diff --git a/src/net.cpp b/src/net.cpp index a63681303..c91c6ff1d 100644 --- a/src/net.cpp +++ b/src/net.cpp @@ -1,3051 +1,3052 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef WIN32 #include #else #include #endif #ifdef USE_POLL #include #endif #ifdef USE_UPNP #include #include #include #endif #include #include // How often to dump addresses to peers.dat static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15}; /** * Number of DNS seeds to query when the number of connections is low. */ static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3; // We add a random period time (0 to 1 seconds) to feeler connections to prevent // synchronization. #define FEELER_SLEEP_WINDOW 1 // MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define // it as 0 #if !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // MSG_DONTWAIT is not available on some platforms, if it doesn't exist define // it as 0 #if !defined(MSG_DONTWAIT) #define MSG_DONTWAIT 0 #endif /** Used to pass flags to the Bind() function */ enum BindFlags { BF_NONE = 0, BF_EXPLICIT = (1U << 0), BF_REPORT_ERROR = (1U << 1), }; // The set of sockets cannot be modified while waiting // The sleep time needs to be small to avoid new sockets stalling static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50; const std::string NET_MESSAGE_COMMAND_OTHER = "*other*"; // SHA256("netgroup")[0:8] static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("localhostnonce")[0:8] static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // // Global state variables // bool fDiscover = true; bool fListen = true; bool g_relay_txes = !DEFAULT_BLOCKSONLY; RecursiveMutex cs_mapLocalHost; std::map mapLocalHost GUARDED_BY(cs_mapLocalHost); static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {}; void CConnman::AddOneShot(const std::string &strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { return (unsigned short)(gArgs.GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService &addr, const CNetAddr *paddrPeer) { if (!fListen) { return false; } int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (const auto &entry : mapLocalHost) { int nScore = entry.second.nScore; int nReachability = entry.first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService(entry.first, entry.second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the pnSeed6 array into usable address objects. static std::vector convertSeed6(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. Seed nodes are given // a random 'last seen time' of between one and two weeks ago. const int64_t nOneWeek = 7 * 24 * 60 * 60; std::vector vSeedsOut; vSeedsOut.reserve(vSeedsIn.size()); FastRandomContext rng; for (const auto &seed_in : vSeedsIn) { struct in6_addr ip; memcpy(&ip, seed_in.addr, sizeof(ip)); CAddress addr(CService(ip, seed_in.port), GetDesirableServiceFlags(NODE_NONE)); addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek; vSeedsOut.push_back(addr); } return vSeedsOut; } // Get best local address for a particular peer as a CAddress. Otherwise, return // the unroutable 0.0.0.0 but filled in with the normal parameters, since the IP // may be changed to a useful one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices) { CAddress ret(CService(CNetAddr(), GetListenPort()), nLocalServices); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr, nLocalServices); } ret.nTime = GetAdjustedTime(); return ret; } static int GetnScore(const CService &addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) { return 0; } return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { CService addrLocal = pnode->GetAddrLocal(); return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() && IsReachable(addrLocal.GetNetwork()); } // Pushes our own address to a peer. void AdvertiseLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices()); if (gArgs.GetBoolArg("-addrmantest", false)) { // use IPv4 loopback during addrmantest addrLocal = CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())), pnode->GetLocalServices()); } // If discovery is enabled, sometimes give our peer the address it // tells us that it sees us as in case it has a better idea of our // address than we do. FastRandomContext rng; if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0)) { addrLocal.SetIP(pnode->GetAddrLocal()); } if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false)) { LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString()); pnode->PushAddress(addrLocal, rng); } } } // Learn a new local address. bool AddLocal(const CService &addr, int nScore) { if (!addr.IsRoutable()) { return false; } if (!fDiscover && nScore < LOCAL_MANUAL) { return false; } if (!IsReachable(addr)) { return false; } LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } void RemoveLocal(const CService &addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); } void SetReachable(enum Network net, bool reachable) { if (net == NET_UNROUTABLE || net == NET_INTERNAL) { return; } LOCK(cs_mapLocalHost); vfLimited[net] = !reachable; } bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } bool IsReachable(const CNetAddr &addr) { return IsReachable(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService &addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) { return false; } mapLocalHost[addr].nScore++; return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService &addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } CNode *CConnman::FindNode(const CNetAddr &ip) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (static_cast(pnode->addr) == ip) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const CSubNet &subNet) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const std::string &addrName) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (pnode->GetAddrName() == addrName) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const CService &addr) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (static_cast(pnode->addr) == addr) { return pnode; } } return nullptr; } bool CConnman::CheckIncomingNonce(uint64_t nonce) { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce) { return false; } } return true; } /** Get the bind address for a socket as CAddress */ static CAddress GetBindAddress(SOCKET sock) { CAddress addr_bind; struct sockaddr_storage sockaddr_bind; socklen_t sockaddr_bind_len = sizeof(sockaddr_bind); if (sock != INVALID_SOCKET) { if (!getsockname(sock, (struct sockaddr *)&sockaddr_bind, &sockaddr_bind_len)) { addr_bind.SetSockAddr((const struct sockaddr *)&sockaddr_bind); } else { LogPrint(BCLog::NET, "Warning: getsockname failed\n"); } } return addr_bind; } CNode *CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, bool manual_connection, bool block_relay_only) { if (pszDest == nullptr) { if (IsLocal(addrConnect)) { return nullptr; } // Look for an existing connection CNode *pnode = FindNode(static_cast(addrConnect)); if (pnode) { LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } /// debug print LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime) / 3600.0); // Resolve const int default_port = Params().GetDefaultPort(); if (pszDest) { std::vector resolved; if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) { addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE); if (!addrConnect.IsValid()) { LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest); return nullptr; } // It is possible that we already have a connection to the IP/port // pszDest resolved to. In that case, drop the connection that was // just created, and return the existing CNode instead. Also store // the name we used to connect in that CNode, so that future // FindNode() calls to that name catch this early. LOCK(cs_vNodes); CNode *pnode = FindNode(static_cast(addrConnect)); if (pnode) { pnode->MaybeSetAddrName(std::string(pszDest)); LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } } // Connect bool connected = false; SOCKET hSocket = INVALID_SOCKET; proxyType proxy; if (addrConnect.IsValid()) { bool proxyConnectionFailed = false; if (GetProxy(addrConnect.GetNetwork(), proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectThroughProxy( proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket, nConnectTimeout, &proxyConnectionFailed); } else { // no proxy needed (none set for target network) hSocket = CreateSocket(addrConnect); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectSocketDirectly( addrConnect, hSocket, nConnectTimeout, manual_connection); } if (!proxyConnectionFailed) { // If a connection to the node was attempted, and failure (if any) // is not caused by a problem connecting to the proxy, mark this as // an attempt. addrman.Attempt(addrConnect, fCountFailure); } } else if (pszDest && GetNameProxy(proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } std::string host; int port = default_port; SplitHostPort(std::string(pszDest), port, host); connected = ConnectThroughProxy(proxy, host, port, hSocket, nConnectTimeout, nullptr); } if (!connected) { CloseSocket(hSocket); return nullptr; } // Add node NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE) .Write(id) .Finalize(); CAddress addr_bind = GetBindAddress(hSocket); CNode *pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", false, block_relay_only); pnode->AddRef(); return pnode; } void CNode::CloseSocketDisconnect() { fDisconnect = true; LOCK(cs_hSocket); if (hSocket != INVALID_SOCKET) { LogPrint(BCLog::NET, "disconnecting peer=%d\n", id); CloseSocket(hSocket); } } void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr) const { for (const auto &subnet : vWhitelistedRange) { if (subnet.m_subnet.Match(addr)) { NetPermissions::AddFlag(flags, subnet.m_flags); } } } std::string CNode::GetAddrName() const { LOCK(cs_addrName); return addrName; } void CNode::MaybeSetAddrName(const std::string &addrNameIn) { LOCK(cs_addrName); if (addrName.empty()) { addrName = addrNameIn; } } CService CNode::GetAddrLocal() const { LOCK(cs_addrLocal); return addrLocal; } void CNode::SetAddrLocal(const CService &addrLocalIn) { LOCK(cs_addrLocal); if (addrLocal.IsValid()) { error("Addr local already set for node: %i. Refusing to change from %s " "to %s", id, addrLocal.ToString(), addrLocalIn.ToString()); } else { addrLocal = addrLocalIn; } } -void CNode::copyStats(CNodeStats &stats) { +void CNode::copyStats(CNodeStats &stats, std::vector &m_asmap) { stats.nodeid = this->GetId(); stats.nServices = nServices; stats.addr = addr; stats.addrBind = addrBind; + stats.m_mapped_as = addr.GetMappedAS(m_asmap); if (m_tx_relay != nullptr) { LOCK(m_tx_relay->cs_filter); stats.fRelayTxes = m_tx_relay->fRelayTxes; } else { stats.fRelayTxes = false; } stats.nLastSend = nLastSend; stats.nLastRecv = nLastRecv; stats.nTimeConnected = nTimeConnected; stats.nTimeOffset = nTimeOffset; stats.addrName = GetAddrName(); stats.nVersion = nVersion; { LOCK(cs_SubVer); stats.cleanSubVer = cleanSubVer; } stats.fInbound = fInbound; stats.m_manual_connection = m_manual_connection; stats.nStartingHeight = nStartingHeight; { LOCK(cs_vSend); stats.mapSendBytesPerMsgCmd = mapSendBytesPerMsgCmd; stats.nSendBytes = nSendBytes; } { LOCK(cs_vRecv); stats.mapRecvBytesPerMsgCmd = mapRecvBytesPerMsgCmd; stats.nRecvBytes = nRecvBytes; } stats.m_legacyWhitelisted = m_legacyWhitelisted; stats.m_permissionFlags = m_permissionFlags; if (m_tx_relay != nullptr) { LOCK(m_tx_relay->cs_feeFilter); stats.minFeeFilter = m_tx_relay->minFeeFilter; } else { stats.minFeeFilter = Amount::zero(); } // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. Merely reporting // pingtime might fool the caller into thinking the node was still // responsive, since pingtime does not update until the ping is complete, // which might take a while. So, if a ping is taking an unusually long time // in flight, the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds // (Bitcoin users should be well used to small numbers with many decimal // places by now :) stats.m_ping_usec = nPingUsecTime; stats.m_min_ping_usec = nMinPingUsecTime; stats.m_ping_wait_usec = nPingUsecWait; // Leave string empty if addrLocal invalid (not filled in yet) CService addrLocalUnlocked = GetAddrLocal(); stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : ""; } static bool IsOversizedMessage(const Config &config, const CNetMessage &msg) { if (!msg.in_data) { // Header only, cannot be oversized. return false; } return msg.hdr.IsOversized(config); } bool CNode::ReceiveMsgBytes(const Config &config, const char *pch, uint32_t nBytes, bool &complete) { complete = false; int64_t nTimeMicros = GetTimeMicros(); LOCK(cs_vRecv); nLastRecv = nTimeMicros / 1000000; nRecvBytes += nBytes; while (nBytes > 0) { // Get current incomplete message, or create a new one. if (vRecvMsg.empty() || vRecvMsg.back().complete()) { vRecvMsg.push_back(CNetMessage(config.GetChainParams().NetMagic(), SER_NETWORK, INIT_PROTO_VERSION)); } CNetMessage &msg = vRecvMsg.back(); // Absorb network data. int handled; if (!msg.in_data) { handled = msg.readHeader(config, pch, nBytes); } else { handled = msg.readData(pch, nBytes); } if (handled < 0) { return false; } if (IsOversizedMessage(config, msg)) { LogPrint(BCLog::NET, "Oversized message from peer=%i, disconnecting\n", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) { // Store received bytes per message command to prevent a memory DOS, // only allow valid commands. mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand.data()); if (i == mapRecvBytesPerMsgCmd.end()) { i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER); } assert(i != mapRecvBytesPerMsgCmd.end()); i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE; msg.nTime = nTimeMicros; complete = true; } } return true; } void CNode::SetSendVersion(int nVersionIn) { // Send version may only be changed in the version message, and only one // version message is allowed per session. We can therefore treat this value // as const and even atomic as long as it's only used once a version message // has been successfully processed. Any attempt to set this twice is an // error. if (nSendVersion != 0) { error("Send version already set for node: %i. Refusing to change from " "%i to %i", id, nSendVersion, nVersionIn); } else { nSendVersion = nVersionIn; } } int CNode::GetSendVersion() const { // The send version should always be explicitly set to INIT_PROTO_VERSION // rather than using this value until SetSendVersion has been called. if (nSendVersion == 0) { error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION); return INIT_PROTO_VERSION; } return nSendVersion; } int CNetMessage::readHeader(const Config &config, const char *pch, uint32_t nBytes) { // copy data to temporary parsing buffer uint32_t nRemaining = 24 - nHdrPos; uint32_t nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) { return nCopy; } // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception &) { return -1; } // Reject oversized messages if (hdr.IsOversized(config)) { LogPrint(BCLog::NET, "Oversized header detected\n"); return -1; } // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, uint32_t nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message // size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } hasher.Write((const uint8_t *)pch, nCopy); memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } const uint256 &CNetMessage::GetMessageHash() const { assert(complete()); if (data_hash.IsNull()) { hasher.Finalize(data_hash.begin()); } return data_hash; } size_t CConnman::SocketSendData(CNode *pnode) const EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_vSend) { size_t nSentSize = 0; size_t nMsgCount = 0; for (const auto &data : pnode->vSendMsg) { assert(data.size() > pnode->nSendOffset); int nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { break; } nBytes = send(pnode->hSocket, reinterpret_cast(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); } if (nBytes == 0) { // couldn't send anything at all break; } if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrintf("socket send error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } break; } assert(nBytes > 0); pnode->nLastSend = GetSystemTimeInSeconds(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; nSentSize += nBytes; if (pnode->nSendOffset != data.size()) { // could not send full message; stop sending more break; } pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize; nMsgCount++; } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), pnode->vSendMsg.begin() + nMsgCount); if (pnode->vSendMsg.empty()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } return nSentSize; } struct NodeEvictionCandidate { NodeId id; int64_t nTimeConnected; int64_t nMinPingUsecTime; int64_t nLastBlockTime; int64_t nLastTXTime; bool fRelevantServices; bool fRelayTxes; bool fBloomFilter; CAddress addr; uint64_t nKeyedNetGroup; bool prefer_evict; }; static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nMinPingUsecTime > b.nMinPingUsecTime; } static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nTimeConnected > b.nTimeConnected; } static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nKeyedNetGroup < b.nKeyedNetGroup; } static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have many // peers which have not yet relayed a block. if (a.nLastBlockTime != b.nLastBlockTime) { return a.nLastBlockTime < b.nLastBlockTime; } if (a.fRelevantServices != b.fRelevantServices) { return b.fRelevantServices; } return a.nTimeConnected > b.nTimeConnected; } static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more // than a few peers that have not yet relayed txn. if (a.nLastTXTime != b.nLastTXTime) { return a.nLastTXTime < b.nLastTXTime; } if (a.fRelayTxes != b.fRelayTxes) { return b.fRelayTxes; } if (a.fBloomFilter != b.fBloomFilter) { return a.fBloomFilter; } return a.nTimeConnected > b.nTimeConnected; } //! Sort an array by the specified comparator, then erase the last K elements. template static void EraseLastKElements(std::vector &elements, Comparator comparator, size_t k) { std::sort(elements.begin(), elements.end(), comparator); size_t eraseSize = std::min(k, elements.size()); elements.erase(elements.end() - eraseSize, elements.end()); } /** * Try to find a connection to evict when the node is full. * Extreme care must be taken to avoid opening the node to attacker triggered * network partitioning. * The strategy used here is to protect a small number of peers for each of * several distinct characteristics which are difficult to forge. In order to * partition a node the attacker must be simultaneously better at all of them * than honest peers. */ bool CConnman::AttemptToEvictConnection() { std::vector vEvictionCandidates; { LOCK(cs_vNodes); for (const CNode *node : vNodes) { if (node->HasPermission(PF_NOBAN)) { continue; } if (!node->fInbound) { continue; } if (node->fDisconnect) { continue; } bool peer_relay_txes = false; bool peer_filter_not_null = false; if (node->m_tx_relay != nullptr) { LOCK(node->m_tx_relay->cs_filter); peer_relay_txes = node->m_tx_relay->fRelayTxes; peer_filter_not_null = node->m_tx_relay->pfilter != nullptr; } NodeEvictionCandidate candidate = { node->GetId(), node->nTimeConnected, node->nMinPingUsecTime, node->nLastBlockTime, node->nLastTXTime, HasAllDesirableServiceFlags(node->nServices), peer_relay_txes, peer_filter_not_null, node->addr, node->nKeyedNetGroup, node->m_prefer_evict}; vEvictionCandidates.push_back(candidate); } } // Protect connections with certain characteristics // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4); // Protect the 8 nodes with the lowest minimum ping time. // An attacker cannot manipulate this metric without physically moving nodes // closer to the target. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8); // Protect 4 nodes that most recently sent us transactions. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4); // Protect 4 nodes that most recently sent us blocks. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4); // Protect the half of the remaining nodes which have been connected the // longest. This replicates the non-eviction implicit behavior, and // precludes attacks that start later. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected, vEvictionCandidates.size() / 2); if (vEvictionCandidates.empty()) { return false; } // If any remaining peers are preferred for eviction consider only them. // This happens after the other preferences since if a peer is really the // best by other criteria (esp relaying blocks) // then we probably don't want to evict it no matter what. if (std::any_of( vEvictionCandidates.begin(), vEvictionCandidates.end(), [](NodeEvictionCandidate const &n) { return n.prefer_evict; })) { vEvictionCandidates.erase( std::remove_if( vEvictionCandidates.begin(), vEvictionCandidates.end(), [](NodeEvictionCandidate const &n) { return !n.prefer_evict; }), vEvictionCandidates.end()); } // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) uint64_t naMostConnections; unsigned int nMostConnections = 0; int64_t nMostConnectionsTime = 0; std::map> mapNetGroupNodes; for (const NodeEvictionCandidate &node : vEvictionCandidates) { std::vector &group = mapNetGroupNodes[node.nKeyedNetGroup]; group.push_back(node); int64_t grouptime = group[0].nTimeConnected; size_t group_size = group.size(); if (group_size > nMostConnections || (group_size == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = group_size; nMostConnectionsTime = grouptime; naMostConnections = node.nKeyedNetGroup; } } // Reduce to the network group with the most connections vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); // Disconnect from the network group with the most connections NodeId evicted = vEvictionCandidates.front().id; LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (pnode->GetId() == evicted) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::AcceptConnection(const ListenSocket &hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr *)&sockaddr, &len); CAddress addr; int nInbound = 0; int nMaxInbound = nMaxConnections - m_max_outbound; if (hSocket != INVALID_SOCKET) { if (!addr.SetSockAddr((const struct sockaddr *)&sockaddr)) { LogPrintf("Warning: Unknown socket family\n"); } } NetPermissionFlags permissionFlags = NetPermissionFlags::PF_NONE; hListenSocket.AddSocketPermissionFlags(permissionFlags); AddWhitelistPermissionFlags(permissionFlags, addr); bool legacyWhitelisted = false; if (NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_ISIMPLICIT)) { NetPermissions::ClearFlag(permissionFlags, PF_ISIMPLICIT); if (gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) { NetPermissions::AddFlag(permissionFlags, PF_FORCERELAY); } if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) { NetPermissions::AddFlag(permissionFlags, PF_RELAY); } NetPermissions::AddFlag(permissionFlags, PF_MEMPOOL); NetPermissions::AddFlag(permissionFlags, PF_NOBAN); legacyWhitelisted = true; } { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->fInbound) { nInbound++; } } } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) { LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); } return; } if (!fNetworkActive) { LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString()); CloseSocket(hSocket); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted // sockets on all platforms. Set it again here just to be sure. SetSocketNoDelay(hSocket); // Don't accept connections from banned peers. bool banned = m_banman->IsBanned(addr); if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_NOBAN) && banned) { LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); return; } // Only accept connections from discouraged peers if our inbound slots // aren't (almost) full. bool discouraged = m_banman->IsDiscouraged(addr); if (!NetPermissions::HasFlag(permissionFlags, NetPermissionFlags::PF_NOBAN) && nInbound + 1 >= nMaxInbound && discouraged) { LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n", addr.ToString()); CloseSocket(hSocket); return; } if (nInbound >= nMaxInbound) { if (!AttemptToEvictConnection()) { // No connection to evict, disconnect the new connection LogPrint(BCLog::NET, "failed to find an eviction candidate - " "connection dropped (full)\n"); CloseSocket(hSocket); return; } } NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE) .Write(id) .Finalize(); CAddress addr_bind = GetBindAddress(hSocket); ServiceFlags nodeServices = nLocalServices; if (NetPermissions::HasFlag(permissionFlags, PF_BLOOMFILTER)) { nodeServices = static_cast(nodeServices | NODE_BLOOM); } CNode *pnode = new CNode(id, nodeServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true); pnode->AddRef(); pnode->m_permissionFlags = permissionFlags; // If this flag is present, the user probably expect that RPC and QT report // it as whitelisted (backward compatibility) pnode->m_legacyWhitelisted = legacyWhitelisted; pnode->m_prefer_evict = discouraged; m_msgproc->InitializeNode(*config, pnode); LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString()); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::DisconnectNodes() { { LOCK(cs_vNodes); if (!fNetworkActive) { // Disconnect any connected nodes for (CNode *pnode : vNodes) { if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId()); pnode->fDisconnect = true; } } } // Disconnect unused nodes std::vector vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { if (pnode->fDisconnect) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes std::list vNodesDisconnectedCopy = vNodesDisconnected; for (CNode *pnode : vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { fDelete = true; } } } if (fDelete) { vNodesDisconnected.remove(pnode); DeleteNode(pnode); } } } } } void CConnman::NotifyNumConnectionsChanged() { size_t vNodesSize; { LOCK(cs_vNodes); vNodesSize = vNodes.size(); } if (vNodesSize != nPrevNodeCount) { nPrevNodeCount = vNodesSize; if (clientInterface) { clientInterface->NotifyNumConnectionsChanged(vNodesSize); } } } void CConnman::InactivityCheck(CNode *pnode) { int64_t nTime = GetSystemTimeInSeconds(); if (nTime - pnode->nTimeConnected > m_peer_connect_timeout) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint(BCLog::NET, "socket no message in first %i seconds, %d %d from %d\n", m_peer_connect_timeout, pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId()); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90 * 60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } else if (!pnode->fSuccessfullyConnected) { LogPrint(BCLog::NET, "version handshake timeout from %d\n", pnode->GetId()); pnode->fDisconnect = true; } } } bool CConnman::GenerateSelectSet(std::set &recv_set, std::set &send_set, std::set &error_set) { for (const ListenSocket &hListenSocket : vhListenSocket) { recv_set.insert(hListenSocket.socket); } { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { // Implement the following logic: // * If there is data to send, select() for sending data. As this // only happens when optimistic write failed, we choose to first // drain the write buffer in this case before receiving more. This // avoids needlessly queueing received data, if the remote peer is // not themselves receiving data. This means properly utilizing // TCP flow control signalling. // * Otherwise, if there is space left in the receive buffer, // select() for receiving data. // * Hand off all complete messages to the processor, to be handled // without blocking here. bool select_recv = !pnode->fPauseRecv; bool select_send; { LOCK(pnode->cs_vSend); select_send = !pnode->vSendMsg.empty(); } LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } error_set.insert(pnode->hSocket); if (select_send) { send_set.insert(pnode->hSocket); continue; } if (select_recv) { recv_set.insert(pnode->hSocket); } } } return !recv_set.empty() || !send_set.empty() || !error_set.empty(); } #ifdef USE_POLL void CConnman::SocketEvents(std::set &recv_set, std::set &send_set, std::set &error_set) { std::set recv_select_set, send_select_set, error_select_set; if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) { interruptNet.sleep_for( std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)); return; } std::unordered_map pollfds; for (SOCKET socket_id : recv_select_set) { pollfds[socket_id].fd = socket_id; pollfds[socket_id].events |= POLLIN; } for (SOCKET socket_id : send_select_set) { pollfds[socket_id].fd = socket_id; pollfds[socket_id].events |= POLLOUT; } for (SOCKET socket_id : error_select_set) { pollfds[socket_id].fd = socket_id; // These flags are ignored, but we set them for clarity pollfds[socket_id].events |= POLLERR | POLLHUP; } std::vector vpollfds; vpollfds.reserve(pollfds.size()); for (auto it : pollfds) { vpollfds.push_back(std::move(it.second)); } if (poll(vpollfds.data(), vpollfds.size(), SELECT_TIMEOUT_MILLISECONDS) < 0) { return; } if (interruptNet) { return; } for (struct pollfd pollfd_entry : vpollfds) { if (pollfd_entry.revents & POLLIN) { recv_set.insert(pollfd_entry.fd); } if (pollfd_entry.revents & POLLOUT) { send_set.insert(pollfd_entry.fd); } if (pollfd_entry.revents & (POLLERR | POLLHUP)) { error_set.insert(pollfd_entry.fd); } } } #else void CConnman::SocketEvents(std::set &recv_set, std::set &send_set, std::set &error_set) { std::set recv_select_set, send_select_set, error_select_set; if (!GenerateSelectSet(recv_select_set, send_select_set, error_select_set)) { interruptNet.sleep_for( std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS)); return; } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; // frequency to poll pnode->vSend timeout.tv_usec = SELECT_TIMEOUT_MILLISECONDS * 1000; fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; for (SOCKET hSocket : recv_select_set) { FD_SET(hSocket, &fdsetRecv); hSocketMax = std::max(hSocketMax, hSocket); } for (SOCKET hSocket : send_select_set) { FD_SET(hSocket, &fdsetSend); hSocketMax = std::max(hSocketMax, hSocket); } for (SOCKET hSocket : error_select_set) { FD_SET(hSocket, &fdsetError); hSocketMax = std::max(hSocketMax, hSocket); } int nSelect = select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); if (interruptNet) { return; } if (nSelect == SOCKET_ERROR) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) { FD_SET(i, &fdsetRecv); } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); if (!interruptNet.sleep_for( std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS))) { return; } } for (SOCKET hSocket : recv_select_set) { if (FD_ISSET(hSocket, &fdsetRecv)) { recv_set.insert(hSocket); } } for (SOCKET hSocket : send_select_set) { if (FD_ISSET(hSocket, &fdsetSend)) { send_set.insert(hSocket); } } for (SOCKET hSocket : error_select_set) { if (FD_ISSET(hSocket, &fdsetError)) { error_set.insert(hSocket); } } } #endif void CConnman::SocketHandler() { std::set recv_set, send_set, error_set; SocketEvents(recv_set, send_set, error_set); if (interruptNet) { return; } // // Accept new connections // for (const ListenSocket &hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && recv_set.count(hListenSocket.socket) > 0) { AcceptConnection(hListenSocket); } } // // Service each socket // std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { pnode->AddRef(); } } for (CNode *pnode : vNodesCopy) { if (interruptNet) { return; } // // Receive // bool recvSet = false; bool sendSet = false; bool errorSet = false; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } recvSet = recv_set.count(pnode->hSocket) > 0; sendSet = send_set.count(pnode->hSocket) > 0; errorSet = error_set.count(pnode->hSocket) > 0; } if (recvSet || errorSet) { // typical socket buffer is 8K-64K char pchBuf[0x10000]; int32_t nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); } if (nBytes > 0) { bool notify = false; if (!pnode->ReceiveMsgBytes(*config, pchBuf, nBytes, notify)) { pnode->CloseSocketDisconnect(); } RecordBytesRecv(nBytes); if (notify) { size_t nSizeAdded = 0; auto it(pnode->vRecvMsg.begin()); for (; it != pnode->vRecvMsg.end(); ++it) { if (!it->complete()) { break; } nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE; } { LOCK(pnode->cs_vProcessMsg); pnode->vProcessMsg.splice(pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it); pnode->nProcessQueueSize += nSizeAdded; pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize; } WakeMessageHandler(); } } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "socket closed for peer=%d\n", pnode->GetId()); } pnode->CloseSocketDisconnect(); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "socket recv error for peer=%d: %s\n", pnode->GetId(), NetworkErrorString(nErr)); } pnode->CloseSocketDisconnect(); } } } // // Send // if (sendSet) { LOCK(pnode->cs_vSend); size_t nBytes = SocketSendData(pnode); if (nBytes) { RecordBytesSent(nBytes); } } InactivityCheck(pnode); } { LOCK(cs_vNodes); for (CNode *pnode : vNodesCopy) { pnode->Release(); } } } void CConnman::ThreadSocketHandler() { while (!interruptNet) { DisconnectNodes(); NotifyNumConnectionsChanged(); SocketHandler(); } } void CConnman::WakeMessageHandler() { { LOCK(mutexMsgProc); fMsgProcWake = true; } condMsgProc.notify_one(); } #ifdef USE_UPNP static CThreadInterrupt g_upnp_interrupt; static std::thread g_upnp_thread; static void ThreadMapPort() { std::string port = strprintf("%u", GetListenPort()); const char *multicastif = nullptr; const char *minissdpdpath = nullptr; struct UPNPDev *devlist = nullptr; char lanaddr[64]; #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); #elif MINIUPNPC_API_VERSION < 14 /* miniupnpc 1.6 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); #else /* miniupnpc 1.9.20150730 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error); #endif struct UPNPUrls urls; struct IGDdatas data; int r; r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); if (r == 1) { if (fDiscover) { char externalIPAddress[40]; r = UPNP_GetExternalIPAddress( urls.controlURL, data.first.servicetype, externalIPAddress); if (r != UPNPCOMMAND_SUCCESS) { LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); } else { if (externalIPAddress[0]) { CNetAddr resolved; if (LookupHost(externalIPAddress, resolved, false)) { LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString()); AddLocal(resolved, LOCAL_UPNP); } } else { LogPrintf("UPnP: GetExternalIPAddress failed.\n"); } } } std::string strDesc = "Bitcoin " + FormatFullVersion(); do { #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); #else /* miniupnpc 1.6 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); #endif if (r != UPNPCOMMAND_SUCCESS) { LogPrintf( "AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r)); } else { LogPrintf("UPnP Port Mapping successful.\n"); } } while (g_upnp_interrupt.sleep_for(std::chrono::minutes(20))); r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r); freeUPNPDevlist(devlist); devlist = nullptr; FreeUPNPUrls(&urls); } else { LogPrintf("No valid UPnP IGDs found\n"); freeUPNPDevlist(devlist); devlist = nullptr; if (r != 0) { FreeUPNPUrls(&urls); } } } void StartMapPort() { if (!g_upnp_thread.joinable()) { assert(!g_upnp_interrupt); g_upnp_thread = std::thread( (std::bind(&TraceThread, "upnp", &ThreadMapPort))); } } void InterruptMapPort() { if (g_upnp_thread.joinable()) { g_upnp_interrupt(); } } void StopMapPort() { if (g_upnp_thread.joinable()) { g_upnp_thread.join(); g_upnp_interrupt.reset(); } } #else void StartMapPort() { // Intentionally left blank. } void InterruptMapPort() { // Intentionally left blank. } void StopMapPort() { // Intentionally left blank. } #endif void CConnman::ThreadDNSAddressSeed() { FastRandomContext rng; std::vector seeds = config->GetChainParams().DNSSeeds(); Shuffle(seeds.begin(), seeds.end(), rng); // Number of seeds left before testing if we have enough connections int seeds_right_now = 0; int found = 0; if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) { // When -forcednsseed is provided, query all. seeds_right_now = seeds.size(); } for (const std::string &seed : seeds) { // goal: only query DNS seed if address need is acute // Avoiding DNS seeds when we don't need them improves user privacy by // creating fewer identifying DNS requests, reduces trust by giving // seeds less influence on the network topology, and reduces traffic to // the seeds. if (addrman.size() > 0 && seeds_right_now == 0) { if (!interruptNet.sleep_for(std::chrono::seconds(11))) { return; } LOCK(cs_vNodes); int nRelevant = 0; for (const CNode *pnode : vNodes) { nRelevant += pnode->fSuccessfullyConnected && !pnode->fFeeler && !pnode->fOneShot && !pnode->m_manual_connection && !pnode->fInbound; } if (nRelevant >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE; } if (interruptNet) { return; } LogPrintf("Loading addresses from DNS seed %s\n", seed); if (HaveNameProxy()) { AddOneShot(seed); } else { std::vector vIPs; std::vector vAdd; ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE); std::string host = strprintf("x%x.%s", requiredServiceBits, seed); CNetAddr resolveSource; if (!resolveSource.SetInternal(host)) { continue; } // Limits number of IPs learned from a DNS seed unsigned int nMaxIPs = 256; if (LookupHost(host.c_str(), vIPs, nMaxIPs, true)) { for (const CNetAddr &ip : vIPs) { int nOneDay = 24 * 3600; CAddress addr = CAddress( CService(ip, config->GetChainParams().GetDefaultPort()), requiredServiceBits); // Use a random age between 3 and 7 days old. addr.nTime = GetTime() - 3 * nOneDay - rng.randrange(4 * nOneDay); vAdd.push_back(addr); found++; } addrman.Add(vAdd, resolveSource); } else { // We now avoid directly using results from DNS Seeds which do // not support service bit filtering, instead using them as a // oneshot to get nodes with our desired service bits. AddOneShot(seed); } } --seeds_right_now; } LogPrintf("%d addresses found from DNS seeds\n", found); } void CConnman::DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb(config->GetChainParams()); adb.Write(addrman); LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void CConnman::ProcessOneShot() { std::string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) { return; } strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true); } } bool CConnman::GetTryNewOutboundPeer() { return m_try_another_outbound_peer; } void CConnman::SetTryNewOutboundPeer(bool flag) { m_try_another_outbound_peer = flag; LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false"); } // Return the number of peers we have over our outbound connection limit. // Exclude peers that are marked for disconnect, or are going to be disconnected // soon (eg one-shots and feelers). // Also exclude peers that haven't finished initial connection handshake yet (so // that we don't decide we're over our desired connection limit, and then evict // some peer that has finished the handshake). int CConnman::GetExtraOutboundCount() { int nOutbound = 0; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fInbound && !pnode->m_manual_connection && !pnode->fFeeler && !pnode->fDisconnect && !pnode->fOneShot && pnode->fSuccessfullyConnected) { ++nOutbound; } } } return std::max( nOutbound - m_max_outbound_full_relay - m_max_outbound_block_relay, 0); } void CConnman::ThreadOpenConnections(const std::vector connect) { // Connect to specific addresses if (!connect.empty()) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); for (const std::string &strAddr : connect) { CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), false, false, true); for (int i = 0; i < 10 && i < nLoop; i++) { if (!interruptNet.sleep_for( std::chrono::milliseconds(500))) { return; } } } if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } } } // Initiate network connections int64_t nStart = GetTime(); // Minimum time before next feeler connection (in microseconds). int64_t nNextFeeler = PoissonNextSend(nStart * 1000 * 1000, FEELER_INTERVAL); while (!interruptNet) { ProcessOneShot(); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } CSemaphoreGrant grant(*semOutbound); if (interruptNet) { return; } // Add seed nodes if DNS seeds are all down (an infrastructure attack?). if (addrman.size() == 0 && (GetTime() - nStart > 60)) { static bool done = false; if (!done) { LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be " "available.\n"); CNetAddr local; local.SetInternal("fixedseeds"); addrman.Add(convertSeed6(config->GetChainParams().FixedSeeds()), local); done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). int nOutboundFullRelay = 0; int nOutboundBlockRelay = 0; std::set> setConnected; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fInbound && !pnode->m_manual_connection) { // Netgroups for inbound and addnode peers are not excluded // because our goal here is to not use multiple of our // limited outbound slots on a single netgroup but inbound // and addnode peers do not use our outbound slots. Inbound // peers also have the added issue that they're attacker // controlled and could be used to prevent us from // connecting to particular hosts if we used them here. setConnected.insert(pnode->addr.GetGroup(addrman.m_asmap)); if (pnode->m_tx_relay == nullptr) { nOutboundBlockRelay++; } else if (!pnode->fFeeler) { nOutboundFullRelay++; } } } } // Feeler Connections // // Design goals: // * Increase the number of connectable addresses in the tried table. // // Method: // * Choose a random address from new and attempt to connect to it if // we can connect successfully it is added to tried. // * Start attempting feeler connections only after node finishes // making outbound connections. // * Only make a feeler connection once every few minutes. // bool fFeeler = false; if (nOutboundFullRelay >= m_max_outbound_full_relay && nOutboundBlockRelay >= m_max_outbound_block_relay && !GetTryNewOutboundPeer()) { // The current time right now (in microseconds). int64_t nTime = GetTimeMicros(); if (nTime > nNextFeeler) { nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL); fFeeler = true; } else { continue; } } addrman.ResolveCollisions(); int64_t nANow = GetAdjustedTime(); int nTries = 0; while (!interruptNet) { CAddrInfo addr = addrman.SelectTriedCollision(); // SelectTriedCollision returns an invalid address if it is empty. if (!fFeeler || !addr.IsValid()) { addr = addrman.Select(fFeeler); } // Require outbound connections, other than feelers, to be to // distinct network groups if (!fFeeler && setConnected.count(addr.GetGroup(addrman.m_asmap))) { break; } // if we selected an invalid or local address, restart if (!addr.IsValid() || IsLocal(addr)) { break; } // If we didn't find an appropriate destination after trying 100 // addresses fetched from addrman, stop this loop, and let the outer // loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman // addresses. nTries++; if (nTries > 100) { break; } if (!IsReachable(addr)) { continue; } // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) { continue; } // for non-feelers, require all the services we'll want, // for feelers, only require they be a full node (only because most // SPV clients don't have a good address DB available) if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) { continue; } // do not allow non-default ports, unless after 50 invalid addresses // selected already. if (addr.GetPort() != config->GetChainParams().GetDefaultPort() && nTries < 50) { continue; } addrConnect = addr; break; } if (addrConnect.IsValid()) { if (fFeeler) { // Add small amount of random noise before connection to avoid // synchronization. int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); if (!interruptNet.sleep_for( std::chrono::milliseconds(randsleep))) { return; } LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString()); } // Open this connection as block-relay-only if we're already at our // full-relay capacity, but not yet at our block-relay peer limit. // (It should not be possible for fFeeler to be set if we're not // also at our block-relay peer limit, but check against that as // well for sanity.) bool block_relay_only = nOutboundBlockRelay < m_max_outbound_block_relay && !fFeeler && nOutboundFullRelay >= m_max_outbound_full_relay; OpenNetworkConnection( addrConnect, int(setConnected.size()) >= std::min(nMaxConnections - 1, 2), &grant, nullptr, false, fFeeler, false, block_relay_only); } } } std::vector CConnman::GetAddedNodeInfo() { std::vector ret; std::list lAddresses(0); { LOCK(cs_vAddedNodes); ret.reserve(vAddedNodes.size()); std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses)); } // Build a map of all already connected addresses (by IP:port and by name) // to inbound/outbound and resolved CService std::map mapConnected; std::map> mapConnectedByName; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->addr.IsValid()) { mapConnected[pnode->addr] = pnode->fInbound; } std::string addrName = pnode->GetAddrName(); if (!addrName.empty()) { mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast(pnode->addr)); } } } for (const std::string &strAddNode : lAddresses) { CService service( LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort())); AddedNodeInfo addedNode{strAddNode, CService(), false, false}; if (service.IsValid()) { // strAddNode is an IP:port auto it = mapConnected.find(service); if (it != mapConnected.end()) { addedNode.resolvedAddress = service; addedNode.fConnected = true; addedNode.fInbound = it->second; } } else { // strAddNode is a name auto it = mapConnectedByName.find(strAddNode); if (it != mapConnectedByName.end()) { addedNode.resolvedAddress = it->second.second; addedNode.fConnected = true; addedNode.fInbound = it->second.first; } } ret.emplace_back(std::move(addedNode)); } return ret; } void CConnman::ThreadOpenAddedConnections() { while (true) { CSemaphoreGrant grant(*semAddnode); std::vector vInfo = GetAddedNodeInfo(); bool tried = false; for (const AddedNodeInfo &info : vInfo) { if (!info.fConnected) { if (!grant.TryAcquire()) { // If we've used up our semaphore and need a new one, let's // not wait here since while we are waiting the // addednodeinfo state might change. break; } tried = true; CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), false, false, true); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } } } // Retry every 60 seconds if a connection was attempted, otherwise two // seconds. if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) { return; } } } // If successful, this moves the passed grant to the constructed node. void CConnman::OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool manual_connection, bool block_relay_only) { // // Initiate outbound network connection // if (interruptNet) { return; } if (!fNetworkActive) { return; } if (!pszDest) { bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addrConnect) || m_banman->IsBanned(addrConnect)); if (IsLocal(addrConnect) || FindNode(static_cast(addrConnect)) || banned_or_discouraged || FindNode(addrConnect.ToStringIPPort())) { return; } } else if (FindNode(std::string(pszDest))) { return; } CNode *pnode = ConnectNode(addrConnect, pszDest, fCountFailure, manual_connection, block_relay_only); if (!pnode) { return; } if (grantOutbound) { grantOutbound->MoveTo(pnode->grantOutbound); } if (fOneShot) { pnode->fOneShot = true; } if (fFeeler) { pnode->fFeeler = true; } if (manual_connection) { pnode->m_manual_connection = true; } m_msgproc->InitializeNode(*config, pnode); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::ThreadMessageHandler() { while (!flagInterruptMsgProc) { std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { pnode->AddRef(); } } bool fMoreWork = false; for (CNode *pnode : vNodesCopy) { if (pnode->fDisconnect) { continue; } // Receive messages bool fMoreNodeWork = m_msgproc->ProcessMessages( *config, pnode, flagInterruptMsgProc); fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend); if (flagInterruptMsgProc) { return; } // Send messages { LOCK(pnode->cs_sendProcessing); m_msgproc->SendMessages(*config, pnode, flagInterruptMsgProc); } if (flagInterruptMsgProc) { return; } } { LOCK(cs_vNodes); for (CNode *pnode : vNodesCopy) { pnode->Release(); } } WAIT_LOCK(mutexMsgProc, lock); if (!fMoreWork) { condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this]() EXCLUSIVE_LOCKS_REQUIRED( mutexMsgProc) { return fMsgProcWake; }); } fMsgProcWake = false; } } bool CConnman::BindListenPort(const CService &addrBind, bilingual_str &strError, NetPermissionFlags permissions) { int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr *)&sockaddr, &len)) { strError = strprintf( Untranslated("Error: Bind address family for %s not supported"), addrBind.ToString()); LogPrintf("%s\n", strError.original); return false; } SOCKET hListenSocket = CreateSocket(addrBind); if (hListenSocket == INVALID_SOCKET) { strError = strprintf(Untranslated("Error: Couldn't open socket for incoming " "connections (socket returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError.original); return false; } // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)); // Some systems don't have IPV6_V6ONLY but are always v6only; others do have // the option and enable it by default or not. Try to enable it, if // possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)); #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (sockopt_arg_type)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr *)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) { strError = strprintf(_("Unable to bind to %s on this computer. %s " "is probably already running."), addrBind.ToString(), PACKAGE_NAME); } else { strError = strprintf(_("Unable to bind to %s on this computer " "(bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); } LogPrintf("%s\n", strError.original); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections " "failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError.original); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, permissions)); if (addrBind.IsRoutable() && fDiscover && (permissions & PF_NOBAN) == 0) { AddLocal(addrBind, LOCAL_BIND); } return true; } void Discover() { if (!fDiscover) { return; } #ifdef WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { std::vector vaddr; if (LookupHost(pszHostName, vaddr, 0, true)) { for (const CNetAddr &addr : vaddr) { if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } } #elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS) // Get local host ip struct ifaddrs *myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs *ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next) { if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0 || strcmp(ifa->ifa_name, "lo") == 0 || strcmp(ifa->ifa_name, "lo0") == 0) { continue; } if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in *s4 = reinterpret_cast(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6 *s6 = reinterpret_cast(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } } freeifaddrs(myaddrs); } #endif } void CConnman::SetNetworkActive(bool active) { LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active); if (fNetworkActive == active) { return; } fNetworkActive = active; uiInterface.NotifyNetworkActiveChanged(fNetworkActive); } CConnman::CConnman(const Config &configIn, uint64_t nSeed0In, uint64_t nSeed1In) : config(&configIn), nSeed0(nSeed0In), nSeed1(nSeed1In) { SetTryNewOutboundPeer(false); Options connOptions; Init(connOptions); } NodeId CConnman::GetNewNodeId() { return nLastNodeId.fetch_add(1); } bool CConnman::Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions) { if (!(flags & BF_EXPLICIT) && !IsReachable(addr)) { return false; } bilingual_str strError; if (!BindListenPort(addr, strError, permissions)) { if ((flags & BF_REPORT_ERROR) && clientInterface) { clientInterface->ThreadSafeMessageBox( strError, "", CClientUIInterface::MSG_ERROR); } return false; } return true; } bool CConnman::InitBinds( const std::vector &binds, const std::vector &whiteBinds) { bool fBound = false; for (const auto &addrBind : binds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR), NetPermissionFlags::PF_NONE); } for (const auto &addrBind : whiteBinds) { fBound |= Bind(addrBind.m_service, (BF_EXPLICIT | BF_REPORT_ERROR), addrBind.m_flags); } if (binds.empty() && whiteBinds.empty()) { struct in_addr inaddr_any; inaddr_any.s_addr = INADDR_ANY; struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT; fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE, NetPermissionFlags::PF_NONE); fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE, NetPermissionFlags::PF_NONE); } return fBound; } bool CConnman::Start(CScheduler &scheduler, const Options &connOptions) { Init(connOptions); { LOCK(cs_totalBytesRecv); nTotalBytesRecv = 0; } { LOCK(cs_totalBytesSent); nTotalBytesSent = 0; nMaxOutboundTotalBytesSentInCycle = 0; nMaxOutboundCycleStartTime = 0; } if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Failed to listen on any port. Use -listen=0 if you want " "this."), "", CClientUIInterface::MSG_ERROR); } return false; } for (const auto &strDest : connOptions.vSeedNodes) { AddOneShot(strDest); } if (clientInterface) { clientInterface->InitMessage(_("Loading P2P addresses...").translated); } // Load addresses from peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb(config->GetChainParams()); if (adb.Read(addrman)) { LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } else { // Addrman can be in an inconsistent state after failure, reset it addrman.Clear(); LogPrintf("Invalid or missing peers.dat; recreating\n"); DumpAddresses(); } } uiInterface.InitMessage(_("Starting network threads...").translated); fAddressesInitialized = true; if (semOutbound == nullptr) { // initialize semaphore semOutbound = std::make_unique( std::min(m_max_outbound, nMaxConnections)); } if (semAddnode == nullptr) { // initialize semaphore semAddnode = std::make_unique(nMaxAddnode); } // // Start threads // assert(m_msgproc); InterruptSocks5(false); interruptNet.reset(); flagInterruptMsgProc = false; { LOCK(mutexMsgProc); fMsgProcWake = false; } // Send and receive from sockets, accept connections threadSocketHandler = std::thread( &TraceThread>, "net", std::function(std::bind(&CConnman::ThreadSocketHandler, this))); if (!gArgs.GetBoolArg("-dnsseed", true)) { LogPrintf("DNS seeding disabled\n"); } else { threadDNSAddressSeed = std::thread(&TraceThread>, "dnsseed", std::function( std::bind(&CConnman::ThreadDNSAddressSeed, this))); } // Initiate outbound connections from -addnode threadOpenAddedConnections = std::thread(&TraceThread>, "addcon", std::function(std::bind( &CConnman::ThreadOpenAddedConnections, this))); if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Cannot provide specific connections and have addrman find " "outgoing connections at the same."), "", CClientUIInterface::MSG_ERROR); } return false; } if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) { threadOpenConnections = std::thread(&TraceThread>, "opencon", std::function( std::bind(&CConnman::ThreadOpenConnections, this, connOptions.m_specified_outgoing))); } // Process messages threadMessageHandler = std::thread(&TraceThread>, "msghand", std::function( std::bind(&CConnman::ThreadMessageHandler, this))); // Dump network addresses scheduler.scheduleEvery( [this]() { this->DumpAddresses(); return true; }, DUMP_PEERS_INTERVAL); return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } }; static CNetCleanup instance_of_cnetcleanup; void CConnman::Interrupt() { { LOCK(mutexMsgProc); flagInterruptMsgProc = true; } condMsgProc.notify_all(); interruptNet(); InterruptSocks5(true); if (semOutbound) { for (int i = 0; i < m_max_outbound; i++) { semOutbound->post(); } } if (semAddnode) { for (int i = 0; i < nMaxAddnode; i++) { semAddnode->post(); } } } void CConnman::Stop() { if (threadMessageHandler.joinable()) { threadMessageHandler.join(); } if (threadOpenConnections.joinable()) { threadOpenConnections.join(); } if (threadOpenAddedConnections.joinable()) { threadOpenAddedConnections.join(); } if (threadDNSAddressSeed.joinable()) { threadDNSAddressSeed.join(); } if (threadSocketHandler.joinable()) { threadSocketHandler.join(); } if (fAddressesInitialized) { DumpAddresses(); fAddressesInitialized = false; } // Close sockets for (CNode *pnode : vNodes) { pnode->CloseSocketDisconnect(); } for (ListenSocket &hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET) { if (!CloseSocket(hListenSocket.socket)) { LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); } } } // clean up some globals (to help leak detection) for (CNode *pnode : vNodes) { DeleteNode(pnode); } for (CNode *pnode : vNodesDisconnected) { DeleteNode(pnode); } vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); semOutbound.reset(); semAddnode.reset(); } void CConnman::DeleteNode(CNode *pnode) { assert(pnode); bool fUpdateConnectionTime = false; m_msgproc->FinalizeNode(*config, pnode->GetId(), fUpdateConnectionTime); if (fUpdateConnectionTime) { addrman.Connected(pnode->addr); } delete pnode; } CConnman::~CConnman() { Interrupt(); Stop(); } size_t CConnman::GetAddressCount() const { return addrman.size(); } void CConnman::SetServices(const CService &addr, ServiceFlags nServices) { addrman.SetServices(addr, nServices); } void CConnman::MarkAddressGood(const CAddress &addr) { addrman.Good(addr); } void CConnman::AddNewAddresses(const std::vector &vAddr, const CAddress &addrFrom, int64_t nTimePenalty) { addrman.Add(vAddr, addrFrom, nTimePenalty); } std::vector CConnman::GetAddresses() { return addrman.GetAddr(); } bool CConnman::AddNode(const std::string &strNode) { LOCK(cs_vAddedNodes); for (const std::string &it : vAddedNodes) { if (strNode == it) { return false; } } vAddedNodes.push_back(strNode); return true; } bool CConnman::RemoveAddedNode(const std::string &strNode) { LOCK(cs_vAddedNodes); for (std::vector::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { if (strNode == *it) { vAddedNodes.erase(it); return true; } } return false; } size_t CConnman::GetNodeCount(NumConnections flags) { LOCK(cs_vNodes); // Shortcut if we want total if (flags == CConnman::CONNECTIONS_ALL) { return vNodes.size(); } int nNum = 0; for (const auto &pnode : vNodes) { if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) { nNum++; } } return nNum; } void CConnman::GetNodeStats(std::vector &vstats) { vstats.clear(); LOCK(cs_vNodes); vstats.reserve(vNodes.size()); for (CNode *pnode : vNodes) { vstats.emplace_back(); - pnode->copyStats(vstats.back()); + pnode->copyStats(vstats.back(), addrman.m_asmap); } } bool CConnman::DisconnectNode(const std::string &strNode) { LOCK(cs_vNodes); if (CNode *pnode = FindNode(strNode)) { pnode->fDisconnect = true; return true; } return false; } bool CConnman::DisconnectNode(const CSubNet &subnet) { bool disconnected = false; LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (subnet.Match(pnode->addr)) { pnode->fDisconnect = true; disconnected = true; } } return disconnected; } bool CConnman::DisconnectNode(const CNetAddr &addr) { return DisconnectNode(CSubNet(addr)); } bool CConnman::DisconnectNode(NodeId id) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (id == pnode->GetId()) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CConnman::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; uint64_t now = GetTime(); if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) { // timeframe expired, reset cycle nMaxOutboundCycleStartTime = now; nMaxOutboundTotalBytesSentInCycle = 0; } // TODO, exclude whitebind peers nMaxOutboundTotalBytesSentInCycle += bytes; } void CConnman::SetMaxOutboundTarget(uint64_t limit) { LOCK(cs_totalBytesSent); nMaxOutboundLimit = limit; } uint64_t CConnman::GetMaxOutboundTarget() { LOCK(cs_totalBytesSent); return nMaxOutboundLimit; } uint64_t CConnman::GetMaxOutboundTimeframe() { LOCK(cs_totalBytesSent); return nMaxOutboundTimeframe; } uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return 0; } if (nMaxOutboundCycleStartTime == 0) { return nMaxOutboundTimeframe; } uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe; uint64_t now = GetTime(); return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime(); } void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) { LOCK(cs_totalBytesSent); if (nMaxOutboundTimeframe != timeframe) { // reset measure-cycle in case of changing the timeframe. nMaxOutboundCycleStartTime = GetTime(); } nMaxOutboundTimeframe = timeframe; } bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return false; } if (historicalBlockServingLimit) { // keep a large enough buffer to at least relay each block once. uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle(); uint64_t buffer = timeLeftInCycle / 600 * ONE_MEGABYTE; if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) { return true; } } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) { return true; } return false; } uint64_t CConnman::GetOutboundTargetBytesLeft() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return 0; } return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle; } uint64_t CConnman::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CConnman::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } ServiceFlags CConnman::GetLocalServices() const { return nLocalServices; } void CConnman::SetBestHeight(int height) { nBestHeight.store(height, std::memory_order_release); } int CConnman::GetBestHeight() const { return nBestHeight.load(std::memory_order_acquire); } unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; } CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn, bool fInboundIn, bool block_relay_only) : nTimeConnected(GetSystemTimeInSeconds()), addr(addrIn), addrBind(addrBindIn), fInbound(fInboundIn), nKeyedNetGroup(nKeyedNetGroupIn), addrKnown(5000, 0.001), // Don't relay addr messages to peers that we connect to as // block-relay-only peers (to prevent adversaries from inferring these // links from addr traffic). m_addr_relay_peer(!block_relay_only), id(idIn), nLocalHostNonce(nLocalHostNonceIn), nLocalServices(nLocalServicesIn), nMyStartingHeight(nMyStartingHeightIn) { hSocket = hSocketIn; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; hashContinue = BlockHash(); if (!block_relay_only) { m_tx_relay = std::make_unique(); } for (const std::string &msg : getAllNetMessageTypes()) { mapRecvBytesPerMsgCmd[msg] = 0; } mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0; if (fLogIPs) { LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id); } else { LogPrint(BCLog::NET, "Added connection peer=%d\n", id); } } CNode::~CNode() { CloseSocket(hSocket); } bool CConnman::NodeFullyConnected(const CNode *pnode) { return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect; } void CConnman::PushMessage(CNode *pnode, CSerializedNetMsg &&msg) { size_t nMessageSize = msg.data.size(); size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE; LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command), nMessageSize, pnode->GetId()); std::vector serializedHeader; serializedHeader.reserve(CMessageHeader::HEADER_SIZE); uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize); CMessageHeader hdr(config->GetChainParams().NetMagic(), msg.command.c_str(), nMessageSize); memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE); CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr}; size_t nBytesSent = 0; { LOCK(pnode->cs_vSend); bool optimisticSend(pnode->vSendMsg.empty()); // log total amount of bytes per command pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize; pnode->nSendSize += nTotalSize; if (pnode->nSendSize > nSendBufferMaxSize) { pnode->fPauseSend = true; } pnode->vSendMsg.push_back(std::move(serializedHeader)); if (nMessageSize) { pnode->vSendMsg.push_back(std::move(msg.data)); } // If write queue empty, attempt "optimistic write" if (optimisticSend == true) { nBytesSent = SocketSendData(pnode); } } if (nBytesSent) { RecordBytesSent(nBytesSent); } } bool CConnman::ForNode(NodeId id, std::function func) { CNode *found = nullptr; LOCK(cs_vNodes); for (auto &&pnode : vNodes) { if (pnode->GetId() == id) { found = pnode; break; } } return found != nullptr && NodeFullyConnected(found) && func(found); } int64_t CConnman::PoissonNextSendInbound(int64_t now, int average_interval_seconds) { if (m_next_send_inv_to_incoming < now) { // If this function were called from multiple threads simultaneously // it would be possible that both update the next send variable, and // return a different result to their caller. This is not possible in // practice as only the net processing thread invokes this function. m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval_seconds); } return m_next_send_inv_to_incoming; } int64_t PoissonNextSend(int64_t now, int average_interval_seconds) { return now + int64_t(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5); } CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const { return CSipHasher(nSeed0, nSeed1).Write(id); } uint64_t CConnman::CalculateKeyedNetGroup(const CAddress &ad) const { std::vector vchNetGroup(ad.GetGroup(addrman.m_asmap)); return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP) .Write(vchNetGroup.data(), vchNetGroup.size()) .Finalize(); } /** * This function convert MaxBlockSize from byte to * MB with a decimal precision one digit rounded down * E.g. * 1660000 -> 1.6 * 2010000 -> 2.0 * 1000000 -> 1.0 * 230000 -> 0.2 * 50000 -> 0.0 * * NB behavior for EB<1MB not standardized yet still * the function applies the same algo used for * EB greater or equal to 1MB */ std::string getSubVersionEB(uint64_t MaxBlockSize) { // Prepare EB string we are going to add to SubVer: // 1) translate from byte to MB and convert to string // 2) limit the EB string to the first decimal digit (floored) std::stringstream ebMBs; ebMBs << (MaxBlockSize / (ONE_MEGABYTE / 10)); std::string eb = ebMBs.str(); eb.insert(eb.size() - 1, ".", 1); if (eb.substr(0, 1) == ".") { eb = "0" + eb; } return eb; } std::string userAgent(const Config &config) { // format excessive blocksize value std::string eb = getSubVersionEB(config.GetMaxBlockSize()); std::vector uacomments; uacomments.push_back("EB" + eb); // Comments are checked for char compliance at startup, it is safe to add // them to the user agent string for (const std::string &cmt : gArgs.GetArgs("-uacomment")) { uacomments.push_back(cmt); } // Size compliance is checked at startup, it is safe to not check it again std::string subversion = FormatSubVersion(CLIENT_NAME, CLIENT_VERSION, uacomments); return subversion; } diff --git a/src/net.h b/src/net.h index c440de55b..6665e5f76 100644 --- a/src/net.h +++ b/src/net.h @@ -1,990 +1,991 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2019 The Bitcoin Core developers // Copyright (c) 2017-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NET_H #define BITCOIN_NET_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef WIN32 #include #endif class BanMan; class Config; class CNode; class CScheduler; struct bilingual_str; /** Default for -whitelistrelay. */ static const bool DEFAULT_WHITELISTRELAY = true; /** Default for -whitelistforcerelay. */ static const bool DEFAULT_WHITELISTFORCERELAY = false; /** * Time between pings automatically sent out for latency probing and keepalive * (in seconds). */ static const int PING_INTERVAL = 2 * 60; /** * Time after which to disconnect, after waiting for a ping response (or * inactivity). */ static const int TIMEOUT_INTERVAL = 20 * 60; /** Run the feeler connection loop once every 2 minutes or 120 seconds. **/ static const int FEELER_INTERVAL = 120; /** The maximum number of entries in an 'inv' protocol message */ static const unsigned int MAX_INV_SZ = 50000; static_assert(MAX_PROTOCOL_MESSAGE_LENGTH > MAX_INV_SZ * sizeof(CInv), "Max protocol message length must be greater than largest " "possible INV message"); /** The maximum number of entries in a locator */ static const unsigned int MAX_LOCATOR_SZ = 101; /** The maximum number of new addresses to accumulate before announcing. */ static const unsigned int MAX_ADDR_TO_SEND = 1000; /** Maximum length of the user agent string in `version` message */ static const unsigned int MAX_SUBVERSION_LENGTH = 256; /** * Maximum number of automatic outgoing nodes over which we'll relay everything * (blocks, tx, addrs, etc) */ static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 8; /** Maximum number of addnode outgoing nodes */ static const int MAX_ADDNODE_CONNECTIONS = 8; /** Maximum number of block-relay-only outgoing connections */ static const int MAX_BLOCKS_ONLY_CONNECTIONS = 2; /** -listen default */ static const bool DEFAULT_LISTEN = true; /** -upnp default */ #ifdef USE_UPNP static const bool DEFAULT_UPNP = USE_UPNP; #else static const bool DEFAULT_UPNP = false; #endif /** The maximum number of peer connections to maintain. */ static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125; /** The default for -maxuploadtarget. 0 = Unlimited */ static const uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0; /** The default timeframe for -maxuploadtarget. 1 day. */ static const uint64_t MAX_UPLOAD_TIMEFRAME = 60 * 60 * 24; /** Default for blocks only*/ static const bool DEFAULT_BLOCKSONLY = false; /** -peertimeout default */ static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60; static const bool DEFAULT_FORCEDNSSEED = false; static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000; static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000; typedef int64_t NodeId; /** * Special NodeId that represent no node. */ static constexpr NodeId NO_NODE = -1; struct AddedNodeInfo { std::string strAddedNode; CService resolvedAddress; bool fConnected; bool fInbound; }; struct CNodeStats; class CClientUIInterface; struct CSerializedNetMsg { CSerializedNetMsg() = default; CSerializedNetMsg(CSerializedNetMsg &&) = default; CSerializedNetMsg &operator=(CSerializedNetMsg &&) = default; // No copying, only moves. CSerializedNetMsg(const CSerializedNetMsg &msg) = delete; CSerializedNetMsg &operator=(const CSerializedNetMsg &) = delete; std::vector data; std::string command; }; namespace { struct CConnmanTest; } class NetEventsInterface; class CConnman { public: enum NumConnections { CONNECTIONS_NONE = 0, CONNECTIONS_IN = (1U << 0), CONNECTIONS_OUT = (1U << 1), CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT), }; struct Options { ServiceFlags nLocalServices = NODE_NONE; int nMaxConnections = 0; int m_max_outbound_full_relay = 0; int m_max_outbound_block_relay = 0; int nMaxAddnode = 0; int nMaxFeeler = 0; int nBestHeight = 0; CClientUIInterface *uiInterface = nullptr; NetEventsInterface *m_msgproc = nullptr; BanMan *m_banman = nullptr; unsigned int nSendBufferMaxSize = 0; unsigned int nReceiveFloodSize = 0; uint64_t nMaxOutboundTimeframe = 0; uint64_t nMaxOutboundLimit = 0; int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT; std::vector vSeedNodes; std::vector vWhitelistedRange; std::vector vWhiteBinds; std::vector vBinds; bool m_use_addrman_outgoing = true; std::vector m_specified_outgoing; std::vector m_added_nodes; std::vector m_asmap; }; void Init(const Options &connOptions) { nLocalServices = connOptions.nLocalServices; nMaxConnections = connOptions.nMaxConnections; m_max_outbound_full_relay = std::min( connOptions.m_max_outbound_full_relay, connOptions.nMaxConnections); m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay; m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing; nMaxAddnode = connOptions.nMaxAddnode; nMaxFeeler = connOptions.nMaxFeeler; m_max_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + nMaxFeeler; nBestHeight = connOptions.nBestHeight; clientInterface = connOptions.uiInterface; m_banman = connOptions.m_banman; m_msgproc = connOptions.m_msgproc; nSendBufferMaxSize = connOptions.nSendBufferMaxSize; nReceiveFloodSize = connOptions.nReceiveFloodSize; m_peer_connect_timeout = connOptions.m_peer_connect_timeout; { LOCK(cs_totalBytesSent); nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe; nMaxOutboundLimit = connOptions.nMaxOutboundLimit; } vWhitelistedRange = connOptions.vWhitelistedRange; { LOCK(cs_vAddedNodes); vAddedNodes = connOptions.m_added_nodes; } } CConnman(const Config &configIn, uint64_t seed0, uint64_t seed1); ~CConnman(); bool Start(CScheduler &scheduler, const Options &options); // TODO: Remove NO_THREAD_SAFETY_ANALYSIS. Lock cs_vNodes before reading the // variable vNodes. // // When removing NO_THREAD_SAFETY_ANALYSIS be aware of the following lock // order requirements: // * CheckForStaleTipAndEvictPeers locks cs_main before indirectly calling // GetExtraOutboundCount which locks cs_vNodes. // * ProcessMessage locks cs_main and g_cs_orphans before indirectly calling // ForEachNode which locks cs_vNodes. // // Thus the implicit locking order requirement is: (1) cs_main, (2) // g_cs_orphans, (3) cs_vNodes. void Stop() NO_THREAD_SAFETY_ANALYSIS; void Interrupt(); bool GetNetworkActive() const { return fNetworkActive; }; bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; }; void SetNetworkActive(bool active); void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound = nullptr, const char *strDest = nullptr, bool fOneShot = false, bool fFeeler = false, bool manual_connection = false, bool block_relay_only = false); bool CheckIncomingNonce(uint64_t nonce); bool ForNode(NodeId id, std::function func); void PushMessage(CNode *pnode, CSerializedNetMsg &&msg); template void ForEachNode(Callable &&func) { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) { func(node); } } }; template void ForEachNode(Callable &&func) const { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) { func(node); } } }; template void ForEachNodeThen(Callable &&pre, CallableAfter &&post) { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) { pre(node); } } post(); }; template void ForEachNodeThen(Callable &&pre, CallableAfter &&post) const { LOCK(cs_vNodes); for (auto &&node : vNodes) { if (NodeFullyConnected(node)) { pre(node); } } post(); }; // Addrman functions size_t GetAddressCount() const; void SetServices(const CService &addr, ServiceFlags nServices); void MarkAddressGood(const CAddress &addr); void AddNewAddresses(const std::vector &vAddr, const CAddress &addrFrom, int64_t nTimePenalty = 0); std::vector GetAddresses(); // This allows temporarily exceeding m_max_outbound_full_relay, with the // goal of finding a peer that is better than all our current peers. void SetTryNewOutboundPeer(bool flag); bool GetTryNewOutboundPeer(); // Return the number of outbound peers we have in excess of our target (eg, // if we previously called SetTryNewOutboundPeer(true), and have since set // to false, we may have extra peers that we wish to disconnect). This may // return a value less than (num_outbound_connections - num_outbound_slots) // in cases where some outbound connections are not yet fully connected, or // not yet fully disconnected. int GetExtraOutboundCount(); bool AddNode(const std::string &node); bool RemoveAddedNode(const std::string &node); std::vector GetAddedNodeInfo(); size_t GetNodeCount(NumConnections num); void GetNodeStats(std::vector &vstats); bool DisconnectNode(const std::string &node); bool DisconnectNode(const CSubNet &subnet); bool DisconnectNode(const CNetAddr &addr); bool DisconnectNode(NodeId id); //! Used to convey which local services we are offering peers during node //! connection. //! //! The data returned by this is used in CNode construction, //! which is used to advertise which services we are offering //! that peer during `net_processing.cpp:PushNodeVersion()`. ServiceFlags GetLocalServices() const; //! set the max outbound target in bytes. void SetMaxOutboundTarget(uint64_t limit); uint64_t GetMaxOutboundTarget(); //! set the timeframe for the max outbound target. void SetMaxOutboundTimeframe(uint64_t timeframe); uint64_t GetMaxOutboundTimeframe(); //! check if the outbound target is reached. If param //! historicalBlockServingLimit is set true, the function will response true //! if the limit for serving historical blocks has been reached. bool OutboundTargetReached(bool historicalBlockServingLimit); //! response the bytes left in the current max outbound cycle in case of no //! limit, it will always response 0 uint64_t GetOutboundTargetBytesLeft(); //! response the time in second left in the current max outbound cycle in //! case of no limit, it will always response 0 uint64_t GetMaxOutboundTimeLeftInCycle(); uint64_t GetTotalBytesRecv(); uint64_t GetTotalBytesSent(); void SetBestHeight(int height); int GetBestHeight() const; /** Get a unique deterministic randomizer. */ CSipHasher GetDeterministicRandomizer(uint64_t id) const; unsigned int GetReceiveFloodSize() const; void WakeMessageHandler(); /** * Attempts to obfuscate tx time through exponentially distributed emitting. * Works assuming that a single interval is used. * Variable intervals will result in privacy decrease. */ int64_t PoissonNextSendInbound(int64_t now, int average_interval_seconds); void SetAsmap(std::vector asmap) { addrman.m_asmap = asmap; } private: struct ListenSocket { public: SOCKET socket; inline void AddSocketPermissionFlags(NetPermissionFlags &flags) const { NetPermissions::AddFlag(flags, m_permissions); } ListenSocket(SOCKET socket_, NetPermissionFlags permissions_) : socket(socket_), m_permissions(permissions_) {} private: NetPermissionFlags m_permissions; }; bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions); bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions); bool InitBinds(const std::vector &binds, const std::vector &whiteBinds); void ThreadOpenAddedConnections(); void AddOneShot(const std::string &strDest); void ProcessOneShot(); void ThreadOpenConnections(std::vector connect); void ThreadMessageHandler(); void AcceptConnection(const ListenSocket &hListenSocket); void DisconnectNodes(); void NotifyNumConnectionsChanged(); void InactivityCheck(CNode *pnode); bool GenerateSelectSet(std::set &recv_set, std::set &send_set, std::set &error_set); void SocketEvents(std::set &recv_set, std::set &send_set, std::set &error_set); void SocketHandler(); void ThreadSocketHandler(); void ThreadDNSAddressSeed(); uint64_t CalculateKeyedNetGroup(const CAddress &ad) const; CNode *FindNode(const CNetAddr &ip); CNode *FindNode(const CSubNet &subNet); CNode *FindNode(const std::string &addrName); CNode *FindNode(const CService &addr); bool AttemptToEvictConnection(); CNode *ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, bool manual_connection, bool block_relay_only); void AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr) const; void DeleteNode(CNode *pnode); NodeId GetNewNodeId(); size_t SocketSendData(CNode *pnode) const; void DumpAddresses(); // Network stats void RecordBytesRecv(uint64_t bytes); void RecordBytesSent(uint64_t bytes); // Whether the node should be passed out in ForEach* callbacks static bool NodeFullyConnected(const CNode *pnode); const Config *config; // Network usage totals RecursiveMutex cs_totalBytesRecv; RecursiveMutex cs_totalBytesSent; uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv); uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent); // outbound limit & stats uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent); uint64_t nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent); uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent); uint64_t nMaxOutboundTimeframe GUARDED_BY(cs_totalBytesSent); // P2P timeout in seconds int64_t m_peer_connect_timeout; // Whitelisted ranges. Any node connecting from these is automatically // whitelisted (as well as those connecting to whitelisted binds). std::vector vWhitelistedRange; unsigned int nSendBufferMaxSize{0}; unsigned int nReceiveFloodSize{0}; std::vector vhListenSocket; std::atomic fNetworkActive{true}; bool fAddressesInitialized{false}; CAddrMan addrman; std::deque vOneShots GUARDED_BY(cs_vOneShots); RecursiveMutex cs_vOneShots; std::vector vAddedNodes GUARDED_BY(cs_vAddedNodes); RecursiveMutex cs_vAddedNodes; std::vector vNodes GUARDED_BY(cs_vNodes); std::list vNodesDisconnected; mutable RecursiveMutex cs_vNodes; std::atomic nLastNodeId{0}; unsigned int nPrevNodeCount{0}; /** * Services this instance offers. * * This data is replicated in each CNode instance we create during peer * connection (in ConnectNode()) under a member also called * nLocalServices. * * This data is not marked const, but after being set it should not * change. See the note in CNode::nLocalServices documentation. * * \sa CNode::nLocalServices */ ServiceFlags nLocalServices; std::unique_ptr semOutbound; std::unique_ptr semAddnode; int nMaxConnections; // How many full-relay (tx, block, addr) outbound peers we want int m_max_outbound_full_relay; // How many block-relay only outbound peers we want // We do not relay tx or addr messages with these peers int m_max_outbound_block_relay; int nMaxAddnode; int nMaxFeeler; int m_max_outbound; bool m_use_addrman_outgoing; std::atomic nBestHeight; CClientUIInterface *clientInterface; NetEventsInterface *m_msgproc; BanMan *m_banman; /** SipHasher seeds for deterministic randomness */ const uint64_t nSeed0, nSeed1; /** flag for waking the message processor. */ bool fMsgProcWake GUARDED_BY(mutexMsgProc); std::condition_variable condMsgProc; Mutex mutexMsgProc; std::atomic flagInterruptMsgProc{false}; CThreadInterrupt interruptNet; std::thread threadDNSAddressSeed; std::thread threadSocketHandler; std::thread threadOpenAddedConnections; std::thread threadOpenConnections; std::thread threadMessageHandler; /** * flag for deciding to connect to an extra outbound peer, in excess of * m_max_outbound_full_relay. This takes the place of a feeler connection. */ std::atomic_bool m_try_another_outbound_peer; std::atomic m_next_send_inv_to_incoming{0}; friend struct ::CConnmanTest; }; void Discover(); void StartMapPort(); void InterruptMapPort(); void StopMapPort(); unsigned short GetListenPort(); /** * Interface for message handling */ class NetEventsInterface { public: virtual bool ProcessMessages(const Config &config, CNode *pnode, std::atomic &interrupt) = 0; virtual bool SendMessages(const Config &config, CNode *pnode, std::atomic &interrupt) = 0; virtual void InitializeNode(const Config &config, CNode *pnode) = 0; virtual void FinalizeNode(const Config &config, NodeId id, bool &update_connection_time) = 0; protected: /** * Protected destructor so that instances can only be deleted by derived * classes. If that restriction is no longer desired, this should be made * public and virtual. */ ~NetEventsInterface() = default; }; enum { // unknown LOCAL_NONE, // address a local interface listens on LOCAL_IF, // address explicit bound to LOCAL_BIND, // address reported by UPnP LOCAL_UPNP, // address explicitly specified (-externalip=) LOCAL_MANUAL, LOCAL_MAX }; bool IsPeerAddrLocalGood(CNode *pnode); void AdvertiseLocal(CNode *pnode); /** * Mark a network as reachable or unreachable (no automatic connects to it) * @note Networks are reachable by default */ void SetReachable(enum Network net, bool reachable); /** @returns true if the network is reachable, false otherwise */ bool IsReachable(enum Network net); /** @returns true if the address is in a reachable network, false otherwise */ bool IsReachable(const CNetAddr &addr); bool AddLocal(const CService &addr, int nScore = LOCAL_NONE); bool AddLocal(const CNetAddr &addr, int nScore = LOCAL_NONE); void RemoveLocal(const CService &addr); bool SeenLocal(const CService &addr); bool IsLocal(const CService &addr); bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr); CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices); extern bool fDiscover; extern bool fListen; extern bool g_relay_txes; struct LocalServiceInfo { int nScore; int nPort; }; extern RecursiveMutex cs_mapLocalHost; extern std::map mapLocalHost GUARDED_BY(cs_mapLocalHost); extern const std::string NET_MESSAGE_COMMAND_OTHER; // Command, total bytes typedef std::map mapMsgCmdSize; /** * POD that contains various stats about a node. * Usually constructed from CConman::GetNodeStats. Stats are filled from the * node using CNode::copyStats. */ struct CNodeStats { NodeId nodeid; ServiceFlags nServices; bool fRelayTxes; int64_t nLastSend; int64_t nLastRecv; int64_t nTimeConnected; int64_t nTimeOffset; std::string addrName; int nVersion; std::string cleanSubVer; bool fInbound; bool m_manual_connection; int nStartingHeight; uint64_t nSendBytes; mapMsgCmdSize mapSendBytesPerMsgCmd; uint64_t nRecvBytes; mapMsgCmdSize mapRecvBytesPerMsgCmd; NetPermissionFlags m_permissionFlags; bool m_legacyWhitelisted; int64_t m_ping_usec; int64_t m_ping_wait_usec; int64_t m_min_ping_usec; Amount minFeeFilter; // Our address, as reported by the peer std::string addrLocal; // Address of this peer CAddress addr; // Bind address of our side of the connection CAddress addrBind; + uint32_t m_mapped_as; }; class CNetMessage { private: mutable CHash256 hasher; mutable uint256 data_hash; public: // Parsing header (false) or data (true) bool in_data; // Partially received header. CDataStream hdrbuf; // Complete header. CMessageHeader hdr; uint32_t nHdrPos; // Received message data. CDataStream vRecv; uint32_t nDataPos; // Time (in microseconds) of message receipt. int64_t nTime; CNetMessage(const CMessageHeader::MessageMagic &pchMessageStartIn, int nTypeIn, int nVersionIn) : hdrbuf(nTypeIn, nVersionIn), hdr(pchMessageStartIn), vRecv(nTypeIn, nVersionIn) { hdrbuf.resize(24); in_data = false; nHdrPos = 0; nDataPos = 0; nTime = 0; } bool complete() const { if (!in_data) { return false; } return (hdr.nMessageSize == nDataPos); } const uint256 &GetMessageHash() const; void SetVersion(int nVersionIn) { hdrbuf.SetVersion(nVersionIn); vRecv.SetVersion(nVersionIn); } int readHeader(const Config &config, const char *pch, uint32_t nBytes); int readData(const char *pch, uint32_t nBytes); }; /** Information about a peer */ class CNode { friend class CConnman; public: // socket std::atomic nServices{NODE_NONE}; SOCKET hSocket GUARDED_BY(cs_hSocket); // Total size of all vSendMsg entries. size_t nSendSize{0}; // Offset inside the first vSendMsg already sent. size_t nSendOffset{0}; uint64_t nSendBytes GUARDED_BY(cs_vSend){0}; std::deque> vSendMsg GUARDED_BY(cs_vSend); RecursiveMutex cs_vSend; RecursiveMutex cs_hSocket; RecursiveMutex cs_vRecv; RecursiveMutex cs_vProcessMsg; std::list vProcessMsg GUARDED_BY(cs_vProcessMsg); size_t nProcessQueueSize{0}; RecursiveMutex cs_sendProcessing; std::deque vRecvGetData; uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0}; std::atomic nRecvVersion{INIT_PROTO_VERSION}; std::atomic nLastSend{0}; std::atomic nLastRecv{0}; const int64_t nTimeConnected; std::atomic nTimeOffset{0}; // Address of this peer const CAddress addr; // Bind address of our side of the connection const CAddress addrBind; std::atomic nVersion{0}; RecursiveMutex cs_SubVer; /** * cleanSubVer is a sanitized string of the user agent byte array we read * from the wire. This cleaned string can safely be logged or displayed. */ std::string cleanSubVer GUARDED_BY(cs_SubVer){}; // This peer is preferred for eviction. bool m_prefer_evict{false}; bool HasPermission(NetPermissionFlags permission) const { return NetPermissions::HasFlag(m_permissionFlags, permission); } // This boolean is unusued in actual processing, only present for backward // compatibility at RPC/QT level bool m_legacyWhitelisted{false}; // If true this node is being used as a short lived feeler. bool fFeeler{false}; bool fOneShot{false}; bool m_manual_connection{false}; // set by version message bool fClient{false}; // after BIP159, set by version message bool m_limited_node{false}; const bool fInbound; std::atomic_bool fSuccessfullyConnected{false}; // Setting fDisconnect to true will cause the node to be disconnected the // next time DisconnectNodes() runs std::atomic_bool fDisconnect{false}; bool fSentAddr{false}; CSemaphoreGrant grantOutbound; std::atomic nRefCount{0}; const uint64_t nKeyedNetGroup; std::atomic_bool fPauseRecv{false}; std::atomic_bool fPauseSend{false}; protected: mapMsgCmdSize mapSendBytesPerMsgCmd; mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv); public: BlockHash hashContinue; std::atomic nStartingHeight{-1}; // flood relay std::vector vAddrToSend; CRollingBloomFilter addrKnown; bool fGetAddr{false}; int64_t nNextAddrSend GUARDED_BY(cs_sendProcessing){0}; int64_t nNextLocalAddrSend GUARDED_BY(cs_sendProcessing){0}; const bool m_addr_relay_peer; bool IsAddrRelayPeer() const { return m_addr_relay_peer; } // List of block ids we still have to announce. // There is no final sorting before sending, as they are always sent // immediately and in the order requested. std::vector vInventoryBlockToSend GUARDED_BY(cs_inventory); RecursiveMutex cs_inventory; struct TxRelay { TxRelay() { pfilter = std::make_unique(); } mutable RecursiveMutex cs_filter; // We use fRelayTxes for two purposes - // a) it allows us to not relay tx invs before receiving the peer's // version message. // b) the peer may tell us in its version message that we should not // relay tx invs unless it loads a bloom filter. bool fRelayTxes GUARDED_BY(cs_filter){false}; std::unique_ptr pfilter PT_GUARDED_BY(cs_filter) GUARDED_BY(cs_filter); mutable RecursiveMutex cs_tx_inventory; CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_tx_inventory){ 50000, 0.000001}; // Set of transaction ids we still have to announce. // They are sorted by the mempool before relay, so the order is not // important. std::set setInventoryTxToSend; // Used for BIP35 mempool sending bool fSendMempool GUARDED_BY(cs_tx_inventory){false}; // Last time a "MEMPOOL" request was serviced. std::atomic m_last_mempool_req{ std::chrono::seconds{0}}; int64_t nNextInvSend{0}; RecursiveMutex cs_feeFilter; // Minimum fee rate with which to filter inv's to this node Amount minFeeFilter GUARDED_BY(cs_feeFilter){Amount::zero()}; Amount lastSentFeeFilter{Amount::zero()}; int64_t nextSendTimeFeeFilter{0}; }; // m_tx_relay == nullptr if we're not relaying transactions with this peer std::unique_ptr m_tx_relay; // Used for headers announcements - unfiltered blocks to relay std::vector vBlockHashesToAnnounce GUARDED_BY(cs_inventory); // Block and TXN accept times std::atomic nLastBlockTime{0}; std::atomic nLastTXTime{0}; // Ping time measurement: // The pong reply we're expecting, or 0 if no pong expected. std::atomic nPingNonceSent{0}; // Time (in usec) the last ping was sent, or 0 if no ping was ever sent. std::atomic nPingUsecStart{0}; // Last measured round-trip time. std::atomic nPingUsecTime{0}; // Best measured round-trip time. std::atomic nMinPingUsecTime{std::numeric_limits::max()}; // Whether a ping is requested. std::atomic fPingQueued{false}; std::set orphan_work_set; CNode(NodeId id, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn = "", bool fInboundIn = false, bool block_relay_only = false); ~CNode(); CNode(const CNode &) = delete; CNode &operator=(const CNode &) = delete; private: const NodeId id; const uint64_t nLocalHostNonce; //! Services offered to this peer. //! //! This is supplied by the parent CConnman during peer connection //! (CConnman::ConnectNode()) from its attribute of the same name. //! //! This is const because there is no protocol defined for renegotiating //! services initially offered to a peer. The set of local services we //! offer should not change after initialization. //! //! An interesting example of this is NODE_NETWORK and initial block //! download: a node which starts up from scratch doesn't have any blocks //! to serve, but still advertises NODE_NETWORK because it will eventually //! fulfill this role after IBD completes. P2P code is written in such a //! way that it can gracefully handle peers who don't make good on their //! service advertisements. const ServiceFlags nLocalServices; const int nMyStartingHeight; int nSendVersion{0}; NetPermissionFlags m_permissionFlags{PF_NONE}; // Used only by SocketHandler thread std::list vRecvMsg; mutable RecursiveMutex cs_addrName; std::string addrName GUARDED_BY(cs_addrName); // Our address, as reported by the peer CService addrLocal GUARDED_BY(cs_addrLocal); mutable RecursiveMutex cs_addrLocal; public: NodeId GetId() const { return id; } uint64_t GetLocalNonce() const { return nLocalHostNonce; } int GetMyStartingHeight() const { return nMyStartingHeight; } int GetRefCount() const { assert(nRefCount >= 0); return nRefCount; } bool ReceiveMsgBytes(const Config &config, const char *pch, uint32_t nBytes, bool &complete); void SetRecvVersion(int nVersionIn) { nRecvVersion = nVersionIn; } int GetRecvVersion() const { return nRecvVersion; } void SetSendVersion(int nVersionIn); int GetSendVersion() const; CService GetAddrLocal() const; //! May not be called more than once void SetAddrLocal(const CService &addrLocalIn); CNode *AddRef() { nRefCount++; return this; } void Release() { nRefCount--; } void AddAddressKnown(const CAddress &_addr) { addrKnown.insert(_addr.GetKey()); } void PushAddress(const CAddress &_addr, FastRandomContext &insecure_rand) { // Known checking here is only to save space from duplicates. // SendMessages will filter it again for knowns that were added // after addresses were pushed. if (_addr.IsValid() && !addrKnown.contains(_addr.GetKey())) { if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) { vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] = _addr; } else { vAddrToSend.push_back(_addr); } } } void AddInventoryKnown(const CInv &inv) { if (m_tx_relay != nullptr) { LOCK(m_tx_relay->cs_tx_inventory); m_tx_relay->filterInventoryKnown.insert(inv.hash); } } void PushInventory(const CInv &inv) { if (inv.type == MSG_TX && m_tx_relay != nullptr) { const TxId txid(inv.hash); LOCK(m_tx_relay->cs_tx_inventory); if (!m_tx_relay->filterInventoryKnown.contains(txid)) { m_tx_relay->setInventoryTxToSend.insert(txid); } } else if (inv.type == MSG_BLOCK) { const BlockHash hash(inv.hash); LOCK(cs_inventory); vInventoryBlockToSend.push_back(hash); } } void PushBlockHash(const BlockHash &hash) { LOCK(cs_inventory); vBlockHashesToAnnounce.push_back(hash); } void CloseSocketDisconnect(); - void copyStats(CNodeStats &stats); + void copyStats(CNodeStats &stats, std::vector &m_asmap); ServiceFlags GetLocalServices() const { return nLocalServices; } std::string GetAddrName() const; //! Sets the addrName only if it was not previously set void MaybeSetAddrName(const std::string &addrNameIn); }; /** * Return a timestamp in the future (in microseconds) for exponentially * distributed events. */ int64_t PoissonNextSend(int64_t now, int average_interval_seconds); std::string getSubVersionEB(uint64_t MaxBlockSize); std::string userAgent(const Config &config); #endif // BITCOIN_NET_H diff --git a/src/netaddress.cpp b/src/netaddress.cpp index 0cad41f9a..e7f2480cf 100644 --- a/src/netaddress.cpp +++ b/src/netaddress.cpp @@ -1,892 +1,911 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include static const uint8_t pchIPv4[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}; static const uint8_t pchOnionCat[] = {0xFD, 0x87, 0xD8, 0x7E, 0xEB, 0x43}; // 0xFD + sha256("bitcoin")[0:5] static const uint8_t g_internal_prefix[] = {0xFD, 0x6B, 0x88, 0xC0, 0x87, 0x24}; /** * Construct an unspecified IPv6 network address (::/128). * * @note This address is considered invalid by CNetAddr::IsValid() */ CNetAddr::CNetAddr() { memset(ip, 0, sizeof(ip)); } void CNetAddr::SetIP(const CNetAddr &ipIn) { memcpy(ip, ipIn.ip, sizeof(ip)); } void CNetAddr::SetRaw(Network network, const uint8_t *ip_in) { switch (network) { case NET_IPV4: memcpy(ip, pchIPv4, 12); memcpy(ip + 12, ip_in, 4); break; case NET_IPV6: memcpy(ip, ip_in, 16); break; default: assert(!"invalid network"); } } /** * Try to make this a dummy address that maps the specified name into IPv6 like * so: (0xFD + %sha256("bitcoin")[0:5]) + %sha256(name)[0:10]. Such dummy * addresses have a prefix of fd6b:88c0:8724::/48 and are guaranteed to not be * publicly routable as it falls under RFC4193's fc00::/7 subnet allocated to * unique-local addresses. * * CAddrMan uses these fake addresses to keep track of which DNS seeds were * used. * * @returns Whether or not the operation was successful. * * @see CNetAddr::IsInternal(), CNetAddr::IsRFC4193() */ bool CNetAddr::SetInternal(const std::string &name) { if (name.empty()) { return false; } uint8_t hash[32] = {}; CSHA256().Write((const uint8_t *)name.data(), name.size()).Finalize(hash); memcpy(ip, g_internal_prefix, sizeof(g_internal_prefix)); memcpy(ip + sizeof(g_internal_prefix), hash, sizeof(ip) - sizeof(g_internal_prefix)); return true; } /** * Try to make this a dummy address that maps the specified onion address into * IPv6 using OnionCat's range and encoding. Such dummy addresses have a prefix * of fd87:d87e:eb43::/48 and are guaranteed to not be publicly routable as they * fall under RFC4193's fc00::/7 subnet allocated to unique-local addresses. * * @returns Whether or not the operation was successful. * * @see CNetAddr::IsTor(), CNetAddr::IsRFC4193() */ bool CNetAddr::SetSpecial(const std::string &strName) { if (strName.size() > 6 && strName.substr(strName.size() - 6, 6) == ".onion") { std::vector vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str()); if (vchAddr.size() != 16 - sizeof(pchOnionCat)) { return false; } memcpy(ip, pchOnionCat, sizeof(pchOnionCat)); for (unsigned int i = 0; i < 16 - sizeof(pchOnionCat); i++) { ip[i + sizeof(pchOnionCat)] = vchAddr[i]; } return true; } return false; } CNetAddr::CNetAddr(const struct in_addr &ipv4Addr) { SetRaw(NET_IPV4, (const uint8_t *)&ipv4Addr); } CNetAddr::CNetAddr(const struct in6_addr &ipv6Addr, const uint32_t scope) { SetRaw(NET_IPV6, (const uint8_t *)&ipv6Addr); scopeId = scope; } unsigned int CNetAddr::GetByte(int n) const { return ip[15 - n]; } bool CNetAddr::IsBindAny() const { const int cmplen = IsIPv4() ? 4 : 16; for (int i = 0; i < cmplen; ++i) { if (GetByte(i)) { return false; } } return true; } bool CNetAddr::IsIPv4() const { return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0); } bool CNetAddr::IsIPv6() const { return !IsIPv4() && !IsTor() && !IsInternal(); } bool CNetAddr::IsRFC1918() const { return IsIPv4() && (GetByte(3) == 10 || (GetByte(3) == 192 && GetByte(2) == 168) || (GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31))); } bool CNetAddr::IsRFC2544() const { return IsIPv4() && GetByte(3) == 198 && (GetByte(2) == 18 || GetByte(2) == 19); } bool CNetAddr::IsRFC3927() const { return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254); } bool CNetAddr::IsRFC6598() const { return IsIPv4() && GetByte(3) == 100 && GetByte(2) >= 64 && GetByte(2) <= 127; } bool CNetAddr::IsRFC5737() const { return IsIPv4() && ((GetByte(3) == 192 && GetByte(2) == 0 && GetByte(1) == 2) || (GetByte(3) == 198 && GetByte(2) == 51 && GetByte(1) == 100) || (GetByte(3) == 203 && GetByte(2) == 0 && GetByte(1) == 113)); } bool CNetAddr::IsRFC3849() const { return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8; } bool CNetAddr::IsRFC3964() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x02); } bool CNetAddr::IsRFC6052() const { static const uint8_t pchRFC6052[] = {0, 0x64, 0xFF, 0x9B, 0, 0, 0, 0, 0, 0, 0, 0}; return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0); } bool CNetAddr::IsRFC4380() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0); } bool CNetAddr::IsRFC4862() const { static const uint8_t pchRFC4862[] = {0xFE, 0x80, 0, 0, 0, 0, 0, 0}; return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0); } bool CNetAddr::IsRFC4193() const { return ((GetByte(15) & 0xFE) == 0xFC); } bool CNetAddr::IsRFC6145() const { static const uint8_t pchRFC6145[] = {0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 0, 0}; return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0); } bool CNetAddr::IsRFC4843() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10); } bool CNetAddr::IsRFC7343() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x20); } /** * @returns Whether or not this is a dummy address that maps an onion address * into IPv6. * * @see CNetAddr::SetSpecial(const std::string &) */ bool CNetAddr::IsTor() const { return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0); } bool CNetAddr::IsLocal() const { // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8) if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0)) { return true; } // IPv6 loopback (::1/128) static const uint8_t pchLocal[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; if (memcmp(ip, pchLocal, 16) == 0) { return true; } return false; } /** * @returns Whether or not this network address is a valid address that @a could * be used to refer to an actual host. * * @note A valid address may or may not be publicly routable on the global * internet. As in, the set of valid addresses is a superset of the set of * publicly routable addresses. * * @see CNetAddr::IsRoutable() */ bool CNetAddr::IsValid() const { // Cleanup 3-byte shifted addresses caused by garbage in size field of addr // messages from versions before 0.2.9 checksum. // Two consecutive addr messages look like this: // header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 // addr26 addr26... so if the first length field is garbled, it reads the // second batch of addr misaligned by 3 bytes. if (memcmp(ip, pchIPv4 + 3, sizeof(pchIPv4) - 3) == 0) { return false; } // unspecified IPv6 address (::/128) uint8_t ipNone6[16] = {}; if (memcmp(ip, ipNone6, 16) == 0) { return false; } // documentation IPv6 address if (IsRFC3849()) { return false; } if (IsInternal()) { return false; } if (IsIPv4()) { // INADDR_NONE uint32_t ipNone = INADDR_NONE; if (memcmp(ip + 12, &ipNone, 4) == 0) { return false; } // 0 ipNone = 0; if (memcmp(ip + 12, &ipNone, 4) == 0) { return false; } } return true; } /** * @returns Whether or not this network address is publicly routable on the * global internet. * * @note A routable address is always valid. As in, the set of routable * addresses is a subset of the set of valid addresses. * * @see CNetAddr::IsValid() */ bool CNetAddr::IsRoutable() const { return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal()); } /** * @returns Whether or not this is a dummy address that maps a name into IPv6. * * @see CNetAddr::SetInternal(const std::string &) */ bool CNetAddr::IsInternal() const { return memcmp(ip, g_internal_prefix, sizeof(g_internal_prefix)) == 0; } enum Network CNetAddr::GetNetwork() const { if (IsInternal()) { return NET_INTERNAL; } if (!IsRoutable()) { return NET_UNROUTABLE; } if (IsIPv4()) { return NET_IPV4; } if (IsTor()) { return NET_ONION; } return NET_IPV6; } std::string CNetAddr::ToStringIP() const { if (IsTor()) { return EncodeBase32(&ip[6], 10) + ".onion"; } if (IsInternal()) { return EncodeBase32(ip + sizeof(g_internal_prefix), sizeof(ip) - sizeof(g_internal_prefix)) + ".internal"; } CService serv(*this, 0); struct sockaddr_storage sockaddr; socklen_t socklen = sizeof(sockaddr); if (serv.GetSockAddr((struct sockaddr *)&sockaddr, &socklen)) { char name[1025] = ""; if (!getnameinfo((const struct sockaddr *)&sockaddr, socklen, name, sizeof(name), nullptr, 0, NI_NUMERICHOST)) { return std::string(name); } } if (IsIPv4()) { return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0)); } return strprintf("%x:%x:%x:%x:%x:%x:%x:%x", GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12), GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8), GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4), GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0)); } std::string CNetAddr::ToString() const { return ToStringIP(); } bool operator==(const CNetAddr &a, const CNetAddr &b) { return (memcmp(a.ip, b.ip, 16) == 0); } bool operator<(const CNetAddr &a, const CNetAddr &b) { return (memcmp(a.ip, b.ip, 16) < 0); } /** * Try to get our IPv4 address. * * @param[out] pipv4Addr The in_addr struct to which to copy. * * @returns Whether or not the operation was successful, in particular, whether * or not our address was an IPv4 address. * * @see CNetAddr::IsIPv4() */ bool CNetAddr::GetInAddr(struct in_addr *pipv4Addr) const { if (!IsIPv4()) { return false; } memcpy(pipv4Addr, ip + 12, 4); return true; } /** * Try to get our IPv6 address. * * @param[out] pipv6Addr The in6_addr struct to which to copy. * * @returns Whether or not the operation was successful, in particular, whether * or not our address was an IPv6 address. * * @see CNetAddr::IsIPv6() */ bool CNetAddr::GetIn6Addr(struct in6_addr *pipv6Addr) const { if (!IsIPv6()) { return false; } memcpy(pipv6Addr, ip, 16); return true; } +uint32_t CNetAddr::GetNetClass() const { + uint32_t net_class = NET_IPV6; + if (IsLocal()) { + net_class = 255; + } + if (IsInternal()) { + net_class = NET_INTERNAL; + } else if (!IsRoutable()) { + net_class = NET_UNROUTABLE; + } else if (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || + IsRFC4380()) { + net_class = NET_IPV4; + } else if (IsTor()) { + net_class = NET_ONION; + } + return net_class; +} + +uint32_t CNetAddr::GetMappedAS(const std::vector &asmap) const { + uint32_t net_class = GetNetClass(); + if (asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) { + return 0; // Indicates not found, safe because AS0 is reserved per + // RFC7607. + } + std::vector ip_bits(128); + for (int8_t byte_i = 0; byte_i < 16; ++byte_i) { + uint8_t cur_byte = GetByte(15 - byte_i); + for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { + ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1; + } + } + uint32_t mapped_as = Interpret(asmap, ip_bits); + return mapped_as; +} + /** * Get the canonical identifier of our network group * * The groups are assigned in a way where it should be costly for an attacker to * obtain addresses with many different group identifiers, even if it is cheap * to obtain addresses with the same identifier. * * @note No two connections will be attempted to addresses with the same network * group. */ std::vector CNetAddr::GetGroup(const std::vector &asmap) const { std::vector vchRet; - int nClass = NET_IPV6; + uint32_t net_class = GetNetClass(); + // If non-empty asmap is supplied and the address is IPv4/IPv6, + // return ASN to be used for bucketing. + uint32_t asn = GetMappedAS(asmap); + if (asn != 0) { // Either asmap was empty, or address has non-asmappable net + // class (e.g. TOR). + vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in + // the same bucket + for (int i = 0; i < 4; i++) { + vchRet.push_back((asn >> (8 * i)) & 0xFF); + } + return vchRet; + } + + vchRet.push_back(net_class); int nStartByte = 0; int nBits = 16; // all local addresses belong to the same group if (IsLocal()) { - nClass = 255; nBits = 0; } if (IsInternal()) { // all internal-usage addresses get their own group - nClass = NET_INTERNAL; nStartByte = sizeof(g_internal_prefix); nBits = (sizeof(ip) - sizeof(g_internal_prefix)) * 8; } else if (!IsRoutable()) { // all other unroutable addresses belong to the same group - nClass = NET_UNROUTABLE; nBits = 0; } else if (IsIPv4() || IsRFC6145() || IsRFC6052()) { // for IPv4 addresses, '1' + the 16 higher-order bits of the IP includes // mapped IPv4, SIIT translated IPv4, and the well-known prefix - nClass = NET_IPV4; nStartByte = 12; } else if (IsRFC3964()) { // for 6to4 tunnelled addresses, use the encapsulated IPv4 address - nClass = NET_IPV4; nStartByte = 2; } else if (IsRFC4380()) { // for Teredo-tunnelled IPv6 addresses, use the encapsulated IPv4 // address - vchRet.push_back(NET_IPV4); vchRet.push_back(GetByte(3) ^ 0xFF); vchRet.push_back(GetByte(2) ^ 0xFF); return vchRet; } else if (IsTor()) { - nClass = NET_ONION; nStartByte = 6; nBits = 4; } else if (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x04 && GetByte(12) == 0x70) { // for he.net, use /36 groups nBits = 36; } else { // for the rest of the IPv6 network, use /32 groups nBits = 32; } - // If asmap is supplied and the address is IPv4/IPv6, - // ignore nBits and use 32/128 bits to obtain ASN from asmap. - // ASN is then returned to be used for bucketing. - if (asmap.size() != 0 && (nClass == NET_IPV4 || nClass == NET_IPV6)) { - nClass = NET_IPV6; - std::vector ip_bits(128); - for (int8_t byte_i = 0; byte_i < 16; ++byte_i) { - uint8_t cur_byte = GetByte(15 - byte_i); - for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { - ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1; - } - } - - uint32_t asn = Interpret(asmap, ip_bits); - vchRet.push_back(nClass); - for (int i = 0; i < 4; i++) { - vchRet.push_back((asn >> (8 * i)) & 0xFF); - } - return vchRet; - } - - vchRet.push_back(nClass); - // push our ip onto vchRet byte by byte... while (nBits >= 8) { vchRet.push_back(GetByte(15 - nStartByte)); nStartByte++; nBits -= 8; } // ...for the last byte, push nBits and for the rest of the byte push 1's if (nBits > 0) { vchRet.push_back(GetByte(15 - nStartByte) | ((1 << (8 - nBits)) - 1)); } return vchRet; } uint64_t CNetAddr::GetHash() const { uint256 hash = Hash(&ip[0], &ip[16]); uint64_t nRet; memcpy(&nRet, &hash, sizeof(nRet)); return nRet; } // private extensions to enum Network, only returned by GetExtNetwork, and only // used in GetReachabilityFrom static const int NET_UNKNOWN = NET_MAX + 0; static const int NET_TEREDO = NET_MAX + 1; static int GetExtNetwork(const CNetAddr *addr) { if (addr == nullptr) { return NET_UNKNOWN; } if (addr->IsRFC4380()) { return NET_TEREDO; } return addr->GetNetwork(); } /** Calculates a metric for how reachable (*this) is from a given partner */ int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const { enum Reachability { REACH_UNREACHABLE, REACH_DEFAULT, REACH_TEREDO, REACH_IPV6_WEAK, REACH_IPV4, REACH_IPV6_STRONG, REACH_PRIVATE }; if (!IsRoutable() || IsInternal()) { return REACH_UNREACHABLE; } int ourNet = GetExtNetwork(this); int theirNet = GetExtNetwork(paddrPartner); bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145(); switch (theirNet) { case NET_IPV4: switch (ourNet) { default: return REACH_DEFAULT; case NET_IPV4: return REACH_IPV4; } case NET_IPV6: switch (ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV4: return REACH_IPV4; // only prefer giving our IPv6 address if it's not tunnelled case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; } case NET_ONION: switch (ourNet) { default: return REACH_DEFAULT; // Tor users can connect to IPv4 as well case NET_IPV4: return REACH_IPV4; case NET_ONION: return REACH_PRIVATE; } case NET_TEREDO: switch (ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; } case NET_UNKNOWN: case NET_UNROUTABLE: default: switch (ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; // either from Tor, or don't care about our address case NET_ONION: return REACH_PRIVATE; } } } CService::CService() : port(0) {} CService::CService(const CNetAddr &cip, unsigned short portIn) : CNetAddr(cip), port(portIn) {} CService::CService(const struct in_addr &ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn) {} CService::CService(const struct in6_addr &ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn) {} CService::CService(const struct sockaddr_in &addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) { assert(addr.sin_family == AF_INET); } CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port)) { assert(addr.sin6_family == AF_INET6); } bool CService::SetSockAddr(const struct sockaddr *paddr) { switch (paddr->sa_family) { case AF_INET: *this = CService(*reinterpret_cast(paddr)); return true; case AF_INET6: *this = CService(*reinterpret_cast(paddr)); return true; default: return false; } } unsigned short CService::GetPort() const { return port; } bool operator==(const CService &a, const CService &b) { return static_cast(a) == static_cast(b) && a.port == b.port; } bool operator<(const CService &a, const CService &b) { return static_cast(a) < static_cast(b) || (static_cast(a) == static_cast(b) && a.port < b.port); } /** * Obtain the IPv4/6 socket address this represents. * * @param[out] paddr The obtained socket address. * @param[in,out] addrlen The size, in bytes, of the address structure pointed * to by paddr. The value that's pointed to by this * parameter might change after calling this function if * the size of the corresponding address structure * changed. * * @returns Whether or not the operation was successful. */ bool CService::GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const { if (IsIPv4()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) { return false; } *addrlen = sizeof(struct sockaddr_in); struct sockaddr_in *paddrin = reinterpret_cast(paddr); memset(paddrin, 0, *addrlen); if (!GetInAddr(&paddrin->sin_addr)) { return false; } paddrin->sin_family = AF_INET; paddrin->sin_port = htons(port); return true; } if (IsIPv6()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) { return false; } *addrlen = sizeof(struct sockaddr_in6); struct sockaddr_in6 *paddrin6 = reinterpret_cast(paddr); memset(paddrin6, 0, *addrlen); if (!GetIn6Addr(&paddrin6->sin6_addr)) { return false; } paddrin6->sin6_scope_id = scopeId; paddrin6->sin6_family = AF_INET6; paddrin6->sin6_port = htons(port); return true; } return false; } /** * @returns An identifier unique to this service's address and port number. */ std::vector CService::GetKey() const { std::vector vKey; vKey.resize(18); memcpy(vKey.data(), ip, 16); // most significant byte of our port vKey[16] = port / 0x100; // least significant byte of our port vKey[17] = port & 0x0FF; return vKey; } std::string CService::ToStringPort() const { return strprintf("%u", port); } std::string CService::ToStringIPPort() const { if (IsIPv4() || IsTor() || IsInternal()) { return ToStringIP() + ":" + ToStringPort(); } else { return "[" + ToStringIP() + "]:" + ToStringPort(); } } std::string CService::ToString() const { return ToStringIPPort(); } CSubNet::CSubNet() : valid(false) { memset(netmask, 0, sizeof(netmask)); } CSubNet::CSubNet(const CNetAddr &addr, int32_t mask) { valid = true; network = addr; // Default to /32 (IPv4) or /128 (IPv6), i.e. match single address memset(netmask, 255, sizeof(netmask)); // IPv4 addresses start at offset 12, and first 12 bytes must match, so just // offset n const int astartofs = network.IsIPv4() ? 12 : 0; // Only valid if in range of bits of address int32_t n = mask; if (n >= 0 && n <= (128 - astartofs * 8)) { n += astartofs * 8; // Clear bits [n..127] for (; n < 128; ++n) { netmask[n >> 3] &= ~(1 << (7 - (n & 7))); } } else { valid = false; } // Normalize network according to netmask for (int x = 0; x < 16; ++x) { network.ip[x] &= netmask[x]; } } CSubNet::CSubNet(const CNetAddr &addr, const CNetAddr &mask) { valid = true; network = addr; // Default to /32 (IPv4) or /128 (IPv6), i.e. match single address memset(netmask, 255, sizeof(netmask)); // IPv4 addresses start at offset 12, and first 12 bytes must match, so just // offset n const int astartofs = network.IsIPv4() ? 12 : 0; for (int x = astartofs; x < 16; ++x) { netmask[x] = mask.ip[x]; } // Normalize network according to netmask for (int x = 0; x < 16; ++x) { network.ip[x] &= netmask[x]; } } CSubNet::CSubNet(const CNetAddr &addr) : valid(addr.IsValid()) { memset(netmask, 255, sizeof(netmask)); network = addr; } /** * @returns True if this subnet is valid, the specified address is valid, and * the specified address belongs in this subnet. */ bool CSubNet::Match(const CNetAddr &addr) const { if (!valid || !addr.IsValid()) { return false; } for (int x = 0; x < 16; ++x) { if ((addr.ip[x] & netmask[x]) != network.ip[x]) { return false; } } return true; } /** * @returns The number of 1-bits in the prefix of the specified subnet mask. If * the specified subnet mask is not a valid one, -1. */ static inline int NetmaskBits(uint8_t x) { switch (x) { case 0x00: return 0; case 0x80: return 1; case 0xc0: return 2; case 0xe0: return 3; case 0xf0: return 4; case 0xf8: return 5; case 0xfc: return 6; case 0xfe: return 7; case 0xff: return 8; default: return -1; } } std::string CSubNet::ToString() const { /* Parse binary 1{n}0{N-n} to see if mask can be represented as /n */ int cidr = 0; bool valid_cidr = true; int n = network.IsIPv4() ? 12 : 0; for (; n < 16 && netmask[n] == 0xff; ++n) { cidr += 8; } if (n < 16) { int bits = NetmaskBits(netmask[n]); if (bits < 0) { valid_cidr = false; } else { cidr += bits; } ++n; } for (; n < 16 && valid_cidr; ++n) { if (netmask[n] != 0x00) { valid_cidr = false; } } /* Format output */ std::string strNetmask; if (valid_cidr) { strNetmask = strprintf("%u", cidr); } else { if (network.IsIPv4()) { strNetmask = strprintf("%u.%u.%u.%u", netmask[12], netmask[13], netmask[14], netmask[15]); } else { strNetmask = strprintf( "%x:%x:%x:%x:%x:%x:%x:%x", netmask[0] << 8 | netmask[1], netmask[2] << 8 | netmask[3], netmask[4] << 8 | netmask[5], netmask[6] << 8 | netmask[7], netmask[8] << 8 | netmask[9], netmask[10] << 8 | netmask[11], netmask[12] << 8 | netmask[13], netmask[14] << 8 | netmask[15]); } } return network.ToString() + "/" + strNetmask; } bool CSubNet::IsValid() const { return valid; } bool operator==(const CSubNet &a, const CSubNet &b) { return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16); } bool operator<(const CSubNet &a, const CSubNet &b) { return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0)); } diff --git a/src/netaddress.h b/src/netaddress.h index 7489b1b85..4b029da3f 100644 --- a/src/netaddress.h +++ b/src/netaddress.h @@ -1,201 +1,208 @@ // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NETADDRESS_H #define BITCOIN_NETADDRESS_H #if defined(HAVE_CONFIG_H) #include #endif #include #include #include #include #include enum Network { NET_UNROUTABLE = 0, NET_IPV4, NET_IPV6, NET_ONION, NET_INTERNAL, NET_MAX, }; /** IP address (IPv6, or IPv4 using mapped IPv6 range (::FFFF:0:0/96)) */ class CNetAddr { protected: // in network byte order uint8_t ip[16]; // for scoped/link-local ipv6 addresses uint32_t scopeId{0}; public: CNetAddr(); explicit CNetAddr(const struct in_addr &ipv4Addr); void SetIP(const CNetAddr &ip); private: /** * Set raw IPv4 or IPv6 address (in network byte order) * @note Only NET_IPV4 and NET_IPV6 are allowed for network. */ void SetRaw(Network network, const uint8_t *data); public: bool SetInternal(const std::string &name); // for Tor addresses bool SetSpecial(const std::string &strName); // INADDR_ANY equivalent bool IsBindAny() const; // IPv4 mapped address (::FFFF:0:0/96, 0.0.0.0/0) bool IsIPv4() const; // IPv6 address (not mapped IPv4, not Tor) bool IsIPv6() const; // IPv4 private networks (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12) bool IsRFC1918() const; // IPv4 inter-network communications (192.18.0.0/15) bool IsRFC2544() const; // IPv4 ISP-level NAT (100.64.0.0/10) bool IsRFC6598() const; // IPv4 documentation addresses (192.0.2.0/24, 198.51.100.0/24, // 203.0.113.0/24) bool IsRFC5737() const; // IPv6 documentation address (2001:0DB8::/32) bool IsRFC3849() const; // IPv4 autoconfig (169.254.0.0/16) bool IsRFC3927() const; // IPv6 6to4 tunnelling (2002::/16) bool IsRFC3964() const; // IPv6 unique local (FC00::/7) bool IsRFC4193() const; // IPv6 Teredo tunnelling (2001::/32) bool IsRFC4380() const; // IPv6 ORCHID (deprecated) (2001:10::/28) bool IsRFC4843() const; // IPv6 ORCHIDv2 (2001:20::/28) bool IsRFC7343() const; // IPv6 autoconfig (FE80::/64) bool IsRFC4862() const; // IPv6 well-known prefix for IPv4-embedded address (64:FF9B::/96) bool IsRFC6052() const; // IPv6 IPv4-translated address (::FFFF:0:0:0/96) (actually defined in // RFC2765) bool IsRFC6145() const; bool IsTor() const; bool IsLocal() const; bool IsRoutable() const; bool IsInternal() const; bool IsValid() const; enum Network GetNetwork() const; std::string ToString() const; std::string ToStringIP() const; unsigned int GetByte(int n) const; uint64_t GetHash() const; bool GetInAddr(struct in_addr *pipv4Addr) const; + uint32_t GetNetClass() const; + + // The AS on the BGP path to the node we use to diversify + // peers in AddrMan bucketing based on the AS infrastructure. + // The ip->AS mapping depends on how asmap is constructed. + uint32_t GetMappedAS(const std::vector &asmap) const; + std::vector GetGroup(const std::vector &asmap) const; std::vector GetAddrBytes() const { return {std::begin(ip), std::end(ip)}; } int GetReachabilityFrom(const CNetAddr *paddrPartner = nullptr) const; explicit CNetAddr(const struct in6_addr &pipv6Addr, const uint32_t scope = 0); bool GetIn6Addr(struct in6_addr *pipv6Addr) const; friend bool operator==(const CNetAddr &a, const CNetAddr &b); friend bool operator!=(const CNetAddr &a, const CNetAddr &b) { return !(a == b); } friend bool operator<(const CNetAddr &a, const CNetAddr &b); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(ip); } friend class CSubNet; }; class CSubNet { protected: /// Network (base) address CNetAddr network; /// Netmask, in network byte order uint8_t netmask[16]; /// Is this value valid? (only used to signal parse errors) bool valid; public: CSubNet(); CSubNet(const CNetAddr &addr, int32_t mask); CSubNet(const CNetAddr &addr, const CNetAddr &mask); // constructor for single ip subnet (/32 or /128) explicit CSubNet(const CNetAddr &addr); bool Match(const CNetAddr &addr) const; std::string ToString() const; bool IsValid() const; friend bool operator==(const CSubNet &a, const CSubNet &b); friend bool operator!=(const CSubNet &a, const CSubNet &b) { return !(a == b); } friend bool operator<(const CSubNet &a, const CSubNet &b); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(network); READWRITE(netmask); READWRITE(valid); } }; /** A combination of a network address (CNetAddr) and a (TCP) port */ class CService : public CNetAddr { protected: // host order uint16_t port; public: CService(); CService(const CNetAddr &ip, unsigned short port); CService(const struct in_addr &ipv4Addr, unsigned short port); explicit CService(const struct sockaddr_in &addr); unsigned short GetPort() const; bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const; bool SetSockAddr(const struct sockaddr *paddr); friend bool operator==(const CService &a, const CService &b); friend bool operator!=(const CService &a, const CService &b) { return !(a == b); } friend bool operator<(const CService &a, const CService &b); std::vector GetKey() const; std::string ToString() const; std::string ToStringPort() const; std::string ToStringIPPort() const; CService(const struct in6_addr &ipv6Addr, unsigned short port); explicit CService(const struct sockaddr_in6 &addr); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(ip); READWRITE(WrapBigEndian(port)); } }; #endif // BITCOIN_NETADDRESS_H diff --git a/src/rpc/net.cpp b/src/rpc/net.cpp index f547b5bf2..bb1e4379a 100644 --- a/src/rpc/net.cpp +++ b/src/rpc/net.cpp @@ -1,970 +1,976 @@ // Copyright (c) 2009-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include // For banmap_t #include #include #include #include #include #include #include #include #include #include #include #include #include #include static UniValue getconnectioncount(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "getconnectioncount", "Returns the number of connections to other nodes.\n", {}, RPCResult{RPCResult::Type::NUM, "", "The connection count"}, RPCExamples{HelpExampleCli("getconnectioncount", "") + HelpExampleRpc("getconnectioncount", "")}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.connman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } return int(node.connman->GetNodeCount(CConnman::CONNECTIONS_ALL)); } static UniValue ping(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "ping", "Requests that a ping be sent to all other nodes, to measure ping " "time.\n" "Results provided in getpeerinfo, pingtime and pingwait fields are " "decimal seconds.\n" "Ping command is handled in queue with all other commands, so it " "measures processing backlog, not just network ping.\n", {}, RPCResults{}, RPCExamples{HelpExampleCli("ping", "") + HelpExampleRpc("ping", "")}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.connman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } // Request that each node send a ping during next message processing pass node.connman->ForEachNode([](CNode *pnode) { pnode->fPingQueued = true; }); return NullUniValue; } static UniValue getpeerinfo(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "getpeerinfo", "Returns data about each connected network node as a json array of " "objects.\n", {}, RPCResult{ RPCResult::Type::ARR, "", "", {{ RPCResult::Type::OBJ, "", "", {{ {RPCResult::Type::NUM, "id", "Peer index"}, {RPCResult::Type::STR, "addr", "(host:port) The IP address and port of the peer"}, {RPCResult::Type::STR, "addrbind", "(ip:port) Bind address of the connection to the peer"}, {RPCResult::Type::STR, "addrlocal", "(ip:port) Local address as reported by the peer"}, + {RPCResult::Type::NUM, "mapped_as", + "The AS in the BGP route to the peer used for " + "diversifying peer selection\n"}, {RPCResult::Type::STR_HEX, "services", "The services offered"}, {RPCResult::Type::ARR, "servicesnames", "the services offered, in human-readable form", {{RPCResult::Type::STR, "SERVICE_NAME", "the service name if it is recognised"}}}, {RPCResult::Type::BOOL, "relaytxes", "Whether peer has asked us to relay transactions to it"}, {RPCResult::Type::NUM_TIME, "lastsend", "The " + UNIX_EPOCH_TIME + " of the last send"}, {RPCResult::Type::NUM_TIME, "lastrecv", "The " + UNIX_EPOCH_TIME + " of the last receive"}, {RPCResult::Type::NUM, "bytessent", "The total bytes sent"}, {RPCResult::Type::NUM, "bytesrecv", "The total bytes received"}, {RPCResult::Type::NUM_TIME, "conntime", "The " + UNIX_EPOCH_TIME + " of the connection"}, {RPCResult::Type::NUM, "timeoffset", "The time offset in seconds"}, {RPCResult::Type::NUM, "pingtime", "ping time (if available)"}, {RPCResult::Type::NUM, "minping", "minimum observed ping time (if any at all)"}, {RPCResult::Type::NUM, "pingwait", "ping wait (if non-zero)"}, {RPCResult::Type::NUM, "version", "The peer version, such as 70001"}, {RPCResult::Type::STR, "subver", "The string version"}, {RPCResult::Type::BOOL, "inbound", "Inbound (true) or Outbound (false)"}, {RPCResult::Type::BOOL, "addnode", "Whether connection was due to addnode/-connect or if it " "was an automatic/inbound connection"}, {RPCResult::Type::NUM, "startingheight", "The starting height (block) of the peer"}, {RPCResult::Type::NUM, "banscore", "The ban score"}, {RPCResult::Type::NUM, "synced_headers", "The last header we have in common with this peer"}, {RPCResult::Type::NUM, "synced_blocks", "The last block we have in common with this peer"}, {RPCResult::Type::ARR, "inflight", "", { {RPCResult::Type::NUM, "n", "The heights of blocks we're currently asking from " "this peer"}, }}, {RPCResult::Type::BOOL, "whitelisted", "Whether the peer is whitelisted"}, {RPCResult::Type::NUM, "minfeefilter", "The minimum fee rate for transactions this peer accepts"}, {RPCResult::Type::OBJ_DYN, "bytessent_per_msg", "", {{RPCResult::Type::NUM, "msg", "The total bytes sent aggregated by message type\n" "When a message type is not listed in this json object, " "the bytes sent are 0.\n" "Only known message types can appear as keys in the " "object."}}}, {RPCResult::Type::OBJ, "bytesrecv_per_msg", "", {{RPCResult::Type::NUM, "msg", "The total bytes received aggregated by message type\n" "When a message type is not listed in this json object, " "the bytes received are 0.\n" "Only known message types can appear as keys in the " "object and all bytes received of unknown message types " "are listed under '" + NET_MESSAGE_COMMAND_OTHER + "'."}}}, }}, }}, }, RPCExamples{HelpExampleCli("getpeerinfo", "") + HelpExampleRpc("getpeerinfo", "")}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.connman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } std::vector vstats; node.connman->GetNodeStats(vstats); UniValue ret(UniValue::VARR); for (const CNodeStats &stats : vstats) { UniValue obj(UniValue::VOBJ); CNodeStateStats statestats; bool fStateStats = GetNodeStateStats(stats.nodeid, statestats); obj.pushKV("id", stats.nodeid); obj.pushKV("addr", stats.addrName); if (!(stats.addrLocal.empty())) { obj.pushKV("addrlocal", stats.addrLocal); } if (stats.addrBind.IsValid()) { obj.pushKV("addrbind", stats.addrBind.ToString()); } + if (stats.m_mapped_as != 0) { + obj.pushKV("mapped_as", uint64_t(stats.m_mapped_as)); + } obj.pushKV("services", strprintf("%016x", stats.nServices)); obj.pushKV("servicesnames", GetServicesNames(stats.nServices)); obj.pushKV("relaytxes", stats.fRelayTxes); obj.pushKV("lastsend", stats.nLastSend); obj.pushKV("lastrecv", stats.nLastRecv); obj.pushKV("bytessent", stats.nSendBytes); obj.pushKV("bytesrecv", stats.nRecvBytes); obj.pushKV("conntime", stats.nTimeConnected); obj.pushKV("timeoffset", stats.nTimeOffset); if (stats.m_ping_usec > 0) { obj.pushKV("pingtime", double(stats.m_ping_usec) / 1e6); } if (stats.m_min_ping_usec < std::numeric_limits::max()) { obj.pushKV("minping", double(stats.m_min_ping_usec) / 1e6); } if (stats.m_ping_wait_usec > 0) { obj.pushKV("pingwait", double(stats.m_ping_wait_usec) / 1e6); } obj.pushKV("version", stats.nVersion); // Use the sanitized form of subver here, to avoid tricksy remote peers // from corrupting or modifying the JSON output by putting special // characters in their ver message. obj.pushKV("subver", stats.cleanSubVer); obj.pushKV("inbound", stats.fInbound); obj.pushKV("addnode", stats.m_manual_connection); obj.pushKV("startingheight", stats.nStartingHeight); if (fStateStats) { obj.pushKV("banscore", statestats.nMisbehavior); obj.pushKV("synced_headers", statestats.nSyncHeight); obj.pushKV("synced_blocks", statestats.nCommonHeight); UniValue heights(UniValue::VARR); for (const int height : statestats.vHeightInFlight) { heights.push_back(height); } obj.pushKV("inflight", heights); } obj.pushKV("whitelisted", stats.m_legacyWhitelisted); UniValue permissions(UniValue::VARR); for (const auto &permission : NetPermissions::ToStrings(stats.m_permissionFlags)) { permissions.push_back(permission); } obj.pushKV("permissions", permissions); obj.pushKV("minfeefilter", ValueFromAmount(stats.minFeeFilter)); UniValue sendPerMsgCmd(UniValue::VOBJ); for (const auto &i : stats.mapSendBytesPerMsgCmd) { if (i.second > 0) { sendPerMsgCmd.pushKV(i.first, i.second); } } obj.pushKV("bytessent_per_msg", sendPerMsgCmd); UniValue recvPerMsgCmd(UniValue::VOBJ); for (const auto &i : stats.mapRecvBytesPerMsgCmd) { if (i.second > 0) { recvPerMsgCmd.pushKV(i.first, i.second); } } obj.pushKV("bytesrecv_per_msg", recvPerMsgCmd); ret.push_back(obj); } return ret; } static UniValue addnode(const Config &config, const JSONRPCRequest &request) { std::string strCommand; if (!request.params[1].isNull()) { strCommand = request.params[1].get_str(); } if (request.fHelp || request.params.size() != 2 || (strCommand != "onetry" && strCommand != "add" && strCommand != "remove")) { throw std::runtime_error(RPCHelpMan{ "addnode", "Attempts to add or remove a node from the addnode list.\n" "Or try a connection to a node once.\n" "Nodes added using addnode (or -connect) are protected from " "DoS disconnection and are not required to be\n" "full nodes as other outbound peers are (though such peers " "will not be synced from).\n", { {"node", RPCArg::Type::STR, RPCArg::Optional::NO, "The node (see getpeerinfo for nodes)"}, {"command", RPCArg::Type::STR, RPCArg::Optional::NO, "'add' to add a node to the list, 'remove' to remove a " "node from the list, 'onetry' to try a connection to the " "node once"}, }, RPCResults{}, RPCExamples{ HelpExampleCli("addnode", "\"192.168.0.6:8333\" \"onetry\"") + HelpExampleRpc("addnode", "\"192.168.0.6:8333\", \"onetry\"")}, } .ToString()); } NodeContext &node = EnsureNodeContext(request.context); if (!node.connman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } std::string strNode = request.params[0].get_str(); if (strCommand == "onetry") { CAddress addr; node.connman->OpenNetworkConnection( addr, false, nullptr, strNode.c_str(), false, false, true); return NullUniValue; } if ((strCommand == "add") && (!node.connman->AddNode(strNode))) { throw JSONRPCError(RPC_CLIENT_NODE_ALREADY_ADDED, "Error: Node already added"); } else if ((strCommand == "remove") && (!node.connman->RemoveAddedNode(strNode))) { throw JSONRPCError(RPC_CLIENT_NODE_NOT_ADDED, "Error: Node has not been added."); } return NullUniValue; } static UniValue disconnectnode(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "disconnectnode", "Immediately disconnects from the specified peer node.\n" "\nStrictly one out of 'address' and 'nodeid' can be provided to " "identify the node.\n" "\nTo disconnect by nodeid, either set 'address' to the empty string, " "or call using the named 'nodeid' argument only.\n", { {"address", RPCArg::Type::STR, /* default */ "fallback to nodeid", "The IP address/port of the node"}, {"nodeid", RPCArg::Type::NUM, /* default */ "fallback to address", "The node ID (see getpeerinfo for node IDs)"}, }, RPCResults{}, RPCExamples{HelpExampleCli("disconnectnode", "\"192.168.0.6:8333\"") + HelpExampleCli("disconnectnode", "\"\" 1") + HelpExampleRpc("disconnectnode", "\"192.168.0.6:8333\"") + HelpExampleRpc("disconnectnode", "\"\", 1")}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.connman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } bool success; const UniValue &address_arg = request.params[0]; const UniValue &id_arg = request.params[1]; if (!address_arg.isNull() && id_arg.isNull()) { /* handle disconnect-by-address */ success = node.connman->DisconnectNode(address_arg.get_str()); } else if (!id_arg.isNull() && (address_arg.isNull() || (address_arg.isStr() && address_arg.get_str().empty()))) { /* handle disconnect-by-id */ NodeId nodeid = (NodeId)id_arg.get_int64(); success = node.connman->DisconnectNode(nodeid); } else { throw JSONRPCError( RPC_INVALID_PARAMS, "Only one of address and nodeid should be provided."); } if (!success) { throw JSONRPCError(RPC_CLIENT_NODE_NOT_CONNECTED, "Node not found in connected nodes"); } return NullUniValue; } static UniValue getaddednodeinfo(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "getaddednodeinfo", "Returns information about the given added node, or all added nodes\n" "(note that onetry addnodes are not listed here)\n", { {"node", RPCArg::Type::STR, /* default */ "all nodes", "If provided, return information about this specific node, " "otherwise all nodes are returned."}, }, RPCResult{ RPCResult::Type::ARR, "", "", { {RPCResult::Type::OBJ, "", "", { {RPCResult::Type::STR, "addednode", "The node IP address or name (as provided to addnode)"}, {RPCResult::Type::BOOL, "connected", "If connected"}, {RPCResult::Type::ARR, "addresses", "Only when connected = true", { {RPCResult::Type::OBJ, "", "", { {RPCResult::Type::STR, "address", "The bitcoin server IP and port we're " "connected to"}, {RPCResult::Type::STR, "connected", "connection, inbound or outbound"}, }}, }}, }}, }}, RPCExamples{HelpExampleCli("getaddednodeinfo", "\"192.168.0.201\"") + HelpExampleRpc("getaddednodeinfo", "\"192.168.0.201\"")}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.connman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } std::vector vInfo = node.connman->GetAddedNodeInfo(); if (!request.params[0].isNull()) { bool found = false; for (const AddedNodeInfo &info : vInfo) { if (info.strAddedNode == request.params[0].get_str()) { vInfo.assign(1, info); found = true; break; } } if (!found) { throw JSONRPCError(RPC_CLIENT_NODE_NOT_ADDED, "Error: Node has not been added."); } } UniValue ret(UniValue::VARR); for (const AddedNodeInfo &info : vInfo) { UniValue obj(UniValue::VOBJ); obj.pushKV("addednode", info.strAddedNode); obj.pushKV("connected", info.fConnected); UniValue addresses(UniValue::VARR); if (info.fConnected) { UniValue address(UniValue::VOBJ); address.pushKV("address", info.resolvedAddress.ToString()); address.pushKV("connected", info.fInbound ? "inbound" : "outbound"); addresses.push_back(address); } obj.pushKV("addresses", addresses); ret.push_back(obj); } return ret; } static UniValue getnettotals(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "getnettotals", "Returns information about network traffic, including bytes in, " "bytes out,\n" "and current time.\n", {}, RPCResult{ RPCResult::Type::OBJ, "", "", { {RPCResult::Type::NUM, "totalbytesrecv", "Total bytes received"}, {RPCResult::Type::NUM, "totalbytessent", "Total bytes sent"}, {RPCResult::Type::NUM_TIME, "timemillis", "Current UNIX time in milliseconds"}, {RPCResult::Type::OBJ, "uploadtarget", "", { {RPCResult::Type::NUM, "timeframe", "Length of the measuring timeframe in seconds"}, {RPCResult::Type::NUM, "target", "Target in bytes"}, {RPCResult::Type::BOOL, "target_reached", "True if target is reached"}, {RPCResult::Type::BOOL, "serve_historical_blocks", "True if serving historical blocks"}, {RPCResult::Type::NUM, "bytes_left_in_cycle", "Bytes left in current time cycle"}, {RPCResult::Type::NUM, "time_left_in_cycle", "Seconds left in current time cycle"}, }}, }}, RPCExamples{HelpExampleCli("getnettotals", "") + HelpExampleRpc("getnettotals", "")}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.connman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } UniValue obj(UniValue::VOBJ); obj.pushKV("totalbytesrecv", node.connman->GetTotalBytesRecv()); obj.pushKV("totalbytessent", node.connman->GetTotalBytesSent()); obj.pushKV("timemillis", GetTimeMillis()); UniValue outboundLimit(UniValue::VOBJ); outboundLimit.pushKV("timeframe", node.connman->GetMaxOutboundTimeframe()); outboundLimit.pushKV("target", node.connman->GetMaxOutboundTarget()); outboundLimit.pushKV("target_reached", node.connman->OutboundTargetReached(false)); outboundLimit.pushKV("serve_historical_blocks", !node.connman->OutboundTargetReached(true)); outboundLimit.pushKV("bytes_left_in_cycle", node.connman->GetOutboundTargetBytesLeft()); outboundLimit.pushKV("time_left_in_cycle", node.connman->GetMaxOutboundTimeLeftInCycle()); obj.pushKV("uploadtarget", outboundLimit); return obj; } static UniValue GetNetworksInfo() { UniValue networks(UniValue::VARR); for (int n = 0; n < NET_MAX; ++n) { enum Network network = static_cast(n); if (network == NET_UNROUTABLE || network == NET_INTERNAL) { continue; } proxyType proxy; UniValue obj(UniValue::VOBJ); GetProxy(network, proxy); obj.pushKV("name", GetNetworkName(network)); obj.pushKV("limited", !IsReachable(network)); obj.pushKV("reachable", IsReachable(network)); obj.pushKV("proxy", proxy.IsValid() ? proxy.proxy.ToStringIPPort() : std::string()); obj.pushKV("proxy_randomize_credentials", proxy.randomize_credentials); networks.push_back(obj); } return networks; } static UniValue getnetworkinfo(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "getnetworkinfo", "Returns an object containing various state info regarding P2P " "networking.\n", {}, RPCResult{ RPCResult::Type::OBJ, "", "", { {RPCResult::Type::NUM, "version", "the server version"}, {RPCResult::Type::STR, "subversion", "the server subversion string"}, {RPCResult::Type::NUM, "protocolversion", "the protocol version"}, {RPCResult::Type::STR_HEX, "localservices", "the services we offer to the network"}, {RPCResult::Type::ARR, "localservicesnames", "the services we offer to the network, in human-readable form", { {RPCResult::Type::STR, "SERVICE_NAME", "the service name"}, }}, {RPCResult::Type::BOOL, "localrelay", "true if transaction relay is requested from peers"}, {RPCResult::Type::NUM, "timeoffset", "the time offset"}, {RPCResult::Type::NUM, "connections", "the number of connections"}, {RPCResult::Type::BOOL, "networkactive", "whether p2p networking is enabled"}, {RPCResult::Type::ARR, "networks", "information per network", { {RPCResult::Type::OBJ, "", "", { {RPCResult::Type::STR, "name", "network (ipv4, ipv6 or onion)"}, {RPCResult::Type::BOOL, "limited", "is the network limited using -onlynet?"}, {RPCResult::Type::BOOL, "reachable", "is the network reachable?"}, {RPCResult::Type::STR, "proxy", "(\"host:port\") the proxy that is used for this " "network, or empty if none"}, {RPCResult::Type::BOOL, "proxy_randomize_credentials", "Whether randomized credentials are used"}, }}, }}, {RPCResult::Type::NUM, "relayfee", "minimum relay fee for transactions in " + CURRENCY_UNIT + "/kB"}, {RPCResult::Type::NUM, "excessutxocharge", "minimum charge for excess utxos in " + CURRENCY_UNIT}, {RPCResult::Type::ARR, "localaddresses", "list of local addresses", { {RPCResult::Type::OBJ, "", "", { {RPCResult::Type::STR, "address", "network address"}, {RPCResult::Type::NUM, "port", "network port"}, {RPCResult::Type::NUM, "score", "relative score"}, }}, }}, {RPCResult::Type::STR, "warnings", "any network and blockchain warnings"}, }}, RPCExamples{HelpExampleCli("getnetworkinfo", "") + HelpExampleRpc("getnetworkinfo", "")}, } .Check(request); LOCK(cs_main); UniValue obj(UniValue::VOBJ); obj.pushKV("version", CLIENT_VERSION); obj.pushKV("subversion", userAgent(config)); obj.pushKV("protocolversion", PROTOCOL_VERSION); NodeContext &node = EnsureNodeContext(request.context); if (node.connman) { ServiceFlags services = node.connman->GetLocalServices(); obj.pushKV("localservices", strprintf("%016x", services)); obj.pushKV("localservicesnames", GetServicesNames(services)); } obj.pushKV("localrelay", g_relay_txes); obj.pushKV("timeoffset", GetTimeOffset()); if (node.connman) { obj.pushKV("networkactive", node.connman->GetNetworkActive()); obj.pushKV("connections", int(node.connman->GetNodeCount(CConnman::CONNECTIONS_ALL))); } obj.pushKV("networks", GetNetworksInfo()); obj.pushKV("relayfee", ValueFromAmount(::minRelayTxFee.GetFeePerK())); obj.pushKV("excessutxocharge", ValueFromAmount(config.GetExcessUTXOCharge())); UniValue localAddresses(UniValue::VARR); { LOCK(cs_mapLocalHost); for (const std::pair &item : mapLocalHost) { UniValue rec(UniValue::VOBJ); rec.pushKV("address", item.first.ToString()); rec.pushKV("port", item.second.nPort); rec.pushKV("score", item.second.nScore); localAddresses.push_back(rec); } } obj.pushKV("localaddresses", localAddresses); obj.pushKV("warnings", GetWarnings("statusbar")); return obj; } static UniValue setban(const Config &config, const JSONRPCRequest &request) { const RPCHelpMan help{ "setban", "Attempts to add or remove an IP/Subnet from the banned list.\n", { {"subnet", RPCArg::Type::STR, RPCArg::Optional::NO, "The IP/Subnet (see getpeerinfo for nodes IP) with an optional " "netmask (default is /32 = single IP)"}, {"command", RPCArg::Type::STR, RPCArg::Optional::NO, "'add' to add an IP/Subnet to the list, 'remove' to remove an " "IP/Subnet from the list"}, {"bantime", RPCArg::Type::NUM, /* default */ "0", "time in seconds how long (or until when if [absolute] is set) " "the IP is banned (0 or empty means using the default time of 24h " "which can also be overwritten by the -bantime startup argument)"}, {"absolute", RPCArg::Type::BOOL, /* default */ "false", "If set, the bantime must be an absolute timestamp expressed in " + UNIX_EPOCH_TIME}, }, RPCResults{}, RPCExamples{ HelpExampleCli("setban", "\"192.168.0.6\" \"add\" 86400") + HelpExampleCli("setban", "\"192.168.0.0/24\" \"add\"") + HelpExampleRpc("setban", "\"192.168.0.6\", \"add\", 86400")}, }; std::string strCommand; if (!request.params[1].isNull()) { strCommand = request.params[1].get_str(); } if (request.fHelp || !help.IsValidNumArgs(request.params.size()) || (strCommand != "add" && strCommand != "remove")) { throw std::runtime_error(help.ToString()); } NodeContext &node = EnsureNodeContext(request.context); if (!node.banman) { throw JSONRPCError(RPC_DATABASE_ERROR, "Error: Ban database not loaded"); } CSubNet subNet; CNetAddr netAddr; bool isSubnet = false; if (request.params[0].get_str().find('/') != std::string::npos) { isSubnet = true; } if (!isSubnet) { CNetAddr resolved; LookupHost(request.params[0].get_str().c_str(), resolved, false); netAddr = resolved; } else { LookupSubNet(request.params[0].get_str().c_str(), subNet); } if (!(isSubnet ? subNet.IsValid() : netAddr.IsValid())) { throw JSONRPCError(RPC_CLIENT_INVALID_IP_OR_SUBNET, "Error: Invalid IP/Subnet"); } if (strCommand == "add") { if (isSubnet ? node.banman->IsBanned(subNet) : node.banman->IsBanned(netAddr)) { throw JSONRPCError(RPC_CLIENT_NODE_ALREADY_ADDED, "Error: IP/Subnet already banned"); } // Use standard bantime if not specified. int64_t banTime = 0; if (!request.params[2].isNull()) { banTime = request.params[2].get_int64(); } bool absolute = false; if (request.params[3].isTrue()) { absolute = true; } if (isSubnet) { node.banman->Ban(subNet, banTime, absolute); if (node.connman) { node.connman->DisconnectNode(subNet); } } else { node.banman->Ban(netAddr, banTime, absolute); if (node.connman) { node.connman->DisconnectNode(netAddr); } } } else if (strCommand == "remove") { if (!(isSubnet ? node.banman->Unban(subNet) : node.banman->Unban(netAddr))) { throw JSONRPCError(RPC_CLIENT_INVALID_IP_OR_SUBNET, "Error: Unban failed. Requested address/subnet " "was not previously manually banned."); } } return NullUniValue; } static UniValue listbanned(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "listbanned", "List all manually banned IPs/Subnets.\n", {}, RPCResults{}, RPCExamples{HelpExampleCli("listbanned", "") + HelpExampleRpc("listbanned", "")}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.banman) { throw JSONRPCError(RPC_DATABASE_ERROR, "Error: Ban database not loaded"); } banmap_t banMap; node.banman->GetBanned(banMap); UniValue bannedAddresses(UniValue::VARR); for (const auto &entry : banMap) { const CBanEntry &banEntry = entry.second; UniValue rec(UniValue::VOBJ); rec.pushKV("address", entry.first.ToString()); rec.pushKV("banned_until", banEntry.nBanUntil); rec.pushKV("ban_created", banEntry.nCreateTime); bannedAddresses.push_back(rec); } return bannedAddresses; } static UniValue clearbanned(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "clearbanned", "Clear all banned IPs.\n", {}, RPCResults{}, RPCExamples{HelpExampleCli("clearbanned", "") + HelpExampleRpc("clearbanned", "")}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.banman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } node.banman->ClearBanned(); return NullUniValue; } static UniValue setnetworkactive(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "setnetworkactive", "Disable/enable all p2p network activity.\n", { {"state", RPCArg::Type::BOOL, RPCArg::Optional::NO, "true to enable networking, false to disable"}, }, RPCResults{}, RPCExamples{""}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.banman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } node.connman->SetNetworkActive(request.params[0].get_bool()); return node.connman->GetNetworkActive(); } static UniValue getnodeaddresses(const Config &config, const JSONRPCRequest &request) { RPCHelpMan{ "getnodeaddresses", "Return known addresses which can potentially be used to find new " "nodes in the network\n", { {"count", RPCArg::Type::NUM, /* default */ "1", "How many addresses to return. Limited to the smaller of " + std::to_string(ADDRMAN_GETADDR_MAX) + " or " + std::to_string(ADDRMAN_GETADDR_MAX_PCT) + "% of all known addresses."}, }, RPCResult{ RPCResult::Type::ARR, "", "", { {RPCResult::Type::OBJ, "", "", { {RPCResult::Type::NUM_TIME, "time", "The " + UNIX_EPOCH_TIME + " of when the node was last seen"}, {RPCResult::Type::NUM, "services", "The services offered"}, {RPCResult::Type::STR, "address", "The address of the node"}, {RPCResult::Type::NUM, "port", "The port of the node"}, }}, }}, RPCExamples{HelpExampleCli("getnodeaddresses", "8") + HelpExampleRpc("getnodeaddresses", "8")}, } .Check(request); NodeContext &node = EnsureNodeContext(request.context); if (!node.banman) { throw JSONRPCError( RPC_CLIENT_P2P_DISABLED, "Error: Peer-to-peer functionality missing or disabled"); } int count = 1; if (!request.params[0].isNull()) { count = request.params[0].get_int(); if (count <= 0) { throw JSONRPCError(RPC_INVALID_PARAMETER, "Address count out of range"); } } // returns a shuffled list of CAddress std::vector vAddr = node.connman->GetAddresses(); UniValue ret(UniValue::VARR); int address_return_count = std::min(count, vAddr.size()); for (int i = 0; i < address_return_count; ++i) { UniValue obj(UniValue::VOBJ); const CAddress &addr = vAddr[i]; obj.pushKV("time", int(addr.nTime)); obj.pushKV("services", uint64_t(addr.nServices)); obj.pushKV("address", addr.ToStringIP()); obj.pushKV("port", addr.GetPort()); ret.push_back(obj); } return ret; } // clang-format off static const CRPCCommand commands[] = { // category name actor (function) argNames // ------------------- ------------------------ ---------------------- ---------- { "network", "getconnectioncount", getconnectioncount, {} }, { "network", "ping", ping, {} }, { "network", "getpeerinfo", getpeerinfo, {} }, { "network", "addnode", addnode, {"node","command"} }, { "network", "disconnectnode", disconnectnode, {"address", "nodeid"} }, { "network", "getaddednodeinfo", getaddednodeinfo, {"node"} }, { "network", "getnettotals", getnettotals, {} }, { "network", "getnetworkinfo", getnetworkinfo, {} }, { "network", "setban", setban, {"subnet", "command", "bantime", "absolute"} }, { "network", "listbanned", listbanned, {} }, { "network", "clearbanned", clearbanned, {} }, { "network", "setnetworkactive", setnetworkactive, {"state"} }, { "network", "getnodeaddresses", getnodeaddresses, {"count"} }, }; // clang-format on void RegisterNetRPCCommands(CRPCTable &t) { for (unsigned int vcidx = 0; vcidx < ARRAYLEN(commands); vcidx++) { t.appendCommand(commands[vcidx].name, &commands[vcidx]); } }