diff --git a/src/rpc/server.cpp b/src/rpc/server.cpp index ae2e2ae5e..aa69013b3 100644 --- a/src/rpc/server.cpp +++ b/src/rpc/server.cpp @@ -1,576 +1,576 @@ // Copyright (c) 2010 Satoshi Nakamoto // Copyright (c) 2009-2018 The Bitcoin Core developers // Copyright (c) 2018-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include // for unique_ptr #include #include #include static RecursiveMutex cs_rpcWarmup; static std::atomic g_rpc_running{false}; -static std::once_flag g_rpc_interrupt_flag; -static std::once_flag g_rpc_stop_flag; static bool fRPCInWarmup GUARDED_BY(cs_rpcWarmup) = true; static std::string rpcWarmupStatus GUARDED_BY(cs_rpcWarmup) = "RPC server started"; /* Timer-creating functions */ static RPCTimerInterface *timerInterface = nullptr; /* Map of name to timer. */ static Mutex g_deadline_timers_mutex; static std::map> deadlineTimers GUARDED_BY(g_deadline_timers_mutex); static bool ExecuteCommand(Config &config, const CRPCCommand &command, const JSONRPCRequest &request, UniValue &result, bool last_handler); struct RPCCommandExecutionInfo { std::string method; int64_t start; }; struct RPCServerInfo { Mutex mutex; std::list active_commands GUARDED_BY(mutex); }; static RPCServerInfo g_rpc_server_info; struct RPCCommandExecution { std::list::iterator it; explicit RPCCommandExecution(const std::string &method) { LOCK(g_rpc_server_info.mutex); it = g_rpc_server_info.active_commands.insert( g_rpc_server_info.active_commands.cend(), {method, GetTimeMicros()}); } ~RPCCommandExecution() { LOCK(g_rpc_server_info.mutex); g_rpc_server_info.active_commands.erase(it); } }; UniValue RPCServer::ExecuteCommand(Config &config, const JSONRPCRequest &request) const { // Return immediately if in warmup // This is retained from the old RPC implementation because a lot of state // is set during warmup that RPC commands may depend on. This can be // safely removed once global variable usage has been eliminated. { LOCK(cs_rpcWarmup); if (fRPCInWarmup) { throw JSONRPCError(RPC_IN_WARMUP, rpcWarmupStatus); } } std::string commandName = request.strMethod; { auto commandsReadView = commands.getReadView(); auto iter = commandsReadView->find(commandName); if (iter != commandsReadView.end()) { return iter->second.get()->Execute(request); } } // TODO Remove the below call to tableRPC.execute() and only call it for // context-free RPC commands via an implementation of RPCCommand. // Check if context-free RPC method is valid and execute it return tableRPC.execute(config, request); } void RPCServer::RegisterCommand(std::unique_ptr command) { if (command != nullptr) { const std::string &commandName = command->GetName(); commands.getWriteView()->insert( std::make_pair(commandName, std::move(command))); } } static struct CRPCSignals { boost::signals2::signal Started; boost::signals2::signal Stopped; } g_rpcSignals; void RPCServerSignals::OnStarted(std::function slot) { g_rpcSignals.Started.connect(slot); } void RPCServerSignals::OnStopped(std::function slot) { g_rpcSignals.Stopped.connect(slot); } std::string CRPCTable::help(Config &config, const std::string &strCommand, const JSONRPCRequest &helpreq) const { std::string strRet; std::string category; std::set setDone; std::vector> vCommands; for (const auto &entry : mapCommands) { vCommands.push_back( std::make_pair(entry.second.front()->category + entry.first, entry.second.front())); } sort(vCommands.begin(), vCommands.end()); JSONRPCRequest jreq(helpreq); jreq.fHelp = true; jreq.params = UniValue(); for (const std::pair &command : vCommands) { const CRPCCommand *pcmd = command.second; std::string strMethod = pcmd->name; if ((strCommand != "" || pcmd->category == "hidden") && strMethod != strCommand) { continue; } jreq.strMethod = strMethod; try { UniValue unused_result; if (setDone.insert(pcmd->unique_id).second) { pcmd->actor(config, jreq, unused_result, true /* last_handler */); } } catch (const std::exception &e) { // Help text is returned in an exception std::string strHelp = std::string(e.what()); if (strCommand == "") { if (strHelp.find('\n') != std::string::npos) { strHelp = strHelp.substr(0, strHelp.find('\n')); } if (category != pcmd->category) { if (!category.empty()) { strRet += "\n"; } category = pcmd->category; strRet += "== " + Capitalize(category) + " ==\n"; } } strRet += strHelp + "\n"; } } if (strRet == "") { strRet = strprintf("help: unknown command: %s\n", strCommand); } strRet = strRet.substr(0, strRet.size() - 1); return strRet; } static UniValue help(Config &config, const JSONRPCRequest &jsonRequest) { if (jsonRequest.fHelp || jsonRequest.params.size() > 1) { throw std::runtime_error(RPCHelpMan{ "help", "List all commands, or get help for a specified command.\n", { {"command", RPCArg::Type::STR, /* default */ "all commands", "The command to get help on"}, }, RPCResult{RPCResult::Type::STR, "", "The help text"}, RPCExamples{""}, } .ToString()); } std::string strCommand; if (jsonRequest.params.size() > 0) { strCommand = jsonRequest.params[0].get_str(); } return tableRPC.help(config, strCommand, jsonRequest); } static UniValue stop(const Config &config, const JSONRPCRequest &jsonRequest) { static const std::string RESULT{PACKAGE_NAME " stopping"}; // Accept the deprecated and ignored 'detach' boolean argument // Also accept the hidden 'wait' integer argument (milliseconds) // For instance, 'stop 1000' makes the call wait 1 second before returning // to the client (intended for testing) if (jsonRequest.fHelp || jsonRequest.params.size() > 1) { throw std::runtime_error(RPCHelpMan{ "stop", "\nRequest a graceful shutdown of " PACKAGE_NAME ".", {}, RPCResult{RPCResult::Type::STR, "", "A string with the content '" + RESULT + "'"}, RPCExamples{""}, } .ToString()); } // Event loop will exit after current HTTP requests have been handled, so // this reply will get back to the client. StartShutdown(); if (jsonRequest.params[0].isNum()) { UninterruptibleSleep( std::chrono::milliseconds{jsonRequest.params[0].get_int()}); } return RESULT; } static UniValue uptime(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "uptime", "Returns the total uptime of the server.\n", {}, RPCResult{RPCResult::Type::NUM, "", "The number of seconds that the server has been running"}, RPCExamples{HelpExampleCli("uptime", "") + HelpExampleRpc("uptime", "")}, } .Check(request); return GetTime() - GetStartupTime(); } static UniValue getrpcinfo(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "getrpcinfo", "Returns details of the RPC server.\n", {}, RPCResult{RPCResult::Type::OBJ, "", "", { {RPCResult::Type::ARR, "active_commands", "All active commands", { {RPCResult::Type::OBJ, "", "Information about an active command", { {RPCResult::Type::STR, "method", "The name of the RPC command"}, {RPCResult::Type::NUM, "duration", "The running time in microseconds"}, }}, }}, {RPCResult::Type::STR, "logpath", "The complete file path to the debug log"}, }}, RPCExamples{HelpExampleCli("getrpcinfo", "") + HelpExampleRpc("getrpcinfo", "")}, } .Check(request); LOCK(g_rpc_server_info.mutex); UniValue active_commands(UniValue::VARR); for (const RPCCommandExecutionInfo &info : g_rpc_server_info.active_commands) { UniValue entry(UniValue::VOBJ); entry.pushKV("method", info.method); entry.pushKV("duration", GetTimeMicros() - info.start); active_commands.push_back(entry); } UniValue result(UniValue::VOBJ); result.pushKV("active_commands", active_commands); const std::string path = LogInstance().m_file_path.string(); UniValue log_path(UniValue::VSTR, path); result.pushKV("logpath", log_path); return result; } // clang-format off static const CRPCCommand vRPCCommands[] = { // category name actor (function) argNames // ------------------- ------------------------ ---------------------- ---------- /* Overall control/query calls */ { "control", "getrpcinfo", getrpcinfo, {} }, { "control", "help", help, {"command"} }, { "control", "stop", stop, {"wait"} }, { "control", "uptime", uptime, {} }, }; // clang-format on CRPCTable::CRPCTable() { unsigned int vcidx; for (vcidx = 0; vcidx < (sizeof(vRPCCommands) / sizeof(vRPCCommands[0])); vcidx++) { const CRPCCommand *pcmd; pcmd = &vRPCCommands[vcidx]; mapCommands[pcmd->name].push_back(pcmd); } } bool CRPCTable::appendCommand(const std::string &name, const CRPCCommand *pcmd) { if (IsRPCRunning()) { return false; } mapCommands[name].push_back(pcmd); return true; } bool CRPCTable::removeCommand(const std::string &name, const CRPCCommand *pcmd) { auto it = mapCommands.find(name); if (it != mapCommands.end()) { auto new_end = std::remove(it->second.begin(), it->second.end(), pcmd); if (it->second.end() != new_end) { it->second.erase(new_end, it->second.end()); return true; } } return false; } void StartRPC() { LogPrint(BCLog::RPC, "Starting RPC\n"); g_rpc_running = true; g_rpcSignals.Started(); } void InterruptRPC() { + static std::once_flag g_rpc_interrupt_flag; // This function could be called twice if the GUI has been started with // -server=1. std::call_once(g_rpc_interrupt_flag, []() { LogPrint(BCLog::RPC, "Interrupting RPC\n"); // Interrupt e.g. running longpolls g_rpc_running = false; }); } void StopRPC() { + static std::once_flag g_rpc_stop_flag; // This function could be called twice if the GUI has been started with // -server=1. assert(!g_rpc_running); std::call_once(g_rpc_stop_flag, []() { LogPrint(BCLog::RPC, "Stopping RPC\n"); WITH_LOCK(g_deadline_timers_mutex, deadlineTimers.clear()); DeleteAuthCookie(); g_rpcSignals.Stopped(); }); } bool IsRPCRunning() { return g_rpc_running; } void RpcInterruptionPoint() { if (!IsRPCRunning()) { throw JSONRPCError(RPC_CLIENT_NOT_CONNECTED, "Shutting down"); } } void SetRPCWarmupStatus(const std::string &newStatus) { LOCK(cs_rpcWarmup); rpcWarmupStatus = newStatus; } void SetRPCWarmupFinished() { LOCK(cs_rpcWarmup); assert(fRPCInWarmup); fRPCInWarmup = false; } bool RPCIsInWarmup(std::string *outStatus) { LOCK(cs_rpcWarmup); if (outStatus) { *outStatus = rpcWarmupStatus; } return fRPCInWarmup; } bool IsDeprecatedRPCEnabled(const ArgsManager &args, const std::string &method) { const std::vector enabled_methods = args.GetArgs("-deprecatedrpc"); return find(enabled_methods.begin(), enabled_methods.end(), method) != enabled_methods.end(); } static UniValue JSONRPCExecOne(Config &config, RPCServer &rpcServer, JSONRPCRequest jreq, const UniValue &req) { UniValue rpc_result(UniValue::VOBJ); try { jreq.parse(req); UniValue result = rpcServer.ExecuteCommand(config, jreq); rpc_result = JSONRPCReplyObj(result, NullUniValue, jreq.id); } catch (const UniValue &objError) { rpc_result = JSONRPCReplyObj(NullUniValue, objError, jreq.id); } catch (const std::exception &e) { rpc_result = JSONRPCReplyObj( NullUniValue, JSONRPCError(RPC_PARSE_ERROR, e.what()), jreq.id); } return rpc_result; } std::string JSONRPCExecBatch(Config &config, RPCServer &rpcServer, const JSONRPCRequest &jreq, const UniValue &vReq) { UniValue ret(UniValue::VARR); for (size_t i = 0; i < vReq.size(); i++) { ret.push_back(JSONRPCExecOne(config, rpcServer, jreq, vReq[i])); } return ret.write() + "\n"; } /** * Process named arguments into a vector of positional arguments, based on the * passed-in specification for the RPC call's arguments. */ static inline JSONRPCRequest transformNamedArguments(const JSONRPCRequest &in, const std::vector &argNames) { JSONRPCRequest out = in; out.params = UniValue(UniValue::VARR); // Build a map of parameters, and remove ones that have been processed, so // that we can throw a focused error if there is an unknown one. const std::vector &keys = in.params.getKeys(); const std::vector &values = in.params.getValues(); std::unordered_map argsIn; for (size_t i = 0; i < keys.size(); ++i) { argsIn[keys[i]] = &values[i]; } // Process expected parameters. int hole = 0; for (const std::string &argNamePattern : argNames) { std::vector vargNames; boost::algorithm::split(vargNames, argNamePattern, boost::algorithm::is_any_of("|")); auto fr = argsIn.end(); for (const std::string &argName : vargNames) { fr = argsIn.find(argName); if (fr != argsIn.end()) { break; } } if (fr != argsIn.end()) { for (int i = 0; i < hole; ++i) { // Fill hole between specified parameters with JSON nulls, but // not at the end (for backwards compatibility with calls that // act based on number of specified parameters). out.params.push_back(UniValue()); } hole = 0; out.params.push_back(*fr->second); argsIn.erase(fr); } else { hole += 1; } } // If there are still arguments in the argsIn map, this is an error. if (!argsIn.empty()) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Unknown named parameter " + argsIn.begin()->first); } // Return request with named arguments transformed to positional arguments return out; } UniValue CRPCTable::execute(Config &config, const JSONRPCRequest &request) const { // Return immediately if in warmup { LOCK(cs_rpcWarmup); if (fRPCInWarmup) { throw JSONRPCError(RPC_IN_WARMUP, rpcWarmupStatus); } } // Find method auto it = mapCommands.find(request.strMethod); if (it != mapCommands.end()) { UniValue result; for (const auto &command : it->second) { if (ExecuteCommand(config, *command, request, result, &command == &it->second.back())) { return result; } } } throw JSONRPCError(RPC_METHOD_NOT_FOUND, "Method not found"); } static bool ExecuteCommand(Config &config, const CRPCCommand &command, const JSONRPCRequest &request, UniValue &result, bool last_handler) { try { RPCCommandExecution execution(request.strMethod); // Execute, convert arguments to array if necessary if (request.params.isObject()) { return command.actor( config, transformNamedArguments(request, command.argNames), result, last_handler); } else { return command.actor(config, request, result, last_handler); } } catch (const std::exception &e) { throw JSONRPCError(RPC_MISC_ERROR, e.what()); } } std::vector CRPCTable::listCommands() const { std::vector commandList; for (const auto &i : mapCommands) { commandList.emplace_back(i.first); } return commandList; } void RPCSetTimerInterfaceIfUnset(RPCTimerInterface *iface) { if (!timerInterface) { timerInterface = iface; } } void RPCSetTimerInterface(RPCTimerInterface *iface) { timerInterface = iface; } void RPCUnsetTimerInterface(RPCTimerInterface *iface) { if (timerInterface == iface) { timerInterface = nullptr; } } void RPCRunLater(const std::string &name, std::function func, int64_t nSeconds) { if (!timerInterface) { throw JSONRPCError(RPC_INTERNAL_ERROR, "No timer handler registered for RPC"); } LOCK(g_deadline_timers_mutex); deadlineTimers.erase(name); LogPrint(BCLog::RPC, "queue run of timer %s in %i seconds (using %s)\n", name, nSeconds, timerInterface->Name()); deadlineTimers.emplace( name, std::unique_ptr( timerInterface->NewTimer(func, nSeconds * 1000))); } int RPCSerializationFlags() { return 0; } CRPCTable tableRPC; diff --git a/src/support/lockedpool.cpp b/src/support/lockedpool.cpp index 26e8d99b1..f20cf3aca 100644 --- a/src/support/lockedpool.cpp +++ b/src/support/lockedpool.cpp @@ -1,411 +1,410 @@ // Copyright (c) 2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #if defined(HAVE_CONFIG_H) #include #endif #ifdef WIN32 #ifndef NOMINMAX #define NOMINMAX #endif #include #else #include // for PAGESIZE #include // for mmap #include // for getrlimit #include // for sysconf #endif #include #ifdef ARENA_DEBUG #include #include #endif LockedPoolManager *LockedPoolManager::_instance = nullptr; -std::once_flag LockedPoolManager::init_flag; /*******************************************************************************/ // Utilities // /** Align up to power of 2 */ static inline size_t align_up(size_t x, size_t align) { return (x + align - 1) & ~(align - 1); } /*******************************************************************************/ // Implementation: Arena Arena::Arena(void *base_in, size_t size_in, size_t alignment_in) : base(static_cast(base_in)), end(static_cast(base_in) + size_in), alignment(alignment_in) { // Start with one free chunk that covers the entire arena auto it = size_to_free_chunk.emplace(size_in, base); chunks_free.emplace(base, it); chunks_free_end.emplace(base + size_in, it); } Arena::~Arena() {} void *Arena::alloc(size_t size) { // Round to next multiple of alignment size = align_up(size, alignment); // Don't handle zero-sized chunks if (size == 0) { return nullptr; } // Pick a large enough free-chunk. Returns an iterator pointing to the first // element that is not less than key. This allocation strategy is best-fit. // According to "Dynamic Storage Allocation: A Survey and Critical Review", // Wilson et. al. 1995, // http://www.scs.stanford.edu/14wi-cs140/sched/readings/wilson.pdf, // best-fit and first-fit policies seem to work well in practice. auto size_ptr_it = size_to_free_chunk.lower_bound(size); if (size_ptr_it == size_to_free_chunk.end()) { return nullptr; } // Create the used-chunk, taking its space from the end of the free-chunk const size_t size_remaining = size_ptr_it->first - size; auto alloced = chunks_used.emplace(size_ptr_it->second + size_remaining, size).first; chunks_free_end.erase(size_ptr_it->second + size_ptr_it->first); if (size_ptr_it->first == size) { // whole chunk is used up chunks_free.erase(size_ptr_it->second); } else { // still some memory left in the chunk auto it_remaining = size_to_free_chunk.emplace(size_remaining, size_ptr_it->second); chunks_free[size_ptr_it->second] = it_remaining; chunks_free_end.emplace(size_ptr_it->second + size_remaining, it_remaining); } size_to_free_chunk.erase(size_ptr_it); return reinterpret_cast(alloced->first); } void Arena::free(void *ptr) { // Freeing the nullptr pointer is OK. if (ptr == nullptr) { return; } // Remove chunk from used map auto i = chunks_used.find(static_cast(ptr)); if (i == chunks_used.end()) { throw std::runtime_error("Arena: invalid or double free"); } std::pair freed = *i; chunks_used.erase(i); // coalesce freed with previous chunk auto prev = chunks_free_end.find(freed.first); if (prev != chunks_free_end.end()) { freed.first -= prev->second->first; freed.second += prev->second->first; size_to_free_chunk.erase(prev->second); chunks_free_end.erase(prev); } // coalesce freed with chunk after freed auto next = chunks_free.find(freed.first + freed.second); if (next != chunks_free.end()) { freed.second += next->second->first; size_to_free_chunk.erase(next->second); chunks_free.erase(next); } // Add/set space with coalesced free chunk auto it = size_to_free_chunk.emplace(freed.second, freed.first); chunks_free[freed.first] = it; chunks_free_end[freed.first + freed.second] = it; } Arena::Stats Arena::stats() const { Arena::Stats r{0, 0, 0, chunks_used.size(), chunks_free.size()}; for (const auto &chunk : chunks_used) { r.used += chunk.second; } for (const auto &chunk : chunks_free) { r.free += chunk.second->first; } r.total = r.used + r.free; return r; } #ifdef ARENA_DEBUG static void printchunk(void *base, size_t sz, bool used) { std::cout << "0x" << std::hex << std::setw(16) << std::setfill('0') << base << " 0x" << std::hex << std::setw(16) << std::setfill('0') << sz << " 0x" << used << std::endl; } void Arena::walk() const { for (const auto &chunk : chunks_used) { printchunk(chunk.first, chunk.second, true); } std::cout << std::endl; for (const auto &chunk : chunks_free) { printchunk(chunk.first, chunk.second->first, false); } std::cout << std::endl; } #endif /*******************************************************************************/ // Implementation: Win32LockedPageAllocator #ifdef WIN32 /** * LockedPageAllocator specialized for Windows. */ class Win32LockedPageAllocator : public LockedPageAllocator { public: Win32LockedPageAllocator(); void *AllocateLocked(size_t len, bool *lockingSuccess) override; void FreeLocked(void *addr, size_t len) override; size_t GetLimit() override; private: size_t page_size; }; Win32LockedPageAllocator::Win32LockedPageAllocator() { // Determine system page size in bytes SYSTEM_INFO sSysInfo; GetSystemInfo(&sSysInfo); page_size = sSysInfo.dwPageSize; } void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess) { len = align_up(len, page_size); void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); if (addr) { // VirtualLock is used to attempt to keep keying material out of swap. // Note that it does not provide this as a guarantee, but, in practice, // memory that has been VirtualLock'd almost never gets written to the // pagefile except in rare circumstances where memory is extremely low. *lockingSuccess = VirtualLock(const_cast(addr), len) != 0; } return addr; } void Win32LockedPageAllocator::FreeLocked(void *addr, size_t len) { len = align_up(len, page_size); memory_cleanse(addr, len); VirtualUnlock(const_cast(addr), len); } size_t Win32LockedPageAllocator::GetLimit() { // TODO is there a limit on Windows, how to get it? return std::numeric_limits::max(); } #endif /*******************************************************************************/ // Implementation: PosixLockedPageAllocator #ifndef WIN32 /** * LockedPageAllocator specialized for OSes that don't try to be special * snowflakes. */ class PosixLockedPageAllocator : public LockedPageAllocator { public: PosixLockedPageAllocator(); void *AllocateLocked(size_t len, bool *lockingSuccess) override; void FreeLocked(void *addr, size_t len) override; size_t GetLimit() override; private: size_t page_size; }; PosixLockedPageAllocator::PosixLockedPageAllocator() { // Determine system page size in bytes #if defined(PAGESIZE) // defined in climits page_size = PAGESIZE; #else // assume some POSIX OS page_size = sysconf(_SC_PAGESIZE); #endif } // Some systems (at least OS X) do not define MAP_ANONYMOUS yet and define // MAP_ANON which is deprecated #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS MAP_ANON #endif void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess) { void *addr; len = align_up(len, page_size); addr = mmap(nullptr, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (addr == MAP_FAILED) { return nullptr; } if (addr) { *lockingSuccess = mlock(addr, len) == 0; #if defined(MADV_DONTDUMP) // Linux madvise(addr, len, MADV_DONTDUMP); #elif defined(MADV_NOCORE) // FreeBSD madvise(addr, len, MADV_NOCORE); #endif } return addr; } void PosixLockedPageAllocator::FreeLocked(void *addr, size_t len) { len = align_up(len, page_size); memory_cleanse(addr, len); munlock(addr, len); munmap(addr, len); } size_t PosixLockedPageAllocator::GetLimit() { #ifdef RLIMIT_MEMLOCK struct rlimit rlim; if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) { if (rlim.rlim_cur != RLIM_INFINITY) { return rlim.rlim_cur; } } #endif return std::numeric_limits::max(); } #endif /*******************************************************************************/ // Implementation: LockedPool LockedPool::LockedPool(std::unique_ptr allocator_in, LockingFailed_Callback lf_cb_in) : allocator(std::move(allocator_in)), lf_cb(lf_cb_in), cumulative_bytes_locked(0) {} LockedPool::~LockedPool() {} void *LockedPool::alloc(size_t size) { std::lock_guard lock(mutex); // Don't handle impossible sizes if (size == 0 || size > ARENA_SIZE) { return nullptr; } // Try allocating from each current arena for (auto &arena : arenas) { void *addr = arena.alloc(size); if (addr) { return addr; } } // If that fails, create a new one if (new_arena(ARENA_SIZE, ARENA_ALIGN)) { return arenas.back().alloc(size); } return nullptr; } void LockedPool::free(void *ptr) { std::lock_guard lock(mutex); // TODO we can do better than this linear search by keeping a map of arena // extents to arena, and looking up the address. for (auto &arena : arenas) { if (arena.addressInArena(ptr)) { arena.free(ptr); return; } } throw std::runtime_error( "LockedPool: invalid address not pointing to any arena"); } LockedPool::Stats LockedPool::stats() const { std::lock_guard lock(mutex); LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0}; for (const auto &arena : arenas) { Arena::Stats i = arena.stats(); r.used += i.used; r.free += i.free; r.total += i.total; r.chunks_used += i.chunks_used; r.chunks_free += i.chunks_free; } return r; } bool LockedPool::new_arena(size_t size, size_t align) { bool locked; // If this is the first arena, handle this specially: Cap the upper size by // the process limit. This makes sure that the first arena will at least be // locked. An exception to this is if the process limit is 0: in this case // no memory can be locked at all so we'll skip past this logic. if (arenas.empty()) { size_t limit = allocator->GetLimit(); if (limit > 0) { size = std::min(size, limit); } } void *addr = allocator->AllocateLocked(size, &locked); if (!addr) { return false; } if (locked) { cumulative_bytes_locked += size; } else if (lf_cb) { // Call the locking-failed callback if locking failed if (!lf_cb()) { // If the callback returns false, free the memory and fail, // otherwise consider the user warned and proceed. allocator->FreeLocked(addr, size); return false; } } arenas.emplace_back(allocator.get(), addr, size, align); return true; } LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in) : Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in) {} LockedPool::LockedPageArena::~LockedPageArena() { allocator->FreeLocked(base, size); } /*******************************************************************************/ // Implementation: LockedPoolManager // LockedPoolManager::LockedPoolManager( std::unique_ptr allocator_in) : LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed) {} bool LockedPoolManager::LockingFailed() { // TODO: log something but how? without including util.h return true; } void LockedPoolManager::CreateInstance() { // Using a local static instance guarantees that the object is initialized when // it's first needed and also deinitialized after all objects that use it are // done with it. I can think of one unlikely scenario where we may have a static // deinitialization order/problem, but the check in LockedPoolManagerBase's // destructor helps us detect if that ever happens. #ifdef WIN32 std::unique_ptr allocator( new Win32LockedPageAllocator()); #else std::unique_ptr allocator( new PosixLockedPageAllocator()); #endif static LockedPoolManager instance(std::move(allocator)); LockedPoolManager::_instance = &instance; } diff --git a/src/support/lockedpool.h b/src/support/lockedpool.h index 102fc956c..036c9b3cb 100644 --- a/src/support/lockedpool.h +++ b/src/support/lockedpool.h @@ -1,254 +1,253 @@ // Copyright (c) 2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SUPPORT_LOCKEDPOOL_H #define BITCOIN_SUPPORT_LOCKEDPOOL_H #include #include #include #include #include #include /** * OS-dependent allocation and deallocation of locked/pinned memory pages. * Abstract base class. */ class LockedPageAllocator { public: virtual ~LockedPageAllocator() {} /** * Allocate and lock memory pages. * If len is not a multiple of the system page size, it is rounded up. * Returns nullptr in case of allocation failure. * * If locking the memory pages could not be accomplished it will still * return the memory, however the lockingSuccess flag will be false. * lockingSuccess is undefined if the allocation fails. */ virtual void *AllocateLocked(size_t len, bool *lockingSuccess) = 0; /** * Unlock and free memory pages. * Clear the memory before unlocking. */ virtual void FreeLocked(void *addr, size_t len) = 0; /** * Get the total limit on the amount of memory that may be locked by this * process, in bytes. Return size_t max if there is no limit or the limit is * unknown. Return 0 if no memory can be locked at all. */ virtual size_t GetLimit() = 0; }; /** * An arena manages a contiguous region of memory by dividing it into chunks. */ class Arena { public: Arena(void *base, size_t size, size_t alignment); virtual ~Arena(); Arena(const Arena &other) = delete; // non construction-copyable Arena &operator=(const Arena &) = delete; // non copyable /** Memory statistics. */ struct Stats { size_t used; size_t free; size_t total; size_t chunks_used; size_t chunks_free; }; /** * Allocate size bytes from this arena. * Returns pointer on success, or 0 if memory is full or the application * tried to allocate 0 bytes. */ void *alloc(size_t size); /** * Free a previously allocated chunk of memory. * Freeing the zero pointer has no effect. * Raises std::runtime_error in case of error. */ void free(void *ptr); /** Get arena usage statistics */ Stats stats() const; #ifdef ARENA_DEBUG void walk() const; #endif /** * Return whether a pointer points inside this arena. * This returns base <= ptr < (base+size) so only use it for (inclusive) * chunk starting addresses. */ bool addressInArena(void *ptr) const { return ptr >= base && ptr < end; } private: typedef std::multimap SizeToChunkSortedMap; /** Map to enable O(log(n)) best-fit allocation, as it's sorted by size */ SizeToChunkSortedMap size_to_free_chunk; typedef std::unordered_map ChunkToSizeMap; /** Map from begin of free chunk to its node in size_to_free_chunk */ ChunkToSizeMap chunks_free; /** Map from end of free chunk to its node in size_to_free_chunk */ ChunkToSizeMap chunks_free_end; /** Map from begin of used chunk to its size */ std::unordered_map chunks_used; /** Base address of arena */ char *base; /** End address of arena */ char *end; /** Minimum chunk alignment */ size_t alignment; }; /** * Pool for locked memory chunks. * * To avoid sensitive key data from being swapped to disk, the memory in this * pool is locked/pinned. * * An arena manages a contiguous region of memory. The pool starts out with one * arena but can grow to multiple arenas if the need arises. * * Unlike a normal C heap, the administrative structures are separate from the * managed memory. This has been done as the sizes and bases of objects are not * in themselves sensitive information, as to conserve precious locked memory. * In some operating systems the amount of memory that can be locked is small. */ class LockedPool { public: /** * Size of one arena of locked memory. This is a compromise. * Do not set this too low, as managing many arenas will increase allocation * and deallocation overhead. Setting it too high allocates more locked * memory from the OS than strictly necessary. */ static const size_t ARENA_SIZE = 256 * 1024; /** * Chunk alignment. Another compromise. Setting this too high will waste * memory, setting it too low will facilitate fragmentation. */ static const size_t ARENA_ALIGN = 16; /** * Callback when allocation succeeds but locking fails. */ typedef bool (*LockingFailed_Callback)(); /** Memory statistics. */ struct Stats { size_t used; size_t free; size_t total; size_t locked; size_t chunks_used; size_t chunks_free; }; /** * Create a new LockedPool. This takes ownership of the MemoryPageLocker, * you can only instantiate this with LockedPool(std::move(...)). * * The second argument is an optional callback when locking a newly * allocated arena failed. If this callback is provided and returns false, * the allocation fails (hard fail), if it returns true the allocation * proceeds, but it could warn. */ explicit LockedPool(std::unique_ptr allocator, LockingFailed_Callback lf_cb_in = nullptr); ~LockedPool(); LockedPool(const LockedPool &other) = delete; // non construction-copyable LockedPool &operator=(const LockedPool &) = delete; // non copyable /** * Allocate size bytes from this arena. * Returns pointer on success, or 0 if memory is full or the application * tried to allocate 0 bytes. */ void *alloc(size_t size); /** * Free a previously allocated chunk of memory. * Freeing the zero pointer has no effect. * Raises std::runtime_error in case of error. */ void free(void *ptr); /** Get pool usage statistics */ Stats stats() const; private: std::unique_ptr allocator; /** Create an arena from locked pages */ class LockedPageArena : public Arena { public: LockedPageArena(LockedPageAllocator *alloc_in, void *base_in, size_t size, size_t align); ~LockedPageArena(); private: void *base; size_t size; LockedPageAllocator *allocator; }; bool new_arena(size_t size, size_t align); std::list arenas; LockingFailed_Callback lf_cb; size_t cumulative_bytes_locked; /** * Mutex protects access to this pool's data structures, including arenas. */ mutable std::mutex mutex; }; /** * Singleton class to keep track of locked (ie, non-swappable) memory, for use * in std::allocator templates. * * Some implementations of the STL allocate memory in some constructors (i.e., * see MSVC's vector implementation where it allocates 1 byte of memory in * the allocator). Due to the unpredictable order of static initializers, we * have to make sure the LockedPoolManager instance exists before any other * STL-based objects that use secure_allocator are created. So instead of having * LockedPoolManager also be static-initialized, it is created on demand. */ class LockedPoolManager : public LockedPool { public: /** Return the current instance, or create it once */ static LockedPoolManager &Instance() { - std::call_once(LockedPoolManager::init_flag, - LockedPoolManager::CreateInstance); + static std::once_flag init_flag; + std::call_once(init_flag, LockedPoolManager::CreateInstance); return *LockedPoolManager::_instance; } private: explicit LockedPoolManager(std::unique_ptr allocator); /** Create a new LockedPoolManager specialized to the OS */ static void CreateInstance(); /** Called when locking fails, warn the user here */ static bool LockingFailed(); static LockedPoolManager *_instance; - static std::once_flag init_flag; }; #endif // BITCOIN_SUPPORT_LOCKEDPOOL_H