diff --git a/src/test/checkqueue_tests.cpp b/src/test/checkqueue_tests.cpp index 830fd55fd..274fc367c 100644 --- a/src/test/checkqueue_tests.cpp +++ b/src/test/checkqueue_tests.cpp @@ -1,423 +1,420 @@ // Copyright (c) 2012-2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include // BasicTestingSetup not sufficient because nScriptCheckThreads is not set // otherwise. BOOST_FIXTURE_TEST_SUITE(checkqueue_tests, TestingSetup) static const unsigned int QUEUE_BATCH_SIZE = 128; struct FakeCheck { bool operator()() { return true; } void swap(FakeCheck &x){}; }; struct FakeCheckCheckCompletion { static std::atomic n_calls; bool operator()() { n_calls.fetch_add(1, std::memory_order_relaxed); return true; } void swap(FakeCheckCheckCompletion &x){}; }; struct FailingCheck { bool fails; FailingCheck(bool _fails) : fails(_fails){}; FailingCheck() : fails(true){}; bool operator()() { return !fails; } void swap(FailingCheck &x) { std::swap(fails, x.fails); }; }; struct UniqueCheck { static std::mutex m; static std::unordered_multiset results; size_t check_id; UniqueCheck(size_t check_id_in) : check_id(check_id_in){}; UniqueCheck() : check_id(0){}; bool operator()() { std::lock_guard l(m); results.insert(check_id); return true; } void swap(UniqueCheck &x) { std::swap(x.check_id, check_id); }; }; struct MemoryCheck { static std::atomic fake_allocated_memory; bool b{false}; bool operator()() { return true; } MemoryCheck(){}; MemoryCheck(const MemoryCheck &x) { // We have to do this to make sure that destructor calls are paired // // Really, copy constructor should be deletable, but CCheckQueue breaks // if it is deleted because of internal push_back. fake_allocated_memory.fetch_add(b, std::memory_order_relaxed); }; MemoryCheck(bool b_) : b(b_) { fake_allocated_memory.fetch_add(b, std::memory_order_relaxed); }; ~MemoryCheck() { fake_allocated_memory.fetch_sub(b, std::memory_order_relaxed); }; void swap(MemoryCheck &x) { std::swap(b, x.b); }; }; struct FrozenCleanupCheck { static std::atomic nFrozen; static std::condition_variable cv; static std::mutex m; // Freezing can't be the default initialized behavior given how the queue // swaps in default initialized Checks. bool should_freeze{false}; bool operator()() { return true; } FrozenCleanupCheck() {} ~FrozenCleanupCheck() { if (should_freeze) { std::unique_lock l(m); nFrozen.store(1, std::memory_order_relaxed); cv.notify_one(); cv.wait( l, [] { return nFrozen.load(std::memory_order_relaxed) == 0; }); } } void swap(FrozenCleanupCheck &x) { std::swap(should_freeze, x.should_freeze); }; }; // Static Allocations std::mutex FrozenCleanupCheck::m{}; std::atomic FrozenCleanupCheck::nFrozen{0}; std::condition_variable FrozenCleanupCheck::cv{}; std::mutex UniqueCheck::m; std::unordered_multiset UniqueCheck::results; std::atomic FakeCheckCheckCompletion::n_calls{0}; std::atomic MemoryCheck::fake_allocated_memory{0}; // Queue Typedefs typedef CCheckQueue Correct_Queue; typedef CCheckQueue Standard_Queue; typedef CCheckQueue Failing_Queue; typedef CCheckQueue Unique_Queue; typedef CCheckQueue Memory_Queue; typedef CCheckQueue FrozenCleanup_Queue; /** This test case checks that the CCheckQueue works properly * with each specified size_t Checks pushed. */ static void Correct_Queue_range(std::vector range) { auto small_queue = std::unique_ptr(new Correct_Queue{QUEUE_BATCH_SIZE}); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { small_queue->Thread(); }); } // Make vChecks here to save on malloc (this test can be slow...) std::vector vChecks; for (const size_t i : range) { size_t total = i; FakeCheckCheckCompletion::n_calls = 0; CCheckQueueControl control(small_queue.get()); while (total) { vChecks.resize(std::min(total, (size_t)InsecureRandRange(10))); total -= vChecks.size(); control.Add(vChecks); } BOOST_REQUIRE(control.Wait()); if (FakeCheckCheckCompletion::n_calls != i) { BOOST_REQUIRE_EQUAL(FakeCheckCheckCompletion::n_calls, i); - BOOST_TEST_MESSAGE("Failure on trial " - << i << " expected, got " - << FakeCheckCheckCompletion::n_calls); } } tg.interrupt_all(); tg.join_all(); } /** Test that 0 checks is correct */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Zero) { std::vector range; range.push_back((size_t)0); Correct_Queue_range(range); } /** Test that 1 check is correct */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_One) { std::vector range; range.push_back((size_t)1); Correct_Queue_range(range); } /** Test that MAX check is correct */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Max) { std::vector range; range.push_back(100000); Correct_Queue_range(range); } /** Test that random numbers of checks are correct */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Random) { std::vector range; range.reserve(100000 / 1000); for (size_t i = 2; i < 100000; i += std::max((size_t)1, (size_t)InsecureRandRange(std::min( (size_t)1000, ((size_t)100000) - i)))) range.push_back(i); Correct_Queue_range(range); } /** Test that failing checks are caught */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Catches_Failure) { auto fail_queue = std::unique_ptr(new Failing_Queue{QUEUE_BATCH_SIZE}); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { fail_queue->Thread(); }); } for (size_t i = 0; i < 1001; ++i) { CCheckQueueControl control(fail_queue.get()); size_t remaining = i; while (remaining) { size_t r = InsecureRandRange(10); std::vector vChecks; vChecks.reserve(r); for (size_t k = 0; k < r && remaining; k++, remaining--) vChecks.emplace_back(remaining == 1); control.Add(vChecks); } bool success = control.Wait(); if (i > 0) { BOOST_REQUIRE(!success); } else if (i == 0) { BOOST_REQUIRE(success); } } tg.interrupt_all(); tg.join_all(); } // Test that a block validation which fails does not interfere with // future blocks, ie, the bad state is cleared. BOOST_AUTO_TEST_CASE(test_CheckQueue_Recovers_From_Failure) { auto fail_queue = std::unique_ptr(new Failing_Queue{QUEUE_BATCH_SIZE}); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { fail_queue->Thread(); }); } for (auto times = 0; times < 10; ++times) { for (const bool end_fails : {true, false}) { CCheckQueueControl control(fail_queue.get()); { std::vector vChecks; vChecks.resize(100, false); vChecks[99] = end_fails; control.Add(vChecks); } bool r = control.Wait(); BOOST_REQUIRE(r != end_fails); } } tg.interrupt_all(); tg.join_all(); } // Test that unique checks are actually all called individually, rather than // just one check being called repeatedly. Test that checks are not called // more than once as well BOOST_AUTO_TEST_CASE(test_CheckQueue_UniqueCheck) { auto queue = std::unique_ptr(new Unique_Queue{QUEUE_BATCH_SIZE}); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { queue->Thread(); }); } size_t COUNT = 100000; size_t total = COUNT; { CCheckQueueControl control(queue.get()); while (total) { size_t r = InsecureRandRange(10); std::vector vChecks; for (size_t k = 0; k < r && total; k++) vChecks.emplace_back(--total); control.Add(vChecks); } } bool r = true; BOOST_REQUIRE_EQUAL(UniqueCheck::results.size(), COUNT); for (size_t i = 0; i < COUNT; ++i) r = r && UniqueCheck::results.count(i) == 1; BOOST_REQUIRE(r); tg.interrupt_all(); tg.join_all(); } // Test that blocks which might allocate lots of memory free their memory // aggressively. // // This test attempts to catch a pathological case where by lazily freeing // checks might mean leaving a check un-swapped out, and decreasing by 1 each // time could leave the data hanging across a sequence of blocks. BOOST_AUTO_TEST_CASE(test_CheckQueue_Memory) { auto queue = std::unique_ptr(new Memory_Queue{QUEUE_BATCH_SIZE}); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { queue->Thread(); }); } for (size_t i = 0; i < 1000; ++i) { size_t total = i; { CCheckQueueControl control(queue.get()); while (total) { size_t r = InsecureRandRange(10); std::vector vChecks; for (size_t k = 0; k < r && total; k++) { total--; // Each iteration leaves data at the front, back, and middle // to catch any sort of deallocation failure vChecks.emplace_back(total == 0 || total == i || total == i / 2); } control.Add(vChecks); } } BOOST_REQUIRE_EQUAL(MemoryCheck::fake_allocated_memory, 0U); } tg.interrupt_all(); tg.join_all(); } // Test that a new verification cannot occur until all checks // have been destructed BOOST_AUTO_TEST_CASE(test_CheckQueue_FrozenCleanup) { auto queue = std::unique_ptr( new FrozenCleanup_Queue{QUEUE_BATCH_SIZE}); boost::thread_group tg; bool fails = false; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { queue->Thread(); }); } std::thread t0([&]() { CCheckQueueControl control(queue.get()); std::vector vChecks(1); // Freezing can't be the default initialized behavior given how the // queue // swaps in default initialized Checks (otherwise freezing destructor // would get called twice). vChecks[0].should_freeze = true; control.Add(vChecks); control.Wait(); // Hangs here }); { std::unique_lock l(FrozenCleanupCheck::m); // Wait until the queue has finished all jobs and frozen FrozenCleanupCheck::cv.wait( l, []() { return FrozenCleanupCheck::nFrozen == 1; }); } // Try to get control of the queue a bunch of times for (auto x = 0; x < 100 && !fails; ++x) { fails = queue->ControlMutex.try_lock(); } { // Unfreeze (we need lock n case of spurious wakeup) std::unique_lock l(FrozenCleanupCheck::m); FrozenCleanupCheck::nFrozen = 0; } // Awaken frozen destructor FrozenCleanupCheck::cv.notify_one(); // Wait for control to finish t0.join(); tg.interrupt_all(); tg.join_all(); BOOST_REQUIRE(!fails); } /** Test that CCheckQueueControl is threadsafe */ BOOST_AUTO_TEST_CASE(test_CheckQueueControl_Locks) { auto queue = std::unique_ptr(new Standard_Queue{QUEUE_BATCH_SIZE}); { boost::thread_group tg; std::atomic nThreads{0}; std::atomic fails{0}; for (size_t i = 0; i < 3; ++i) { tg.create_thread([&] { CCheckQueueControl control(queue.get()); // While sleeping, no other thread should execute to this point auto observed = ++nThreads; MilliSleep(10); fails += observed != nThreads; }); } tg.join_all(); BOOST_REQUIRE_EQUAL(fails, 0); } { boost::thread_group tg; std::mutex m; std::condition_variable cv; bool has_lock{false}; bool has_tried{false}; bool done{false}; bool done_ack{false}; { std::unique_lock l(m); tg.create_thread([&] { CCheckQueueControl control(queue.get()); std::unique_lock ll(m); has_lock = true; cv.notify_one(); cv.wait(ll, [&] { return has_tried; }); done = true; cv.notify_one(); // Wait until the done is acknowledged // cv.wait(ll, [&] { return done_ack; }); }); // Wait for thread to get the lock cv.wait(l, [&]() { return has_lock; }); bool fails = false; for (auto x = 0; x < 100 && !fails; ++x) { fails = queue->ControlMutex.try_lock(); } has_tried = true; cv.notify_one(); cv.wait(l, [&]() { return done; }); // Acknowledge the done done_ack = true; cv.notify_one(); BOOST_REQUIRE(!fails); } tg.join_all(); } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/rcu_tests.cpp b/src/test/rcu_tests.cpp index 5dd835a67..95032320f 100644 --- a/src/test/rcu_tests.cpp +++ b/src/test/rcu_tests.cpp @@ -1,389 +1,392 @@ // Copyright (c) 2018 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include struct RCUTest { static uint64_t getRevision() { return RCUInfos::revision.load(); } static uint64_t hasSyncedTo(uint64_t syncRev) { return RCUInfos::infos.hasSyncedTo(syncRev); } static std::map> &getCleanups() { return RCUInfos::infos.cleanups; } }; BOOST_FIXTURE_TEST_SUITE(rcu_tests, BasicTestingSetup) enum RCUTestStep { Init, Locked, LockAck, RCULocked, Synchronizing, Synchronized, }; #define WAIT_FOR_STEP(step) \ do { \ cond.notify_all(); \ } while (!cond.wait_for(lock, std::chrono::milliseconds(1), \ [&] { return otherstep == step; })) void synchronize(std::atomic &step, const std::atomic &otherstep, Mutex &cs, std::condition_variable &cond, std::atomic &syncRev) { assert(step == RCUTestStep::Init); { WAIT_LOCK(cs, lock); step = RCUTestStep::Locked; // Wait for our lock to be acknowledged. WAIT_FOR_STEP(RCUTestStep::LockAck); RCULock rculock; // Update step. step = RCUTestStep::RCULocked; // Wait for master. WAIT_FOR_STEP(RCUTestStep::RCULocked); } // Update step. syncRev = RCUTest::getRevision() + 1; step = RCUTestStep::Synchronizing; assert(!RCUTest::hasSyncedTo(syncRev)); // We wait for readers. RCULock::synchronize(); // Update step. step = RCUTestStep::Synchronized; } void lockAndWaitForSynchronize(std::atomic &step, const std::atomic &otherstep, Mutex &cs, std::condition_variable &cond, std::atomic &syncRev) { assert(step == RCUTestStep::Init); WAIT_LOCK(cs, lock); // Wait for th eother thread to be locked. WAIT_FOR_STEP(RCUTestStep::Locked); step = RCUTestStep::LockAck; // Wait for the synchronizing tread to take its RCU lock. WAIT_FOR_STEP(RCUTestStep::RCULocked); assert(!RCUTest::hasSyncedTo(syncRev)); { RCULock rculock; // Update master step. step = RCUTestStep::RCULocked; while (RCUTest::getRevision() < syncRev) { WAIT_FOR_STEP(RCUTestStep::Synchronizing); } assert(RCUTest::getRevision() >= syncRev); assert(otherstep.load() == RCUTestStep::Synchronizing); } assert(RCUTest::hasSyncedTo(syncRev) >= syncRev); WAIT_FOR_STEP(RCUTestStep::Synchronized); } static const int COUNT = 128; BOOST_AUTO_TEST_CASE(synchronize_test) { Mutex cs; std::condition_variable cond; std::atomic parentstep; std::atomic childstep; std::atomic syncRev; for (int i = 0; i < COUNT; i++) { parentstep = RCUTestStep::Init; childstep = RCUTestStep::Init; syncRev = RCUTest::getRevision() + 1; std::thread tlock([&] { lockAndWaitForSynchronize(parentstep, childstep, cs, cond, syncRev); }); std::thread tsync( [&] { synchronize(childstep, parentstep, cs, cond, syncRev); }); tlock.join(); tsync.join(); } + + // Needed to suppress "Test case [...] did not check any assertions" + BOOST_CHECK(true); } BOOST_AUTO_TEST_CASE(cleanup_test) { RCULock::synchronize(); BOOST_CHECK(RCUTest::getCleanups().empty()); bool isClean1 = false; RCULock::registerCleanup([&] { isClean1 = true; }); BOOST_CHECK(!isClean1); BOOST_CHECK_EQUAL(RCUTest::getCleanups().size(), 1); BOOST_CHECK_EQUAL(RCUTest::getRevision(), RCUTest::getCleanups().begin()->first); // Synchronize runs the cleanups. RCULock::synchronize(); BOOST_CHECK(RCUTest::getCleanups().empty()); BOOST_CHECK(isClean1); // Check multiple callbacks. isClean1 = false; bool isClean2 = false; bool isClean3 = false; RCULock::registerCleanup([&] { isClean1 = true; }); RCULock::registerCleanup([&] { isClean2 = true; }); RCULock::registerCleanup([&] { isClean3 = true; }); BOOST_CHECK_EQUAL(RCUTest::getCleanups().size(), 3); RCULock::synchronize(); BOOST_CHECK(RCUTest::getCleanups().empty()); BOOST_CHECK(isClean1); BOOST_CHECK(isClean2); BOOST_CHECK(isClean3); // Check callbacks adding each others. isClean1 = false; isClean2 = false; isClean3 = false; RCULock::registerCleanup([&] { isClean1 = true; RCULock::registerCleanup([&] { isClean2 = true; RCULock::registerCleanup([&] { isClean3 = true; }); }); }); BOOST_CHECK_EQUAL(RCUTest::getCleanups().size(), 1); RCULock::synchronize(); BOOST_CHECK(RCUTest::getCleanups().empty()); BOOST_CHECK(isClean1); BOOST_CHECK(isClean2); BOOST_CHECK(isClean3); } class RCURefTestItem { IMPLEMENT_RCU_REFCOUNT(uint32_t); const std::function cleanupfun; public: explicit RCURefTestItem(const std::function &fun) : cleanupfun(fun) {} ~RCURefTestItem() { cleanupfun(); } uint32_t getRefCount() const { return refcount.load(); } }; BOOST_AUTO_TEST_CASE(rcuptr_test) { // Make sure it works for null. { RCURefTestItem *ptr = nullptr; RCUPtr::copy(ptr); RCUPtr::acquire(ptr); } // Check the destruction mechanism. bool isDestroyed = false; { auto rcuptr = RCUPtr::make([&] { isDestroyed = true; }); BOOST_CHECK_EQUAL(rcuptr->getRefCount(), 0); } // rcuptr waits for synchronization to destroy. BOOST_CHECK(!isDestroyed); RCULock::synchronize(); BOOST_CHECK(isDestroyed); // Check that copy behaves properly. isDestroyed = false; RCUPtr gptr; { auto rcuptr = RCUPtr::make([&] { isDestroyed = true; }); BOOST_CHECK_EQUAL(rcuptr->getRefCount(), 0); gptr = rcuptr; BOOST_CHECK_EQUAL(rcuptr->getRefCount(), 1); BOOST_CHECK_EQUAL(gptr->getRefCount(), 1); auto rcuptrcopy = rcuptr; BOOST_CHECK_EQUAL(rcuptrcopy->getRefCount(), 2); BOOST_CHECK_EQUAL(rcuptr->getRefCount(), 2); BOOST_CHECK_EQUAL(gptr->getRefCount(), 2); } BOOST_CHECK_EQUAL(gptr->getRefCount(), 0); RCULock::synchronize(); BOOST_CHECK(!isDestroyed); gptr = RCUPtr(); BOOST_CHECK(!isDestroyed); RCULock::synchronize(); BOOST_CHECK(isDestroyed); } BOOST_AUTO_TEST_CASE(rcuptr_operator_test) { auto gptr = RCUPtr(); auto ptr = new RCURefTestItem([] {}); auto oldPtr = ptr; auto altptr = RCUPtr::make([] {}); // Check various operators. BOOST_CHECK_EQUAL(gptr.get(), NULLPTR(RCURefTestItem)); BOOST_CHECK_EQUAL(gptr, NULLPTR(RCURefTestItem)); BOOST_CHECK(!gptr); auto copyptr = gptr; BOOST_CHECK(gptr == nullptr); BOOST_CHECK(gptr != oldPtr); BOOST_CHECK(gptr == copyptr); BOOST_CHECK(gptr != altptr); gptr = RCUPtr::acquire(ptr); BOOST_CHECK_EQUAL(ptr, NULLPTR(RCURefTestItem)); BOOST_CHECK_EQUAL(gptr.get(), oldPtr); BOOST_CHECK_EQUAL(&*gptr, oldPtr); BOOST_CHECK_EQUAL(gptr, oldPtr); BOOST_CHECK(gptr); copyptr = gptr; BOOST_CHECK(gptr != nullptr); BOOST_CHECK(gptr == oldPtr); BOOST_CHECK(gptr == copyptr); BOOST_CHECK(gptr != altptr); } BOOST_AUTO_TEST_CASE(const_rcuptr_test) { bool isDestroyed = false; auto ptr = RCUPtr::make([&] { isDestroyed = true; }); // Now let's destroy it. ptr = RCUPtr(); BOOST_CHECK(!isDestroyed); RCULock::synchronize(); BOOST_CHECK(isDestroyed); } class RCURefMoveTestItem { const std::function cleanupfun; public: explicit RCURefMoveTestItem(const std::function &fun) : cleanupfun(fun) {} ~RCURefMoveTestItem() { cleanupfun(); } void acquire() { throw std::runtime_error("RCUPtr incremented the refcount"); } void release() { RCULock::registerCleanup([this] { delete this; }); } }; BOOST_AUTO_TEST_CASE(move_rcuptr_test) { bool isDestroyed = false; // Check tat copy is failing. auto rcuptr1 = RCUPtr::make([&] { isDestroyed = true; }); BOOST_CHECK_THROW(rcuptr1->acquire(), std::runtime_error); BOOST_CHECK_THROW(auto rcuptrcopy = rcuptr1;, std::runtime_error); // Try to move. auto rcuptr2 = std::move(rcuptr1); RCULock::synchronize(); BOOST_CHECK(!isDestroyed); // Move to a local and check proper destruction. { auto rcuptr3 = std::move(rcuptr2); } BOOST_CHECK(!isDestroyed); RCULock::synchronize(); BOOST_CHECK(isDestroyed); // Let's try to swap. isDestroyed = false; rcuptr1 = RCUPtr::make([&] { isDestroyed = true; }); std::swap(rcuptr1, rcuptr2); RCULock::synchronize(); BOOST_CHECK(!isDestroyed); // Chain moves to make sure there are no double free. { auto rcuptr3 = std::move(rcuptr2); auto rcuptr4 = std::move(rcuptr3); std::swap(rcuptr1, rcuptr4); } RCULock::synchronize(); BOOST_CHECK(!isDestroyed); // Check we can return from a function. { auto r = ([&] { auto moved = std::move(rcuptr1); return moved; })(); RCULock::synchronize(); BOOST_CHECK(!isDestroyed); } BOOST_CHECK(!isDestroyed); RCULock::synchronize(); BOOST_CHECK(isDestroyed); // Acquire/release workflow. isDestroyed = false; auto ptr = new RCURefMoveTestItem([&] { isDestroyed = true; }); auto ptrCopy = ptr; BOOST_CHECK_THROW(RCUPtr::copy(ptr), std::runtime_error); rcuptr1 = RCUPtr::acquire(ptr); BOOST_CHECK_EQUAL(rcuptr1, ptrCopy); BOOST_CHECK_EQUAL(ptr, NULLPTR(RCURefMoveTestItem)); ptr = rcuptr1.release(); BOOST_CHECK_EQUAL(rcuptr1, NULLPTR(RCURefMoveTestItem)); BOOST_CHECK_EQUAL(ptr, ptrCopy); RCULock::synchronize(); BOOST_CHECK(!isDestroyed); RCUPtr::acquire(ptr); BOOST_CHECK_EQUAL(ptr, NULLPTR(RCURefMoveTestItem)); BOOST_CHECK(!isDestroyed); RCULock::synchronize(); BOOST_CHECK(isDestroyed); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/streams_tests.cpp b/src/test/streams_tests.cpp index baf00c69f..66f2e97bd 100644 --- a/src/test/streams_tests.cpp +++ b/src/test/streams_tests.cpp @@ -1,220 +1,220 @@ // Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include // for 'operator+=()' #include using namespace boost::assign; // bring 'operator+=()' into scope BOOST_FIXTURE_TEST_SUITE(streams_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(streams_vector_writer) { uint8_t a(1); uint8_t b(2); uint8_t bytes[] = {3, 4, 5, 6}; std::vector vch; // Each test runs twice. Serializing a second time at the same starting // point should yield the same results, even if the first test grew the // vector. CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 0, a, b); BOOST_CHECK((vch == std::vector{{1, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 0, a, b); BOOST_CHECK((vch == std::vector{{1, 2}})); vch.clear(); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 1, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 1, 2}})); vch.clear(); vch.resize(5, 0); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 1, 2, 0}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 1, 2, 0}})); vch.clear(); vch.resize(4, 0); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 3, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 0, 1, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 3, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 0, 1, 2}})); vch.clear(); vch.resize(4, 0); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 4, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 0, 0, 1, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 4, a, b); BOOST_CHECK((vch == std::vector{{0, 0, 0, 0, 1, 2}})); vch.clear(); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 0, bytes); BOOST_CHECK((vch == std::vector{{3, 4, 5, 6}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 0, bytes); BOOST_CHECK((vch == std::vector{{3, 4, 5, 6}})); vch.clear(); vch.resize(4, 8); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, bytes, b); BOOST_CHECK((vch == std::vector{{8, 8, 1, 3, 4, 5, 6, 2}})); CVectorWriter(SER_NETWORK, INIT_PROTO_VERSION, vch, 2, a, bytes, b); BOOST_CHECK((vch == std::vector{{8, 8, 1, 3, 4, 5, 6, 2}})); vch.clear(); } BOOST_AUTO_TEST_CASE(streams_vector_reader) { std::vector vch = {1, 255, 3, 4, 5, 6}; VectorReader reader(SER_NETWORK, INIT_PROTO_VERSION, vch, 0); BOOST_CHECK_EQUAL(reader.size(), 6); BOOST_CHECK(!reader.empty()); // Read a single byte as an uint8_t. uint8_t a; reader >> a; BOOST_CHECK_EQUAL(a, 1); BOOST_CHECK_EQUAL(reader.size(), 5); BOOST_CHECK(!reader.empty()); // Read a single byte as a (signed) int8_t. int8_t b; reader >> b; BOOST_CHECK_EQUAL(b, -1); BOOST_CHECK_EQUAL(reader.size(), 4); BOOST_CHECK(!reader.empty()); // Read a 4 bytes as an unsigned uint32_t. uint32_t c; reader >> c; // 100992003 = 3,4,5,6 in little-endian base-256 BOOST_CHECK_EQUAL(c, 100992003); BOOST_CHECK_EQUAL(reader.size(), 0); BOOST_CHECK(reader.empty()); // Reading after end of byte vector throws an error. int32_t d; BOOST_CHECK_THROW(reader >> d, std::ios_base::failure); // Read a 4 bytes as a (signed) int32_t from the beginning of the buffer. VectorReader new_reader(SER_NETWORK, INIT_PROTO_VERSION, vch, 0); new_reader >> d; // 67370753 = 1,255,3,4 in little-endian base-256 BOOST_CHECK_EQUAL(d, 67370753); BOOST_CHECK_EQUAL(new_reader.size(), 2); BOOST_CHECK(!new_reader.empty()); // Reading after end of byte vector throws an error even if the reader is // not totally empty. BOOST_CHECK_THROW(new_reader >> d, std::ios_base::failure); } BOOST_AUTO_TEST_CASE(bitstream_reader_writer) { CDataStream data(SER_NETWORK, INIT_PROTO_VERSION); BitStreamWriter bit_writer(data); bit_writer.Write(0, 1); bit_writer.Write(2, 2); bit_writer.Write(6, 3); bit_writer.Write(11, 4); bit_writer.Write(1, 5); bit_writer.Write(32, 6); bit_writer.Write(7, 7); bit_writer.Write(30497, 16); bit_writer.Flush(); CDataStream data_copy(data); uint32_t serialized_int1; data >> serialized_int1; // NOTE: Serialized as LE BOOST_CHECK_EQUAL(serialized_int1, (uint32_t)0x7700C35A); uint16_t serialized_int2; data >> serialized_int2; // NOTE: Serialized as LE BOOST_CHECK_EQUAL(serialized_int2, (uint16_t)0x1072); BitStreamReader bit_reader(data_copy); BOOST_CHECK_EQUAL(bit_reader.Read(1), 0); BOOST_CHECK_EQUAL(bit_reader.Read(2), 2); BOOST_CHECK_EQUAL(bit_reader.Read(3), 6); BOOST_CHECK_EQUAL(bit_reader.Read(4), 11); BOOST_CHECK_EQUAL(bit_reader.Read(5), 1); BOOST_CHECK_EQUAL(bit_reader.Read(6), 32); BOOST_CHECK_EQUAL(bit_reader.Read(7), 7); BOOST_CHECK_EQUAL(bit_reader.Read(16), 30497); BOOST_CHECK_THROW(bit_reader.Read(8), std::ios_base::failure); } BOOST_AUTO_TEST_CASE(streams_serializedata_xor) { std::vector in; std::vector expected_xor; std::vector key; CDataStream ds(in, 0, 0); // Degenerate case key += '\x00', '\x00'; ds.Xor(key); BOOST_CHECK_EQUAL(std::string(expected_xor.begin(), expected_xor.end()), std::string(ds.begin(), ds.end())); in += '\x0f', '\xf0'; expected_xor += '\xf0', '\x0f'; // Single character key ds.clear(); ds.insert(ds.begin(), in.begin(), in.end()); key.clear(); key += '\xff'; ds.Xor(key); BOOST_CHECK_EQUAL(std::string(expected_xor.begin(), expected_xor.end()), std::string(ds.begin(), ds.end())); // Multi character key in.clear(); expected_xor.clear(); in += '\xf0', '\x0f'; expected_xor += '\x0f', '\x00'; ds.clear(); ds.insert(ds.begin(), in.begin(), in.end()); key.clear(); key += '\xff', '\x0f'; ds.Xor(key); BOOST_CHECK_EQUAL(std::string(expected_xor.begin(), expected_xor.end()), std::string(ds.begin(), ds.end())); } BOOST_AUTO_TEST_CASE(streams_empty_vector) { std::vector in; CDataStream ds(in, 0, 0); // read 0 bytes used to cause a segfault on some older systems. - ds.read(nullptr, 0); + BOOST_CHECK_NO_THROW(ds.read(nullptr, 0)); // Same goes for writing 0 bytes from a vector ... const std::vector vdata{'f', 'o', 'o', 'b', 'a', 'r'}; - ds.insert(ds.begin(), vdata.begin(), vdata.begin()); - ds.insert(ds.begin(), vdata.begin(), vdata.end()); + BOOST_CHECK_NO_THROW(ds.insert(ds.begin(), vdata.begin(), vdata.begin())); + BOOST_CHECK_NO_THROW(ds.insert(ds.begin(), vdata.begin(), vdata.end())); // ... or an array. const char adata[6] = {'f', 'o', 'o', 'b', 'a', 'r'}; - ds.insert(ds.begin(), &adata[0], &adata[0]); - ds.insert(ds.begin(), &adata[0], &adata[6]); + BOOST_CHECK_NO_THROW(ds.insert(ds.begin(), &adata[0], &adata[0])); + BOOST_CHECK_NO_THROW(ds.insert(ds.begin(), &adata[0], &adata[6])); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/test_bitcoin.cpp b/src/test/test_bitcoin.cpp index 40d045501..fd34c7f4b 100644 --- a/src/test/test_bitcoin.cpp +++ b/src/test/test_bitcoin.cpp @@ -1,319 +1,323 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include