diff --git a/src/secp256k1/src/secp256k1.c b/src/secp256k1/src/secp256k1.c
index be3375927..124fa6234 100644
--- a/src/secp256k1/src/secp256k1.c
+++ b/src/secp256k1/src/secp256k1.c
@@ -1,757 +1,758 @@
 /**********************************************************************
  * Copyright (c) 2013-2015 Pieter Wuille                              *
  * Distributed under the MIT software license, see the accompanying   *
  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
  **********************************************************************/
 
 #include "include/secp256k1.h"
 #include "include/secp256k1_preallocated.h"
 
 #include "assumptions.h"
 #include "util.h"
 #include "num_impl.h"
 #include "field_impl.h"
 #include "scalar_impl.h"
 #include "group_impl.h"
 #include "ecmult_impl.h"
 #include "ecmult_const_impl.h"
 #include "ecmult_gen_impl.h"
 #include "ecdsa_impl.h"
 #include "eckey_impl.h"
 #include "hash_impl.h"
 #include "scratch_impl.h"
 
 #if defined(VALGRIND)
 # include <valgrind/memcheck.h>
 #endif
 
 #define ARG_CHECK(cond) do { \
     if (EXPECT(!(cond), 0)) { \
         secp256k1_callback_call(&ctx->illegal_callback, #cond); \
         return 0; \
     } \
 } while(0)
 
 #define ARG_CHECK_NO_RETURN(cond) do { \
     if (EXPECT(!(cond), 0)) { \
         secp256k1_callback_call(&ctx->illegal_callback, #cond); \
     } \
 } while(0)
 
 #ifndef USE_EXTERNAL_DEFAULT_CALLBACKS
 #include <stdlib.h>
 #include <stdio.h>
 static void secp256k1_default_illegal_callback_fn(const char* str, void* data) {
     (void)data;
     fprintf(stderr, "[libsecp256k1] illegal argument: %s\n", str);
     abort();
 }
 static void secp256k1_default_error_callback_fn(const char* str, void* data) {
     (void)data;
     fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
     abort();
 }
 #else
 void secp256k1_default_illegal_callback_fn(const char* str, void* data);
 void secp256k1_default_error_callback_fn(const char* str, void* data);
 #endif
 
 static const secp256k1_callback default_illegal_callback = {
     secp256k1_default_illegal_callback_fn,
     NULL
 };
 
 static const secp256k1_callback default_error_callback = {
     secp256k1_default_error_callback_fn,
     NULL
 };
 
 struct secp256k1_context_struct {
     secp256k1_ecmult_context ecmult_ctx;
     secp256k1_ecmult_gen_context ecmult_gen_ctx;
     secp256k1_callback illegal_callback;
     secp256k1_callback error_callback;
     int declassify;
 };
 
 static const secp256k1_context secp256k1_context_no_precomp_ = {
     { 0 },
     { 0 },
     { secp256k1_default_illegal_callback_fn, 0 },
     { secp256k1_default_error_callback_fn, 0 },
     0
 };
 const secp256k1_context *secp256k1_context_no_precomp = &secp256k1_context_no_precomp_;
 
 size_t secp256k1_context_preallocated_size(unsigned int flags) {
     size_t ret = ROUND_TO_ALIGN(sizeof(secp256k1_context));
 
     if (EXPECT((flags & SECP256K1_FLAGS_TYPE_MASK) != SECP256K1_FLAGS_TYPE_CONTEXT, 0)) {
             secp256k1_callback_call(&default_illegal_callback,
                                     "Invalid flags");
             return 0;
     }
 
     if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) {
         ret += SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE;
     }
     if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) {
         ret += SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE;
     }
     return ret;
 }
 
 size_t secp256k1_context_preallocated_clone_size(const secp256k1_context* ctx) {
     size_t ret = ROUND_TO_ALIGN(sizeof(secp256k1_context));
     VERIFY_CHECK(ctx != NULL);
     if (secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)) {
         ret += SECP256K1_ECMULT_GEN_CONTEXT_PREALLOCATED_SIZE;
     }
     if (secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx)) {
         ret += SECP256K1_ECMULT_CONTEXT_PREALLOCATED_SIZE;
     }
     return ret;
 }
 
 secp256k1_context* secp256k1_context_preallocated_create(void* prealloc, unsigned int flags) {
     void* const base = prealloc;
     size_t prealloc_size;
     secp256k1_context* ret;
 
     VERIFY_CHECK(prealloc != NULL);
     prealloc_size = secp256k1_context_preallocated_size(flags);
     ret = (secp256k1_context*)manual_alloc(&prealloc, sizeof(secp256k1_context), base, prealloc_size);
     ret->illegal_callback = default_illegal_callback;
     ret->error_callback = default_error_callback;
 
     if (EXPECT((flags & SECP256K1_FLAGS_TYPE_MASK) != SECP256K1_FLAGS_TYPE_CONTEXT, 0)) {
             secp256k1_callback_call(&ret->illegal_callback,
                                     "Invalid flags");
             return NULL;
     }
 
     secp256k1_ecmult_context_init(&ret->ecmult_ctx);
     secp256k1_ecmult_gen_context_init(&ret->ecmult_gen_ctx);
 
     if (flags & SECP256K1_FLAGS_BIT_CONTEXT_SIGN) {
         secp256k1_ecmult_gen_context_build(&ret->ecmult_gen_ctx, &prealloc);
     }
     if (flags & SECP256K1_FLAGS_BIT_CONTEXT_VERIFY) {
         secp256k1_ecmult_context_build(&ret->ecmult_ctx, &prealloc);
     }
     ret->declassify = !!(flags & SECP256K1_FLAGS_BIT_CONTEXT_DECLASSIFY);
 
     return (secp256k1_context*) ret;
 }
 
 secp256k1_context* secp256k1_context_create(unsigned int flags) {
     size_t const prealloc_size = secp256k1_context_preallocated_size(flags);
     secp256k1_context* ctx = (secp256k1_context*)checked_malloc(&default_error_callback, prealloc_size);
     if (EXPECT(secp256k1_context_preallocated_create(ctx, flags) == NULL, 0)) {
         free(ctx);
         return NULL;
     }
 
     return ctx;
 }
 
 secp256k1_context* secp256k1_context_preallocated_clone(const secp256k1_context* ctx, void* prealloc) {
     size_t prealloc_size;
     secp256k1_context* ret;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(prealloc != NULL);
 
     prealloc_size = secp256k1_context_preallocated_clone_size(ctx);
     ret = (secp256k1_context*)prealloc;
     memcpy(ret, ctx, prealloc_size);
     secp256k1_ecmult_gen_context_finalize_memcpy(&ret->ecmult_gen_ctx, &ctx->ecmult_gen_ctx);
     secp256k1_ecmult_context_finalize_memcpy(&ret->ecmult_ctx, &ctx->ecmult_ctx);
     return ret;
 }
 
 secp256k1_context* secp256k1_context_clone(const secp256k1_context* ctx) {
     secp256k1_context* ret;
     size_t prealloc_size;
 
     VERIFY_CHECK(ctx != NULL);
     prealloc_size = secp256k1_context_preallocated_clone_size(ctx);
     ret = (secp256k1_context*)checked_malloc(&ctx->error_callback, prealloc_size);
     ret = secp256k1_context_preallocated_clone(ctx, ret);
     return ret;
 }
 
 void secp256k1_context_preallocated_destroy(secp256k1_context* ctx) {
     ARG_CHECK_NO_RETURN(ctx != secp256k1_context_no_precomp);
     if (ctx != NULL) {
         secp256k1_ecmult_context_clear(&ctx->ecmult_ctx);
         secp256k1_ecmult_gen_context_clear(&ctx->ecmult_gen_ctx);
     }
 }
 
 void secp256k1_context_destroy(secp256k1_context* ctx) {
     if (ctx != NULL) {
         secp256k1_context_preallocated_destroy(ctx);
         free(ctx);
     }
 }
 
 void secp256k1_context_set_illegal_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
     ARG_CHECK_NO_RETURN(ctx != secp256k1_context_no_precomp);
     if (fun == NULL) {
         fun = secp256k1_default_illegal_callback_fn;
     }
     ctx->illegal_callback.fn = fun;
     ctx->illegal_callback.data = data;
 }
 
 void secp256k1_context_set_error_callback(secp256k1_context* ctx, void (*fun)(const char* message, void* data), const void* data) {
     ARG_CHECK_NO_RETURN(ctx != secp256k1_context_no_precomp);
     if (fun == NULL) {
         fun = secp256k1_default_error_callback_fn;
     }
     ctx->error_callback.fn = fun;
     ctx->error_callback.data = data;
 }
 
 secp256k1_scratch_space* secp256k1_scratch_space_create(const secp256k1_context* ctx, size_t max_size) {
     VERIFY_CHECK(ctx != NULL);
     return secp256k1_scratch_create(&ctx->error_callback, max_size);
 }
 
 void secp256k1_scratch_space_destroy(const secp256k1_context *ctx, secp256k1_scratch_space* scratch) {
     VERIFY_CHECK(ctx != NULL);
     secp256k1_scratch_destroy(&ctx->error_callback, scratch);
 }
 
 /* Mark memory as no-longer-secret for the purpose of analysing constant-time behaviour
  *  of the software. This is setup for use with valgrind but could be substituted with
  *  the appropriate instrumentation for other analysis tools.
  */
 static SECP256K1_INLINE void secp256k1_declassify(const secp256k1_context* ctx, const void *p, size_t len) {
 #if defined(VALGRIND)
     if (EXPECT(ctx->declassify,0)) VALGRIND_MAKE_MEM_DEFINED(p, len);
 #else
     (void)ctx;
     (void)p;
     (void)len;
 #endif
 }
 
 static int secp256k1_pubkey_load(const secp256k1_context* ctx, secp256k1_ge* ge, const secp256k1_pubkey* pubkey) {
     if (sizeof(secp256k1_ge_storage) == 64) {
         /* When the secp256k1_ge_storage type is exactly 64 byte, use its
          * representation inside secp256k1_pubkey, as conversion is very fast.
          * Note that secp256k1_pubkey_save must use the same representation. */
         secp256k1_ge_storage s;
         memcpy(&s, &pubkey->data[0], sizeof(s));
         secp256k1_ge_from_storage(ge, &s);
     } else {
         /* Otherwise, fall back to 32-byte big endian for X and Y. */
         secp256k1_fe x, y;
         secp256k1_fe_set_b32(&x, pubkey->data);
         secp256k1_fe_set_b32(&y, pubkey->data + 32);
         secp256k1_ge_set_xy(ge, &x, &y);
     }
     ARG_CHECK(!secp256k1_fe_is_zero(&ge->x));
     return 1;
 }
 
 static void secp256k1_pubkey_save(secp256k1_pubkey* pubkey, secp256k1_ge* ge) {
     if (sizeof(secp256k1_ge_storage) == 64) {
         secp256k1_ge_storage s;
         secp256k1_ge_to_storage(&s, ge);
         memcpy(&pubkey->data[0], &s, sizeof(s));
     } else {
         VERIFY_CHECK(!secp256k1_ge_is_infinity(ge));
         secp256k1_fe_normalize_var(&ge->x);
         secp256k1_fe_normalize_var(&ge->y);
         secp256k1_fe_get_b32(pubkey->data, &ge->x);
         secp256k1_fe_get_b32(pubkey->data + 32, &ge->y);
     }
 }
 
 int secp256k1_ec_pubkey_parse(const secp256k1_context* ctx, secp256k1_pubkey* pubkey, const unsigned char *input, size_t inputlen) {
     secp256k1_ge Q;
 
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(pubkey != NULL);
     memset(pubkey, 0, sizeof(*pubkey));
     ARG_CHECK(input != NULL);
     if (!secp256k1_eckey_pubkey_parse(&Q, input, inputlen)) {
         return 0;
     }
     secp256k1_pubkey_save(pubkey, &Q);
     secp256k1_ge_clear(&Q);
     return 1;
 }
 
 int secp256k1_ec_pubkey_serialize(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_pubkey* pubkey, unsigned int flags) {
     secp256k1_ge Q;
     size_t len;
     int ret = 0;
 
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(outputlen != NULL);
     ARG_CHECK(*outputlen >= ((flags & SECP256K1_FLAGS_BIT_COMPRESSION) ? 33u : 65u));
     len = *outputlen;
     *outputlen = 0;
     ARG_CHECK(output != NULL);
     memset(output, 0, len);
     ARG_CHECK(pubkey != NULL);
     ARG_CHECK((flags & SECP256K1_FLAGS_TYPE_MASK) == SECP256K1_FLAGS_TYPE_COMPRESSION);
     if (secp256k1_pubkey_load(ctx, &Q, pubkey)) {
         ret = secp256k1_eckey_pubkey_serialize(&Q, output, &len, flags & SECP256K1_FLAGS_BIT_COMPRESSION);
         if (ret) {
             *outputlen = len;
         }
     }
     return ret;
 }
 
 static void secp256k1_ecdsa_signature_load(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_ecdsa_signature* sig) {
     (void)ctx;
     if (sizeof(secp256k1_scalar) == 32) {
         /* When the secp256k1_scalar type is exactly 32 byte, use its
          * representation inside secp256k1_ecdsa_signature, as conversion is very fast.
          * Note that secp256k1_ecdsa_signature_save must use the same representation. */
         memcpy(r, &sig->data[0], 32);
         memcpy(s, &sig->data[32], 32);
     } else {
         secp256k1_scalar_set_b32(r, &sig->data[0], NULL);
         secp256k1_scalar_set_b32(s, &sig->data[32], NULL);
     }
 }
 
 static void secp256k1_ecdsa_signature_save(secp256k1_ecdsa_signature* sig, const secp256k1_scalar* r, const secp256k1_scalar* s) {
     if (sizeof(secp256k1_scalar) == 32) {
         memcpy(&sig->data[0], r, 32);
         memcpy(&sig->data[32], s, 32);
     } else {
         secp256k1_scalar_get_b32(&sig->data[0], r);
         secp256k1_scalar_get_b32(&sig->data[32], s);
     }
 }
 
 int secp256k1_ecdsa_signature_parse_der(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
     secp256k1_scalar r, s;
 
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(sig != NULL);
     ARG_CHECK(input != NULL);
 
     if (secp256k1_ecdsa_sig_parse(&r, &s, input, inputlen)) {
         secp256k1_ecdsa_signature_save(sig, &r, &s);
         return 1;
     } else {
         memset(sig, 0, sizeof(*sig));
         return 0;
     }
 }
 
 int secp256k1_ecdsa_signature_parse_compact(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input64) {
     secp256k1_scalar r, s;
     int ret = 1;
     int overflow = 0;
 
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(sig != NULL);
     ARG_CHECK(input64 != NULL);
 
     secp256k1_scalar_set_b32(&r, &input64[0], &overflow);
     ret &= !overflow;
     secp256k1_scalar_set_b32(&s, &input64[32], &overflow);
     ret &= !overflow;
     if (ret) {
         secp256k1_ecdsa_signature_save(sig, &r, &s);
     } else {
         memset(sig, 0, sizeof(*sig));
     }
     return ret;
 }
 
 int secp256k1_ecdsa_signature_serialize_der(const secp256k1_context* ctx, unsigned char *output, size_t *outputlen, const secp256k1_ecdsa_signature* sig) {
     secp256k1_scalar r, s;
 
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(output != NULL);
     ARG_CHECK(outputlen != NULL);
     ARG_CHECK(sig != NULL);
 
     secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
     return secp256k1_ecdsa_sig_serialize(output, outputlen, &r, &s);
 }
 
 int secp256k1_ecdsa_signature_serialize_compact(const secp256k1_context* ctx, unsigned char *output64, const secp256k1_ecdsa_signature* sig) {
     secp256k1_scalar r, s;
 
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(output64 != NULL);
     ARG_CHECK(sig != NULL);
 
     secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
     secp256k1_scalar_get_b32(&output64[0], &r);
     secp256k1_scalar_get_b32(&output64[32], &s);
     return 1;
 }
 
 int secp256k1_ecdsa_signature_normalize(const secp256k1_context* ctx, secp256k1_ecdsa_signature *sigout, const secp256k1_ecdsa_signature *sigin) {
     secp256k1_scalar r, s;
     int ret = 0;
 
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(sigin != NULL);
 
     secp256k1_ecdsa_signature_load(ctx, &r, &s, sigin);
     ret = secp256k1_scalar_is_high(&s);
     if (sigout != NULL) {
         if (ret) {
             secp256k1_scalar_negate(&s, &s);
         }
         secp256k1_ecdsa_signature_save(sigout, &r, &s);
     }
 
     return ret;
 }
 
 int secp256k1_ecdsa_verify(const secp256k1_context* ctx, const secp256k1_ecdsa_signature *sig, const unsigned char *msg32, const secp256k1_pubkey *pubkey) {
     secp256k1_ge q;
     secp256k1_scalar r, s;
     secp256k1_scalar m;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
     ARG_CHECK(msg32 != NULL);
     ARG_CHECK(sig != NULL);
     ARG_CHECK(pubkey != NULL);
 
     secp256k1_scalar_set_b32(&m, msg32, NULL);
     secp256k1_ecdsa_signature_load(ctx, &r, &s, sig);
     return (!secp256k1_scalar_is_high(&s) &&
             secp256k1_pubkey_load(ctx, &q, pubkey) &&
             secp256k1_ecdsa_sig_verify(&ctx->ecmult_ctx, &r, &s, &q, &m));
 }
 
 static SECP256K1_INLINE void buffer_append(unsigned char *buf, unsigned int *offset, const void *data, unsigned int len) {
     memcpy(buf + *offset, data, len);
     *offset += len;
 }
 
 static int nonce_function_rfc6979(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, const unsigned char *algo16, void *data, unsigned int counter) {
    unsigned char keydata[112];
    unsigned int offset = 0;
    secp256k1_rfc6979_hmac_sha256 rng;
    unsigned int i;
    /* We feed a byte array to the PRNG as input, consisting of:
     * - the private key (32 bytes) and message (32 bytes), see RFC 6979 3.2d.
     * - optionally 32 extra bytes of data, see RFC 6979 3.6 Additional Data.
     * - optionally 16 extra bytes with the algorithm name.
     * Because the arguments have distinct fixed lengths it is not possible for
     *  different argument mixtures to emulate each other and result in the same
     *  nonces.
     */
    buffer_append(keydata, &offset, key32, 32);
    buffer_append(keydata, &offset, msg32, 32);
    if (data != NULL) {
        buffer_append(keydata, &offset, data, 32);
    }
    if (algo16 != NULL) {
        buffer_append(keydata, &offset, algo16, 16);
    }
    secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, offset);
    memset(keydata, 0, sizeof(keydata));
    for (i = 0; i <= counter; i++) {
        secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
    }
    secp256k1_rfc6979_hmac_sha256_finalize(&rng);
    return 1;
 }
 
 const secp256k1_nonce_function secp256k1_nonce_function_rfc6979 = nonce_function_rfc6979;
 const secp256k1_nonce_function secp256k1_nonce_function_default = nonce_function_rfc6979;
 
 static int secp256k1_ecdsa_sign_inner(const secp256k1_context* ctx, secp256k1_scalar* r, secp256k1_scalar* s, int* recid, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const unsigned char algo16[17], const void* noncedata) {
     secp256k1_scalar sec, non, msg;
     int ret = 0;
     int is_sec_valid;
     unsigned char nonce32[32];
     unsigned int count = 0;
     /* Default initialization here is important so we won't pass uninit values to the cmov in the end */
     *r = secp256k1_scalar_zero;
     *s = secp256k1_scalar_zero;
     if (recid) {
         *recid = 0;
     }
     if (noncefp == NULL) {
         noncefp = secp256k1_nonce_function_default;
     }
 
     /* Fail if the secret key is invalid. */
     is_sec_valid = secp256k1_scalar_set_b32_seckey(&sec, seckey);
     secp256k1_scalar_cmov(&sec, &secp256k1_scalar_one, !is_sec_valid);
     secp256k1_scalar_set_b32(&msg, msg32, NULL);
     while (1) {
         int is_nonce_valid;
         ret = !!noncefp(nonce32, msg32, seckey, algo16, (void*)noncedata, count);
         if (!ret) {
             break;
         }
         is_nonce_valid = secp256k1_scalar_set_b32_seckey(&non, nonce32);
         /* The nonce is still secret here, but it being invalid is is less likely than 1:2^255. */
         secp256k1_declassify(ctx, &is_nonce_valid, sizeof(is_nonce_valid));
         if (is_nonce_valid) {
             ret = secp256k1_ecdsa_sig_sign(&ctx->ecmult_gen_ctx, r, s, &sec, &msg, &non, recid);
             /* The final signature is no longer a secret, nor is the fact that we were successful or not. */
             secp256k1_declassify(ctx, &ret, sizeof(ret));
             if (ret) {
                 break;
             }
         }
         count++;
     }
     /* We don't want to declassify is_sec_valid and therefore the range of
      * seckey. As a result is_sec_valid is included in ret only after ret was
      * used as a branching variable. */
     ret &= is_sec_valid;
     memset(nonce32, 0, 32);
     secp256k1_scalar_clear(&msg);
     secp256k1_scalar_clear(&non);
     secp256k1_scalar_clear(&sec);
     secp256k1_scalar_cmov(r, &secp256k1_scalar_zero, !ret);
     secp256k1_scalar_cmov(s, &secp256k1_scalar_zero, !ret);
     if (recid) {
         const int zero = 0;
         secp256k1_int_cmov(recid, &zero, !ret);
     }
     return ret;
 }
 
 int secp256k1_ecdsa_sign(const secp256k1_context* ctx, secp256k1_ecdsa_signature *signature, const unsigned char *msg32, const unsigned char *seckey, secp256k1_nonce_function noncefp, const void* noncedata) {
     secp256k1_scalar r, s;
     int ret;
     const unsigned char secp256k1_ecdsa_der_algo16[17] = "ECDSA+DER       ";
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
     ARG_CHECK(msg32 != NULL);
     ARG_CHECK(signature != NULL);
     ARG_CHECK(seckey != NULL);
 
     ret = secp256k1_ecdsa_sign_inner(ctx, &r, &s, NULL, msg32, seckey, noncefp, secp256k1_ecdsa_der_algo16, noncedata);
     secp256k1_ecdsa_signature_save(signature, &r, &s);
     return ret;
 }
 
 int secp256k1_ec_seckey_verify(const secp256k1_context* ctx, const unsigned char *seckey) {
     secp256k1_scalar sec;
     int ret;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(seckey != NULL);
 
     ret = secp256k1_scalar_set_b32_seckey(&sec, seckey);
     secp256k1_scalar_clear(&sec);
     return ret;
 }
 
 int secp256k1_ec_pubkey_create(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *seckey) {
     secp256k1_gej pj;
     secp256k1_ge p;
     secp256k1_scalar sec;
     int ret = 0;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(pubkey != NULL);
     memset(pubkey, 0, sizeof(*pubkey));
     ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
     ARG_CHECK(seckey != NULL);
 
     ret = secp256k1_scalar_set_b32_seckey(&sec, seckey);
     secp256k1_scalar_cmov(&sec, &secp256k1_scalar_one, !ret);
 
     secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pj, &sec);
     secp256k1_ge_set_gej(&p, &pj);
     secp256k1_pubkey_save(pubkey, &p);
     memczero(pubkey, sizeof(*pubkey), !ret);
 
     secp256k1_scalar_clear(&sec);
     return ret;
 }
 
 int secp256k1_ec_seckey_negate(const secp256k1_context* ctx, unsigned char *seckey) {
     secp256k1_scalar sec;
     int ret = 0;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(seckey != NULL);
 
     ret = secp256k1_scalar_set_b32_seckey(&sec, seckey);
     secp256k1_scalar_cmov(&sec, &secp256k1_scalar_zero, !ret);
     secp256k1_scalar_negate(&sec, &sec);
     secp256k1_scalar_get_b32(seckey, &sec);
 
     secp256k1_scalar_clear(&sec);
     return ret;
 }
 
 int secp256k1_ec_privkey_negate(const secp256k1_context* ctx, unsigned char *seckey) {
     return secp256k1_ec_seckey_negate(ctx, seckey);
 }
 
 int secp256k1_ec_pubkey_negate(const secp256k1_context* ctx, secp256k1_pubkey *pubkey) {
     int ret = 0;
     secp256k1_ge p;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(pubkey != NULL);
 
     ret = secp256k1_pubkey_load(ctx, &p, pubkey);
     memset(pubkey, 0, sizeof(*pubkey));
     if (ret) {
         secp256k1_ge_neg(&p, &p);
         secp256k1_pubkey_save(pubkey, &p);
     }
     return ret;
 }
 
 int secp256k1_ec_seckey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
     secp256k1_scalar term;
     secp256k1_scalar sec;
     int ret = 0;
     int overflow = 0;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(seckey != NULL);
     ARG_CHECK(tweak != NULL);
 
     secp256k1_scalar_set_b32(&term, tweak, &overflow);
     ret = secp256k1_scalar_set_b32_seckey(&sec, seckey);
 
     ret &= (!overflow) & secp256k1_eckey_privkey_tweak_add(&sec, &term);
     secp256k1_scalar_cmov(&sec, &secp256k1_scalar_zero, !ret);
     secp256k1_scalar_get_b32(seckey, &sec);
 
     secp256k1_scalar_clear(&sec);
     secp256k1_scalar_clear(&term);
     return ret;
 }
 
 int secp256k1_ec_privkey_tweak_add(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
     return secp256k1_ec_seckey_tweak_add(ctx, seckey, tweak);
 }
 
+static int secp256k1_ec_pubkey_tweak_add_helper(const secp256k1_ecmult_context* ecmult_ctx, secp256k1_ge *p, const unsigned char *tweak) {
+    secp256k1_scalar term;
+    int overflow = 0;
+    secp256k1_scalar_set_b32(&term, tweak, &overflow);
+    return !overflow && secp256k1_eckey_pubkey_tweak_add(ecmult_ctx, p, &term);
+}
+
 int secp256k1_ec_pubkey_tweak_add(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
     secp256k1_ge p;
-    secp256k1_scalar term;
     int ret = 0;
-    int overflow = 0;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
     ARG_CHECK(pubkey != NULL);
     ARG_CHECK(tweak != NULL);
 
-    secp256k1_scalar_set_b32(&term, tweak, &overflow);
-    ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
+    ret = secp256k1_pubkey_load(ctx, &p, pubkey);
     memset(pubkey, 0, sizeof(*pubkey));
+    ret = ret && secp256k1_ec_pubkey_tweak_add_helper(&ctx->ecmult_ctx, &p, tweak);
     if (ret) {
-        if (secp256k1_eckey_pubkey_tweak_add(&ctx->ecmult_ctx, &p, &term)) {
-            secp256k1_pubkey_save(pubkey, &p);
-        } else {
-            ret = 0;
-        }
+        secp256k1_pubkey_save(pubkey, &p);
     }
 
     return ret;
 }
 
 int secp256k1_ec_seckey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
     secp256k1_scalar factor;
     secp256k1_scalar sec;
     int ret = 0;
     int overflow = 0;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(seckey != NULL);
     ARG_CHECK(tweak != NULL);
 
     secp256k1_scalar_set_b32(&factor, tweak, &overflow);
     ret = secp256k1_scalar_set_b32_seckey(&sec, seckey);
     ret &= (!overflow) & secp256k1_eckey_privkey_tweak_mul(&sec, &factor);
     secp256k1_scalar_cmov(&sec, &secp256k1_scalar_zero, !ret);
     secp256k1_scalar_get_b32(seckey, &sec);
 
     secp256k1_scalar_clear(&sec);
     secp256k1_scalar_clear(&factor);
     return ret;
 }
 
 int secp256k1_ec_privkey_tweak_mul(const secp256k1_context* ctx, unsigned char *seckey, const unsigned char *tweak) {
     return secp256k1_ec_seckey_tweak_mul(ctx, seckey, tweak);
 }
 
 int secp256k1_ec_pubkey_tweak_mul(const secp256k1_context* ctx, secp256k1_pubkey *pubkey, const unsigned char *tweak) {
     secp256k1_ge p;
     secp256k1_scalar factor;
     int ret = 0;
     int overflow = 0;
     VERIFY_CHECK(ctx != NULL);
     ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
     ARG_CHECK(pubkey != NULL);
     ARG_CHECK(tweak != NULL);
 
     secp256k1_scalar_set_b32(&factor, tweak, &overflow);
     ret = !overflow && secp256k1_pubkey_load(ctx, &p, pubkey);
     memset(pubkey, 0, sizeof(*pubkey));
     if (ret) {
         if (secp256k1_eckey_pubkey_tweak_mul(&ctx->ecmult_ctx, &p, &factor)) {
             secp256k1_pubkey_save(pubkey, &p);
         } else {
             ret = 0;
         }
     }
 
     return ret;
 }
 
 int secp256k1_context_randomize(secp256k1_context* ctx, const unsigned char *seed32) {
     VERIFY_CHECK(ctx != NULL);
     if (secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx)) {
         secp256k1_ecmult_gen_blind(&ctx->ecmult_gen_ctx, seed32);
     }
     return 1;
 }
 
 int secp256k1_ec_pubkey_combine(const secp256k1_context* ctx, secp256k1_pubkey *pubnonce, const secp256k1_pubkey * const *pubnonces, size_t n) {
     size_t i;
     secp256k1_gej Qj;
     secp256k1_ge Q;
 
     ARG_CHECK(pubnonce != NULL);
     memset(pubnonce, 0, sizeof(*pubnonce));
     ARG_CHECK(n >= 1);
     ARG_CHECK(pubnonces != NULL);
 
     secp256k1_gej_set_infinity(&Qj);
 
     for (i = 0; i < n; i++) {
         secp256k1_pubkey_load(ctx, &Q, pubnonces[i]);
         secp256k1_gej_add_ge(&Qj, &Qj, &Q);
     }
     if (secp256k1_gej_is_infinity(&Qj)) {
         return 0;
     }
     secp256k1_ge_set_gej(&Q, &Qj);
     secp256k1_pubkey_save(pubnonce, &Q);
     return 1;
 }
 
 #ifdef ENABLE_MODULE_ECDH
 # include "modules/ecdh/main_impl.h"
 #endif
 
 #ifdef ENABLE_MODULE_MULTISET
 # include "modules/multiset/main_impl.h"
 #endif
 
 #ifdef ENABLE_MODULE_RECOVERY
 # include "modules/recovery/main_impl.h"
 #endif
 
 #ifdef ENABLE_MODULE_SCHNORR
 # include "modules/schnorr/main_impl.h"
 #endif
 
 #ifdef ENABLE_MODULE_EXTRAKEYS
 # include "modules/extrakeys/main_impl.h"
 #endif