diff --git a/src/wallet/test/wallet_crypto_tests.cpp b/src/wallet/test/wallet_crypto_tests.cpp index b45574af2..2955162ee 100644 --- a/src/wallet/test/wallet_crypto_tests.cpp +++ b/src/wallet/test/wallet_crypto_tests.cpp @@ -1,296 +1,296 @@ // Copyright (c) 2014-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include BOOST_FIXTURE_TEST_SUITE(wallet_crypto_tests, BasicTestingSetup) bool OldSetKeyFromPassphrase(const SecureString &strKeyData, const std::vector &chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod, uint8_t *chKey, uint8_t *chIV) { if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE) return false; int i = 0; if (nDerivationMethod == 0) i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha512(), &chSalt[0], (uint8_t *)&strKeyData[0], strKeyData.size(), nRounds, chKey, chIV); if (i != (int)WALLET_CRYPTO_KEY_SIZE) { - memory_cleanse(chKey, sizeof(chKey)); - memory_cleanse(chIV, sizeof(chIV)); + memory_cleanse(chKey, WALLET_CRYPTO_KEY_SIZE); + memory_cleanse(chIV, WALLET_CRYPTO_IV_SIZE); return false; } return true; } bool OldEncrypt(const CKeyingMaterial &vchPlaintext, std::vector &vchCiphertext, const uint8_t chKey[32], const uint8_t chIV[16]) { // max ciphertext len for a n bytes of plaintext is // n + AES_BLOCK_SIZE - 1 bytes int nLen = vchPlaintext.size(); int nCLen = nLen + AES_BLOCK_SIZE, nFLen = 0; vchCiphertext = std::vector(nCLen); EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); if (!ctx) return false; bool fOk = true; EVP_CIPHER_CTX_init(ctx); if (fOk) fOk = EVP_EncryptInit_ex(ctx, EVP_aes_256_cbc(), nullptr, chKey, chIV) != 0; if (fOk) fOk = EVP_EncryptUpdate(ctx, &vchCiphertext[0], &nCLen, &vchPlaintext[0], nLen) != 0; if (fOk) fOk = EVP_EncryptFinal_ex(ctx, (&vchCiphertext[0]) + nCLen, &nFLen) != 0; EVP_CIPHER_CTX_cleanup(ctx); EVP_CIPHER_CTX_free(ctx); if (!fOk) return false; vchCiphertext.resize(nCLen + nFLen); return true; } bool OldDecrypt(const std::vector &vchCiphertext, CKeyingMaterial &vchPlaintext, const uint8_t chKey[32], const uint8_t chIV[16]) { // plaintext will always be equal to or lesser than length of ciphertext int nLen = vchCiphertext.size(); int nPLen = nLen, nFLen = 0; vchPlaintext = CKeyingMaterial(nPLen); EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); if (!ctx) return false; bool fOk = true; EVP_CIPHER_CTX_init(ctx); if (fOk) fOk = EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), nullptr, chKey, chIV) != 0; if (fOk) fOk = EVP_DecryptUpdate(ctx, &vchPlaintext[0], &nPLen, &vchCiphertext[0], nLen) != 0; if (fOk) fOk = EVP_DecryptFinal_ex(ctx, (&vchPlaintext[0]) + nPLen, &nFLen) != 0; EVP_CIPHER_CTX_cleanup(ctx); EVP_CIPHER_CTX_free(ctx); if (!fOk) return false; vchPlaintext.resize(nPLen + nFLen); return true; } class TestCrypter { public: static void TestPassphraseSingle( const std::vector &vchSalt, const SecureString &passphrase, uint32_t rounds, const std::vector &correctKey = std::vector(), const std::vector &correctIV = std::vector()) { uint8_t chKey[WALLET_CRYPTO_KEY_SIZE]; uint8_t chIV[WALLET_CRYPTO_IV_SIZE]; CCrypter crypt; crypt.SetKeyFromPassphrase(passphrase, vchSalt, rounds, 0); OldSetKeyFromPassphrase(passphrase, vchSalt, rounds, 0, chKey, chIV); BOOST_CHECK_MESSAGE( memcmp(chKey, crypt.vchKey.data(), crypt.vchKey.size()) == 0, HexStr(chKey, chKey + sizeof(chKey)) + std::string(" != ") + HexStr(crypt.vchKey)); BOOST_CHECK_MESSAGE( memcmp(chIV, crypt.vchIV.data(), crypt.vchIV.size()) == 0, HexStr(chIV, chIV + sizeof(chIV)) + std::string(" != ") + HexStr(crypt.vchIV)); if (!correctKey.empty()) BOOST_CHECK_MESSAGE( memcmp(chKey, &correctKey[0], sizeof(chKey)) == 0, HexStr(chKey, chKey + sizeof(chKey)) + std::string(" != ") + HexStr(correctKey.begin(), correctKey.end())); if (!correctIV.empty()) BOOST_CHECK_MESSAGE(memcmp(chIV, &correctIV[0], sizeof(chIV)) == 0, HexStr(chIV, chIV + sizeof(chIV)) + std::string(" != ") + HexStr(correctIV.begin(), correctIV.end())); } static void TestPassphrase( const std::vector &vchSalt, const SecureString &passphrase, uint32_t rounds, const std::vector &correctKey = std::vector(), const std::vector &correctIV = std::vector()) { TestPassphraseSingle(vchSalt, passphrase, rounds, correctKey, correctIV); for (SecureString::const_iterator i(passphrase.begin()); i != passphrase.end(); ++i) TestPassphraseSingle(vchSalt, SecureString(i, passphrase.end()), rounds); } static void TestDecrypt( const CCrypter &crypt, const std::vector &vchCiphertext, const std::vector &vchPlaintext = std::vector()) { CKeyingMaterial vchDecrypted1; CKeyingMaterial vchDecrypted2; int result1, result2; result1 = crypt.Decrypt(vchCiphertext, vchDecrypted1); result2 = OldDecrypt(vchCiphertext, vchDecrypted2, crypt.vchKey.data(), crypt.vchIV.data()); BOOST_CHECK(result1 == result2); // These two should be equal. However, OpenSSL 1.0.1j introduced a // change that would zero all padding except for the last byte for // failed decrypts. // This behavior was reverted for 1.0.1k. if (vchDecrypted1 != vchDecrypted2 && vchDecrypted1.size() >= AES_BLOCK_SIZE && SSLeay() == 0x100010afL) { for (CKeyingMaterial::iterator it = vchDecrypted1.end() - AES_BLOCK_SIZE; it != vchDecrypted1.end() - 1; it++) *it = 0; } BOOST_CHECK_MESSAGE( vchDecrypted1 == vchDecrypted2, HexStr(vchDecrypted1.begin(), vchDecrypted1.end()) + " != " + HexStr(vchDecrypted2.begin(), vchDecrypted2.end())); if (vchPlaintext.size()) BOOST_CHECK(CKeyingMaterial(vchPlaintext.begin(), vchPlaintext.end()) == vchDecrypted2); } static void TestEncryptSingle(const CCrypter &crypt, const CKeyingMaterial &vchPlaintext, const std::vector &vchCiphertextCorrect = std::vector()) { std::vector vchCiphertext1; std::vector vchCiphertext2; int result1 = crypt.Encrypt(vchPlaintext, vchCiphertext1); int result2 = OldEncrypt(vchPlaintext, vchCiphertext2, crypt.vchKey.data(), crypt.vchIV.data()); BOOST_CHECK(result1 == result2); BOOST_CHECK(vchCiphertext1 == vchCiphertext2); if (!vchCiphertextCorrect.empty()) BOOST_CHECK(vchCiphertext2 == vchCiphertextCorrect); const std::vector vchPlaintext2(vchPlaintext.begin(), vchPlaintext.end()); if (vchCiphertext1 == vchCiphertext2) TestDecrypt(crypt, vchCiphertext1, vchPlaintext2); } static void TestEncrypt(const CCrypter &crypt, const std::vector &vchPlaintextIn, const std::vector &vchCiphertextCorrect = std::vector()) { TestEncryptSingle( crypt, CKeyingMaterial(vchPlaintextIn.begin(), vchPlaintextIn.end()), vchCiphertextCorrect); for (std::vector::const_iterator i(vchPlaintextIn.begin()); i != vchPlaintextIn.end(); ++i) TestEncryptSingle(crypt, CKeyingMaterial(i, vchPlaintextIn.end())); } }; BOOST_AUTO_TEST_CASE(passphrase) { // These are expensive. TestCrypter::TestPassphrase( ParseHex("0000deadbeef0000"), "test", 25000, ParseHex( "fc7aba077ad5f4c3a0988d8daa4810d0d4a0e3bcb53af662998898f33df0556a"), ParseHex("cf2f2691526dd1aa220896fb8bf7c369")); std::string hash(GetRandHash().ToString()); std::vector vchSalt(8); GetRandBytes(&vchSalt[0], vchSalt.size()); uint32_t rounds = insecure_rand(); if (rounds > 30000) rounds = 30000; TestCrypter::TestPassphrase(vchSalt, SecureString(hash.begin(), hash.end()), rounds); } BOOST_AUTO_TEST_CASE(encrypt) { std::vector vchSalt = ParseHex("0000deadbeef0000"); BOOST_CHECK(vchSalt.size() == WALLET_CRYPTO_SALT_SIZE); CCrypter crypt; crypt.SetKeyFromPassphrase("passphrase", vchSalt, 25000, 0); TestCrypter::TestEncrypt(crypt, ParseHex("22bcade09ac03ff6386914359cfe885cfeb5f77f" "f0d670f102f619687453b29d")); for (int i = 0; i != 100; i++) { uint256 hash(GetRandHash()); TestCrypter::TestEncrypt( crypt, std::vector(hash.begin(), hash.end())); } } BOOST_AUTO_TEST_CASE(decrypt) { std::vector vchSalt = ParseHex("0000deadbeef0000"); BOOST_CHECK(vchSalt.size() == WALLET_CRYPTO_SALT_SIZE); CCrypter crypt; crypt.SetKeyFromPassphrase("passphrase", vchSalt, 25000, 0); // Some corner cases the came up while testing TestCrypter::TestDecrypt(crypt, ParseHex("795643ce39d736088367822cdc50535ec6f10371" "5e3e48f4f3b1a60a08ef59ca")); TestCrypter::TestDecrypt(crypt, ParseHex("de096f4a8f9bd97db012aa9d90d74de8cdea779c" "3ee8bc7633d8b5d6da703486")); TestCrypter::TestDecrypt(crypt, ParseHex("32d0a8974e3afd9c6c3ebf4d66aa4e6419f8c173" "de25947f98cf8b7ace49449c")); TestCrypter::TestDecrypt(crypt, ParseHex("e7c055cca2faa78cb9ac22c9357a90b4778ded9b" "2cc220a14cea49f931e596ea")); TestCrypter::TestDecrypt(crypt, ParseHex("b88efddd668a6801d19516d6830da4ae9811988c" "cbaf40df8fbb72f3f4d335fd")); TestCrypter::TestDecrypt(crypt, ParseHex("8cae76aa6a43694e961ebcb28c8ca8f8540b8415" "3d72865e8561ddd93fa7bfa9")); for (int i = 0; i != 100; i++) { uint256 hash(GetRandHash()); TestCrypter::TestDecrypt( crypt, std::vector(hash.begin(), hash.end())); } } BOOST_AUTO_TEST_SUITE_END()