diff --git a/src/invrequest.cpp b/src/invrequest.cpp index 2addf23fd..cd6bb6405 100644 --- a/src/invrequest.cpp +++ b/src/invrequest.cpp @@ -1,865 +1,865 @@ // Copyright (c) 2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include namespace { /** * The various states a (invid, peer) pair can be in. * * Note that CANDIDATE is split up into 3 substates (DELAYED, BEST, READY), * allowing more efficient implementation. Also note that the sorting order of * ByInvIdView relies on the specific order of values in this enum. * * Expected behaviour is: * - When first announced by a peer, the state is CANDIDATE_DELAYED until * reqtime is reached. * - Announcements that have reached their reqtime but not been requested will * be either CANDIDATE_READY or CANDIDATE_BEST. Neither of those has an * expiration time; they remain in that state until they're requested or no * longer needed. CANDIDATE_READY announcements are promoted to * CANDIDATE_BEST when they're the best one left. * - When requested, an announcement will be in state REQUESTED until expiry * is reached. * - If expiry is reached, or the peer replies to the request (either with * NOTFOUND or the inv), the state becomes COMPLETED. */ enum class State : uint8_t { /** A CANDIDATE announcement whose reqtime is in the future. */ CANDIDATE_DELAYED, /** * A CANDIDATE announcement that's not CANDIDATE_DELAYED or CANDIDATE_BEST. */ CANDIDATE_READY, /** * The best CANDIDATE for a given invid; only if there is no REQUESTED * announcement already for that invid. The CANDIDATE_BEST is the * highest-priority announcement among all CANDIDATE_READY (and _BEST) ones * for that invid. */ CANDIDATE_BEST, /** A REQUESTED announcement. */ REQUESTED, /** A COMPLETED announcement. */ COMPLETED, }; //! Type alias for sequence numbers. using SequenceNumber = uint64_t; /** * An announcement. This is the data we track for each invid that is announced * to us by each peer. */ struct Announcement { /** InvId that was announced. */ const uint256 m_invid; /** * For CANDIDATE_{DELAYED,BEST,READY} the reqtime; for REQUESTED the * expiry. */ std::chrono::microseconds m_time; /** What peer the request was from. */ const NodeId m_peer; /** What sequence number this announcement has. */ const SequenceNumber m_sequence : 60; /** Whether the request is preferred. */ const bool m_preferred : 1; /** * What state this announcement is in. * This is a uint8_t instead of a State to silence a GCC warning in versions * prior to 8.4 and 9.3. See * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414 */ uint8_t m_state : 3; /** Convert m_state to a State enum. */ State GetState() const { return static_cast(m_state); } /** Convert a State enum to a uint8_t and store it in m_state. */ void SetState(State state) { m_state = static_cast(state); } /** * Whether this announcement is selected. There can be at most 1 selected * peer per invid. */ bool IsSelected() const { return GetState() == State::CANDIDATE_BEST || GetState() == State::REQUESTED; } /** Whether this announcement is waiting for a certain time to pass. */ bool IsWaiting() const { return GetState() == State::REQUESTED || GetState() == State::CANDIDATE_DELAYED; } /** * Whether this announcement can feasibly be selected if the current * IsSelected() one disappears. */ bool IsSelectable() const { return GetState() == State::CANDIDATE_READY || GetState() == State::CANDIDATE_BEST; } /** * Construct a new announcement from scratch, initially in * CANDIDATE_DELAYED state. */ Announcement(const uint256 &invid, NodeId peer, bool preferred, std::chrono::microseconds reqtime, SequenceNumber sequence) : m_invid(invid), m_time(reqtime), m_peer(peer), m_sequence(sequence), m_preferred(preferred), m_state(static_cast(State::CANDIDATE_DELAYED)) {} }; //! Type alias for priorities. using Priority = uint64_t; /** * A functor with embedded salt that computes priority of an announcement. * * Higher priorities are selected first. */ class PriorityComputer { const uint64_t m_k0, m_k1; public: explicit PriorityComputer(bool deterministic) : m_k0{deterministic ? 0 : GetRand(0xFFFFFFFFFFFFFFFF)}, m_k1{deterministic ? 0 : GetRand(0xFFFFFFFFFFFFFFFF)} {} Priority operator()(const uint256 &invid, NodeId peer, bool preferred) const { uint64_t low_bits = CSipHasher(m_k0, m_k1) .Write(invid.begin(), invid.size()) .Write(peer) .Finalize() >> 1; return low_bits | uint64_t{preferred} << 63; } Priority operator()(const Announcement &ann) const { return operator()(ann.m_invid, ann.m_peer, ann.m_preferred); } }; // Definitions for the 3 indexes used in the main data structure. // // Each index has a By* type to identify it, a By*View data type to represent // the view of announcement it is sorted by, and an By*ViewExtractor type to // convert an announcement into the By*View type. See // https://www.boost.org/doc/libs/1_58_0/libs/multi_index/doc/reference/key_extraction.html#key_extractors // for more information about the key extraction concept. // The ByPeer index is sorted by (peer, state == CANDIDATE_BEST, invid) // // Uses: // * Looking up existing announcements by peer/invid, by checking both (peer, // false, invid) and (peer, true, invid). // * Finding all CANDIDATE_BEST announcements for a given peer in // GetRequestable. struct ByPeer {}; using ByPeerView = std::tuple; struct ByPeerViewExtractor { using result_type = ByPeerView; result_type operator()(const Announcement &ann) const { return ByPeerView{ann.m_peer, ann.GetState() == State::CANDIDATE_BEST, ann.m_invid}; } }; // The ByInvId index is sorted by (invid, state, priority). // // Note: priority == 0 whenever state != CANDIDATE_READY. // // Uses: -// * Deleting all announcements with a given invid in ForgetTxId. +// * Deleting all announcements with a given invid in ForgetInvId. // * Finding the best CANDIDATE_READY to convert to CANDIDATE_BEST, when no // other CANDIDATE_READY or REQUESTED announcement exists for that invid. // * Determining when no more non-COMPLETED announcements for a given invid // exist, so the COMPLETED ones can be deleted. struct ByInvId {}; using ByInvIdView = std::tuple; class ByInvIdViewExtractor { const PriorityComputer &m_computer; public: ByInvIdViewExtractor(const PriorityComputer &computer) : m_computer(computer) {} using result_type = ByInvIdView; result_type operator()(const Announcement &ann) const { const Priority prio = (ann.GetState() == State::CANDIDATE_READY) ? m_computer(ann) : 0; return ByInvIdView{ann.m_invid, ann.GetState(), prio}; } }; enum class WaitState { //! Used for announcements that need efficient testing of "is their //! timestamp in the future?". FUTURE_EVENT, //! Used for announcements whose timestamp is not relevant. NO_EVENT, //! Used for announcements that need efficient testing of "is their //! timestamp in the past?". PAST_EVENT, }; WaitState GetWaitState(const Announcement &ann) { if (ann.IsWaiting()) { return WaitState::FUTURE_EVENT; } if (ann.IsSelectable()) { return WaitState::PAST_EVENT; } return WaitState::NO_EVENT; } // The ByTime index is sorted by (wait_state, time). // // All announcements with a timestamp in the future can be found by iterating // the index forward from the beginning. All announcements with a timestamp in // the past can be found by iterating the index backwards from the end. // // Uses: // * Finding CANDIDATE_DELAYED announcements whose reqtime has passed, and // REQUESTED announcements whose expiry has passed. // * Finding CANDIDATE_READY/BEST announcements whose reqtime is in the future // (when the clock time went backwards). struct ByTime {}; using ByTimeView = std::pair; struct ByTimeViewExtractor { using result_type = ByTimeView; result_type operator()(const Announcement &ann) const { return ByTimeView{GetWaitState(ann), ann.m_time}; } }; /** * Data type for the main data structure (Announcement objects with * ByPeer/ByInvId/ByTime indexes). */ using Index = boost::multi_index_container< Announcement, boost::multi_index::indexed_by< boost::multi_index::ordered_unique, ByPeerViewExtractor>, boost::multi_index::ordered_non_unique, ByInvIdViewExtractor>, boost::multi_index::ordered_non_unique, ByTimeViewExtractor>>>; /** Helper type to simplify syntax of iterator types. */ template using Iter = typename Index::index::type::iterator; /** Per-peer statistics object. */ struct PeerInfo { //! Total number of announcements for this peer. size_t m_total = 0; //! Number of COMPLETED announcements for this peer. size_t m_completed = 0; //! Number of REQUESTED announcements for this peer. size_t m_requested = 0; }; /** Per-invid statistics object. Only used for sanity checking. */ struct InvIdInfo { //! Number of CANDIDATE_DELAYED announcements for this invid. size_t m_candidate_delayed = 0; //! Number of CANDIDATE_READY announcements for this invid. size_t m_candidate_ready = 0; //! Number of CANDIDATE_BEST announcements for this invid (at most one). size_t m_candidate_best = 0; //! Number of REQUESTED announcements for this invid (at most one; mutually //! exclusive with CANDIDATE_BEST). size_t m_requested = 0; //! The priority of the CANDIDATE_BEST announcement if one exists, or max() //! otherwise. Priority m_priority_candidate_best = std::numeric_limits::max(); //! The highest priority of all CANDIDATE_READY announcements (or min() if //! none exist). Priority m_priority_best_candidate_ready = std::numeric_limits::min(); //! All peers we have an announcement for this invid for. std::vector m_peers; }; /** Compare two PeerInfo objects. Only used for sanity checking. */ bool operator==(const PeerInfo &a, const PeerInfo &b) { return std::tie(a.m_total, a.m_completed, a.m_requested) == std::tie(b.m_total, b.m_completed, b.m_requested); }; /** * (Re)compute the PeerInfo map from the index. Only used for sanity checking. */ std::unordered_map RecomputePeerInfo(const Index &index) { std::unordered_map ret; for (const Announcement &ann : index) { PeerInfo &info = ret[ann.m_peer]; ++info.m_total; info.m_requested += (ann.GetState() == State::REQUESTED); info.m_completed += (ann.GetState() == State::COMPLETED); } return ret; } /** Compute the InvIdInfo map. Only used for sanity checking. */ std::map ComputeInvIdInfo(const Index &index, const PriorityComputer &computer) { std::map ret; for (const Announcement &ann : index) { InvIdInfo &info = ret[ann.m_invid]; // Classify how many announcements of each state we have for this invid. info.m_candidate_delayed += (ann.GetState() == State::CANDIDATE_DELAYED); info.m_candidate_ready += (ann.GetState() == State::CANDIDATE_READY); info.m_candidate_best += (ann.GetState() == State::CANDIDATE_BEST); info.m_requested += (ann.GetState() == State::REQUESTED); // And track the priority of the best CANDIDATE_READY/CANDIDATE_BEST // announcements. if (ann.GetState() == State::CANDIDATE_BEST) { info.m_priority_candidate_best = computer(ann); } if (ann.GetState() == State::CANDIDATE_READY) { info.m_priority_best_candidate_ready = std::max(info.m_priority_best_candidate_ready, computer(ann)); } // Also keep track of which peers this invid has an announcement for // (so we can detect duplicates). info.m_peers.push_back(ann.m_peer); } return ret; } } // namespace -/** Actual implementation for TxRequestTracker's data structure. */ +/** Actual implementation for InvRequestTracker's data structure. */ class InvRequestTrackerImpl : public InvRequestTrackerImplInterface { //! The current sequence number. Increases for every announcement. This is //! used to sort invid returned by GetRequestable in announcement order. SequenceNumber m_current_sequence{0}; //! This tracker's priority computer. const PriorityComputer m_computer; //! This tracker's main data structure. See SanityCheck() for the invariants //! that apply to it. Index m_index; //! Map with this tracker's per-peer statistics. std::unordered_map m_peerinfo; public: void SanityCheck() const { // Recompute m_peerdata from m_index. This verifies the data in it as it // should just be caching statistics on m_index. It also verifies the // invariant that no PeerInfo announcements with m_total==0 exist. assert(m_peerinfo == RecomputePeerInfo(m_index)); // Calculate per-invid statistics from m_index, and validate // invariants. for (auto &item : ComputeInvIdInfo(m_index, m_computer)) { InvIdInfo &info = item.second; // Cannot have only COMPLETED peer (invid should have been forgotten // already) assert(info.m_candidate_delayed + info.m_candidate_ready + info.m_candidate_best + info.m_requested > 0); // Can have at most 1 CANDIDATE_BEST/REQUESTED peer assert(info.m_candidate_best + info.m_requested <= 1); // If there are any CANDIDATE_READY announcements, there must be // exactly one CANDIDATE_BEST or REQUESTED announcement. if (info.m_candidate_ready > 0) { assert(info.m_candidate_best + info.m_requested == 1); } // If there is both a CANDIDATE_READY and a CANDIDATE_BEST // announcement, the CANDIDATE_BEST one must be at least as good // (equal or higher priority) as the best CANDIDATE_READY. if (info.m_candidate_ready && info.m_candidate_best) { assert(info.m_priority_candidate_best >= info.m_priority_best_candidate_ready); } // No invid can have been announced by the same peer twice. std::sort(info.m_peers.begin(), info.m_peers.end()); assert( std::adjacent_find(info.m_peers.begin(), info.m_peers.end()) == info.m_peers.end()); } } void PostGetRequestableSanityCheck(std::chrono::microseconds now) const { for (const Announcement &ann : m_index) { if (ann.IsWaiting()) { // REQUESTED and CANDIDATE_DELAYED must have a time in the // future (they should have been converted to // COMPLETED/CANDIDATE_READY respectively). assert(ann.m_time > now); } else if (ann.IsSelectable()) { // CANDIDATE_READY and CANDIDATE_BEST cannot have a time in the // future (they should have remained CANDIDATE_DELAYED, or // should have been converted back to it if time went // backwards). assert(ann.m_time <= now); } } } private: //! Wrapper around Index::...::erase that keeps m_peerinfo up to date. template Iter Erase(Iter it) { auto peerit = m_peerinfo.find(it->m_peer); peerit->second.m_completed -= it->GetState() == State::COMPLETED; peerit->second.m_requested -= it->GetState() == State::REQUESTED; if (--peerit->second.m_total == 0) { m_peerinfo.erase(peerit); } return m_index.get().erase(it); } //! Wrapper around Index::...::modify that keeps m_peerinfo up to date. template void Modify(Iter it, Modifier modifier) { auto peerit = m_peerinfo.find(it->m_peer); peerit->second.m_completed -= it->GetState() == State::COMPLETED; peerit->second.m_requested -= it->GetState() == State::REQUESTED; m_index.get().modify(it, std::move(modifier)); peerit->second.m_completed += it->GetState() == State::COMPLETED; peerit->second.m_requested += it->GetState() == State::REQUESTED; } //! Convert a CANDIDATE_DELAYED announcement into a CANDIDATE_READY. If this //! makes it the new best CANDIDATE_READY (and no REQUESTED exists) and //! better than the CANDIDATE_BEST (if any), it becomes the new //! CANDIDATE_BEST. void PromoteCandidateReady(Iter it) { assert(it != m_index.get().end()); assert(it->GetState() == State::CANDIDATE_DELAYED); // Convert CANDIDATE_DELAYED to CANDIDATE_READY first. Modify(it, [](Announcement &ann) { ann.SetState(State::CANDIDATE_READY); }); // The following code relies on the fact that the ByInvId is sorted by // invid, and then by state (first _DELAYED, then _READY, then // _BEST/REQUESTED). Within the _READY announcements, the best one // (highest priority) comes last. Thus, if an existing _BEST exists for // the same invid that this announcement may be preferred over, it must // immediately follow the newly created _READY. auto it_next = std::next(it); if (it_next == m_index.get().end() || it_next->m_invid != it->m_invid || it_next->GetState() == State::COMPLETED) { // This is the new best CANDIDATE_READY, and there is no // IsSelected() announcement for this invid already. Modify(it, [](Announcement &ann) { ann.SetState(State::CANDIDATE_BEST); }); } else if (it_next->GetState() == State::CANDIDATE_BEST) { Priority priority_old = m_computer(*it_next); Priority priority_new = m_computer(*it); if (priority_new > priority_old) { // There is a CANDIDATE_BEST announcement already, but this one // is better. Modify(it_next, [](Announcement &ann) { ann.SetState(State::CANDIDATE_READY); }); Modify(it, [](Announcement &ann) { ann.SetState(State::CANDIDATE_BEST); }); } } } //! Change the state of an announcement to something non-IsSelected(). If it //! was IsSelected(), the next best announcement will be marked //! CANDIDATE_BEST. void ChangeAndReselect(Iter it, State new_state) { assert(new_state == State::COMPLETED || new_state == State::CANDIDATE_DELAYED); assert(it != m_index.get().end()); if (it->IsSelected() && it != m_index.get().begin()) { auto it_prev = std::prev(it); // The next best CANDIDATE_READY, if any, immediately precedes the // REQUESTED or CANDIDATE_BEST announcement in the ByInvId index. if (it_prev->m_invid == it->m_invid && it_prev->GetState() == State::CANDIDATE_READY) { // If one such CANDIDATE_READY exists (for this invid), convert // it to CANDIDATE_BEST. Modify(it_prev, [](Announcement &ann) { ann.SetState(State::CANDIDATE_BEST); }); } } Modify( it, [new_state](Announcement &ann) { ann.SetState(new_state); }); } //! Check if 'it' is the only announcement for a given invid that isn't //! COMPLETED. bool IsOnlyNonCompleted(Iter it) { assert(it != m_index.get().end()); // Not allowed to call this on COMPLETED announcements. assert(it->GetState() != State::COMPLETED); // This announcement has a predecessor that belongs to the same invid. // Due to ordering, and the fact that 'it' is not COMPLETED, its // predecessor cannot be COMPLETED here. if (it != m_index.get().begin() && std::prev(it)->m_invid == it->m_invid) { return false; } // This announcement has a successor that belongs to the same invid, // and is not COMPLETED. if (std::next(it) != m_index.get().end() && std::next(it)->m_invid == it->m_invid && std::next(it)->GetState() != State::COMPLETED) { return false; } return true; } /** * Convert any announcement to a COMPLETED one. If there are no * non-COMPLETED announcements left for this invid, they are deleted. If * this was a REQUESTED announcement, and there are other CANDIDATEs left, * the best one is made CANDIDATE_BEST. Returns whether the announcement * still exists. */ bool MakeCompleted(Iter it) { assert(it != m_index.get().end()); // Nothing to be done if it's already COMPLETED. if (it->GetState() == State::COMPLETED) { return true; } if (IsOnlyNonCompleted(it)) { // This is the last non-COMPLETED announcement for this invid. // Delete all. uint256 invid = it->m_invid; do { it = Erase(it); } while (it != m_index.get().end() && it->m_invid == invid); return false; } // Mark the announcement COMPLETED, and select the next best // announcement (the first CANDIDATE_READY) if needed. ChangeAndReselect(it, State::COMPLETED); return true; } //! Make the data structure consistent with a given point in time: //! - REQUESTED annoucements with expiry <= now are turned into COMPLETED. //! - CANDIDATE_DELAYED announcements with reqtime <= now are turned into //! CANDIDATE_{READY,BEST}. //! - CANDIDATE_{READY,BEST} announcements with reqtime > now are turned //! into CANDIDATE_DELAYED. void SetTimePoint(std::chrono::microseconds now, ClearExpiredFun clearExpired, EmplaceExpiredFun emplaceExpired) { clearExpired(); // Iterate over all CANDIDATE_DELAYED and REQUESTED from old to new, as // long as they're in the past, and convert them to CANDIDATE_READY and // COMPLETED respectively. while (!m_index.empty()) { auto it = m_index.get().begin(); if (it->GetState() == State::CANDIDATE_DELAYED && it->m_time <= now) { PromoteCandidateReady(m_index.project(it)); } else if (it->GetState() == State::REQUESTED && it->m_time <= now) { emplaceExpired(it->m_peer, it->m_invid); MakeCompleted(m_index.project(it)); } else { break; } } while (!m_index.empty()) { // If time went backwards, we may need to demote CANDIDATE_BEST and // CANDIDATE_READY announcements back to CANDIDATE_DELAYED. This is // an unusual edge case, and unlikely to matter in production. // However, it makes it much easier to specify and test - // TxRequestTracker::Impl's behaviour. + // InvRequestTracker::Impl's behaviour. auto it = std::prev(m_index.get().end()); if (it->IsSelectable() && it->m_time > now) { ChangeAndReselect(m_index.project(it), State::CANDIDATE_DELAYED); } else { break; } } } public: InvRequestTrackerImpl(bool deterministic) : m_computer(deterministic), // Explicitly initialize m_index as we need to pass a reference to // m_computer to ByInvIdViewExtractor. m_index(boost::make_tuple( boost::make_tuple(ByPeerViewExtractor(), std::less()), boost::make_tuple(ByInvIdViewExtractor(m_computer), std::less()), boost::make_tuple(ByTimeViewExtractor(), std::less()))) {} // Disable copying and assigning (a default copy won't work due the stateful // ByInvIdViewExtractor). InvRequestTrackerImpl(const InvRequestTrackerImpl &) = delete; InvRequestTrackerImpl &operator=(const InvRequestTrackerImpl &) = delete; ~InvRequestTrackerImpl() = default; void DisconnectedPeer(NodeId peer) { auto &index = m_index.get(); auto it = index.lower_bound(ByPeerView{peer, false, uint256(uint256::ZERO)}); while (it != index.end() && it->m_peer == peer) { // Check what to continue with after this iteration. 'it' will be // deleted in what follows, so we need to decide what to continue // with afterwards. There are a number of cases to consider: // - std::next(it) is end() or belongs to a different peer. In that // case, this is the last iteration of the loop (denote this by // setting it_next to end()). // - 'it' is not the only non-COMPLETED announcement for its invid. // This means it will be deleted, but no other Announcement // objects will be modified. Continue with std::next(it) if it // belongs to the same peer, but decide this ahead of time (as // 'it' may change position in what follows). // - 'it' is the only non-COMPLETED announcement for its invid. This // means it will be deleted along with all other announcements for // the same invid - which may include std::next(it). However, // other than 'it', no announcements for the same peer can be // affected (due to (peer, invid) uniqueness). In other words, the // situation where std::next(it) is deleted can only occur if // std::next(it) belongs to a different peer but the same invid as // 'it'. This is covered by the first bulletpoint already, and // we'll have set it_next to end(). auto it_next = (std::next(it) == index.end() || std::next(it)->m_peer != peer) ? index.end() : std::next(it); // If the announcement isn't already COMPLETED, first make it // COMPLETED (which will mark other CANDIDATEs as CANDIDATE_BEST, or // delete all of a invid's announcements if no non-COMPLETED ones // are left). if (MakeCompleted(m_index.project(it))) { // Then actually delete the announcement (unless it was already // deleted by MakeCompleted). Erase(it); } it = it_next; } } - void ForgetTxId(const uint256 &invid) { + void ForgetInvId(const uint256 &invid) { auto it = m_index.get().lower_bound( ByInvIdView{invid, State::CANDIDATE_DELAYED, 0}); while (it != m_index.get().end() && it->m_invid == invid) { it = Erase(it); } } void ReceivedInv(NodeId peer, const uint256 &invid, bool preferred, std::chrono::microseconds reqtime) { // Bail out if we already have a CANDIDATE_BEST announcement for this // (invid, peer) combination. The case where there is a // non-CANDIDATE_BEST announcement already will be caught by the // uniqueness property of the ByPeer index when we try to emplace the // new object below. if (m_index.get().count(ByPeerView{peer, true, invid})) { return; } // Try creating the announcement with CANDIDATE_DELAYED state (which // will fail due to the uniqueness of the ByPeer index if a // non-CANDIDATE_BEST announcement already exists with the same invid // and peer). Bail out in that case. auto ret = m_index.get().emplace(invid, peer, preferred, reqtime, m_current_sequence); if (!ret.second) { return; } // Update accounting metadata. ++m_peerinfo[peer].m_total; ++m_current_sequence; } //! Find the InvIds to request now from peer. std::vector GetRequestable(NodeId peer, std::chrono::microseconds now, ClearExpiredFun clearExpired, EmplaceExpiredFun emplaceExpired) { // Move time. SetTimePoint(now, clearExpired, emplaceExpired); // Find all CANDIDATE_BEST announcements for this peer. std::vector selected; auto it_peer = m_index.get().lower_bound( ByPeerView{peer, true, uint256(uint256::ZERO)}); while (it_peer != m_index.get().end() && it_peer->m_peer == peer && it_peer->GetState() == State::CANDIDATE_BEST) { selected.emplace_back(&*it_peer); ++it_peer; } // Sort by sequence number. std::sort(selected.begin(), selected.end(), [](const Announcement *a, const Announcement *b) { return a->m_sequence < b->m_sequence; }); // Convert to InvId and return. std::vector ret; ret.reserve(selected.size()); std::transform(selected.begin(), selected.end(), std::back_inserter(ret), [](const Announcement *ann) { return ann->m_invid; }); return ret; } - void RequestedTx(NodeId peer, const uint256 &invid, - std::chrono::microseconds expiry) { + void RequestedData(NodeId peer, const uint256 &invid, + std::chrono::microseconds expiry) { auto it = m_index.get().find(ByPeerView{peer, true, invid}); if (it == m_index.get().end()) { // There is no CANDIDATE_BEST announcement, look for a _READY or - // _DELAYED instead. If the caller only ever invokes RequestedTx + // _DELAYED instead. If the caller only ever invokes RequestedData // with the values returned by GetRequestable, and no other - // non-const functions other than ForgetTxId and GetRequestable in + // non-const functions other than ForgetInvId and GetRequestable in // between, this branch will never execute (as invids returned by // GetRequestable always correspond to CANDIDATE_BEST // announcements). it = m_index.get().find(ByPeerView{peer, false, invid}); if (it == m_index.get().end() || (it->GetState() != State::CANDIDATE_DELAYED && it->GetState() != State::CANDIDATE_READY)) { // There is no CANDIDATE announcement tracked for this peer, so // we have nothing to do. Either this invid wasn't tracked at // all (and the caller should have called ReceivedInv), or it // was already requested and/or completed for other reasons and - // this is just a superfluous RequestedTx call. + // this is just a superfluous RequestedData call. return; } // Look for an existing CANDIDATE_BEST or REQUESTED with the same // invid. We only need to do this if the found announcement had a // different state than CANDIDATE_BEST. If it did, invariants // guarantee that no other CANDIDATE_BEST or REQUESTED can exist. auto it_old = m_index.get().lower_bound( ByInvIdView{invid, State::CANDIDATE_BEST, 0}); if (it_old != m_index.get().end() && it_old->m_invid == invid) { if (it_old->GetState() == State::CANDIDATE_BEST) { // The data structure's invariants require that there can be // at most one CANDIDATE_BEST or one REQUESTED announcement // per invid (but not both simultaneously), so we have to // convert any existing CANDIDATE_BEST to another // CANDIDATE_* when constructing another REQUESTED. It // doesn't matter whether we pick CANDIDATE_READY or // _DELAYED here, as SetTimePoint() will correct it at // GetRequestable() time. If time only goes forward, it will // always be _READY, so pick that to avoid extra work in // SetTimePoint(). Modify(it_old, [](Announcement &ann) { ann.SetState(State::CANDIDATE_READY); }); } else if (it_old->GetState() == State::REQUESTED) { // As we're no longer waiting for a response to the previous // REQUESTED announcement, convert it to COMPLETED. This // also helps guaranteeing progress. Modify(it_old, [](Announcement &ann) { ann.SetState(State::COMPLETED); }); } } } Modify(it, [expiry](Announcement &ann) { ann.SetState(State::REQUESTED); ann.m_time = expiry; }); } void ReceivedResponse(NodeId peer, const uint256 &invid) { // We need to search the ByPeer index for both (peer, false, invid) and // (peer, true, invid). auto it = m_index.get().find(ByPeerView{peer, false, invid}); if (it == m_index.get().end()) { it = m_index.get().find(ByPeerView{peer, true, invid}); } if (it != m_index.get().end()) { MakeCompleted(m_index.project(it)); } } size_t CountInFlight(NodeId peer) const { auto it = m_peerinfo.find(peer); if (it != m_peerinfo.end()) { return it->second.m_requested; } return 0; } size_t CountCandidates(NodeId peer) const { auto it = m_peerinfo.find(peer); if (it != m_peerinfo.end()) { return it->second.m_total - it->second.m_requested - it->second.m_completed; } return 0; } size_t Count(NodeId peer) const { auto it = m_peerinfo.find(peer); if (it != m_peerinfo.end()) { return it->second.m_total; } return 0; } //! Count how many announcements are being tracked in total across all peers //! and transactions. size_t Size() const { return m_index.size(); } uint64_t ComputePriority(const uint256 &invid, NodeId peer, bool preferred) const { // Return Priority as a uint64_t as Priority is internal. return uint64_t{m_computer(invid, peer, preferred)}; } }; std::unique_ptr InvRequestTrackerImplInterface::BuildImpl(bool deterministic) { return std::make_unique(deterministic); } diff --git a/src/invrequest.h b/src/invrequest.h index 2733186d2..8d65d02ab 100644 --- a/src/invrequest.h +++ b/src/invrequest.h @@ -1,338 +1,337 @@ // Copyright (c) 2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_INVREQUEST_H #define BITCOIN_INVREQUEST_H #include // For NodeId #include #include #include #include /** * Data structure to keep track of, and schedule, inventory downloads from * peers. * * === Specification === * * We keep track of which peers have announced which inventories, and use that * to determine which requests should go to which peer, when, and in what order. * * The following information is tracked per peer/inv combination * ("announcement"): * - Which peer announced it (through their NodeId) * - The invid of the inventory * - What the earliest permitted time is that that inventory can be requested * from that peer (called "reqtime"). * - Whether it's from a "preferred" peer or not. Which announcements get this * flag is determined by the caller, but this is designed for outbound peers, * or other peers that we have a higher level of trust in. Even when the * peers' preferredness changes, the preferred flag of existing announcements * from that peer won't change. * - Whether or not the inventory was requested already, and if so, when it * times out (called "expiry"). * - Whether or not the inventory request failed already (timed out, or * invalid inventory or NOTFOUND was received). * * Transaction requests are then assigned to peers, following these rules: * * - No inventory is requested as long as another request for the same invid * is outstanding (it needs to fail first by passing expiry, or a NOTFOUND or * invalid inventory has to be received for it). * * Rationale: to avoid wasting bandwidth on multiple copies of the same * inventory. * * - The same inventory is never requested twice from the same peer, unless * the announcement was forgotten in between, and re-announced. Announcements * are forgotten only: * - If a peer goes offline, all its announcements are forgotten. * - If an inventory has been successfully received, or is otherwise no - * longer needed, the caller can call ForgetTxId, which removes all + * longer needed, the caller can call ForgetInvId, which removes all * announcements across all peers with the specified invid. * - If for a given invid only already-failed announcements remain, they are * all forgotten. * * Rationale: giving a peer multiple chances to announce an inventory would * allow them to bias requests in their favor, worsening * inventory censoring attacks. The flip side is that as long as * an attacker manages to prevent us from receiving an inventory, * failed announcements (including those from honest peers) will * linger longer, increasing memory usage somewhat. The impact of * this is limited by imposing a cap on the number of tracked * announcements per peer. As failed requests in response to * announcements from honest peers should be rare, this almost * solely hinders attackers. * Transaction censoring attacks can be done by announcing * inventories quickly while not answering requests for them. See * https://allquantor.at/blockchainbib/pdf/miller2015topology.pdf * for more information. * * - Transactions are not requested from a peer until its reqtime has passed. * * Rationale: enable the calling code to define a delay for less-than-ideal * peers, so that (presumed) better peers have a chance to give * their announcement first. * * - If multiple viable candidate peers exist according to the above rules, pick * a peer as follows: * * - If any preferred peers are available, non-preferred peers are not * considered for what follows. * * Rationale: preferred peers are more trusted by us, so are less likely to * be under attacker control. * * - Pick a uniformly random peer among the candidates. * * Rationale: random assignments are hard to influence for attackers. * * Together these rules strike a balance between being fast in non-adverserial * conditions and minimizing susceptibility to censorship attacks. An attacker * that races the network: * - Will be unsuccessful if all preferred connections are honest (and there is * at least one preferred connection). * - If there are P preferred connections of which Ph>=1 are honest, the * attacker can delay us from learning about an inventory by k expiration * periods, where k ~ 1 + NHG(N=P-1,K=P-Ph-1,r=1), which has mean P/(Ph+1) * (where NHG stands for Negative Hypergeometric distribution). The "1 +" is * due to the fact that the attacker can be the first to announce through a * preferred connection in this scenario, which very likely means they get the * first request. * - If all P preferred connections are to the attacker, and there are NP * non-preferred connections of which NPh>=1 are honest, where we assume that * the attacker can disconnect and reconnect those connections, the * distribution becomes k ~ P + NB(p=1-NPh/NP,r=1) (where NB stands for * Negative Binomial distribution), which has mean P-1+NP/NPh. * * Complexity: * - Memory usage is proportional to the total number of tracked announcements * (Size()) plus the number of peers with a nonzero number of tracked * announcements. * - CPU usage is generally logarithmic in the total number of tracked * announcements, plus the number of announcements affected by an operation * (amortized O(1) per announcement). */ // Avoid littering this header file with implementation details. class InvRequestTrackerImplInterface { - template friend class TxRequestTracker; + template friend class InvRequestTracker; // The base class is responsible for building the child implementation. // This is a hack that allows for hiding the concrete implementation details // from the callsite. static std::unique_ptr BuildImpl(bool deterministic); public: using ClearExpiredFun = const std::function &; using EmplaceExpiredFun = const std::function &; virtual ~InvRequestTrackerImplInterface() = default; virtual void ReceivedInv(NodeId peer, const uint256 &invid, bool preferred, std::chrono::microseconds reqtime) = 0; virtual void DisconnectedPeer(NodeId peer) = 0; - virtual void ForgetTxId(const uint256 &invid) = 0; + virtual void ForgetInvId(const uint256 &invid) = 0; virtual std::vector GetRequestable(NodeId peer, std::chrono::microseconds now, ClearExpiredFun clearExpired, EmplaceExpiredFun emplaceExpired) = 0; - virtual void RequestedTx(NodeId peer, const uint256 &invid, - std::chrono::microseconds expiry) = 0; + virtual void RequestedData(NodeId peer, const uint256 &invid, + std::chrono::microseconds expiry) = 0; virtual void ReceivedResponse(NodeId peer, const uint256 &invid) = 0; virtual size_t CountInFlight(NodeId peer) const = 0; virtual size_t CountCandidates(NodeId peer) const = 0; virtual size_t Count(NodeId peer) const = 0; virtual size_t Size() const = 0; virtual uint64_t ComputePriority(const uint256 &invid, NodeId peer, bool preferred) const = 0; virtual void SanityCheck() const = 0; virtual void PostGetRequestableSanityCheck(std::chrono::microseconds now) const = 0; }; -template class TxRequestTracker { +template class InvRequestTracker { /* * Only uint256-based InvId types are supported for now. * FIXME: use a template constraint when C++20 is available. */ static_assert(std::is_base_of::value, "InvRequestTracker inv id type should be uint256 or derived"); const std::unique_ptr m_impl; public: - //! Construct a TxRequestTracker. - - explicit TxRequestTracker(bool deterministic = false) + //! Construct a InvRequestTracker. + explicit InvRequestTracker(bool deterministic = false) : m_impl{InvRequestTrackerImplInterface::BuildImpl(deterministic)} {} - ~TxRequestTracker() = default; + ~InvRequestTracker() = default; // Conceptually, the data structure consists of a collection of // "announcements", one for each peer/invid combination: // // - CANDIDATE announcements represent inventories that were announced by a // peer, and that become available for download after their reqtime has // passed. // // - REQUESTED announcements represent inventories that have been // requested, and which we're awaiting a response for from that peer. // Their expiry value determines when the request times out. // // - COMPLETED announcements represent inventories that have been requested // from a peer, and a NOTFOUND or an inventory was received in response // (valid or not), or they timed out. They're only kept around to prevent // requesting them again. If only COMPLETED announcements for a given // invid remain (so no CANDIDATE or REQUESTED ones), all of them are // deleted (this is an invariant, and maintained by all operations below). // // The operations below manipulate the data structure. /** * Adds a new CANDIDATE announcement. * * Does nothing if one already exists for that (invid, peer) combination * (whether it's CANDIDATE, REQUESTED, or COMPLETED). */ void ReceivedInv(NodeId peer, const InvId &invid, bool preferred, std::chrono::microseconds reqtime) { m_impl->ReceivedInv(peer, invid, preferred, reqtime); } /** * Deletes all announcements for a given peer. * * It should be called when a peer goes offline. */ void DisconnectedPeer(NodeId peer) { m_impl->DisconnectedPeer(peer); } /** * Deletes all announcements for a given invid. * * This should be called when an inventory is no longer needed. The caller * should ensure that new announcements for the same invid will not trigger * new ReceivedInv calls, at least in the short term after this call. */ - void ForgetTxId(const InvId &invid) { m_impl->ForgetTxId(invid); } + void ForgetInvId(const InvId &invid) { m_impl->ForgetInvId(invid); } /** * Find the invids to request now from peer. * * It does the following: * - Convert all REQUESTED announcements (for all invids/peers) with * (expiry <= now) to COMPLETED ones. These are returned in expired, if * non-nullptr. * - Requestable announcements are selected: CANDIDATE announcements from * the specified peer with (reqtime <= now) for which no existing * REQUESTED announcement with the same invid from a different peer * exists, and for which the specified peer is the best choice among all * (reqtime <= now) CANDIDATE announcements with the same invid (subject * to preferredness rules, and tiebreaking using a deterministic salted * hash of peer and invid). * - The selected announcements are returned in announcement order (even * if multiple were added at the same time, or when the clock went * backwards while they were being added). This is done to minimize * disruption from dependent inventories being requested out of order: * if multiple dependent inventories are announced simultaneously by one * peer, and end up being requested from them, the requests will happen * in announcement order. */ std::vector GetRequestable(NodeId peer, std::chrono::microseconds now, std::vector> *expired) { InvRequestTrackerImplInterface::ClearExpiredFun clearExpired = [expired]() { if (expired) { expired->clear(); } }; InvRequestTrackerImplInterface::EmplaceExpiredFun emplaceExpired = [expired](const NodeId &nodeid, const uint256 &invid) { if (expired) { expired->emplace_back(nodeid, InvId(invid)); } }; std::vector hashes = m_impl->GetRequestable(peer, now, clearExpired, emplaceExpired); return std::vector(hashes.begin(), hashes.end()); } /** * Marks an inventory as requested, with a specified expiry. * * If no CANDIDATE announcement for the provided peer and invid exists, this * call has no effect. Otherwise: * - That announcement is converted to REQUESTED. * - If any other REQUESTED announcement for the same invid already * existed, it means an unexpected request was made (GetRequestable will * never advise doing so). In this case it is converted to COMPLETED, as * we're no longer waiting for a response to it. */ - void RequestedTx(NodeId peer, const InvId &invid, - std::chrono::microseconds expiry) { - m_impl->RequestedTx(peer, invid, expiry); + void RequestedData(NodeId peer, const InvId &invid, + std::chrono::microseconds expiry) { + m_impl->RequestedData(peer, invid, expiry); } /** * Converts a CANDIDATE or REQUESTED announcement to a COMPLETED one. If no * such announcement exists for the provided peer and invid, nothing * happens. * * It should be called whenever an inventory or NOTFOUND was received from - * a peer. When the inventory is not needed entirely anymore, ForgetTxId + * a peer. When the inventory is not needed entirely anymore, ForgetInvId * should be called instead of, or in addition to, this call. */ void ReceivedResponse(NodeId peer, const InvId &invid) { m_impl->ReceivedResponse(peer, invid); } // The operations below inspect the data structure. /** Count how many REQUESTED announcements a peer has. */ size_t CountInFlight(NodeId peer) const { return m_impl->CountInFlight(peer); } /** Count how many CANDIDATE announcements a peer has. */ size_t CountCandidates(NodeId peer) const { return m_impl->CountCandidates(peer); } /** * Count how many announcements a peer has (REQUESTED, CANDIDATE, and * COMPLETED combined). */ size_t Count(NodeId peer) const { return m_impl->Count(peer); } /** * Count how many announcements are being tracked in total across all peers * and inventory ids. */ size_t Size() const { return m_impl->Size(); } /** Access to the internal priority computation (testing only) */ uint64_t ComputePriority(const InvId &invid, NodeId peer, bool preferred) const { return m_impl->ComputePriority(invid, peer, preferred); } /** Run internal consistency check (testing only). */ void SanityCheck() const { m_impl->SanityCheck(); } /** * Run a time-dependent internal consistency check (testing only). * * This can only be called immediately after GetRequestable, with the same * 'now' parameter. */ void PostGetRequestableSanityCheck(std::chrono::microseconds now) const { m_impl->PostGetRequestableSanityCheck(now); } }; #endif // BITCOIN_INVREQUEST_H diff --git a/src/net_processing.cpp b/src/net_processing.cpp index 1d8b91ad3..b6c05c7f5 100644 --- a/src/net_processing.cpp +++ b/src/net_processing.cpp @@ -1,5514 +1,5514 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // For NDEBUG compile time check #include #include #include #include #include /** Expiration time for orphan transactions in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_TIME = 20 * 60; /** Minimum time between orphan transactions expire time checks in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_INTERVAL = 5 * 60; /** How long to cache transactions in mapRelay for normal relay */ static constexpr std::chrono::seconds RELAY_TX_CACHE_TIME = std::chrono::minutes{15}; /** How long a transaction has to be in the mempool before it can * unconditionally be relayed (even when not in mapRelay). */ static constexpr std::chrono::seconds UNCONDITIONAL_RELAY_DELAY = std::chrono::minutes{2}; /** * Headers download timeout expressed in microseconds. * Timeout = base + per_header * (expected number of headers) */ // 15 minutes static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_BASE = 15 * 60 * 1000000; // 1ms/header static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1000; /** * Protect at least this many outbound peers from disconnection due to * slow/behind headers chain. */ static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4; /** * Timeout for (unprotected) outbound peers to sync to our chainwork, in * seconds. */ // 20 minutes static constexpr int64_t CHAIN_SYNC_TIMEOUT = 20 * 60; /** How frequently to check for stale tips, in seconds */ // 10 minutes static constexpr int64_t STALE_CHECK_INTERVAL = 10 * 60; /** * How frequently to check for extra outbound peers and disconnect, in seconds. */ static constexpr int64_t EXTRA_PEER_CHECK_INTERVAL = 45; /** * Minimum time an outbound-peer-eviction candidate must be connected for, in * order to evict, in seconds. */ static constexpr int64_t MINIMUM_CONNECT_TIME = 30; /** SHA256("main address relay")[0:8] */ static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL; /// Age after which a stale block will no longer be served if requested as /// protection against fingerprinting. Set to one month, denominated in seconds. static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60; /// Age after which a block is considered historical for purposes of rate /// limiting block relay. Set to one week, denominated in seconds. static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60; /** * Time between pings automatically sent out for latency probing and keepalive. */ static constexpr std::chrono::minutes PING_INTERVAL{2}; /** The maximum number of entries in a locator */ static const unsigned int MAX_LOCATOR_SZ = 101; /** The maximum number of entries in an 'inv' protocol message */ static const unsigned int MAX_INV_SZ = 50000; static_assert(MAX_PROTOCOL_MESSAGE_LENGTH > MAX_INV_SZ * sizeof(CInv), "Max protocol message length must be greater than largest " "possible INV message"); /** * Maximum number of in-flight transaction requests from a peer. It is not a * hard limit, but the threshold at which point the OVERLOADED_PEER_TX_DELAY * kicks in. */ static constexpr int32_t MAX_PEER_TX_REQUEST_IN_FLIGHT = 100; /** * Maximum number of transactions to consider for requesting, per peer. It * provides a reasonable DoS limit to per-peer memory usage spent on * announcements, while covering peers continuously sending INVs at the maximum * rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for several * minutes, while not receiving the actual transaction (from any peer) in * response to requests for them. */ static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS = 5000; /** How long to delay requesting transactions from non-preferred peers */ static constexpr auto NONPREF_PEER_TX_DELAY = std::chrono::seconds{2}; /** * How long to delay requesting transactions from overloaded peers (see * MAX_PEER_TX_REQUEST_IN_FLIGHT). */ static constexpr auto OVERLOADED_PEER_TX_DELAY = std::chrono::seconds{2}; /** * How long to wait (in microseconds) before downloading a transaction from an * additional peer. */ static constexpr std::chrono::microseconds GETDATA_TX_INTERVAL{ std::chrono::seconds{60}}; /** * Limit to avoid sending big packets. Not used in processing incoming GETDATA * for compatibility. */ static const unsigned int MAX_GETDATA_SZ = 1000; /** * Number of blocks that can be requested at any given time from a single peer. */ static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16; /** * Timeout in seconds during which a peer must stall block download progress * before being disconnected. */ static const unsigned int BLOCK_STALLING_TIMEOUT = 2; /** * Number of headers sent in one getheaders result. We rely on the assumption * that if a peer sends * less than this number, we reached its tip. Changing this value is a protocol * upgrade. */ static const unsigned int MAX_HEADERS_RESULTS = 2000; /** * Maximum depth of blocks we're willing to serve as compact blocks to peers * when requested. For older blocks, a regular BLOCK response will be sent. */ static const int MAX_CMPCTBLOCK_DEPTH = 5; /** * Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests * for. */ static const int MAX_BLOCKTXN_DEPTH = 10; /** * Size of the "block download window": how far ahead of our current height do * we fetch? Larger windows tolerate larger download speed differences between * peer, but increase the potential degree of disordering of blocks on disk * (which make reindexing and pruning harder). We'll probably * want to make this a per-peer adaptive value at some point. */ static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024; /** * Block download timeout base, expressed in millionths of the block interval * (i.e. 10 min) */ static const int64_t BLOCK_DOWNLOAD_TIMEOUT_BASE = 1000000; /** * Additional block download timeout per parallel downloading peer (i.e. 5 min) */ static const int64_t BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 500000; /** * Maximum number of headers to announce when relaying blocks with headers * message. */ static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8; /** Maximum number of unconnecting headers announcements before DoS score */ static const int MAX_UNCONNECTING_HEADERS = 10; /** Minimum blocks required to signal NODE_NETWORK_LIMITED */ static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288; /** * Average delay between local address broadcasts. */ static constexpr std::chrono::hours AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24}; /** * Average delay between peer address broadcasts. */ static const std::chrono::seconds AVG_ADDRESS_BROADCAST_INTERVAL{30}; /** * Average delay between trickled inventory transmissions in seconds. * Blocks and whitelisted receivers bypass this, outbound peers get half this * delay. */ static const unsigned int INVENTORY_BROADCAST_INTERVAL = 5; /** * Maximum rate of inventory items to send per second. * Limits the impact of low-fee transaction floods. */ static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7; /** Maximum number of inventory items to send per transmission. */ static constexpr unsigned int INVENTORY_BROADCAST_MAX_PER_MB = INVENTORY_BROADCAST_PER_SECOND * INVENTORY_BROADCAST_INTERVAL; /** The number of most recently announced transactions a peer can request. */ static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500; /** * Verify that INVENTORY_MAX_RECENT_RELAY is enough to cache everything * typically relayed before unconditional relay from the mempool kicks in. This * is only a lower bound, and it should be larger to account for higher inv rate * to outbound peers, and random variations in the broadcast mechanism. */ static_assert(INVENTORY_MAX_RECENT_RELAY >= INVENTORY_BROADCAST_PER_SECOND * UNCONDITIONAL_RELAY_DELAY / std::chrono::seconds{1}, "INVENTORY_RELAY_MAX too low"); /** * Average delay between feefilter broadcasts in seconds. */ static constexpr unsigned int AVG_FEEFILTER_BROADCAST_INTERVAL = 10 * 60; /** * Maximum feefilter broadcast delay after significant change. */ static constexpr unsigned int MAX_FEEFILTER_CHANGE_DELAY = 5 * 60; /** * Maximum number of compact filters that may be requested with one * getcfilters. See BIP 157. */ static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000; /** * Maximum number of cf hashes that may be requested with one getcfheaders. See * BIP 157. */ static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000; /// How many non standard orphan do we consider from a node before ignoring it. static constexpr uint32_t MAX_NON_STANDARD_ORPHAN_PER_NODE = 5; struct COrphanTx { // When modifying, adapt the copy of this definition in tests/DoS_tests. CTransactionRef tx; NodeId fromPeer; int64_t nTimeExpire; size_t list_pos; }; RecursiveMutex g_cs_orphans; std::map mapOrphanTransactions GUARDED_BY(g_cs_orphans); void EraseOrphansFor(NodeId peer); // Internal stuff namespace { /** Number of nodes with fSyncStarted. */ int nSyncStarted GUARDED_BY(cs_main) = 0; /** * Sources of received blocks, saved to be able to punish them when processing * happens afterwards. * Set mapBlockSource[hash].second to false if the node should not be punished * if the block is invalid. */ std::map> mapBlockSource GUARDED_BY(cs_main); /** * Filter for transactions that were recently rejected by AcceptToMemoryPool. * These are not rerequested until the chain tip changes, at which point the * entire filter is reset. * * Without this filter we'd be re-requesting txs from each of our peers, * increasing bandwidth consumption considerably. For instance, with 100 peers, * half of which relay a tx we don't accept, that might be a 50x bandwidth * increase. A flooding attacker attempting to roll-over the filter using * minimum-sized, 60byte, transactions might manage to send 1000/sec if we have * fast peers, so we pick 120,000 to give our peers a two minute window to send * invs to us. * * Decreasing the false positive rate is fairly cheap, so we pick one in a * million to make it highly unlikely for users to have issues with this filter. * * Memory used: 1.3 MB */ std::unique_ptr recentRejects GUARDED_BY(cs_main); uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main); /** * Filter for transactions that have been recently confirmed. * We use this to avoid requesting transactions that have already been * confirmed. */ Mutex g_cs_recent_confirmed_transactions; std::unique_ptr g_recent_confirmed_transactions GUARDED_BY(g_cs_recent_confirmed_transactions); /** * Blocks that are in flight, and that are in the queue to be downloaded. */ struct QueuedBlock { BlockHash hash; //! Optional. const CBlockIndex *pindex; //! Whether this block has validated headers at the time of request. bool fValidatedHeaders; //! Optional, used for CMPCTBLOCK downloads std::unique_ptr partialBlock; }; std::map::iterator>> mapBlocksInFlight GUARDED_BY(cs_main); /** Stack of nodes which we have set to announce using compact blocks */ std::list lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main); /** Number of preferable block download peers. */ int nPreferredDownload GUARDED_BY(cs_main) = 0; /** Number of peers from which we're downloading blocks. */ int nPeersWithValidatedDownloads GUARDED_BY(cs_main) = 0; /** Number of outbound peers with m_chain_sync.m_protect. */ int g_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0; /** When our tip was last updated. */ std::atomic g_last_tip_update(0); /** Relay map. */ typedef std::map MapRelay; MapRelay mapRelay GUARDED_BY(cs_main); /** * Expiration-time ordered list of (expire time, relay map entry) pairs, * protected by cs_main). */ std::deque> vRelayExpiration GUARDED_BY(cs_main); struct IteratorComparator { template bool operator()(const I &a, const I &b) const { return &(*a) < &(*b); } }; std::map::iterator, IteratorComparator>> mapOrphanTransactionsByPrev GUARDED_BY(g_cs_orphans); //! For random eviction std::vector::iterator> g_orphan_list GUARDED_BY(g_cs_orphans); static size_t vExtraTxnForCompactIt GUARDED_BY(g_cs_orphans) = 0; static std::vector> vExtraTxnForCompact GUARDED_BY(g_cs_orphans); } // namespace namespace { /** * Maintain validation-specific state about nodes, protected by cs_main, instead * by CNode's own locks. This simplifies asynchronous operation, where * processing of incoming data is done after the ProcessMessage call returns, * and we're no longer holding the node's locks. */ struct CNodeState { //! The peer's address const CService address; //! Whether we have a fully established connection. bool fCurrentlyConnected; //! The best known block we know this peer has announced. const CBlockIndex *pindexBestKnownBlock; //! The hash of the last unknown block this peer has announced. BlockHash hashLastUnknownBlock; //! The last full block we both have. const CBlockIndex *pindexLastCommonBlock; //! The best header we have sent our peer. const CBlockIndex *pindexBestHeaderSent; //! Length of current-streak of unconnecting headers announcements int nUnconnectingHeaders; //! Whether we've started headers synchronization with this peer. bool fSyncStarted; //! When to potentially disconnect peer for stalling headers download int64_t nHeadersSyncTimeout; //! Since when we're stalling block download progress (in microseconds), or //! 0. int64_t nStallingSince; std::list vBlocksInFlight; //! When the first entry in vBlocksInFlight started downloading. Don't care //! when vBlocksInFlight is empty. int64_t nDownloadingSince; int nBlocksInFlight; int nBlocksInFlightValidHeaders; //! Whether we consider this a preferred download peer. bool fPreferredDownload; //! Whether this peer wants invs or headers (when possible) for block //! announcements. bool fPreferHeaders; //! Whether this peer wants invs or cmpctblocks (when possible) for block //! announcements. bool fPreferHeaderAndIDs; /** * Whether this peer will send us cmpctblocks if we request them. * This is not used to gate request logic, as we really only care about * fSupportsDesiredCmpctVersion, but is used as a flag to "lock in" the * version of compact blocks we send. */ bool fProvidesHeaderAndIDs; /** * If we've announced NODE_WITNESS to this peer: whether the peer sends * witnesses in cmpctblocks/blocktxns, otherwise: whether this peer sends * non-witnesses in cmpctblocks/blocktxns. */ bool fSupportsDesiredCmpctVersion; /** * State used to enforce CHAIN_SYNC_TIMEOUT * Only in effect for outbound, non-manual, full-relay connections, with * m_protect == false * Algorithm: if a peer's best known block has less work than our tip, set * a timeout CHAIN_SYNC_TIMEOUT seconds in the future: * - If at timeout their best known block now has more work than our tip * when the timeout was set, then either reset the timeout or clear it * (after comparing against our current tip's work) * - If at timeout their best known block still has less work than our tip * did when the timeout was set, then send a getheaders message, and set a * shorter timeout, HEADERS_RESPONSE_TIME seconds in future. If their best * known block is still behind when that new timeout is reached, disconnect. */ struct ChainSyncTimeoutState { //! A timeout used for checking whether our peer has sufficiently //! synced. int64_t m_timeout; //! A header with the work we require on our peer's chain. const CBlockIndex *m_work_header; //! After timeout is reached, set to true after sending getheaders. bool m_sent_getheaders; //! Whether this peer is protected from disconnection due to a bad/slow //! chain. bool m_protect; }; ChainSyncTimeoutState m_chain_sync; //! Time of last new block announcement int64_t m_last_block_announcement; struct AvalancheState { std::chrono::time_point last_poll; }; AvalancheState m_avalanche_state; //! Whether this peer is an inbound connection bool m_is_inbound; //! Whether this peer is a manual connection bool m_is_manual_connection; //! A rolling bloom filter of all announced tx CInvs to this peer. CRollingBloomFilter m_recently_announced_invs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; CNodeState(CAddress addrIn, bool is_inbound, bool is_manual) : address(addrIn), m_is_inbound(is_inbound), m_is_manual_connection(is_manual) { fCurrentlyConnected = false; pindexBestKnownBlock = nullptr; hashLastUnknownBlock = BlockHash(); pindexLastCommonBlock = nullptr; pindexBestHeaderSent = nullptr; nUnconnectingHeaders = 0; fSyncStarted = false; nHeadersSyncTimeout = 0; nStallingSince = 0; nDownloadingSince = 0; nBlocksInFlight = 0; nBlocksInFlightValidHeaders = 0; fPreferredDownload = false; fPreferHeaders = false; fPreferHeaderAndIDs = false; fProvidesHeaderAndIDs = false; fSupportsDesiredCmpctVersion = false; m_chain_sync = {0, nullptr, false, false}; m_last_block_announcement = 0; m_recently_announced_invs.reset(); } }; /** Map maintaining per-node state. */ static std::map mapNodeState GUARDED_BY(cs_main); static CNodeState *State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { std::map::iterator it = mapNodeState.find(pnode); if (it == mapNodeState.end()) { return nullptr; } return &it->second; } /** * Data structure for an individual peer. This struct is not protected by * cs_main since it does not contain validation-critical data. * * Memory is owned by shared pointers and this object is destructed when * the refcount drops to zero. * * TODO: move most members from CNodeState to this structure. * TODO: move remaining application-layer data members from CNode to this * structure. */ struct Peer { /** Same id as the CNode object for this peer */ const NodeId m_id{0}; /** Protects misbehavior data members */ Mutex m_misbehavior_mutex; /** Accumulated misbehavior score for this peer */ int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0}; /** Whether this peer should be disconnected and marked as discouraged * (unless it has the noban permission). */ bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false}; Peer(NodeId id) : m_id(id) {} }; using PeerRef = std::shared_ptr; /** * Map of all Peer objects, keyed by peer id. This map is protected * by the global g_peer_mutex. Once a shared pointer reference is * taken, the lock may be released. Individual fields are protected by * their own locks. */ Mutex g_peer_mutex; static std::map g_peer_map GUARDED_BY(g_peer_mutex); /** * Get a shared pointer to the Peer object. * May return nullptr if the Peer object can't be found. */ static PeerRef GetPeerRef(NodeId id) { LOCK(g_peer_mutex); auto it = g_peer_map.find(id); return it != g_peer_map.end() ? it->second : nullptr; } static void UpdatePreferredDownload(const CNode &node, CNodeState *state) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { nPreferredDownload -= state->fPreferredDownload; // Whether this node should be marked as a preferred download node. state->fPreferredDownload = (!node.IsInboundConn() || node.HasPermission(PF_NOBAN)) && !node.IsAddrFetchConn() && !node.fClient; nPreferredDownload += state->fPreferredDownload; } static void PushNodeVersion(const Config &config, CNode &pnode, CConnman &connman, int64_t nTime) { // Note that pnode.GetLocalServices() is a reflection of the local // services we were offering when the CNode object was created for this // peer. ServiceFlags nLocalNodeServices = pnode.GetLocalServices(); uint64_t nonce = pnode.GetLocalNonce(); int nNodeStartingHeight = pnode.GetMyStartingHeight(); NodeId nodeid = pnode.GetId(); CAddress addr = pnode.addr; uint64_t extraEntropy = pnode.GetLocalExtraEntropy(); CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService(), addr.nServices)); CAddress addrMe = CAddress(CService(), nLocalNodeServices); connman.PushMessage( &pnode, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::VERSION, PROTOCOL_VERSION, uint64_t(nLocalNodeServices), nTime, addrYou, addrMe, nonce, userAgent(config), nNodeStartingHeight, ::g_relay_txes && pnode.m_tx_relay != nullptr, extraEntropy)); if (fLogIPs) { LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, us=%s, them=%s, " "peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), addrYou.ToString(), nodeid); } else { LogPrint( BCLog::NET, "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), nodeid); } LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid); } // Returns a bool indicating whether we requested this block. // Also used if a block was /not/ received and timed out or started with another // peer. static bool MarkBlockAsReceived(const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { std::map::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end()) { CNodeState *state = State(itInFlight->second.first); assert(state != nullptr); state->nBlocksInFlightValidHeaders -= itInFlight->second.second->fValidatedHeaders; if (state->nBlocksInFlightValidHeaders == 0 && itInFlight->second.second->fValidatedHeaders) { // Last validated block on the queue was received. nPeersWithValidatedDownloads--; } if (state->vBlocksInFlight.begin() == itInFlight->second.second) { // First block on the queue was received, update the start download // time for the next one state->nDownloadingSince = std::max( state->nDownloadingSince, count_microseconds(GetTime())); } state->vBlocksInFlight.erase(itInFlight->second.second); state->nBlocksInFlight--; state->nStallingSince = 0; mapBlocksInFlight.erase(itInFlight); return true; } return false; } // returns false, still setting pit, if the block was already in flight from the // same peer // pit will only be valid as long as the same cs_main lock is being held. static bool MarkBlockAsInFlight(const Config &config, CTxMemPool &mempool, NodeId nodeid, const BlockHash &hash, const Consensus::Params &consensusParams, const CBlockIndex *pindex = nullptr, std::list::iterator **pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState *state = State(nodeid); assert(state != nullptr); // Short-circuit most stuff in case it is from the same node. std::map::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end() && itInFlight->second.first == nodeid) { if (pit) { *pit = &itInFlight->second.second; } return false; } // Make sure it's not listed somewhere already. MarkBlockAsReceived(hash); std::list::iterator it = state->vBlocksInFlight.insert( state->vBlocksInFlight.end(), {hash, pindex, pindex != nullptr, std::unique_ptr( pit ? new PartiallyDownloadedBlock(config, &mempool) : nullptr)}); state->nBlocksInFlight++; state->nBlocksInFlightValidHeaders += it->fValidatedHeaders; if (state->nBlocksInFlight == 1) { // We're starting a block download (batch) from this peer. state->nDownloadingSince = GetTime().count(); } if (state->nBlocksInFlightValidHeaders == 1 && pindex != nullptr) { nPeersWithValidatedDownloads++; } itInFlight = mapBlocksInFlight .insert(std::make_pair(hash, std::make_pair(nodeid, it))) .first; if (pit) { *pit = &itInFlight->second.second; } return true; } /** Check whether the last unknown block a peer advertised is not yet known. */ static void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState *state = State(nodeid); assert(state != nullptr); if (!state->hashLastUnknownBlock.IsNull()) { const CBlockIndex *pindex = LookupBlockIndex(state->hashLastUnknownBlock); if (pindex && pindex->nChainWork > 0) { if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } state->hashLastUnknownBlock.SetNull(); } } } /** Update tracking information about which blocks a peer is assumed to have. */ static void UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState *state = State(nodeid); assert(state != nullptr); ProcessBlockAvailability(nodeid); const CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex && pindex->nChainWork > 0) { // An actually better block was announced. if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } } else { // An unknown block was announced; just assume that the latest one is // the best one. state->hashLastUnknownBlock = hash; } } /** * When a peer sends us a valid block, instruct it to announce blocks to us * using CMPCTBLOCK if possible by adding its nodeid to the end of * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by * removing the first element if necessary. */ static void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid, CConnman &connman) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); CNodeState *nodestate = State(nodeid); if (!nodestate) { LogPrint(BCLog::NET, "node state unavailable: peer=%d\n", nodeid); return; } if (!nodestate->fProvidesHeaderAndIDs) { return; } for (std::list::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) { if (*it == nodeid) { lNodesAnnouncingHeaderAndIDs.erase(it); lNodesAnnouncingHeaderAndIDs.push_back(nodeid); return; } } connman.ForNode(nodeid, [&connman](CNode *pfrom) { AssertLockHeld(cs_main); uint64_t nCMPCTBLOCKVersion = 1; if (lNodesAnnouncingHeaderAndIDs.size() >= 3) { // As per BIP152, we only get 3 of our peers to announce // blocks using compact encodings. connman.ForNode( lNodesAnnouncingHeaderAndIDs.front(), [&connman, nCMPCTBLOCKVersion](CNode *pnodeStop) { AssertLockHeld(cs_main); connman.PushMessage( pnodeStop, CNetMsgMaker(pnodeStop->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*fAnnounceUsingCMPCTBLOCK=*/false, nCMPCTBLOCKVersion)); return true; }); lNodesAnnouncingHeaderAndIDs.pop_front(); } connman.PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*fAnnounceUsingCMPCTBLOCK=*/true, nCMPCTBLOCKVersion)); lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId()); return true; }); } static bool TipMayBeStale(const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); if (g_last_tip_update == 0) { g_last_tip_update = GetTime(); } return g_last_tip_update < GetTime() - consensusParams.nPowTargetSpacing * 3 && mapBlocksInFlight.empty(); } static bool CanDirectFetch(const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return ::ChainActive().Tip()->GetBlockTime() > GetAdjustedTime() - consensusParams.nPowTargetSpacing * 20; } static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight)) { return true; } if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight)) { return true; } return false; } /** * Update pindexLastCommonBlock and add not-in-flight missing successors to * vBlocks, until it has at most count entries. */ static void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector &vBlocks, NodeId &nodeStaller, const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (count == 0) { return; } vBlocks.reserve(vBlocks.size() + count); CNodeState *state = State(nodeid); assert(state != nullptr); // Make sure pindexBestKnownBlock is up to date, we'll need it. ProcessBlockAvailability(nodeid); if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < ::ChainActive().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has nothing interesting. return; } if (state->pindexLastCommonBlock == nullptr) { // Bootstrap quickly by guessing a parent of our best tip is the forking // point. Guessing wrong in either direction is not a problem. state->pindexLastCommonBlock = ::ChainActive()[std::min( state->pindexBestKnownBlock->nHeight, ::ChainActive().Height())]; } // If the peer reorganized, our previous pindexLastCommonBlock may not be an // ancestor of its current tip anymore. Go back enough to fix that. state->pindexLastCommonBlock = LastCommonAncestor( state->pindexLastCommonBlock, state->pindexBestKnownBlock); if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) { return; } std::vector vToFetch; const CBlockIndex *pindexWalk = state->pindexLastCommonBlock; // Never fetch further than the best block we know the peer has, or more // than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last linked block we have in // common with this peer. The +1 is so we can detect stalling, namely if we // would be able to download that next block if the window were 1 larger. int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW; int nMaxHeight = std::min(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1); NodeId waitingfor = -1; while (pindexWalk->nHeight < nMaxHeight) { // Read up to 128 (or more, if more blocks than that are needed) // successors of pindexWalk (towards pindexBestKnownBlock) into // vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as // expensive as iterating over ~100 CBlockIndex* entries anyway. int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max(count - vBlocks.size(), 128)); vToFetch.resize(nToFetch); pindexWalk = state->pindexBestKnownBlock->GetAncestor( pindexWalk->nHeight + nToFetch); vToFetch[nToFetch - 1] = pindexWalk; for (unsigned int i = nToFetch - 1; i > 0; i--) { vToFetch[i - 1] = vToFetch[i]->pprev; } // Iterate over those blocks in vToFetch (in forward direction), adding // the ones that are not yet downloaded and not in flight to vBlocks. In // the meantime, update pindexLastCommonBlock as long as all ancestors // are already downloaded, or if it's already part of our chain (and // therefore don't need it even if pruned). for (const CBlockIndex *pindex : vToFetch) { if (!pindex->IsValid(BlockValidity::TREE)) { // We consider the chain that this peer is on invalid. return; } if (pindex->nStatus.hasData() || ::ChainActive().Contains(pindex)) { if (pindex->HaveTxsDownloaded()) { state->pindexLastCommonBlock = pindex; } } else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) { // The block is not already downloaded, and not yet in flight. if (pindex->nHeight > nWindowEnd) { // We reached the end of the window. if (vBlocks.size() == 0 && waitingfor != nodeid) { // We aren't able to fetch anything, but we would be if // the download window was one larger. nodeStaller = waitingfor; } return; } vBlocks.push_back(pindex); if (vBlocks.size() == count) { return; } } else if (waitingfor == -1) { // This is the first already-in-flight block. waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first; } } } } } // namespace void PeerManager::AddTxAnnouncement(const CNode &node, const TxId &txid, std::chrono::microseconds current_time) { // For m_txrequest AssertLockHeld(::cs_main); NodeId nodeid = node.GetId(); if (!node.HasPermission(PF_RELAY) && m_txrequest.Count(nodeid) >= MAX_PEER_TX_ANNOUNCEMENTS) { // Too many queued announcements from this peer return; } const CNodeState *state = State(nodeid); - // Decide the TxRequestTracker parameters for this announcement: + // Decide the InvRequestTracker parameters for this announcement: // - "preferred": if fPreferredDownload is set (= outbound, or PF_NOBAN // permission) // - "reqtime": current time plus delays for: // - NONPREF_PEER_TX_DELAY for announcements from non-preferred // connections // - OVERLOADED_PEER_TX_DELAY for announcements from peers which have at // least MAX_PEER_TX_REQUEST_IN_FLIGHT requests in flight (and don't // have PF_RELAY). auto delay = std::chrono::microseconds{0}; const bool preferred = state->fPreferredDownload; if (!preferred) { delay += NONPREF_PEER_TX_DELAY; } const bool overloaded = !node.HasPermission(PF_RELAY) && m_txrequest.CountInFlight(nodeid) >= MAX_PEER_TX_REQUEST_IN_FLIGHT; if (overloaded) { delay += OVERLOADED_PEER_TX_DELAY; } m_txrequest.ReceivedInv(nodeid, txid, preferred, current_time + delay); } // This function is used for testing the stale tip eviction logic, see // denialofservice_tests.cpp void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) { LOCK(cs_main); CNodeState *state = State(node); if (state) { state->m_last_block_announcement = time_in_seconds; } } void PeerManager::InitializeNode(const Config &config, CNode *pnode) { CAddress addr = pnode->addr; std::string addrName = pnode->GetAddrName(); NodeId nodeid = pnode->GetId(); { LOCK(cs_main); mapNodeState.emplace_hint(mapNodeState.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(addr, pnode->IsInboundConn(), pnode->IsManualConn())); assert(m_txrequest.Count(nodeid) == 0); } { PeerRef peer = std::make_shared(nodeid); LOCK(g_peer_mutex); g_peer_map.emplace_hint(g_peer_map.end(), nodeid, std::move(peer)); } if (!pnode->IsInboundConn()) { PushNodeVersion(config, *pnode, m_connman, GetTime()); } } void PeerManager::ReattemptInitialBroadcast(CScheduler &scheduler) const { std::set unbroadcast_txids = m_mempool.GetUnbroadcastTxs(); for (const TxId &txid : unbroadcast_txids) { // Sanity check: all unbroadcast txns should exist in the mempool if (m_mempool.exists(txid)) { RelayTransaction(txid, m_connman); } else { m_mempool.RemoveUnbroadcastTx(txid, true); } } // Schedule next run for 10-15 minutes in the future. // We add randomness on every cycle to avoid the possibility of P2P // fingerprinting. const std::chrono::milliseconds delta = std::chrono::minutes{10} + GetRandMillis(std::chrono::minutes{5}); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta); } void PeerManager::FinalizeNode(const Config &config, NodeId nodeid, bool &fUpdateConnectionTime) { fUpdateConnectionTime = false; LOCK(cs_main); int misbehavior{0}; { PeerRef peer = GetPeerRef(nodeid); assert(peer != nullptr); misbehavior = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score); LOCK(g_peer_mutex); g_peer_map.erase(nodeid); } CNodeState *state = State(nodeid); assert(state != nullptr); if (state->fSyncStarted) { nSyncStarted--; } if (misbehavior == 0 && state->fCurrentlyConnected) { fUpdateConnectionTime = true; } for (const QueuedBlock &entry : state->vBlocksInFlight) { mapBlocksInFlight.erase(entry.hash); } EraseOrphansFor(nodeid); m_txrequest.DisconnectedPeer(nodeid); nPreferredDownload -= state->fPreferredDownload; nPeersWithValidatedDownloads -= (state->nBlocksInFlightValidHeaders != 0); assert(nPeersWithValidatedDownloads >= 0); g_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect; assert(g_outbound_peers_with_protect_from_disconnect >= 0); mapNodeState.erase(nodeid); if (mapNodeState.empty()) { // Do a consistency check after the last peer is removed. assert(mapBlocksInFlight.empty()); assert(nPreferredDownload == 0); assert(nPeersWithValidatedDownloads == 0); assert(g_outbound_peers_with_protect_from_disconnect == 0); assert(m_txrequest.Size() == 0); } LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid); } bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) { { LOCK(cs_main); CNodeState *state = State(nodeid); if (state == nullptr) { return false; } stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1; stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1; for (const QueuedBlock &queue : state->vBlocksInFlight) { if (queue.pindex) { stats.vHeightInFlight.push_back(queue.pindex->nHeight); } } } PeerRef peer = GetPeerRef(nodeid); if (peer == nullptr) { return false; } stats.m_misbehavior_score = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score); return true; } ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // static void AddToCompactExtraTransactions(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) { size_t max_extra_txn = gArgs.GetArg("-blockreconstructionextratxn", DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN); if (max_extra_txn <= 0) { return; } if (!vExtraTxnForCompact.size()) { vExtraTxnForCompact.resize(max_extra_txn); } vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetHash(), tx); vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % max_extra_txn; } bool AddOrphanTx(const CTransactionRef &tx, NodeId peer) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) { const TxId &txid = tx->GetId(); if (mapOrphanTransactions.count(txid)) { return false; } // Ignore big transactions, to avoid a send-big-orphans memory exhaustion // attack. If a peer has a legitimate large transaction with a missing // parent then we assume it will rebroadcast it later, after the parent // transaction(s) have been mined or received. // 100 orphans, each of which is at most 100,000 bytes big is at most 10 // megabytes of orphans and somewhat more byprev index (in the worst case): unsigned int sz = tx->GetTotalSize(); if (sz > MAX_STANDARD_TX_SIZE) { LogPrint(BCLog::MEMPOOL, "ignoring large orphan tx (size: %u, hash: %s)\n", sz, txid.ToString()); return false; } auto ret = mapOrphanTransactions.emplace( txid, COrphanTx{tx, peer, GetTime() + ORPHAN_TX_EXPIRE_TIME, g_orphan_list.size()}); assert(ret.second); g_orphan_list.push_back(ret.first); for (const CTxIn &txin : tx->vin) { mapOrphanTransactionsByPrev[txin.prevout].insert(ret.first); } AddToCompactExtraTransactions(tx); LogPrint(BCLog::MEMPOOL, "stored orphan tx %s (mapsz %u outsz %u)\n", txid.ToString(), mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size()); return true; } static int EraseOrphanTx(const TxId id) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) { const auto it = mapOrphanTransactions.find(id); if (it == mapOrphanTransactions.end()) { return 0; } for (const CTxIn &txin : it->second.tx->vin) { const auto itPrev = mapOrphanTransactionsByPrev.find(txin.prevout); if (itPrev == mapOrphanTransactionsByPrev.end()) { continue; } itPrev->second.erase(it); if (itPrev->second.empty()) { mapOrphanTransactionsByPrev.erase(itPrev); } } size_t old_pos = it->second.list_pos; assert(g_orphan_list[old_pos] == it); if (old_pos + 1 != g_orphan_list.size()) { // Unless we're deleting the last entry in g_orphan_list, move the last // entry to the position we're deleting. auto it_last = g_orphan_list.back(); g_orphan_list[old_pos] = it_last; it_last->second.list_pos = old_pos; } g_orphan_list.pop_back(); mapOrphanTransactions.erase(it); return 1; } void EraseOrphansFor(NodeId peer) { LOCK(g_cs_orphans); int nErased = 0; auto iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { // Increment to avoid iterator becoming invalid. const auto maybeErase = iter++; if (maybeErase->second.fromPeer == peer) { nErased += EraseOrphanTx(maybeErase->second.tx->GetId()); } } if (nErased > 0) { LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx from peer=%d\n", nErased, peer); } } unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) { LOCK(g_cs_orphans); unsigned int nEvicted = 0; static int64_t nNextSweep; int64_t nNow = GetTime(); if (nNextSweep <= nNow) { // Sweep out expired orphan pool entries: int nErased = 0; int64_t nMinExpTime = nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL; auto iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { const auto maybeErase = iter++; if (maybeErase->second.nTimeExpire <= nNow) { nErased += EraseOrphanTx(maybeErase->second.tx->GetId()); } else { nMinExpTime = std::min(maybeErase->second.nTimeExpire, nMinExpTime); } } // Sweep again 5 minutes after the next entry that expires in order to // batch the linear scan. nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL; if (nErased > 0) { LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx due to expiration\n", nErased); } } FastRandomContext rng; while (mapOrphanTransactions.size() > nMaxOrphans) { // Evict a random orphan: size_t randompos = rng.randrange(g_orphan_list.size()); EraseOrphanTx(g_orphan_list[randompos]->first); ++nEvicted; } return nEvicted; } void PeerManager::Misbehaving(const NodeId pnode, const int howmuch, const std::string &message) { assert(howmuch > 0); PeerRef peer = GetPeerRef(pnode); if (peer == nullptr) { return; } LOCK(peer->m_misbehavior_mutex); peer->m_misbehavior_score += howmuch; const std::string message_prefixed = message.empty() ? "" : (": " + message); if (peer->m_misbehavior_score >= DISCOURAGEMENT_THRESHOLD && peer->m_misbehavior_score - howmuch < DISCOURAGEMENT_THRESHOLD) { LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d) BAN THRESHOLD EXCEEDED%s\n", pnode, peer->m_misbehavior_score - howmuch, peer->m_misbehavior_score, message_prefixed); peer->m_should_discourage = true; } else { LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s\n", pnode, peer->m_misbehavior_score - howmuch, peer->m_misbehavior_score, message_prefixed); } } /** * Returns true if the given validation state result may result in a peer * banning/disconnecting us. We use this to determine which unaccepted * transactions from a whitelisted peer that we can safely relay. */ static bool TxRelayMayResultInDisconnect(const TxValidationState &state) { return state.GetResult() == TxValidationResult::TX_CONSENSUS; } bool PeerManager::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState &state, bool via_compact_block, const std::string &message) { switch (state.GetResult()) { case BlockValidationResult::BLOCK_RESULT_UNSET: break; // The node is providing invalid data: case BlockValidationResult::BLOCK_CONSENSUS: case BlockValidationResult::BLOCK_MUTATED: if (!via_compact_block) { Misbehaving(nodeid, 100, message); return true; } break; case BlockValidationResult::BLOCK_CACHED_INVALID: { LOCK(cs_main); CNodeState *node_state = State(nodeid); if (node_state == nullptr) { break; } // Ban outbound (but not inbound) peers if on an invalid chain. // Exempt HB compact block peers and manual connections. if (!via_compact_block && !node_state->m_is_inbound && !node_state->m_is_manual_connection) { Misbehaving(nodeid, 100, message); return true; } break; } case BlockValidationResult::BLOCK_INVALID_HEADER: case BlockValidationResult::BLOCK_CHECKPOINT: case BlockValidationResult::BLOCK_INVALID_PREV: Misbehaving(nodeid, 100, message); return true; case BlockValidationResult::BLOCK_FINALIZATION: // TODO: Use the state object to report this is probably not the // best idea. This is effectively unreachable, unless there is a bug // somewhere. Misbehaving(nodeid, 20, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case BlockValidationResult::BLOCK_MISSING_PREV: // TODO: Handle this much more gracefully (10 DoS points is super // arbitrary) Misbehaving(nodeid, 10, message); return true; case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE: case BlockValidationResult::BLOCK_TIME_FUTURE: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } bool PeerManager::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState &state, const std::string &message) { switch (state.GetResult()) { case TxValidationResult::TX_RESULT_UNSET: break; // The node is providing invalid data: case TxValidationResult::TX_CONSENSUS: Misbehaving(nodeid, 100, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE: case TxValidationResult::TX_NOT_STANDARD: case TxValidationResult::TX_MISSING_INPUTS: case TxValidationResult::TX_PREMATURE_SPEND: case TxValidationResult::TX_CONFLICT: case TxValidationResult::TX_MEMPOOL_POLICY: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } ////////////////////////////////////////////////////////////////////////////// // // blockchain -> download logic notification // // To prevent fingerprinting attacks, only send blocks/headers outside of the // active chain if they are no more than a month older (both in time, and in // best equivalent proof of work) than the best header chain we know about and // we fully-validated them at some point. static bool BlockRequestAllowed(const CBlockIndex *pindex, const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); if (::ChainActive().Contains(pindex)) { return true; } return pindex->IsValid(BlockValidity::SCRIPTS) && (pindexBestHeader != nullptr) && (pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) && (GetBlockProofEquivalentTime(*pindexBestHeader, *pindex, *pindexBestHeader, consensusParams) < STALE_RELAY_AGE_LIMIT); } PeerManager::PeerManager(const CChainParams &chainparams, CConnman &connman, BanMan *banman, CScheduler &scheduler, ChainstateManager &chainman, CTxMemPool &pool) : m_chainparams(chainparams), m_connman(connman), m_banman(banman), m_chainman(chainman), m_mempool(pool), m_stale_tip_check_time(0) { // Initialize global variables that cannot be constructed at startup. recentRejects.reset(new CRollingBloomFilter(120000, 0.000001)); // Blocks don't typically have more than 4000 transactions, so this should // be at least six blocks (~1 hr) worth of transactions that we can store. // If the number of transactions appearing in a block goes up, or if we are // seeing getdata requests more than an hour after initial announcement, we // can increase this number. // The false positive rate of 1/1M should come out to less than 1 // transaction per day that would be inadvertently ignored (which is the // same probability that we have in the reject filter). g_recent_confirmed_transactions.reset( new CRollingBloomFilter(24000, 0.000001)); const Consensus::Params &consensusParams = chainparams.GetConsensus(); // Stale tip checking and peer eviction are on two different timers, but we // don't want them to get out of sync due to drift in the scheduler, so we // combine them in one function and schedule at the quicker (peer-eviction) // timer. static_assert( EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer"); scheduler.scheduleEvery( [this, &consensusParams]() { this->CheckForStaleTipAndEvictPeers(consensusParams); return true; }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL}); // schedule next run for 10-15 minutes in the future const std::chrono::milliseconds delta = std::chrono::minutes{10} + GetRandMillis(std::chrono::minutes{5}); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta); } /** * Evict orphan txn pool entries (EraseOrphanTx) based on a newly connected * block, remember the recently confirmed transactions, and delete tracked * announcements for them. Also save the time of the last tip update. */ void PeerManager::BlockConnected(const std::shared_ptr &pblock, const CBlockIndex *pindex) { { LOCK(g_cs_orphans); std::vector vOrphanErase; for (const CTransactionRef &ptx : pblock->vtx) { const CTransaction &tx = *ptx; // Which orphan pool entries must we evict? for (const auto &txin : tx.vin) { auto itByPrev = mapOrphanTransactionsByPrev.find(txin.prevout); if (itByPrev == mapOrphanTransactionsByPrev.end()) { continue; } for (auto mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const CTransaction &orphanTx = *(*mi)->second.tx; const TxId &orphanId = orphanTx.GetId(); vOrphanErase.push_back(orphanId); } } } // Erase orphan transactions included or precluded by this block if (vOrphanErase.size()) { int nErased = 0; for (const auto &orphanId : vOrphanErase) { nErased += EraseOrphanTx(orphanId); } LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx included or conflicted by block\n", nErased); } g_last_tip_update = GetTime(); } { LOCK(g_cs_recent_confirmed_transactions); for (const CTransactionRef &ptx : pblock->vtx) { g_recent_confirmed_transactions->insert(ptx->GetId()); } } { LOCK(cs_main); for (const auto &ptx : pblock->vtx) { - m_txrequest.ForgetTxId(ptx->GetId()); + m_txrequest.ForgetInvId(ptx->GetId()); } } } void PeerManager::BlockDisconnected(const std::shared_ptr &block, const CBlockIndex *pindex) { // To avoid relay problems with transactions that were previously // confirmed, clear our filter of recently confirmed transactions whenever // there's a reorg. // This means that in a 1-block reorg (where 1 block is disconnected and // then another block reconnected), our filter will drop to having only one // block's worth of transactions in it, but that should be fine, since // presumably the most common case of relaying a confirmed transaction // should be just after a new block containing it is found. LOCK(g_cs_recent_confirmed_transactions); g_recent_confirmed_transactions->reset(); } // All of the following cache a recent block, and are protected by // cs_most_recent_block static RecursiveMutex cs_most_recent_block; static std::shared_ptr most_recent_block GUARDED_BY(cs_most_recent_block); static std::shared_ptr most_recent_compact_block GUARDED_BY(cs_most_recent_block); static uint256 most_recent_block_hash GUARDED_BY(cs_most_recent_block); /** * Maintain state about the best-seen block and fast-announce a compact block * to compatible peers. */ void PeerManager::NewPoWValidBlock( const CBlockIndex *pindex, const std::shared_ptr &pblock) { std::shared_ptr pcmpctblock = std::make_shared(*pblock); const CNetMsgMaker msgMaker(PROTOCOL_VERSION); LOCK(cs_main); static int nHighestFastAnnounce = 0; if (pindex->nHeight <= nHighestFastAnnounce) { return; } nHighestFastAnnounce = pindex->nHeight; uint256 hashBlock(pblock->GetHash()); { LOCK(cs_most_recent_block); most_recent_block_hash = hashBlock; most_recent_block = pblock; most_recent_compact_block = pcmpctblock; } m_connman.ForEachNode([this, &pcmpctblock, pindex, &msgMaker, &hashBlock](CNode *pnode) { AssertLockHeld(cs_main); // TODO: Avoid the repeated-serialization here if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect) { return; } ProcessBlockAvailability(pnode->GetId()); CNodeState &state = *State(pnode->GetId()); // If the peer has, or we announced to them the previous block already, // but we don't think they have this one, go ahead and announce it. if (state.fPreferHeaderAndIDs && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) { LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock", hashBlock.ToString(), pnode->GetId()); m_connman.PushMessage( pnode, msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock)); state.pindexBestHeaderSent = pindex; } }); } /** * Update our best height and announce any block hashes which weren't previously * in ::ChainActive() to our peers. */ void PeerManager::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { const int nNewHeight = pindexNew->nHeight; m_connman.SetBestHeight(nNewHeight); SetServiceFlagsIBDCache(!fInitialDownload); if (!fInitialDownload) { // Find the hashes of all blocks that weren't previously in the best // chain. std::vector vHashes; const CBlockIndex *pindexToAnnounce = pindexNew; while (pindexToAnnounce != pindexFork) { vHashes.push_back(pindexToAnnounce->GetBlockHash()); pindexToAnnounce = pindexToAnnounce->pprev; if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) { // Limit announcements in case of a huge reorganization. Rely on // the peer's synchronization mechanism in that case. break; } } // Relay inventory, but don't relay old inventory during initial block // download. m_connman.ForEachNode([nNewHeight, &vHashes](CNode *pnode) { LOCK(pnode->cs_inventory); if (nNewHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : 0)) { for (const BlockHash &hash : reverse_iterate(vHashes)) { pnode->vBlockHashesToAnnounce.push_back(hash); } } }); m_connman.WakeMessageHandler(); } } /** * Handle invalid block rejection and consequent peer banning, maintain which * peers announce compact blocks. */ void PeerManager::BlockChecked(const CBlock &block, const BlockValidationState &state) { LOCK(cs_main); const BlockHash hash = block.GetHash(); std::map>::iterator it = mapBlockSource.find(hash); // If the block failed validation, we know where it came from and we're // still connected to that peer, maybe punish. if (state.IsInvalid() && it != mapBlockSource.end() && State(it->second.first)) { MaybePunishNodeForBlock(/*nodeid=*/it->second.first, state, /*via_compact_block=*/!it->second.second); } // Check that: // 1. The block is valid // 2. We're not in initial block download // 3. This is currently the best block we're aware of. We haven't updated // the tip yet so we have no way to check this directly here. Instead we // just check that there are currently no other blocks in flight. else if (state.IsValid() && !::ChainstateActive().IsInitialBlockDownload() && mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) { if (it != mapBlockSource.end()) { MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first, m_connman); } } if (it != mapBlockSource.end()) { mapBlockSource.erase(it); } } ////////////////////////////////////////////////////////////////////////////// // // Messages // static bool AlreadyHaveTx(const TxId &txid, const CTxMemPool &mempool) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { assert(recentRejects); if (::ChainActive().Tip()->GetBlockHash() != hashRecentRejectsChainTip) { // If the chain tip has changed previously rejected transactions // might be now valid, e.g. due to a nLockTime'd tx becoming // valid, or a double-spend. Reset the rejects filter and give // those txs a second chance. hashRecentRejectsChainTip = ::ChainActive().Tip()->GetBlockHash(); recentRejects->reset(); } { LOCK(g_cs_orphans); if (mapOrphanTransactions.count(txid)) { return true; } } { LOCK(g_cs_recent_confirmed_transactions); if (g_recent_confirmed_transactions->contains(txid)) { return true; } } return recentRejects->contains(txid) || mempool.exists(txid); } static bool AlreadyHaveBlock(const BlockHash &block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return LookupBlockIndex(block_hash) != nullptr; } void RelayTransaction(const TxId &txid, const CConnman &connman) { connman.ForEachNode( [&txid](CNode *pnode) { pnode->PushTxInventory(txid); }); } static void RelayAddress(const CAddress &addr, bool fReachable, const CConnman &connman) { // Limited relaying of addresses outside our network(s) unsigned int nRelayNodes = fReachable ? 2 : 1; // Relay to a limited number of other nodes. // Use deterministic randomness to send to the same nodes for 24 hours at a // time so the m_addr_knowns of the chosen nodes prevent repeats uint64_t hashAddr = addr.GetHash(); const CSipHasher hasher = connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY) .Write(hashAddr << 32) .Write((GetTime() + hashAddr) / (24 * 60 * 60)); FastRandomContext insecure_rand; std::array, 2> best{ {{0, nullptr}, {0, nullptr}}}; assert(nRelayNodes <= best.size()); auto sortfunc = [&best, &hasher, nRelayNodes](CNode *pnode) { if (pnode->IsAddrRelayPeer()) { uint64_t hashKey = CSipHasher(hasher).Write(pnode->GetId()).Finalize(); for (unsigned int i = 0; i < nRelayNodes; i++) { if (hashKey > best[i].first) { std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1); best[i] = std::make_pair(hashKey, pnode); break; } } } }; auto pushfunc = [&addr, &best, nRelayNodes, &insecure_rand] { for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) { best[i].second->PushAddress(addr, insecure_rand); } }; connman.ForEachNodeThen(std::move(sortfunc), std::move(pushfunc)); } static void ProcessGetBlockData(const Config &config, CNode &pfrom, const CInv &inv, CConnman &connman, const std::atomic &interruptMsgProc) { const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); const BlockHash hash(inv.hash); bool send = false; std::shared_ptr a_recent_block; std::shared_ptr a_recent_compact_block; { LOCK(cs_most_recent_block); a_recent_block = most_recent_block; a_recent_compact_block = most_recent_compact_block; } bool need_activate_chain = false; { LOCK(cs_main); const CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex) { if (pindex->HaveTxsDownloaded() && !pindex->IsValid(BlockValidity::SCRIPTS) && pindex->IsValid(BlockValidity::TREE)) { // If we have the block and all of its parents, but have not yet // validated it, we might be in the middle of connecting it (ie // in the unlock of cs_main before ActivateBestChain but after // AcceptBlock). In this case, we need to run ActivateBestChain // prior to checking the relay conditions below. need_activate_chain = true; } } } // release cs_main before calling ActivateBestChain if (need_activate_chain) { BlockValidationState state; if (!ActivateBestChain(config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); const CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex) { send = BlockRequestAllowed(pindex, consensusParams); if (!send) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old " "block that isn't in the main chain\n", __func__, pfrom.GetId()); } } const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); // Disconnect node in case we have reached the outbound limit for serving // historical blocks. if (send && connman.OutboundTargetReached(true) && (((pindexBestHeader != nullptr) && (pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) && // nodes with the download permission may exceed target !pfrom.HasPermission(PF_DOWNLOAD)) { LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId()); // disconnect node pfrom.fDisconnect = true; send = false; } // Avoid leaking prune-height by never sending blocks below the // NODE_NETWORK_LIMITED threshold. // Add two blocks buffer extension for possible races if (send && !pfrom.HasPermission(PF_NOBAN) && ((((pfrom.GetLocalServices() & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((pfrom.GetLocalServices() & NODE_NETWORK) != NODE_NETWORK) && (::ChainActive().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2)))) { LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED " "threshold from peer=%d\n", pfrom.GetId()); // disconnect node and prevent it from stalling (would otherwise wait // for the missing block) pfrom.fDisconnect = true; send = false; } // Pruned nodes may have deleted the block, so check whether it's available // before trying to send. if (send && pindex->nStatus.hasData()) { std::shared_ptr pblock; if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) { pblock = a_recent_block; } else { // Send block from disk std::shared_ptr pblockRead = std::make_shared(); if (!ReadBlockFromDisk(*pblockRead, pindex, consensusParams)) { assert(!"cannot load block from disk"); } pblock = pblockRead; } if (inv.IsMsgBlk()) { connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock)); } else if (inv.IsMsgFilteredBlk()) { bool sendMerkleBlock = false; CMerkleBlock merkleBlock; if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); if (pfrom.m_tx_relay->pfilter) { sendMerkleBlock = true; merkleBlock = CMerkleBlock(*pblock, *pfrom.m_tx_relay->pfilter); } } if (sendMerkleBlock) { connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock)); // CMerkleBlock just contains hashes, so also push any // transactions in the block the client did not see. This avoids // hurting performance by pointlessly requiring a round-trip. // Note that there is currently no way for a node to request any // single transactions we didn't send here - they must either // disconnect and retry or request the full block. Thus, the // protocol spec specified allows for us to provide duplicate // txn here, however we MUST always provide at least what the // remote peer needs. typedef std::pair PairType; for (PairType &pair : merkleBlock.vMatchedTxn) { connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::TX, *pblock->vtx[pair.first])); } } // else // no response } else if (inv.IsMsgCmpctBlk()) { // If a peer is asking for old blocks, we're almost guaranteed they // won't have a useful mempool to match against a compact block, and // we don't feel like constructing the object for them, so instead // we respond with the full, non-compact block. int nSendFlags = 0; if (CanDirectFetch(consensusParams) && pindex->nHeight >= ::ChainActive().Height() - MAX_CMPCTBLOCK_DEPTH) { CBlockHeaderAndShortTxIDs cmpctblock(*pblock); connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } else { connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCK, *pblock)); } } // Trigger the peer node to send a getblocks request for the next batch // of inventory. if (hash == pfrom.hashContinue) { // Send immediately. This must send even if redundant, and // we want it right after the last block so they don't wait for // other stuff first. std::vector vInv; vInv.push_back( CInv(MSG_BLOCK, ::ChainActive().Tip()->GetBlockHash())); connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::INV, vInv)); pfrom.hashContinue = BlockHash(); } } } //! Determine whether or not a peer can request a transaction, and return it (or //! nullptr if not found or not allowed). CTransactionRef static FindTxForGetData(const CNode &peer, const TxId &txid, const std::chrono::seconds mempool_req, const std::chrono::seconds now) LOCKS_EXCLUDED(cs_main) { auto txinfo = g_mempool.info(txid); if (txinfo.tx) { // If a TX could have been INVed in reply to a MEMPOOL request, // or is older than UNCONDITIONAL_RELAY_DELAY, permit the request // unconditionally. if ((mempool_req.count() && txinfo.m_time <= mempool_req) || txinfo.m_time <= now - UNCONDITIONAL_RELAY_DELAY) { return std::move(txinfo.tx); } } { LOCK(cs_main); // Otherwise, the transaction must have been announced recently. if (State(peer.GetId())->m_recently_announced_invs.contains(txid)) { // If it was, it can be relayed from either the mempool... if (txinfo.tx) { return std::move(txinfo.tx); } // ... or the relay pool. auto mi = mapRelay.find(txid); if (mi != mapRelay.end()) { return mi->second; } } } return {}; } static void ProcessGetData(const Config &config, CNode &pfrom, CConnman &connman, CTxMemPool &mempool, const std::atomic &interruptMsgProc) LOCKS_EXCLUDED(cs_main) { AssertLockNotHeld(cs_main); std::deque::iterator it = pfrom.vRecvGetData.begin(); std::vector vNotFound; const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); const std::chrono::seconds now = GetTime(); // Get last mempool request time const std::chrono::seconds mempool_req = pfrom.m_tx_relay != nullptr ? pfrom.m_tx_relay->m_last_mempool_req.load() : std::chrono::seconds::min(); // Process as many TX items from the front of the getdata queue as // possible, since they're common and it's efficient to batch process // them. while (it != pfrom.vRecvGetData.end() && it->IsMsgTx()) { if (interruptMsgProc) { return; } // The send buffer provides backpressure. If there's no space in // the buffer, pause processing until the next call. if (pfrom.fPauseSend) { break; } const CInv &inv = *it++; if (pfrom.m_tx_relay == nullptr) { // Ignore GETDATA requests for transactions from blocks-only // peers. continue; } CTransactionRef tx = FindTxForGetData(pfrom, TxId{inv.hash}, mempool_req, now); if (tx) { int nSendFlags = 0; connman.PushMessage(&pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *tx)); mempool.RemoveUnbroadcastTx(TxId(inv.hash)); // As we're going to send tx, make sure its unconfirmed parents are // made requestable. for (const auto &txin : tx->vin) { auto txinfo = mempool.info(txin.prevout.GetTxId()); if (txinfo.tx && txinfo.m_time > now - UNCONDITIONAL_RELAY_DELAY) { // Relaying a transaction with a recent but unconfirmed // parent. if (WITH_LOCK( pfrom.m_tx_relay->cs_tx_inventory, return !pfrom.m_tx_relay->filterInventoryKnown .contains(txin.prevout.GetTxId()))) { LOCK(cs_main); State(pfrom.GetId()) ->m_recently_announced_invs.insert( txin.prevout.GetTxId()); } } } } else { vNotFound.push_back(inv); } } // Only process one BLOCK item per call, since they're uncommon and can be // expensive to process. if (it != pfrom.vRecvGetData.end() && !pfrom.fPauseSend) { const CInv &inv = *it++; if (inv.IsGenBlkMsg()) { ProcessGetBlockData(config, pfrom, inv, connman, interruptMsgProc); } // else: If the first item on the queue is an unknown type, we erase it // and continue processing the queue on the next call. } pfrom.vRecvGetData.erase(pfrom.vRecvGetData.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it // doesn't have to wait around forever. SPV clients care about this // message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want // to do that because they want to know about (and store and rebroadcast // and risk analyze) the dependencies of transactions relevant to them, // without having to download the entire memory pool. Also, other nodes // can use these messages to automatically request a transaction from // some other peer that annnounced it, and stop waiting for us to // respond. In normal operation, we often send NOTFOUND messages for // parents of transactions that we relay; if a peer is missing a parent, // they may assume we have them and request the parents from us. connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::NOTFOUND, vNotFound)); } } void PeerManager::SendBlockTransactions(CNode &pfrom, const CBlock &block, const BlockTransactionsRequest &req) { BlockTransactions resp(req); for (size_t i = 0; i < req.indices.size(); i++) { if (req.indices[i] >= block.vtx.size()) { Misbehaving(pfrom, 100, "getblocktxn with out-of-bounds tx indices"); return; } resp.txn[i] = block.vtx[req.indices[i]]; } LOCK(cs_main); const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); int nSendFlags = 0; m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCKTXN, resp)); } void PeerManager::ProcessHeadersMessage( const Config &config, CNode &pfrom, const std::vector &headers, bool via_compact_block) { const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); size_t nCount = headers.size(); if (nCount == 0) { // Nothing interesting. Stop asking this peers for more headers. return; } bool received_new_header = false; const CBlockIndex *pindexLast = nullptr; { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); // If this looks like it could be a block announcement (nCount < // MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that // don't connect: // - Send a getheaders message in response to try to connect the chain. // - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that // don't connect before giving DoS points // - Once a headers message is received that is valid and does connect, // nUnconnectingHeaders gets reset back to 0. if (!LookupBlockIndex(headers[0].hashPrevBlock) && nCount < MAX_BLOCKS_TO_ANNOUNCE) { nodestate->nUnconnectingHeaders++; m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexBestHeader), uint256())); LogPrint( BCLog::NET, "received header %s: missing prev block %s, sending getheaders " "(%d) to end (peer=%d, nUnconnectingHeaders=%d)\n", headers[0].GetHash().ToString(), headers[0].hashPrevBlock.ToString(), pindexBestHeader->nHeight, pfrom.GetId(), nodestate->nUnconnectingHeaders); // Set hashLastUnknownBlock for this peer, so that if we eventually // get the headers - even from a different peer - we can use this // peer to download. UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()); if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS == 0) { // The peer is sending us many headers we can't connect. Misbehaving(pfrom, 20, strprintf("%d non-connecting headers", nodestate->nUnconnectingHeaders)); } return; } BlockHash hashLastBlock; for (const CBlockHeader &header : headers) { if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) { Misbehaving(pfrom, 20, "non-continuous headers sequence"); return; } hashLastBlock = header.GetHash(); } // If we don't have the last header, then they'll have given us // something new (if these headers are valid). if (!LookupBlockIndex(hashLastBlock)) { received_new_header = true; } } BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, headers, state, &pindexLast)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received"); return; } } { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); if (nodestate->nUnconnectingHeaders > 0) { LogPrint(BCLog::NET, "peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n", pfrom.GetId(), nodestate->nUnconnectingHeaders); } nodestate->nUnconnectingHeaders = 0; assert(pindexLast); UpdateBlockAvailability(pfrom.GetId(), pindexLast->GetBlockHash()); // From here, pindexBestKnownBlock should be guaranteed to be non-null, // because it is set in UpdateBlockAvailability. Some nullptr checks are // still present, however, as belt-and-suspenders. if (received_new_header && pindexLast->nChainWork > ::ChainActive().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } if (nCount == MAX_HEADERS_RESULTS) { // Headers message had its maximum size; the peer may have more // headers. // TODO: optimize: if pindexLast is an ancestor of // ::ChainActive().Tip or pindexBestHeader, continue from there // instead. LogPrint( BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom.GetId(), pfrom.nStartingHeight); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexLast), uint256())); } bool fCanDirectFetch = CanDirectFetch(m_chainparams.GetConsensus()); // If this set of headers is valid and ends in a block with at least as // much work as our tip, download as much as possible. if (fCanDirectFetch && pindexLast->IsValid(BlockValidity::TREE) && ::ChainActive().Tip()->nChainWork <= pindexLast->nChainWork) { std::vector vToFetch; const CBlockIndex *pindexWalk = pindexLast; // Calculate all the blocks we'd need to switch to pindexLast, up to // a limit. while (pindexWalk && !::ChainActive().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { if (!pindexWalk->nStatus.hasData() && !mapBlocksInFlight.count(pindexWalk->GetBlockHash())) { // We don't have this block, and it's not yet in flight. vToFetch.push_back(pindexWalk); } pindexWalk = pindexWalk->pprev; } // If pindexWalk still isn't on our main chain, we're looking at a // very large reorg at a time we think we're close to caught up to // the main chain -- this shouldn't really happen. Bail out on the // direct fetch and rely on parallel download instead. if (!::ChainActive().Contains(pindexWalk)) { LogPrint( BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } else { std::vector vGetData; // Download as much as possible, from earliest to latest. for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) { if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { // Can't download any more from this peer break; } vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); MarkBlockAsInFlight(config, m_mempool, pfrom.GetId(), pindex->GetBlockHash(), m_chainparams.GetConsensus(), pindex); LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n", pindex->GetBlockHash().ToString(), pfrom.GetId()); } if (vGetData.size() > 1) { LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers " "direct fetch\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } if (vGetData.size() > 0) { if (nodestate->fSupportsDesiredCmpctVersion && vGetData.size() == 1 && mapBlocksInFlight.size() == 1 && pindexLast->pprev->IsValid(BlockValidity::CHAIN)) { // In any case, we want to download using a compact // block, not a regular one. vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash); } m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } } } // If we're in IBD, we want outbound peers that will serve us a useful // chain. Disconnect peers that are on chains with insufficient work. if (::ChainstateActive().IsInitialBlockDownload() && nCount != MAX_HEADERS_RESULTS) { // When nCount < MAX_HEADERS_RESULTS, we know we have no more // headers to fetch from this peer. if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has too little work on their headers chain to help // us sync -- disconnect if using an outbound slot (unless // whitelisted or addnode). // Note: We compare their tip to nMinimumChainWork (rather than // ::ChainActive().Tip()) because we won't start block download // until we have a headers chain that has at least // nMinimumChainWork, even if a peer has a chain past our tip, // as an anti-DoS measure. if (pfrom.IsOutboundOrBlockRelayConn()) { LogPrintf("Disconnecting outbound peer %d -- headers " "chain has insufficient work\n", pfrom.GetId()); pfrom.fDisconnect = true; } } } if (!pfrom.fDisconnect && pfrom.IsOutboundOrBlockRelayConn() && nodestate->pindexBestKnownBlock != nullptr && pfrom.m_tx_relay != nullptr) { // If this is an outbound full-relay peer, check to see if we should // protect it from the bad/lagging chain logic. Note that // block-relay-only peers are already implicitly protected, so we // only consider setting m_protect for the full-relay peers. if (g_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= ::ChainActive().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) { LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId()); nodestate->m_chain_sync.m_protect = true; ++g_outbound_peers_with_protect_from_disconnect; } } } } void PeerManager::ProcessOrphanTx(const Config &config, std::set &orphan_work_set) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans) { AssertLockHeld(cs_main); AssertLockHeld(g_cs_orphans); std::unordered_map rejectCountPerNode; bool done = false; while (!done && !orphan_work_set.empty()) { const TxId orphanTxId = *orphan_work_set.begin(); orphan_work_set.erase(orphan_work_set.begin()); auto orphan_it = mapOrphanTransactions.find(orphanTxId); if (orphan_it == mapOrphanTransactions.end()) { continue; } const CTransactionRef porphanTx = orphan_it->second.tx; const CTransaction &orphanTx = *porphanTx; NodeId fromPeer = orphan_it->second.fromPeer; // Use a new TxValidationState because orphans come from different peers // (and we call MaybePunishNodeForTx based on the source peer from the // orphan map, not based on the peer that relayed the previous // transaction). TxValidationState orphan_state; auto it = rejectCountPerNode.find(fromPeer); if (it != rejectCountPerNode.end() && it->second > MAX_NON_STANDARD_ORPHAN_PER_NODE) { continue; } if (AcceptToMemoryPool(config, m_mempool, orphan_state, porphanTx, false /* bypass_limits */, Amount::zero() /* nAbsurdFee */)) { LogPrint(BCLog::MEMPOOL, " accepted orphan tx %s\n", orphanTxId.ToString()); RelayTransaction(orphanTxId, m_connman); for (size_t i = 0; i < orphanTx.vout.size(); i++) { auto it_by_prev = mapOrphanTransactionsByPrev.find(COutPoint(orphanTxId, i)); if (it_by_prev != mapOrphanTransactionsByPrev.end()) { for (const auto &elem : it_by_prev->second) { orphan_work_set.insert(elem->first); } } } EraseOrphanTx(orphanTxId); done = true; } else if (orphan_state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) { if (orphan_state.IsInvalid()) { // Punish peer that gave us an invalid orphan tx MaybePunishNodeForTx(fromPeer, orphan_state); LogPrint(BCLog::MEMPOOL, " invalid orphan tx %s\n", orphanTxId.ToString()); } // Has inputs but not accepted to mempool // Probably non-standard or insufficient fee LogPrint(BCLog::MEMPOOL, " removed orphan tx %s\n", orphanTxId.ToString()); assert(recentRejects); recentRejects->insert(orphanTxId); EraseOrphanTx(orphanTxId); done = true; } m_mempool.check(&::ChainstateActive().CoinsTip()); } } /** * Validation logic for compact filters request handling. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] chain_params Chain parameters * @param[in] filter_type The filter type the request is for. Must be * basic filters. * @param[in] start_height The start height for the request * @param[in] stop_hash The stop_hash for the request * @param[in] max_height_diff The maximum number of items permitted to * request, as specified in BIP 157 * @param[out] stop_index The CBlockIndex for the stop_hash block, if the * request can be serviced. * @param[out] filter_index The filter index, if the request can be * serviced. * @return True if the request can be serviced. */ static bool PrepareBlockFilterRequest( CNode &peer, const CChainParams &chain_params, BlockFilterType filter_type, uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff, const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index) { const bool supported_filter_type = (filter_type == BlockFilterType::BASIC && (peer.GetLocalServices() & NODE_COMPACT_FILTERS)); if (!supported_filter_type) { LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n", peer.GetId(), static_cast(filter_type)); peer.fDisconnect = true; return false; } { LOCK(cs_main); stop_index = LookupBlockIndex(stop_hash); // Check that the stop block exists and the peer would be allowed to // fetch it. if (!stop_index || !BlockRequestAllowed(stop_index, chain_params.GetConsensus())) { LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n", peer.GetId(), stop_hash.ToString()); peer.fDisconnect = true; return false; } } uint32_t stop_height = stop_index->nHeight; if (start_height > stop_height) { LogPrint( BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with " /* Continued */ "start height %d and stop height %d\n", peer.GetId(), start_height, stop_height); peer.fDisconnect = true; return false; } if (stop_height - start_height >= max_height_diff) { LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n", peer.GetId(), stop_height - start_height + 1, max_height_diff); peer.fDisconnect = true; return false; } filter_index = GetBlockFilterIndex(filter_type); if (!filter_index) { LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type)); return false; } return true; } /** * Handle a cfilters request. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received * @param[in] chain_params Chain parameters * @param[in] connman Pointer to the connection manager */ static void ProcessGetCFilters(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( peer, chain_params, filter_type, start_height, stop_hash, MAX_GETCFILTERS_SIZE, stop_index, filter_index)) { return; } std::vector filters; if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) { LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } for (const auto &filter : filters) { CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion()) .Make(NetMsgType::CFILTER, filter); connman.PushMessage(&peer, std::move(msg)); } } /** * Handle a cfheaders request. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received * @param[in] chain_params Chain parameters * @param[in] connman Pointer to the connection manager */ static void ProcessGetCFHeaders(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( peer, chain_params, filter_type, start_height, stop_hash, MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) { return; } uint256 prev_header; if (start_height > 0) { const CBlockIndex *const prev_block = stop_index->GetAncestor(static_cast(start_height - 1)); if (!filter_index->LookupFilterHeader(prev_block, prev_header)) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString()); return; } } std::vector filter_hashes; if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) { LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion()) .Make(NetMsgType::CFHEADERS, filter_type_ser, stop_index->GetBlockHash(), prev_header, filter_hashes); connman.PushMessage(&peer, std::move(msg)); } /** * Handle a getcfcheckpt request. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received * @param[in] chain_params Chain parameters * @param[in] connman Pointer to the connection manager */ static void ProcessGetCFCheckPt(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman) { uint8_t filter_type_ser; BlockHash stop_hash; vRecv >> filter_type_ser >> stop_hash; const BlockFilterType filter_type = static_cast(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( peer, chain_params, filter_type, /*start_height=*/0, stop_hash, /*max_height_diff=*/std::numeric_limits::max(), stop_index, filter_index)) { return; } std::vector headers(stop_index->nHeight / CFCHECKPT_INTERVAL); // Populate headers. const CBlockIndex *block_index = stop_index; for (int i = headers.size() - 1; i >= 0; i--) { int height = (i + 1) * CFCHECKPT_INTERVAL; block_index = block_index->GetAncestor(height); if (!filter_index->LookupFilterHeader(block_index, headers[i])) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString()); return; } } CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion()) .Make(NetMsgType::CFCHECKPT, filter_type_ser, stop_index->GetBlockHash(), headers); connman.PushMessage(&peer, std::move(msg)); } bool IsAvalancheMessageType(const std::string &msg_type) { return msg_type == NetMsgType::AVAHELLO || msg_type == NetMsgType::AVAPOLL || msg_type == NetMsgType::AVARESPONSE; } void PeerManager::ProcessMessage(const Config &config, CNode &pfrom, const std::string &msg_type, CDataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic &interruptMsgProc) { LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId()); if (gArgs.IsArgSet("-dropmessagestest") && GetRand(gArgs.GetArg("-dropmessagestest", 0)) == 0) { LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n"); return; } if (IsAvalancheMessageType(msg_type)) { if (!g_avalanche) { LogPrint(BCLog::NET, "Avalanche is not initialized, ignoring %s message\n", msg_type); return; } if (!gArgs.GetBoolArg("-enableavalanche", AVALANCHE_DEFAULT_ENABLED)) { Misbehaving(pfrom, 20, "unsolicited-" + msg_type); return; } } if (msg_type == NetMsgType::VERSION) { // Each connection can only send one version message if (pfrom.nVersion != 0) { Misbehaving(pfrom, 1, "redundant version message"); return; } int64_t nTime; CAddress addrMe; CAddress addrFrom; uint64_t nNonce = 1; uint64_t nServiceInt; ServiceFlags nServices; int nVersion; std::string cleanSubVer; int nStartingHeight = -1; bool fRelay = true; uint64_t nExtraEntropy = 1; vRecv >> nVersion >> nServiceInt >> nTime >> addrMe; nServices = ServiceFlags(nServiceInt); if (!pfrom.IsInboundConn()) { m_connman.SetServices(pfrom.addr, nServices); } if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices)) { LogPrint(BCLog::NET, "peer=%d does not offer the expected services " "(%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices)); pfrom.fDisconnect = true; return; } if (nVersion < MIN_PEER_PROTO_VERSION) { // disconnect from peers older than this proto version LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion); pfrom.fDisconnect = true; return; } if (!vRecv.empty()) { vRecv >> addrFrom >> nNonce; } if (!vRecv.empty()) { std::string strSubVer; vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH); cleanSubVer = SanitizeString(strSubVer); } if (!vRecv.empty()) { vRecv >> nStartingHeight; } if (!vRecv.empty()) { vRecv >> fRelay; } if (!vRecv.empty()) { vRecv >> nExtraEntropy; } // Disconnect if we connected to ourself if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce)) { LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToString()); pfrom.fDisconnect = true; return; } if (pfrom.IsInboundConn() && addrMe.IsRoutable()) { SeenLocal(addrMe); } // Be shy and don't send version until we hear if (pfrom.IsInboundConn()) { PushNodeVersion(config, pfrom, m_connman, GetAdjustedTime()); } // Change version const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION); pfrom.SetCommonVersion(greatest_common_version); pfrom.nVersion = nVersion; const CNetMsgMaker msg_maker(greatest_common_version); m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::VERACK)); // Signal ADDRv2 support (BIP155). m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDADDRV2)); pfrom.nServices = nServices; pfrom.SetAddrLocal(addrMe); { LOCK(pfrom.cs_SubVer); pfrom.cleanSubVer = cleanSubVer; } pfrom.nStartingHeight = nStartingHeight; // set nodes not relaying blocks and tx and not serving (parts) of the // historical blockchain as "clients" pfrom.fClient = (!(nServices & NODE_NETWORK) && !(nServices & NODE_NETWORK_LIMITED)); // set nodes not capable of serving the complete blockchain history as // "limited nodes" pfrom.m_limited_node = (!(nServices & NODE_NETWORK) && (nServices & NODE_NETWORK_LIMITED)); if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); // set to true after we get the first filter* message pfrom.m_tx_relay->fRelayTxes = fRelay; } pfrom.nRemoteHostNonce = nNonce; pfrom.nRemoteExtraEntropy = nExtraEntropy; // Potentially mark this peer as a preferred download peer. { LOCK(cs_main); UpdatePreferredDownload(pfrom, State(pfrom.GetId())); } if (!pfrom.IsInboundConn() && pfrom.IsAddrRelayPeer()) { // Advertise our address if (fListen && !::ChainstateActive().IsInitialBlockDownload()) { CAddress addr = GetLocalAddress(&pfrom.addr, pfrom.GetLocalServices()); FastRandomContext insecure_rand; if (addr.IsRoutable()) { LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); pfrom.PushAddress(addr, insecure_rand); } else if (IsPeerAddrLocalGood(&pfrom)) { addr.SetIP(addrMe); LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); pfrom.PushAddress(addr, insecure_rand); } } // Get recent addresses m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version) .Make(NetMsgType::GETADDR)); pfrom.fGetAddr = true; m_connman.MarkAddressGood(pfrom.addr); } std::string remoteAddr; if (fLogIPs) { remoteAddr = ", peeraddr=" + pfrom.addr.ToString(); } LogPrint(BCLog::NET, "receive version message: [%s] %s: version %d, blocks=%d, " "us=%s, peer=%d%s\n", pfrom.addr.ToString(), cleanSubVer, pfrom.nVersion, pfrom.nStartingHeight, addrMe.ToString(), pfrom.GetId(), remoteAddr); // Ignore time offsets that are improbable (before the Genesis block) // and may underflow the nTimeOffset calculation. int64_t currentTime = GetTime(); if (nTime >= int64_t(m_chainparams.GenesisBlock().nTime)) { int64_t nTimeOffset = nTime - currentTime; pfrom.nTimeOffset = nTimeOffset; AddTimeData(pfrom.addr, nTimeOffset); } else { Misbehaving(pfrom, 20, "Ignoring invalid timestamp in version message"); } // Feeler connections exist only to verify if address is online. if (pfrom.IsFeelerConn()) { pfrom.fDisconnect = true; } return; } if (pfrom.nVersion == 0) { // Must have a version message before anything else Misbehaving(pfrom, 10, "non-version message before version handshake"); return; } // At this point, the outgoing message serialization version can't change. const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); if (msg_type == NetMsgType::VERACK) { if (!pfrom.IsInboundConn()) { // Mark this node as currently connected, so we update its timestamp // later. LOCK(cs_main); State(pfrom.GetId())->fCurrentlyConnected = true; LogPrintf( "New outbound peer connected: version: %d, blocks=%d, " "peer=%d%s (%s)\n", pfrom.nVersion.load(), pfrom.nStartingHeight, pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToString()) : ""), pfrom.m_tx_relay == nullptr ? "block-relay" : "full-relay"); } if (pfrom.GetCommonVersion() >= SENDHEADERS_VERSION) { // Tell our peer we prefer to receive headers rather than inv's // We send this to non-NODE NETWORK peers as well, because even // non-NODE NETWORK peers can announce blocks (such as pruning // nodes) m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDHEADERS)); } if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) { // Tell our peer we are willing to provide version 1 or 2 // cmpctblocks. However, we do not request new block announcements // using cmpctblock messages. We send this to non-NODE NETWORK peers // as well, because they may wish to request compact blocks from us. bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 1; m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion)); } if ((pfrom.nServices & NODE_AVALANCHE) && g_avalanche && gArgs.GetBoolArg("-enableavalanche", AVALANCHE_DEFAULT_ENABLED)) { if (g_avalanche->sendHello(&pfrom)) { LogPrint(BCLog::NET, "Send avahello to peer %d\n", pfrom.GetId()); } } pfrom.fSuccessfullyConnected = true; return; } if (!pfrom.fSuccessfullyConnected) { // Must have a verack message before anything else Misbehaving(pfrom, 10, "non-verack message before version handshake"); return; } if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) { int stream_version = vRecv.GetVersion(); if (msg_type == NetMsgType::ADDRV2) { // Add ADDRV2_FORMAT to the version so that the CNetAddr and // CAddress unserialize methods know that an address in v2 format is // coming. stream_version |= ADDRV2_FORMAT; } OverrideStream s(&vRecv, vRecv.GetType(), stream_version); std::vector vAddr; s >> vAddr; if (!pfrom.IsAddrRelayPeer()) { return; } if (vAddr.size() > 1000) { Misbehaving( pfrom, 20, strprintf("%s message size = %u", msg_type, vAddr.size())); return; } // Store the new addresses std::vector vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; for (CAddress &addr : vAddr) { if (interruptMsgProc) { return; } // We only bother storing full nodes, though this may include things // which we would not make an outbound connection to, in part // because we may make feeler connections to them. if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) { addr.nTime = nNow - 5 * 24 * 60 * 60; } pfrom.AddAddressKnown(addr); if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) { // Do not process banned/discouraged addresses beyond // remembering we received them continue; } bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !pfrom.fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes RelayAddress(addr, fReachable, m_connman); } // Do not store addresses outside our network if (fReachable) { vAddrOk.push_back(addr); } } m_connman.AddNewAddresses(vAddrOk, pfrom.addr, 2 * 60 * 60); if (vAddr.size() < 1000) { pfrom.fGetAddr = false; } if (pfrom.IsAddrFetchConn()) { pfrom.fDisconnect = true; } return; } if (msg_type == NetMsgType::SENDADDRV2) { pfrom.m_wants_addrv2 = true; return; } if (msg_type == NetMsgType::SENDHEADERS) { LOCK(cs_main); State(pfrom.GetId())->fPreferHeaders = true; return; } if (msg_type == NetMsgType::SENDCMPCT) { bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 0; vRecv >> fAnnounceUsingCMPCTBLOCK >> nCMPCTBLOCKVersion; if (nCMPCTBLOCKVersion == 1) { LOCK(cs_main); // fProvidesHeaderAndIDs is used to "lock in" version of compact // blocks we send. if (!State(pfrom.GetId())->fProvidesHeaderAndIDs) { State(pfrom.GetId())->fProvidesHeaderAndIDs = true; } State(pfrom.GetId())->fPreferHeaderAndIDs = fAnnounceUsingCMPCTBLOCK; if (!State(pfrom.GetId())->fSupportsDesiredCmpctVersion) { State(pfrom.GetId())->fSupportsDesiredCmpctVersion = true; } } return; } if (msg_type == NetMsgType::INV) { std::vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("inv message size = %u", vInv.size())); return; } // We won't accept tx inv's if we're in blocks-only mode, or this is a // block-relay-only peer bool fBlocksOnly = !g_relay_txes || (pfrom.m_tx_relay == nullptr); // Allow whitelisted peers to send data other than blocks in blocks only // mode if whitelistrelay is true if (pfrom.HasPermission(PF_RELAY)) { fBlocksOnly = false; } const auto current_time = GetTime(); std::optional best_block; auto logInv = [&](const CInv &inv, bool fAlreadyHave) { LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId()); }; for (CInv &inv : vInv) { if (interruptMsgProc) { return; } if (inv.IsMsgBlk()) { LOCK(cs_main); const bool fAlreadyHave = AlreadyHaveBlock(BlockHash(inv.hash)); logInv(inv, fAlreadyHave); const BlockHash hash{inv.hash}; UpdateBlockAvailability(pfrom.GetId(), hash); if (!fAlreadyHave && !fImporting && !fReindex && !mapBlocksInFlight.count(hash)) { // Headers-first is the primary method of announcement on // the network. If a node fell back to sending blocks by // inv, it's probably for a re-org. The final block hash // provided should be the highest, so send a getheaders and // then fetch the blocks we need to catch up. best_block = std::move(hash); } continue; } if (inv.IsMsgTx()) { LOCK(cs_main); const TxId txid(inv.hash); const bool fAlreadyHave = AlreadyHaveTx(txid, m_mempool); logInv(inv, fAlreadyHave); pfrom.AddKnownTx(txid); if (fBlocksOnly) { LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of " "protocol, disconnecting peer=%d\n", txid.ToString(), pfrom.GetId()); pfrom.fDisconnect = true; return; } else if (!fAlreadyHave && !m_chainman.ActiveChainstate() .IsInitialBlockDownload()) { AddTxAnnouncement(pfrom, txid, current_time); } continue; } LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId()); } if (best_block) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexBestHeader), *best_block)); LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n", pindexBestHeader->nHeight, best_block->ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETDATA) { std::vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("getdata message size = %u", vInv.size())); return; } LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId()); if (vInv.size() > 0) { LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId()); } pfrom.vRecvGetData.insert(pfrom.vRecvGetData.end(), vInv.begin(), vInv.end()); ProcessGetData(config, pfrom, m_connman, m_mempool, interruptMsgProc); return; } if (msg_type == NetMsgType::GETBLOCKS) { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } // We might have announced the currently-being-connected tip using a // compact block, which resulted in the peer sending a getblocks // request, which we would otherwise respond to without the new block. // To avoid this situation we simply verify that we are on our best // known chain now. This is super overkill, but we handle it better // for getheaders requests, and there are no known nodes which support // compact blocks but still use getblocks to request blocks. { std::shared_ptr a_recent_block; { LOCK(cs_most_recent_block); a_recent_block = most_recent_block; } BlockValidationState state; if (!ActivateBestChain(config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); // Find the last block the caller has in the main chain const CBlockIndex *pindex = FindForkInGlobalIndex(::ChainActive(), locator); // Send the rest of the chain if (pindex) { pindex = ::ChainActive().Next(pindex); } int nLimit = 500; LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId()); for (; pindex; pindex = ::ChainActive().Next(pindex)) { if (pindex->GetBlockHash() == hashStop) { LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } // If pruning, don't inv blocks unless we have on disk and are // likely to still have for some reasonable time window (1 hour) // that block relay might require. const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing; if (fPruneMode && (!pindex->nStatus.hasData() || pindex->nHeight <= ::ChainActive().Tip()->nHeight - nPrunedBlocksLikelyToHave)) { LogPrint( BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } WITH_LOCK(pfrom.cs_inventory, pfrom.vInventoryBlockToSend.push_back( pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll // trigger the peer to getblocks the next batch of inventory. LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); pfrom.hashContinue = pindex->GetBlockHash(); break; } } return; } if (msg_type == NetMsgType::GETBLOCKTXN) { BlockTransactionsRequest req; vRecv >> req; std::shared_ptr recent_block; { LOCK(cs_most_recent_block); if (most_recent_block_hash == req.blockhash) { recent_block = most_recent_block; } // Unlock cs_most_recent_block to avoid cs_main lock inversion } if (recent_block) { SendBlockTransactions(pfrom, *recent_block, req); return; } LOCK(cs_main); const CBlockIndex *pindex = LookupBlockIndex(req.blockhash); if (!pindex || !pindex->nStatus.hasData()) { LogPrint( BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId()); return; } if (pindex->nHeight < ::ChainActive().Height() - MAX_BLOCKTXN_DEPTH) { // If an older block is requested (should never happen in practice, // but can happen in tests) send a block response instead of a // blocktxn response. Sending a full block response instead of a // small blocktxn response is preferable in the case where a peer // might maliciously send lots of getblocktxn requests to trigger // expensive disk reads, because it will require the peer to // actually receive all the data read from disk over the network. LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH); CInv inv; inv.type = MSG_BLOCK; inv.hash = req.blockhash; pfrom.vRecvGetData.push_back(inv); // The message processing loop will go around again (without // pausing) and we'll respond then (without cs_main) return; } CBlock block; bool ret = ReadBlockFromDisk(block, pindex, m_chainparams.GetConsensus()); assert(ret); SendBlockTransactions(pfrom, block, req); return; } if (msg_type == NetMsgType::GETHEADERS) { CBlockLocator locator; BlockHash hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } LOCK(cs_main); if (::ChainstateActive().IsInitialBlockDownload() && !pfrom.HasPermission(PF_DOWNLOAD)) { LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because node is in " "initial block download\n", pfrom.GetId()); return; } CNodeState *nodestate = State(pfrom.GetId()); const CBlockIndex *pindex = nullptr; if (locator.IsNull()) { // If locator is null, return the hashStop block pindex = LookupBlockIndex(hashStop); if (!pindex) { return; } if (!BlockRequestAllowed(pindex, m_chainparams.GetConsensus())) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block " "header that isn't in the main chain\n", __func__, pfrom.GetId()); return; } } else { // Find the last block the caller has in the main chain pindex = FindForkInGlobalIndex(::ChainActive(), locator); if (pindex) { pindex = ::ChainActive().Next(pindex); } } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx // count at the end std::vector vHeaders; int nLimit = MAX_HEADERS_RESULTS; LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId()); for (; pindex; pindex = ::ChainActive().Next(pindex)) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) { break; } } // pindex can be nullptr either if we sent ::ChainActive().Tip() OR // if our peer has ::ChainActive().Tip() (and thus we are sending an // empty headers message). In both cases it's safe to update // pindexBestHeaderSent to be our tip. // // It is important that we simply reset the BestHeaderSent value here, // and not max(BestHeaderSent, newHeaderSent). We might have announced // the currently-being-connected tip using a compact block, which // resulted in the peer sending a headers request, which we respond to // without the new block. By resetting the BestHeaderSent, we ensure we // will re-announce the new block via headers (or compact blocks again) // in the SendMessages logic. nodestate->pindexBestHeaderSent = pindex ? pindex : ::ChainActive().Tip(); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); return; } if (msg_type == NetMsgType::TX) { // Stop processing the transaction early if // 1) We are in blocks only mode and peer has no relay permission // 2) This peer is a block-relay-only peer if ((!g_relay_txes && !pfrom.HasPermission(PF_RELAY)) || (pfrom.m_tx_relay == nullptr)) { LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } CTransactionRef ptx; vRecv >> ptx; const CTransaction &tx = *ptx; const TxId &txid = tx.GetId(); pfrom.AddKnownTx(txid); LOCK2(cs_main, g_cs_orphans); TxValidationState state; m_txrequest.ReceivedResponse(pfrom.GetId(), txid); if (!AlreadyHaveTx(txid, m_mempool) && AcceptToMemoryPool(config, m_mempool, state, ptx, false /* bypass_limits */, Amount::zero() /* nAbsurdFee */)) { m_mempool.check(&::ChainstateActive().CoinsTip()); // As this version of the transaction was acceptable, we can forget // about any requests for it. - m_txrequest.ForgetTxId(tx.GetId()); + m_txrequest.ForgetInvId(tx.GetId()); RelayTransaction(tx.GetId(), m_connman); for (size_t i = 0; i < tx.vout.size(); i++) { auto it_by_prev = mapOrphanTransactionsByPrev.find(COutPoint(txid, i)); if (it_by_prev != mapOrphanTransactionsByPrev.end()) { for (const auto &elem : it_by_prev->second) { pfrom.orphan_work_set.insert(elem->first); } } } pfrom.nLastTXTime = GetTime(); LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s " "(poolsz %u txn, %u kB)\n", pfrom.GetId(), tx.GetId().ToString(), m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000); // Recursively process any orphan transactions that depended on this // one ProcessOrphanTx(config, pfrom.orphan_work_set); } else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS) { // It may be the case that the orphans parents have all been // rejected. bool fRejectedParents = false; for (const CTxIn &txin : tx.vin) { if (recentRejects->contains(txin.prevout.GetTxId())) { fRejectedParents = true; break; } } if (!fRejectedParents) { const auto current_time = GetTime(); for (const CTxIn &txin : tx.vin) { // FIXME: MSG_TX should use a TxHash, not a TxId. const TxId _txid = txin.prevout.GetTxId(); pfrom.AddKnownTx(_txid); if (!AlreadyHaveTx(_txid, m_mempool)) { AddTxAnnouncement(pfrom, _txid, current_time); } } AddOrphanTx(ptx, pfrom.GetId()); // Once added to the orphan pool, a tx is considered // AlreadyHave, and we shouldn't request it anymore. - m_txrequest.ForgetTxId(tx.GetId()); + m_txrequest.ForgetInvId(tx.GetId()); // DoS prevention: do not allow mapOrphanTransactions to grow // unbounded (see CVE-2012-3789) unsigned int nMaxOrphanTx = (unsigned int)std::max( int64_t(0), gArgs.GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS)); unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx); if (nEvicted > 0) { LogPrint(BCLog::MEMPOOL, "mapOrphan overflow, removed %u tx\n", nEvicted); } } else { LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s\n", tx.GetId().ToString()); // We will continue to reject this tx since it has rejected // parents so avoid re-requesting it from other peers. recentRejects->insert(tx.GetId()); - m_txrequest.ForgetTxId(tx.GetId()); + m_txrequest.ForgetInvId(tx.GetId()); } } else { assert(recentRejects); recentRejects->insert(tx.GetId()); - m_txrequest.ForgetTxId(tx.GetId()); + m_txrequest.ForgetInvId(tx.GetId()); if (RecursiveDynamicUsage(*ptx) < 100000) { AddToCompactExtraTransactions(ptx); } if (pfrom.HasPermission(PF_FORCERELAY)) { // Always relay transactions received from whitelisted peers, // even if they were already in the mempool or rejected from it // due to policy, allowing the node to function as a gateway for // nodes hidden behind it. // // Never relay transactions that might result in being // disconnected (or banned). if (state.IsInvalid() && TxRelayMayResultInDisconnect(state)) { LogPrintf("Not relaying invalid transaction %s from " "whitelisted peer=%d (%s)\n", tx.GetId().ToString(), pfrom.GetId(), state.ToString()); } else { LogPrintf("Force relaying tx %s from whitelisted peer=%d\n", tx.GetId().ToString(), pfrom.GetId()); RelayTransaction(tx.GetId(), m_connman); } } } // If a tx has been detected by recentRejects, we will have reached // this point and the tx will have been ignored. Because we haven't run // the tx through AcceptToMemoryPool, we won't have computed a DoS // score for it or determined exactly why we consider it invalid. // // This means we won't penalize any peer subsequently relaying a DoSy // tx (even if we penalized the first peer who gave it to us) because // we have to account for recentRejects showing false positives. In // other words, we shouldn't penalize a peer if we aren't *sure* they // submitted a DoSy tx. // // Note that recentRejects doesn't just record DoSy or invalid // transactions, but any tx not accepted by the mempool, which may be // due to node policy (vs. consensus). So we can't blanket penalize a // peer simply for relaying a tx that our recentRejects has caught, // regardless of false positives. if (state.IsInvalid()) { LogPrint(BCLog::MEMPOOLREJ, "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(), pfrom.GetId(), state.ToString()); MaybePunishNodeForTx(pfrom.GetId(), state); } return; } if (msg_type == NetMsgType::CMPCTBLOCK) { // Ignore cmpctblock received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId()); return; } CBlockHeaderAndShortTxIDs cmpctblock; vRecv >> cmpctblock; bool received_new_header = false; { LOCK(cs_main); if (!LookupBlockIndex(cmpctblock.header.hashPrevBlock)) { // Doesn't connect (or is genesis), instead of DoSing in // AcceptBlockHeader, request deeper headers if (!::ChainstateActive().IsInitialBlockDownload()) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator( pindexBestHeader), uint256())); } return; } if (!LookupBlockIndex(cmpctblock.header.GetHash())) { received_new_header = true; } } const CBlockIndex *pindex = nullptr; BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, {cmpctblock.header}, state, &pindex)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block*/ true, "invalid header via cmpctblock"); return; } } // When we succeed in decoding a block's txids from a cmpctblock // message we typically jump to the BLOCKTXN handling code, with a // dummy (empty) BLOCKTXN message, to re-use the logic there in // completing processing of the putative block (without cs_main). bool fProcessBLOCKTXN = false; CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION); // If we end up treating this as a plain headers message, call that as // well // without cs_main. bool fRevertToHeaderProcessing = false; // Keep a CBlock for "optimistic" compactblock reconstructions (see // below) std::shared_ptr pblock = std::make_shared(); bool fBlockReconstructed = false; { LOCK2(cs_main, g_cs_orphans); // If AcceptBlockHeader returned true, it set pindex assert(pindex); UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash()); CNodeState *nodestate = State(pfrom.GetId()); // If this was a new header with more work than our tip, update the // peer's last block announcement time if (received_new_header && pindex->nChainWork > ::ChainActive().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } std::map::iterator>>:: iterator blockInFlightIt = mapBlocksInFlight.find(pindex->GetBlockHash()); bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end(); if (pindex->nStatus.hasData()) { // Nothing to do here return; } if (pindex->nChainWork <= ::ChainActive() .Tip() ->nChainWork || // We know something better pindex->nTx != 0) { // We had this block at some point, but pruned it if (fAlreadyInFlight) { // We requested this block for some reason, but our mempool // will probably be useless so we just grab the block via // normal getdata. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); } return; } // If we're not close to tip yet, give up and let parallel block // fetch work its magic. if (!fAlreadyInFlight && !CanDirectFetch(m_chainparams.GetConsensus())) { return; } // We want to be a bit conservative just to be extra careful about // DoS possibilities in compact block processing... if (pindex->nHeight <= ::ChainActive().Height() + 2) { if ((!fAlreadyInFlight && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) || (fAlreadyInFlight && blockInFlightIt->second.first == pfrom.GetId())) { std::list::iterator *queuedBlockIt = nullptr; if (!MarkBlockAsInFlight(config, m_mempool, pfrom.GetId(), pindex->GetBlockHash(), m_chainparams.GetConsensus(), pindex, &queuedBlockIt)) { if (!(*queuedBlockIt)->partialBlock) { (*queuedBlockIt) ->partialBlock.reset( new PartiallyDownloadedBlock(config, &m_mempool)); } else { // The block was already in flight using compact // blocks from the same peer. LogPrint(BCLog::NET, "Peer sent us compact block " "we were already syncing!\n"); return; } } PartiallyDownloadedBlock &partialBlock = *(*queuedBlockIt)->partialBlock; ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case of whitelist MarkBlockAsReceived(pindex->GetBlockHash()); Misbehaving(pfrom, 100, "invalid compact block"); return; } else if (status == READ_STATUS_FAILED) { // Duplicate txindices, the block is now in-flight, so // just request it. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } BlockTransactionsRequest req; for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) { if (!partialBlock.IsTxAvailable(i)) { req.indices.push_back(i); } } if (req.indices.empty()) { // Dirty hack to jump to BLOCKTXN code (TODO: move // message handling into their own functions) BlockTransactions txn; txn.blockhash = cmpctblock.header.GetHash(); blockTxnMsg << txn; fProcessBLOCKTXN = true; } else { req.blockhash = pindex->GetBlockHash(); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETBLOCKTXN, req)); } } else { // This block is either already in flight from a different // peer, or this peer has too many blocks outstanding to // download from. Optimistically try to reconstruct anyway // since we might be able to without any round trips. PartiallyDownloadedBlock tempBlock(config, &m_mempool); ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status != READ_STATUS_OK) { // TODO: don't ignore failures return; } std::vector dummy; status = tempBlock.FillBlock(*pblock, dummy); if (status == READ_STATUS_OK) { fBlockReconstructed = true; } } } else { if (fAlreadyInFlight) { // We requested this block, but its far into the future, so // our mempool will probably be useless - request the block // normally. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } else { // If this was an announce-cmpctblock, we want the same // treatment as a header message. fRevertToHeaderProcessing = true; } } } // cs_main if (fProcessBLOCKTXN) { return ProcessMessage(config, pfrom, NetMsgType::BLOCKTXN, blockTxnMsg, time_received, interruptMsgProc); } if (fRevertToHeaderProcessing) { // Headers received from HB compact block peers are permitted to be // relayed before full validation (see BIP 152), so we don't want to // disconnect the peer if the header turns out to be for an invalid // block. Note that if a peer tries to build on an invalid chain, // that will be detected and the peer will be banned. return ProcessHeadersMessage(config, pfrom, {cmpctblock.header}, /*via_compact_block=*/true); } if (fBlockReconstructed) { // If we got here, we were able to optimistically reconstruct a // block that is in flight from some other peer. { LOCK(cs_main); mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false)); } bool fNewBlock = false; // Setting fForceProcessing to true means that we bypass some of // our anti-DoS protections in AcceptBlock, which filters // unrequested blocks that might be trying to waste our resources // (eg disk space). Because we only try to reconstruct blocks when // we're close to caught up (via the CanDirectFetch() requirement // above, combined with the behavior of not requesting blocks until // we have a chain with at least nMinimumChainWork), and we ignore // compact blocks with less work than our tip, it is safe to treat // reconstructed compact blocks as having been requested. m_chainman.ProcessNewBlock(config, pblock, /*fForceProcessing=*/true, &fNewBlock); if (fNewBlock) { pfrom.nLastBlockTime = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(pblock->GetHash()); } // hold cs_main for CBlockIndex::IsValid() LOCK(cs_main); if (pindex->IsValid(BlockValidity::TRANSACTIONS)) { // Clear download state for this block, which is in process from // some other peer. We do this after calling. ProcessNewBlock so // that a malleated cmpctblock announcement can't be used to // interfere with block relay. MarkBlockAsReceived(pblock->GetHash()); } } return; } if (msg_type == NetMsgType::BLOCKTXN) { // Ignore blocktxn received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId()); return; } BlockTransactions resp; vRecv >> resp; std::shared_ptr pblock = std::make_shared(); bool fBlockRead = false; { LOCK(cs_main); std::map::iterator>>:: iterator it = mapBlocksInFlight.find(resp.blockhash); if (it == mapBlocksInFlight.end() || !it->second.second->partialBlock || it->second.first != pfrom.GetId()) { LogPrint(BCLog::NET, "Peer %d sent us block transactions for block " "we weren't expecting\n", pfrom.GetId()); return; } PartiallyDownloadedBlock &partialBlock = *it->second.second->partialBlock; ReadStatus status = partialBlock.FillBlock(*pblock, resp.txn); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case of whitelist. MarkBlockAsReceived(resp.blockhash); Misbehaving( pfrom, 100, "invalid compact block/non-matching block transactions"); return; } else if (status == READ_STATUS_FAILED) { // Might have collided, fall back to getdata now :( std::vector invs; invs.push_back(CInv(MSG_BLOCK, resp.blockhash)); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, invs)); } else { // Block is either okay, or possibly we received // READ_STATUS_CHECKBLOCK_FAILED. // Note that CheckBlock can only fail for one of a few reasons: // 1. bad-proof-of-work (impossible here, because we've already // accepted the header) // 2. merkleroot doesn't match the transactions given (already // caught in FillBlock with READ_STATUS_FAILED, so // impossible here) // 3. the block is otherwise invalid (eg invalid coinbase, // block is too big, too many legacy sigops, etc). // So if CheckBlock failed, #3 is the only possibility. // Under BIP 152, we don't DoS-ban unless proof of work is // invalid (we don't require all the stateless checks to have // been run). This is handled below, so just treat this as // though the block was successfully read, and rely on the // handling in ProcessNewBlock to ensure the block index is // updated, etc. // it is now an empty pointer MarkBlockAsReceived(resp.blockhash); fBlockRead = true; // mapBlockSource is used for potentially punishing peers and // updating which peers send us compact blocks, so the race // between here and cs_main in ProcessNewBlock is fine. // BIP 152 permits peers to relay compact blocks after // validating the header only; we should not punish peers // if the block turns out to be invalid. mapBlockSource.emplace(resp.blockhash, std::make_pair(pfrom.GetId(), false)); } } // Don't hold cs_main when we call into ProcessNewBlock if (fBlockRead) { bool fNewBlock = false; // Since we requested this block (it was in mapBlocksInFlight), // force it to be processed, even if it would not be a candidate for // new tip (missing previous block, chain not long enough, etc) // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent // disk-space attacks), but this should be safe due to the // protections in the compact block handler -- see related comment // in compact block optimistic reconstruction handling. m_chainman.ProcessNewBlock(config, pblock, /*fForceProcessing=*/true, &fNewBlock); if (fNewBlock) { pfrom.nLastBlockTime = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(pblock->GetHash()); } } return; } if (msg_type == NetMsgType::HEADERS) { // Ignore headers received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId()); return; } std::vector headers; // Bypass the normal CBlock deserialization, as we don't want to risk // deserializing 2000 full blocks. unsigned int nCount = ReadCompactSize(vRecv); if (nCount > MAX_HEADERS_RESULTS) { Misbehaving(pfrom, 20, strprintf("too-many-headers: headers message size = %u", nCount)); return; } headers.resize(nCount); for (unsigned int n = 0; n < nCount; n++) { vRecv >> headers[n]; // Ignore tx count; assume it is 0. ReadCompactSize(vRecv); } return ProcessHeadersMessage(config, pfrom, headers, /*via_compact_block=*/false); } if (msg_type == NetMsgType::BLOCK) { // Ignore block received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId()); return; } std::shared_ptr pblock = std::make_shared(); vRecv >> *pblock; LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId()); // Process all blocks from whitelisted peers, even if not requested, // unless we're still syncing with the network. Such an unrequested // block may still be processed, subject to the conditions in // AcceptBlock(). bool forceProcessing = pfrom.HasPermission(PF_NOBAN) && !::ChainstateActive().IsInitialBlockDownload(); const BlockHash hash = pblock->GetHash(); { LOCK(cs_main); // Also always process if we requested the block explicitly, as we // may need it even though it is not a candidate for a new best tip. forceProcessing |= MarkBlockAsReceived(hash); // mapBlockSource is only used for punishing peers and setting // which peers send us compact blocks, so the race between here and // cs_main in ProcessNewBlock is fine. mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true)); } bool fNewBlock = false; m_chainman.ProcessNewBlock(config, pblock, forceProcessing, &fNewBlock); if (fNewBlock) { pfrom.nLastBlockTime = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(hash); } return; } if (msg_type == NetMsgType::AVAHELLO) { if (!pfrom.m_avalanche_state) { pfrom.m_avalanche_state = std::make_unique(); } CHashVerifier verifier(&vRecv); avalanche::Delegation &delegation = pfrom.m_avalanche_state->delegation; verifier >> delegation; avalanche::Proof proof; avalanche::DelegationState state; CPubKey pubkey; if (!delegation.verify(state, proof, pubkey)) { Misbehaving(pfrom, 100, "invalid-delegation"); return; } SchnorrSig sig; verifier >> sig; } if (msg_type == NetMsgType::AVAPOLL) { auto now = std::chrono::steady_clock::now(); int64_t cooldown = gArgs.GetArg("-avacooldown", AVALANCHE_DEFAULT_COOLDOWN); { LOCK(cs_main); auto &node_state = State(pfrom.GetId())->m_avalanche_state; if (now < node_state.last_poll + std::chrono::milliseconds(cooldown)) { Misbehaving(pfrom, 20, "avapool-cooldown"); } node_state.last_poll = now; } uint64_t round; Unserialize(vRecv, round); unsigned int nCount = ReadCompactSize(vRecv); if (nCount > AVALANCHE_MAX_ELEMENT_POLL) { Misbehaving( pfrom, 20, strprintf("too-many-ava-poll: poll message size = %u", nCount)); return; } std::vector votes; votes.reserve(nCount); LogPrint(BCLog::NET, "received avalanche poll from peer=%d\n", pfrom.GetId()); { LOCK(cs_main); for (unsigned int n = 0; n < nCount; n++) { CInv inv; vRecv >> inv; const auto insertVote = [&](uint32_t e) { votes.emplace_back(e, inv.hash); }; // Not a block. if (inv.type != MSG_BLOCK) { insertVote(-1); continue; } // We have a block. const CBlockIndex *pindex = LookupBlockIndex(BlockHash(inv.hash)); // Unknown block. if (!pindex) { insertVote(-1); continue; } // Invalid block if (pindex->nStatus.isInvalid()) { insertVote(1); continue; } // Parked block if (pindex->nStatus.isOnParkedChain()) { insertVote(2); continue; } const CBlockIndex *pindexTip = ::ChainActive().Tip(); const CBlockIndex *pindexFork = LastCommonAncestor(pindex, pindexTip); // Active block. if (pindex == pindexFork) { insertVote(0); continue; } // Fork block. if (pindexFork != pindexTip) { insertVote(3); continue; } // Missing block data. if (!pindex->nStatus.hasData()) { insertVote(-2); continue; } // This block is built on top of the tip, we have the data, it // is pending connection or rejection. insertVote(-3); } } // Send the query to the node. g_avalanche->sendResponse( &pfrom, avalanche::Response(round, cooldown, std::move(votes))); return; } if (msg_type == NetMsgType::AVARESPONSE) { // As long as QUIC is not implemented, we need to sign response and // verify response's signatures in order to avoid any manipulation of // messages at the transport level. CHashVerifier verifier(&vRecv); avalanche::Response response; verifier >> response; if (!g_avalanche->forNode(pfrom.GetId(), [&](const avalanche::Node &n) { SchnorrSig sig; vRecv >> sig; return n.pubkey.VerifySchnorr(verifier.GetHash(), sig); })) { Misbehaving(pfrom, 100, "invalid-ava-response-signature"); return; } std::vector updates; if (!g_avalanche->registerVotes(pfrom.GetId(), response, updates)) { return; } if (updates.size()) { for (avalanche::BlockUpdate &u : updates) { CBlockIndex *pindex = u.getBlockIndex(); switch (u.getStatus()) { case avalanche::BlockUpdate::Status::Invalid: case avalanche::BlockUpdate::Status::Rejected: { LogPrintf("Avalanche rejected %s, parking\n", pindex->GetBlockHash().GetHex()); BlockValidationState state; ::ChainstateActive().ParkBlock(config, state, pindex); if (!state.IsValid()) { LogPrintf("ERROR: Database error: %s\n", state.GetRejectReason()); return; } } break; case avalanche::BlockUpdate::Status::Accepted: case avalanche::BlockUpdate::Status::Finalized: { LogPrintf("Avalanche accepted %s\n", pindex->GetBlockHash().GetHex()); LOCK(cs_main); UnparkBlock(pindex); } break; } } BlockValidationState state; if (!ActivateBestChain(config, state)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } return; } if (msg_type == NetMsgType::GETADDR) { // This asymmetric behavior for inbound and outbound connections was // introduced to prevent a fingerprinting attack: an attacker can send // specific fake addresses to users' AddrMan and later request them by // sending getaddr messages. Making nodes which are behind NAT and can // only make outgoing connections ignore the getaddr message mitigates // the attack. if (!pfrom.IsInboundConn()) { LogPrint(BCLog::NET, "Ignoring \"getaddr\" from outbound connection. peer=%d\n", pfrom.GetId()); return; } if (!pfrom.IsAddrRelayPeer()) { LogPrint(BCLog::NET, "Ignoring \"getaddr\" from block-relay-only connection. " "peer=%d\n", pfrom.GetId()); return; } // Only send one GetAddr response per connection to reduce resource // waste and discourage addr stamping of INV announcements. if (pfrom.fSentAddr) { LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId()); return; } pfrom.fSentAddr = true; pfrom.vAddrToSend.clear(); std::vector vAddr = m_connman.GetAddresses(); FastRandomContext insecure_rand; for (const CAddress &addr : vAddr) { bool banned_or_discouraged = m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr)); if (!banned_or_discouraged) { pfrom.PushAddress(addr, insecure_rand); } } return; } if (msg_type == NetMsgType::MEMPOOL) { if (!(pfrom.GetLocalServices() & NODE_BLOOM) && !pfrom.HasPermission(PF_MEMPOOL)) { if (!pfrom.HasPermission(PF_NOBAN)) { LogPrint(BCLog::NET, "mempool request with bloom filters disabled, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(PF_MEMPOOL)) { if (!pfrom.HasPermission(PF_NOBAN)) { LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_tx_inventory); pfrom.m_tx_relay->fSendMempool = true; } return; } if (msg_type == NetMsgType::PING) { if (pfrom.GetCommonVersion() > BIP0031_VERSION) { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful // features: // // 1) A remote node can quickly check if the connection is // operational. // 2) Remote nodes can measure the latency of the network thread. If // this node is overloaded it won't respond to pings quickly and the // remote node can avoid sending us more work, like chain download // requests. // // The nonce stops the remote getting confused between different // pings: without it, if the remote node sends a ping once per // second and this node takes 5 seconds to respond to each, the 5th // ping the remote sends would appear to return very quickly. m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::PONG, nonce)); } return; } if (msg_type == NetMsgType::PONG) { const auto ping_end = time_received; uint64_t nonce = 0; size_t nAvail = vRecv.in_avail(); bool bPingFinished = false; std::string sProblem; if (nAvail >= sizeof(nonce)) { vRecv >> nonce; // Only process pong message if there is an outstanding ping (old // ping without nonce should never pong) if (pfrom.nPingNonceSent != 0) { if (nonce == pfrom.nPingNonceSent) { // Matching pong received, this ping is no longer // outstanding bPingFinished = true; const auto ping_time = ping_end - pfrom.m_ping_start.load(); if (ping_time.count() >= 0) { // Successful ping time measurement, replace previous pfrom.nPingUsecTime = count_microseconds(ping_time); pfrom.nMinPingUsecTime = std::min(pfrom.nMinPingUsecTime.load(), count_microseconds(ping_time)); } else { // This should never happen sProblem = "Timing mishap"; } } else { // Nonce mismatches are normal when pings are overlapping sProblem = "Nonce mismatch"; if (nonce == 0) { // This is most likely a bug in another implementation // somewhere; cancel this ping bPingFinished = true; sProblem = "Nonce zero"; } } } else { sProblem = "Unsolicited pong without ping"; } } else { // This is most likely a bug in another implementation somewhere; // cancel this ping bPingFinished = true; sProblem = "Short payload"; } if (!(sProblem.empty())) { LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n", pfrom.GetId(), sProblem, pfrom.nPingNonceSent, nonce, nAvail); } if (bPingFinished) { pfrom.nPingNonceSent = 0; } return; } if (msg_type == NetMsgType::FILTERLOAD) { if (!(pfrom.GetLocalServices() & NODE_BLOOM)) { pfrom.fDisconnect = true; return; } CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) { // There is no excuse for sending a too-large filter Misbehaving(pfrom, 100, "too-large bloom filter"); } else if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); pfrom.m_tx_relay->pfilter.reset(new CBloomFilter(filter)); pfrom.m_tx_relay->fRelayTxes = true; } return; } if (msg_type == NetMsgType::FILTERADD) { if (!(pfrom.GetLocalServices() & NODE_BLOOM)) { pfrom.fDisconnect = true; return; } std::vector vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a // script data object, and thus, the maximum size any matched object can // have) in a filteradd message. bool bad = false; if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { bad = true; } else if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); if (pfrom.m_tx_relay->pfilter) { pfrom.m_tx_relay->pfilter->insert(vData); } else { bad = true; } } if (bad) { // The structure of this code doesn't really allow for a good error // code. We'll go generic. Misbehaving(pfrom, 100, "bad filteradd message"); } return; } if (msg_type == NetMsgType::FILTERCLEAR) { if (!(pfrom.GetLocalServices() & NODE_BLOOM)) { pfrom.fDisconnect = true; return; } if (pfrom.m_tx_relay == nullptr) { return; } LOCK(pfrom.m_tx_relay->cs_filter); pfrom.m_tx_relay->pfilter = nullptr; pfrom.m_tx_relay->fRelayTxes = true; return; } if (msg_type == NetMsgType::FEEFILTER) { Amount newFeeFilter = Amount::zero(); vRecv >> newFeeFilter; if (MoneyRange(newFeeFilter)) { if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_feeFilter); pfrom.m_tx_relay->minFeeFilter = newFeeFilter; } LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETCFILTERS) { ProcessGetCFilters(pfrom, vRecv, m_chainparams, m_connman); return; } if (msg_type == NetMsgType::GETCFHEADERS) { ProcessGetCFHeaders(pfrom, vRecv, m_chainparams, m_connman); return; } if (msg_type == NetMsgType::GETCFCHECKPT) { ProcessGetCFCheckPt(pfrom, vRecv, m_chainparams, m_connman); return; } if (msg_type == NetMsgType::NOTFOUND) { std::vector vInv; vRecv >> vInv; if (vInv.size() <= MAX_PEER_TX_ANNOUNCEMENTS + MAX_BLOCKS_IN_TRANSIT_PER_PEER) { LOCK(::cs_main); for (CInv &inv : vInv) { if (inv.IsMsgTx()) { // If we receive a NOTFOUND message for a tx we requested, // mark the announcement for it as completed in - // TxRequestTracker. + // InvRequestTracker. m_txrequest.ReceivedResponse(pfrom.GetId(), TxId(inv.hash)); } } } return; } // Ignore unknown commands for extensibility LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId()); return; } bool PeerManager::MaybeDiscourageAndDisconnect(CNode &pnode) { const NodeId peer_id{pnode.GetId()}; PeerRef peer = GetPeerRef(peer_id); if (peer == nullptr) { return false; } { LOCK(peer->m_misbehavior_mutex); // There's nothing to do if the m_should_discourage flag isn't set if (!peer->m_should_discourage) { return false; } peer->m_should_discourage = false; } // peer.m_misbehavior_mutex if (pnode.HasPermission(PF_NOBAN)) { // We never disconnect or discourage peers for bad behavior if they have // the NOBAN permission flag LogPrintf("Warning: not punishing noban peer %d!\n", peer_id); return false; } if (pnode.IsManualConn()) { // We never disconnect or discourage manual peers for bad behavior LogPrintf("Warning: not punishing manually connected peer %d!\n", peer_id); return false; } if (pnode.addr.IsLocal()) { // We disconnect local peers for bad behavior but don't discourage // (since that would discourage all peers on the same local address) LogPrintf( "Warning: disconnecting but not discouraging local peer %d!\n", peer_id); pnode.fDisconnect = true; return true; } // Normal case: Disconnect the peer and discourage all nodes sharing the // address LogPrintf("Disconnecting and discouraging peer %d!\n", peer_id); if (m_banman) { m_banman->Discourage(pnode.addr); } m_connman.DisconnectNode(pnode.addr); return true; } bool PeerManager::ProcessMessages(const Config &config, CNode *pfrom, std::atomic &interruptMsgProc) { // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fMoreWork = false; if (!pfrom->vRecvGetData.empty()) { ProcessGetData(config, *pfrom, m_connman, m_mempool, interruptMsgProc); } if (!pfrom->orphan_work_set.empty()) { LOCK2(cs_main, g_cs_orphans); ProcessOrphanTx(config, pfrom->orphan_work_set); } if (pfrom->fDisconnect) { return false; } // this maintains the order of responses and prevents vRecvGetData from // growing unbounded if (!pfrom->vRecvGetData.empty()) { return true; } if (!pfrom->orphan_work_set.empty()) { return true; } // Don't bother if send buffer is too full to respond anyway if (pfrom->fPauseSend) { return false; } std::list msgs; { LOCK(pfrom->cs_vProcessMsg); if (pfrom->vProcessMsg.empty()) { return false; } // Just take one message msgs.splice(msgs.begin(), pfrom->vProcessMsg, pfrom->vProcessMsg.begin()); pfrom->nProcessQueueSize -= msgs.front().m_raw_message_size; pfrom->fPauseRecv = pfrom->nProcessQueueSize > m_connman.GetReceiveFloodSize(); fMoreWork = !pfrom->vProcessMsg.empty(); } CNetMessage &msg(msgs.front()); msg.SetVersion(pfrom->GetCommonVersion()); // Check network magic if (!msg.m_valid_netmagic) { LogPrint(BCLog::NET, "PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", SanitizeString(msg.m_command), pfrom->GetId()); // Make sure we discourage where that come from for some time. if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); pfrom->fDisconnect = true; return false; } // Check header if (!msg.m_valid_header) { LogPrint(BCLog::NET, "PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", SanitizeString(msg.m_command), pfrom->GetId()); return fMoreWork; } const std::string &msg_type = msg.m_command; // Message size unsigned int nMessageSize = msg.m_message_size; // Checksum CDataStream &vRecv = msg.m_recv; if (!msg.m_valid_checksum) { LogPrint(BCLog::NET, "%s(%s, %u bytes): CHECKSUM ERROR peer=%d\n", __func__, SanitizeString(msg_type), nMessageSize, pfrom->GetId()); if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); return fMoreWork; } try { ProcessMessage(config, *pfrom, msg_type, vRecv, msg.m_time, interruptMsgProc); if (interruptMsgProc) { return false; } if (!pfrom->vRecvGetData.empty()) { fMoreWork = true; } } catch (const std::exception &e) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg_type), nMessageSize, e.what(), typeid(e).name()); } catch (...) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg_type), nMessageSize); } return fMoreWork; } void PeerManager::ConsiderEviction(CNode &pto, int64_t time_in_seconds) { AssertLockHeld(cs_main); CNodeState &state = *State(pto.GetId()); const CNetMsgMaker msgMaker(pto.GetCommonVersion()); if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) { // This is an outbound peer subject to disconnection if they don't // announce a block with as much work as the current tip within // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if their // chain has more work than ours, we should sync to it, unless it's // invalid, in which case we should find that out and disconnect from // them elsewhere). if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= ::ChainActive().Tip()->nChainWork) { if (state.m_chain_sync.m_timeout != 0) { state.m_chain_sync.m_timeout = 0; state.m_chain_sync.m_work_header = nullptr; state.m_chain_sync.m_sent_getheaders = false; } } else if (state.m_chain_sync.m_timeout == 0 || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) { // Our best block known by this peer is behind our tip, and we're // either noticing that for the first time, OR this peer was able to // catch up to some earlier point where we checked against our tip. // Either way, set a new timeout based on current tip. state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT; state.m_chain_sync.m_work_header = ::ChainActive().Tip(); state.m_chain_sync.m_sent_getheaders = false; } else if (state.m_chain_sync.m_timeout > 0 && time_in_seconds > state.m_chain_sync.m_timeout) { // No evidence yet that our peer has synced to a chain with work // equal to that of our tip, when we first detected it was behind. // Send a single getheaders message to give the peer a chance to // update us. if (state.m_chain_sync.m_sent_getheaders) { // They've run out of time to catch up! LogPrintf( "Disconnecting outbound peer %d for old chain, best known " "block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : ""); pto.fDisconnect = true; } else { assert(state.m_chain_sync.m_work_header); LogPrint( BCLog::NET, "sending getheaders to outbound peer=%d to verify chain " "work (current best known block:%s, benchmark blockhash: " "%s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "", state.m_chain_sync.m_work_header->GetBlockHash() .ToString()); m_connman.PushMessage( &pto, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator( state.m_chain_sync.m_work_header->pprev), uint256())); state.m_chain_sync.m_sent_getheaders = true; // 2 minutes constexpr int64_t HEADERS_RESPONSE_TIME = 120; // Bump the timeout to allow a response, which could clear the // timeout (if the response shows the peer has synced), reset // the timeout (if the peer syncs to the required work but not // to our tip), or result in disconnect (if we advance to the // timeout and pindexBestKnownBlock has not sufficiently // progressed) state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME; } } } } void PeerManager::EvictExtraOutboundPeers(int64_t time_in_seconds) { // Check whether we have too many outbound peers int extra_peers = m_connman.GetExtraOutboundCount(); if (extra_peers <= 0) { return; } // If we have more outbound peers than we target, disconnect one. // Pick the outbound peer that least recently announced us a new block, with // ties broken by choosing the more recent connection (higher node id) NodeId worst_peer = -1; int64_t oldest_block_announcement = std::numeric_limits::max(); m_connman.ForEachNode([&](CNode *pnode) { AssertLockHeld(cs_main); // Ignore non-outbound peers, or nodes marked for disconnect already if (!pnode->IsOutboundOrBlockRelayConn() || pnode->fDisconnect) { return; } CNodeState *state = State(pnode->GetId()); if (state == nullptr) { // shouldn't be possible, but just in case return; } // Don't evict our protected peers if (state->m_chain_sync.m_protect) { return; } // Don't evict our block-relay-only peers. if (pnode->m_tx_relay == nullptr) { return; } if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) { worst_peer = pnode->GetId(); oldest_block_announcement = state->m_last_block_announcement; } }); if (worst_peer == -1) { return; } bool disconnected = m_connman.ForNode(worst_peer, [&](CNode *pnode) { AssertLockHeld(cs_main); // Only disconnect a peer that has been connected to us for some // reasonable fraction of our check-frequency, to give it time for new // information to have arrived. // Also don't disconnect any peer we're trying to download a block from. CNodeState &state = *State(pnode->GetId()); if (time_in_seconds - pnode->nTimeConnected > MINIMUM_CONNECT_TIME && state.nBlocksInFlight == 0) { LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block " "announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement); pnode->fDisconnect = true; return true; } else { LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction " "(connect time: %d, blocks_in_flight: %d)\n", pnode->GetId(), pnode->nTimeConnected, state.nBlocksInFlight); return false; } }); if (disconnected) { // If we disconnected an extra peer, that means we successfully // connected to at least one peer after the last time we detected a // stale tip. Don't try any more extra peers until we next detect a // stale tip, to limit the load we put on the network from these extra // connections. m_connman.SetTryNewOutboundPeer(false); } } void PeerManager::CheckForStaleTipAndEvictPeers( const Consensus::Params &consensusParams) { LOCK(cs_main); int64_t time_in_seconds = GetTime(); EvictExtraOutboundPeers(time_in_seconds); if (time_in_seconds <= m_stale_tip_check_time) { return; } // Check whether our tip is stale, and if so, allow using an extra outbound // peer. if (!fImporting && !fReindex && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale(consensusParams)) { LogPrintf("Potential stale tip detected, will try using extra outbound " "peer (last tip update: %d seconds ago)\n", time_in_seconds - g_last_tip_update); m_connman.SetTryNewOutboundPeer(true); } else if (m_connman.GetTryNewOutboundPeer()) { m_connman.SetTryNewOutboundPeer(false); } m_stale_tip_check_time = time_in_seconds + STALE_CHECK_INTERVAL; } namespace { class CompareInvMempoolOrder { CTxMemPool *mp; public: explicit CompareInvMempoolOrder(CTxMemPool *_mempool) { mp = _mempool; } bool operator()(std::set::iterator a, std::set::iterator b) { /** * As std::make_heap produces a max-heap, we want the entries with the * fewest ancestors/highest fee to sort later. */ return mp->CompareDepthAndScore(*b, *a); } }; } // namespace bool PeerManager::SendMessages(const Config &config, CNode *pto, std::atomic &interruptMsgProc) { const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll // disconnect misbehaving peers even before the version handshake is // complete. if (MaybeDiscourageAndDisconnect(*pto)) { return true; } // Don't send anything until the version handshake is complete if (!pto->fSuccessfullyConnected || pto->fDisconnect) { return true; } // If we get here, the outgoing message serialization version is set and // can't change. const CNetMsgMaker msgMaker(pto->GetCommonVersion()); // // Message: ping // bool pingSend = false; if (pto->fPingQueued) { // RPC ping request by user pingSend = true; } if (pto->nPingNonceSent == 0 && pto->m_ping_start.load() + PING_INTERVAL < GetTime()) { // Ping automatically sent as a latency probe & keepalive. pingSend = true; } if (pingSend) { uint64_t nonce = 0; while (nonce == 0) { GetRandBytes((uint8_t *)&nonce, sizeof(nonce)); } pto->fPingQueued = false; pto->m_ping_start = GetTime(); if (pto->GetCommonVersion() > BIP0031_VERSION) { pto->nPingNonceSent = nonce; m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::PING, nonce)); } else { // Peer is too old to support ping command with nonce, pong will // never arrive. pto->nPingNonceSent = 0; m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::PING)); } } auto current_time = GetTime(); bool fFetch; { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Address refresh broadcast if (pto->IsAddrRelayPeer() && !::ChainstateActive().IsInitialBlockDownload() && pto->m_next_local_addr_send < current_time) { AdvertiseLocal(pto); pto->m_next_local_addr_send = PoissonNextSend( current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL); } // // Message: addr // if (pto->IsAddrRelayPeer() && pto->m_next_addr_send < current_time) { pto->m_next_addr_send = PoissonNextSend(current_time, AVG_ADDRESS_BROADCAST_INTERVAL); std::vector vAddr; vAddr.reserve(pto->vAddrToSend.size()); assert(pto->m_addr_known); const char *msg_type; int make_flags; if (pto->m_wants_addrv2) { msg_type = NetMsgType::ADDRV2; make_flags = ADDRV2_FORMAT; } else { msg_type = NetMsgType::ADDR; make_flags = 0; } for (const CAddress &addr : pto->vAddrToSend) { if (!pto->m_addr_known->contains(addr.GetKey())) { pto->m_addr_known->insert(addr.GetKey()); vAddr.push_back(addr); // receiver rejects addr messages larger than 1000 if (vAddr.size() >= 1000) { m_connman.PushMessage( pto, msgMaker.Make(make_flags, msg_type, vAddr)); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) { m_connman.PushMessage( pto, msgMaker.Make(make_flags, msg_type, vAddr)); } // we only send the big addr message once if (pto->vAddrToSend.capacity() > 40) { pto->vAddrToSend.shrink_to_fit(); } } // Start block sync if (pindexBestHeader == nullptr) { pindexBestHeader = ::ChainActive().Tip(); } // Download if this is a nice peer, or we have no nice peers and this // one might do. fFetch = state.fPreferredDownload || (nPreferredDownload == 0 && !pto->fClient && !pto->IsAddrFetchConn()); if (!state.fSyncStarted && !pto->fClient && !fImporting && !fReindex) { // Only actively request headers from a single peer, unless we're // close to today. if ((nSyncStarted == 0 && fFetch) || pindexBestHeader->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) { state.fSyncStarted = true; state.nHeadersSyncTimeout = count_microseconds(current_time) + HEADERS_DOWNLOAD_TIMEOUT_BASE + HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER * (GetAdjustedTime() - pindexBestHeader->GetBlockTime()) / (consensusParams.nPowTargetSpacing); nSyncStarted++; const CBlockIndex *pindexStart = pindexBestHeader; /** * If possible, start at the block preceding the currently best * known header. This ensures that we always get a non-empty * list of headers back as long as the peer is up-to-date. With * a non-empty response, we can initialise the peer's known best * block. This wouldn't be possible if we requested starting at * pindexBestHeader and got back an empty response. */ if (pindexStart->pprev) { pindexStart = pindexStart->pprev; } LogPrint( BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), pto->nStartingHeight); m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexStart), uint256())); } } // // Try sending block announcements via headers // { // If we have less than MAX_BLOCKS_TO_ANNOUNCE in our list of block // hashes we're relaying, and our peer wants headers announcements, // then find the first header not yet known to our peer but would // connect, and send. If no header would connect, or if we have too // many blocks, or if the peer doesn't want headers, just add all to // the inv queue. LOCK(pto->cs_inventory); std::vector vHeaders; bool fRevertToInv = ((!state.fPreferHeaders && (!state.fPreferHeaderAndIDs || pto->vBlockHashesToAnnounce.size() > 1)) || pto->vBlockHashesToAnnounce.size() > MAX_BLOCKS_TO_ANNOUNCE); // last header queued for delivery const CBlockIndex *pBestIndex = nullptr; // ensure pindexBestKnownBlock is up-to-date ProcessBlockAvailability(pto->GetId()); if (!fRevertToInv) { bool fFoundStartingHeader = false; // Try to find first header that our peer doesn't have, and then // send all headers past that one. If we come across an headers // that aren't on ::ChainActive(), give up. for (const BlockHash &hash : pto->vBlockHashesToAnnounce) { const CBlockIndex *pindex = LookupBlockIndex(hash); assert(pindex); if (::ChainActive()[pindex->nHeight] != pindex) { // Bail out if we reorged away from this block fRevertToInv = true; break; } if (pBestIndex != nullptr && pindex->pprev != pBestIndex) { // This means that the list of blocks to announce don't // connect to each other. This shouldn't really be // possible to hit during regular operation (because // reorgs should take us to a chain that has some block // not on the prior chain, which should be caught by the // prior check), but one way this could happen is by // using invalidateblock / reconsiderblock repeatedly on // the tip, causing it to be added multiple times to // vBlockHashesToAnnounce. Robustly deal with this rare // situation by reverting to an inv. fRevertToInv = true; break; } pBestIndex = pindex; if (fFoundStartingHeader) { // add this to the headers message vHeaders.push_back(pindex->GetBlockHeader()); } else if (PeerHasHeader(&state, pindex)) { // Keep looking for the first new block. continue; } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) { // Peer doesn't have this header but they do have the // prior one. Start sending headers. fFoundStartingHeader = true; vHeaders.push_back(pindex->GetBlockHeader()); } else { // Peer doesn't have this header or the prior one -- // nothing will connect, so bail out. fRevertToInv = true; break; } } } if (!fRevertToInv && !vHeaders.empty()) { if (vHeaders.size() == 1 && state.fPreferHeaderAndIDs) { // We only send up to 1 block as header-and-ids, as // otherwise probably means we're doing an initial-ish-sync // or they're slow. LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); int nSendFlags = 0; bool fGotBlockFromCache = false; { LOCK(cs_most_recent_block); if (most_recent_block_hash == pBestIndex->GetBlockHash()) { CBlockHeaderAndShortTxIDs cmpctblock( *most_recent_block); m_connman.PushMessage( pto, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); fGotBlockFromCache = true; } } if (!fGotBlockFromCache) { CBlock block; bool ret = ReadBlockFromDisk(block, pBestIndex, consensusParams); assert(ret); CBlockHeaderAndShortTxIDs cmpctblock(block); m_connman.PushMessage( pto, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } state.pindexBestHeaderSent = pBestIndex; } else if (state.fPreferHeaders) { if (vHeaders.size() > 1) { LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__, vHeaders.size(), vHeaders.front().GetHash().ToString(), vHeaders.back().GetHash().ToString(), pto->GetId()); } else { LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); } m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); state.pindexBestHeaderSent = pBestIndex; } else { fRevertToInv = true; } } if (fRevertToInv) { // If falling back to using an inv, just try to inv the tip. The // last entry in vBlockHashesToAnnounce was our tip at some // point in the past. if (!pto->vBlockHashesToAnnounce.empty()) { const BlockHash &hashToAnnounce = pto->vBlockHashesToAnnounce.back(); const CBlockIndex *pindex = LookupBlockIndex(hashToAnnounce); assert(pindex); // Warn if we're announcing a block that is not on the main // chain. This should be very rare and could be optimized // out. Just log for now. if (::ChainActive()[pindex->nHeight] != pindex) { LogPrint( BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n", hashToAnnounce.ToString(), ::ChainActive().Tip()->GetBlockHash().ToString()); } // If the peer's chain has this block, don't inv it back. if (!PeerHasHeader(&state, pindex)) { pto->vInventoryBlockToSend.push_back(hashToAnnounce); LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__, pto->GetId(), hashToAnnounce.ToString()); } } } pto->vBlockHashesToAnnounce.clear(); } } // release cs_main // // Message: inventory // std::vector vInv; auto addInvAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { vInv.emplace_back(type, hash); if (vInv.size() == MAX_INV_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::INV, std::move(vInv))); vInv.clear(); } }; { LOCK2(cs_main, pto->cs_inventory); vInv.reserve(std::max(pto->vInventoryBlockToSend.size(), INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000)); // Add blocks for (const BlockHash &hash : pto->vInventoryBlockToSend) { addInvAndMaybeFlush(MSG_BLOCK, hash); } pto->vInventoryBlockToSend.clear(); if (pto->m_tx_relay != nullptr) { LOCK(pto->m_tx_relay->cs_tx_inventory); // Check whether periodic sends should happen bool fSendTrickle = pto->HasPermission(PF_NOBAN); if (pto->m_tx_relay->nNextInvSend < current_time) { fSendTrickle = true; if (pto->IsInboundConn()) { pto->m_tx_relay->nNextInvSend = std::chrono::microseconds{ m_connman.PoissonNextSendInbound( count_microseconds(current_time), INVENTORY_BROADCAST_INTERVAL)}; } else { // Skip delay for outbound peers, as there is less // privacy concern for them. pto->m_tx_relay->nNextInvSend = current_time; } } // Time to send but the peer has requested we not relay // transactions. if (fSendTrickle) { LOCK(pto->m_tx_relay->cs_filter); if (!pto->m_tx_relay->fRelayTxes) { pto->m_tx_relay->setInventoryTxToSend.clear(); } } // Respond to BIP35 mempool requests if (fSendTrickle && pto->m_tx_relay->fSendMempool) { auto vtxinfo = m_mempool.infoAll(); pto->m_tx_relay->fSendMempool = false; CFeeRate filterrate; { LOCK(pto->m_tx_relay->cs_feeFilter); filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter); } LOCK(pto->m_tx_relay->cs_filter); for (const auto &txinfo : vtxinfo) { const TxId &txid = txinfo.tx->GetId(); pto->m_tx_relay->setInventoryTxToSend.erase(txid); // Don't send transactions that peers will not put into // their mempool if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (pto->m_tx_relay->pfilter && !pto->m_tx_relay->pfilter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } pto->m_tx_relay->filterInventoryKnown.insert(txid); // Responses to MEMPOOL requests bypass the // m_recently_announced_invs filter. addInvAndMaybeFlush(MSG_TX, txid); } pto->m_tx_relay->m_last_mempool_req = GetTime(); } // Determine transactions to relay if (fSendTrickle) { // Produce a vector with all candidates for sending std::vector::iterator> vInvTx; vInvTx.reserve(pto->m_tx_relay->setInventoryTxToSend.size()); for (std::set::iterator it = pto->m_tx_relay->setInventoryTxToSend.begin(); it != pto->m_tx_relay->setInventoryTxToSend.end(); it++) { vInvTx.push_back(it); } CFeeRate filterrate; { LOCK(pto->m_tx_relay->cs_feeFilter); filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter); } // Topologically and fee-rate sort the inventory we send for // privacy and priority reasons. A heap is used so that not // all items need sorting if only a few are being sent. CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool); std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); // No reason to drain out at many times the network's // capacity, especially since we have many peers and some // will draw much shorter delays. unsigned int nRelayedTransactions = 0; LOCK(pto->m_tx_relay->cs_filter); while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000) { // Fetch the top element from the heap std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); std::set::iterator it = vInvTx.back(); vInvTx.pop_back(); const TxId txid = *it; // Remove it from the to-be-sent set pto->m_tx_relay->setInventoryTxToSend.erase(it); // Check if not in the filter already if (pto->m_tx_relay->filterInventoryKnown.contains(txid)) { continue; } // Not in the mempool anymore? don't bother sending it. auto txinfo = m_mempool.info(txid); if (!txinfo.tx) { continue; } // Peer told you to not send transactions at that // feerate? Don't bother sending it. if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (pto->m_tx_relay->pfilter && !pto->m_tx_relay->pfilter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } // Send State(pto->GetId())->m_recently_announced_invs.insert(txid); addInvAndMaybeFlush(MSG_TX, txid); nRelayedTransactions++; { // Expire old relay messages while (!vRelayExpiration.empty() && vRelayExpiration.front().first < count_microseconds(current_time)) { mapRelay.erase(vRelayExpiration.front().second); vRelayExpiration.pop_front(); } auto ret = mapRelay.insert( std::make_pair(txid, std::move(txinfo.tx))); if (ret.second) { vRelayExpiration.push_back(std::make_pair( count_microseconds(current_time) + std::chrono::microseconds{ RELAY_TX_CACHE_TIME} .count(), ret.first)); } } pto->m_tx_relay->filterInventoryKnown.insert(txid); } } } } // release cs_main, pto->cs_inventory if (!vInv.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv)); } { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Detect whether we're stalling current_time = GetTime(); if (state.nStallingSince && state.nStallingSince < count_microseconds(current_time) - 1000000 * BLOCK_STALLING_TIMEOUT) { // Stalling only triggers when the block download window cannot // move. During normal steady state, the download window should be // much larger than the to-be-downloaded set of blocks, so // disconnection should only happen during initial block download. LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } // In case there is a block that has been in flight from this peer for 2 // + 0.5 * N times the block interval (with N the number of peers from // which we're downloading validated blocks), disconnect due to timeout. // We compensate for other peers to prevent killing off peers due to our // own downstream link being saturated. We only count validated // in-flight blocks so peers can't advertise non-existing block hashes // to unreasonably increase our timeout. if (state.vBlocksInFlight.size() > 0) { QueuedBlock &queuedBlock = state.vBlocksInFlight.front(); int nOtherPeersWithValidatedDownloads = nPeersWithValidatedDownloads - (state.nBlocksInFlightValidHeaders > 0); if (count_microseconds(current_time) > state.nDownloadingSince + consensusParams.nPowTargetSpacing * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) { LogPrintf("Timeout downloading block %s from peer=%d, " "disconnecting\n", queuedBlock.hash.ToString(), pto->GetId()); pto->fDisconnect = true; return true; } } // Check for headers sync timeouts if (state.fSyncStarted && state.nHeadersSyncTimeout < std::numeric_limits::max()) { // Detect whether this is a stalling initial-headers-sync peer if (pindexBestHeader->GetBlockTime() <= GetAdjustedTime() - 24 * 60 * 60) { if (count_microseconds(current_time) > state.nHeadersSyncTimeout && nSyncStarted == 1 && (nPreferredDownload - state.fPreferredDownload >= 1)) { // Disconnect a (non-whitelisted) peer if it is our only // sync peer, and we have others we could be using instead. // Note: If all our peers are inbound, then we won't // disconnect our sync peer for stalling; we have bigger // problems if we can't get any outbound peers. if (!pto->HasPermission(PF_NOBAN)) { LogPrintf("Timeout downloading headers from peer=%d, " "disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } else { LogPrintf( "Timeout downloading headers from whitelisted " "peer=%d, not disconnecting\n", pto->GetId()); // Reset the headers sync state so that we have a chance // to try downloading from a different peer. Note: this // will also result in at least one more getheaders // message to be sent to this peer (eventually). state.fSyncStarted = false; nSyncStarted--; state.nHeadersSyncTimeout = 0; } } } else { // After we've caught up once, reset the timeout so we can't // trigger disconnect later. state.nHeadersSyncTimeout = std::numeric_limits::max(); } } // Check that outbound peers have reasonable chains GetTime() is used by // this anti-DoS logic so we can test this using mocktime. ConsiderEviction(*pto, GetTime()); } // release cs_main std::vector vGetData; // // Message: getdata (blocks) // { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); if (!pto->fClient && ((fFetch && !pto->m_limited_node) || !::ChainstateActive().IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) { std::vector vToDownload; NodeId staller = -1; FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller, consensusParams); for (const CBlockIndex *pindex : vToDownload) { vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); MarkBlockAsInFlight(config, m_mempool, pto->GetId(), pindex->GetBlockHash(), consensusParams, pindex); LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(), pindex->nHeight, pto->GetId()); } if (state.nBlocksInFlight == 0 && staller != -1) { if (State(staller)->nStallingSince == 0) { State(staller)->nStallingSince = count_microseconds(current_time); LogPrint(BCLog::NET, "Stall started peer=%d\n", staller); } } } } // release cs_main auto addGetDataAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { CInv inv(type, hash); LogPrint(BCLog::NET, "Requesting %s from peer=%d\n", inv.ToString(), pto->GetId()); vGetData.push_back(std::move(inv)); if (vGetData.size() >= MAX_GETDATA_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::GETDATA, std::move(vGetData))); vGetData.clear(); } }; // // Message: getdata (transactions) // { LOCK(cs_main); std::vector> expired; auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired); for (const auto &entry : expired) { LogPrint(BCLog::NET, "timeout of inflight tx %s from peer=%d\n", entry.second.ToString(), entry.first); } for (const TxId &txid : requestable) { if (!AlreadyHaveTx(txid, m_mempool)) { addGetDataAndMaybeFlush(MSG_TX, txid); - m_txrequest.RequestedTx(pto->GetId(), txid, - current_time + GETDATA_TX_INTERVAL); + m_txrequest.RequestedData(pto->GetId(), txid, + current_time + GETDATA_TX_INTERVAL); } else { // We have already seen this transaction, no need to download. // This is just a belt-and-suspenders, as this should already be // called whenever a transaction becomes AlreadyHaveTx(). - m_txrequest.ForgetTxId(txid); + m_txrequest.ForgetInvId(txid); } } if (!vGetData.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } // // Message: feefilter // // peers with the forcerelay permission should not filter txs to us if (pto->m_tx_relay != nullptr && pto->GetCommonVersion() >= FEEFILTER_VERSION && gArgs.GetBoolArg("-feefilter", DEFAULT_FEEFILTER) && !pto->HasPermission(PF_FORCERELAY)) { Amount currentFilter = m_mempool .GetMinFee( gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000) .GetFeePerK(); static FeeFilterRounder g_filter_rounder{ CFeeRate{DEFAULT_MIN_RELAY_TX_FEE_PER_KB}}; if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // Received tx-inv messages are discarded when the active // chainstate is in IBD, so tell the peer to not send them. currentFilter = MAX_MONEY; } else { static const Amount MAX_FILTER{ g_filter_rounder.round(MAX_MONEY)}; if (pto->m_tx_relay->lastSentFeeFilter == MAX_FILTER) { // Send the current filter if we sent MAX_FILTER previously // and made it out of IBD. pto->m_tx_relay->nextSendTimeFeeFilter = count_microseconds(current_time) - 1; } } if (count_microseconds(current_time) > pto->m_tx_relay->nextSendTimeFeeFilter) { Amount filterToSend = g_filter_rounder.round(currentFilter); filterToSend = std::max(filterToSend, ::minRelayTxFee.GetFeePerK()); if (filterToSend != pto->m_tx_relay->lastSentFeeFilter) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::FEEFILTER, filterToSend)); pto->m_tx_relay->lastSentFeeFilter = filterToSend; } pto->m_tx_relay->nextSendTimeFeeFilter = PoissonNextSend(count_microseconds(current_time), AVG_FEEFILTER_BROADCAST_INTERVAL); } // If the fee filter has changed substantially and it's still more // than MAX_FEEFILTER_CHANGE_DELAY until scheduled broadcast, then // move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY. else if (count_microseconds(current_time) + MAX_FEEFILTER_CHANGE_DELAY * 1000000 < pto->m_tx_relay->nextSendTimeFeeFilter && (currentFilter < 3 * pto->m_tx_relay->lastSentFeeFilter / 4 || currentFilter > 4 * pto->m_tx_relay->lastSentFeeFilter / 3)) { pto->m_tx_relay->nextSendTimeFeeFilter = count_microseconds(current_time) + GetRandInt(MAX_FEEFILTER_CHANGE_DELAY) * 1000000; } } } // release cs_main return true; } class CNetProcessingCleanup { public: CNetProcessingCleanup() {} ~CNetProcessingCleanup() { // orphan transactions mapOrphanTransactions.clear(); mapOrphanTransactionsByPrev.clear(); } }; static CNetProcessingCleanup instance_of_cnetprocessingcleanup; diff --git a/src/net_processing.h b/src/net_processing.h index 0442d0182..f10bbda12 100644 --- a/src/net_processing.h +++ b/src/net_processing.h @@ -1,229 +1,229 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NET_PROCESSING_H #define BITCOIN_NET_PROCESSING_H #include #include #include #include #include extern RecursiveMutex cs_main; extern RecursiveMutex g_cs_orphans; class BlockTransactionsRequest; class BlockValidationState; class CBlockHeader; class CTxMemPool; class ChainstateManager; class Config; class TxValidationState; /** * Default for -maxorphantx, maximum number of orphan transactions kept in * memory. */ static const unsigned int DEFAULT_MAX_ORPHAN_TRANSACTIONS = 100; /** * Default number of orphan+recently-replaced txn to keep around for block * reconstruction. */ static const unsigned int DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN = 100; static const bool DEFAULT_PEERBLOCKFILTERS = false; /** Threshold for marking a node to be discouraged, e.g. disconnected and added * to the discouragement filter. */ static const int DISCOURAGEMENT_THRESHOLD{100}; class PeerManager final : public CValidationInterface, public NetEventsInterface { public: PeerManager(const CChainParams &chainparams, CConnman &connman, BanMan *banman, CScheduler &scheduler, ChainstateManager &chainman, CTxMemPool &pool); /** * Overridden from CValidationInterface. */ void BlockConnected(const std::shared_ptr &pblock, const CBlockIndex *pindexConnected) override; void BlockDisconnected(const std::shared_ptr &block, const CBlockIndex *pindex) override; /** * Overridden from CValidationInterface. */ void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override; /** * Overridden from CValidationInterface. */ void BlockChecked(const CBlock &block, const BlockValidationState &state) override; /** * Overridden from CValidationInterface. */ void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr &pblock) override; /** * Initialize a peer by adding it to mapNodeState and pushing a message * requesting its version. */ void InitializeNode(const Config &config, CNode *pnode) override; /** * Handle removal of a peer by updating various state and removing it from * mapNodeState. */ void FinalizeNode(const Config &config, NodeId nodeid, bool &fUpdateConnectionTime) override; /** * Process protocol messages received from a given node. */ bool ProcessMessages(const Config &config, CNode *pfrom, std::atomic &interrupt) override; /** * Send queued protocol messages to be sent to a give node. * * @param[in] pto The node which we are sending messages to. * @param[in] interrupt Interrupt condition for processing threads * @return True if there is more work to be done */ bool SendMessages(const Config &config, CNode *pto, std::atomic &interrupt) override EXCLUSIVE_LOCKS_REQUIRED(pto->cs_sendProcessing); /** * Consider evicting an outbound peer based on the amount of time they've * been behind our tip. */ void ConsiderEviction(CNode &pto, int64_t time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Evict extra outbound peers. If we think our tip may be stale, connect to * an extra outbound. */ void CheckForStaleTipAndEvictPeers(const Consensus::Params &consensusParams); /** * If we have extra outbound peers, try to disconnect the one with the * oldest block announcement. */ void EvictExtraOutboundPeers(int64_t time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Process a single message from a peer. Public for fuzz testing */ void ProcessMessage(const Config &config, CNode &pfrom, const std::string &msg_type, CDataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic &interruptMsgProc); /** * Increment peer's misbehavior score. If the new value >= * DISCOURAGEMENT_THRESHOLD, mark the node to be discouraged, meaning the * peer might be disconnected and added to the discouragement filter. Public * for unit testing. */ void Misbehaving(const NodeId pnode, const int howmuch, const std::string &message); /** * Retrieve unbroadcast transactions from the mempool and reattempt * sending to peers */ void ReattemptInitialBroadcast(CScheduler &scheduler) const; private: // overloaded variant of above to operate on CNode*s void Misbehaving(const CNode &node, int howmuch, const std::string &message) { Misbehaving(node.GetId(), howmuch, message); } /** * Potentially mark a node discouraged based on the contents of a * BlockValidationState object * * @param[in] via_compact_block this bool is passed in because * net_processing should punish peers differently depending on whether the * data was provided in a compact block message or not. If the compact block * had a valid header, but contained invalid txs, the peer should not be * punished. See BIP 152. * * @return Returns true if the peer was punished (probably disconnected) */ bool MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState &state, bool via_compact_block, const std::string &message = ""); /** * Potentially disconnect and discourage a node based on the contents of a * TxValidationState object * * @return Returns true if the peer was punished (probably disconnected) */ bool MaybePunishNodeForTx(NodeId nodeid, const TxValidationState &state, const std::string &message = ""); /** * Maybe disconnect a peer and discourage future connections from its * address. * * @param[in] pnode The node to check. * @return True if the peer was marked for disconnection in * this function */ bool MaybeDiscourageAndDisconnect(CNode &pnode); void ProcessOrphanTx(const Config &config, std::set &orphan_work_set) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans); /** Process a single headers message from a peer. */ void ProcessHeadersMessage(const Config &config, CNode &pfrom, const std::vector &headers, bool via_compact_block); void SendBlockTransactions(CNode &pfrom, const CBlock &block, const BlockTransactionsRequest &req); /** * Register with TxRequestTracker that an INV has been received from a * peer. The announcement parameters are decided in PeerManager and then * passed to TxRequestTracker. */ void AddTxAnnouncement(const CNode &node, const TxId &txid, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); const CChainParams &m_chainparams; CConnman &m_connman; /** * Pointer to this node's banman. May be nullptr - check existence before * dereferencing. */ BanMan *const m_banman; ChainstateManager &m_chainman; CTxMemPool &m_mempool; - TxRequestTracker m_txrequest GUARDED_BY(::cs_main); + InvRequestTracker m_txrequest GUARDED_BY(::cs_main); //! Next time to check for stale tip int64_t m_stale_tip_check_time; }; struct CNodeStateStats { int m_misbehavior_score = 0; int nSyncHeight = -1; int nCommonHeight = -1; std::vector vHeightInFlight; }; /** Get statistics from node state */ bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats); /** Relay transaction to every node */ void RelayTransaction(const TxId &txid, const CConnman &connman); #endif // BITCOIN_NET_PROCESSING_H diff --git a/src/test/fuzz/txrequest.cpp b/src/test/fuzz/txrequest.cpp index 8cc83ba91..2350a7407 100644 --- a/src/test/fuzz/txrequest.cpp +++ b/src/test/fuzz/txrequest.cpp @@ -1,406 +1,406 @@ // Copyright (c) 2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include namespace { constexpr int MAX_TXIDS = 16; constexpr int MAX_PEERS = 16; //! Randomly generated TxIds used in this test (length is MAX_TXIDS). TxId TXIDS[MAX_TXIDS]; //! Precomputed random durations (positive and negative, each ~exponentially //! distributed). std::chrono::microseconds DELAYS[256]; struct Initializer { Initializer() { for (uint8_t txid = 0; txid < MAX_TXIDS; txid += 1) { CSHA256().Write(&txid, 1).Finalize(TXIDS[txid].begin()); } int i = 0; // DELAYS[N] for N=0..15 is just N microseconds. for (; i < 16; ++i) { DELAYS[i] = std::chrono::microseconds{i}; } // DELAYS[N] for N=16..127 has randomly-looking but roughly // exponentially increasing values up to 198.416453 seconds. for (; i < 128; ++i) { int diff_bits = ((i - 10) * 2) / 9; uint64_t diff = 1 + (CSipHasher(0, 0).Write(i).Finalize() >> (64 - diff_bits)); DELAYS[i] = DELAYS[i - 1] + std::chrono::microseconds{diff}; } // DELAYS[N] for N=128..255 are negative delays with the same magnitude // as N=0..127. for (; i < 256; ++i) { DELAYS[i] = -DELAYS[255 - i]; } } } g_initializer; /** - * Tester class for TxRequestTracker + * Tester class for InvRequestTracker * * It includes a naive reimplementation of its behavior, for a limited set * of MAX_TXIDS distinct txids, and MAX_PEERS peer identifiers. * * All of the public member functions perform the same operation on - * an actual TxRequestTracker and on the state of the reimplementation. + * an actual InvRequestTracker and on the state of the reimplementation. * The output of GetRequestable is compared with the expected value * as well. * - * Check() calls the TxRequestTracker's sanity check, plus compares the + * Check() calls the InvRequestTracker's sanity check, plus compares the * output of the constant accessors (Size(), CountLoad(), CountTracked()) * with expected values. */ class Tester { - //! TxRequestTracker object being tested. - TxRequestTracker m_tracker; + //! InvRequestTracker object being tested. + InvRequestTracker m_tracker; //! States for txid/peer combinations in the naive data structure. enum class State { //! Absence of this txid/peer combination NOTHING, // Note that this implementation does not distinguish between // DELAYED/READY/BEST variants of CANDIDATE. CANDIDATE, REQUESTED, COMPLETED, }; //! Sequence numbers, incremented whenever a new CANDIDATE is added. uint64_t m_current_sequence{0}; //! List of future 'events' (all inserted reqtimes/exptimes). This is used //! to implement AdvanceToEvent. std::priority_queue, std::greater> m_events; //! Information about a txid/peer combination. struct Announcement { std::chrono::microseconds m_time; uint64_t m_sequence; State m_state{State::NOTHING}; bool m_preferred; //! Precomputed priority. uint64_t m_priority; }; //! Information about all txid/peer combination. Announcement m_announcements[MAX_TXIDS][MAX_PEERS]; //! The current time; can move forward and backward. std::chrono::microseconds m_now{244466666}; //! Delete txids whose only announcements are COMPLETED. void Cleanup(int txid) { bool all_nothing = true; for (int peer = 0; peer < MAX_PEERS; ++peer) { const Announcement &ann = m_announcements[txid][peer]; if (ann.m_state != State::NOTHING) { if (ann.m_state != State::COMPLETED) { return; } all_nothing = false; } } if (all_nothing) { return; } for (int peer = 0; peer < MAX_PEERS; ++peer) { m_announcements[txid][peer].m_state = State::NOTHING; } } //! Find the current best peer to request from for a txid (or -1 if none). int GetSelected(int txhash) const { int ret = -1; uint64_t ret_priority = 0; for (int peer = 0; peer < MAX_PEERS; ++peer) { const Announcement &ann = m_announcements[txhash][peer]; // Return -1 if there already is a (non-expired) in-flight request. if (ann.m_state == State::REQUESTED) { return -1; } // If it's a viable candidate, see if it has lower priority than the // best one so far. if (ann.m_state == State::CANDIDATE && ann.m_time <= m_now) { if (ret == -1 || ann.m_priority > ret_priority) { std::tie(ret, ret_priority) = std::tie(peer, ann.m_priority); } } } return ret; } public: Tester() : m_tracker(true) {} std::chrono::microseconds Now() const { return m_now; } void AdvanceTime(std::chrono::microseconds offset) { m_now += offset; while (!m_events.empty() && m_events.top() <= m_now) { m_events.pop(); } } void AdvanceToEvent() { while (!m_events.empty() && m_events.top() <= m_now) { m_events.pop(); } if (!m_events.empty()) { m_now = m_events.top(); m_events.pop(); } } void DisconnectedPeer(int peer) { // Apply to naive structure: all announcements for that peer are wiped. for (int txid = 0; txid < MAX_TXIDS; ++txid) { if (m_announcements[txid][peer].m_state != State::NOTHING) { m_announcements[txid][peer].m_state = State::NOTHING; Cleanup(txid); } } - // Call TxRequestTracker's implementation. + // Call InvRequestTracker's implementation. m_tracker.DisconnectedPeer(peer); } void ForgetTxId(int txid) { // Apply to naive structure: all announcements for that txid are wiped. for (int peer = 0; peer < MAX_PEERS; ++peer) { m_announcements[txid][peer].m_state = State::NOTHING; } Cleanup(txid); - // Call TxRequestTracker's implementation. - m_tracker.ForgetTxId(TXIDS[txid]); + // Call InvRequestTracker's implementation. + m_tracker.ForgetInvId(TXIDS[txid]); } void ReceivedInv(int peer, int txid, bool is_wtxid, bool preferred, std::chrono::microseconds reqtime) { // Apply to naive structure: if no announcement for txidnum/peer // combination already, create a new CANDIDATE; otherwise do nothing. Announcement &ann = m_announcements[txid][peer]; if (ann.m_state == State::NOTHING) { ann.m_preferred = preferred; ann.m_state = State::CANDIDATE; ann.m_time = reqtime; ann.m_sequence = m_current_sequence++; ann.m_priority = m_tracker.ComputePriority(TXIDS[txid], peer, ann.m_preferred); // Add event so that AdvanceToEvent can quickly jump to the point // where its reqtime passes. if (reqtime > m_now) { m_events.push(reqtime); } } - // Call TxRequestTracker's implementation. + // Call InvRequestTracker's implementation. m_tracker.ReceivedInv(peer, TXIDS[txid], preferred, reqtime); } void RequestedTx(int peer, int txid, std::chrono::microseconds exptime) { // Apply to naive structure: if a CANDIDATE announcement exists for // peer/txid, convert it to REQUESTED, and change any existing REQUESTED // announcement for the same txid to COMPLETED. if (m_announcements[txid][peer].m_state == State::CANDIDATE) { for (int peer2 = 0; peer2 < MAX_PEERS; ++peer2) { if (m_announcements[txid][peer2].m_state == State::REQUESTED) { m_announcements[txid][peer2].m_state = State::COMPLETED; } } m_announcements[txid][peer].m_state = State::REQUESTED; m_announcements[txid][peer].m_time = exptime; } // Add event so that AdvanceToEvent can quickly jump to the point where // its exptime passes. if (exptime > m_now) { m_events.push(exptime); } - // Call TxRequestTracker's implementation. - m_tracker.RequestedTx(peer, TXIDS[txid], exptime); + // Call InvRequestTracker's implementation. + m_tracker.RequestedData(peer, TXIDS[txid], exptime); } void ReceivedResponse(int peer, int txid) { // Apply to naive structure: convert anything to COMPLETED. if (m_announcements[txid][peer].m_state != State::NOTHING) { m_announcements[txid][peer].m_state = State::COMPLETED; Cleanup(txid); } - // Call TxRequestTracker's implementation. + // Call InvRequestTracker's implementation. m_tracker.ReceivedResponse(peer, TXIDS[txid]); } void GetRequestable(int peer) { // Implement using naive structure: //! list of (sequence number, txid) tuples. std::vector> result; std::vector> expected_expired; for (int txid = 0; txid < MAX_TXIDS; ++txid) { // Mark any expired REQUESTED announcements as COMPLETED. for (int peer2 = 0; peer2 < MAX_PEERS; ++peer2) { Announcement &ann2 = m_announcements[txid][peer2]; if (ann2.m_state == State::REQUESTED && ann2.m_time <= m_now) { expected_expired.emplace_back(peer2, TXIDS[txid]); ann2.m_state = State::COMPLETED; break; } } // And delete txids with only COMPLETED announcements left. Cleanup(txid); // CANDIDATEs for which this announcement has the highest priority // get returned. const Announcement &ann = m_announcements[txid][peer]; if (ann.m_state == State::CANDIDATE && GetSelected(txid) == peer) { result.emplace_back(ann.m_sequence, txid); } } // Sort the results by sequence number. std::sort(result.begin(), result.end()); std::sort(expected_expired.begin(), expected_expired.end()); - // Compare with TxRequestTracker's implementation. + // Compare with InvRequestTracker's implementation. std::vector> expired; const auto actual = m_tracker.GetRequestable(peer, m_now, &expired); std::sort(expired.begin(), expired.end()); assert(expired == expected_expired); m_tracker.PostGetRequestableSanityCheck(m_now); assert(result.size() == actual.size()); for (size_t pos = 0; pos < actual.size(); ++pos) { assert(TXIDS[std::get<1>(result[pos])] == actual[pos]); } } void Check() { // Compare CountTracked and CountLoad with naive structure. size_t total = 0; for (int peer = 0; peer < MAX_PEERS; ++peer) { size_t tracked = 0; size_t inflight = 0; size_t candidates = 0; for (int txid = 0; txid < MAX_TXIDS; ++txid) { tracked += m_announcements[txid][peer].m_state != State::NOTHING; inflight += m_announcements[txid][peer].m_state == State::REQUESTED; candidates += m_announcements[txid][peer].m_state == State::CANDIDATE; } assert(m_tracker.Count(peer) == tracked); assert(m_tracker.CountInFlight(peer) == inflight); assert(m_tracker.CountCandidates(peer) == candidates); total += tracked; } // Compare Size. assert(m_tracker.Size() == total); - // Invoke internal consistency check of TxRequestTracker object. + // Invoke internal consistency check of InvRequestTracker object. m_tracker.SanityCheck(); } }; } // namespace void test_one_input(const std::vector &buffer) { - // Tester object (which encapsulates a TxRequestTracker). + // Tester object (which encapsulates a InvRequestTracker). Tester tester; // Decode the input as a sequence of instructions with parameters auto it = buffer.begin(); while (it != buffer.end()) { int cmd = *(it++) % 11; int peer, txidnum, delaynum; switch (cmd) { case 0: // Make time jump to the next event (m_time of CANDIDATE or // REQUESTED) tester.AdvanceToEvent(); break; case 1: // Change time delaynum = it == buffer.end() ? 0 : *(it++); tester.AdvanceTime(DELAYS[delaynum]); break; case 2: // Query for requestable txs peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS; tester.GetRequestable(peer); break; case 3: // Peer went offline peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS; tester.DisconnectedPeer(peer); break; case 4: // No longer need tx txidnum = it == buffer.end() ? 0 : *(it++); tester.ForgetTxId(txidnum % MAX_TXIDS); break; case 5: // Received immediate preferred inv case 6: // Same, but non-preferred. peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS; txidnum = it == buffer.end() ? 0 : *(it++); tester.ReceivedInv(peer, txidnum % MAX_TXIDS, (txidnum / MAX_TXIDS) & 1, cmd & 1, std::chrono::microseconds::min()); break; case 7: // Received delayed preferred inv case 8: // Same, but non-preferred. peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS; txidnum = it == buffer.end() ? 0 : *(it++); delaynum = it == buffer.end() ? 0 : *(it++); tester.ReceivedInv(peer, txidnum % MAX_TXIDS, (txidnum / MAX_TXIDS) & 1, cmd & 1, tester.Now() + DELAYS[delaynum]); break; case 9: // Requested tx from peer peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS; txidnum = it == buffer.end() ? 0 : *(it++); delaynum = it == buffer.end() ? 0 : *(it++); tester.RequestedTx(peer, txidnum % MAX_TXIDS, tester.Now() + DELAYS[delaynum]); break; case 10: // Received response peer = it == buffer.end() ? 0 : *(it++) % MAX_PEERS; txidnum = it == buffer.end() ? 0 : *(it++); tester.ReceivedResponse(peer, txidnum % MAX_TXIDS); break; default: assert(false); } } tester.Check(); } diff --git a/src/test/txrequest_tests.cpp b/src/test/txrequest_tests.cpp index ea8e32303..4dccc241e 100644 --- a/src/test/txrequest_tests.cpp +++ b/src/test/txrequest_tests.cpp @@ -1,766 +1,766 @@ // Copyright (c) 2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include BOOST_FIXTURE_TEST_SUITE(txrequest_tests, BasicTestingSetup) namespace { constexpr std::chrono::microseconds MIN_TIME = std::chrono::microseconds::min(); constexpr std::chrono::microseconds MAX_TIME = std::chrono::microseconds::max(); constexpr std::chrono::microseconds MICROSECOND = std::chrono::microseconds{1}; constexpr std::chrono::microseconds NO_TIME = std::chrono::microseconds{0}; /** An Action is a function to call at a particular (simulated) timestamp. */ using Action = std::pair>; /** * Object that stores actions from multiple interleaved scenarios, and data * shared across them. * * The Scenario below is used to fill this. */ struct Runner { - /** The TxRequestTracker being tested. */ - TxRequestTracker txrequest; + /** The InvRequestTracker being tested. */ + InvRequestTracker txrequest; /** List of actions to be executed (in order of increasing timestamp). */ std::vector actions; /** Which node ids have been assigned already (to prevent reuse). */ std::set peerset; /** Which txids have been assigned already (to prevent reuse). */ std::set txidset; /** * Which (peer, txid) combinations are known to be expired. These need to be * accumulated here instead of checked directly in the GetRequestable return * value to avoid introducing a dependency between the various parallel * tests. */ std::multiset> expired; }; std::chrono::microseconds RandomTime8s() { return std::chrono::microseconds{1 + InsecureRandBits(23)}; } std::chrono::microseconds RandomTime1y() { return std::chrono::microseconds{1 + InsecureRandBits(45)}; } /** * A proxy for a Runner that helps build a sequence of consecutive test actions - * on a TxRequestTracker. + * on a InvRequestTracker. * * Each Scenario is a proxy through which actions for the (sequential) execution * of various tests are added to a Runner. The actions from multiple scenarios * are then run concurrently, resulting in these tests being performed against a - * TxRequestTracker in parallel. Every test has its own unique txids and + * InvRequestTracker in parallel. Every test has its own unique txids and * NodeIds which are not reused in other tests, and thus they should be * independent from each other. Running them in parallel however means that we * verify the behavior (w.r.t. one test's txids and NodeIds) even when the * state of the data structure is more complicated due to the presence of other * tests. */ class Scenario { Runner &m_runner; std::chrono::microseconds m_now; std::string m_testname; public: Scenario(Runner &runner, std::chrono::microseconds starttime) : m_runner(runner), m_now(starttime) {} /** Set a name for the current test, to give more clear error messages. */ void SetTestName(std::string testname) { m_testname = std::move(testname); } /** * Advance this Scenario's time; this affects the timestamps newly * scheduled events get. */ void AdvanceTime(std::chrono::microseconds amount) { assert(amount.count() >= 0); m_now += amount; } /** Schedule a ForgetTxId call at the Scheduler's current time. */ void ForgetTxId(const TxId &txid) { auto &runner = m_runner; runner.actions.emplace_back(m_now, [=, &runner]() { - runner.txrequest.ForgetTxId(txid); + runner.txrequest.ForgetInvId(txid); runner.txrequest.SanityCheck(); }); } /** Schedule a ReceivedInv call at the Scheduler's current time. */ void ReceivedInv(NodeId peer, const TxId &txid, bool pref, std::chrono::microseconds reqtime) { auto &runner = m_runner; runner.actions.emplace_back(m_now, [=, &runner]() { runner.txrequest.ReceivedInv(peer, txid, pref, reqtime); runner.txrequest.SanityCheck(); }); } /** Schedule a DisconnectedPeer call at the Scheduler's current time. */ void DisconnectedPeer(NodeId peer) { auto &runner = m_runner; runner.actions.emplace_back(m_now, [=, &runner]() { runner.txrequest.DisconnectedPeer(peer); runner.txrequest.SanityCheck(); }); } /** Schedule a RequestedTx call at the Scheduler's current time. */ void RequestedTx(NodeId peer, const TxId &txid, std::chrono::microseconds exptime) { auto &runner = m_runner; runner.actions.emplace_back(m_now, [=, &runner]() { - runner.txrequest.RequestedTx(peer, txid, exptime); + runner.txrequest.RequestedData(peer, txid, exptime); runner.txrequest.SanityCheck(); }); } /** Schedule a ReceivedResponse call at the Scheduler's current time. */ void ReceivedResponse(NodeId peer, const TxId &txid) { auto &runner = m_runner; runner.actions.emplace_back(m_now, [=, &runner]() { runner.txrequest.ReceivedResponse(peer, txid); runner.txrequest.SanityCheck(); }); } /** - * Schedule calls to verify the TxRequestTracker's state at the Scheduler's + * Schedule calls to verify the InvRequestTracker's state at the Scheduler's * current time. * * @param peer The peer whose state will be inspected. * @param expected The expected return value for GetRequestable(peer) * @param candidates The expected return value CountCandidates(peer) * @param inflight The expected return value CountInFlight(peer) * @param completed The expected return value of Count(peer), minus * candidates and inflight. * @param checkname An arbitrary string to include in error messages, for * test identificatrion. * @param offset Offset with the current time to use (must be <= 0). * This allows simulations of time going backwards (but note that the * ordering of this event only follows the scenario's m_now. */ void Check(NodeId peer, const std::vector &expected, size_t candidates, size_t inflight, size_t completed, const std::string &checkname, std::chrono::microseconds offset = std::chrono::microseconds{0}) { const auto comment = m_testname + " " + checkname; auto &runner = m_runner; const auto now = m_now; assert(offset.count() <= 0); runner.actions.emplace_back(m_now, [=, &runner]() { std::vector> expired_now; auto ret = runner.txrequest.GetRequestable(peer, now + offset, &expired_now); for (const auto &entry : expired_now) { runner.expired.insert(entry); } runner.txrequest.SanityCheck(); runner.txrequest.PostGetRequestableSanityCheck(now + offset); size_t total = candidates + inflight + completed; size_t real_total = runner.txrequest.Count(peer); size_t real_candidates = runner.txrequest.CountCandidates(peer); size_t real_inflight = runner.txrequest.CountInFlight(peer); BOOST_CHECK_MESSAGE( real_total == total, strprintf("[" + comment + "] total %i (%i expected)", real_total, total)); BOOST_CHECK_MESSAGE( real_inflight == inflight, strprintf("[" + comment + "] inflight %i (%i expected)", real_inflight, inflight)); BOOST_CHECK_MESSAGE( real_candidates == candidates, strprintf("[" + comment + "] candidates %i (%i expected)", real_candidates, candidates)); BOOST_CHECK_MESSAGE(ret == expected, "[" + comment + "] mismatching requestables"); }); } /** * Verify that an announcement for txid by peer has expired some time before * this check is scheduled. * * Every expected expiration should be accounted for through exactly one * call to this function. */ void CheckExpired(NodeId peer, TxId txid) { const auto &testname = m_testname; auto &runner = m_runner; runner.actions.emplace_back(m_now, [=, &runner]() { auto it = runner.expired.find(std::pair{peer, txid}); BOOST_CHECK_MESSAGE(it != runner.expired.end(), "[" + testname + "] missing expiration"); if (it != runner.expired.end()) { runner.expired.erase(it); } }); } /** * Generate a random txid, whose priorities for certain peers are * constrained. * * For example, NewTxId({{p1,p2,p3},{p2,p4,p5}}) will generate a txid T * such that both: * - priority(p1,T) > priority(p2,T) > priority(p3,T) * - priority(p2,T) > priority(p4,T) > priority(p5,T) - * where priority is the predicted internal TxRequestTracker's priority, + * where priority is the predicted internal InvRequestTracker's priority, * assuming all announcements are within the same preferredness class. */ TxId NewTxId(const std::vector> &orders = {}) { TxId ret; bool ok; do { ret = TxId(InsecureRand256()); ok = true; for (const auto &order : orders) { for (size_t pos = 1; pos < order.size(); ++pos) { uint64_t prio_prev = m_runner.txrequest.ComputePriority( ret, order[pos - 1], true); uint64_t prio_cur = m_runner.txrequest.ComputePriority( ret, order[pos], true); if (prio_prev <= prio_cur) { ok = false; break; } } if (!ok) { break; } } if (ok) { ok = m_runner.txidset.insert(ret).second; } } while (!ok); return ret; } /** * Generate a new random NodeId to use as peer. The same NodeId is never * returned twice (across all Scenarios combined). */ NodeId NewPeer() { bool ok; NodeId ret; do { ret = InsecureRandBits(63); ok = m_runner.peerset.insert(ret).second; } while (!ok); return ret; } std::chrono::microseconds Now() const { return m_now; } }; /** * Add to scenario a test with a single tx announced by a single peer. * * config is an integer in [0, 32), which controls which variant of the test is * used. */ void BuildSingleTest(Scenario &scenario, int config) { auto peer = scenario.NewPeer(); auto txid = scenario.NewTxId(); bool immediate = config & 1; bool preferred = config & 2; auto delay = immediate ? NO_TIME : RandomTime8s(); scenario.SetTestName(strprintf("Single(config=%i)", config)); // Receive an announcement, either immediately requestable or delayed. scenario.ReceivedInv(peer, txid, preferred, immediate ? MIN_TIME : scenario.Now() + delay); if (immediate) { scenario.Check(peer, {txid}, 1, 0, 0, "s1"); } else { scenario.Check(peer, {}, 1, 0, 0, "s2"); scenario.AdvanceTime(delay - MICROSECOND); scenario.Check(peer, {}, 1, 0, 0, "s3"); scenario.AdvanceTime(MICROSECOND); scenario.Check(peer, {txid}, 1, 0, 0, "s4"); } if (config >> 3) { // We'll request the transaction scenario.AdvanceTime(RandomTime8s()); auto expiry = RandomTime8s(); scenario.Check(peer, {txid}, 1, 0, 0, "s5"); scenario.RequestedTx(peer, txid, scenario.Now() + expiry); scenario.Check(peer, {}, 0, 1, 0, "s6"); if ((config >> 3) == 1) { // The request will time out scenario.AdvanceTime(expiry - MICROSECOND); scenario.Check(peer, {}, 0, 1, 0, "s7"); scenario.AdvanceTime(MICROSECOND); scenario.Check(peer, {}, 0, 0, 0, "s8"); scenario.CheckExpired(peer, txid); return; } else { scenario.AdvanceTime( std::chrono::microseconds{InsecureRandRange(expiry.count())}); scenario.Check(peer, {}, 0, 1, 0, "s9"); if ((config >> 3) == 3) { // A response will arrive for the transaction scenario.ReceivedResponse(peer, txid); scenario.Check(peer, {}, 0, 0, 0, "s10"); return; } } } if (config & 4) { // The peer will go offline scenario.DisconnectedPeer(peer); } else { // The transaction is no longer needed scenario.ForgetTxId(txid); } scenario.Check(peer, {}, 0, 0, 0, "s11"); } /** * Add to scenario a test with a single tx announced by two peers, to verify * the right peer is selected for requests. * * config is an integer in [0, 32), which controls which variant of the test is * used. */ void BuildPriorityTest(Scenario &scenario, int config) { scenario.SetTestName(strprintf("Priority(config=%i)", config)); // Two peers. They will announce in order {peer1, peer2}. auto peer1 = scenario.NewPeer(), peer2 = scenario.NewPeer(); // Construct a transaction that under random rules would be preferred by // peer2 or peer1, depending on configuration. bool prio1 = config & 1; auto txid = prio1 ? scenario.NewTxId({{peer1, peer2}}) : scenario.NewTxId({{peer2, peer1}}); bool pref1 = config & 2, pref2 = config & 4; scenario.ReceivedInv(peer1, txid, pref1, MIN_TIME); scenario.Check(peer1, {txid}, 1, 0, 0, "p1"); if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); scenario.Check(peer1, {txid}, 1, 0, 0, "p2"); } scenario.ReceivedInv(peer2, txid, pref2, MIN_TIME); bool stage2_prio = // At this point, peer2 will be given priority if: // - It is preferred and peer1 is not (pref2 && !pref1) || // - They're in the same preference class, // and the randomized priority favors peer2 over peer1. (pref1 == pref2 && !prio1); NodeId priopeer = stage2_prio ? peer2 : peer1, otherpeer = stage2_prio ? peer1 : peer2; scenario.Check(otherpeer, {}, 1, 0, 0, "p3"); scenario.Check(priopeer, {txid}, 1, 0, 0, "p4"); if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.Check(otherpeer, {}, 1, 0, 0, "p5"); scenario.Check(priopeer, {txid}, 1, 0, 0, "p6"); // We possibly request from the selected peer. if (config & 8) { scenario.RequestedTx(priopeer, txid, MAX_TIME); scenario.Check(priopeer, {}, 0, 1, 0, "p7"); scenario.Check(otherpeer, {}, 1, 0, 0, "p8"); if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } } // The peer which was selected (or requested from) now goes offline, or a // NOTFOUND is received from them. if (config & 16) { scenario.DisconnectedPeer(priopeer); } else { scenario.ReceivedResponse(priopeer, txid); } if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.Check(priopeer, {}, 0, 0, !(config & 16), "p8"); scenario.Check(otherpeer, {txid}, 1, 0, 0, "p9"); if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } // Now the other peer goes offline. scenario.DisconnectedPeer(otherpeer); if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.Check(peer1, {}, 0, 0, 0, "p10"); scenario.Check(peer2, {}, 0, 0, 0, "p11"); } /** * Add to scenario a randomized test in which N peers announce the same * transaction, to verify the order in which they are requested. */ void BuildBigPriorityTest(Scenario &scenario, int peers) { scenario.SetTestName(strprintf("BigPriority(peers=%i)", peers)); // We will have N peers announce the same transaction. std::map preferred; std::vector pref_peers, npref_peers; // Some preferred, ... int num_pref = InsecureRandRange(peers + 1); // some not preferred. int num_npref = peers - num_pref; for (int i = 0; i < num_pref; ++i) { pref_peers.push_back(scenario.NewPeer()); preferred[pref_peers.back()] = true; } for (int i = 0; i < num_npref; ++i) { npref_peers.push_back(scenario.NewPeer()); preferred[npref_peers.back()] = false; } // Make a list of all peers, in order of intended request order // (concatenation of pref_peers and npref_peers). std::vector request_order; for (int i = 0; i < num_pref; ++i) { request_order.push_back(pref_peers[i]); } for (int i = 0; i < num_npref; ++i) { request_order.push_back(npref_peers[i]); } // Determine the announcement order randomly. std::vector announce_order = request_order; Shuffle(announce_order.begin(), announce_order.end(), g_insecure_rand_ctx); // Find a txid whose prioritization is consistent with the required // ordering within pref_peers and within npref_peers. auto txid = scenario.NewTxId({pref_peers, npref_peers}); // Decide reqtimes in opposite order of the expected request order. This // means that as time passes we expect the to-be-requested-from-peer will // change every time a subsequent reqtime is passed. std::map reqtimes; auto reqtime = scenario.Now(); for (int i = peers - 1; i >= 0; --i) { reqtime += RandomTime8s(); reqtimes[request_order[i]] = reqtime; } // Actually announce from all peers simultaneously (but in announce_order). for (const auto peer : announce_order) { scenario.ReceivedInv(peer, txid, preferred[peer], reqtimes[peer]); } for (const auto peer : announce_order) { scenario.Check(peer, {}, 1, 0, 0, "b1"); } // Let time pass and observe the to-be-requested-from peer change, from // nonpreferred to preferred, and from high priority to low priority within // each class. for (int i = peers - 1; i >= 0; --i) { scenario.AdvanceTime(reqtimes[request_order[i]] - scenario.Now() - MICROSECOND); scenario.Check(request_order[i], {}, 1, 0, 0, "b2"); scenario.AdvanceTime(MICROSECOND); scenario.Check(request_order[i], {txid}, 1, 0, 0, "b3"); } // Peers now in random order go offline, or send NOTFOUNDs. At every point // in time the new to-be-requested-from peer should be the best remaining // one, so verify this after every response. for (int i = 0; i < peers; ++i) { if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } const int pos = InsecureRandRange(request_order.size()); const auto peer = request_order[pos]; request_order.erase(request_order.begin() + pos); if (InsecureRandBool()) { scenario.DisconnectedPeer(peer); scenario.Check(peer, {}, 0, 0, 0, "b4"); } else { scenario.ReceivedResponse(peer, txid); scenario.Check(peer, {}, 0, 0, request_order.size() > 0, "b5"); } if (request_order.size()) { scenario.Check(request_order[0], {txid}, 1, 0, 0, "b6"); } } // Everything is gone in the end. for (const auto peer : announce_order) { scenario.Check(peer, {}, 0, 0, 0, "b7"); } } /** * Add to scenario a test with one peer announcing two transactions, to verify * they are fetched in announcement order. * * config is an integer in [0, 4) inclusive, and selects the variant of the * test. */ void BuildRequestOrderTest(Scenario &scenario, int config) { scenario.SetTestName(strprintf("RequestOrder(config=%i)", config)); auto peer = scenario.NewPeer(); auto txid1 = scenario.NewTxId(); auto txid2 = scenario.NewTxId(); auto reqtime2 = scenario.Now() + RandomTime8s(); auto reqtime1 = reqtime2 + RandomTime8s(); scenario.ReceivedInv(peer, txid1, config & 1, reqtime1); // Simulate time going backwards by giving the second announcement an // earlier reqtime. scenario.ReceivedInv(peer, txid2, config & 2, reqtime2); scenario.AdvanceTime(reqtime2 - MICROSECOND - scenario.Now()); scenario.Check(peer, {}, 2, 0, 0, "o1"); scenario.AdvanceTime(MICROSECOND); scenario.Check(peer, {txid2}, 2, 0, 0, "o2"); scenario.AdvanceTime(reqtime1 - MICROSECOND - scenario.Now()); scenario.Check(peer, {txid2}, 2, 0, 0, "o3"); scenario.AdvanceTime(MICROSECOND); // Even with time going backwards in between announcements, the return value // of GetRequestable is in announcement order. scenario.Check(peer, {txid1, txid2}, 2, 0, 0, "o4"); scenario.DisconnectedPeer(peer); scenario.Check(peer, {}, 0, 0, 0, "o5"); } /** Add to scenario a test that exercises clocks that go backwards. */ void BuildTimeBackwardsTest(Scenario &scenario) { auto peer1 = scenario.NewPeer(); auto peer2 = scenario.NewPeer(); auto txid = scenario.NewTxId({{peer1, peer2}}); // Announce from peer2. auto reqtime = scenario.Now() + RandomTime8s(); scenario.ReceivedInv(peer2, txid, true, reqtime); scenario.Check(peer2, {}, 1, 0, 0, "r1"); scenario.AdvanceTime(reqtime - scenario.Now()); scenario.Check(peer2, {txid}, 1, 0, 0, "r2"); // Check that if the clock goes backwards by 1us, the transaction would stop // being requested. scenario.Check(peer2, {}, 1, 0, 0, "r3", -MICROSECOND); // But it reverts to being requested if time goes forward again. scenario.Check(peer2, {txid}, 1, 0, 0, "r4"); // Announce from peer1. if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.ReceivedInv(peer1, txid, true, MAX_TIME); scenario.Check(peer2, {txid}, 1, 0, 0, "r5"); scenario.Check(peer1, {}, 1, 0, 0, "r6"); // Request from peer1. if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } auto expiry = scenario.Now() + RandomTime8s(); scenario.RequestedTx(peer1, txid, expiry); scenario.Check(peer1, {}, 0, 1, 0, "r7"); scenario.Check(peer2, {}, 1, 0, 0, "r8"); // Expiration passes. scenario.AdvanceTime(expiry - scenario.Now()); scenario.Check(peer1, {}, 0, 0, 1, "r9"); // Request goes back to peer2. scenario.Check(peer2, {txid}, 1, 0, 0, "r10"); scenario.CheckExpired(peer1, txid); // Going back does not unexpire. scenario.Check(peer1, {}, 0, 0, 1, "r11", -MICROSECOND); scenario.Check(peer2, {txid}, 1, 0, 0, "r12", -MICROSECOND); // Peer2 goes offline, meaning no viable announcements remain. if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.DisconnectedPeer(peer2); scenario.Check(peer1, {}, 0, 0, 0, "r13"); scenario.Check(peer2, {}, 0, 0, 0, "r14"); } /** * Add to scenario a test that involves RequestedTx() calls for txids not * returned by GetRequestable. */ void BuildWeirdRequestsTest(Scenario &scenario) { auto peer1 = scenario.NewPeer(); auto peer2 = scenario.NewPeer(); auto txid1 = scenario.NewTxId({{peer1, peer2}}); auto txid2 = scenario.NewTxId({{peer2, peer1}}); // Announce txid1 by peer1. scenario.ReceivedInv(peer1, txid1, true, MIN_TIME); scenario.Check(peer1, {txid1}, 1, 0, 0, "q1"); // Announce txid2 by peer2. if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.ReceivedInv(peer2, txid2, true, MIN_TIME); scenario.Check(peer1, {txid1}, 1, 0, 0, "q2"); scenario.Check(peer2, {txid2}, 1, 0, 0, "q3"); // We request txid2 from *peer1* - no effect. if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.RequestedTx(peer1, txid2, MAX_TIME); scenario.Check(peer1, {txid1}, 1, 0, 0, "q4"); scenario.Check(peer2, {txid2}, 1, 0, 0, "q5"); // Now request txid1 from peer1 - marks it as REQUESTED. if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } auto expiryA = scenario.Now() + RandomTime8s(); scenario.RequestedTx(peer1, txid1, expiryA); scenario.Check(peer1, {}, 0, 1, 0, "q6"); scenario.Check(peer2, {txid2}, 1, 0, 0, "q7"); // Request it a second time - nothing happens, as it's already REQUESTED. auto expiryB = expiryA + RandomTime8s(); scenario.RequestedTx(peer1, txid1, expiryB); scenario.Check(peer1, {}, 0, 1, 0, "q8"); scenario.Check(peer2, {txid2}, 1, 0, 0, "q9"); // Also announce txid1 from peer2 now, so that the txid isn't forgotten // when the peer1 request expires. scenario.ReceivedInv(peer2, txid1, true, MIN_TIME); scenario.Check(peer1, {}, 0, 1, 0, "q10"); scenario.Check(peer2, {txid2}, 2, 0, 0, "q11"); // When reaching expiryA, it expires (not expiryB, which is later). scenario.AdvanceTime(expiryA - scenario.Now()); scenario.Check(peer1, {}, 0, 0, 1, "q12"); scenario.Check(peer2, {txid2, txid1}, 2, 0, 0, "q13"); scenario.CheckExpired(peer1, txid1); // Requesting it yet again from peer1 doesn't do anything, as it's already // COMPLETED. if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.RequestedTx(peer1, txid1, MAX_TIME); scenario.Check(peer1, {}, 0, 0, 1, "q14"); scenario.Check(peer2, {txid2, txid1}, 2, 0, 0, "q15"); // Now announce txid2 from peer1. if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.ReceivedInv(peer1, txid2, true, MIN_TIME); scenario.Check(peer1, {}, 1, 0, 1, "q16"); scenario.Check(peer2, {txid2, txid1}, 2, 0, 0, "q17"); // And request it from peer1 (weird as peer2 has the preference). if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.RequestedTx(peer1, txid2, MAX_TIME); scenario.Check(peer1, {}, 0, 1, 1, "q18"); scenario.Check(peer2, {txid1}, 2, 0, 0, "q19"); // If peer2 now (normally) requests txid2, the existing request by peer1 // becomes COMPLETED. if (InsecureRandBool()) { scenario.AdvanceTime(RandomTime8s()); } scenario.RequestedTx(peer2, txid2, MAX_TIME); scenario.Check(peer1, {}, 0, 0, 2, "q20"); scenario.Check(peer2, {txid1}, 1, 1, 0, "q21"); // If peer2 goes offline, no viable announcements remain. scenario.DisconnectedPeer(peer2); scenario.Check(peer1, {}, 0, 0, 0, "q22"); scenario.Check(peer2, {}, 0, 0, 0, "q23"); } void TestInterleavedScenarios() { // Create a list of functions which add tests to scenarios. std::vector> builders; // Add instances of every test, for every configuration. for (int n = 0; n < 64; ++n) { builders.emplace_back([n](Scenario &scenario) { BuildRequestOrderTest(scenario, n & 3); }); builders.emplace_back( [n](Scenario &scenario) { BuildSingleTest(scenario, n & 31); }); builders.emplace_back( [n](Scenario &scenario) { BuildPriorityTest(scenario, n & 31); }); builders.emplace_back([n](Scenario &scenario) { BuildBigPriorityTest(scenario, (n & 7) + 1); }); builders.emplace_back( [](Scenario &scenario) { BuildTimeBackwardsTest(scenario); }); builders.emplace_back( [](Scenario &scenario) { BuildWeirdRequestsTest(scenario); }); } // Randomly shuffle all those functions. Shuffle(builders.begin(), builders.end(), g_insecure_rand_ctx); Runner runner; auto starttime = RandomTime1y(); // Construct many scenarios, and run (up to) 10 randomly-chosen tests // consecutively in each. while (builders.size()) { // Introduce some variation in the start time of each scenario, so they // don't all start off concurrently, but get a more random interleaving. auto scenario_start = starttime + RandomTime8s() + RandomTime8s() + RandomTime8s(); Scenario scenario(runner, scenario_start); for (int j = 0; builders.size() && j < 10; ++j) { builders.back()(scenario); builders.pop_back(); } } // Sort all the actions from all those scenarios chronologically, resulting // in the actions from distinct scenarios to become interleaved. Use // stable_sort so that actions from one scenario aren't reordered w.r.t. // each other. std::stable_sort( runner.actions.begin(), runner.actions.end(), [](const Action &a1, const Action &a2) { return a1.first < a2.first; }); // Run all actions from all scenarios, in order. for (auto &action : runner.actions) { action.second(); } BOOST_CHECK_EQUAL(runner.txrequest.Size(), 0U); BOOST_CHECK(runner.expired.empty()); } } // namespace BOOST_AUTO_TEST_CASE(TxRequestTest) { for (int i = 0; i < 5; ++i) { TestInterleavedScenarios(); } } BOOST_AUTO_TEST_SUITE_END()