind(nRewindIn), vchBuf(nBufSize, 0) { src = fileIn; } ~CBufferedFile() { fclose(); } int GetVersion() const { return nVersion; } int GetType() const { return nType; } void fclose() { if (src) { ::fclose(src); src = nullptr; } } // check whether we're at the end of the source file bool eof() const { return nReadPos == nSrcPos && feof(src); } // read a number of bytes void read(char *pch, size_t nSize) { if (nSize + nReadPos > nReadLimit) throw std::ios_base::failure("Read attempted past buffer limit"); if (nSize + nRewind > vchBuf.size()) throw std::ios_base::failure("Read larger than buffer size"); while (nSize > 0) { if (nReadPos == nSrcPos) Fill(); unsigned int pos = nReadPos % vchBuf.size(); size_t nNow = nSize; if (nNow + pos > vchBuf.size()) nNow = vchBuf.size() - pos; if (nNow + nReadPos > nSrcPos) nNow = nSrcPos - nReadPos; memcpy(pch, &vchBuf[pos], nNow); nReadPos += nNow; pch += nNow; nSize -= nNow; } } // return the current reading position uint64_t GetPos() { return nReadPos; } // rewind to a given reading position bool SetPos(uint64_t nPos) { nReadPos = nPos; if (nReadPos + nRewind < nSrcPos) { nReadPos = nSrcPos - nRewind; return false; } else if (nReadPos > nSrcPos) { nReadPos = nSrcPos; return false; } else { return true; } } bool Seek(uint64_t nPos) { long nLongPos = nPos; if (nPos != (uint64_t)nLongPos) return false; if (fseek(src, nLongPos, SEEK_SET)) return false; nLongPos = ftell(src); nSrcPos = nLongPos; nReadPos = nLongPos; return true; } // Prevent reading beyond a certain position. No argument removes the limit. bool SetLimit(uint64_t nPos = (uint64_t)(-1)) { if (nPos < nReadPos) return false; nReadLimit = nPos; return true; } template CBufferedFile &operator>>(T &obj) { // Unserialize from this stream ::Unserialize(*this, obj); return (*this); } // search for a given byte in the stream, and remain positioned on it void FindByte(char ch) { while (true) { if (nReadPos == nSrcPos) Fill(); if (vchBuf[nReadPos % vchBuf.size()] == ch) break; nReadPos++; } } }; #endif // BITCOIN_STREAMS_H diff --git a/src/support/lockedpool.cpp b/src/support/lockedpool.cpp index 78eda9e77..90788499b 100644 --- a/src/support/lockedpool.cpp +++ b/src/support/lockedpool.cpp @@ -1,374 +1,374 @@ // Copyright (c) 2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "support/lockedpool.h" #include "support/cleanse.h" #if defined(HAVE_CONFIG_H) #include "config/bitcoin-config.h" #endif #ifdef WIN32 #ifdef _WIN32_WINNT #undef _WIN32_WINNT #endif #define _WIN32_WINNT 0x0501 #define WIN32_LEAN_AND_MEAN 1 #ifndef NOMINMAX #define NOMINMAX #endif #include #else #include // for PAGESIZE #include // for mmap #include // for getrlimit #include // for sysconf #endif #include LockedPoolManager *LockedPoolManager::_instance = nullptr; std::once_flag LockedPoolManager::init_flag; /*******************************************************************************/ // Utilities // /** Align up to power of 2 */ static inline size_t align_up(size_t x, size_t align) { return (x + align - 1) & ~(align - 1); } /*******************************************************************************/ // Implementation: Arena Arena::Arena(void *base_in, size_t size_in, size_t alignment_in) : base(static_cast(base_in)), end(static_cast(base_in) + size_in), alignment(alignment_in) { // Start with one free chunk that covers the entire arena chunks_free.emplace(base, size_in); } Arena::~Arena() {} void *Arena::alloc(size_t size) { // Round to next multiple of alignment size = align_up(size, alignment); // Don't handle zero-sized chunks if (size == 0) return nullptr; // Pick a large enough free-chunk auto it = std::find_if(chunks_free.begin(), chunks_free.end(), [=](const std::map::value_type &chunk) { return chunk.second >= size; }); if (it == chunks_free.end()) return nullptr; // Create the used-chunk, taking its space from the end of the free-chunk auto alloced = chunks_used.emplace(it->first + it->second - size, size).first; if (!(it->second -= size)) chunks_free.erase(it); return reinterpret_cast(alloced->first); } /* extend the Iterator if other begins at its end */ template bool extend(Iterator it, const Pair &other) { if (it->first + it->second == other.first) { it->second += other.second; return true; } return false; } void Arena::free(void *ptr) { // Freeing the nullptr pointer is OK. if (ptr == nullptr) { return; } // Remove chunk from used map auto i = chunks_used.find(static_cast(ptr)); if (i == chunks_used.end()) { throw std::runtime_error("Arena: invalid or double free"); } auto freed = *i; chunks_used.erase(i); // Add space to free map, coalescing contiguous chunks auto next = chunks_free.upper_bound(freed.first); auto prev = (next == chunks_free.begin()) ? chunks_free.end() : std::prev(next); if (prev == chunks_free.end() || !extend(prev, freed)) prev = chunks_free.emplace_hint(next, freed); if (next != chunks_free.end() && extend(prev, *next)) chunks_free.erase(next); } Arena::Stats Arena::stats() const { Arena::Stats r{0, 0, 0, chunks_used.size(), chunks_free.size()}; for (const auto &chunk : chunks_used) r.used += chunk.second; for (const auto &chunk : chunks_free) r.free += chunk.second; r.total = r.used + r.free; return r; } #ifdef ARENA_DEBUG void printchunk(char *base, size_t sz, bool used) { std::cout << "0x" << std::hex << std::setw(16) << std::setfill('0') << base << " 0x" << std::hex << std::setw(16) << std::setfill('0') << sz << " 0x" << used << std::endl; } void Arena::walk() const { for (const auto &chunk : chunks_used) printchunk(chunk.first, chunk.second, true); std::cout << std::endl; for (const auto &chunk : chunks_free) printchunk(chunk.first, chunk.second, false); std::cout << std::endl; } #endif /*******************************************************************************/ // Implementation: Win32LockedPageAllocator #ifdef WIN32 /** * LockedPageAllocator specialized for Windows. */ class Win32LockedPageAllocator : public LockedPageAllocator { public: Win32LockedPageAllocator(); void *AllocateLocked(size_t len, bool *lockingSuccess) override; void FreeLocked(void *addr, size_t len) override; size_t GetLimit() override; private: size_t page_size; }; Win32LockedPageAllocator::Win32LockedPageAllocator() { // Determine system page size in bytes SYSTEM_INFO sSysInfo; GetSystemInfo(&sSysInfo); page_size = sSysInfo.dwPageSize; } void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess) { len = align_up(len, page_size); void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); if (addr) { // VirtualLock is used to attempt to keep keying material out of swap. // Note that it does not provide this as a guarantee, but, in practice, // memory that has been VirtualLock'd almost never gets written to the // pagefile except in rare circumstances where memory is extremely low. *lockingSuccess = VirtualLock(const_cast(addr), len) != 0; } return addr; } void Win32LockedPageAllocator::FreeLocked(void *addr, size_t len) { len = align_up(len, page_size); memory_cleanse(addr, len); VirtualUnlock(const_cast(addr), len); } size_t Win32LockedPageAllocator::GetLimit() { // TODO is there a limit on windows, how to get it? return std::numeric_limits::max(); } #endif /*******************************************************************************/ // Implementation: PosixLockedPageAllocator #ifndef WIN32 /** * LockedPageAllocator specialized for OSes that don't try to be special * snowflakes. */ class PosixLockedPageAllocator : public LockedPageAllocator { public: PosixLockedPageAllocator(); void *AllocateLocked(size_t len, bool *lockingSuccess) override; void FreeLocked(void *addr, size_t len) override; size_t GetLimit() override; private: size_t page_size; }; PosixLockedPageAllocator::PosixLockedPageAllocator() { // Determine system page size in bytes #if defined(PAGESIZE) // defined in climits page_size = PAGESIZE; #else // assume some POSIX OS page_size = sysconf(_SC_PAGESIZE); #endif } // Some systems (at least OS X) do not define MAP_ANONYMOUS yet and define // MAP_ANON which is deprecated #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess) { void *addr; len = align_up(len, page_size); addr = mmap(nullptr, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (addr) { *lockingSuccess = mlock(addr, len) == 0; } return addr; } void PosixLockedPageAllocator::FreeLocked(void *addr, size_t len) { len = align_up(len, page_size); memory_cleanse(addr, len); munlock(addr, len); munmap(addr, len); } size_t PosixLockedPageAllocator::GetLimit() { #ifdef RLIMIT_MEMLOCK struct rlimit rlim; if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) { if (rlim.rlim_cur != RLIM_INFINITY) { return rlim.rlim_cur; } } #endif return std::numeric_limits::max(); } #endif /*******************************************************************************/ // Implementation: LockedPool LockedPool::LockedPool(std::unique_ptr allocator_in, LockingFailed_Callback lf_cb_in) : allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0) {} LockedPool::~LockedPool() {} void *LockedPool::alloc(size_t size) { std::lock_guard lock(mutex); // Don't handle impossible sizes if (size == 0 || size > ARENA_SIZE) return nullptr; // Try allocating from each current arena for (auto &arena : arenas) { void *addr = arena.alloc(size); if (addr) { return addr; } } // If that fails, create a new one if (new_arena(ARENA_SIZE, ARENA_ALIGN)) { return arenas.back().alloc(size); } return nullptr; } void LockedPool::free(void *ptr) { std::lock_guard lock(mutex); // TODO we can do better than this linear search by keeping a map of arena // extents to arena, and looking up the address. for (auto &arena : arenas) { if (arena.addressInArena(ptr)) { arena.free(ptr); return; } } throw std::runtime_error( "LockedPool: invalid address not pointing to any arena"); } LockedPool::Stats LockedPool::stats() const { std::lock_guard lock(mutex); LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0}; for (const auto &arena : arenas) { Arena::Stats i = arena.stats(); r.used += i.used; r.free += i.free; r.total += i.total; r.chunks_used += i.chunks_used; r.chunks_free += i.chunks_free; } return r; } bool LockedPool::new_arena(size_t size, size_t align) { bool locked; // If this is the first arena, handle this specially: Cap the upper size by // the process limit. This makes sure that the first arena will at least be // locked. An exception to this is if the process limit is 0: in this case // no memory can be locked at all so we'll skip past this logic. if (arenas.empty()) { size_t limit = allocator->GetLimit(); if (limit > 0) { size = std::min(size, limit); } } void *addr = allocator->AllocateLocked(size, &locked); if (!addr) { return false; } if (locked) { cumulative_bytes_locked += size; } else if (lf_cb) { // Call the locking-failed callback if locking failed if (!lf_cb()) { // If the callback returns false, free the memory and fail, // otherwise consider the user warned and proceed. allocator->FreeLocked(addr, size); return false; } } arenas.emplace_back(allocator.get(), addr, size, align); return true; } LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in) : Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in) {} LockedPool::LockedPageArena::~LockedPageArena() { allocator->FreeLocked(base, size); } /*******************************************************************************/ // Implementation: LockedPoolManager // LockedPoolManager::LockedPoolManager( - std::unique_ptr allocator) - : LockedPool(std::move(allocator), &LockedPoolManager::LockingFailed) {} + std::unique_ptr allocator_in) + : LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed) {} bool LockedPoolManager::LockingFailed() { // TODO: log something but how? without including util.h return true; } void LockedPoolManager::CreateInstance() { // Using a local static instance guarantees that the object is initialized when // it's first needed and also deinitialized after all objects that use it are // done with it. I can think of one unlikely scenario where we may have a static // deinitialization order/problem, but the check in LockedPoolManagerBase's // destructor helps us detect if that ever happens. #ifdef WIN32 std::unique_ptr allocator( new Win32LockedPageAllocator()); #else std::unique_ptr allocator( new PosixLockedPageAllocator()); #endif static LockedPoolManager instance(std::move(allocator)); LockedPoolManager::_instance = &instance; } diff --git a/src/test/coins_tests.cpp b/src/test/coins_tests.cpp index 140814377..c257b9da9 100644 --- a/src/test/coins_tests.cpp +++ b/src/test/coins_tests.cpp @@ -1,897 +1,897 @@ // Copyright (c) 2014-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "coins.h" #include "consensus/validation.h" #include "script/standard.h" #include "test/test_bitcoin.h" #include "uint256.h" #include "undo.h" #include "utilstrencodings.h" #include "validation.h" #include #include #include namespace { //! equality test bool operator==(const Coin &a, const Coin &b) { // Empty Coin objects are always equal. if (a.IsSpent() && b.IsSpent()) { return true; } return a.IsCoinBase() == b.IsCoinBase() && a.GetHeight() == b.GetHeight() && a.GetTxOut() == b.GetTxOut(); } class CCoinsViewTest : public CCoinsView { uint256 hashBestBlock_; std::map map_; public: bool GetCoin(const COutPoint &outpoint, Coin &coin) const override { std::map::const_iterator it = map_.find(outpoint); if (it == map_.end()) { return false; } coin = it->second; if (coin.IsSpent() && InsecureRandBool() == 0) { // Randomly return false in case of an empty entry. return false; } return true; } bool HaveCoin(const COutPoint &outpoint) const override { Coin coin; return GetCoin(outpoint, coin); } uint256 GetBestBlock() const override { return hashBestBlock_; } bool BatchWrite(CCoinsMap &mapCoins, const uint256 &hashBlock) override { for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end();) { if (it->second.flags & CCoinsCacheEntry::DIRTY) { // Same optimization used in CCoinsViewDB is to only write dirty // entries. map_[it->first] = it->second.coin; if (it->second.coin.IsSpent() && InsecureRandRange(3) == 0) { // Randomly delete empty entries on write. map_.erase(it->first); } } mapCoins.erase(it++); } if (!hashBlock.IsNull()) { hashBestBlock_ = hashBlock; } return true; } }; class CCoinsViewCacheTest : public CCoinsViewCache { public: - CCoinsViewCacheTest(CCoinsView *base) : CCoinsViewCache(base) {} + CCoinsViewCacheTest(CCoinsView *_base) : CCoinsViewCache(_base) {} void SelfTest() const { // Manually recompute the dynamic usage of the whole data, and compare // it. size_t ret = memusage::DynamicUsage(cacheCoins); size_t count = 0; for (CCoinsMap::iterator it = cacheCoins.begin(); it != cacheCoins.end(); it++) { ret += it->second.coin.DynamicMemoryUsage(); count++; } BOOST_CHECK_EQUAL(GetCacheSize(), count); BOOST_CHECK_EQUAL(DynamicMemoryUsage(), ret); } CCoinsMap &map() { return cacheCoins; } size_t &usage() { return cachedCoinsUsage; } }; } // namespace BOOST_FIXTURE_TEST_SUITE(coins_tests, BasicTestingSetup) static const unsigned int NUM_SIMULATION_ITERATIONS = 40000; // This is a large randomized insert/remove simulation test on a variable-size // stack of caches on top of CCoinsViewTest. // // It will randomly create/update/delete Coin entries to a tip of caches, with // txids picked from a limited list of random 256-bit hashes. Occasionally, a // new tip is added to the stack of caches, or the tip is flushed and removed. // // During the process, booleans are kept to make sure that the randomized // operation hits all branches. BOOST_AUTO_TEST_CASE(coins_cache_simulation_test) { // Various coverage trackers. bool removed_all_caches = false; bool reached_4_caches = false; bool added_an_entry = false; bool added_an_unspendable_entry = false; bool removed_an_entry = false; bool updated_an_entry = false; bool found_an_entry = false; bool missed_an_entry = false; bool uncached_an_entry = false; // A simple map to track what we expect the cache stack to represent. std::map result; // The cache stack. // A CCoinsViewTest at the bottom. CCoinsViewTest base; // A stack of CCoinsViewCaches on top. std::vector stack; // Start with one cache. stack.push_back(new CCoinsViewCacheTest(&base)); // Use a limited set of random transaction ids, so we do test overwriting // entries. std::vector txids; txids.resize(NUM_SIMULATION_ITERATIONS / 8); for (size_t i = 0; i < txids.size(); i++) { txids[i] = TxId(InsecureRand256()); } for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) { // Do a random modification. { // txid we're going to modify in this iteration. TxId txid = txids[InsecureRandRange(txids.size())]; Coin &coin = result[COutPoint(txid, 0)]; const Coin &entry = (InsecureRandRange(500) == 0) ? AccessByTxid(*stack.back(), txid) : stack.back()->AccessCoin(COutPoint(txid, 0)); BOOST_CHECK(coin == entry); if (InsecureRandRange(5) == 0 || coin.IsSpent()) { CTxOut txout; txout.nValue = int64_t(insecure_rand()) * SATOSHI; if (InsecureRandRange(16) == 0 && coin.IsSpent()) { txout.scriptPubKey.assign(1 + InsecureRandBits(6), OP_RETURN); BOOST_CHECK(txout.scriptPubKey.IsUnspendable()); added_an_unspendable_entry = true; } else { // Random sizes so we can test memory usage accounting txout.scriptPubKey.assign(InsecureRandBits(6), 0); (coin.IsSpent() ? added_an_entry : updated_an_entry) = true; coin = Coin(txout, 1, false); } Coin newcoin(txout, 1, false); stack.back()->AddCoin(COutPoint(txid, 0), newcoin, !coin.IsSpent() || insecure_rand() & 1); } else { removed_an_entry = true; coin.Clear(); stack.back()->SpendCoin(COutPoint(txid, 0)); } } // One every 10 iterations, remove a random entry from the cache if (InsecureRandRange(10)) { COutPoint out(txids[insecure_rand() % txids.size()], 0); int cacheid = insecure_rand() % stack.size(); stack[cacheid]->Uncache(out); uncached_an_entry |= !stack[cacheid]->HaveCoinInCache(out); } // Once every 1000 iterations and at the end, verify the full cache. if (InsecureRandRange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) { for (auto it = result.begin(); it != result.end(); it++) { bool have = stack.back()->HaveCoin(it->first); const Coin &coin = stack.back()->AccessCoin(it->first); BOOST_CHECK(have == !coin.IsSpent()); BOOST_CHECK(coin == it->second); if (coin.IsSpent()) { missed_an_entry = true; } else { BOOST_CHECK(stack.back()->HaveCoinInCache(it->first)); found_an_entry = true; } } for (const CCoinsViewCacheTest *test : stack) { test->SelfTest(); } } // Every 100 iterations, flush an intermediate cache if (InsecureRandRange(100) == 0) { if (stack.size() > 1 && InsecureRandBool() == 0) { unsigned int flushIndex = InsecureRandRange(stack.size() - 1); stack[flushIndex]->Flush(); } } if (InsecureRandRange(100) == 0) { // Every 100 iterations, change the cache stack. if (stack.size() > 0 && InsecureRandBool() == 0) { // Remove the top cache stack.back()->Flush(); delete stack.back(); stack.pop_back(); } if (stack.size() == 0 || (stack.size() < 4 && InsecureRandBool())) { // Add a new cache CCoinsView *tip = &base; if (stack.size() > 0) { tip = stack.back(); } else { removed_all_caches = true; } stack.push_back(new CCoinsViewCacheTest(tip)); if (stack.size() == 4) { reached_4_caches = true; } } } } // Clean up the stack. while (stack.size() > 0) { delete stack.back(); stack.pop_back(); } // Verify coverage. BOOST_CHECK(removed_all_caches); BOOST_CHECK(reached_4_caches); BOOST_CHECK(added_an_entry); BOOST_CHECK(added_an_unspendable_entry); BOOST_CHECK(removed_an_entry); BOOST_CHECK(updated_an_entry); BOOST_CHECK(found_an_entry); BOOST_CHECK(missed_an_entry); BOOST_CHECK(uncached_an_entry); } // Store of all necessary tx and undo data for next test typedef std::map> UtxoData; UtxoData utxoData; UtxoData::iterator FindRandomFrom(const std::set &utxoSet) { assert(utxoSet.size()); auto utxoSetIt = utxoSet.lower_bound(COutPoint(InsecureRand256(), 0)); if (utxoSetIt == utxoSet.end()) { utxoSetIt = utxoSet.begin(); } auto utxoDataIt = utxoData.find(*utxoSetIt); assert(utxoDataIt != utxoData.end()); return utxoDataIt; } // This test is similar to the previous test except the emphasis is on testing // the functionality of UpdateCoins random txs are created and UpdateCoins is // used to update the cache stack. In particular it is tested that spending a // duplicate coinbase tx has the expected effect (the other duplicate is // overwitten at all cache levels) BOOST_AUTO_TEST_CASE(updatecoins_simulation_test) { bool spent_a_duplicate_coinbase = false; // A simple map to track what we expect the cache stack to represent. std::map result; // The cache stack. // A CCoinsViewTest at the bottom. CCoinsViewTest base; // A stack of CCoinsViewCaches on top. std::vector stack; // Start with one cache. stack.push_back(new CCoinsViewCacheTest(&base)); // Track the txids we've used in various sets std::set coinbase_coins; std::set disconnected_coins; std::set duplicate_coins; std::set utxoset; for (int64_t i = 0; i < NUM_SIMULATION_ITERATIONS; i++) { uint32_t randiter = insecure_rand(); // 19/20 txs add a new transaction if (randiter % 20 < 19) { CMutableTransaction tx; tx.vin.resize(1); tx.vout.resize(1); // Keep txs unique unless intended to duplicate. tx.vout[0].nValue = i * SATOSHI; // Random sizes so we can test memory usage accounting tx.vout[0].scriptPubKey.assign(insecure_rand() & 0x3F, 0); unsigned int height = insecure_rand(); Coin old_coin; // 2/20 times create a new coinbase if (randiter % 20 < 2 || coinbase_coins.size() < 10) { // 1/10 of those times create a duplicate coinbase if (InsecureRandRange(10) == 0 && coinbase_coins.size()) { auto utxod = FindRandomFrom(coinbase_coins); // Reuse the exact same coinbase tx = std::get<0>(utxod->second); // shouldn't be available for reconnection if its been // duplicated disconnected_coins.erase(utxod->first); duplicate_coins.insert(utxod->first); } else { coinbase_coins.insert(COutPoint(tx.GetId(), 0)); } assert(CTransaction(tx).IsCoinBase()); } // 17/20 times reconnect previous or add a regular tx else { COutPoint prevout; // 1/20 times reconnect a previously disconnected tx if (randiter % 20 == 2 && disconnected_coins.size()) { auto utxod = FindRandomFrom(disconnected_coins); tx = std::get<0>(utxod->second); prevout = tx.vin[0].prevout; if (!CTransaction(tx).IsCoinBase() && !utxoset.count(prevout)) { disconnected_coins.erase(utxod->first); continue; } // If this tx is already IN the UTXO, then it must be a // coinbase, and it must be a duplicate if (utxoset.count(utxod->first)) { assert(CTransaction(tx).IsCoinBase()); assert(duplicate_coins.count(utxod->first)); } disconnected_coins.erase(utxod->first); } // 16/20 times create a regular tx else { auto utxod = FindRandomFrom(utxoset); prevout = utxod->first; // Construct the tx to spend the coins of prevouthash tx.vin[0].prevout = COutPoint(prevout.GetTxId(), 0); assert(!CTransaction(tx).IsCoinBase()); } // In this simple test coins only have two states, spent or // unspent, save the unspent state to restore old_coin = result[prevout]; // Update the expected result of prevouthash to know these coins // are spent result[prevout].Clear(); utxoset.erase(prevout); // The test is designed to ensure spending a duplicate coinbase // will work properly if that ever happens and not resurrect the // previously overwritten coinbase if (duplicate_coins.count(prevout)) { spent_a_duplicate_coinbase = true; } } // Update the expected result to know about the new output coins assert(tx.vout.size() == 1); const COutPoint outpoint(tx.GetId(), 0); result[outpoint] = Coin(tx.vout[0], height, CTransaction(tx).IsCoinBase()); // Call UpdateCoins on the top cache CTxUndo undo; UpdateCoins(*(stack.back()), CTransaction(tx), undo, height); // Update the utxo set for future spends utxoset.insert(outpoint); // Track this tx and undo info to use later utxoData.emplace(outpoint, std::make_tuple(CTransaction(tx), undo, old_coin)); } // 1/20 times undo a previous transaction else if (utxoset.size()) { auto utxod = FindRandomFrom(utxoset); CTransaction &tx = std::get<0>(utxod->second); CTxUndo &undo = std::get<1>(utxod->second); Coin &orig_coin = std::get<2>(utxod->second); // Update the expected result // Remove new outputs result[utxod->first].Clear(); // If not coinbase restore prevout if (!tx.IsCoinBase()) { result[tx.vin[0].prevout] = orig_coin; } // Disconnect the tx from the current UTXO // See code in DisconnectBlock // remove outputs stack.back()->SpendCoin(utxod->first); // restore inputs if (!tx.IsCoinBase()) { const COutPoint &out = tx.vin[0].prevout; UndoCoinSpend(undo.vprevout[0], *(stack.back()), out); } // Store as a candidate for reconnection disconnected_coins.insert(utxod->first); // Update the utxoset utxoset.erase(utxod->first); if (!tx.IsCoinBase()) { utxoset.insert(tx.vin[0].prevout); } } // Once every 1000 iterations and at the end, verify the full cache. if (InsecureRandRange(1000) == 1 || i == NUM_SIMULATION_ITERATIONS - 1) { for (auto it = result.begin(); it != result.end(); it++) { bool have = stack.back()->HaveCoin(it->first); const Coin &coin = stack.back()->AccessCoin(it->first); BOOST_CHECK(have == !coin.IsSpent()); BOOST_CHECK(coin == it->second); } } // One every 10 iterations, remove a random entry from the cache if (utxoset.size() > 1 && InsecureRandRange(30)) { stack[insecure_rand() % stack.size()]->Uncache( FindRandomFrom(utxoset)->first); } if (disconnected_coins.size() > 1 && InsecureRandRange(30)) { stack[insecure_rand() % stack.size()]->Uncache( FindRandomFrom(disconnected_coins)->first); } if (duplicate_coins.size() > 1 && InsecureRandRange(30)) { stack[insecure_rand() % stack.size()]->Uncache( FindRandomFrom(duplicate_coins)->first); } if (InsecureRandRange(100) == 0) { // Every 100 iterations, flush an intermediate cache if (stack.size() > 1 && InsecureRandBool() == 0) { unsigned int flushIndex = InsecureRandRange(stack.size() - 1); stack[flushIndex]->Flush(); } } if (InsecureRandRange(100) == 0) { // Every 100 iterations, change the cache stack. if (stack.size() > 0 && InsecureRandBool() == 0) { stack.back()->Flush(); delete stack.back(); stack.pop_back(); } if (stack.size() == 0 || (stack.size() < 4 && InsecureRandBool())) { CCoinsView *tip = &base; if (stack.size() > 0) { tip = stack.back(); } stack.push_back(new CCoinsViewCacheTest(tip)); } } } // Clean up the stack. while (stack.size() > 0) { delete stack.back(); stack.pop_back(); } // Verify coverage. BOOST_CHECK(spent_a_duplicate_coinbase); } BOOST_AUTO_TEST_CASE(coin_serialization) { // Good example CDataStream ss1( ParseHex("97f23c835800816115944e077fe7c803cfa57f29b36bf87c1d35"), SER_DISK, CLIENT_VERSION); Coin c1; ss1 >> c1; BOOST_CHECK_EQUAL(c1.IsCoinBase(), false); BOOST_CHECK_EQUAL(c1.GetHeight(), 203998U); BOOST_CHECK_EQUAL(c1.GetTxOut().nValue, int64_t(60000000000) * SATOSHI); BOOST_CHECK_EQUAL(HexStr(c1.GetTxOut().scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex( "816115944e077fe7c803cfa57f29b36bf87c1d35")))))); // Good example CDataStream ss2( ParseHex("8ddf77bbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa4"), SER_DISK, CLIENT_VERSION); Coin c2; ss2 >> c2; BOOST_CHECK_EQUAL(c2.IsCoinBase(), true); BOOST_CHECK_EQUAL(c2.GetHeight(), 120891); BOOST_CHECK_EQUAL(c2.GetTxOut().nValue, 110397 * SATOSHI); BOOST_CHECK_EQUAL(HexStr(c2.GetTxOut().scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex( "8c988f1a4a4de2161e0f50aac7f17e7f9555caa4")))))); // Smallest possible example CDataStream ss3(ParseHex("000006"), SER_DISK, CLIENT_VERSION); Coin c3; ss3 >> c3; BOOST_CHECK_EQUAL(c3.IsCoinBase(), false); BOOST_CHECK_EQUAL(c3.GetHeight(), 0); BOOST_CHECK_EQUAL(c3.GetTxOut().nValue, Amount::zero()); BOOST_CHECK_EQUAL(c3.GetTxOut().scriptPubKey.size(), 0); // scriptPubKey that ends beyond the end of the stream CDataStream ss4(ParseHex("000007"), SER_DISK, CLIENT_VERSION); try { Coin c4; ss4 >> c4; BOOST_CHECK_MESSAGE(false, "We should have thrown"); } catch (const std::ios_base::failure &e) { } // Very large scriptPubKey (3*10^9 bytes) past the end of the stream CDataStream tmp(SER_DISK, CLIENT_VERSION); uint64_t x = 3000000000ULL; tmp << VARINT(x); BOOST_CHECK_EQUAL(HexStr(tmp.begin(), tmp.end()), "8a95c0bb00"); CDataStream ss5(ParseHex("00008a95c0bb00"), SER_DISK, CLIENT_VERSION); try { Coin c5; ss5 >> c5; BOOST_CHECK_MESSAGE(false, "We should have thrown"); } catch (const std::ios_base::failure &e) { } } static const COutPoint OUTPOINT; static const Amount PRUNED(-1 * SATOSHI); static const Amount ABSENT(-2 * SATOSHI); static const Amount FAIL(-3 * SATOSHI); static const Amount VALUE1(100 * SATOSHI); static const Amount VALUE2(200 * SATOSHI); static const Amount VALUE3(300 * SATOSHI); static const char DIRTY = CCoinsCacheEntry::DIRTY; static const char FRESH = CCoinsCacheEntry::FRESH; static const char NO_ENTRY = -1; static const auto FLAGS = {char(0), FRESH, DIRTY, char(DIRTY | FRESH)}; static const auto CLEAN_FLAGS = {char(0), FRESH}; static const auto ABSENT_FLAGS = {NO_ENTRY}; static void SetCoinValue(const Amount value, Coin &coin) { assert(value != ABSENT); coin.Clear(); assert(coin.IsSpent()); if (value != PRUNED) { CTxOut out; out.nValue = value; coin = Coin(std::move(out), 1, false); assert(!coin.IsSpent()); } } size_t InsertCoinMapEntry(CCoinsMap &map, const Amount value, char flags) { if (value == ABSENT) { assert(flags == NO_ENTRY); return 0; } assert(flags != NO_ENTRY); CCoinsCacheEntry entry; entry.flags = flags; SetCoinValue(value, entry.coin); auto inserted = map.emplace(OUTPOINT, std::move(entry)); assert(inserted.second); return inserted.first->second.coin.DynamicMemoryUsage(); } void GetCoinMapEntry(const CCoinsMap &map, Amount &value, char &flags) { auto it = map.find(OUTPOINT); if (it == map.end()) { value = ABSENT; flags = NO_ENTRY; } else { if (it->second.coin.IsSpent()) { value = PRUNED; } else { value = it->second.coin.GetTxOut().nValue; } flags = it->second.flags; assert(flags != NO_ENTRY); } } void WriteCoinViewEntry(CCoinsView &view, const Amount value, char flags) { CCoinsMap map; InsertCoinMapEntry(map, value, flags); view.BatchWrite(map, {}); } class SingleEntryCacheTest { public: SingleEntryCacheTest(const Amount base_value, const Amount cache_value, char cache_flags) { WriteCoinViewEntry(base, base_value, base_value == ABSENT ? NO_ENTRY : DIRTY); cache.usage() += InsertCoinMapEntry(cache.map(), cache_value, cache_flags); } CCoinsView root; CCoinsViewCacheTest base{&root}; CCoinsViewCacheTest cache{&base}; }; void CheckAccessCoin(const Amount base_value, const Amount cache_value, const Amount expected_value, char cache_flags, char expected_flags) { SingleEntryCacheTest test(base_value, cache_value, cache_flags); test.cache.AccessCoin(OUTPOINT); test.cache.SelfTest(); Amount result_value; char result_flags; GetCoinMapEntry(test.cache.map(), result_value, result_flags); BOOST_CHECK_EQUAL(result_value, expected_value); BOOST_CHECK_EQUAL(result_flags, expected_flags); } BOOST_AUTO_TEST_CASE(coin_access) { /* Check AccessCoin behavior, requesting a coin from a cache view layered on * top of a base view, and checking the resulting entry in the cache after * the access. * * Base Cache Result Cache Result * Value Value Value Flags Flags */ CheckAccessCoin(ABSENT, ABSENT, ABSENT, NO_ENTRY, NO_ENTRY); CheckAccessCoin(ABSENT, PRUNED, PRUNED, 0, 0); CheckAccessCoin(ABSENT, PRUNED, PRUNED, FRESH, FRESH); CheckAccessCoin(ABSENT, PRUNED, PRUNED, DIRTY, DIRTY); CheckAccessCoin(ABSENT, PRUNED, PRUNED, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(ABSENT, VALUE2, VALUE2, 0, 0); CheckAccessCoin(ABSENT, VALUE2, VALUE2, FRESH, FRESH); CheckAccessCoin(ABSENT, VALUE2, VALUE2, DIRTY, DIRTY); CheckAccessCoin(ABSENT, VALUE2, VALUE2, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(PRUNED, ABSENT, PRUNED, NO_ENTRY, FRESH); CheckAccessCoin(PRUNED, PRUNED, PRUNED, 0, 0); CheckAccessCoin(PRUNED, PRUNED, PRUNED, FRESH, FRESH); CheckAccessCoin(PRUNED, PRUNED, PRUNED, DIRTY, DIRTY); CheckAccessCoin(PRUNED, PRUNED, PRUNED, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(PRUNED, VALUE2, VALUE2, 0, 0); CheckAccessCoin(PRUNED, VALUE2, VALUE2, FRESH, FRESH); CheckAccessCoin(PRUNED, VALUE2, VALUE2, DIRTY, DIRTY); CheckAccessCoin(PRUNED, VALUE2, VALUE2, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(VALUE1, ABSENT, VALUE1, NO_ENTRY, 0); CheckAccessCoin(VALUE1, PRUNED, PRUNED, 0, 0); CheckAccessCoin(VALUE1, PRUNED, PRUNED, FRESH, FRESH); CheckAccessCoin(VALUE1, PRUNED, PRUNED, DIRTY, DIRTY); CheckAccessCoin(VALUE1, PRUNED, PRUNED, DIRTY | FRESH, DIRTY | FRESH); CheckAccessCoin(VALUE1, VALUE2, VALUE2, 0, 0); CheckAccessCoin(VALUE1, VALUE2, VALUE2, FRESH, FRESH); CheckAccessCoin(VALUE1, VALUE2, VALUE2, DIRTY, DIRTY); CheckAccessCoin(VALUE1, VALUE2, VALUE2, DIRTY | FRESH, DIRTY | FRESH); } void CheckSpendCoin(Amount base_value, Amount cache_value, Amount expected_value, char cache_flags, char expected_flags) { SingleEntryCacheTest test(base_value, cache_value, cache_flags); test.cache.SpendCoin(OUTPOINT); test.cache.SelfTest(); Amount result_value; char result_flags; GetCoinMapEntry(test.cache.map(), result_value, result_flags); BOOST_CHECK_EQUAL(result_value, expected_value); BOOST_CHECK_EQUAL(result_flags, expected_flags); }; BOOST_AUTO_TEST_CASE(coin_spend) { /** * Check SpendCoin behavior, requesting a coin from a cache view layered on * top of a base view, spending, and then checking the resulting entry in * the cache after the modification. * * Base Cache Result Cache Result * Value Value Value Flags Flags */ CheckSpendCoin(ABSENT, ABSENT, ABSENT, NO_ENTRY, NO_ENTRY); CheckSpendCoin(ABSENT, PRUNED, PRUNED, 0, DIRTY); CheckSpendCoin(ABSENT, PRUNED, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(ABSENT, PRUNED, PRUNED, DIRTY, DIRTY); CheckSpendCoin(ABSENT, PRUNED, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(ABSENT, VALUE2, PRUNED, 0, DIRTY); CheckSpendCoin(ABSENT, VALUE2, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(ABSENT, VALUE2, PRUNED, DIRTY, DIRTY); CheckSpendCoin(ABSENT, VALUE2, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(PRUNED, ABSENT, ABSENT, NO_ENTRY, NO_ENTRY); CheckSpendCoin(PRUNED, PRUNED, PRUNED, 0, DIRTY); CheckSpendCoin(PRUNED, PRUNED, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(PRUNED, PRUNED, PRUNED, DIRTY, DIRTY); CheckSpendCoin(PRUNED, PRUNED, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(PRUNED, VALUE2, PRUNED, 0, DIRTY); CheckSpendCoin(PRUNED, VALUE2, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(PRUNED, VALUE2, PRUNED, DIRTY, DIRTY); CheckSpendCoin(PRUNED, VALUE2, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(VALUE1, ABSENT, PRUNED, NO_ENTRY, DIRTY); CheckSpendCoin(VALUE1, PRUNED, PRUNED, 0, DIRTY); CheckSpendCoin(VALUE1, PRUNED, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(VALUE1, PRUNED, PRUNED, DIRTY, DIRTY); CheckSpendCoin(VALUE1, PRUNED, ABSENT, DIRTY | FRESH, NO_ENTRY); CheckSpendCoin(VALUE1, VALUE2, PRUNED, 0, DIRTY); CheckSpendCoin(VALUE1, VALUE2, ABSENT, FRESH, NO_ENTRY); CheckSpendCoin(VALUE1, VALUE2, PRUNED, DIRTY, DIRTY); CheckSpendCoin(VALUE1, VALUE2, ABSENT, DIRTY | FRESH, NO_ENTRY); } void CheckAddCoinBase(Amount base_value, Amount cache_value, Amount modify_value, Amount expected_value, char cache_flags, char expected_flags, bool coinbase) { SingleEntryCacheTest test(base_value, cache_value, cache_flags); Amount result_value; char result_flags; try { CTxOut output; output.nValue = modify_value; test.cache.AddCoin(OUTPOINT, Coin(std::move(output), 1, coinbase), coinbase); test.cache.SelfTest(); GetCoinMapEntry(test.cache.map(), result_value, result_flags); } catch (std::logic_error &e) { result_value = FAIL; result_flags = NO_ENTRY; } BOOST_CHECK_EQUAL(result_value, expected_value); BOOST_CHECK_EQUAL(result_flags, expected_flags); } // Simple wrapper for CheckAddCoinBase function above that loops through // different possible base_values, making sure each one gives the same results. // This wrapper lets the coin_add test below be shorter and less repetitive, // while still verifying that the CoinsViewCache::AddCoin implementation ignores // base values. template void CheckAddCoin(Args &&... args) { for (Amount base_value : {ABSENT, PRUNED, VALUE1}) { CheckAddCoinBase(base_value, std::forward(args)...); } } BOOST_AUTO_TEST_CASE(coin_add) { /** * Check AddCoin behavior, requesting a new coin from a cache view, writing * a modification to the coin, and then checking the resulting entry in the * cache after the modification. Verify behavior with the with the AddCoin * potential_overwrite argument set to false, and to true. * * Cache Write Result Cache Result potential_overwrite * Value Value Value Flags Flags */ CheckAddCoin(ABSENT, VALUE3, VALUE3, NO_ENTRY, DIRTY | FRESH, false); CheckAddCoin(ABSENT, VALUE3, VALUE3, NO_ENTRY, DIRTY, true); CheckAddCoin(PRUNED, VALUE3, VALUE3, 0, DIRTY | FRESH, false); CheckAddCoin(PRUNED, VALUE3, VALUE3, 0, DIRTY, true); CheckAddCoin(PRUNED, VALUE3, VALUE3, FRESH, DIRTY | FRESH, false); CheckAddCoin(PRUNED, VALUE3, VALUE3, FRESH, DIRTY | FRESH, true); CheckAddCoin(PRUNED, VALUE3, VALUE3, DIRTY, DIRTY, false); CheckAddCoin(PRUNED, VALUE3, VALUE3, DIRTY, DIRTY, true); CheckAddCoin(PRUNED, VALUE3, VALUE3, DIRTY | FRESH, DIRTY | FRESH, false); CheckAddCoin(PRUNED, VALUE3, VALUE3, DIRTY | FRESH, DIRTY | FRESH, true); CheckAddCoin(VALUE2, VALUE3, FAIL, 0, NO_ENTRY, false); CheckAddCoin(VALUE2, VALUE3, VALUE3, 0, DIRTY, true); CheckAddCoin(VALUE2, VALUE3, FAIL, FRESH, NO_ENTRY, false); CheckAddCoin(VALUE2, VALUE3, VALUE3, FRESH, DIRTY | FRESH, true); CheckAddCoin(VALUE2, VALUE3, FAIL, DIRTY, NO_ENTRY, false); CheckAddCoin(VALUE2, VALUE3, VALUE3, DIRTY, DIRTY, true); CheckAddCoin(VALUE2, VALUE3, FAIL, DIRTY | FRESH, NO_ENTRY, false); CheckAddCoin(VALUE2, VALUE3, VALUE3, DIRTY | FRESH, DIRTY | FRESH, true); } void CheckWriteCoin(Amount parent_value, Amount child_value, Amount expected_value, char parent_flags, char child_flags, char expected_flags) { SingleEntryCacheTest test(ABSENT, parent_value, parent_flags); Amount result_value; char result_flags; try { WriteCoinViewEntry(test.cache, child_value, child_flags); test.cache.SelfTest(); GetCoinMapEntry(test.cache.map(), result_value, result_flags); } catch (std::logic_error &e) { result_value = FAIL; result_flags = NO_ENTRY; } BOOST_CHECK_EQUAL(result_value, expected_value); BOOST_CHECK_EQUAL(result_flags, expected_flags); } BOOST_AUTO_TEST_CASE(coin_write) { /* Check BatchWrite behavior, flushing one entry from a child cache to a * parent cache, and checking the resulting entry in the parent cache * after the write. * * Parent Child Result Parent Child Result * Value Value Value Flags Flags Flags */ CheckWriteCoin(ABSENT, ABSENT, ABSENT, NO_ENTRY, NO_ENTRY, NO_ENTRY); CheckWriteCoin(ABSENT, PRUNED, PRUNED, NO_ENTRY, DIRTY, DIRTY); CheckWriteCoin(ABSENT, PRUNED, ABSENT, NO_ENTRY, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(ABSENT, VALUE2, VALUE2, NO_ENTRY, DIRTY, DIRTY); CheckWriteCoin(ABSENT, VALUE2, VALUE2, NO_ENTRY, DIRTY | FRESH, DIRTY | FRESH); CheckWriteCoin(PRUNED, ABSENT, PRUNED, 0, NO_ENTRY, 0); CheckWriteCoin(PRUNED, ABSENT, PRUNED, FRESH, NO_ENTRY, FRESH); CheckWriteCoin(PRUNED, ABSENT, PRUNED, DIRTY, NO_ENTRY, DIRTY); CheckWriteCoin(PRUNED, ABSENT, PRUNED, DIRTY | FRESH, NO_ENTRY, DIRTY | FRESH); CheckWriteCoin(PRUNED, PRUNED, PRUNED, 0, DIRTY, DIRTY); CheckWriteCoin(PRUNED, PRUNED, PRUNED, 0, DIRTY | FRESH, DIRTY); CheckWriteCoin(PRUNED, PRUNED, ABSENT, FRESH, DIRTY, NO_ENTRY); CheckWriteCoin(PRUNED, PRUNED, ABSENT, FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(PRUNED, PRUNED, PRUNED, DIRTY, DIRTY, DIRTY); CheckWriteCoin(PRUNED, PRUNED, PRUNED, DIRTY, DIRTY | FRESH, DIRTY); CheckWriteCoin(PRUNED, PRUNED, ABSENT, DIRTY | FRESH, DIRTY, NO_ENTRY); CheckWriteCoin(PRUNED, PRUNED, ABSENT, DIRTY | FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, 0, DIRTY, DIRTY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, 0, DIRTY | FRESH, DIRTY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, FRESH, DIRTY, DIRTY | FRESH); CheckWriteCoin(PRUNED, VALUE2, VALUE2, FRESH, DIRTY | FRESH, DIRTY | FRESH); CheckWriteCoin(PRUNED, VALUE2, VALUE2, DIRTY, DIRTY, DIRTY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, DIRTY, DIRTY | FRESH, DIRTY); CheckWriteCoin(PRUNED, VALUE2, VALUE2, DIRTY | FRESH, DIRTY, DIRTY | FRESH); CheckWriteCoin(PRUNED, VALUE2, VALUE2, DIRTY | FRESH, DIRTY | FRESH, DIRTY | FRESH); CheckWriteCoin(VALUE1, ABSENT, VALUE1, 0, NO_ENTRY, 0); CheckWriteCoin(VALUE1, ABSENT, VALUE1, FRESH, NO_ENTRY, FRESH); CheckWriteCoin(VALUE1, ABSENT, VALUE1, DIRTY, NO_ENTRY, DIRTY); CheckWriteCoin(VALUE1, ABSENT, VALUE1, DIRTY | FRESH, NO_ENTRY, DIRTY | FRESH); CheckWriteCoin(VALUE1, PRUNED, PRUNED, 0, DIRTY, DIRTY); CheckWriteCoin(VALUE1, PRUNED, FAIL, 0, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, ABSENT, FRESH, DIRTY, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, FAIL, FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, PRUNED, DIRTY, DIRTY, DIRTY); CheckWriteCoin(VALUE1, PRUNED, FAIL, DIRTY, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, ABSENT, DIRTY | FRESH, DIRTY, NO_ENTRY); CheckWriteCoin(VALUE1, PRUNED, FAIL, DIRTY | FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, VALUE2, VALUE2, 0, DIRTY, DIRTY); CheckWriteCoin(VALUE1, VALUE2, FAIL, 0, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, VALUE2, VALUE2, FRESH, DIRTY, DIRTY | FRESH); CheckWriteCoin(VALUE1, VALUE2, FAIL, FRESH, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, VALUE2, VALUE2, DIRTY, DIRTY, DIRTY); CheckWriteCoin(VALUE1, VALUE2, FAIL, DIRTY, DIRTY | FRESH, NO_ENTRY); CheckWriteCoin(VALUE1, VALUE2, VALUE2, DIRTY | FRESH, DIRTY, DIRTY | FRESH); CheckWriteCoin(VALUE1, VALUE2, FAIL, DIRTY | FRESH, DIRTY | FRESH, NO_ENTRY); // The checks above omit cases where the child flags are not DIRTY, since // they would be too repetitive (the parent cache is never updated in these // cases). The loop below covers these cases and makes sure the parent cache // is always left unchanged. for (Amount parent_value : {ABSENT, PRUNED, VALUE1}) { for (Amount child_value : {ABSENT, PRUNED, VALUE2}) { for (char parent_flags : parent_value == ABSENT ? ABSENT_FLAGS : FLAGS) { for (char child_flags : child_value == ABSENT ? ABSENT_FLAGS : CLEAN_FLAGS) { CheckWriteCoin(parent_value, child_value, parent_value, parent_flags, child_flags, parent_flags); } } } } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/timedata.h b/src/timedata.h index cddb19a39..91aac47e8 100644 --- a/src/timedata.h +++ b/src/timedata.h @@ -1,68 +1,68 @@ // Copyright (c) 2014-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_TIMEDATA_H #define BITCOIN_TIMEDATA_H #include #include #include #include static const int64_t DEFAULT_MAX_TIME_ADJUSTMENT = 70 * 60; class CNetAddr; /** * Median filter over a stream of values. * Returns the median of the last N numbers */ template class CMedianFilter { private: std::vector vValues; std::vector vSorted; unsigned int nSize; public: - CMedianFilter(unsigned int size, T initial_value) : nSize(size) { - vValues.reserve(size); + CMedianFilter(unsigned int _size, T initial_value) : nSize(_size) { + vValues.reserve(_size); vValues.push_back(initial_value); vSorted = vValues; } void input(T value) { if (vValues.size() == nSize) { vValues.erase(vValues.begin()); } vValues.push_back(value); vSorted.resize(vValues.size()); std::copy(vValues.begin(), vValues.end(), vSorted.begin()); std::sort(vSorted.begin(), vSorted.end()); } T median() const { - int size = vSorted.size(); - assert(size > 0); - - if (size & 1) { + int vSortedSize = vSorted.size(); + assert(vSortedSize > 0); + if (vSortedSize & 1) { // Odd number of elements - return vSorted[size / 2]; + return vSorted[vSortedSize / 2]; } else { // Even number of elements - return (vSorted[size / 2 - 1] + vSorted[size / 2]) / 2; + return (vSorted[vSortedSize / 2 - 1] + vSorted[vSortedSize / 2]) / + 2; } } int size() const { return vValues.size(); } std::vector sorted() const { return vSorted; } }; /** Functions to keep track of adjusted P2P time */ int64_t GetTimeOffset(); int64_t GetAdjustedTime(); void AddTimeData(const CNetAddr &ip, int64_t nTime); #endif // BITCOIN_TIMEDATA_H