diff --git a/src/script/script.h b/src/script/script.h index 7fd5b1640..b30b87db9 100644 --- a/src/script/script.h +++ b/src/script/script.h @@ -1,583 +1,564 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SCRIPT_SCRIPT_H #define BITCOIN_SCRIPT_SCRIPT_H #include #include #include #include #include #include #include #include #include #include #include // Maximum number of bytes pushable to the stack static const unsigned int MAX_SCRIPT_ELEMENT_SIZE = 520; // Maximum number of non-push operations per script static const int MAX_OPS_PER_SCRIPT = 201; // Maximum number of public keys per multisig static const int MAX_PUBKEYS_PER_MULTISIG = 20; // Maximum script length in bytes static const int MAX_SCRIPT_SIZE = 10000; // Maximum number of values on script interpreter stack static const int MAX_STACK_SIZE = 1000; // Threshold for nLockTime: below this value it is interpreted as block number, // otherwise as UNIX timestamp. Thresold is Tue Nov 5 00:53:20 1985 UTC static const unsigned int LOCKTIME_THRESHOLD = 500000000; template std::vector ToByteVector(const T &in) { return std::vector(in.begin(), in.end()); } /** Script opcodes */ enum opcodetype { // push value OP_0 = 0x00, OP_FALSE = OP_0, OP_PUSHDATA1 = 0x4c, OP_PUSHDATA2 = 0x4d, OP_PUSHDATA4 = 0x4e, OP_1NEGATE = 0x4f, OP_RESERVED = 0x50, OP_1 = 0x51, OP_TRUE = OP_1, OP_2 = 0x52, OP_3 = 0x53, OP_4 = 0x54, OP_5 = 0x55, OP_6 = 0x56, OP_7 = 0x57, OP_8 = 0x58, OP_9 = 0x59, OP_10 = 0x5a, OP_11 = 0x5b, OP_12 = 0x5c, OP_13 = 0x5d, OP_14 = 0x5e, OP_15 = 0x5f, OP_16 = 0x60, // control OP_NOP = 0x61, OP_VER = 0x62, OP_IF = 0x63, OP_NOTIF = 0x64, OP_VERIF = 0x65, OP_VERNOTIF = 0x66, OP_ELSE = 0x67, OP_ENDIF = 0x68, OP_VERIFY = 0x69, OP_RETURN = 0x6a, // stack ops OP_TOALTSTACK = 0x6b, OP_FROMALTSTACK = 0x6c, OP_2DROP = 0x6d, OP_2DUP = 0x6e, OP_3DUP = 0x6f, OP_2OVER = 0x70, OP_2ROT = 0x71, OP_2SWAP = 0x72, OP_IFDUP = 0x73, OP_DEPTH = 0x74, OP_DROP = 0x75, OP_DUP = 0x76, OP_NIP = 0x77, OP_OVER = 0x78, OP_PICK = 0x79, OP_ROLL = 0x7a, OP_ROT = 0x7b, OP_SWAP = 0x7c, OP_TUCK = 0x7d, // splice ops OP_CAT = 0x7e, OP_SPLIT = 0x7f, // after monolith upgrade (May 2018) OP_NUM2BIN = 0x80, // after monolith upgrade (May 2018) OP_BIN2NUM = 0x81, // after monolith upgrade (May 2018) OP_SIZE = 0x82, // bit logic OP_INVERT = 0x83, OP_AND = 0x84, OP_OR = 0x85, OP_XOR = 0x86, OP_EQUAL = 0x87, OP_EQUALVERIFY = 0x88, OP_RESERVED1 = 0x89, OP_RESERVED2 = 0x8a, // numeric OP_1ADD = 0x8b, OP_1SUB = 0x8c, OP_2MUL = 0x8d, OP_2DIV = 0x8e, OP_NEGATE = 0x8f, OP_ABS = 0x90, OP_NOT = 0x91, OP_0NOTEQUAL = 0x92, OP_ADD = 0x93, OP_SUB = 0x94, OP_MUL = 0x95, OP_DIV = 0x96, OP_MOD = 0x97, OP_LSHIFT = 0x98, OP_RSHIFT = 0x99, OP_BOOLAND = 0x9a, OP_BOOLOR = 0x9b, OP_NUMEQUAL = 0x9c, OP_NUMEQUALVERIFY = 0x9d, OP_NUMNOTEQUAL = 0x9e, OP_LESSTHAN = 0x9f, OP_GREATERTHAN = 0xa0, OP_LESSTHANOREQUAL = 0xa1, OP_GREATERTHANOREQUAL = 0xa2, OP_MIN = 0xa3, OP_MAX = 0xa4, OP_WITHIN = 0xa5, // crypto OP_RIPEMD160 = 0xa6, OP_SHA1 = 0xa7, OP_SHA256 = 0xa8, OP_HASH160 = 0xa9, OP_HASH256 = 0xaa, OP_CODESEPARATOR = 0xab, OP_CHECKSIG = 0xac, OP_CHECKSIGVERIFY = 0xad, OP_CHECKMULTISIG = 0xae, OP_CHECKMULTISIGVERIFY = 0xaf, // expansion OP_NOP1 = 0xb0, OP_CHECKLOCKTIMEVERIFY = 0xb1, OP_NOP2 = OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY = 0xb2, OP_NOP3 = OP_CHECKSEQUENCEVERIFY, OP_NOP4 = 0xb3, OP_NOP5 = 0xb4, OP_NOP6 = 0xb5, OP_NOP7 = 0xb6, OP_NOP8 = 0xb7, OP_NOP9 = 0xb8, OP_NOP10 = 0xb9, // More crypto OP_CHECKDATASIG = 0xba, OP_CHECKDATASIGVERIFY = 0xbb, // additional byte string operations OP_REVERSEBYTES = 0xbc, // The first op_code value after all defined opcodes FIRST_UNDEFINED_OP_VALUE, // multi-byte opcodes OP_PREFIX_BEGIN = 0xf0, OP_PREFIX_END = 0xf7, OP_INVALIDOPCODE = 0xff, }; // Maximum value that an opcode can be static const unsigned int MAX_OPCODE = FIRST_UNDEFINED_OP_VALUE - 1; const char *GetOpName(opcodetype opcode); /** * Check whether the given stack element data would be minimally pushed using * the given opcode. */ bool CheckMinimalPush(const std::vector &data, opcodetype opcode); class scriptnum_error : public std::runtime_error { public: explicit scriptnum_error(const std::string &str) : std::runtime_error(str) {} }; class CScriptNum { /** * Numeric opcodes (OP_1ADD, etc) are restricted to operating on 4-byte * integers. The semantics are subtle, though: operands must be in the range * [-2^31 +1...2^31 -1], but results may overflow (and are valid as long as * they are not used in a subsequent numeric operation). CScriptNum enforces * those semantics by storing results as an int64 and allowing out-of-range * values to be returned as a vector of bytes but throwing an exception if * arithmetic is done or the result is interpreted as an integer. */ public: static const size_t MAXIMUM_ELEMENT_SIZE = 4; explicit CScriptNum(const int64_t &n) { m_value = n; } explicit CScriptNum(const std::vector &vch, bool fRequireMinimal, const size_t nMaxNumSize = MAXIMUM_ELEMENT_SIZE) { if (vch.size() > nMaxNumSize) { throw scriptnum_error("script number overflow"); } if (fRequireMinimal && !IsMinimallyEncoded(vch, nMaxNumSize)) { throw scriptnum_error("non-minimally encoded script number"); } m_value = set_vch(vch); } static bool IsMinimallyEncoded( const std::vector &vch, const size_t nMaxNumSize = CScriptNum::MAXIMUM_ELEMENT_SIZE); static bool MinimallyEncode(std::vector &data); inline bool operator==(const int64_t &rhs) const { return m_value == rhs; } inline bool operator!=(const int64_t &rhs) const { return m_value != rhs; } inline bool operator<=(const int64_t &rhs) const { return m_value <= rhs; } inline bool operator<(const int64_t &rhs) const { return m_value < rhs; } inline bool operator>=(const int64_t &rhs) const { return m_value >= rhs; } inline bool operator>(const int64_t &rhs) const { return m_value > rhs; } inline bool operator==(const CScriptNum &rhs) const { return operator==(rhs.m_value); } inline bool operator!=(const CScriptNum &rhs) const { return operator!=(rhs.m_value); } inline bool operator<=(const CScriptNum &rhs) const { return operator<=(rhs.m_value); } inline bool operator<(const CScriptNum &rhs) const { return operator<(rhs.m_value); } inline bool operator>=(const CScriptNum &rhs) const { return operator>=(rhs.m_value); } inline bool operator>(const CScriptNum &rhs) const { return operator>(rhs.m_value); } inline CScriptNum operator+(const int64_t &rhs) const { return CScriptNum(m_value + rhs); } inline CScriptNum operator-(const int64_t &rhs) const { return CScriptNum(m_value - rhs); } inline CScriptNum operator+(const CScriptNum &rhs) const { return operator+(rhs.m_value); } inline CScriptNum operator-(const CScriptNum &rhs) const { return operator-(rhs.m_value); } inline CScriptNum operator/(const int64_t &rhs) const { return CScriptNum(m_value / rhs); } inline CScriptNum operator/(const CScriptNum &rhs) const { return operator/(rhs.m_value); } inline CScriptNum operator%(const int64_t &rhs) const { return CScriptNum(m_value % rhs); } inline CScriptNum operator%(const CScriptNum &rhs) const { return operator%(rhs.m_value); } inline CScriptNum &operator+=(const CScriptNum &rhs) { return operator+=(rhs.m_value); } inline CScriptNum &operator-=(const CScriptNum &rhs) { return operator-=(rhs.m_value); } inline CScriptNum operator&(const int64_t &rhs) const { return CScriptNum(m_value & rhs); } inline CScriptNum operator&(const CScriptNum &rhs) const { return operator&(rhs.m_value); } inline CScriptNum &operator&=(const CScriptNum &rhs) { return operator&=(rhs.m_value); } inline CScriptNum operator-() const { assert(m_value != std::numeric_limits::min()); return CScriptNum(-m_value); } inline CScriptNum &operator=(const int64_t &rhs) { m_value = rhs; return *this; } inline CScriptNum &operator+=(const int64_t &rhs) { assert( rhs == 0 || (rhs > 0 && m_value <= std::numeric_limits::max() - rhs) || (rhs < 0 && m_value >= std::numeric_limits::min() - rhs)); m_value += rhs; return *this; } inline CScriptNum &operator-=(const int64_t &rhs) { assert( rhs == 0 || (rhs > 0 && m_value >= std::numeric_limits::min() + rhs) || (rhs < 0 && m_value <= std::numeric_limits::max() + rhs)); m_value -= rhs; return *this; } inline CScriptNum &operator&=(const int64_t &rhs) { m_value &= rhs; return *this; } int getint() const { if (m_value > std::numeric_limits::max()) { return std::numeric_limits::max(); } else if (m_value < std::numeric_limits::min()) { return std::numeric_limits::min(); } return m_value; } std::vector getvch() const { return serialize(m_value); } static std::vector serialize(const int64_t &value) { if (value == 0) { return {}; } std::vector result; const bool neg = value < 0; uint64_t absvalue = neg ? -value : value; while (absvalue) { result.push_back(absvalue & 0xff); absvalue >>= 8; } // - If the most significant byte is >= 0x80 and the value is positive, // push a new zero-byte to make the significant byte < 0x80 again. // - If the most significant byte is >= 0x80 and the value is negative, // push a new 0x80 byte that will be popped off when converting to an // integral. // - If the most significant byte is < 0x80 and the value is negative, // add 0x80 to it, since it will be subtracted and interpreted as a // negative when converting to an integral. if (result.back() & 0x80) { result.push_back(neg ? 0x80 : 0); } else if (neg) { result.back() |= 0x80; } return result; } private: static int64_t set_vch(const std::vector &vch) { if (vch.empty()) { return 0; } int64_t result = 0; for (size_t i = 0; i != vch.size(); ++i) { result |= int64_t(vch[i]) << 8 * i; } // If the input vector's most significant byte is 0x80, remove it from // the result's msb and return a negative. if (vch.back() & 0x80) { return -int64_t(result & ~(0x80ULL << (8 * (vch.size() - 1)))); } return result; } int64_t m_value; }; /** * We use a prevector for the script to reduce the considerable memory overhead * of vectors in cases where they normally contain a small number of small * elements. Tests in October 2015 showed use of this reduced dbcache memory * usage by 23% and made an initial sync 13% faster. */ typedef prevector<28, uint8_t> CScriptBase; bool GetScriptOp(CScriptBase::const_iterator &pc, CScriptBase::const_iterator end, opcodetype &opcodeRet, std::vector *pvchRet); /** Serialized script, used inside transaction inputs and outputs */ class CScript : public CScriptBase { protected: CScript &push_int64(int64_t n) { if (n == -1 || (n >= 1 && n <= 16)) { push_back(n + (OP_1 - 1)); } else if (n == 0) { push_back(OP_0); } else { *this << CScriptNum::serialize(n); } return *this; } public: CScript() {} CScript(const_iterator pbegin, const_iterator pend) : CScriptBase(pbegin, pend) {} CScript(std::vector::const_iterator pbegin, std::vector::const_iterator pend) : CScriptBase(pbegin, pend) {} CScript(const uint8_t *pbegin, const uint8_t *pend) : CScriptBase(pbegin, pend) {} ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITEAS(CScriptBase, *this); } - CScript &operator+=(const CScript &b) { - reserve(size() + b.size()); - insert(end(), b.begin(), b.end()); - return *this; - } - - friend CScript operator+(const CScript &a, const CScript &b) { - CScript ret = a; - ret += b; - return ret; - } - explicit CScript(int64_t b) { operator<<(b); } - explicit CScript(opcodetype b) { operator<<(b); } explicit CScript(const CScriptNum &b) { operator<<(b); } // delete non-existent constructor to defend against future introduction // e.g. via prevector explicit CScript(const std::vector &b) = delete; + /** Delete non-existent operator to defend against future introduction */ + CScript &operator<<(const CScript &b) = delete; + CScript &operator<<(int64_t b) { return push_int64(b); } CScript &operator<<(opcodetype opcode) { if (opcode < 0 || opcode > 0xff) { throw std::runtime_error("CScript::operator<<(): invalid opcode"); } insert(end(), uint8_t(opcode)); return *this; } CScript &operator<<(const CScriptNum &b) { *this << b.getvch(); return *this; } CScript &operator<<(const std::vector &b) { if (b.size() < OP_PUSHDATA1) { insert(end(), uint8_t(b.size())); } else if (b.size() <= 0xff) { insert(end(), OP_PUSHDATA1); insert(end(), uint8_t(b.size())); } else if (b.size() <= 0xffff) { insert(end(), OP_PUSHDATA2); uint8_t _data[2]; WriteLE16(_data, b.size()); insert(end(), _data, _data + sizeof(_data)); } else { insert(end(), OP_PUSHDATA4); uint8_t _data[4]; WriteLE32(_data, b.size()); insert(end(), _data, _data + sizeof(_data)); } insert(end(), b.begin(), b.end()); return *this; } - CScript &operator<<(const CScript &b) { - // I'm not sure if this should push the script or concatenate scripts. - // If there's ever a use for pushing a script onto a script, delete this - // member fn. - assert(!"Warning: Pushing a CScript onto a CScript with << is probably " - "not intended, use + to concatenate!"); - return *this; - } - bool GetOp(const_iterator &pc, opcodetype &opcodeRet, std::vector &vchRet) const { return GetScriptOp(pc, end(), opcodeRet, &vchRet); } bool GetOp(const_iterator &pc, opcodetype &opcodeRet) const { return GetScriptOp(pc, end(), opcodeRet, nullptr); } /** Encode/decode small integers: */ static int DecodeOP_N(opcodetype opcode) { if (opcode == OP_0) { return 0; } assert(opcode >= OP_1 && opcode <= OP_16); return int(opcode) - int(OP_1 - 1); } static opcodetype EncodeOP_N(int n) { assert(n >= 0 && n <= 16); if (n == 0) { return OP_0; } return (opcodetype)(OP_1 + n - 1); } bool IsPayToScriptHash() const; bool IsCommitment(const std::vector &data) const; bool IsWitnessProgram(int &version, std::vector &program) const; bool IsWitnessProgram() const; /** * Called by IsStandardTx and P2SH/BIP62 VerifyScript (which makes it * consensus-critical). */ bool IsPushOnly(const_iterator pc) const; bool IsPushOnly() const; /** Check if the script contains valid OP_CODES */ bool HasValidOps() const; /** * Returns whether the script is guaranteed to fail at execution, regardless * of the initial stack. This allows outputs to be pruned instantly when * entering the UTXO set. */ bool IsUnspendable() const { return (size() > 0 && *begin() == OP_RETURN) || (size() > MAX_SCRIPT_SIZE); } void clear() { // The default prevector::clear() does not release memory CScriptBase::clear(); shrink_to_fit(); } }; #endif // BITCOIN_SCRIPT_SCRIPT_H diff --git a/src/test/fuzz/script_ops.cpp b/src/test/fuzz/script_ops.cpp index 0a4254f17..e209b4cc5 100644 --- a/src/test/fuzz/script_ops.cpp +++ b/src/test/fuzz/script_ops.cpp @@ -1,63 +1,67 @@ // Copyright (c) 2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include