diff --git a/src/addrman.cpp b/src/addrman.cpp index d9347fa81..74d2d053d 100644 --- a/src/addrman.cpp +++ b/src/addrman.cpp @@ -1,711 +1,713 @@ // Copyright (c) 2012 Pieter Wuille // Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include int CAddrInfo::GetTriedBucket(const uint256 &nKey) const { uint64_t hash1 = (CHashWriter(SER_GETHASH, 0) << nKey << GetKey()).GetCheapHash(); uint64_t hash2 = (CHashWriter(SER_GETHASH, 0) << nKey << GetGroup() << (hash1 % ADDRMAN_TRIED_BUCKETS_PER_GROUP)) .GetCheapHash(); return hash2 % ADDRMAN_TRIED_BUCKET_COUNT; } int CAddrInfo::GetNewBucket(const uint256 &nKey, const CNetAddr &src) const { std::vector vchSourceGroupKey = src.GetGroup(); uint64_t hash1 = (CHashWriter(SER_GETHASH, 0) << nKey << GetGroup() << vchSourceGroupKey) .GetCheapHash(); uint64_t hash2 = (CHashWriter(SER_GETHASH, 0) << nKey << vchSourceGroupKey << (hash1 % ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP)) .GetCheapHash(); return hash2 % ADDRMAN_NEW_BUCKET_COUNT; } int CAddrInfo::GetBucketPosition(const uint256 &nKey, bool fNew, int nBucket) const { uint64_t hash1 = (CHashWriter(SER_GETHASH, 0) << nKey << (fNew ? 'N' : 'K') << nBucket << GetKey()) .GetCheapHash(); return hash1 % ADDRMAN_BUCKET_SIZE; } bool CAddrInfo::IsTerrible(int64_t nNow) const { // never remove things tried in the last minute if (nLastTry && nLastTry >= nNow - 60) { return false; } // came in a flying DeLorean if (nTime > nNow + 10 * 60) { return true; } // not seen in recent history if (nTime == 0 || nNow - nTime > ADDRMAN_HORIZON_DAYS * 24 * 60 * 60) { return true; } // tried N times and never a success if (nLastSuccess == 0 && nAttempts >= ADDRMAN_RETRIES) { return true; } if (nNow - nLastSuccess > ADDRMAN_MIN_FAIL_DAYS * 24 * 60 * 60 && nAttempts >= ADDRMAN_MAX_FAILURES) { // N successive failures in the last week return true; } return false; } double CAddrInfo::GetChance(int64_t nNow) const { double fChance = 1.0; int64_t nSinceLastTry = std::max(nNow - nLastTry, 0); // deprioritize very recent attempts away if (nSinceLastTry < 60 * 10) { fChance *= 0.01; } // deprioritize 66% after each failed attempt, but at most 1/28th to avoid // the search taking forever or overly penalizing outages. fChance *= std::pow(0.66, std::min(nAttempts, 8)); return fChance; } CAddrInfo *CAddrMan::Find(const CNetAddr &addr, int *pnId) { std::map::iterator it = mapAddr.find(addr); if (it == mapAddr.end()) { return nullptr; } if (pnId) { *pnId = (*it).second; } std::map::iterator it2 = mapInfo.find((*it).second); if (it2 != mapInfo.end()) { return &(*it2).second; } return nullptr; } CAddrInfo *CAddrMan::Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId) { int nId = nIdCount++; mapInfo[nId] = CAddrInfo(addr, addrSource); mapAddr[addr] = nId; mapInfo[nId].nRandomPos = vRandom.size(); vRandom.push_back(nId); if (pnId) { *pnId = nId; } return &mapInfo[nId]; } void CAddrMan::SwapRandom(unsigned int nRndPos1, unsigned int nRndPos2) { if (nRndPos1 == nRndPos2) { return; } assert(nRndPos1 < vRandom.size() && nRndPos2 < vRandom.size()); int nId1 = vRandom[nRndPos1]; int nId2 = vRandom[nRndPos2]; assert(mapInfo.count(nId1) == 1); assert(mapInfo.count(nId2) == 1); mapInfo[nId1].nRandomPos = nRndPos2; mapInfo[nId2].nRandomPos = nRndPos1; vRandom[nRndPos1] = nId2; vRandom[nRndPos2] = nId1; } void CAddrMan::Delete(int nId) { assert(mapInfo.count(nId) != 0); CAddrInfo &info = mapInfo[nId]; assert(!info.fInTried); assert(info.nRefCount == 0); SwapRandom(info.nRandomPos, vRandom.size() - 1); vRandom.pop_back(); mapAddr.erase(info); mapInfo.erase(nId); nNew--; } void CAddrMan::ClearNew(int nUBucket, int nUBucketPos) { // if there is an entry in the specified bucket, delete it. if (vvNew[nUBucket][nUBucketPos] != -1) { int nIdDelete = vvNew[nUBucket][nUBucketPos]; CAddrInfo &infoDelete = mapInfo[nIdDelete]; assert(infoDelete.nRefCount > 0); infoDelete.nRefCount--; vvNew[nUBucket][nUBucketPos] = -1; if (infoDelete.nRefCount == 0) { Delete(nIdDelete); } } } void CAddrMan::MakeTried(CAddrInfo &info, int nId) { // remove the entry from all new buckets for (int bucket = 0; bucket < ADDRMAN_NEW_BUCKET_COUNT; bucket++) { int pos = info.GetBucketPosition(nKey, true, bucket); if (vvNew[bucket][pos] == nId) { vvNew[bucket][pos] = -1; info.nRefCount--; } } nNew--; assert(info.nRefCount == 0); // which tried bucket to move the entry to int nKBucket = info.GetTriedBucket(nKey); int nKBucketPos = info.GetBucketPosition(nKey, false, nKBucket); // first make space to add it (the existing tried entry there is moved to // new, deleting whatever is there). if (vvTried[nKBucket][nKBucketPos] != -1) { // find an item to evict int nIdEvict = vvTried[nKBucket][nKBucketPos]; assert(mapInfo.count(nIdEvict) == 1); CAddrInfo &infoOld = mapInfo[nIdEvict]; // Remove the to-be-evicted item from the tried set. infoOld.fInTried = false; vvTried[nKBucket][nKBucketPos] = -1; nTried--; // find which new bucket it belongs to int nUBucket = infoOld.GetNewBucket(nKey); int nUBucketPos = infoOld.GetBucketPosition(nKey, true, nUBucket); ClearNew(nUBucket, nUBucketPos); assert(vvNew[nUBucket][nUBucketPos] == -1); // Enter it into the new set again. infoOld.nRefCount = 1; vvNew[nUBucket][nUBucketPos] = nIdEvict; nNew++; } assert(vvTried[nKBucket][nKBucketPos] == -1); vvTried[nKBucket][nKBucketPos] = nId; nTried++; info.fInTried = true; } void CAddrMan::Good_(const CService &addr, bool test_before_evict, int64_t nTime) { int nId; nLastGood = nTime; CAddrInfo *pinfo = Find(addr, &nId); // if not found, bail out if (!pinfo) { return; } CAddrInfo &info = *pinfo; // check whether we are talking about the exact same CService (including // same port) if (info != addr) { return; } // update info info.nLastSuccess = nTime; info.nLastTry = nTime; info.nAttempts = 0; // nTime is not updated here, to avoid leaking information about // currently-connected peers. // if it is already in the tried set, don't do anything else if (info.fInTried) { return; } // find a bucket it is in now int nRnd = insecure_rand.randrange(ADDRMAN_NEW_BUCKET_COUNT); int nUBucket = -1; for (unsigned int n = 0; n < ADDRMAN_NEW_BUCKET_COUNT; n++) { int nB = (n + nRnd) % ADDRMAN_NEW_BUCKET_COUNT; int nBpos = info.GetBucketPosition(nKey, true, nB); if (vvNew[nB][nBpos] == nId) { nUBucket = nB; break; } } // if no bucket is found, something bad happened; // TODO: maybe re-add the node, but for now, just bail out if (nUBucket == -1) { return; } // which tried bucket to move the entry to int tried_bucket = info.GetTriedBucket(nKey); int tried_bucket_pos = info.GetBucketPosition(nKey, false, tried_bucket); // Will moving this address into tried evict another entry? if (test_before_evict && (vvTried[tried_bucket][tried_bucket_pos] != -1)) { LogPrint(BCLog::ADDRMAN, "Collision inserting element into tried table, moving %s to " "m_tried_collisions=%d\n", addr.ToString(), m_tried_collisions.size()); if (m_tried_collisions.size() < ADDRMAN_SET_TRIED_COLLISION_SIZE) { m_tried_collisions.insert(nId); } } else { LogPrint(BCLog::ADDRMAN, "Moving %s to tried\n", addr.ToString()); // move nId to the tried tables MakeTried(info, nId); } } bool CAddrMan::Add_(const CAddress &addr, const CNetAddr &source, int64_t nTimePenalty) { if (!addr.IsRoutable()) { return false; } bool fNew = false; int nId; CAddrInfo *pinfo = Find(addr, &nId); // Do not set a penalty for a source's self-announcement if (addr == source) { nTimePenalty = 0; } if (pinfo) { // periodically update nTime bool fCurrentlyOnline = (GetAdjustedTime() - addr.nTime < 24 * 60 * 60); int64_t nUpdateInterval = (fCurrentlyOnline ? 60 * 60 : 24 * 60 * 60); if (addr.nTime && (!pinfo->nTime || pinfo->nTime < addr.nTime - nUpdateInterval - nTimePenalty)) { pinfo->nTime = std::max((int64_t)0, addr.nTime - nTimePenalty); } // add services pinfo->nServices = ServiceFlags(pinfo->nServices | addr.nServices); // do not update if no new information is present if (!addr.nTime || (pinfo->nTime && addr.nTime <= pinfo->nTime)) { return false; } // do not update if the entry was already in the "tried" table if (pinfo->fInTried) { return false; } // do not update if the max reference count is reached if (pinfo->nRefCount == ADDRMAN_NEW_BUCKETS_PER_ADDRESS) { return false; } // stochastic test: previous nRefCount == N: 2^N times harder to // increase it int nFactor = 1; for (int n = 0; n < pinfo->nRefCount; n++) { nFactor *= 2; } if (nFactor > 1 && (insecure_rand.randrange(nFactor) != 0)) { return false; } } else { pinfo = Create(addr, source, &nId); pinfo->nTime = std::max((int64_t)0, (int64_t)pinfo->nTime - nTimePenalty); nNew++; fNew = true; } int nUBucket = pinfo->GetNewBucket(nKey, source); int nUBucketPos = pinfo->GetBucketPosition(nKey, true, nUBucket); if (vvNew[nUBucket][nUBucketPos] != nId) { bool fInsert = vvNew[nUBucket][nUBucketPos] == -1; if (!fInsert) { CAddrInfo &infoExisting = mapInfo[vvNew[nUBucket][nUBucketPos]]; if (infoExisting.IsTerrible() || (infoExisting.nRefCount > 1 && pinfo->nRefCount == 0)) { // Overwrite the existing new table entry. fInsert = true; } } if (fInsert) { ClearNew(nUBucket, nUBucketPos); pinfo->nRefCount++; vvNew[nUBucket][nUBucketPos] = nId; } else if (pinfo->nRefCount == 0) { Delete(nId); } } return fNew; } void CAddrMan::Attempt_(const CService &addr, bool fCountFailure, int64_t nTime) { CAddrInfo *pinfo = Find(addr); // if not found, bail out if (!pinfo) { return; } CAddrInfo &info = *pinfo; // check whether we are talking about the exact same CService (including // same port) if (info != addr) { return; } // update info info.nLastTry = nTime; if (fCountFailure && info.nLastCountAttempt < nLastGood) { info.nLastCountAttempt = nTime; info.nAttempts++; } } CAddrInfo CAddrMan::Select_(bool newOnly) { if (size() == 0) { return CAddrInfo(); } if (newOnly && nNew == 0) { return CAddrInfo(); } // Use a 50% chance for choosing between tried and new table entries. if (!newOnly && (nTried > 0 && (nNew == 0 || insecure_rand.randbool() == 0))) { // use a tried node double fChanceFactor = 1.0; while (1) { int nKBucket = insecure_rand.randrange(ADDRMAN_TRIED_BUCKET_COUNT); int nKBucketPos = insecure_rand.randrange(ADDRMAN_BUCKET_SIZE); while (vvTried[nKBucket][nKBucketPos] == -1) { nKBucket = (nKBucket + insecure_rand.randbits( ADDRMAN_TRIED_BUCKET_COUNT_LOG2)) % ADDRMAN_TRIED_BUCKET_COUNT; nKBucketPos = (nKBucketPos + insecure_rand.randbits( ADDRMAN_BUCKET_SIZE_LOG2)) % ADDRMAN_BUCKET_SIZE; } int nId = vvTried[nKBucket][nKBucketPos]; assert(mapInfo.count(nId) == 1); CAddrInfo &info = mapInfo[nId]; if (insecure_rand.randbits(30) < fChanceFactor * info.GetChance() * (1 << 30)) { return info; } fChanceFactor *= 1.2; } } else { // use a new node double fChanceFactor = 1.0; while (1) { int nUBucket = insecure_rand.randrange(ADDRMAN_NEW_BUCKET_COUNT); int nUBucketPos = insecure_rand.randrange(ADDRMAN_BUCKET_SIZE); while (vvNew[nUBucket][nUBucketPos] == -1) { nUBucket = (nUBucket + insecure_rand.randbits( ADDRMAN_NEW_BUCKET_COUNT_LOG2)) % ADDRMAN_NEW_BUCKET_COUNT; nUBucketPos = (nUBucketPos + insecure_rand.randbits( ADDRMAN_BUCKET_SIZE_LOG2)) % ADDRMAN_BUCKET_SIZE; } int nId = vvNew[nUBucket][nUBucketPos]; assert(mapInfo.count(nId) == 1); CAddrInfo &info = mapInfo[nId]; if (insecure_rand.randbits(30) < fChanceFactor * info.GetChance() * (1 << 30)) { return info; } fChanceFactor *= 1.2; } } } #ifdef DEBUG_ADDRMAN int CAddrMan::Check_() { std::set setTried; std::map mapNew; if (vRandom.size() != nTried + nNew) { return -7; } for (const auto &entry : mapInfo) { int n = entry.first; const CAddrInfo &info = entry.second; if (info.fInTried) { if (!info.nLastSuccess) { return -1; } if (info.nRefCount) { return -2; } setTried.insert(n); } else { if (info.nRefCount < 0 || info.nRefCount > ADDRMAN_NEW_BUCKETS_PER_ADDRESS) { return -3; } if (!info.nRefCount) { return -4; } mapNew[n] = info.nRefCount; } if (mapAddr[info] != n) { return -5; } if (info.nRandomPos < 0 || info.nRandomPos >= vRandom.size() || vRandom[info.nRandomPos] != n) { return -14; } if (info.nLastTry < 0) { return -6; } if (info.nLastSuccess < 0) { return -8; } } if (setTried.size() != nTried) { return -9; } if (mapNew.size() != nNew) { return -10; } for (int n = 0; n < ADDRMAN_TRIED_BUCKET_COUNT; n++) { for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvTried[n][i] != -1) { if (!setTried.count(vvTried[n][i])) { return -11; } if (mapInfo[vvTried[n][i]].GetTriedBucket(nKey) != n) { return -17; } if (mapInfo[vvTried[n][i]].GetBucketPosition(nKey, false, n) != i) { return -18; } setTried.erase(vvTried[n][i]); } } } for (int n = 0; n < ADDRMAN_NEW_BUCKET_COUNT; n++) { for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvNew[n][i] != -1) { if (!mapNew.count(vvNew[n][i])) { return -12; } if (mapInfo[vvNew[n][i]].GetBucketPosition(nKey, true, n) != i) { return -19; } if (--mapNew[vvNew[n][i]] == 0) { mapNew.erase(vvNew[n][i]); } } } } if (setTried.size()) { return -13; } if (mapNew.size()) { return -15; } if (nKey.IsNull()) { return -16; } return 0; } #endif void CAddrMan::GetAddr_(std::vector &vAddr) { unsigned int nNodes = ADDRMAN_GETADDR_MAX_PCT * vRandom.size() / 100; - if (nNodes > ADDRMAN_GETADDR_MAX) nNodes = ADDRMAN_GETADDR_MAX; + if (nNodes > ADDRMAN_GETADDR_MAX) { + nNodes = ADDRMAN_GETADDR_MAX; + } // gather a list of random nodes, skipping those of low quality for (unsigned int n = 0; n < vRandom.size(); n++) { if (vAddr.size() >= nNodes) { break; } int nRndPos = insecure_rand.randrange(vRandom.size() - n) + n; SwapRandom(n, nRndPos); assert(mapInfo.count(vRandom[n]) == 1); const CAddrInfo &ai = mapInfo[vRandom[n]]; if (!ai.IsTerrible()) { vAddr.push_back(ai); } } } void CAddrMan::Connected_(const CService &addr, int64_t nTime) { CAddrInfo *pinfo = Find(addr); // if not found, bail out if (!pinfo) { return; } CAddrInfo &info = *pinfo; // check whether we are talking about the exact same CService (including // same port) if (info != addr) { return; } // update info int64_t nUpdateInterval = 20 * 60; if (nTime - info.nTime > nUpdateInterval) { info.nTime = nTime; } } void CAddrMan::SetServices_(const CService &addr, ServiceFlags nServices) { CAddrInfo *pinfo = Find(addr); // if not found, bail out if (!pinfo) { return; } CAddrInfo &info = *pinfo; // check whether we are talking about the exact same CService (including // same port) if (info != addr) { return; } // update info info.nServices = nServices; } void CAddrMan::ResolveCollisions_() { const int64_t adjustedTime = GetAdjustedTime(); for (std::set::iterator it = m_tried_collisions.begin(); it != m_tried_collisions.end();) { int id_new = *it; bool erase_collision = false; // If id_new not found in mapInfo remove it from m_tried_collisions. auto id_new_it = mapInfo.find(id_new); if (id_new_it == mapInfo.end()) { erase_collision = true; } else { CAddrInfo &info_new = id_new_it->second; // Which tried bucket to move the entry to. int tried_bucket = info_new.GetTriedBucket(nKey); int tried_bucket_pos = info_new.GetBucketPosition(nKey, false, tried_bucket); if (!info_new.IsValid()) { // id_new may no longer map to a valid address erase_collision = true; } else if (vvTried[tried_bucket][tried_bucket_pos] != -1) { // The position in the tried bucket is not empty // Get the to-be-evicted address that is being tested int id_old = vvTried[tried_bucket][tried_bucket_pos]; CAddrInfo &info_old = mapInfo[id_old]; // Has successfully connected in last X hours if (adjustedTime - info_old.nLastSuccess < ADDRMAN_REPLACEMENT_SECONDS) { erase_collision = true; } else if (adjustedTime - info_old.nLastTry < ADDRMAN_REPLACEMENT_SECONDS) { // attempted to connect and failed in last X hours // Give address at least 60 seconds to successfully connect if (GetAdjustedTime() - info_old.nLastTry > 60) { LogPrint(BCLog::ADDRMAN, "Swapping %s for %s in tried table\n", info_new.ToString(), info_old.ToString()); // Replaces an existing address already in the tried // table with the new address Good_(info_new, false, GetAdjustedTime()); erase_collision = true; } } } else { // Collision is not actually a collision anymore Good_(info_new, false, adjustedTime); erase_collision = true; } } if (erase_collision) { m_tried_collisions.erase(it++); } else { it++; } } } CAddrInfo CAddrMan::SelectTriedCollision_() { if (m_tried_collisions.size() == 0) { return CAddrInfo(); } std::set::iterator it = m_tried_collisions.begin(); // Selects a random element from m_tried_collisions std::advance(it, insecure_rand.randrange(m_tried_collisions.size())); int id_new = *it; // If id_new not found in mapInfo remove it from m_tried_collisions. auto id_new_it = mapInfo.find(id_new); if (id_new_it == mapInfo.end()) { m_tried_collisions.erase(it); return CAddrInfo(); } CAddrInfo &newInfo = id_new_it->second; // which tried bucket to move the entry to int tried_bucket = newInfo.GetTriedBucket(nKey); int tried_bucket_pos = newInfo.GetBucketPosition(nKey, false, tried_bucket); int id_old = vvTried[tried_bucket][tried_bucket_pos]; return mapInfo[id_old]; } diff --git a/src/arith_uint256.cpp b/src/arith_uint256.cpp index 3e0f444ef..82880bfc0 100644 --- a/src/arith_uint256.cpp +++ b/src/arith_uint256.cpp @@ -1,239 +1,266 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include template base_uint::base_uint(const std::string &str) { static_assert(BITS / 32 > 0 && BITS % 32 == 0, "Template parameter BITS must be a positive multiple of 32."); SetHex(str); } template base_uint &base_uint::operator<<=(unsigned int shift) { base_uint a(*this); - for (int i = 0; i < WIDTH; i++) + for (int i = 0; i < WIDTH; i++) { pn[i] = 0; + } int k = shift / 32; shift = shift % 32; for (int i = 0; i < WIDTH; i++) { - if (i + k + 1 < WIDTH && shift != 0) + if (i + k + 1 < WIDTH && shift != 0) { pn[i + k + 1] |= (a.pn[i] >> (32 - shift)); - if (i + k < WIDTH) pn[i + k] |= (a.pn[i] << shift); + } + if (i + k < WIDTH) { + pn[i + k] |= (a.pn[i] << shift); + } } return *this; } template base_uint &base_uint::operator>>=(unsigned int shift) { base_uint a(*this); - for (int i = 0; i < WIDTH; i++) + for (int i = 0; i < WIDTH; i++) { pn[i] = 0; + } int k = shift / 32; shift = shift % 32; for (int i = 0; i < WIDTH; i++) { - if (i - k - 1 >= 0 && shift != 0) + if (i - k - 1 >= 0 && shift != 0) { pn[i - k - 1] |= (a.pn[i] << (32 - shift)); - if (i - k >= 0) pn[i - k] |= (a.pn[i] >> shift); + } + if (i - k >= 0) { + pn[i - k] |= (a.pn[i] >> shift); + } } return *this; } template base_uint &base_uint::operator*=(uint32_t b32) { uint64_t carry = 0; for (int i = 0; i < WIDTH; i++) { uint64_t n = carry + (uint64_t)b32 * pn[i]; pn[i] = n & 0xffffffff; carry = n >> 32; } return *this; } template base_uint &base_uint::operator*=(const base_uint &b) { base_uint a; for (int j = 0; j < WIDTH; j++) { uint64_t carry = 0; for (int i = 0; i + j < WIDTH; i++) { uint64_t n = carry + a.pn[i + j] + (uint64_t)pn[j] * b.pn[i]; a.pn[i + j] = n & 0xffffffff; carry = n >> 32; } } *this = a; return *this; } template base_uint &base_uint::operator/=(const base_uint &b) { // make a copy, so we can shift. base_uint div = b; // make a copy, so we can subtract. base_uint num = *this; // the quotient. *this = 0; int num_bits = num.bits(); int div_bits = div.bits(); - if (div_bits == 0) throw uint_error("Division by zero"); + if (div_bits == 0) { + throw uint_error("Division by zero"); + } // the result is certainly 0. - if (div_bits > num_bits) return *this; + if (div_bits > num_bits) { + return *this; + } int shift = num_bits - div_bits; // shift so that div and num align. div <<= shift; while (shift >= 0) { if (num >= div) { num -= div; // set a bit of the result. pn[shift / 32] |= (1 << (shift & 31)); } // shift back. div >>= 1; shift--; } // num now contains the remainder of the division. return *this; } template int base_uint::CompareTo(const base_uint &b) const { for (int i = WIDTH - 1; i >= 0; i--) { - if (pn[i] < b.pn[i]) return -1; - if (pn[i] > b.pn[i]) return 1; + if (pn[i] < b.pn[i]) { + return -1; + } + if (pn[i] > b.pn[i]) { + return 1; + } } return 0; } template bool base_uint::EqualTo(uint64_t b) const { for (int i = WIDTH - 1; i >= 2; i--) { - if (pn[i]) return false; + if (pn[i]) { + return false; + } + } + if (pn[1] != (b >> 32)) { + return false; + } + if (pn[0] != (b & 0xfffffffful)) { + return false; } - if (pn[1] != (b >> 32)) return false; - if (pn[0] != (b & 0xfffffffful)) return false; return true; } template double base_uint::getdouble() const { double ret = 0.0; double fact = 1.0; for (int i = 0; i < WIDTH; i++) { ret += fact * pn[i]; fact *= 4294967296.0; } return ret; } template std::string base_uint::GetHex() const { return ArithToUint256(*this).GetHex(); } template void base_uint::SetHex(const char *psz) { *this = UintToArith256(uint256S(psz)); } template void base_uint::SetHex(const std::string &str) { SetHex(str.c_str()); } template std::string base_uint::ToString() const { return (GetHex()); } template unsigned int base_uint::bits() const { for (int pos = WIDTH - 1; pos >= 0; pos--) { if (pn[pos]) { for (int nbits = 31; nbits > 0; nbits--) { if (pn[pos] & 1U << nbits) { return 32 * pos + nbits + 1; } } return 32 * pos + 1; } } return 0; } // Explicit instantiations for base_uint<256> template base_uint<256>::base_uint(const std::string &); template base_uint<256> &base_uint<256>::operator<<=(unsigned int); template base_uint<256> &base_uint<256>::operator>>=(unsigned int); template base_uint<256> &base_uint<256>::operator*=(uint32_t b32); template base_uint<256> &base_uint<256>::operator*=(const base_uint<256> &b); template base_uint<256> &base_uint<256>::operator/=(const base_uint<256> &b); template int base_uint<256>::CompareTo(const base_uint<256> &) const; template bool base_uint<256>::EqualTo(uint64_t) const; template double base_uint<256>::getdouble() const; template std::string base_uint<256>::GetHex() const; template std::string base_uint<256>::ToString() const; template void base_uint<256>::SetHex(const char *); template void base_uint<256>::SetHex(const std::string &); template unsigned int base_uint<256>::bits() const; // This implementation directly uses shifts instead of going through an // intermediate MPI representation. arith_uint256 &arith_uint256::SetCompact(uint32_t nCompact, bool *pfNegative, bool *pfOverflow) { int nSize = nCompact >> 24; uint32_t nWord = nCompact & 0x007fffff; if (nSize <= 3) { nWord >>= 8 * (3 - nSize); *this = nWord; } else { *this = nWord; *this <<= 8 * (nSize - 3); } - if (pfNegative) *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0; - if (pfOverflow) + if (pfNegative) { + *pfNegative = nWord != 0 && (nCompact & 0x00800000) != 0; + } + if (pfOverflow) { *pfOverflow = nWord != 0 && ((nSize > 34) || (nWord > 0xff && nSize > 33) || (nWord > 0xffff && nSize > 32)); + } return *this; } uint32_t arith_uint256::GetCompact(bool fNegative) const { int nSize = (bits() + 7) / 8; uint32_t nCompact = 0; if (nSize <= 3) { nCompact = GetLow64() << 8 * (3 - nSize); } else { arith_uint256 bn = *this >> 8 * (nSize - 3); nCompact = bn.GetLow64(); } // The 0x00800000 bit denotes the sign. // Thus, if it is already set, divide the mantissa by 256 and increase the // exponent. if (nCompact & 0x00800000) { nCompact >>= 8; nSize++; } assert((nCompact & ~0x007fffff) == 0); assert(nSize < 256); nCompact |= nSize << 24; nCompact |= (fNegative && (nCompact & 0x007fffff) ? 0x00800000 : 0); return nCompact; } uint256 ArithToUint256(const arith_uint256 &a) { uint256 b; - for (int x = 0; x < a.WIDTH; ++x) + for (int x = 0; x < a.WIDTH; ++x) { WriteLE32(b.begin() + x * 4, a.pn[x]); + } return b; } arith_uint256 UintToArith256(const uint256 &a) { arith_uint256 b; - for (int x = 0; x < b.WIDTH; ++x) + for (int x = 0; x < b.WIDTH; ++x) { b.pn[x] = ReadLE32(a.begin() + x * 4); + } return b; } diff --git a/src/base58.cpp b/src/base58.cpp index 0868e1ce7..118238961 100644 --- a/src/base58.cpp +++ b/src/base58.cpp @@ -1,169 +1,170 @@ // Copyright (c) 2014-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include /** All alphanumeric characters except for "0", "I", "O", and "l" */ static const char *pszBase58 = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; static const int8_t mapBase58[256] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1, -1, 9, 10, 11, 12, 13, 14, 15, 16, -1, 17, 18, 19, 20, 21, -1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1, -1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; bool DecodeBase58(const char *psz, std::vector &vch) { // Skip leading spaces. while (*psz && IsSpace(*psz)) { psz++; } // Skip and count leading '1's. int zeroes = 0; int length = 0; while (*psz == '1') { zeroes++; psz++; } // Allocate enough space in big-endian base256 representation. // log(58) / log(256), rounded up. int size = strlen(psz) * 733 / 1000 + 1; std::vector b256(size); // Process the characters. // guarantee not out of range static_assert(sizeof(mapBase58) / sizeof(mapBase58[0]) == 256, "mapBase58.size() should be 256"); while (*psz && !IsSpace(*psz)) { // Decode base58 character int carry = mapBase58[(uint8_t)*psz]; // Invalid b58 character if (carry == -1) { return false; } int i = 0; for (std::vector::reverse_iterator it = b256.rbegin(); (carry != 0 || i < length) && (it != b256.rend()); ++it, ++i) { carry += 58 * (*it); *it = carry % 256; carry /= 256; } assert(carry == 0); length = i; psz++; } // Skip trailing spaces. while (IsSpace(*psz)) { psz++; } if (*psz != 0) { return false; } // Skip leading zeroes in b256. std::vector::iterator it = b256.begin() + (size - length); - while (it != b256.end() && *it == 0) + while (it != b256.end() && *it == 0) { it++; + } // Copy result into output vector. vch.reserve(zeroes + (b256.end() - it)); vch.assign(zeroes, 0x00); while (it != b256.end()) { vch.push_back(*(it++)); } return true; } std::string EncodeBase58(const uint8_t *pbegin, const uint8_t *pend) { // Skip & count leading zeroes. int zeroes = 0; int length = 0; while (pbegin != pend && *pbegin == 0) { pbegin++; zeroes++; } // Allocate enough space in big-endian base58 representation. // log(256) / log(58), rounded up. int size = (pend - pbegin) * 138 / 100 + 1; std::vector b58(size); // Process the bytes. while (pbegin != pend) { int carry = *pbegin; int i = 0; // Apply "b58 = b58 * 256 + ch". for (std::vector::reverse_iterator it = b58.rbegin(); (carry != 0 || i < length) && (it != b58.rend()); it++, i++) { carry += 256 * (*it); *it = carry % 58; carry /= 58; } assert(carry == 0); length = i; pbegin++; } // Skip leading zeroes in base58 result. std::vector::iterator it = b58.begin() + (size - length); while (it != b58.end() && *it == 0) { it++; } // Translate the result into a string. std::string str; str.reserve(zeroes + (b58.end() - it)); str.assign(zeroes, '1'); while (it != b58.end()) { str += pszBase58[*(it++)]; } return str; } std::string EncodeBase58(const std::vector &vch) { return EncodeBase58(vch.data(), vch.data() + vch.size()); } bool DecodeBase58(const std::string &str, std::vector &vchRet) { return DecodeBase58(str.c_str(), vchRet); } std::string EncodeBase58Check(const std::vector &vchIn) { // add 4-byte hash check to the end std::vector vch(vchIn); uint256 hash = Hash(vch.begin(), vch.end()); vch.insert(vch.end(), (uint8_t *)&hash, (uint8_t *)&hash + 4); return EncodeBase58(vch); } bool DecodeBase58Check(const char *psz, std::vector &vchRet) { if (!DecodeBase58(psz, vchRet) || (vchRet.size() < 4)) { vchRet.clear(); return false; } // re-calculate the checksum, ensure it matches the included 4-byte checksum uint256 hash = Hash(vchRet.begin(), vchRet.end() - 4); if (memcmp(&hash, &vchRet[vchRet.size() - 4], 4) != 0) { vchRet.clear(); return false; } vchRet.resize(vchRet.size() - 4); return true; } bool DecodeBase58Check(const std::string &str, std::vector &vchRet) { return DecodeBase58Check(str.c_str(), vchRet); } diff --git a/src/clientversion.cpp b/src/clientversion.cpp index 761eb50cc..5450fb056 100644 --- a/src/clientversion.cpp +++ b/src/clientversion.cpp @@ -1,115 +1,117 @@ // Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include /** * Name of client reported in the 'version' message. Report the same name * for both bitcoind and bitcoin-qt, to make it harder for attackers to * target servers or GUI users specifically. */ const std::string CLIENT_NAME("Bitcoin ABC"); /** * Client version number */ #define CLIENT_VERSION_SUFFIX "" /** * The following part of the code determines the CLIENT_BUILD variable. * Several mechanisms are used for this: * * first, if HAVE_BUILD_INFO is defined, include build.h, a file that is * generated by the build environment, possibly containing the output * of git-describe in a macro called BUILD_DESC * * secondly, if this is an exported version of the code, GIT_ARCHIVE will * be defined (automatically using the export-subst git attribute), and * GIT_COMMIT will contain the commit id. * * then, three options exist for determining CLIENT_BUILD: * * if BUILD_DESC is defined, use that literally (output of git-describe) * * if not, but GIT_COMMIT is defined, use * v[maj].[min].[rev].[build]-g[commit] * * otherwise, use v[maj].[min].[rev].[build]-unk * finally CLIENT_VERSION_SUFFIX is added */ //! First, include build.h if requested #ifdef HAVE_BUILD_INFO #include #endif //! git will put "#define GIT_ARCHIVE 1" on the next line inside archives. //! $Format:%n#define GIT_ARCHIVE 1$ #ifdef GIT_ARCHIVE #define GIT_COMMIT_ID "$Format:%h$" #define GIT_COMMIT_DATE "$Format:%cD$" #endif #define BUILD_DESC_WITH_SUFFIX(maj, min, rev, suffix) \ "v" DO_STRINGIZE(maj) "." DO_STRINGIZE(min) "." DO_STRINGIZE( \ rev) "-" DO_STRINGIZE(suffix) #define BUILD_DESC_FROM_COMMIT(maj, min, rev, commit) \ "v" DO_STRINGIZE(maj) "." DO_STRINGIZE(min) "." DO_STRINGIZE( \ rev) "-g" commit #define BUILD_DESC_FROM_UNKNOWN(maj, min, rev) \ "v" DO_STRINGIZE(maj) "." DO_STRINGIZE(min) "." DO_STRINGIZE(rev) "-unk" #ifndef BUILD_DESC #ifdef BUILD_SUFFIX #define BUILD_DESC \ BUILD_DESC_WITH_SUFFIX(CLIENT_VERSION_MAJOR, CLIENT_VERSION_MINOR, \ CLIENT_VERSION_REVISION, BUILD_SUFFIX) #elif defined(GIT_COMMIT_ID) #define BUILD_DESC \ BUILD_DESC_FROM_COMMIT(CLIENT_VERSION_MAJOR, CLIENT_VERSION_MINOR, \ CLIENT_VERSION_REVISION, GIT_COMMIT_ID) #else #define BUILD_DESC \ BUILD_DESC_FROM_UNKNOWN(CLIENT_VERSION_MAJOR, CLIENT_VERSION_MINOR, \ CLIENT_VERSION_REVISION) #endif #endif const std::string CLIENT_BUILD(BUILD_DESC CLIENT_VERSION_SUFFIX); static std::string FormatVersion(int nVersion) { - if (nVersion % 100 == 0) + if (nVersion % 100 == 0) { return strprintf("%d.%d.%d", nVersion / 1000000, (nVersion / 10000) % 100, (nVersion / 100) % 100); - else + } else { return strprintf("%d.%d.%d.%d", nVersion / 1000000, (nVersion / 10000) % 100, (nVersion / 100) % 100, nVersion % 100); + } } std::string FormatFullVersion() { return CLIENT_BUILD; } /** * Format the subversion field according to BIP 14 spec * (https://github.com/bitcoin/bips/blob/master/bip-0014.mediawiki) */ std::string FormatSubVersion(const std::string &name, int nClientVersion, const std::vector &comments) { std::ostringstream ss; ss << "/"; ss << name << ":" << FormatVersion(nClientVersion); if (!comments.empty()) { std::vector::const_iterator it(comments.begin()); ss << "(" << *it; - for (++it; it != comments.end(); ++it) + for (++it; it != comments.end(); ++it) { ss << "; " << *it; + } ss << ")"; } ss << "/"; return ss.str(); } diff --git a/src/compat/glibc_sanity.cpp b/src/compat/glibc_sanity.cpp index 80f55562c..24d10e1fe 100644 --- a/src/compat/glibc_sanity.cpp +++ b/src/compat/glibc_sanity.cpp @@ -1,60 +1,65 @@ // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include #endif #include #if defined(HAVE_SYS_SELECT_H) #include #endif extern "C" void *memcpy(void *a, const void *b, size_t c); void *memcpy_int(void *a, const void *b, size_t c) { return memcpy(a, b, c); } namespace { // trigger: Use the memcpy_int wrapper which calls our internal memcpy. // A direct call to memcpy may be optimized away by the compiler. // test: Fill an array with a sequence of integers. memcpy to a new empty array. // Verify that the arrays are equal. Use an odd size to decrease the odds of // the call being optimized away. template bool sanity_test_memcpy() { unsigned int memcpy_test[T]; unsigned int memcpy_verify[T] = {}; - for (unsigned int i = 0; i != T; ++i) + for (unsigned int i = 0; i != T; ++i) { memcpy_test[i] = i; + } memcpy_int(memcpy_verify, memcpy_test, sizeof(memcpy_test)); for (unsigned int i = 0; i != T; ++i) { - if (memcpy_verify[i] != i) return false; + if (memcpy_verify[i] != i) { + return false; + } } return true; } #if defined(HAVE_SYS_SELECT_H) // trigger: Call FD_SET to trigger __fdelt_chk. FORTIFY_SOURCE must be defined // as >0 and optimizations must be set to at least -O2. // test: Add a file descriptor to an empty fd_set. Verify that it has been // correctly added. bool sanity_test_fdelt() { fd_set fds; FD_ZERO(&fds); FD_SET(0, &fds); return FD_ISSET(0, &fds); } #endif } // namespace bool glibc_sanity_test() { #if defined(HAVE_SYS_SELECT_H) - if (!sanity_test_fdelt()) return false; + if (!sanity_test_fdelt()) { + return false; + } #endif return sanity_test_memcpy<1025>(); } diff --git a/src/compat/glibcxx_sanity.cpp b/src/compat/glibcxx_sanity.cpp index 0325f66fc..18d990c60 100644 --- a/src/compat/glibcxx_sanity.cpp +++ b/src/compat/glibcxx_sanity.cpp @@ -1,57 +1,62 @@ // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include namespace { // trigger: use ctype::widen to trigger ctype::_M_widen_init(). // test: convert a char from narrow to wide and back. Verify that the result // matches the original. bool sanity_test_widen(char testchar) { const std::ctype &test( std::use_facet>(std::locale())); return test.narrow(test.widen(testchar), 'b') == testchar; } // trigger: use list::push_back and list::pop_back to trigger _M_hook and // _M_unhook. // test: Push a sequence of integers into a list. Pop them off and verify that // they match the original sequence. bool sanity_test_list(unsigned int size) { std::list test; - for (unsigned int i = 0; i != size; ++i) + for (unsigned int i = 0; i != size; ++i) { test.push_back(i + 1); + } - if (test.size() != size) return false; + if (test.size() != size) { + return false; + } while (!test.empty()) { - if (test.back() != test.size()) return false; + if (test.back() != test.size()) { + return false; + } test.pop_back(); } return true; } } // namespace // trigger: string::at(x) on an empty string to trigger // __throw_out_of_range_fmt. // test: force std::string to throw an out_of_range exception. Verify that // it's caught correctly. bool sanity_test_range_fmt() { std::string test; try { test.at(1); } catch (const std::out_of_range &) { return true; } catch (...) { } return false; } bool glibcxx_sanity_test() { return sanity_test_widen('a') && sanity_test_list(100) && sanity_test_range_fmt(); } diff --git a/src/compressor.cpp b/src/compressor.cpp index acafce3f9..155f2fa11 100644 --- a/src/compressor.cpp +++ b/src/compressor.cpp @@ -1,193 +1,195 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include