diff --git a/src/checkqueue.h b/src/checkqueue.h index 63a4e4182..07bb63871 100644 --- a/src/checkqueue.h +++ b/src/checkqueue.h @@ -1,242 +1,245 @@ // Copyright (c) 2012-2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CHECKQUEUE_H #define BITCOIN_CHECKQUEUE_H #include #include #include #include #include template class CCheckQueueControl; /** * Queue for verifications that have to be performed. * The verifications are represented by a type T, which must provide an * operator(), returning a bool. * * One thread (the master) is assumed to push batches of verifications onto the * queue, where they are processed by N-1 worker threads. When the master is * done adding work, it temporarily joins the worker pool as an N'th worker, * until all jobs are done. */ template class CCheckQueue { private: //! Mutex to protect the inner state Mutex m_mutex; //! Worker threads block on this when out of work std::condition_variable m_worker_cv; //! Master thread blocks on this when out of work std::condition_variable m_master_cv; //! The queue of elements to be processed. //! As the order of booleans doesn't matter, it is used as a LIFO (stack) std::vector queue GUARDED_BY(m_mutex); //! The number of workers (including the master) that are idle. int nIdle GUARDED_BY(m_mutex){0}; //! The total number of workers (including the master). int nTotal GUARDED_BY(m_mutex){0}; //! The temporary evaluation result. bool fAllOk GUARDED_BY(m_mutex){true}; /** * Number of verifications that haven't completed yet. * This includes elements that are no longer queued, but still in the * worker's own batches. */ unsigned int nTodo GUARDED_BY(m_mutex){0}; //! The maximum number of elements to be processed in one batch const unsigned int nBatchSize; std::vector m_worker_threads; bool m_request_stop GUARDED_BY(m_mutex){false}; /** Internal function that does bulk of the verification work. */ - bool Loop(bool fMaster) { + bool Loop(bool fMaster) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { std::condition_variable &cond = fMaster ? m_master_cv : m_worker_cv; std::vector vChecks; vChecks.reserve(nBatchSize); unsigned int nNow = 0; bool fOk = true; do { { WAIT_LOCK(m_mutex, lock); // first do the clean-up of the previous loop run (allowing us // to do it in the same critsect) if (nNow) { fAllOk &= fOk; nTodo -= nNow; if (nTodo == 0 && !fMaster) { // We processed the last element; inform the master it // can exit and return the result m_master_cv.notify_one(); } } else { // first iteration nTotal++; } // logically, the do loop starts here while (queue.empty() && !m_request_stop) { if (fMaster && nTodo == 0) { nTotal--; bool fRet = fAllOk; // reset the status for new work later fAllOk = true; // return the current status return fRet; } nIdle++; cond.wait(lock); // wait nIdle--; } if (m_request_stop) { return false; } // Decide how many work units to process now. // * Do not try to do everything at once, but aim for // increasingly smaller batches so all workers finish // approximately simultaneously. // * Try to account for idle jobs which will instantly start // helping. // * Don't do batches smaller than 1 (duh), or larger than // nBatchSize. nNow = std::max( 1U, std::min(nBatchSize, (unsigned int)queue.size() / (nTotal + nIdle + 1))); vChecks.resize(nNow); for (unsigned int i = 0; i < nNow; i++) { // We want the lock on the m_mutex to be as short as // possible, so swap jobs from the global queue to the local // batch vector instead of copying. vChecks[i].swap(queue.back()); queue.pop_back(); } // Check whether we need to do work at all fOk = fAllOk; } // execute work for (T &check : vChecks) { if (fOk) { fOk = check(); } } vChecks.clear(); } while (true); } public: //! Mutex to ensure only one concurrent CCheckQueueControl Mutex m_control_mutex; //! Create a new check queue explicit CCheckQueue(unsigned int nBatchSizeIn) : nBatchSize(nBatchSizeIn) {} //! Create a pool of new worker threads. - void StartWorkerThreads(const int threads_num) { + void StartWorkerThreads(const int threads_num) + EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { { LOCK(m_mutex); nIdle = 0; nTotal = 0; fAllOk = true; } assert(m_worker_threads.empty()); for (int n = 0; n < threads_num; ++n) { m_worker_threads.emplace_back([this, n]() { util::ThreadRename(strprintf("scriptch.%i", n)); Loop(false /* worker thread */); }); } } //! Wait until execution finishes, and return whether all evaluations were //! successful. - bool Wait() { return Loop(true /* master thread */); } + bool Wait() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { + return Loop(true /* master thread */); + } //! Add a batch of checks to the queue - void Add(std::vector &vChecks) { + void Add(std::vector &vChecks) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { LOCK(m_mutex); for (T &check : vChecks) { queue.push_back(T()); check.swap(queue.back()); } nTodo += vChecks.size(); if (vChecks.size() == 1) { m_worker_cv.notify_one(); } else if (vChecks.size() > 1) { m_worker_cv.notify_all(); } } //! Stop all of the worker threads. - void StopWorkerThreads() { + void StopWorkerThreads() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { WITH_LOCK(m_mutex, m_request_stop = true); m_worker_cv.notify_all(); for (std::thread &t : m_worker_threads) { t.join(); } m_worker_threads.clear(); WITH_LOCK(m_mutex, m_request_stop = false); } ~CCheckQueue() { assert(m_worker_threads.empty()); } }; /** * RAII-style controller object for a CCheckQueue that guarantees the passed * queue is finished before continuing. */ template class CCheckQueueControl { private: CCheckQueue *const pqueue; bool fDone; public: CCheckQueueControl() = delete; CCheckQueueControl(const CCheckQueueControl &) = delete; CCheckQueueControl &operator=(const CCheckQueueControl &) = delete; explicit CCheckQueueControl(CCheckQueue *const pqueueIn) : pqueue(pqueueIn), fDone(false) { // passed queue is supposed to be unused, or nullptr if (pqueue != nullptr) { ENTER_CRITICAL_SECTION(pqueue->m_control_mutex); } } bool Wait() { if (pqueue == nullptr) { return true; } bool fRet = pqueue->Wait(); fDone = true; return fRet; } void Add(std::vector &vChecks) { if (pqueue != nullptr) { pqueue->Add(vChecks); } } ~CCheckQueueControl() { if (!fDone) { Wait(); } if (pqueue != nullptr) { LEAVE_CRITICAL_SECTION(pqueue->m_control_mutex); } } }; #endif // BITCOIN_CHECKQUEUE_H diff --git a/src/httpserver.cpp b/src/httpserver.cpp index 55655b0f2..cc3276b9a 100644 --- a/src/httpserver.cpp +++ b/src/httpserver.cpp @@ -1,693 +1,693 @@ // Copyright (c) 2015-2016 The Bitcoin Core developers // Copyright (c) 2018-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include // For HTTP status codes #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** Maximum size of http request (request line + headers) */ static const size_t MAX_HEADERS_SIZE = 8192; /** * Maximum HTTP post body size. Twice the maximum block size is added to this * value in practice. */ static const size_t MIN_SUPPORTED_BODY_SIZE = 0x02000000; /** HTTP request work item */ class HTTPWorkItem final : public HTTPClosure { public: HTTPWorkItem(Config &_config, std::unique_ptr _req, const std::string &_path, const HTTPRequestHandler &_func) : req(std::move(_req)), path(_path), func(_func), config(&_config) {} void operator()() override { func(*config, req.get(), path); } std::unique_ptr req; private: std::string path; HTTPRequestHandler func; Config *config; }; /** * Simple work queue for distributing work over multiple threads. * Work items are simply callable objects. */ template class WorkQueue { private: /** Mutex protects entire object */ Mutex cs; std::condition_variable cond; std::deque> queue; bool running; size_t maxDepth; public: explicit WorkQueue(size_t _maxDepth) : running(true), maxDepth(_maxDepth) {} /** * Precondition: worker threads have all stopped (they have all been joined) */ ~WorkQueue() {} /** Enqueue a work item */ - bool Enqueue(WorkItem *item) { + bool Enqueue(WorkItem *item) EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); if (queue.size() >= maxDepth) { return false; } queue.emplace_back(std::unique_ptr(item)); cond.notify_one(); return true; } /** Thread function */ - void Run() { + void Run() EXCLUSIVE_LOCKS_REQUIRED(!cs) { while (true) { std::unique_ptr i; { WAIT_LOCK(cs, lock); while (running && queue.empty()) { cond.wait(lock); } if (!running) { break; } i = std::move(queue.front()); queue.pop_front(); } (*i)(); } } /** Interrupt and exit loops */ - void Interrupt() { + void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!cs) { LOCK(cs); running = false; cond.notify_all(); } }; struct HTTPPathHandler { HTTPPathHandler(std::string _prefix, bool _exactMatch, HTTPRequestHandler _handler) : prefix(_prefix), exactMatch(_exactMatch), handler(_handler) {} std::string prefix; bool exactMatch; HTTPRequestHandler handler; }; /** HTTP module state */ //! libevent event loop static struct event_base *eventBase = nullptr; //! HTTP server static struct evhttp *eventHTTP = nullptr; //! List of subnets to allow RPC connections from static std::vector rpc_allow_subnets; //! Work queue for handling longer requests off the event loop thread static WorkQueue *workQueue = nullptr; //! Handlers for (sub)paths static std::vector pathHandlers; //! Bound listening sockets static std::vector boundSockets; /** Check if a network address is allowed to access the HTTP server */ static bool ClientAllowed(const CNetAddr &netaddr) { if (!netaddr.IsValid()) { return false; } for (const CSubNet &subnet : rpc_allow_subnets) { if (subnet.Match(netaddr)) { return true; } } return false; } /** Initialize ACL list for HTTP server */ static bool InitHTTPAllowList() { rpc_allow_subnets.clear(); CNetAddr localv4; CNetAddr localv6; LookupHost("127.0.0.1", localv4, false); LookupHost("::1", localv6, false); // always allow IPv4 local subnet. rpc_allow_subnets.push_back(CSubNet(localv4, 8)); // always allow IPv6 localhost. rpc_allow_subnets.push_back(CSubNet(localv6)); for (const std::string &strAllow : gArgs.GetArgs("-rpcallowip")) { CSubNet subnet; LookupSubNet(strAllow, subnet); if (!subnet.IsValid()) { uiInterface.ThreadSafeMessageBox( strprintf( Untranslated("Invalid -rpcallowip subnet specification: " "%s. Valid are a single IP (e.g. 1.2.3.4), a " "network/netmask (e.g. 1.2.3.4/255.255.255.0) " "or a network/CIDR (e.g. 1.2.3.4/24)."), strAllow), "", CClientUIInterface::MSG_ERROR); return false; } rpc_allow_subnets.push_back(subnet); } std::string strAllowed; for (const CSubNet &subnet : rpc_allow_subnets) { strAllowed += subnet.ToString() + " "; } LogPrint(BCLog::HTTP, "Allowing HTTP connections from: %s\n", strAllowed); return true; } /** HTTP request method as string - use for logging only */ std::string RequestMethodString(HTTPRequest::RequestMethod m) { switch (m) { case HTTPRequest::GET: return "GET"; case HTTPRequest::POST: return "POST"; case HTTPRequest::HEAD: return "HEAD"; case HTTPRequest::PUT: return "PUT"; case HTTPRequest::OPTIONS: return "OPTIONS"; default: return "unknown"; } } /** HTTP request callback */ static void http_request_cb(struct evhttp_request *req, void *arg) { Config &config = *reinterpret_cast(arg); // Disable reading to work around a libevent bug, fixed in 2.2.0. if (event_get_version_number() >= 0x02010600 && event_get_version_number() < 0x02020001) { evhttp_connection *conn = evhttp_request_get_connection(req); if (conn) { bufferevent *bev = evhttp_connection_get_bufferevent(conn); if (bev) { bufferevent_disable(bev, EV_READ); } } } auto hreq = std::make_unique(req); // Early address-based allow check if (!ClientAllowed(hreq->GetPeer())) { LogPrint(BCLog::HTTP, "HTTP request from %s rejected: Client network is not allowed " "RPC access\n", hreq->GetPeer().ToString()); hreq->WriteReply(HTTP_FORBIDDEN); return; } // Early reject unknown HTTP methods if (hreq->GetRequestMethod() == HTTPRequest::UNKNOWN) { LogPrint(BCLog::HTTP, "HTTP request from %s rejected: Unknown HTTP request method\n", hreq->GetPeer().ToString()); hreq->WriteReply(HTTP_BAD_METHOD); return; } LogPrint(BCLog::HTTP, "Received a %s request for %s from %s\n", RequestMethodString(hreq->GetRequestMethod()), SanitizeString(hreq->GetURI(), SAFE_CHARS_URI).substr(0, 100), hreq->GetPeer().ToString()); // Find registered handler for prefix std::string strURI = hreq->GetURI(); std::string path; std::vector::const_iterator i = pathHandlers.begin(); std::vector::const_iterator iend = pathHandlers.end(); for (; i != iend; ++i) { bool match = false; if (i->exactMatch) { match = (strURI == i->prefix); } else { match = (strURI.substr(0, i->prefix.size()) == i->prefix); } if (match) { path = strURI.substr(i->prefix.size()); break; } } // Dispatch to worker thread. if (i != iend) { std::unique_ptr item( new HTTPWorkItem(config, std::move(hreq), path, i->handler)); assert(workQueue); if (workQueue->Enqueue(item.get())) { /* if true, queue took ownership */ item.release(); } else { LogPrintf("WARNING: request rejected because http work queue depth " "exceeded, it can be increased with the -rpcworkqueue= " "setting\n"); item->req->WriteReply(HTTP_SERVICE_UNAVAILABLE, "Work queue depth exceeded"); } } else { hreq->WriteReply(HTTP_NOT_FOUND); } } /** Callback to reject HTTP requests after shutdown. */ static void http_reject_request_cb(struct evhttp_request *req, void *) { LogPrint(BCLog::HTTP, "Rejecting request while shutting down\n"); evhttp_send_error(req, HTTP_SERVUNAVAIL, nullptr); } /** Event dispatcher thread */ static bool ThreadHTTP(struct event_base *base) { util::ThreadRename("http"); LogPrint(BCLog::HTTP, "Entering http event loop\n"); event_base_dispatch(base); // Event loop will be interrupted by InterruptHTTPServer() LogPrint(BCLog::HTTP, "Exited http event loop\n"); return event_base_got_break(base) == 0; } /** Bind HTTP server to specified addresses */ static bool HTTPBindAddresses(struct evhttp *http) { uint16_t http_port{static_cast( gArgs.GetIntArg("-rpcport", BaseParams().RPCPort()))}; std::vector> endpoints; // Determine what addresses to bind to if (!(gArgs.IsArgSet("-rpcallowip") && gArgs.IsArgSet("-rpcbind"))) { // Default to loopback if not allowing external IPs. endpoints.push_back(std::make_pair("::1", http_port)); endpoints.push_back(std::make_pair("127.0.0.1", http_port)); if (gArgs.IsArgSet("-rpcallowip")) { LogPrintf("WARNING: option -rpcallowip was specified without " "-rpcbind; this doesn't usually make sense\n"); } if (gArgs.IsArgSet("-rpcbind")) { LogPrintf("WARNING: option -rpcbind was ignored because " "-rpcallowip was not specified, refusing to allow " "everyone to connect\n"); } } else if (gArgs.IsArgSet("-rpcbind")) { // Specific bind address. for (const std::string &strRPCBind : gArgs.GetArgs("-rpcbind")) { uint16_t port{http_port}; std::string host; SplitHostPort(strRPCBind, port, host); endpoints.push_back(std::make_pair(host, port)); } } // Bind addresses for (std::vector>::iterator i = endpoints.begin(); i != endpoints.end(); ++i) { LogPrint(BCLog::HTTP, "Binding RPC on address %s port %i\n", i->first, i->second); evhttp_bound_socket *bind_handle = evhttp_bind_socket_with_handle( http, i->first.empty() ? nullptr : i->first.c_str(), i->second); if (bind_handle) { CNetAddr addr; if (i->first.empty() || (LookupHost(i->first, addr, false) && addr.IsBindAny())) { LogPrintf("WARNING: the RPC server is not safe to expose to " "untrusted networks such as the public internet\n"); } boundSockets.push_back(bind_handle); } else { LogPrintf("Binding RPC on address %s port %i failed.\n", i->first, i->second); } } return !boundSockets.empty(); } /** Simple wrapper to set thread name and run work queue */ static void HTTPWorkQueueRun(WorkQueue *queue, int worker_num) { util::ThreadRename(strprintf("httpworker.%i", worker_num)); queue->Run(); } /** libevent event log callback */ static void libevent_log_cb(int severity, const char *msg) { #ifndef EVENT_LOG_WARN // EVENT_LOG_WARN was added in 2.0.19; but before then _EVENT_LOG_WARN existed. #define EVENT_LOG_WARN _EVENT_LOG_WARN #endif // Log warn messages and higher without debug category. if (severity >= EVENT_LOG_WARN) { LogPrintf("libevent: %s\n", msg); } else { LogPrint(BCLog::LIBEVENT, "libevent: %s\n", msg); } } bool InitHTTPServer(Config &config) { if (!InitHTTPAllowList()) { return false; } // Redirect libevent's logging to our own log event_set_log_callback(&libevent_log_cb); // Update libevent's log handling. Returns false if our version of // libevent doesn't support debug logging, in which case we should // clear the BCLog::LIBEVENT flag. if (!UpdateHTTPServerLogging( LogInstance().WillLogCategory(BCLog::LIBEVENT))) { LogInstance().DisableCategory(BCLog::LIBEVENT); } #ifdef WIN32 evthread_use_windows_threads(); #else evthread_use_pthreads(); #endif raii_event_base base_ctr = obtain_event_base(); /* Create a new evhttp object to handle requests. */ raii_evhttp http_ctr = obtain_evhttp(base_ctr.get()); struct evhttp *http = http_ctr.get(); if (!http) { LogPrintf("couldn't create evhttp. Exiting.\n"); return false; } evhttp_set_timeout(http, gArgs.GetIntArg("-rpcservertimeout", DEFAULT_HTTP_SERVER_TIMEOUT)); evhttp_set_max_headers_size(http, MAX_HEADERS_SIZE); evhttp_set_max_body_size(http, MIN_SUPPORTED_BODY_SIZE + 2 * config.GetMaxBlockSize()); evhttp_set_gencb(http, http_request_cb, &config); // Only POST and OPTIONS are supported, but we return HTTP 405 for the // others evhttp_set_allowed_methods( http, EVHTTP_REQ_GET | EVHTTP_REQ_POST | EVHTTP_REQ_HEAD | EVHTTP_REQ_PUT | EVHTTP_REQ_DELETE | EVHTTP_REQ_OPTIONS); if (!HTTPBindAddresses(http)) { LogPrintf("Unable to bind any endpoint for RPC server\n"); return false; } LogPrint(BCLog::HTTP, "Initialized HTTP server\n"); int workQueueDepth = std::max( (long)gArgs.GetIntArg("-rpcworkqueue", DEFAULT_HTTP_WORKQUEUE), 1L); LogPrintf("HTTP: creating work queue of depth %d\n", workQueueDepth); workQueue = new WorkQueue(workQueueDepth); // transfer ownership to eventBase/HTTP via .release() eventBase = base_ctr.release(); eventHTTP = http_ctr.release(); return true; } bool UpdateHTTPServerLogging(bool enable) { #if LIBEVENT_VERSION_NUMBER >= 0x02010100 if (enable) { event_enable_debug_logging(EVENT_DBG_ALL); } else { event_enable_debug_logging(EVENT_DBG_NONE); } return true; #else // Can't update libevent logging if version < 02010100 return false; #endif } static std::thread g_thread_http; static std::vector g_thread_http_workers; void StartHTTPServer() { LogPrint(BCLog::HTTP, "Starting HTTP server\n"); int rpcThreads = std::max( (long)gArgs.GetIntArg("-rpcthreads", DEFAULT_HTTP_THREADS), 1L); LogPrintf("HTTP: starting %d worker threads\n", rpcThreads); g_thread_http = std::thread(ThreadHTTP, eventBase); for (int i = 0; i < rpcThreads; i++) { g_thread_http_workers.emplace_back(HTTPWorkQueueRun, workQueue, i); } } void InterruptHTTPServer() { LogPrint(BCLog::HTTP, "Interrupting HTTP server\n"); if (eventHTTP) { // Reject requests on current connections evhttp_set_gencb(eventHTTP, http_reject_request_cb, nullptr); } if (workQueue) { workQueue->Interrupt(); } } void StopHTTPServer() { LogPrint(BCLog::HTTP, "Stopping HTTP server\n"); if (workQueue) { LogPrint(BCLog::HTTP, "Waiting for HTTP worker threads to exit\n"); for (auto &thread : g_thread_http_workers) { thread.join(); } g_thread_http_workers.clear(); delete workQueue; workQueue = nullptr; } // Unlisten sockets, these are what make the event loop running, which means // that after this and all connections are closed the event loop will quit. for (evhttp_bound_socket *socket : boundSockets) { evhttp_del_accept_socket(eventHTTP, socket); } boundSockets.clear(); if (eventBase) { LogPrint(BCLog::HTTP, "Waiting for HTTP event thread to exit\n"); if (g_thread_http.joinable()) { g_thread_http.join(); } } if (eventHTTP) { evhttp_free(eventHTTP); eventHTTP = nullptr; } if (eventBase) { event_base_free(eventBase); eventBase = nullptr; } LogPrint(BCLog::HTTP, "Stopped HTTP server\n"); } struct event_base *EventBase() { return eventBase; } static void httpevent_callback_fn(evutil_socket_t, short, void *data) { // Static handler: simply call inner handler HTTPEvent *self = static_cast(data); self->handler(); if (self->deleteWhenTriggered) { delete self; } } HTTPEvent::HTTPEvent(struct event_base *base, bool _deleteWhenTriggered, const std::function &_handler) : deleteWhenTriggered(_deleteWhenTriggered), handler(_handler) { ev = event_new(base, -1, 0, httpevent_callback_fn, this); assert(ev); } HTTPEvent::~HTTPEvent() { event_free(ev); } void HTTPEvent::trigger(struct timeval *tv) { if (tv == nullptr) { // Immediately trigger event in main thread. event_active(ev, 0, 0); } else { // Trigger after timeval passed. evtimer_add(ev, tv); } } HTTPRequest::HTTPRequest(struct evhttp_request *_req, bool _replySent) : req(_req), replySent(_replySent) {} HTTPRequest::~HTTPRequest() { if (!replySent) { // Keep track of whether reply was sent to avoid request leaks LogPrintf("%s: Unhandled request\n", __func__); WriteReply(HTTP_INTERNAL_SERVER_ERROR, "Unhandled request"); } // evhttpd cleans up the request, as long as a reply was sent. } std::pair HTTPRequest::GetHeader(const std::string &hdr) const { const struct evkeyvalq *headers = evhttp_request_get_input_headers(req); assert(headers); const char *val = evhttp_find_header(headers, hdr.c_str()); if (val) { return std::make_pair(true, val); } else { return std::make_pair(false, ""); } } std::string HTTPRequest::ReadBody() { struct evbuffer *buf = evhttp_request_get_input_buffer(req); if (!buf) { return ""; } size_t size = evbuffer_get_length(buf); /** * Trivial implementation: if this is ever a performance bottleneck, * internal copying can be avoided in multi-segment buffers by using * evbuffer_peek and an awkward loop. Though in that case, it'd be even * better to not copy into an intermediate string but use a stream * abstraction to consume the evbuffer on the fly in the parsing algorithm. */ const char *data = (const char *)evbuffer_pullup(buf, size); // returns nullptr in case of empty buffer. if (!data) { return ""; } std::string rv(data, size); evbuffer_drain(buf, size); return rv; } void HTTPRequest::WriteHeader(const std::string &hdr, const std::string &value) { struct evkeyvalq *headers = evhttp_request_get_output_headers(req); assert(headers); evhttp_add_header(headers, hdr.c_str(), value.c_str()); } /** * Closure sent to main thread to request a reply to be sent to a HTTP request. * Replies must be sent in the main loop in the main http thread, this cannot be * done from worker threads. */ void HTTPRequest::WriteReply(int nStatus, const std::string &strReply) { assert(!replySent && req); if (ShutdownRequested()) { WriteHeader("Connection", "close"); } // Send event to main http thread to send reply message struct evbuffer *evb = evhttp_request_get_output_buffer(req); assert(evb); evbuffer_add(evb, strReply.data(), strReply.size()); auto req_copy = req; HTTPEvent *ev = new HTTPEvent(eventBase, true, [req_copy, nStatus] { evhttp_send_reply(req_copy, nStatus, nullptr, nullptr); // Re-enable reading from the socket. This is the second part of the // libevent workaround above. if (event_get_version_number() >= 0x02010600 && event_get_version_number() < 0x02020001) { evhttp_connection *conn = evhttp_request_get_connection(req_copy); if (conn) { bufferevent *bev = evhttp_connection_get_bufferevent(conn); if (bev) { bufferevent_enable(bev, EV_READ | EV_WRITE); } } } }); ev->trigger(nullptr); replySent = true; // transferred back to main thread. req = nullptr; } CService HTTPRequest::GetPeer() const { evhttp_connection *con = evhttp_request_get_connection(req); CService peer; if (con) { // evhttp retains ownership over returned address string const char *address = ""; uint16_t port = 0; evhttp_connection_get_peer(con, (char **)&address, &port); peer = LookupNumeric(address, port); } return peer; } std::string HTTPRequest::GetURI() const { return evhttp_request_get_uri(req); } HTTPRequest::RequestMethod HTTPRequest::GetRequestMethod() const { switch (evhttp_request_get_command(req)) { case EVHTTP_REQ_GET: return GET; case EVHTTP_REQ_POST: return POST; case EVHTTP_REQ_HEAD: return HEAD; case EVHTTP_REQ_PUT: return PUT; case EVHTTP_REQ_OPTIONS: return OPTIONS; default: return UNKNOWN; } } void RegisterHTTPHandler(const std::string &prefix, bool exactMatch, const HTTPRequestHandler &handler) { LogPrint(BCLog::HTTP, "Registering HTTP handler for %s (exactmatch %d)\n", prefix, exactMatch); pathHandlers.push_back(HTTPPathHandler(prefix, exactMatch, handler)); } void UnregisterHTTPHandler(const std::string &prefix, bool exactMatch) { std::vector::iterator i = pathHandlers.begin(); std::vector::iterator iend = pathHandlers.end(); for (; i != iend; ++i) { if (i->prefix == prefix && i->exactMatch == exactMatch) { break; } } if (i != iend) { LogPrint(BCLog::HTTP, "Unregistering HTTP handler for %s (exactmatch %d)\n", prefix, exactMatch); pathHandlers.erase(i); } } diff --git a/src/i2p.h b/src/i2p.h index 3a05bf8cf..b817fbf2b 100644 --- a/src/i2p.h +++ b/src/i2p.h @@ -1,283 +1,284 @@ // Copyright (c) 2020-2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_I2P_H #define BITCOIN_I2P_H #include #include #include #include #include #include #include #include #include #include #include namespace i2p { /** * Binary data. */ using Binary = std::vector; /** * An established connection with another peer. */ struct Connection { /** Connected socket. */ std::unique_ptr sock; /** Our I2P address. */ CService me; /** The peer's I2P address. */ CService peer; }; namespace sam { /** * The maximum size of an incoming message from the I2P SAM proxy (in * bytes). Used to avoid a runaway proxy from sending us an "unlimited" * amount of data without a terminator. The longest known message is ~1400 * bytes, so this is high enough not to be triggered during normal * operation, yet low enough to avoid a malicious proxy from filling our * memory. */ static constexpr size_t MAX_MSG_SIZE{65536}; /** * I2P SAM session. */ class Session { public: /** * Construct a session. This will not initiate any IO, the session will * be lazily created later when first used. * @param[in] private_key_file Path to a private key file. If the file * does not exist then the private key will be generated and saved into * the file. * @param[in] control_host Location of the SAM proxy. * @param[in,out] interrupt If this is signaled then all operations are * canceled as soon as possible and executing methods throw an * exception. Notice: only a pointer to the `CThreadInterrupt` object is * saved, so it must not be destroyed earlier than this `Session` * object. */ Session(const fs::path &private_key_file, const CService &control_host, CThreadInterrupt *interrupt); /** * Destroy the session, closing the internally used sockets. The sockets * that have been returned by `Accept()` or `Connect()` will not be * closed, but they will be closed by the SAM proxy because the session * is destroyed. So they will return an error next time we try to read * or write to them. */ ~Session(); /** * Start listening for an incoming connection. * @param[out] conn Upon successful completion the `sock` and `me` * members will be set to the listening socket and address. * @return true on success */ - bool Listen(Connection &conn); + bool Listen(Connection &conn) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex); /** * Wait for and accept a new incoming connection. * @param[in,out] conn The `sock` member is used for waiting and * accepting. Upon successful completion the `peer` member will be set * to the address of the incoming peer. * @return true on success */ - bool Accept(Connection &conn); + bool Accept(Connection &conn) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex); /** * Connect to an I2P peer. * @param[in] to Peer to connect to. * @param[out] conn Established connection. Only set if `true` is * returned. * @param[out] proxy_error If an error occurs due to proxy or general * network failure, then this is set to `true`. If an error occurs due * to unreachable peer (likely peer is down), then it is set to `false`. * Only set if `false` is returned. * @return true on success */ - bool Connect(const CService &to, Connection &conn, bool &proxy_error); + bool Connect(const CService &to, Connection &conn, bool &proxy_error) + EXCLUSIVE_LOCKS_REQUIRED(!m_mutex); private: /** * A reply from the SAM proxy. */ struct Reply { /** * Full, unparsed reply. */ std::string full; /** * Request, used for detailed error reporting. */ std::string request; /** * A map of keywords from the parsed reply. * For example, if the reply is "A=X B C=YZ", then the map will be * keys["A"] == "X" * keys["B"] == (empty std::optional) * keys["C"] == "YZ" */ std::unordered_map> keys; /** * Get the value of a given key. * For example if the reply is "A=X B" then: * Value("A") -> "X" * Value("B") -> throws * Value("C") -> throws * @param[in] key Key whose value to retrieve * @returns the key's value * @throws std::runtime_error if the key is not present or if it has * no value */ std::string Get(const std::string &key) const; }; /** * Log a message in the `BCLog::I2P` category. * @param[in] fmt printf(3)-like format string. * @param[in] args printf(3)-like arguments that correspond to `fmt`. */ template void Log(const std::string &fmt, const Args &...args) const; /** * Send request and get a reply from the SAM proxy. * @param[in] sock A socket that is connected to the SAM proxy. * @param[in] request Raw request to send, a newline terminator is * appended to it. * @param[in] check_result_ok If true then after receiving the reply a * check is made whether it contains "RESULT=OK" and an exception is * thrown if it does not. * @throws std::runtime_error if an error occurs */ Reply SendRequestAndGetReply(const Sock &sock, const std::string &request, bool check_result_ok = true) const; /** * Open a new connection to the SAM proxy. * @return a connected socket * @throws std::runtime_error if an error occurs */ std::unique_ptr Hello() const EXCLUSIVE_LOCKS_REQUIRED(m_mutex); /** * Check the control socket for errors and possibly disconnect. */ - void CheckControlSock(); + void CheckControlSock() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex); /** * Generate a new destination with the SAM proxy and set `m_private_key` * to it. * @param[in] sock Socket to use for talking to the SAM proxy. * @throws std::runtime_error if an error occurs */ void DestGenerate(const Sock &sock) EXCLUSIVE_LOCKS_REQUIRED(m_mutex); /** * Generate a new destination with the SAM proxy, set `m_private_key` to * it and save it on disk to `m_private_key_file`. * @param[in] sock Socket to use for talking to the SAM proxy. * @throws std::runtime_error if an error occurs */ void GenerateAndSavePrivateKey(const Sock &sock) EXCLUSIVE_LOCKS_REQUIRED(m_mutex); /** * Derive own destination from `m_private_key`. * @see https://geti2p.net/spec/common-structures#destination * @return an I2P destination */ Binary MyDestination() const EXCLUSIVE_LOCKS_REQUIRED(m_mutex); /** * Create the session if not already created. Reads the private key file * and connects to the SAM proxy. * @throws std::runtime_error if an error occurs */ void CreateIfNotCreatedAlready() EXCLUSIVE_LOCKS_REQUIRED(m_mutex); /** * Open a new connection to the SAM proxy and issue "STREAM ACCEPT" * request using the existing session id. * @return the idle socket that is waiting for a peer to connect to us * @throws std::runtime_error if an error occurs */ std::unique_ptr StreamAccept() EXCLUSIVE_LOCKS_REQUIRED(m_mutex); /** * Destroy the session, closing the internally used sockets. */ void Disconnect() EXCLUSIVE_LOCKS_REQUIRED(m_mutex); /** * The name of the file where this peer's private key is stored (in * binary). */ const fs::path m_private_key_file; /** * The host and port of the SAM control service. */ const CService m_control_host; /** * Cease network activity when this is signaled. */ CThreadInterrupt *const m_interrupt; /** * Mutex protecting the members that can be concurrently accessed. */ mutable Mutex m_mutex; /** * The private key of this peer. * @see The reply to the "DEST GENERATE" command in * https://geti2p.net/en/docs/api/samv3 */ Binary m_private_key GUARDED_BY(m_mutex); /** * SAM control socket. * Used to connect to the I2P SAM service and create a session * ("SESSION CREATE"). With the established session id we later open * other connections to the SAM service to accept incoming I2P * connections and make outgoing ones. * See https://geti2p.net/en/docs/api/samv3 */ std::unique_ptr m_control_sock GUARDED_BY(m_mutex); /** * Our .b32.i2p address. * Derived from `m_private_key`. */ CService m_my_addr GUARDED_BY(m_mutex); /** * SAM session id. */ std::string m_session_id GUARDED_BY(m_mutex); }; } // namespace sam } // namespace i2p #endif // BITCOIN_I2P_H diff --git a/src/index/blockfilterindex.h b/src/index/blockfilterindex.h index 37f2214e7..8f4365e9d 100644 --- a/src/index/blockfilterindex.h +++ b/src/index/blockfilterindex.h @@ -1,110 +1,110 @@ // Copyright (c) 2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_INDEX_BLOCKFILTERINDEX_H #define BITCOIN_INDEX_BLOCKFILTERINDEX_H #include #include #include #include #include /** Interval between compact filter checkpoints. See BIP 157. */ static constexpr int CFCHECKPT_INTERVAL = 1000; /** * BlockFilterIndex is used to store and retrieve block filters, hashes, and * headers for a range of blocks by height. An index is constructed for each * supported filter type with its own database (ie. filter data for different * types are stored in separate databases). * * This index is used to serve BIP 157 net requests. */ class BlockFilterIndex final : public BaseIndex { private: BlockFilterType m_filter_type; std::string m_name; std::unique_ptr m_db; FlatFilePos m_next_filter_pos; std::unique_ptr m_filter_fileseq; bool ReadFilterFromDisk(const FlatFilePos &pos, BlockFilter &filter) const; size_t WriteFilterToDisk(FlatFilePos &pos, const BlockFilter &filter); Mutex m_cs_headers_cache; /** * Cache of block hash to filter header, to avoid disk access when * responding to getcfcheckpt. */ std::unordered_map m_headers_cache GUARDED_BY(m_cs_headers_cache); protected: bool Init() override; bool CommitInternal(CDBBatch &batch) override; bool WriteBlock(const CBlock &block, const CBlockIndex *pindex) override; bool Rewind(const CBlockIndex *current_tip, const CBlockIndex *new_tip) override; BaseIndex::DB &GetDB() const override { return *m_db; } const char *GetName() const override { return m_name.c_str(); } public: /** Constructs the index, which becomes available to be queried. */ explicit BlockFilterIndex(BlockFilterType filter_type, size_t n_cache_size, bool f_memory = false, bool f_wipe = false); BlockFilterType GetFilterType() const { return m_filter_type; } /** Get a single filter by block. */ bool LookupFilter(const CBlockIndex *block_index, BlockFilter &filter_out) const; /** Get a single filter header by block. */ - bool LookupFilterHeader(const CBlockIndex *block_index, - uint256 &header_out); + bool LookupFilterHeader(const CBlockIndex *block_index, uint256 &header_out) + EXCLUSIVE_LOCKS_REQUIRED(!m_cs_headers_cache); /** Get a range of filters between two heights on a chain. */ bool LookupFilterRange(int start_height, const CBlockIndex *stop_index, std::vector &filters_out) const; /** Get a range of filter hashes between two heights on a chain. */ bool LookupFilterHashRange(int start_height, const CBlockIndex *stop_index, std::vector &hashes_out) const; }; /** * Get a block filter index by type. Returns nullptr if index has not been * initialized or was already destroyed. */ BlockFilterIndex *GetBlockFilterIndex(BlockFilterType filter_type); /** Iterate over all running block filter indexes, invoking fn on each. */ void ForEachBlockFilterIndex(std::function fn); /** * Initialize a block filter index for the given type if one does not already * exist. Returns true if a new index is created and false if one has already * been initialized. */ bool InitBlockFilterIndex(BlockFilterType filter_type, size_t n_cache_size, bool f_memory = false, bool f_wipe = false); /** * Destroy the block filter index with the given type. Returns false if no such * index exists. This just releases the allocated memory and closes the database * connection, it does not delete the index data. */ bool DestroyBlockFilterIndex(BlockFilterType filter_type); /** Destroy all open block filter indexes. */ void DestroyAllBlockFilterIndexes(); #endif // BITCOIN_INDEX_BLOCKFILTERINDEX_H diff --git a/src/net.h b/src/net.h index a1a544633..2b1ae3661 100644 --- a/src/net.h +++ b/src/net.h @@ -1,1388 +1,1401 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2019 The Bitcoin Core developers // Copyright (c) 2017-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NET_H #define BITCOIN_NET_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // For cs_main #include #include #include #include #include #include #include #include #include #include class AddrMan; class BanMan; class Config; class CNode; class CScheduler; struct bilingual_str; /** Default for -whitelistrelay. */ static const bool DEFAULT_WHITELISTRELAY = true; /** Default for -whitelistforcerelay. */ static const bool DEFAULT_WHITELISTFORCERELAY = false; /** * Time after which to disconnect, after waiting for a ping response (or * inactivity). */ static constexpr std::chrono::minutes TIMEOUT_INTERVAL{20}; /** Run the feeler connection loop once every 2 minutes. **/ static constexpr auto FEELER_INTERVAL = 2min; /** Run the extra block-relay-only connection loop once every 5 minutes. **/ static constexpr auto EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL = 5min; /** Maximum length of the user agent string in `version` message */ static const unsigned int MAX_SUBVERSION_LENGTH = 256; /** * Maximum number of automatic outgoing nodes over which we'll relay everything * (blocks, tx, addrs, etc) */ static const int MAX_OUTBOUND_FULL_RELAY_CONNECTIONS = 16; /** Maximum number of addnode outgoing nodes */ static const int MAX_ADDNODE_CONNECTIONS = 8; /** Maximum number of block-relay-only outgoing connections */ static const int MAX_BLOCK_RELAY_ONLY_CONNECTIONS = 2; /** * Maximum number of avalanche enabled outgoing connections by default. * Can be overridden with the -maxavalancheoutbound option. */ static const int DEFAULT_MAX_AVALANCHE_OUTBOUND_CONNECTIONS = 300; /** Maximum number of feeler connections */ static const int MAX_FEELER_CONNECTIONS = 1; /** -listen default */ static const bool DEFAULT_LISTEN = true; /** * The maximum number of peer connections to maintain. * This quantity might not be reachable on some systems, especially on platforms * that do not provide a working poll() interface. */ static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 4096; /** The default for -maxuploadtarget. 0 = Unlimited */ static constexpr uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0; /** Default for blocks only*/ static const bool DEFAULT_BLOCKSONLY = false; /** -peertimeout default */ static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60; /** Number of file descriptors required for message capture **/ static const int NUM_FDS_MESSAGE_CAPTURE = 1; static const bool DEFAULT_FORCEDNSSEED = false; static const bool DEFAULT_DNSSEED = true; static const bool DEFAULT_FIXEDSEEDS = true; static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000; static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000; struct AddedNodeInfo { std::string strAddedNode; CService resolvedAddress; bool fConnected; bool fInbound; }; struct CNodeStats; class CClientUIInterface; struct CSerializedNetMsg { CSerializedNetMsg() = default; CSerializedNetMsg(CSerializedNetMsg &&) = default; CSerializedNetMsg &operator=(CSerializedNetMsg &&) = default; // No copying, only moves. CSerializedNetMsg(const CSerializedNetMsg &msg) = delete; CSerializedNetMsg &operator=(const CSerializedNetMsg &) = delete; std::vector data; std::string m_type; }; const std::vector CONNECTION_TYPE_DOC{ "outbound-full-relay (default automatic connections)", "block-relay-only (does not relay transactions or addresses)", "inbound (initiated by the peer)", "manual (added via addnode RPC or -addnode/-connect configuration options)", "addr-fetch (short-lived automatic connection for soliciting addresses)", "feeler (short-lived automatic connection for testing addresses)"}; /** * Different types of connections to a peer. This enum encapsulates the * information we have available at the time of opening or accepting the * connection. Aside from INBOUND, all types are initiated by us. */ enum class ConnectionType { /** * Inbound connections are those initiated by a peer. This is the only * property we know at the time of connection, until P2P messages are * exchanged. */ INBOUND, /** * These are the default connections that we use to connect with the * network. There is no restriction on what is relayed- by default we relay * blocks, addresses & transactions. We automatically attempt to open * MAX_OUTBOUND_FULL_RELAY_CONNECTIONS using addresses from our AddrMan. */ OUTBOUND_FULL_RELAY, /** * We open manual connections to addresses that users explicitly inputted * via the addnode RPC, or the -connect command line argument. Even if a * manual connection is misbehaving, we do not automatically disconnect or * add it to our discouragement filter. */ MANUAL, /** * Feeler connections are short-lived connections made to check that a node * is alive. They can be useful for: * - test-before-evict: if one of the peers is considered for eviction from * our AddrMan because another peer is mapped to the same slot in the * tried table, evict only if this longer-known peer is offline. * - move node addresses from New to Tried table, so that we have more * connectable addresses in our AddrMan. * Note that in the literature ("Eclipse Attacks on Bitcoin’s Peer-to-Peer * Network") only the latter feature is referred to as "feeler connections", * although in our codebase feeler connections encompass test-before-evict * as well. * We make these connections approximately every FEELER_INTERVAL: * first we resolve previously found collisions if they exist * (test-before-evict), otherwise connect to a node from the new table. */ FEELER, /** * We use block-relay-only connections to help prevent against partition * attacks. By not relaying transactions or addresses, these connections * are harder to detect by a third party, thus helping obfuscate the * network topology. We automatically attempt to open * MAX_BLOCK_RELAY_ONLY_ANCHORS using addresses from our anchors.dat. Then * addresses from our AddrMan if MAX_BLOCK_RELAY_ONLY_CONNECTIONS * isn't reached yet. */ BLOCK_RELAY, /** * AddrFetch connections are short lived connections used to solicit * addresses from peers. These are initiated to addresses submitted via the * -seednode command line argument, or under certain conditions when the * AddrMan is empty. */ ADDR_FETCH, /** * Special case of connection to a full relay outbound with avalanche * service enabled. */ AVALANCHE_OUTBOUND, }; /** Convert ConnectionType enum to a string value */ std::string ConnectionTypeAsString(ConnectionType conn_type); /** * Look up IP addresses from all interfaces on the machine and add them to the * list of local addresses to self-advertise. * The loopback interface is skipped and only the first address from each * interface is used. */ void Discover(); uint16_t GetListenPort(); enum { // unknown LOCAL_NONE, // address a local interface listens on LOCAL_IF, // address explicit bound to LOCAL_BIND, // address reported by UPnP or NAT-PMP LOCAL_MAPPED, // address explicitly specified (-externalip=) LOCAL_MANUAL, LOCAL_MAX }; bool IsPeerAddrLocalGood(CNode *pnode); /** Returns a local address that we should advertise to this peer. */ std::optional GetLocalAddrForPeer(CNode &node); /** * Mark a network as reachable or unreachable (no automatic connects to it) * @note Networks are reachable by default */ void SetReachable(enum Network net, bool reachable); /** @returns true if the network is reachable, false otherwise */ bool IsReachable(enum Network net); /** @returns true if the address is in a reachable network, false otherwise */ bool IsReachable(const CNetAddr &addr); bool AddLocal(const CService &addr, int nScore = LOCAL_NONE); bool AddLocal(const CNetAddr &addr, int nScore = LOCAL_NONE); void RemoveLocal(const CService &addr); bool SeenLocal(const CService &addr); bool IsLocal(const CService &addr); bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr); CService GetLocalAddress(const CNetAddr &addrPeer); extern bool fDiscover; extern bool fListen; struct LocalServiceInfo { int nScore; uint16_t nPort; }; extern Mutex g_maplocalhost_mutex; extern std::map mapLocalHost GUARDED_BY(g_maplocalhost_mutex); extern const std::string NET_MESSAGE_COMMAND_OTHER; // Command, total bytes typedef std::map mapMsgCmdSize; /** * POD that contains various stats about a node. * Usually constructed from CConman::GetNodeStats. Stats are filled from the * node using CNode::copyStats. */ struct CNodeStats { NodeId nodeid; std::chrono::seconds m_last_send; std::chrono::seconds m_last_recv; std::chrono::seconds m_last_tx_time; std::chrono::seconds m_last_proof_time; std::chrono::seconds m_last_block_time; std::chrono::seconds m_connected; int64_t nTimeOffset; std::string m_addr_name; int nVersion; std::string cleanSubVer; bool fInbound; bool m_bip152_highbandwidth_to; bool m_bip152_highbandwidth_from; int m_starting_height; uint64_t nSendBytes; mapMsgCmdSize mapSendBytesPerMsgCmd; uint64_t nRecvBytes; mapMsgCmdSize mapRecvBytesPerMsgCmd; NetPermissionFlags m_permissionFlags; std::chrono::microseconds m_last_ping_time; std::chrono::microseconds m_min_ping_time; // Our address, as reported by the peer std::string addrLocal; // Address of this peer CAddress addr; // Bind address of our side of the connection CAddress addrBind; // Network the peer connected through Network m_network; uint32_t m_mapped_as; ConnectionType m_conn_type; std::optional m_availabilityScore; }; /** * Transport protocol agnostic message container. * Ideally it should only contain receive time, payload, * type and size. */ class CNetMessage { public: //! received message data CDataStream m_recv; //! time of message receipt std::chrono::microseconds m_time{0}; bool m_valid_netmagic = false; bool m_valid_header = false; bool m_valid_checksum = false; //! size of the payload uint32_t m_message_size{0}; //! used wire size of the message (including header/checksum) uint32_t m_raw_message_size{0}; std::string m_type; CNetMessage(CDataStream &&recv_in) : m_recv(std::move(recv_in)) {} void SetVersion(int nVersionIn) { m_recv.SetVersion(nVersionIn); } }; /** * The TransportDeserializer takes care of holding and deserializing the * network receive buffer. It can deserialize the network buffer into a * transport protocol agnostic CNetMessage (command & payload) */ class TransportDeserializer { public: // returns true if the current deserialization is complete virtual bool Complete() const = 0; // set the serialization context version virtual void SetVersion(int version) = 0; /** read and deserialize data, advances msg_bytes data pointer */ virtual int Read(const Config &config, Span &msg_bytes) = 0; // decomposes a message from the context virtual CNetMessage GetMessage(const Config &config, std::chrono::microseconds time) = 0; virtual ~TransportDeserializer() {} }; class V1TransportDeserializer final : public TransportDeserializer { private: mutable CHash256 hasher; mutable uint256 data_hash; // Parsing header (false) or data (true) bool in_data; // Partially received header. CDataStream hdrbuf; // Complete header. CMessageHeader hdr; // Received message data. CDataStream vRecv; uint32_t nHdrPos; uint32_t nDataPos; const uint256 &GetMessageHash() const; int readHeader(const Config &config, Span msg_bytes); int readData(Span msg_bytes); void Reset() { vRecv.clear(); hdrbuf.clear(); hdrbuf.resize(24); in_data = false; nHdrPos = 0; nDataPos = 0; data_hash.SetNull(); hasher.Reset(); } public: V1TransportDeserializer( const CMessageHeader::MessageMagic &pchMessageStartIn, int nTypeIn, int nVersionIn) : hdrbuf(nTypeIn, nVersionIn), hdr(pchMessageStartIn), vRecv(nTypeIn, nVersionIn) { Reset(); } bool Complete() const override { if (!in_data) { return false; } return (hdr.nMessageSize == nDataPos); } void SetVersion(int nVersionIn) override { hdrbuf.SetVersion(nVersionIn); vRecv.SetVersion(nVersionIn); } int Read(const Config &config, Span &msg_bytes) override { int ret = in_data ? readData(msg_bytes) : readHeader(config, msg_bytes); if (ret < 0) { Reset(); } else { msg_bytes = msg_bytes.subspan(ret); } return ret; } CNetMessage GetMessage(const Config &config, std::chrono::microseconds time) override; }; /** * The TransportSerializer prepares messages for the network transport */ class TransportSerializer { public: // prepare message for transport (header construction, error-correction // computation, payload encryption, etc.) virtual void prepareForTransport(const Config &config, CSerializedNetMsg &msg, std::vector &header) = 0; virtual ~TransportSerializer() {} }; class V1TransportSerializer : public TransportSerializer { public: void prepareForTransport(const Config &config, CSerializedNetMsg &msg, std::vector &header) override; }; /** Information about a peer */ class CNode { friend class CConnman; friend struct ConnmanTestMsg; public: std::unique_ptr m_deserializer; std::unique_ptr m_serializer; // socket SOCKET hSocket GUARDED_BY(cs_hSocket); /** Total size of all vSendMsg entries. */ size_t nSendSize GUARDED_BY(cs_vSend){0}; /** Offset inside the first vSendMsg already sent */ size_t nSendOffset GUARDED_BY(cs_vSend){0}; uint64_t nSendBytes GUARDED_BY(cs_vSend){0}; std::deque> vSendMsg GUARDED_BY(cs_vSend); Mutex cs_vSend; Mutex cs_hSocket; Mutex cs_vRecv; RecursiveMutex cs_vProcessMsg; std::list vProcessMsg GUARDED_BY(cs_vProcessMsg); size_t nProcessQueueSize{0}; RecursiveMutex cs_sendProcessing; uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0}; std::atomic m_last_send{0s}; std::atomic m_last_recv{0s}; //! Unix epoch time at peer connection const std::chrono::seconds m_connected; std::atomic nTimeOffset{0}; // Address of this peer const CAddress addr; // Bind address of our side of the connection const CAddress addrBind; const std::string m_addr_name; //! Whether this peer is an inbound onion, i.e. connected via our Tor onion //! service. const bool m_inbound_onion; std::atomic nVersion{0}; // The nonce provided by the remote host. uint64_t nRemoteHostNonce{0}; // The extra entropy provided by the remote host. uint64_t nRemoteExtraEntropy{0}; /** * cleanSubVer is a sanitized string of the user agent byte array we read * from the wire. This cleaned string can safely be logged or displayed. */ Mutex m_subver_mutex; std::string cleanSubVer GUARDED_BY(m_subver_mutex){}; // This peer is preferred for eviction. bool m_prefer_evict{false}; bool HasPermission(NetPermissionFlags permission) const { return NetPermissions::HasFlag(m_permissionFlags, permission); } std::atomic_bool fSuccessfullyConnected{false}; // Setting fDisconnect to true will cause the node to be disconnected the // next time DisconnectNodes() runs std::atomic_bool fDisconnect{false}; CSemaphoreGrant grantOutbound; std::atomic nRefCount{0}; const uint64_t nKeyedNetGroup; std::atomic_bool fPauseRecv{false}; std::atomic_bool fPauseSend{false}; bool IsOutboundOrBlockRelayConn() const { switch (m_conn_type) { case ConnectionType::OUTBOUND_FULL_RELAY: case ConnectionType::BLOCK_RELAY: case ConnectionType::AVALANCHE_OUTBOUND: return true; case ConnectionType::INBOUND: case ConnectionType::MANUAL: case ConnectionType::ADDR_FETCH: case ConnectionType::FEELER: return false; } // no default case, so the compiler can warn about missing cases assert(false); } bool IsFullOutboundConn() const { return m_conn_type == ConnectionType::OUTBOUND_FULL_RELAY || m_conn_type == ConnectionType::AVALANCHE_OUTBOUND; } bool IsManualConn() const { return m_conn_type == ConnectionType::MANUAL; } bool IsBlockOnlyConn() const { return m_conn_type == ConnectionType::BLOCK_RELAY; } bool IsFeelerConn() const { return m_conn_type == ConnectionType::FEELER; } bool IsAddrFetchConn() const { return m_conn_type == ConnectionType::ADDR_FETCH; } bool IsInboundConn() const { return m_conn_type == ConnectionType::INBOUND; } bool IsAvalancheOutboundConnection() const { return m_conn_type == ConnectionType::AVALANCHE_OUTBOUND; } bool ExpectServicesFromConn() const { switch (m_conn_type) { case ConnectionType::INBOUND: case ConnectionType::MANUAL: case ConnectionType::FEELER: return false; case ConnectionType::OUTBOUND_FULL_RELAY: case ConnectionType::BLOCK_RELAY: case ConnectionType::ADDR_FETCH: case ConnectionType::AVALANCHE_OUTBOUND: return true; } // no default case, so the compiler can warn about missing cases assert(false); } /** * Get network the peer connected through. * * Returns Network::NET_ONION for *inbound* onion connections, * and CNetAddr::GetNetClass() otherwise. The latter cannot be used directly * because it doesn't detect the former, and it's not the responsibility of * the CNetAddr class to know the actual network a peer is connected * through. * * @return network the peer connected through. */ Network ConnectedThroughNetwork() const; // We selected peer as (compact blocks) high-bandwidth peer (BIP152) std::atomic m_bip152_highbandwidth_to{false}; // Peer selected us as (compact blocks) high-bandwidth peer (BIP152) std::atomic m_bip152_highbandwidth_from{false}; /** * Whether this peer provides all services that we want. * Used for eviction decisions */ std::atomic_bool m_has_all_wanted_services{false}; /** * Whether we should relay transactions to this peer (their version * message did not include fRelay=false and this is not a block-relay-only * connection). This only changes from false to true. It will never change * back to false. Used only in inbound eviction logic. */ std::atomic_bool m_relays_txs{false}; /** * Whether this peer has loaded a bloom filter. Used only in inbound * eviction logic. */ std::atomic_bool m_bloom_filter_loaded{false}; // True if we know this peer is using Avalanche (at least polling) std::atomic m_avalanche_enabled{false}; mutable Mutex cs_avalanche_pubkey; // Pubkey used to verify signatures on Avalanche messages from this peer std::optional m_avalanche_pubkey GUARDED_BY(cs_avalanche_pubkey); /** The node was polled for count invs */ void invsPolled(uint32_t count); /** The node voted for count invs */ void invsVoted(uint32_t count); /** * The availability score is calculated using an exponentially weighted * average. * This has several interesting properties: * - The most recent polls/responses have more weight than the previous * ones. A node that recently stopped answering will see its ratio * decrease quickly. * - This is a low-pass filter, so it causes delay. This means that a * node needs to have a track record for the ratio to be high. A node * that has been little requested will have a lower ratio than a node * that failed to answer a few polls but answered a lot of them. * - It is cheap to compute. * * This is expected to be called at a fixed interval of * AVALANCHE_STATISTICS_REFRESH_PERIOD. */ void updateAvailabilityScore(double decayFactor); double getAvailabilityScore() const; // Store the next time we will consider a getavaaddr message from this peer std::chrono::seconds m_nextGetAvaAddr{0}; // The last time the node sent us a faulty message std::atomic m_avalanche_last_message_fault{0s}; // How much faulty messages did this node accumulate std::atomic m_avalanche_message_fault_counter{0}; SteadyMilliseconds m_last_poll{}; /** * UNIX epoch time of the last block received from this peer that we had * not yet seen (e.g. not already received from another peer), that passed * preliminary validity checks and was saved to disk, even if we don't * connect the block or it eventually fails connection. Used as an inbound * peer eviction criterium in CConnman::AttemptToEvictConnection. */ std::atomic m_last_block_time{0s}; /** * UNIX epoch time of the last transaction received from this peer that we * had not yet seen (e.g. not already received from another peer) and that * was accepted into our mempool. Used as an inbound peer eviction criterium * in CConnman::AttemptToEvictConnection. */ std::atomic m_last_tx_time{0s}; /** * UNIX epoch time of the last proof received from this peer that we * had not yet seen (e.g. not already received from another peer) and that * was accepted into our proof pool. Used as an inbound peer eviction * criterium in CConnman::AttemptToEvictConnection. */ std::atomic m_last_proof_time{0s}; /** Last measured round-trip time. Used only for RPC/GUI stats/debugging.*/ std::atomic m_last_ping_time{0us}; /** * Lowest measured round-trip time. Used as an inbound peer eviction * criterium in CConnman::AttemptToEvictConnection. */ std::atomic m_min_ping_time{ std::chrono::microseconds::max()}; CNode(NodeId id, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, uint64_t nLocalExtraEntropyIn, const CAddress &addrBindIn, const std::string &addrNameIn, ConnectionType conn_type_in, bool inbound_onion); ~CNode(); CNode(const CNode &) = delete; CNode &operator=(const CNode &) = delete; /** * A ping-pong round trip has completed successfully. Update latest and * minimum ping times. */ void PongReceived(std::chrono::microseconds ping_time) { m_last_ping_time = ping_time; m_min_ping_time = std::min(m_min_ping_time.load(), ping_time); } NodeId GetId() const { return id; } uint64_t GetLocalNonce() const { return nLocalHostNonce; } uint64_t GetLocalExtraEntropy() const { return nLocalExtraEntropy; } int GetRefCount() const { assert(nRefCount >= 0); return nRefCount; } /** * Receive bytes from the buffer and deserialize them into messages. * * @param[in] msg_bytes The raw data * @param[out] complete Set True if at least one message has been * deserialized and is ready to be processed * @return True if the peer should stay connected, * False if the peer should be disconnected from. */ bool ReceiveMsgBytes(const Config &config, Span msg_bytes, - bool &complete); + bool &complete) EXCLUSIVE_LOCKS_REQUIRED(!cs_vRecv); void SetCommonVersion(int greatest_common_version) { Assume(m_greatest_common_version == INIT_PROTO_VERSION); m_greatest_common_version = greatest_common_version; } int GetCommonVersion() const { return m_greatest_common_version; } - CService GetAddrLocal() const LOCKS_EXCLUDED(m_addr_local_mutex); + CService GetAddrLocal() const EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex); //! May not be called more than once void SetAddrLocal(const CService &addrLocalIn) - LOCKS_EXCLUDED(m_addr_local_mutex); + EXCLUSIVE_LOCKS_REQUIRED(!m_addr_local_mutex); CNode *AddRef() { nRefCount++; return this; } void Release() { nRefCount--; } - void CloseSocketDisconnect(); + void CloseSocketDisconnect() EXCLUSIVE_LOCKS_REQUIRED(!cs_hSocket); - void copyStats(CNodeStats &stats); + void copyStats(CNodeStats &stats) + EXCLUSIVE_LOCKS_REQUIRED(!m_subver_mutex, !m_addr_local_mutex, + !cs_vSend, !cs_vRecv); std::string ConnectionTypeAsString() const { return ::ConnectionTypeAsString(m_conn_type); } private: const NodeId id; const uint64_t nLocalHostNonce; const uint64_t nLocalExtraEntropy; const ConnectionType m_conn_type; std::atomic m_greatest_common_version{INIT_PROTO_VERSION}; NetPermissionFlags m_permissionFlags{NetPermissionFlags::None}; // Used only by SocketHandler thread std::list vRecvMsg; // Our address, as reported by the peer mutable Mutex m_addr_local_mutex; CService addrLocal GUARDED_BY(m_addr_local_mutex); /** * The inventories polled and voted counters since last score * computation, stored as a pair of uint32_t with the poll counter * being the 32 lowest bits and the vote counter the 32 highest bits. */ std::atomic invCounters{0}; /** The last computed score */ std::atomic availabilityScore{0.}; mapMsgCmdSize mapSendBytesPerMsgCmd GUARDED_BY(cs_vSend); mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv); }; /** * Interface for message handling */ class NetEventsInterface { public: /** Initialize a peer (setup state, queue any initial messages) */ virtual void InitializeNode(const Config &config, CNode &node, ServiceFlags our_services) = 0; /** Handle removal of a peer (clear state) */ virtual void FinalizeNode(const Config &config, const CNode &node) = 0; /** * Process protocol messages received from a given node * * @param[in] config The applicable configuration object. * @param[in] pnode The node which we have received messages * from. * @param[in] interrupt Interrupt condition for processing threads * @return True if there is more work to be done */ virtual bool ProcessMessages(const Config &config, CNode *pnode, std::atomic &interrupt) = 0; /** * Send queued protocol messages to a given node. * * @param[in] config The applicable configuration object. * @param[in] pnode The node which we are sending messages to. * @return True if there is more work to be done */ virtual bool SendMessages(const Config &config, CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(pnode->cs_sendProcessing) = 0; protected: /** * Protected destructor so that instances can only be deleted by derived * classes. If that restriction is no longer desired, this should be made * public and virtual. */ ~NetEventsInterface() = default; }; namespace { struct CConnmanTest; } class NetEventsInterface; class CConnman { public: enum NumConnections { CONNECTIONS_NONE = 0, CONNECTIONS_IN = (1U << 0), CONNECTIONS_OUT = (1U << 1), CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT), }; struct Options { ServiceFlags nLocalServices = NODE_NONE; int nMaxConnections = 0; int m_max_outbound_full_relay = 0; int m_max_outbound_block_relay = 0; int m_max_avalanche_outbound = 0; int nMaxAddnode = 0; int nMaxFeeler = 0; CClientUIInterface *uiInterface = nullptr; std::vector m_msgproc; BanMan *m_banman = nullptr; unsigned int nSendBufferMaxSize = 0; unsigned int nReceiveFloodSize = 0; uint64_t nMaxOutboundLimit = 0; int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT; std::vector vSeedNodes; std::vector vWhitelistedRange; std::vector vWhiteBinds; std::vector vBinds; std::vector onion_binds; /// True if the user did not specify -bind= or -whitebind= and thus /// we should bind on `0.0.0.0` (IPv4) and `::` (IPv6). bool bind_on_any; bool m_use_addrman_outgoing = true; std::vector m_specified_outgoing; std::vector m_added_nodes; bool m_i2p_accept_incoming = true; }; - void Init(const Options &connOptions) { + void Init(const Options &connOptions) + EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex) { nLocalServices = connOptions.nLocalServices; nMaxConnections = connOptions.nMaxConnections; m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing; nMaxAddnode = connOptions.nMaxAddnode; nMaxFeeler = connOptions.nMaxFeeler; { // Lock cs_main to prevent a potential race with the peer validation // logic thread. LOCK(::cs_main); m_max_outbound_full_relay = std::min(connOptions.m_max_outbound_full_relay, connOptions.nMaxConnections); m_max_avalanche_outbound = connOptions.m_max_avalanche_outbound; m_max_outbound_block_relay = connOptions.m_max_outbound_block_relay; m_max_outbound = m_max_outbound_full_relay + m_max_outbound_block_relay + nMaxFeeler + m_max_avalanche_outbound; } m_client_interface = connOptions.uiInterface; m_banman = connOptions.m_banman; m_msgproc = connOptions.m_msgproc; nSendBufferMaxSize = connOptions.nSendBufferMaxSize; nReceiveFloodSize = connOptions.nReceiveFloodSize; m_peer_connect_timeout = std::chrono::seconds{connOptions.m_peer_connect_timeout}; { LOCK(cs_totalBytesSent); nMaxOutboundLimit = connOptions.nMaxOutboundLimit; } vWhitelistedRange = connOptions.vWhitelistedRange; { LOCK(m_added_nodes_mutex); m_added_nodes = connOptions.m_added_nodes; } m_onion_binds = connOptions.onion_binds; } CConnman(const Config &configIn, uint64_t seed0, uint64_t seed1, AddrMan &addrmanIn, bool network_active = true); ~CConnman(); - bool Start(CScheduler &scheduler, const Options &options); + bool Start(CScheduler &scheduler, const Options &options) + EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex, !m_addr_fetches_mutex, + !mutexMsgProc); void StopThreads(); void StopNodes(); void Stop() { StopThreads(); StopNodes(); }; - void Interrupt(); + void Interrupt() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc); bool GetNetworkActive() const { return fNetworkActive; }; bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; }; void SetNetworkActive(bool active); void OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *strDest, ConnectionType conn_type); bool CheckIncomingNonce(uint64_t nonce); bool ForNode(NodeId id, std::function func); void PushMessage(CNode *pnode, CSerializedNetMsg &&msg); using NodeFn = std::function; void ForEachNode(const NodeFn &func) { LOCK(m_nodes_mutex); for (auto &&node : m_nodes) { if (NodeFullyConnected(node)) { func(node); } } }; void ForEachNode(const NodeFn &func) const { LOCK(m_nodes_mutex); for (auto &&node : m_nodes) { if (NodeFullyConnected(node)) { func(node); } } }; // Addrman functions /** * Return all or many randomly selected addresses, optionally by network. * * @param[in] max_addresses Maximum number of addresses to return * (0 = all). * @param[in] max_pct Maximum percentage of addresses to return * (0 = all). * @param[in] network Select only addresses of this network * (nullopt = all). */ std::vector GetAddresses(size_t max_addresses, size_t max_pct, std::optional network) const; /** * Cache is used to minimize topology leaks, so it should * be used for all non-trusted calls, for example, p2p. * A non-malicious call (from RPC or a peer with addr permission) should * call the function without a parameter to avoid using the cache. */ std::vector GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct); // This allows temporarily exceeding m_max_outbound_full_relay, with the // goal of finding a peer that is better than all our current peers. void SetTryNewOutboundPeer(bool flag); bool GetTryNewOutboundPeer() const; void StartExtraBlockRelayPeers() { LogPrint(BCLog::NET, "net: enabling extra block-relay-only peers\n"); m_start_extra_block_relay_peers = true; } // Return the number of outbound peers we have in excess of our target (eg, // if we previously called SetTryNewOutboundPeer(true), and have since set // to false, we may have extra peers that we wish to disconnect). This may // return a value less than (num_outbound_connections - num_outbound_slots) // in cases where some outbound connections are not yet fully connected, or // not yet fully disconnected. int GetExtraFullOutboundCount() const; // Count the number of block-relay-only peers we have over our limit. int GetExtraBlockRelayCount() const; - bool AddNode(const std::string &node); - bool RemoveAddedNode(const std::string &node); - std::vector GetAddedNodeInfo() const; + bool AddNode(const std::string &node) + EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex); + bool RemoveAddedNode(const std::string &node) + EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex); + std::vector GetAddedNodeInfo() const + EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex); /** * Attempts to open a connection. Currently only used from tests. * * @param[in] address Address of node to try connecting to * @param[in] conn_type ConnectionType::OUTBOUND, * ConnectionType::BLOCK_RELAY, * ConnectionType::ADDR_FETCH, or * ConnectionType::FEELER * @return bool Returns false if there are no available * slots for this connection: * - conn_type not a supported ConnectionType * - Max total outbound connection capacity filled * - Max connection capacity for type is filled */ bool AddConnection(const std::string &address, ConnectionType conn_type); size_t GetNodeCount(NumConnections num) const; void GetNodeStats(std::vector &vstats) const; bool DisconnectNode(const std::string &node); bool DisconnectNode(const CSubNet &subnet); bool DisconnectNode(const CNetAddr &addr); bool DisconnectNode(NodeId id); //! Used to convey which local services we are offering peers during node //! connection. //! //! The data returned by this is used in CNode construction, //! which is used to advertise which services we are offering //! that peer during `net_processing.cpp:PushNodeVersion()`. ServiceFlags GetLocalServices() const; uint64_t GetMaxOutboundTarget() const; std::chrono::seconds GetMaxOutboundTimeframe() const; //! check if the outbound target is reached. If param //! historicalBlockServingLimit is set true, the function will response true //! if the limit for serving historical blocks has been reached. bool OutboundTargetReached(bool historicalBlockServingLimit) const; //! response the bytes left in the current max outbound cycle in case of no //! limit, it will always response 0 uint64_t GetOutboundTargetBytesLeft() const; //! returns the time in second left in the current max outbound cycle in //! case of no limit, it will always return 0 std::chrono::seconds GetMaxOutboundTimeLeftInCycle() const; uint64_t GetTotalBytesRecv() const; uint64_t GetTotalBytesSent() const; /** Get a unique deterministic randomizer. */ CSipHasher GetDeterministicRandomizer(uint64_t id) const; unsigned int GetReceiveFloodSize() const; - void WakeMessageHandler(); + void WakeMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc); /** * Return true if we should disconnect the peer for failing an inactivity * check. */ bool ShouldRunInactivityChecks(const CNode &node, std::chrono::seconds now) const; private: struct ListenSocket { public: SOCKET socket; inline void AddSocketPermissionFlags(NetPermissionFlags &flags) const { NetPermissions::AddFlag(flags, m_permissions); } ListenSocket(SOCKET socket_, NetPermissionFlags permissions_) : socket(socket_), m_permissions(permissions_) {} private: NetPermissionFlags m_permissions; }; bool BindListenPort(const CService &bindAddr, bilingual_str &strError, NetPermissionFlags permissions); bool Bind(const CService &addr, unsigned int flags, NetPermissionFlags permissions); bool InitBinds(const Options &options); - void ThreadOpenAddedConnections(); - void AddAddrFetch(const std::string &strDest); - void ProcessAddrFetch(); + void ThreadOpenAddedConnections() + EXCLUSIVE_LOCKS_REQUIRED(!m_added_nodes_mutex); + void AddAddrFetch(const std::string &strDest) + EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex); + void ProcessAddrFetch() EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex); void ThreadOpenConnections(std::vector connect, std::function - mockOpenConnection); - void ThreadMessageHandler(); + mockOpenConnection) + EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex, !m_added_nodes_mutex, + !m_nodes_mutex); + void ThreadMessageHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc); void ThreadI2PAcceptIncoming(); void AcceptConnection(const ListenSocket &hListenSocket); /** * Create a `CNode` object from a socket that has just been accepted and add * the node to the `m_nodes` member. * @param[in] hSocket Connected socket to communicate with the peer. * @param[in] permissionFlags The peer's permissions. * @param[in] addr_bind The address and port at our side of the connection. * @param[in] addr The address and port at the peer's side of the connection */ void CreateNodeFromAcceptedSocket(SOCKET hSocket, NetPermissionFlags permissionFlags, const CAddress &addr_bind, const CAddress &addr); void DisconnectNodes(); void NotifyNumConnectionsChanged(); /** Return true if the peer is inactive and should be disconnected. */ bool InactivityCheck(const CNode &node) const; bool GenerateSelectSet(std::set &recv_set, std::set &send_set, std::set &error_set); void SocketEvents(std::set &recv_set, std::set &send_set, std::set &error_set); - void SocketHandler(); - void ThreadSocketHandler(); - void ThreadDNSAddressSeed(); + void SocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc); + void ThreadSocketHandler() EXCLUSIVE_LOCKS_REQUIRED(!mutexMsgProc); + void ThreadDNSAddressSeed() + EXCLUSIVE_LOCKS_REQUIRED(!m_addr_fetches_mutex, !m_nodes_mutex); uint64_t CalculateKeyedNetGroup(const CAddress &ad) const; CNode *FindNode(const CNetAddr &ip); CNode *FindNode(const CSubNet &subNet); CNode *FindNode(const std::string &addrName); CNode *FindNode(const CService &addr); /** * Determine whether we're already connected to a given address, in order to * avoid initiating duplicate connections. */ bool AlreadyConnectedToAddress(const CAddress &addr); bool AttemptToEvictConnection(); CNode *ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, ConnectionType conn_type); void AddWhitelistPermissionFlags(NetPermissionFlags &flags, const CNetAddr &addr) const; void DeleteNode(CNode *pnode); NodeId GetNewNodeId(); size_t SocketSendData(CNode &node) const EXCLUSIVE_LOCKS_REQUIRED(node.cs_vSend); void DumpAddresses(); // Network stats void RecordBytesRecv(uint64_t bytes); void RecordBytesSent(uint64_t bytes); /** * Return vector of current BLOCK_RELAY peers. */ std::vector GetCurrentBlockRelayOnlyConns() const; // Whether the node should be passed out in ForEach* callbacks static bool NodeFullyConnected(const CNode *pnode); const Config *config; // Network usage totals mutable RecursiveMutex cs_totalBytesSent; std::atomic nTotalBytesRecv{0}; uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent){0}; // outbound limit & stats uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent){0}; std::chrono::seconds nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent){0}; uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent); // P2P timeout in seconds std::chrono::seconds m_peer_connect_timeout; // Whitelisted ranges. Any node connecting from these is automatically // whitelisted (as well as those connecting to whitelisted binds). std::vector vWhitelistedRange; unsigned int nSendBufferMaxSize{0}; unsigned int nReceiveFloodSize{0}; std::vector vhListenSocket; std::atomic fNetworkActive{true}; bool fAddressesInitialized{false}; AddrMan &addrman; std::deque m_addr_fetches GUARDED_BY(m_addr_fetches_mutex); Mutex m_addr_fetches_mutex; std::vector m_added_nodes GUARDED_BY(m_added_nodes_mutex); mutable Mutex m_added_nodes_mutex; std::vector m_nodes GUARDED_BY(m_nodes_mutex); std::list m_nodes_disconnected; mutable RecursiveMutex m_nodes_mutex; std::atomic nLastNodeId{0}; unsigned int nPrevNodeCount{0}; /** * Cache responses to addr requests to minimize privacy leak. * Attack example: scraping addrs in real-time may allow an attacker * to infer new connections of the victim by detecting new records * with fresh timestamps (per self-announcement). */ struct CachedAddrResponse { std::vector m_addrs_response_cache; std::chrono::microseconds m_cache_entry_expiration{0}; }; /** * Addr responses stored in different caches * per (network, local socket) prevent cross-network node identification. * If a node for example is multi-homed under Tor and IPv6, * a single cache (or no cache at all) would let an attacker * to easily detect that it is the same node by comparing responses. * Indexing by local socket prevents leakage when a node has multiple * listening addresses on the same network. * * The used memory equals to 1000 CAddress records (or around 40 bytes) per * distinct Network (up to 5) we have/had an inbound peer from, * resulting in at most ~196 KB. Every separate local socket may * add up to ~196 KB extra. */ std::map m_addr_response_caches; /** * Services this node offers. * * This data is replicated in each Peer instance we create. * * This data is not marked const, but after being set it should not * change. * * \sa Peer::m_our_services */ ServiceFlags nLocalServices; std::unique_ptr semOutbound; std::unique_ptr semAddnode; int nMaxConnections; // How many full-relay (tx, block, addr) outbound peers we want int m_max_outbound_full_relay; // How many block-relay only outbound peers we want // We do not relay tx or addr messages with these peers int m_max_outbound_block_relay; // How many avalanche enabled outbound peers we want int m_max_avalanche_outbound; int nMaxAddnode; int nMaxFeeler; int m_max_outbound; bool m_use_addrman_outgoing; CClientUIInterface *m_client_interface; // FIXME m_msgproc is a terrible name std::vector m_msgproc; /** * Pointer to this node's banman. May be nullptr - check existence before * dereferencing. */ BanMan *m_banman; /** * Addresses that were saved during the previous clean shutdown. We'll * attempt to make block-relay-only connections to them. */ std::vector m_anchors; /** SipHasher seeds for deterministic randomness */ const uint64_t nSeed0, nSeed1; /** flag for waking the message processor. */ bool fMsgProcWake GUARDED_BY(mutexMsgProc); std::condition_variable condMsgProc; Mutex mutexMsgProc; std::atomic flagInterruptMsgProc{false}; /** * This is signaled when network activity should cease. * A pointer to it is saved in `m_i2p_sam_session`, so make sure that * the lifetime of `interruptNet` is not shorter than * the lifetime of `m_i2p_sam_session`. */ CThreadInterrupt interruptNet; /** * I2P SAM session. * Used to accept incoming and make outgoing I2P connections. */ std::unique_ptr m_i2p_sam_session; std::thread threadDNSAddressSeed; std::thread threadSocketHandler; std::thread threadOpenAddedConnections; std::thread threadOpenConnections; std::thread threadMessageHandler; std::thread threadI2PAcceptIncoming; /** * flag for deciding to connect to an extra outbound peer, in excess of * m_max_outbound_full_relay. This takes the place of a feeler connection. */ std::atomic_bool m_try_another_outbound_peer; /** * flag for initiating extra block-relay-only peer connections. * this should only be enabled after initial chain sync has occurred, * as these connections are intended to be short-lived and low-bandwidth. */ std::atomic_bool m_start_extra_block_relay_peers{false}; /** * A vector of -bind=
:=onion arguments each of which is * an address and port that are designated for incoming Tor connections. */ std::vector m_onion_binds; friend struct ::CConnmanTest; friend struct ConnmanTestMsg; }; std::string getSubVersionEB(uint64_t MaxBlockSize); std::string userAgent(const Config &config); /** Dump binary message to file, with timestamp */ void CaptureMessageToFile(const CAddress &addr, const std::string &msg_type, Span data, bool is_incoming); /** * Defaults to `CaptureMessageToFile()`, but can be overridden by unit tests. */ extern std::function data, bool is_incoming)> CaptureMessage; struct NodeEvictionCandidate { NodeId id; std::chrono::seconds m_connected; std::chrono::microseconds m_min_ping_time; std::chrono::seconds m_last_block_time; std::chrono::seconds m_last_proof_time; std::chrono::seconds m_last_tx_time; bool fRelevantServices; bool m_relay_txs; bool fBloomFilter; uint64_t nKeyedNetGroup; bool prefer_evict; bool m_is_local; Network m_network; double availabilityScore; }; /** * Select an inbound peer to evict after filtering out (protecting) peers having * distinct, difficult-to-forge characteristics. The protection logic picks out * fixed numbers of desirable peers per various criteria, followed by (mostly) * ratios of desirable or disadvantaged peers. If any eviction candidates * remain, the selection logic chooses a peer to evict. */ [[nodiscard]] std::optional SelectNodeToEvict(std::vector &&vEvictionCandidates); /** * Protect desirable or disadvantaged inbound peers from eviction by ratio. * * This function protects half of the peers which have been connected the * longest, to replicate the non-eviction implicit behavior and preclude attacks * that start later. * * Half of these protected spots (1/4 of the total) are reserved for the * following categories of peers, sorted by longest uptime, even if they're not * longest uptime overall: * * - onion peers connected via our tor control service * * - localhost peers, as manually configured hidden services not using * `-bind=addr[:port]=onion` will not be detected as inbound onion connections * * - I2P peers * * This helps protect these privacy network peers, which tend to be otherwise * disadvantaged under our eviction criteria for their higher min ping times * relative to IPv4/IPv6 peers, and favorise the diversity of peer connections. */ void ProtectEvictionCandidatesByRatio( std::vector &vEvictionCandidates); #endif // BITCOIN_NET_H diff --git a/src/net_processing.cpp b/src/net_processing.cpp index bb4e907a4..55d98b9ab 100644 --- a/src/net_processing.cpp +++ b/src/net_processing.cpp @@ -1,7567 +1,7592 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // For NDEBUG compile time check #include #include #include #include #include #include #include #include #include #include #include using node::fImporting; using node::fPruneMode; using node::fReindex; using node::ReadBlockFromDisk; /** How long to cache transactions in mapRelay for normal relay */ static constexpr auto RELAY_TX_CACHE_TIME = 15min; /** * How long a transaction has to be in the mempool before it can * unconditionally be relayed (even when not in mapRelay). */ static constexpr auto UNCONDITIONAL_RELAY_DELAY = 2min; /** * Headers download timeout. * Timeout = base + per_header * (expected number of headers) */ static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min; static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms; /** * Protect at least this many outbound peers from disconnection due to * slow/behind headers chain. */ static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4; /** Timeout for (unprotected) outbound peers to sync to our chainwork */ static constexpr auto CHAIN_SYNC_TIMEOUT{20min}; /** How frequently to check for stale tips */ static constexpr auto STALE_CHECK_INTERVAL{10min}; /** How frequently to check for extra outbound peers and disconnect. */ static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s}; /** * Minimum time an outbound-peer-eviction candidate must be connected for, in * order to evict */ static constexpr auto MINIMUM_CONNECT_TIME{30s}; /** SHA256("main address relay")[0:8] */ static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL; /// Age after which a stale block will no longer be served if requested as /// protection against fingerprinting. Set to one month, denominated in seconds. static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60; /// Age after which a block is considered historical for purposes of rate /// limiting block relay. Set to one week, denominated in seconds. static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60; /** * Time between pings automatically sent out for latency probing and keepalive. */ static constexpr auto PING_INTERVAL{2min}; /** The maximum number of entries in a locator */ static const unsigned int MAX_LOCATOR_SZ = 101; /** The maximum number of entries in an 'inv' protocol message */ static const unsigned int MAX_INV_SZ = 50000; static_assert(MAX_PROTOCOL_MESSAGE_LENGTH > MAX_INV_SZ * sizeof(CInv), "Max protocol message length must be greater than largest " "possible INV message"); /** Minimum time between 2 successives getavaaddr messages from the same peer */ static constexpr auto GETAVAADDR_INTERVAL{2min}; /** * If no proof was requested from a compact proof message after this timeout * expired, the proof radix tree can be cleaned up. */ static constexpr auto AVALANCHE_AVAPROOFS_TIMEOUT{2min}; struct DataRequestParameters { /** * Maximum number of in-flight data requests from a peer. It is not a hard * limit, but the threshold at which point the overloaded_peer_delay kicks * in. */ const size_t max_peer_request_in_flight; /** * Maximum number of inventories to consider for requesting, per peer. It * provides a reasonable DoS limit to per-peer memory usage spent on * announcements, while covering peers continuously sending INVs at the * maximum rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for * several minutes, while not receiving the actual data (from any peer) in * response to requests for them. */ const size_t max_peer_announcements; /** How long to delay requesting data from non-preferred peers */ const std::chrono::seconds nonpref_peer_delay; /** * How long to delay requesting data from overloaded peers (see * max_peer_request_in_flight). */ const std::chrono::seconds overloaded_peer_delay; /** * How long to wait (in microseconds) before a data request from an * additional peer. */ const std::chrono::microseconds getdata_interval; /** * Permission flags a peer requires to bypass the request limits tracking * limits and delay penalty. */ const NetPermissionFlags bypass_request_limits_permissions; }; static constexpr DataRequestParameters TX_REQUEST_PARAMS{ 100, // max_peer_request_in_flight 5000, // max_peer_announcements std::chrono::seconds(2), // nonpref_peer_delay std::chrono::seconds(2), // overloaded_peer_delay std::chrono::seconds(60), // getdata_interval NetPermissionFlags::Relay, // bypass_request_limits_permissions }; static constexpr DataRequestParameters PROOF_REQUEST_PARAMS{ 100, // max_peer_request_in_flight 5000, // max_peer_announcements std::chrono::seconds(2), // nonpref_peer_delay std::chrono::seconds(2), // overloaded_peer_delay std::chrono::seconds(60), // getdata_interval NetPermissionFlags:: BypassProofRequestLimits, // bypass_request_limits_permissions }; /** * Limit to avoid sending big packets. Not used in processing incoming GETDATA * for compatibility. */ static const unsigned int MAX_GETDATA_SZ = 1000; /** * Number of blocks that can be requested at any given time from a single peer. */ static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16; /** * Time during which a peer must stall block download progress before being * disconnected. */ static constexpr auto BLOCK_STALLING_TIMEOUT{2s}; /** * Number of headers sent in one getheaders result. We rely on the assumption * that if a peer sends * less than this number, we reached its tip. Changing this value is a protocol * upgrade. */ static const unsigned int MAX_HEADERS_RESULTS = 2000; /** * Maximum depth of blocks we're willing to serve as compact blocks to peers * when requested. For older blocks, a regular BLOCK response will be sent. */ static const int MAX_CMPCTBLOCK_DEPTH = 5; /** * Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests * for. */ static const int MAX_BLOCKTXN_DEPTH = 10; /** * Size of the "block download window": how far ahead of our current height do * we fetch? Larger windows tolerate larger download speed differences between * peer, but increase the potential degree of disordering of blocks on disk * (which make reindexing and pruning harder). We'll probably * want to make this a per-peer adaptive value at some point. */ static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024; /** * Block download timeout base, expressed in multiples of the block interval * (i.e. 10 min) */ static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1; /** * Additional block download timeout per parallel downloading peer (i.e. 5 min) */ static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5; /** * Maximum number of headers to announce when relaying blocks with headers * message. */ static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8; /** Maximum number of unconnecting headers announcements before DoS score */ static const int MAX_UNCONNECTING_HEADERS = 10; /** Minimum blocks required to signal NODE_NETWORK_LIMITED */ static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288; /** * Average delay between local address broadcasts. */ static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h}; /** * Average delay between peer address broadcasts. */ static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s}; /** Delay between rotating the peers we relay a particular address to */ static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h}; /** * Average delay between trickled inventory transmissions for inbound peers. * Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */ static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL{5s}; /** * Maximum rate of inventory items to send per second. * Limits the impact of low-fee transaction floods. */ static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7; /** Maximum number of inventory items to send per transmission. */ static constexpr unsigned int INVENTORY_BROADCAST_MAX_PER_MB = INVENTORY_BROADCAST_PER_SECOND * count_seconds(INBOUND_INVENTORY_BROADCAST_INTERVAL); /** The number of most recently announced transactions a peer can request. */ static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500; /** * Verify that INVENTORY_MAX_RECENT_RELAY is enough to cache everything * typically relayed before unconditional relay from the mempool kicks in. This * is only a lower bound, and it should be larger to account for higher inv rate * to outbound peers, and random variations in the broadcast mechanism. */ static_assert(INVENTORY_MAX_RECENT_RELAY >= INVENTORY_BROADCAST_PER_SECOND * UNCONDITIONAL_RELAY_DELAY / std::chrono::seconds{1}, "INVENTORY_RELAY_MAX too low"); /** * Average delay between feefilter broadcasts */ static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min}; /** * Maximum feefilter broadcast delay after significant change. */ static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min}; /** * Maximum number of compact filters that may be requested with one * getcfilters. See BIP 157. */ static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000; /** * Maximum number of cf hashes that may be requested with one getcfheaders. See * BIP 157. */ static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000; /** * the maximum percentage of addresses from our addrman to return in response * to a getaddr message. */ static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23; /** The maximum number of address records permitted in an ADDR message. */ static constexpr size_t MAX_ADDR_TO_SEND{1000}; /** * The maximum rate of address records we're willing to process on average. Can * be bypassed using the NetPermissionFlags::Addr permission. */ static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1}; /** * The soft limit of the address processing token bucket (the regular * MAX_ADDR_RATE_PER_SECOND based increments won't go above this, but the * MAX_ADDR_TO_SEND increment following GETADDR is exempt from this limit). */ static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET{MAX_ADDR_TO_SEND}; /** The compactblocks version we support. See BIP 152. */ static constexpr uint64_t CMPCTBLOCKS_VERSION{1}; inline size_t GetMaxAddrToSend() { return gArgs.GetIntArg("-maxaddrtosend", MAX_ADDR_TO_SEND); } // Internal stuff namespace { /** * Blocks that are in flight, and that are in the queue to be downloaded. */ struct QueuedBlock { /** * BlockIndex. We must have this since we only request blocks when we've * already validated the header. */ const CBlockIndex *pindex; /** Optional, used for CMPCTBLOCK downloads */ std::unique_ptr partialBlock; }; /** * Data structure for an individual peer. This struct is not protected by * cs_main since it does not contain validation-critical data. * * Memory is owned by shared pointers and this object is destructed when * the refcount drops to zero. * * Mutexes inside this struct must not be held when locking m_peer_mutex. * * TODO: move most members from CNodeState to this structure. * TODO: move remaining application-layer data members from CNode to this * structure. */ struct Peer { /** Same id as the CNode object for this peer */ const NodeId m_id{0}; /** * Services we offered to this peer. * * This is supplied by CConnman during peer initialization. It's const * because there is no protocol defined for renegotiating services * initially offered to a peer. The set of local services we offer should * not change after initialization. * * An interesting example of this is NODE_NETWORK and initial block * download: a node which starts up from scratch doesn't have any blocks * to serve, but still advertises NODE_NETWORK because it will eventually * fulfill this role after IBD completes. P2P code is written in such a * way that it can gracefully handle peers who don't make good on their * service advertisements. */ const ServiceFlags m_our_services; /** Services this peer offered to us. */ std::atomic m_their_services{NODE_NONE}; /** Protects misbehavior data members */ Mutex m_misbehavior_mutex; /** Accumulated misbehavior score for this peer */ int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0}; /** Whether this peer should be disconnected and marked as discouraged * (unless it has NetPermissionFlags::NoBan permission). */ bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false}; /** Protects block inventory data members */ Mutex m_block_inv_mutex; /** * List of blocks that we'll anounce via an `inv` message. * There is no final sorting before sending, as they are always sent * immediately and in the order requested. */ std::vector m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex); /** * Unfiltered list of blocks that we'd like to announce via a `headers` * message. If we can't announce via a `headers` message, we'll fall back to * announcing via `inv`. */ std::vector m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex); /** * The final block hash that we sent in an `inv` message to this peer. * When the peer requests this block, we send an `inv` message to trigger * the peer to request the next sequence of block hashes. * Most peers use headers-first syncing, which doesn't use this mechanism */ BlockHash m_continuation_block GUARDED_BY(m_block_inv_mutex){}; /** This peer's reported block height when we connected */ std::atomic m_starting_height{-1}; /** The pong reply we're expecting, or 0 if no pong expected. */ std::atomic m_ping_nonce_sent{0}; /** When the last ping was sent, or 0 if no ping was ever sent */ std::atomic m_ping_start{0us}; /** Whether a ping has been requested by the user */ std::atomic m_ping_queued{false}; /** * The feerate in the most recent BIP133 `feefilter` message sent to the * peer. * It is *not* a p2p protocol violation for the peer to send us * transactions with a lower fee rate than this. See BIP133. */ Amount m_fee_filter_sent{Amount::zero()}; std::chrono::microseconds m_next_send_feefilter{0}; struct TxRelay { mutable RecursiveMutex m_bloom_filter_mutex; /** * Whether the peer wishes to receive transaction announcements. * * This is initially set based on the fRelay flag in the received * `version` message. If initially set to false, it can only be flipped * to true if we have offered the peer NODE_BLOOM services and it sends * us a `filterload` or `filterclear` message. See BIP37. */ bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false}; /** * A bloom filter for which transactions to announce to the peer. * See BIP37. */ std::unique_ptr m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr}; mutable RecursiveMutex m_tx_inventory_mutex; /** * A filter of all the txids that the peer has announced to us or we * have announced to the peer. We use this to avoid announcing * the same txid to a peer that already has the transaction. */ CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001}; /** * Set of transaction ids we still have to announce. We use the * mempool to sort transactions in dependency order before relay, so * this does not have to be sorted. */ std::set m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex); /** * Whether the peer has requested us to send our complete mempool. Only * permitted if the peer has NetPermissionFlags::Mempool. * See BIP35. */ bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false}; /** The last time a BIP35 `mempool` request was serviced. */ std::atomic m_last_mempool_req{0s}; /** * The next time after which we will send an `inv` message containing * transaction announcements to this peer. */ std::chrono::microseconds m_next_inv_send_time{0}; /** * Minimum fee rate with which to filter transaction announcements to * this node. See BIP133. */ std::atomic m_fee_filter_received{Amount::zero()}; }; /* * Initializes a TxRelay struct for this peer. Can be called at most once * for a peer. */ TxRelay *SetTxRelay() { LOCK(m_tx_relay_mutex); Assume(!m_tx_relay); m_tx_relay = std::make_unique(); return m_tx_relay.get(); }; TxRelay *GetTxRelay() { return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get()); }; struct ProofRelay { mutable RecursiveMutex m_proof_inventory_mutex; std::set m_proof_inventory_to_send GUARDED_BY(m_proof_inventory_mutex); // Prevent sending proof invs if the peer already knows about them CRollingBloomFilter m_proof_inventory_known_filter GUARDED_BY(m_proof_inventory_mutex){10000, 0.000001}; std::chrono::microseconds m_next_inv_send_time{0}; RadixTree sharedProofs; std::atomic lastSharedProofsUpdate{0s}; std::atomic compactproofs_requested{false}; }; /** * Proof relay data. Will be a nullptr if we're not relaying * proofs with this peer */ const std::unique_ptr m_proof_relay; /** * A vector of addresses to send to the peer, limited to MAX_ADDR_TO_SEND. */ std::vector m_addrs_to_send; /** * Probabilistic filter to track recent addr messages relayed with this * peer. Used to avoid relaying redundant addresses to this peer. * * We initialize this filter for outbound peers (other than * block-relay-only connections) or when an inbound peer sends us an * address related message (ADDR, ADDRV2, GETADDR). * * Presence of this filter must correlate with m_addr_relay_enabled. **/ std::unique_ptr m_addr_known; /** * Whether we are participating in address relay with this connection. * * We set this bool to true for outbound peers (other than * block-relay-only connections), or when an inbound peer sends us an * address related message (ADDR, ADDRV2, GETADDR). * * We use this bool to decide whether a peer is eligible for gossiping * addr messages. This avoids relaying to peers that are unlikely to * forward them, effectively blackholing self announcements. Reasons * peers might support addr relay on the link include that they connected * to us as a block-relay-only peer or they are a light client. * * This field must correlate with whether m_addr_known has been * initialized. */ std::atomic_bool m_addr_relay_enabled{false}; /** Whether a getaddr request to this peer is outstanding. */ bool m_getaddr_sent{false}; /** Guards address sending timers. */ mutable Mutex m_addr_send_times_mutex; /** Time point to send the next ADDR message to this peer. */ std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0}; /** Time point to possibly re-announce our local address to this peer. */ std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0}; /** * Whether the peer has signaled support for receiving ADDRv2 (BIP155) * messages, indicating a preference to receive ADDRv2 instead of ADDR ones. */ std::atomic_bool m_wants_addrv2{false}; /** Whether this peer has already sent us a getaddr message. */ bool m_getaddr_recvd{false}; /** Guards m_addr_token_bucket */ mutable Mutex m_addr_token_bucket_mutex; /** * Number of addresses that can be processed from this peer. Start at 1 * to permit self-announcement. */ double m_addr_token_bucket GUARDED_BY(m_addr_token_bucket_mutex){1.0}; /** When m_addr_token_bucket was last updated */ std::chrono::microseconds m_addr_token_timestamp{ GetTime()}; /** Total number of addresses that were dropped due to rate limiting. */ std::atomic m_addr_rate_limited{0}; /** * Total number of addresses that were processed (excludes rate-limited * ones). */ std::atomic m_addr_processed{0}; /** * Set of txids to reconsider once their parent transactions have been * accepted */ std::set m_orphan_work_set GUARDED_BY(g_cs_orphans); /** Protects m_getdata_requests **/ Mutex m_getdata_requests_mutex; /** Work queue of items requested by this peer **/ std::deque m_getdata_requests GUARDED_BY(m_getdata_requests_mutex); explicit Peer(NodeId id, ServiceFlags our_services) : m_id(id), m_our_services{our_services}, m_proof_relay(isAvalancheEnabled(gArgs) ? std::make_unique() : nullptr) {} private: Mutex m_tx_relay_mutex; /** * Transaction relay data. Will be a nullptr if we're not relaying * transactions with this peer (e.g. if it's a block-relay-only peer or * the peer has sent us fRelay=false with bloom filters disabled). */ std::unique_ptr m_tx_relay GUARDED_BY(m_tx_relay_mutex); }; using PeerRef = std::shared_ptr; /** * Maintain validation-specific state about nodes, protected by cs_main, instead * by CNode's own locks. This simplifies asynchronous operation, where * processing of incoming data is done after the ProcessMessage call returns, * and we're no longer holding the node's locks. */ struct CNodeState { //! The best known block we know this peer has announced. const CBlockIndex *pindexBestKnownBlock{nullptr}; //! The hash of the last unknown block this peer has announced. BlockHash hashLastUnknownBlock{}; //! The last full block we both have. const CBlockIndex *pindexLastCommonBlock{nullptr}; //! The best header we have sent our peer. const CBlockIndex *pindexBestHeaderSent{nullptr}; //! Length of current-streak of unconnecting headers announcements int nUnconnectingHeaders{0}; //! Whether we've started headers synchronization with this peer. bool fSyncStarted{false}; //! When to potentially disconnect peer for stalling headers download std::chrono::microseconds m_headers_sync_timeout{0us}; //! Since when we're stalling block download progress (in microseconds), or //! 0. std::chrono::microseconds m_stalling_since{0us}; std::list vBlocksInFlight; //! When the first entry in vBlocksInFlight started downloading. Don't care //! when vBlocksInFlight is empty. std::chrono::microseconds m_downloading_since{0us}; int nBlocksInFlight{0}; //! Whether we consider this a preferred download peer. bool fPreferredDownload{false}; //! Whether this peer wants invs or headers (when possible) for block //! announcements. bool fPreferHeaders{false}; /** * Whether this peer wants invs or cmpctblocks (when possible) for block * announcements. */ bool m_requested_hb_cmpctblocks{false}; /** Whether this peer will send us cmpctblocks if we request them. */ bool m_provides_cmpctblocks{false}; /** * State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL * logic. * * Both are only in effect for outbound, non-manual, non-protected * connections. Any peer protected (m_protect = true) is not chosen for * eviction. A peer is marked as protected if all of these are true: * - its connection type is IsBlockOnlyConn() == false * - it gave us a valid connecting header * - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet * - it has a better chain than we have * * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our * tip, set a timeout CHAIN_SYNC_TIMEOUT in the future: * - If at timeout their best known block now has more work than our tip * when the timeout was set, then either reset the timeout or clear it * (after comparing against our current tip's work) * - If at timeout their best known block still has less work than our tip * did when the timeout was set, then send a getheaders message, and set a * shorter timeout, HEADERS_RESPONSE_TIME seconds in future. If their best * known block is still behind when that new timeout is reached, disconnect. * * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many * outbound peers, drop the outbound one that least recently announced us a * new block. */ struct ChainSyncTimeoutState { //! A timeout used for checking whether our peer has sufficiently //! synced. std::chrono::seconds m_timeout{0s}; //! A header with the work we require on our peer's chain. const CBlockIndex *m_work_header{nullptr}; //! After timeout is reached, set to true after sending getheaders. bool m_sent_getheaders{false}; //! Whether this peer is protected from disconnection due to a bad/slow //! chain. bool m_protect{false}; }; ChainSyncTimeoutState m_chain_sync; //! Time of last new block announcement int64_t m_last_block_announcement{0}; //! Whether this peer is an inbound connection const bool m_is_inbound; //! A rolling bloom filter of all announced tx CInvs to this peer. CRollingBloomFilter m_recently_announced_invs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; //! A rolling bloom filter of all announced Proofs CInvs to this peer. CRollingBloomFilter m_recently_announced_proofs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; CNodeState(bool is_inbound) : m_is_inbound(is_inbound) {} }; class PeerManagerImpl final : public PeerManager { public: PeerManagerImpl(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, bool ignore_incoming_txs); /** Overridden from CValidationInterface. */ void BlockConnected(const std::shared_ptr &pblock, - const CBlockIndex *pindexConnected) override; + const CBlockIndex *pindexConnected) override + EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex); void BlockDisconnected(const std::shared_ptr &block, - const CBlockIndex *pindex) override; + const CBlockIndex *pindex) override + EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex); void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, - bool fInitialDownload) override; + bool fInitialDownload) override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void BlockChecked(const CBlock &block, - const BlockValidationState &state) override; + const BlockValidationState &state) override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr &pblock) override; /** Implement NetEventsInterface */ void InitializeNode(const Config &config, CNode &node, - ServiceFlags our_services) override; - void FinalizeNode(const Config &config, const CNode &node) override; + ServiceFlags our_services) override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); + void FinalizeNode(const Config &config, const CNode &node) override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); bool ProcessMessages(const Config &config, CNode *pfrom, - std::atomic &interrupt) override; + std::atomic &interrupt) override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, + !m_recent_confirmed_transactions_mutex); bool SendMessages(const Config &config, CNode *pto) override - EXCLUSIVE_LOCKS_REQUIRED(pto->cs_sendProcessing); + EXCLUSIVE_LOCKS_REQUIRED(pto->cs_sendProcessing) + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, + !m_recent_confirmed_transactions_mutex); /** Implement PeerManager */ void StartScheduledTasks(CScheduler &scheduler) override; void CheckForStaleTipAndEvictPeers() override; std::optional FetchBlock(const Config &config, NodeId peer_id, const CBlockIndex &block_index) override; - bool GetNodeStateStats(NodeId nodeid, - CNodeStateStats &stats) const override; + bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); bool IgnoresIncomingTxs() override { return m_ignore_incoming_txs; } - void SendPings() override; - void RelayTransaction(const TxId &txid) override; - void RelayProof(const avalanche::ProofId &proofid) override; + void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); + void RelayTransaction(const TxId &txid) override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); + void RelayProof(const avalanche::ProofId &proofid) override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void SetBestHeight(int height) override { m_best_height = height; }; void Misbehaving(const NodeId pnode, const int howmuch, - const std::string &message) override; + const std::string &message) override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void ProcessMessage(const Config &config, CNode &pfrom, const std::string &msg_type, CDataStream &vRecv, const std::chrono::microseconds time_received, - const std::atomic &interruptMsgProc) override; + const std::atomic &interruptMsgProc) override + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, + !m_recent_confirmed_transactions_mutex); void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override; private: /** * Consider evicting an outbound peer based on the amount of time they've * been behind our tip. */ void ConsiderEviction(CNode &pto, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * If we have extra outbound peers, try to disconnect the one with the * oldest block announcement. */ void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Retrieve unbroadcast transactions from the mempool and reattempt * sending to peers */ - void ReattemptInitialBroadcast(CScheduler &scheduler); + void ReattemptInitialBroadcast(CScheduler &scheduler) + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Update the avalanche statistics for all the nodes */ void UpdateAvalancheStatistics() const; /** * Process periodic avalanche network messaging and cleanups. */ void AvalanchePeriodicNetworking(CScheduler &scheduler) const; /** * Get a shared pointer to the Peer object. * May return an empty shared_ptr if the Peer object can't be found. */ - PeerRef GetPeerRef(NodeId id) const; + PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Get a shared pointer to the Peer object and remove it from m_peer_map. * May return an empty shared_ptr if the Peer object can't be found. */ - PeerRef RemovePeer(NodeId id); + PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); // overloaded variant of above to operate on CNode*s - void Misbehaving(const CNode &node, int howmuch, - const std::string &message) { + void Misbehaving(const CNode &node, int howmuch, const std::string &message) + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(node.GetId(), howmuch, message); } /** * Potentially mark a node discouraged based on the contents of a * BlockValidationState object * * @param[in] via_compact_block this bool is passed in because * net_processing should punish peers differently depending on whether the * data was provided in a compact block message or not. If the compact block * had a valid header, but contained invalid txs, the peer should not be * punished. See BIP 152. * * @return Returns true if the peer was punished (probably disconnected) */ bool MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState &state, bool via_compact_block, - const std::string &message = ""); + const std::string &message = "") + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Potentially disconnect and discourage a node based on the contents of a * TxValidationState object * * @return Returns true if the peer was punished (probably disconnected) */ bool MaybePunishNodeForTx(NodeId nodeid, const TxValidationState &state, - const std::string &message = ""); + const std::string &message = "") + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Maybe disconnect a peer and discourage future connections from its * address. * * @param[in] pnode The node to check. * @param[in] peer The peer object to check. * @return True if the peer was marked for disconnection in * this function */ bool MaybeDiscourageAndDisconnect(CNode &pnode, Peer &peer); void ProcessOrphanTx(const Config &config, std::set &orphan_work_set) - EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans); + EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans) + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** Process a single headers message from a peer. */ void ProcessHeadersMessage(const Config &config, CNode &pfrom, const Peer &peer, const std::vector &headers, - bool via_compact_block); + bool via_compact_block) + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void SendBlockTransactions(CNode &pfrom, const CBlock &block, - const BlockTransactionsRequest &req); + const BlockTransactionsRequest &req) + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Register with InvRequestTracker that a TX INV has been received from a * peer. The announcement parameters are decided in PeerManager and then * passed to InvRequestTracker. */ void AddTxAnnouncement(const CNode &node, const TxId &txid, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); /** * Register with InvRequestTracker that a PROOF INV has been received from a * peer. The announcement parameters are decided in PeerManager and then * passed to InvRequestTracker. */ void AddProofAnnouncement(const CNode &node, const avalanche::ProofId &proofid, std::chrono::microseconds current_time, bool preferred) EXCLUSIVE_LOCKS_REQUIRED(cs_proofrequest); /** Send a version message to a peer */ void PushNodeVersion(const Config &config, CNode &pnode, const Peer &peer); /** * Send a ping message every PING_INTERVAL or if requested via RPC. May mark * the peer to be disconnected if a ping has timed out. * We use mockable time for ping timeouts, so setmocktime may cause pings * to time out. */ void MaybeSendPing(CNode &node_to, Peer &peer, std::chrono::microseconds now); /** Send `addr` messages on a regular schedule. */ void MaybeSendAddr(CNode &node, Peer &peer, std::chrono::microseconds current_time); /** Send `feefilter` message. */ void MaybeSendFeefilter(CNode &node, Peer &peer, std::chrono::microseconds current_time); /** * Relay (gossip) an address to a few randomly chosen nodes. * * @param[in] originator The id of the peer that sent us the address. We * don't want to relay it back. * @param[in] addr Address to relay. * @param[in] fReachable Whether the address' network is reachable. We * relay unreachable addresses less. */ - void RelayAddress(NodeId originator, const CAddress &addr, bool fReachable); + void RelayAddress(NodeId originator, const CAddress &addr, bool fReachable) + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); const CChainParams &m_chainparams; CConnman &m_connman; AddrMan &m_addrman; /** * Pointer to this node's banman. May be nullptr - check existence before * dereferencing. */ BanMan *const m_banman; ChainstateManager &m_chainman; CTxMemPool &m_mempool; InvRequestTracker m_txrequest GUARDED_BY(::cs_main); Mutex cs_proofrequest; InvRequestTracker m_proofrequest GUARDED_BY(cs_proofrequest); /** The height of the best chain */ std::atomic m_best_height{-1}; /** Next time to check for stale tip */ std::chrono::seconds m_stale_tip_check_time{0s}; /** Whether this node is running in blocks only mode */ const bool m_ignore_incoming_txs; /** * Whether we've completed initial sync yet, for determining when to turn * on extra block-relay-only peers. */ bool m_initial_sync_finished{false}; /** * Protects m_peer_map. This mutex must not be locked while holding a lock * on any of the mutexes inside a Peer object. */ mutable Mutex m_peer_mutex; /** * Map of all Peer objects, keyed by peer id. This map is protected * by the m_peer_mutex. Once a shared pointer reference is * taken, the lock may be released. Individual fields are protected by * their own locks. */ std::map m_peer_map GUARDED_BY(m_peer_mutex); /** Map maintaining per-node state. */ std::map m_node_states GUARDED_BY(cs_main); /** * Get a pointer to a const CNodeState, used when not mutating the * CNodeState object. */ const CNodeState *State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Get a pointer to a mutable CNodeState. */ CNodeState *State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main); std::atomic m_next_inv_to_inbounds{0us}; /** Number of nodes with fSyncStarted. */ int nSyncStarted GUARDED_BY(cs_main) = 0; /** * Sources of received blocks, saved to be able to punish them when * processing happens afterwards. * Set mapBlockSource[hash].second to false if the node should not be * punished if the block is invalid. */ std::map> mapBlockSource GUARDED_BY(cs_main); /** Number of outbound peers with m_chain_sync.m_protect. */ int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0; /** Number of preferable block download peers. */ int m_num_preferred_download_peers GUARDED_BY(cs_main){0}; - bool AlreadyHaveTx(const TxId &txid) EXCLUSIVE_LOCKS_REQUIRED(cs_main); + bool AlreadyHaveTx(const TxId &txid) + EXCLUSIVE_LOCKS_REQUIRED(cs_main, + !m_recent_confirmed_transactions_mutex); /** * Filter for transactions that were recently rejected by the mempool. * These are not rerequested until the chain tip changes, at which point * the entire filter is reset. * * Without this filter we'd be re-requesting txs from each of our peers, * increasing bandwidth consumption considerably. For instance, with 100 * peers, half of which relay a tx we don't accept, that might be a 50x * bandwidth increase. A flooding attacker attempting to roll-over the * filter using minimum-sized, 60byte, transactions might manage to send * 1000/sec if we have fast peers, so we pick 120,000 to give our peers a * two minute window to send invs to us. * * Decreasing the false positive rate is fairly cheap, so we pick one in a * million to make it highly unlikely for users to have issues with this * filter. * * Memory used: 1.3 MB */ CRollingBloomFilter m_recent_rejects GUARDED_BY(::cs_main){120'000, 0.000'001}; uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main); /** * Filter for transactions that have been recently confirmed. * We use this to avoid requesting transactions that have already been * confirmed. */ mutable Mutex m_recent_confirmed_transactions_mutex; CRollingBloomFilter m_recent_confirmed_transactions GUARDED_BY(m_recent_confirmed_transactions_mutex){24'000, 0.000'001}; /** * For sending `inv`s to inbound peers, we use a single (exponentially * distributed) timer for all peers. If we used a separate timer for each * peer, a spy node could make multiple inbound connections to us to * accurately determine when we received the transaction (and potentially * determine the transaction's origin). */ std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now, std::chrono::seconds average_interval); // All of the following cache a recent block, and are protected by // m_most_recent_block_mutex RecursiveMutex m_most_recent_block_mutex; std::shared_ptr m_most_recent_block GUARDED_BY(m_most_recent_block_mutex); std::shared_ptr m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex); BlockHash m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex); /** * Height of the highest block announced using BIP 152 high-bandwidth mode. */ int m_highest_fast_announce{0}; /** Have we requested this block from a peer */ bool IsBlockRequested(const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Remove this block from our tracked requested blocks. Called if: * - the block has been received from a peer * - the request for the block has timed out */ void RemoveBlockRequest(const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Mark a block as in flight * Returns false, still setting pit, if the block was already in flight from * the same peer pit will only be valid as long as the same cs_main lock is * being held */ bool BlockRequested(const Config &config, NodeId nodeid, const CBlockIndex &block, std::list::iterator **pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Update pindexLastCommonBlock and add not-in-flight missing successors to * vBlocks, until it has at most count entries. */ void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector &vBlocks, NodeId &nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main); std::map::iterator>> mapBlocksInFlight GUARDED_BY(cs_main); /** When our tip was last updated. */ std::atomic m_last_tip_update{0s}; /** * Determine whether or not a peer can request a transaction, and return it * (or nullptr if not found or not allowed). */ CTransactionRef FindTxForGetData(const CNode &peer, const TxId &txid, const std::chrono::seconds mempool_req, const std::chrono::seconds now) LOCKS_EXCLUDED(cs_main); void ProcessGetData(const Config &config, CNode &pfrom, Peer &peer, const std::atomic &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(peer.m_getdata_requests_mutex) LOCKS_EXCLUDED(cs_main); /** Process a new block. Perform any post-processing housekeeping */ void ProcessBlock(const Config &config, CNode &node, const std::shared_ptr &block, bool force_processing); /** Relay map. */ typedef std::map MapRelay; MapRelay mapRelay GUARDED_BY(cs_main); /** * Expiration-time ordered list of (expire time, relay map entry) pairs, * protected by cs_main). */ std::deque> g_relay_expiration GUARDED_BY(cs_main); /** * When a peer sends us a valid block, instruct it to announce blocks to us * using CMPCTBLOCK if possible by adding its nodeid to the end of * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size * by removing the first element if necessary. */ void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Stack of nodes which we have set to announce using compact blocks */ std::list lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main); /** Number of peers from which we're downloading blocks. */ int m_peers_downloading_from GUARDED_BY(cs_main) = 0; /** Storage for orphan information */ TxOrphanage m_orphanage; void AddToCompactExtraTransactions(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans); /** * Orphan/conflicted/etc transactions that are kept for compact block * reconstruction. * The last * -blockreconstructionextratxn/DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN of * these are kept in a ring buffer */ std::vector> vExtraTxnForCompact GUARDED_BY(g_cs_orphans); /** Offset into vExtraTxnForCompact to insert the next tx */ size_t vExtraTxnForCompactIt GUARDED_BY(g_cs_orphans) = 0; /** * Check whether the last unknown block a peer advertised is not yet known. */ void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Update tracking information about which blocks a peer is assumed to have. */ void UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * To prevent fingerprinting attacks, only send blocks/headers outside of * the active chain if they are no more than a month older (both in time, * and in best equivalent proof of work) than the best header chain we know * about and we fully-validated them at some point. */ bool BlockRequestAllowed(const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool AlreadyHaveBlock(const BlockHash &block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool AlreadyHaveProof(const avalanche::ProofId &proofid); void ProcessGetBlockData(const Config &config, CNode &pfrom, Peer &peer, const CInv &inv); /** * Validation logic for compact filters request handling. * * May disconnect from the peer in the case of a bad request. * * @param[in] node The node that we received the request from * @param[in] peer The peer that we received the request from * @param[in] filter_type The filter type the request is for. Must be * basic filters. * @param[in] start_height The start height for the request * @param[in] stop_hash The stop_hash for the request * @param[in] max_height_diff The maximum number of items permitted to * request, as specified in BIP 157 * @param[out] stop_index The CBlockIndex for the stop_hash block, if * the request can be serviced. * @param[out] filter_index The filter index, if the request can be * serviced. * @return True if the request can be serviced. */ bool PrepareBlockFilterRequest(CNode &node, Peer &peer, BlockFilterType filter_type, uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff, const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index); /** * Handle a cfilters request. * * May disconnect from the peer in the case of a bad request. * * @param[in] node The node that we received the request from * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received */ void ProcessGetCFilters(CNode &node, Peer &peer, CDataStream &vRecv); /** * Handle a cfheaders request. * * May disconnect from the peer in the case of a bad request. * * @param[in] node The node that we received the request from * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received */ void ProcessGetCFHeaders(CNode &node, Peer &peer, CDataStream &vRecv); /** * Handle a getcfcheckpt request. * * May disconnect from the peer in the case of a bad request. * * @param[in] node The node that we received the request from * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received */ void ProcessGetCFCheckPt(CNode &node, Peer &peer, CDataStream &vRecv); /** * Decide a response for an Avalanche poll about the given block. * * @param[in] hash The hash of the block being polled for * @return Our current vote for the block */ uint32_t GetAvalancheVoteForBlock(const BlockHash &hash) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Decide a response for an Avalanche poll about the given transaction. * * @param[in] id The id of the transaction being polled for * @return Our current vote for the transaction */ uint32_t GetAvalancheVoteForTx(const TxId &id) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Checks if address relay is permitted with peer. If needed, initializes * the m_addr_known bloom filter and sets m_addr_relay_enabled to true. * * @return True if address relay is enabled with peer * False if address relay is disallowed */ bool SetupAddressRelay(const CNode &node, Peer &peer); /** * Manage reception of an avalanche proof. * * @return False if the peer is misbehaving, true otherwise */ bool ReceivedAvalancheProof(CNode &node, Peer &peer, - const avalanche::ProofRef &proof); + const avalanche::ProofRef &proof) + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); avalanche::ProofRef FindProofForGetData(const CNode &peer, const avalanche::ProofId &proofid, const std::chrono::seconds now); bool isPreferredDownloadPeer(const CNode &pfrom); }; const CNodeState *PeerManagerImpl::State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main) { std::map::const_iterator it = m_node_states.find(pnode); if (it == m_node_states.end()) { return nullptr; } return &it->second; } CNodeState *PeerManagerImpl::State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return const_cast(std::as_const(*this).State(pnode)); } /** * Whether the peer supports the address. For example, a peer that does not * implement BIP155 cannot receive Tor v3 addresses because it requires * ADDRv2 (BIP155) encoding. */ static bool IsAddrCompatible(const Peer &peer, const CAddress &addr) { return peer.m_wants_addrv2 || addr.IsAddrV1Compatible(); } static void AddAddressKnown(Peer &peer, const CAddress &addr) { assert(peer.m_addr_known); peer.m_addr_known->insert(addr.GetKey()); } static void PushAddress(Peer &peer, const CAddress &addr, FastRandomContext &insecure_rand) { // Known checking here is only to save space from duplicates. // Before sending, we'll filter it again for known addresses that were // added after addresses were pushed. assert(peer.m_addr_known); if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) { if (peer.m_addrs_to_send.size() >= GetMaxAddrToSend()) { peer.m_addrs_to_send[insecure_rand.randrange( peer.m_addrs_to_send.size())] = addr; } else { peer.m_addrs_to_send.push_back(addr); } } } static void AddKnownTx(Peer &peer, const TxId &txid) { auto tx_relay = peer.GetTxRelay(); if (!tx_relay) { return; } LOCK(tx_relay->m_tx_inventory_mutex); tx_relay->m_tx_inventory_known_filter.insert(txid); } static void AddKnownProof(Peer &peer, const avalanche::ProofId &proofid) { if (peer.m_proof_relay != nullptr) { LOCK(peer.m_proof_relay->m_proof_inventory_mutex); peer.m_proof_relay->m_proof_inventory_known_filter.insert(proofid); } } bool PeerManagerImpl::isPreferredDownloadPeer(const CNode &pfrom) { LOCK(cs_main); const CNodeState *state = State(pfrom.GetId()); return state && state->fPreferredDownload; } /** Whether this peer can serve us blocks. */ static bool CanServeBlocks(const Peer &peer) { return peer.m_their_services & (NODE_NETWORK | NODE_NETWORK_LIMITED); } /** * Whether this peer can only serve limited recent blocks (e.g. because * it prunes old blocks) */ static bool IsLimitedPeer(const Peer &peer) { return (!(peer.m_their_services & NODE_NETWORK) && (peer.m_their_services & NODE_NETWORK_LIMITED)); } std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now, std::chrono::seconds average_interval) { if (m_next_inv_to_inbounds.load() < now) { // If this function were called from multiple threads simultaneously // it would possible that both update the next send variable, and return // a different result to their caller. This is not possible in practice // as only the net processing thread invokes this function. m_next_inv_to_inbounds = GetExponentialRand(now, average_interval); } return m_next_inv_to_inbounds; } bool PeerManagerImpl::IsBlockRequested(const BlockHash &hash) { return mapBlocksInFlight.find(hash) != mapBlocksInFlight.end(); } void PeerManagerImpl::RemoveBlockRequest(const BlockHash &hash) { auto it = mapBlocksInFlight.find(hash); if (it == mapBlocksInFlight.end()) { // Block was not requested return; } auto [node_id, list_it] = it->second; CNodeState *state = State(node_id); assert(state != nullptr); if (state->vBlocksInFlight.begin() == list_it) { // First block on the queue was received, update the start download time // for the next one state->m_downloading_since = std::max( state->m_downloading_since, GetTime()); } state->vBlocksInFlight.erase(list_it); state->nBlocksInFlight--; if (state->nBlocksInFlight == 0) { // Last validated block on the queue was received. m_peers_downloading_from--; } state->m_stalling_since = 0us; mapBlocksInFlight.erase(it); } bool PeerManagerImpl::BlockRequested(const Config &config, NodeId nodeid, const CBlockIndex &block, std::list::iterator **pit) { const BlockHash &hash{block.GetBlockHash()}; CNodeState *state = State(nodeid); assert(state != nullptr); // Short-circuit most stuff in case it is from the same node. std::map::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end() && itInFlight->second.first == nodeid) { if (pit) { *pit = &itInFlight->second.second; } return false; } // Make sure it's not listed somewhere already. RemoveBlockRequest(hash); std::list::iterator it = state->vBlocksInFlight.insert( state->vBlocksInFlight.end(), {&block, std::unique_ptr( pit ? new PartiallyDownloadedBlock(config, &m_mempool) : nullptr)}); state->nBlocksInFlight++; if (state->nBlocksInFlight == 1) { // We're starting a block download (batch) from this peer. state->m_downloading_since = GetTime(); m_peers_downloading_from++; } itInFlight = mapBlocksInFlight .insert(std::make_pair(hash, std::make_pair(nodeid, it))) .first; if (pit) { *pit = &itInFlight->second.second; } return true; } void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) { AssertLockHeld(cs_main); // Never request high-bandwidth mode from peers if we're blocks-only. Our // mempool will not contain the transactions necessary to reconstruct the // compact block. if (m_ignore_incoming_txs) { return; } CNodeState *nodestate = State(nodeid); if (!nodestate) { LogPrint(BCLog::NET, "node state unavailable: peer=%d\n", nodeid); return; } if (!nodestate->m_provides_cmpctblocks) { return; } int num_outbound_hb_peers = 0; for (std::list::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) { if (*it == nodeid) { lNodesAnnouncingHeaderAndIDs.erase(it); lNodesAnnouncingHeaderAndIDs.push_back(nodeid); return; } CNodeState *state = State(*it); if (state != nullptr && !state->m_is_inbound) { ++num_outbound_hb_peers; } } if (nodestate->m_is_inbound) { // If we're adding an inbound HB peer, make sure we're not removing // our last outbound HB peer in the process. if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) { CNodeState *remove_node = State(lNodesAnnouncingHeaderAndIDs.front()); if (remove_node != nullptr && !remove_node->m_is_inbound) { // Put the HB outbound peer in the second slot, so that it // doesn't get removed. std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin())); } } } m_connman.ForNode(nodeid, [this](CNode *pfrom) EXCLUSIVE_LOCKS_REQUIRED( ::cs_main) { AssertLockHeld(::cs_main); if (lNodesAnnouncingHeaderAndIDs.size() >= 3) { // As per BIP152, we only get 3 of our peers to announce // blocks using compact encodings. m_connman.ForNode( lNodesAnnouncingHeaderAndIDs.front(), [this](CNode *pnodeStop) { m_connman.PushMessage( pnodeStop, CNetMsgMaker(pnodeStop->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION)); // save BIP152 bandwidth state: we select peer to be // low-bandwidth pnodeStop->m_bip152_highbandwidth_to = false; return true; }); lNodesAnnouncingHeaderAndIDs.pop_front(); } m_connman.PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION)); // save BIP152 bandwidth state: we select peer to be high-bandwidth pfrom->m_bip152_highbandwidth_to = true; lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId()); return true; }); } bool PeerManagerImpl::TipMayBeStale() { AssertLockHeld(cs_main); const Consensus::Params &consensusParams = m_chainparams.GetConsensus(); if (m_last_tip_update.load() == 0s) { m_last_tip_update = GetTime(); } return m_last_tip_update.load() < GetTime() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty(); } bool PeerManagerImpl::CanDirectFetch() { return m_chainman.ActiveChain().Tip()->GetBlockTime() > GetAdjustedTime() - m_chainparams.GetConsensus().nPowTargetSpacing * 20; } static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight)) { return true; } if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight)) { return true; } return false; } void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) { CNodeState *state = State(nodeid); assert(state != nullptr); if (!state->hashLastUnknownBlock.IsNull()) { const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock); if (pindex && pindex->nChainWork > 0) { if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } state->hashLastUnknownBlock.SetNull(); } } } void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash) { CNodeState *state = State(nodeid); assert(state != nullptr); ProcessBlockAvailability(nodeid); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); if (pindex && pindex->nChainWork > 0) { // An actually better block was announced. if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } } else { // An unknown block was announced; just assume that the latest one is // the best one. state->hashLastUnknownBlock = hash; } } void PeerManagerImpl::FindNextBlocksToDownload( NodeId nodeid, unsigned int count, std::vector &vBlocks, NodeId &nodeStaller) { if (count == 0) { return; } vBlocks.reserve(vBlocks.size() + count); CNodeState *state = State(nodeid); assert(state != nullptr); // Make sure pindexBestKnownBlock is up to date, we'll need it. ProcessBlockAvailability(nodeid); if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has nothing interesting. return; } if (state->pindexLastCommonBlock == nullptr) { // Bootstrap quickly by guessing a parent of our best tip is the forking // point. Guessing wrong in either direction is not a problem. state->pindexLastCommonBlock = m_chainman .ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())]; } // If the peer reorganized, our previous pindexLastCommonBlock may not be an // ancestor of its current tip anymore. Go back enough to fix that. state->pindexLastCommonBlock = LastCommonAncestor( state->pindexLastCommonBlock, state->pindexBestKnownBlock); if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) { return; } std::vector vToFetch; const CBlockIndex *pindexWalk = state->pindexLastCommonBlock; // Never fetch further than the best block we know the peer has, or more // than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last linked block we have in // common with this peer. The +1 is so we can detect stalling, namely if we // would be able to download that next block if the window were 1 larger. int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW; int nMaxHeight = std::min(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1); NodeId waitingfor = -1; while (pindexWalk->nHeight < nMaxHeight) { // Read up to 128 (or more, if more blocks than that are needed) // successors of pindexWalk (towards pindexBestKnownBlock) into // vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as // expensive as iterating over ~100 CBlockIndex* entries anyway. int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max(count - vBlocks.size(), 128)); vToFetch.resize(nToFetch); pindexWalk = state->pindexBestKnownBlock->GetAncestor( pindexWalk->nHeight + nToFetch); vToFetch[nToFetch - 1] = pindexWalk; for (unsigned int i = nToFetch - 1; i > 0; i--) { vToFetch[i - 1] = vToFetch[i]->pprev; } // Iterate over those blocks in vToFetch (in forward direction), adding // the ones that are not yet downloaded and not in flight to vBlocks. In // the meantime, update pindexLastCommonBlock as long as all ancestors // are already downloaded, or if it's already part of our chain (and // therefore don't need it even if pruned). for (const CBlockIndex *pindex : vToFetch) { if (!pindex->IsValid(BlockValidity::TREE)) { // We consider the chain that this peer is on invalid. return; } if (pindex->nStatus.hasData() || m_chainman.ActiveChain().Contains(pindex)) { if (pindex->HaveTxsDownloaded()) { state->pindexLastCommonBlock = pindex; } } else if (!IsBlockRequested(pindex->GetBlockHash())) { // The block is not already downloaded, and not yet in flight. if (pindex->nHeight > nWindowEnd) { // We reached the end of the window. if (vBlocks.size() == 0 && waitingfor != nodeid) { // We aren't able to fetch anything, but we would be if // the download window was one larger. nodeStaller = waitingfor; } return; } vBlocks.push_back(pindex); if (vBlocks.size() == count) { return; } } else if (waitingfor == -1) { // This is the first already-in-flight block. waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first; } } } } } // namespace template static bool TooManyAnnouncements(const CNode &node, const InvRequestTracker &requestTracker, const DataRequestParameters &requestParams) { return !node.HasPermission( requestParams.bypass_request_limits_permissions) && requestTracker.Count(node.GetId()) >= requestParams.max_peer_announcements; } /** * Compute the request time for this announcement, current time plus delays for: * - nonpref_peer_delay for announcements from non-preferred connections * - overloaded_peer_delay for announcements from peers which have at least * max_peer_request_in_flight requests in flight (and don't have * NetPermissionFlags::Relay). */ template static std::chrono::microseconds ComputeRequestTime(const CNode &node, const InvRequestTracker &requestTracker, const DataRequestParameters &requestParams, std::chrono::microseconds current_time, bool preferred) { auto delay = std::chrono::microseconds{0}; if (!preferred) { delay += requestParams.nonpref_peer_delay; } if (!node.HasPermission(requestParams.bypass_request_limits_permissions) && requestTracker.CountInFlight(node.GetId()) >= requestParams.max_peer_request_in_flight) { delay += requestParams.overloaded_peer_delay; } return current_time + delay; } void PeerManagerImpl::PushNodeVersion(const Config &config, CNode &pnode, const Peer &peer) { uint64_t my_services{peer.m_our_services}; const int64_t nTime{count_seconds(GetTime())}; uint64_t nonce = pnode.GetLocalNonce(); const int nNodeStartingHeight{m_best_height}; NodeId nodeid = pnode.GetId(); CAddress addr = pnode.addr; uint64_t extraEntropy = pnode.GetLocalExtraEntropy(); CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService(); uint64_t your_services{addr.nServices}; const bool tx_relay = !m_ignore_incoming_txs && !pnode.IsBlockOnlyConn() && !pnode.IsFeelerConn(); m_connman.PushMessage( // your_services, addr_you: Together the pre-version-31402 serialization // of CAddress "addrYou" (without nTime) // my_services, CService(): Together the pre-version-31402 serialization // of CAddress "addrMe" (without nTime) &pnode, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime, your_services, addr_you, my_services, CService(), nonce, userAgent(config), nNodeStartingHeight, tx_relay, extraEntropy)); if (fLogIPs) { LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, " "txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToString(), tx_relay, nodeid); } else { LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, " "txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid); } } void PeerManagerImpl::AddTxAnnouncement( const CNode &node, const TxId &txid, std::chrono::microseconds current_time) { // For m_txrequest and state AssertLockHeld(::cs_main); if (TooManyAnnouncements(node, m_txrequest, TX_REQUEST_PARAMS)) { return; } const bool preferred = isPreferredDownloadPeer(node); auto reqtime = ComputeRequestTime(node, m_txrequest, TX_REQUEST_PARAMS, current_time, preferred); m_txrequest.ReceivedInv(node.GetId(), txid, preferred, reqtime); } void PeerManagerImpl::AddProofAnnouncement( const CNode &node, const avalanche::ProofId &proofid, std::chrono::microseconds current_time, bool preferred) { // For m_proofrequest AssertLockHeld(cs_proofrequest); if (TooManyAnnouncements(node, m_proofrequest, PROOF_REQUEST_PARAMS)) { return; } auto reqtime = ComputeRequestTime( node, m_proofrequest, PROOF_REQUEST_PARAMS, current_time, preferred); m_proofrequest.ReceivedInv(node.GetId(), proofid, preferred, reqtime); } void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) { LOCK(cs_main); CNodeState *state = State(node); if (state) { state->m_last_block_announcement = time_in_seconds; } } void PeerManagerImpl::InitializeNode(const Config &config, CNode &node, ServiceFlags our_services) { NodeId nodeid = node.GetId(); { LOCK(cs_main); m_node_states.emplace_hint(m_node_states.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(node.IsInboundConn())); assert(m_txrequest.Count(nodeid) == 0); } PeerRef peer = std::make_shared(nodeid, our_services); { LOCK(m_peer_mutex); m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer); } if (!node.IsInboundConn()) { PushNodeVersion(config, node, *peer); } } void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler &scheduler) { std::set unbroadcast_txids = m_mempool.GetUnbroadcastTxs(); for (const TxId &txid : unbroadcast_txids) { // Sanity check: all unbroadcast txns should exist in the mempool if (m_mempool.exists(txid)) { RelayTransaction(txid); } else { m_mempool.RemoveUnbroadcastTx(txid, true); } } if (g_avalanche && isAvalancheEnabled(gArgs)) { // Get and sanitize the list of proofids to broadcast. The RelayProof // call is done in a second loop to avoid locking cs_vNodes while // cs_peerManager is locked which would cause a potential deadlock due // to reversed lock order. auto unbroadcasted_proofids = g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { auto unbroadcasted_proofids = pm.getUnbroadcastProofs(); auto it = unbroadcasted_proofids.begin(); while (it != unbroadcasted_proofids.end()) { // Sanity check: all unbroadcast proofs should be bound to a // peer in the peermanager if (!pm.isBoundToPeer(*it)) { pm.removeUnbroadcastProof(*it); it = unbroadcasted_proofids.erase(it); continue; } ++it; } return unbroadcasted_proofids; }); // Remaining proofids are the ones to broadcast for (const auto &proofid : unbroadcasted_proofids) { RelayProof(proofid); } } // Schedule next run for 10-15 minutes in the future. // We add randomness on every cycle to avoid the possibility of P2P // fingerprinting. const auto reattemptBroadcastInterval = 10min + GetRandMillis(5min); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, reattemptBroadcastInterval); } void PeerManagerImpl::UpdateAvalancheStatistics() const { m_connman.ForEachNode([](CNode *pnode) { pnode->updateAvailabilityScore(AVALANCHE_STATISTICS_DECAY_FACTOR); }); if (!g_avalanche) { // Not enabled or not ready yet return; } // Generate a peer availability score by computing an exponentially // weighted moving average of the average of node availability scores. // This ensures the peer score is bound to the lifetime of its proof which // incentivizes stable network activity. g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { pm.updateAvailabilityScores( AVALANCHE_STATISTICS_DECAY_FACTOR, [&](NodeId nodeid) -> double { double score{0.0}; m_connman.ForNode(nodeid, [&](CNode *pavanode) { score = pavanode->getAvailabilityScore(); return true; }); return score; }); }); } void PeerManagerImpl::AvalanchePeriodicNetworking(CScheduler &scheduler) const { const auto now = GetTime(); std::vector avanode_ids; bool fQuorumEstablished; bool fShouldRequestMoreNodes; if (!g_avalanche) { // Not enabled or not ready yet, retry later goto scheduleLater; } g_avalanche->sendDelayedAvahello(); fQuorumEstablished = g_avalanche->isQuorumEstablished(); fShouldRequestMoreNodes = g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.shouldRequestMoreNodes(); }); m_connman.ForEachNode([&](CNode *pnode) { // Build a list of the avalanche peers nodeids if (pnode->m_avalanche_enabled && (!fQuorumEstablished || !pnode->IsInboundConn())) { avanode_ids.push_back(pnode->GetId()); } PeerRef peer = GetPeerRef(pnode->GetId()); if (peer == nullptr) { return; } // If a proof radix tree timed out, cleanup if (peer->m_proof_relay && now > (peer->m_proof_relay->lastSharedProofsUpdate.load() + AVALANCHE_AVAPROOFS_TIMEOUT)) { peer->m_proof_relay->sharedProofs = {}; } }); if (avanode_ids.empty()) { // No node is available for messaging, retry later goto scheduleLater; } Shuffle(avanode_ids.begin(), avanode_ids.end(), FastRandomContext()); // Request avalanche addresses from our peers for (NodeId avanodeId : avanode_ids) { m_connman.ForNode(avanodeId, [&](CNode *pavanode) { m_connman.PushMessage(pavanode, CNetMsgMaker(pavanode->GetCommonVersion()) .Make(NetMsgType::GETAVAADDR)); PeerRef peer = GetPeerRef(avanodeId); WITH_LOCK(peer->m_addr_token_bucket_mutex, peer->m_addr_token_bucket += GetMaxAddrToSend()); return true; }); // If we have no reason to believe that we need more nodes, only request // addresses from one of our peers. if (fQuorumEstablished && !fShouldRequestMoreNodes) { break; } } if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // Don't request proofs while in IBD. We're likely to orphan them // because we don't have the UTXOs. goto scheduleLater; } // If we never had an avaproofs message yet, be kind and only request to a // subset of our peers as we expect a ton of avaproofs message in the // process. if (g_avalanche->getAvaproofsNodeCounter() == 0) { avanode_ids.resize(std::min(avanode_ids.size(), 3)); } for (NodeId nodeid : avanode_ids) { // Send a getavaproofs to all of our peers m_connman.ForNode(nodeid, [&](CNode *pavanode) { PeerRef peer = GetPeerRef(nodeid); if (peer->m_proof_relay) { m_connman.PushMessage(pavanode, CNetMsgMaker(pavanode->GetCommonVersion()) .Make(NetMsgType::GETAVAPROOFS)); peer->m_proof_relay->compactproofs_requested = true; } return true; }); } scheduleLater: // Schedule next run for 2-5 minutes in the future. // We add randomness on every cycle to avoid the possibility of P2P // fingerprinting. const auto avalanchePeriodicNetworkingInterval = 2min + GetRandMillis(3min); scheduler.scheduleFromNow([&] { AvalanchePeriodicNetworking(scheduler); }, avalanchePeriodicNetworkingInterval); } void PeerManagerImpl::FinalizeNode(const Config &config, const CNode &node) { NodeId nodeid = node.GetId(); int misbehavior{0}; { LOCK(cs_main); { // We remove the PeerRef from g_peer_map here, but we don't always // destruct the Peer. Sometimes another thread is still holding a // PeerRef, so the refcount is >= 1. Be careful not to do any // processing here that assumes Peer won't be changed before it's // destructed. PeerRef peer = RemovePeer(nodeid); assert(peer != nullptr); misbehavior = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score); LOCK(m_peer_mutex); m_peer_map.erase(nodeid); } CNodeState *state = State(nodeid); assert(state != nullptr); if (state->fSyncStarted) { nSyncStarted--; } for (const QueuedBlock &entry : state->vBlocksInFlight) { mapBlocksInFlight.erase(entry.pindex->GetBlockHash()); } WITH_LOCK(g_cs_orphans, m_orphanage.EraseForPeer(nodeid)); m_txrequest.DisconnectedPeer(nodeid); m_num_preferred_download_peers -= state->fPreferredDownload; m_peers_downloading_from -= (state->nBlocksInFlight != 0); assert(m_peers_downloading_from >= 0); m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect; assert(m_outbound_peers_with_protect_from_disconnect >= 0); m_node_states.erase(nodeid); if (m_node_states.empty()) { // Do a consistency check after the last peer is removed. assert(mapBlocksInFlight.empty()); assert(m_num_preferred_download_peers == 0); assert(m_peers_downloading_from == 0); assert(m_outbound_peers_with_protect_from_disconnect == 0); assert(m_txrequest.Size() == 0); assert(m_orphanage.Size() == 0); } } if (node.fSuccessfullyConnected && misbehavior == 0 && !node.IsBlockOnlyConn() && !node.IsInboundConn()) { // Only change visible addrman state for full outbound peers. We don't // call Connected() for feeler connections since they don't have // fSuccessfullyConnected set. m_addrman.Connected(node.addr); } WITH_LOCK(cs_proofrequest, m_proofrequest.DisconnectedPeer(nodeid)); LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid); } PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const { LOCK(m_peer_mutex); auto it = m_peer_map.find(id); return it != m_peer_map.end() ? it->second : nullptr; } PeerRef PeerManagerImpl::RemovePeer(NodeId id) { PeerRef ret; LOCK(m_peer_mutex); auto it = m_peer_map.find(id); if (it != m_peer_map.end()) { ret = std::move(it->second); m_peer_map.erase(it); } return ret; } bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const { { LOCK(cs_main); const CNodeState *state = State(nodeid); if (state == nullptr) { return false; } stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1; stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1; for (const QueuedBlock &queue : state->vBlocksInFlight) { if (queue.pindex) { stats.vHeightInFlight.push_back(queue.pindex->nHeight); } } } PeerRef peer = GetPeerRef(nodeid); if (peer == nullptr) { return false; } stats.their_services = peer->m_their_services; stats.m_starting_height = peer->m_starting_height; // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node // was still responsive, since pingtime does not update until the ping is // complete, which might take a while. So, if a ping is taking an unusually // long time in flight, the caller can immediately detect that this is // happening. auto ping_wait{0us}; if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) { ping_wait = GetTime() - peer->m_ping_start.load(); } if (auto tx_relay = peer->GetTxRelay()) { stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs); stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load(); } else { stats.m_relay_txs = false; stats.m_fee_filter_received = Amount::zero(); } stats.m_ping_wait = ping_wait; stats.m_addr_processed = peer->m_addr_processed.load(); stats.m_addr_rate_limited = peer->m_addr_rate_limited.load(); stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load(); return true; } void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef &tx) { size_t max_extra_txn = gArgs.GetIntArg( "-blockreconstructionextratxn", DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN); if (max_extra_txn <= 0) { return; } if (!vExtraTxnForCompact.size()) { vExtraTxnForCompact.resize(max_extra_txn); } vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetHash(), tx); vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % max_extra_txn; } void PeerManagerImpl::Misbehaving(const NodeId pnode, const int howmuch, const std::string &message) { assert(howmuch > 0); PeerRef peer = GetPeerRef(pnode); if (peer == nullptr) { return; } LOCK(peer->m_misbehavior_mutex); const int score_before{peer->m_misbehavior_score}; peer->m_misbehavior_score += howmuch; const int score_now{peer->m_misbehavior_score}; const std::string message_prefixed = message.empty() ? "" : (": " + message); std::string warning; if (score_now >= DISCOURAGEMENT_THRESHOLD && score_before < DISCOURAGEMENT_THRESHOLD) { warning = " DISCOURAGE THRESHOLD EXCEEDED"; peer->m_should_discourage = true; } LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s%s\n", pnode, score_before, score_now, warning, message_prefixed); } bool PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState &state, bool via_compact_block, const std::string &message) { switch (state.GetResult()) { case BlockValidationResult::BLOCK_RESULT_UNSET: break; // The node is providing invalid data: case BlockValidationResult::BLOCK_CONSENSUS: case BlockValidationResult::BLOCK_MUTATED: if (!via_compact_block) { Misbehaving(nodeid, 100, message); return true; } break; case BlockValidationResult::BLOCK_CACHED_INVALID: { LOCK(cs_main); CNodeState *node_state = State(nodeid); if (node_state == nullptr) { break; } // Ban outbound (but not inbound) peers if on an invalid chain. // Exempt HB compact block peers. Manual connections are always // protected from discouragement. if (!via_compact_block && !node_state->m_is_inbound) { Misbehaving(nodeid, 100, message); return true; } break; } case BlockValidationResult::BLOCK_INVALID_HEADER: case BlockValidationResult::BLOCK_CHECKPOINT: case BlockValidationResult::BLOCK_INVALID_PREV: Misbehaving(nodeid, 100, message); return true; case BlockValidationResult::BLOCK_FINALIZATION: // TODO: Use the state object to report this is probably not the // best idea. This is effectively unreachable, unless there is a bug // somewhere. Misbehaving(nodeid, 20, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case BlockValidationResult::BLOCK_MISSING_PREV: // TODO: Handle this much more gracefully (10 DoS points is super // arbitrary) Misbehaving(nodeid, 10, message); return true; case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE: case BlockValidationResult::BLOCK_TIME_FUTURE: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } bool PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState &state, const std::string &message) { switch (state.GetResult()) { case TxValidationResult::TX_RESULT_UNSET: break; // The node is providing invalid data: case TxValidationResult::TX_CONSENSUS: Misbehaving(nodeid, 100, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE: case TxValidationResult::TX_INPUTS_NOT_STANDARD: case TxValidationResult::TX_NOT_STANDARD: case TxValidationResult::TX_MISSING_INPUTS: case TxValidationResult::TX_PREMATURE_SPEND: case TxValidationResult::TX_CONFLICT: case TxValidationResult::TX_MEMPOOL_POLICY: case TxValidationResult::TX_NO_MEMPOOL: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex *pindex) { AssertLockHeld(cs_main); if (m_chainman.ActiveChain().Contains(pindex)) { return true; } return pindex->IsValid(BlockValidity::SCRIPTS) && (m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) && (GetBlockProofEquivalentTime( *m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT); } std::optional PeerManagerImpl::FetchBlock(const Config &config, NodeId peer_id, const CBlockIndex &block_index) { if (fImporting) { return "Importing..."; } if (fReindex) { return "Reindexing..."; } LOCK(cs_main); // Ensure this peer exists and hasn't been disconnected CNodeState *state = State(peer_id); if (state == nullptr) { return "Peer does not exist"; } // Mark block as in-flight unless it already is (for this peer). // If a block was already in-flight for a different peer, its BLOCKTXN // response will be dropped. if (!BlockRequested(config, peer_id, block_index)) { return "Already requested from this peer"; } // Construct message to request the block const BlockHash &hash{block_index.GetBlockHash()}; const std::vector invs{CInv(MSG_BLOCK, hash)}; // Send block request message to the peer if (!m_connman.ForNode(peer_id, [this, &invs](CNode *node) { const CNetMsgMaker msgMaker(node->GetCommonVersion()); this->m_connman.PushMessage( node, msgMaker.Make(NetMsgType::GETDATA, invs)); return true; })) { return "Node not fully connected"; } LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n", hash.ToString(), peer_id); return std::nullopt; } std::unique_ptr PeerManager::make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, bool ignore_incoming_txs) { return std::make_unique(connman, addrman, banman, chainman, pool, ignore_incoming_txs); } PeerManagerImpl::PeerManagerImpl(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, bool ignore_incoming_txs) : m_chainparams(chainman.GetParams()), m_connman(connman), m_addrman(addrman), m_banman(banman), m_chainman(chainman), m_mempool(pool), m_ignore_incoming_txs(ignore_incoming_txs) {} void PeerManagerImpl::StartScheduledTasks(CScheduler &scheduler) { // Stale tip checking and peer eviction are on two different timers, but we // don't want them to get out of sync due to drift in the scheduler, so we // combine them in one function and schedule at the quicker (peer-eviction) // timer. static_assert( EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer"); scheduler.scheduleEvery( [this]() { this->CheckForStaleTipAndEvictPeers(); return true; }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL}); // schedule next run for 10-15 minutes in the future const auto reattemptBroadcastInterval = 10min + GetRandMillis(5min); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, reattemptBroadcastInterval); // Update the avalanche statistics on a schedule scheduler.scheduleEvery( [this]() { UpdateAvalancheStatistics(); return true; }, AVALANCHE_STATISTICS_REFRESH_PERIOD); // schedule next run for 2-5 minutes in the future const auto avalanchePeriodicNetworkingInterval = 2min + GetRandMillis(3min); scheduler.scheduleFromNow([&] { AvalanchePeriodicNetworking(scheduler); }, avalanchePeriodicNetworkingInterval); } /** * Evict orphan txn pool entries based on a newly connected * block, remember the recently confirmed transactions, and delete tracked * announcements for them. Also save the time of the last tip update. */ void PeerManagerImpl::BlockConnected( const std::shared_ptr &pblock, const CBlockIndex *pindex) { m_orphanage.EraseForBlock(*pblock); m_last_tip_update = GetTime(); { LOCK(m_recent_confirmed_transactions_mutex); for (const CTransactionRef &ptx : pblock->vtx) { m_recent_confirmed_transactions.insert(ptx->GetId()); } } { LOCK(cs_main); for (const auto &ptx : pblock->vtx) { m_txrequest.ForgetInvId(ptx->GetId()); } } } void PeerManagerImpl::BlockDisconnected( const std::shared_ptr &block, const CBlockIndex *pindex) { // To avoid relay problems with transactions that were previously // confirmed, clear our filter of recently confirmed transactions whenever // there's a reorg. // This means that in a 1-block reorg (where 1 block is disconnected and // then another block reconnected), our filter will drop to having only one // block's worth of transactions in it, but that should be fine, since // presumably the most common case of relaying a confirmed transaction // should be just after a new block containing it is found. LOCK(m_recent_confirmed_transactions_mutex); m_recent_confirmed_transactions.reset(); } /** * Maintain state about the best-seen block and fast-announce a compact block * to compatible peers. */ void PeerManagerImpl::NewPoWValidBlock( const CBlockIndex *pindex, const std::shared_ptr &pblock) { std::shared_ptr pcmpctblock = std::make_shared(*pblock); const CNetMsgMaker msgMaker(PROTOCOL_VERSION); LOCK(cs_main); if (pindex->nHeight <= m_highest_fast_announce) { return; } m_highest_fast_announce = pindex->nHeight; BlockHash hashBlock(pblock->GetHash()); const std::shared_future lazy_ser{ std::async(std::launch::deferred, [&] { return msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })}; { LOCK(m_most_recent_block_mutex); m_most_recent_block_hash = hashBlock; m_most_recent_block = pblock; m_most_recent_compact_block = pcmpctblock; } m_connman.ForEachNode( [this, pindex, &lazy_ser, &hashBlock](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect) { return; } ProcessBlockAvailability(pnode->GetId()); CNodeState &state = *State(pnode->GetId()); // If the peer has, or we announced to them the previous block // already, but we don't think they have this one, go ahead and // announce it. if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) { LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock", hashBlock.ToString(), pnode->GetId()); const CSerializedNetMsg &ser_cmpctblock{lazy_ser.get()}; m_connman.PushMessage( pnode, CSerializedNetMsg{ser_cmpctblock.data, ser_cmpctblock.m_type}); state.pindexBestHeaderSent = pindex; } }); } /** * Update our best height and announce any block hashes which weren't previously * in m_chainman.ActiveChain() to our peers. */ void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { SetBestHeight(pindexNew->nHeight); SetServiceFlagsIBDCache(!fInitialDownload); // Don't relay inventory during initial block download. if (fInitialDownload) { return; } // Find the hashes of all blocks that weren't previously in the best chain. std::vector vHashes; const CBlockIndex *pindexToAnnounce = pindexNew; while (pindexToAnnounce != pindexFork) { vHashes.push_back(pindexToAnnounce->GetBlockHash()); pindexToAnnounce = pindexToAnnounce->pprev; if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) { // Limit announcements in case of a huge reorganization. Rely on the // peer's synchronization mechanism in that case. break; } } { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { Peer &peer = *it.second; LOCK(peer.m_block_inv_mutex); for (const BlockHash &hash : reverse_iterate(vHashes)) { peer.m_blocks_for_headers_relay.push_back(hash); } } } m_connman.WakeMessageHandler(); } /** * Handle invalid block rejection and consequent peer banning, maintain which * peers announce compact blocks. */ void PeerManagerImpl::BlockChecked(const CBlock &block, const BlockValidationState &state) { LOCK(cs_main); const BlockHash hash = block.GetHash(); std::map>::iterator it = mapBlockSource.find(hash); // If the block failed validation, we know where it came from and we're // still connected to that peer, maybe punish. if (state.IsInvalid() && it != mapBlockSource.end() && State(it->second.first)) { MaybePunishNodeForBlock(/*nodeid=*/it->second.first, state, /*via_compact_block=*/!it->second.second); } // Check that: // 1. The block is valid // 2. We're not in initial block download // 3. This is currently the best block we're aware of. We haven't updated // the tip yet so we have no way to check this directly here. Instead we // just check that there are currently no other blocks in flight. else if (state.IsValid() && !m_chainman.ActiveChainstate().IsInitialBlockDownload() && mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) { if (it != mapBlockSource.end()) { MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first); } } if (it != mapBlockSource.end()) { mapBlockSource.erase(it); } } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool PeerManagerImpl::AlreadyHaveTx(const TxId &txid) { if (m_chainman.ActiveChain().Tip()->GetBlockHash() != hashRecentRejectsChainTip) { // If the chain tip has changed previously rejected transactions // might be now valid, e.g. due to a nLockTime'd tx becoming // valid, or a double-spend. Reset the rejects filter and give // those txs a second chance. hashRecentRejectsChainTip = m_chainman.ActiveChain().Tip()->GetBlockHash(); m_recent_rejects.reset(); } if (m_orphanage.HaveTx(txid)) { return true; } { LOCK(m_recent_confirmed_transactions_mutex); if (m_recent_confirmed_transactions.contains(txid)) { return true; } } return m_recent_rejects.contains(txid) || m_mempool.exists(txid); } bool PeerManagerImpl::AlreadyHaveBlock(const BlockHash &block_hash) { return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr; } bool PeerManagerImpl::AlreadyHaveProof(const avalanche::ProofId &proofid) { assert(g_avalanche); auto localProof = g_avalanche->getLocalProof(); if (localProof && localProof->getId() == proofid) { return true; } return g_avalanche->withPeerManager([&proofid](avalanche::PeerManager &pm) { return pm.exists(proofid) || pm.isInvalid(proofid); }); } void PeerManagerImpl::SendPings() { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { it.second->m_ping_queued = true; } } void PeerManagerImpl::RelayTransaction(const TxId &txid) { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { Peer &peer = *it.second; auto tx_relay = peer.GetTxRelay(); if (!tx_relay) { continue; } LOCK(tx_relay->m_tx_inventory_mutex); if (!tx_relay->m_tx_inventory_known_filter.contains(txid)) { tx_relay->m_tx_inventory_to_send.insert(txid); } } } void PeerManagerImpl::RelayProof(const avalanche::ProofId &proofid) { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { Peer &peer = *it.second; if (!peer.m_proof_relay) { continue; } LOCK(peer.m_proof_relay->m_proof_inventory_mutex); if (!peer.m_proof_relay->m_proof_inventory_known_filter.contains( proofid)) { peer.m_proof_relay->m_proof_inventory_to_send.insert(proofid); } } } void PeerManagerImpl::RelayAddress(NodeId originator, const CAddress &addr, bool fReachable) { // We choose the same nodes within a given 24h window (if the list of // connected nodes does not change) and we don't relay to nodes that already // know an address. So within 24h we will likely relay a given address once. // This is to prevent a peer from unjustly giving their address better // propagation by sending it to us repeatedly. if (!fReachable && !addr.IsRelayable()) { return; } // Relay to a limited number of other nodes // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the m_addr_knowns of the chosen nodes prevent repeats const uint64_t hash_addr{CServiceHash(0, 0)(addr)}; const auto current_time{GetTime()}; // Adding address hash makes exact rotation time different per address, // while preserving periodicity. const uint64_t time_addr{ (static_cast(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)}; const CSipHasher hasher{ m_connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY) .Write(hash_addr) .Write(time_addr)}; FastRandomContext insecure_rand; // Relay reachable addresses to 2 peers. Unreachable addresses are relayed // randomly to 1 or 2 peers. unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1; std::array, 2> best{ {{0, nullptr}, {0, nullptr}}}; assert(nRelayNodes <= best.size()); LOCK(m_peer_mutex); for (auto &[id, peer] : m_peer_map) { if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) { uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize(); for (unsigned int i = 0; i < nRelayNodes; i++) { if (hashKey > best[i].first) { std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1); best[i] = std::make_pair(hashKey, peer.get()); break; } } } }; for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) { PushAddress(*best[i].second, addr, insecure_rand); } } void PeerManagerImpl::ProcessGetBlockData(const Config &config, CNode &pfrom, Peer &peer, const CInv &inv) { const BlockHash hash(inv.hash); std::shared_ptr a_recent_block; std::shared_ptr a_recent_compact_block; { LOCK(m_most_recent_block_mutex); a_recent_block = m_most_recent_block; a_recent_compact_block = m_most_recent_compact_block; } bool need_activate_chain = false; { LOCK(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); if (pindex) { if (pindex->HaveTxsDownloaded() && !pindex->IsValid(BlockValidity::SCRIPTS) && pindex->IsValid(BlockValidity::TREE)) { // If we have the block and all of its parents, but have not yet // validated it, we might be in the middle of connecting it (ie // in the unlock of cs_main before ActivateBestChain but after // AcceptBlock). In this case, we need to run ActivateBestChain // prior to checking the relay conditions below. need_activate_chain = true; } } } // release cs_main before calling ActivateBestChain if (need_activate_chain) { BlockValidationState state; if (!m_chainman.ActiveChainstate().ActivateBestChain(config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); if (!pindex) { return; } if (!BlockRequestAllowed(pindex)) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old " "block that isn't in the main chain\n", __func__, pfrom.GetId()); return; } const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); // Disconnect node in case we have reached the outbound limit for serving // historical blocks. if (m_connman.OutboundTargetReached(true) && (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) && // nodes with the download permission may exceed target !pfrom.HasPermission(NetPermissionFlags::Download)) { LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } // Avoid leaking prune-height by never sending blocks below the // NODE_NETWORK_LIMITED threshold. // Add two blocks buffer extension for possible races if (!pfrom.HasPermission(NetPermissionFlags::NoBan) && ((((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (m_chainman.ActiveChain().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2)))) { LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED " "threshold, disconnect peer=%d\n", pfrom.GetId()); // disconnect node and prevent it from stalling (would otherwise wait // for the missing block) pfrom.fDisconnect = true; return; } // Pruned nodes may have deleted the block, so check whether it's available // before trying to send. if (!pindex->nStatus.hasData()) { return; } std::shared_ptr pblock; if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) { pblock = a_recent_block; } else { // Send block from disk std::shared_ptr pblockRead = std::make_shared(); if (!ReadBlockFromDisk(*pblockRead, pindex, m_chainparams.GetConsensus())) { assert(!"cannot load block from disk"); } pblock = pblockRead; } if (inv.IsMsgBlk()) { m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock)); } else if (inv.IsMsgFilteredBlk()) { bool sendMerkleBlock = false; CMerkleBlock merkleBlock; if (auto tx_relay = peer.GetTxRelay()) { LOCK(tx_relay->m_bloom_filter_mutex); if (tx_relay->m_bloom_filter) { sendMerkleBlock = true; merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter); } } if (sendMerkleBlock) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock)); // CMerkleBlock just contains hashes, so also push any // transactions in the block the client did not see. This avoids // hurting performance by pointlessly requiring a round-trip. // Note that there is currently no way for a node to request any // single transactions we didn't send here - they must either // disconnect and retry or request the full block. Thus, the // protocol spec specified allows for us to provide duplicate // txn here, however we MUST always provide at least what the // remote peer needs. typedef std::pair PairType; for (PairType &pair : merkleBlock.vMatchedTxn) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::TX, *pblock->vtx[pair.first])); } } // else // no response } else if (inv.IsMsgCmpctBlk()) { // If a peer is asking for old blocks, we're almost guaranteed they // won't have a useful mempool to match against a compact block, and // we don't feel like constructing the object for them, so instead // we respond with the full, non-compact block. int nSendFlags = 0; if (CanDirectFetch() && pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_CMPCTBLOCK_DEPTH) { CBlockHeaderAndShortTxIDs cmpctblock(*pblock); m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } else { m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCK, *pblock)); } } { LOCK(peer.m_block_inv_mutex); // Trigger the peer node to send a getblocks request for the next // batch of inventory. if (hash == peer.m_continuation_block) { // Send immediately. This must send even if redundant, and // we want it right after the last block so they don't wait for // other stuff first. std::vector vInv; vInv.push_back(CInv( MSG_BLOCK, m_chainman.ActiveChain().Tip()->GetBlockHash())); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::INV, vInv)); peer.m_continuation_block = BlockHash(); } } } CTransactionRef PeerManagerImpl::FindTxForGetData(const CNode &peer, const TxId &txid, const std::chrono::seconds mempool_req, const std::chrono::seconds now) { auto txinfo = m_mempool.info(txid); if (txinfo.tx) { // If a TX could have been INVed in reply to a MEMPOOL request, // or is older than UNCONDITIONAL_RELAY_DELAY, permit the request // unconditionally. if ((mempool_req.count() && txinfo.m_time <= mempool_req) || txinfo.m_time <= now - UNCONDITIONAL_RELAY_DELAY) { return std::move(txinfo.tx); } } { LOCK(cs_main); // Otherwise, the transaction must have been announced recently. if (State(peer.GetId())->m_recently_announced_invs.contains(txid)) { // If it was, it can be relayed from either the mempool... if (txinfo.tx) { return std::move(txinfo.tx); } // ... or the relay pool. auto mi = mapRelay.find(txid); if (mi != mapRelay.end()) { return mi->second; } } } return {}; } //! Determine whether or not a peer can request a proof, and return it (or //! nullptr if not found or not allowed). avalanche::ProofRef PeerManagerImpl::FindProofForGetData(const CNode &peer, const avalanche::ProofId &proofid, const std::chrono::seconds now) { avalanche::ProofRef proof; bool send_unconditionally = g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { return pm.forPeer(proofid, [&](const avalanche::Peer &peer) { proof = peer.proof; // If we know that proof for long enough, allow for requesting // it. return peer.registration_time <= now - UNCONDITIONAL_RELAY_DELAY; }); }); if (!proof) { // Always send our local proof if it gets requested, assuming it's // valid. This will make it easier to bind with peers upon startup where // the status of our proof is unknown pending for a block. Note that it // still needs to have been announced first (presumably via an avahello // message). proof = g_avalanche->getLocalProof(); } // We don't have this proof if (!proof) { return avalanche::ProofRef(); } if (send_unconditionally) { return proof; } // Otherwise, the proofs must have been announced recently. LOCK(cs_main); if (State(peer.GetId())->m_recently_announced_proofs.contains(proofid)) { return proof; } return avalanche::ProofRef(); } void PeerManagerImpl::ProcessGetData( const Config &config, CNode &pfrom, Peer &peer, const std::atomic &interruptMsgProc) { AssertLockNotHeld(cs_main); auto tx_relay = peer.GetTxRelay(); std::deque::iterator it = peer.m_getdata_requests.begin(); std::vector vNotFound; const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); const auto now{GetTime()}; // Get last mempool request time const auto mempool_req = tx_relay != nullptr ? tx_relay->m_last_mempool_req.load() : std::chrono::seconds::min(); // Process as many TX or AVA_PROOF items from the front of the getdata // queue as possible, since they're common and it's efficient to batch // process them. while (it != peer.m_getdata_requests.end()) { if (interruptMsgProc) { return; } // The send buffer provides backpressure. If there's no space in // the buffer, pause processing until the next call. if (pfrom.fPauseSend) { break; } const CInv &inv = *it; if (it->IsMsgProof()) { const avalanche::ProofId proofid(inv.hash); auto proof = FindProofForGetData(pfrom, proofid, now); if (proof) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOF, *proof)); g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { pm.removeUnbroadcastProof(proofid); }); } else { vNotFound.push_back(inv); } ++it; continue; } if (it->IsMsgTx()) { if (tx_relay == nullptr) { // Ignore GETDATA requests for transactions from // block-relay-only peers and peers that asked us not to // announce transactions. continue; } const TxId txid(inv.hash); CTransactionRef tx = FindTxForGetData(pfrom, txid, mempool_req, now); if (tx) { int nSendFlags = 0; m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *tx)); m_mempool.RemoveUnbroadcastTx(txid); // As we're going to send tx, make sure its unconfirmed parents // are made requestable. std::vector parent_ids_to_add; { LOCK(m_mempool.cs); auto txiter = m_mempool.GetIter(tx->GetId()); if (txiter) { const CTxMemPoolEntry::Parents &parents = (*txiter)->GetMemPoolParentsConst(); parent_ids_to_add.reserve(parents.size()); for (const CTxMemPoolEntry &parent : parents) { if (parent.GetTime() > now - UNCONDITIONAL_RELAY_DELAY) { parent_ids_to_add.push_back( parent.GetTx().GetId()); } } } } for (const TxId &parent_txid : parent_ids_to_add) { // Relaying a transaction with a recent but unconfirmed // parent. if (WITH_LOCK(tx_relay->m_tx_inventory_mutex, return !tx_relay->m_tx_inventory_known_filter .contains(parent_txid))) { LOCK(cs_main); State(pfrom.GetId()) ->m_recently_announced_invs.insert(parent_txid); } } } else { vNotFound.push_back(inv); } ++it; continue; } // It's neither a proof nor a transaction break; } // Only process one BLOCK item per call, since they're uncommon and can be // expensive to process. if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) { const CInv &inv = *it++; if (inv.IsGenBlkMsg()) { ProcessGetBlockData(config, pfrom, peer, inv); } // else: If the first item on the queue is an unknown type, we erase it // and continue processing the queue on the next call. } peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it // doesn't have to wait around forever. SPV clients care about this // message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want // to do that because they want to know about (and store and rebroadcast // and risk analyze) the dependencies of transactions relevant to them, // without having to download the entire memory pool. Also, other nodes // can use these messages to automatically request a transaction from // some other peer that annnounced it, and stop waiting for us to // respond. In normal operation, we often send NOTFOUND messages for // parents of transactions that we relay; if a peer is missing a parent, // they may assume we have them and request the parents from us. m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::NOTFOUND, vNotFound)); } } void PeerManagerImpl::SendBlockTransactions( CNode &pfrom, const CBlock &block, const BlockTransactionsRequest &req) { BlockTransactions resp(req); for (size_t i = 0; i < req.indices.size(); i++) { if (req.indices[i] >= block.vtx.size()) { Misbehaving(pfrom, 100, "getblocktxn with out-of-bounds tx indices"); return; } resp.txn[i] = block.vtx[req.indices[i]]; } LOCK(cs_main); const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); int nSendFlags = 0; m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCKTXN, resp)); } void PeerManagerImpl::ProcessHeadersMessage( const Config &config, CNode &pfrom, const Peer &peer, const std::vector &headers, bool via_compact_block) { const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); size_t nCount = headers.size(); if (nCount == 0) { // Nothing interesting. Stop asking this peers for more headers. return; } bool received_new_header = false; const CBlockIndex *pindexLast = nullptr; { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); // If this looks like it could be a block announcement (nCount < // MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that // don't connect: // - Send a getheaders message in response to try to connect the chain. // - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that // don't connect before giving DoS points // - Once a headers message is received that is valid and does connect, // nUnconnectingHeaders gets reset back to 0. if (!m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock) && nCount < MAX_BLOCKS_TO_ANNOUNCE) { nodestate->nUnconnectingHeaders++; m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( m_chainman.m_best_header), uint256())); LogPrint( BCLog::NET, "received header %s: missing prev block %s, sending getheaders " "(%d) to end (peer=%d, nUnconnectingHeaders=%d)\n", headers[0].GetHash().ToString(), headers[0].hashPrevBlock.ToString(), m_chainman.m_best_header->nHeight, pfrom.GetId(), nodestate->nUnconnectingHeaders); // Set hashLastUnknownBlock for this peer, so that if we eventually // get the headers - even from a different peer - we can use this // peer to download. UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()); if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS == 0) { // The peer is sending us many headers we can't connect. Misbehaving(pfrom, 20, strprintf("%d non-connecting headers", nodestate->nUnconnectingHeaders)); } return; } BlockHash hashLastBlock; for (const CBlockHeader &header : headers) { if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) { Misbehaving(pfrom, 20, "non-continuous headers sequence"); return; } hashLastBlock = header.GetHash(); } // If we don't have the last header, then they'll have given us // something new (if these headers are valid). if (!m_chainman.m_blockman.LookupBlockIndex(hashLastBlock)) { received_new_header = true; } } BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, headers, state, &pindexLast)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received"); return; } } { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); if (nodestate->nUnconnectingHeaders > 0) { LogPrint(BCLog::NET, "peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n", pfrom.GetId(), nodestate->nUnconnectingHeaders); } nodestate->nUnconnectingHeaders = 0; assert(pindexLast); UpdateBlockAvailability(pfrom.GetId(), pindexLast->GetBlockHash()); // From here, pindexBestKnownBlock should be guaranteed to be non-null, // because it is set in UpdateBlockAvailability. Some nullptr checks are // still present, however, as belt-and-suspenders. if (received_new_header && pindexLast->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } if (nCount == MAX_HEADERS_RESULTS) { // Headers message had its maximum size; the peer may have more // headers. // TODO: optimize: if pindexLast is an ancestor of // m_chainman.ActiveChain().Tip or m_chainman.m_best_header, // continue from there instead. LogPrint( BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator(pindexLast), uint256())); } // If this set of headers is valid and ends in a block with at least as // much work as our tip, download as much as possible. if (CanDirectFetch() && pindexLast->IsValid(BlockValidity::TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= pindexLast->nChainWork) { std::vector vToFetch; const CBlockIndex *pindexWalk = pindexLast; // Calculate all the blocks we'd need to switch to pindexLast, up to // a limit. while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { if (!pindexWalk->nStatus.hasData() && !IsBlockRequested(pindexWalk->GetBlockHash())) { // We don't have this block, and it's not yet in flight. vToFetch.push_back(pindexWalk); } pindexWalk = pindexWalk->pprev; } // If pindexWalk still isn't on our main chain, we're looking at a // very large reorg at a time we think we're close to caught up to // the main chain -- this shouldn't really happen. Bail out on the // direct fetch and rely on parallel download instead. if (!m_chainman.ActiveChain().Contains(pindexWalk)) { LogPrint( BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } else { std::vector vGetData; // Download as much as possible, from earliest to latest. for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) { if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { // Can't download any more from this peer break; } vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); BlockRequested(config, pfrom.GetId(), *pindex); LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n", pindex->GetBlockHash().ToString(), pfrom.GetId()); } if (vGetData.size() > 1) { LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers " "direct fetch\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } if (vGetData.size() > 0) { if (!m_ignore_incoming_txs && nodestate->m_provides_cmpctblocks && vGetData.size() == 1 && mapBlocksInFlight.size() == 1 && pindexLast->pprev->IsValid(BlockValidity::CHAIN)) { // In any case, we want to download using a compact // block, not a regular one. vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash); } m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } } } // If we're in IBD, we want outbound peers that will serve us a useful // chain. Disconnect peers that are on chains with insufficient work. if (m_chainman.ActiveChainstate().IsInitialBlockDownload() && nCount != MAX_HEADERS_RESULTS) { // When nCount < MAX_HEADERS_RESULTS, we know we have no more // headers to fetch from this peer. if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has too little work on their headers chain to help // us sync -- disconnect if it is an outbound disconnection // candidate. // Note: We compare their tip to nMinimumChainWork (rather than // m_chainman.ActiveChain().Tip()) because we won't start block // download until we have a headers chain that has at least // nMinimumChainWork, even if a peer has a chain past our tip, // as an anti-DoS measure. if (pfrom.IsOutboundOrBlockRelayConn()) { LogPrintf("Disconnecting outbound peer %d -- headers " "chain has insufficient work\n", pfrom.GetId()); pfrom.fDisconnect = true; } } } // If this is an outbound full-relay peer, check to see if we should // protect it from the bad/lagging chain logic. // Note that outbound block-relay peers are excluded from this // protection, and thus always subject to eviction under the bad/lagging // chain logic. // See ChainSyncTimeoutState. if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) { if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) { LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId()); nodestate->m_chain_sync.m_protect = true; ++m_outbound_peers_with_protect_from_disconnect; } } } } /** * Reconsider orphan transactions after a parent has been accepted to the * mempool. * * @param[in,out] orphan_work_set The set of orphan transactions to * reconsider. Generally only one orphan will be reconsidered on each call of * this function. This set may be added to if accepting an orphan causes its * children to be reconsidered. */ void PeerManagerImpl::ProcessOrphanTx(const Config &config, std::set &orphan_work_set) { AssertLockHeld(cs_main); AssertLockHeld(g_cs_orphans); while (!orphan_work_set.empty()) { const TxId orphanTxId = *orphan_work_set.begin(); orphan_work_set.erase(orphan_work_set.begin()); const auto [porphanTx, from_peer] = m_orphanage.GetTx(orphanTxId); if (porphanTx == nullptr) { continue; } const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx); const TxValidationState &state = result.m_state; if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) { LogPrint(BCLog::MEMPOOL, " accepted orphan tx %s\n", orphanTxId.ToString()); RelayTransaction(orphanTxId); m_orphanage.AddChildrenToWorkSet(*porphanTx, orphan_work_set); m_orphanage.EraseTx(orphanTxId); break; } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) { if (state.IsInvalid()) { LogPrint(BCLog::MEMPOOL, " invalid orphan tx %s from peer=%d. %s\n", orphanTxId.ToString(), from_peer, state.ToString()); // Punish peer that gave us an invalid orphan tx MaybePunishNodeForTx(from_peer, state); } // Has inputs but not accepted to mempool // Probably non-standard or insufficient fee LogPrint(BCLog::MEMPOOL, " removed orphan tx %s\n", orphanTxId.ToString()); m_recent_rejects.insert(orphanTxId); m_orphanage.EraseTx(orphanTxId); break; } } } bool PeerManagerImpl::PrepareBlockFilterRequest( CNode &node, Peer &peer, BlockFilterType filter_type, uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff, const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index) { const bool supported_filter_type = (filter_type == BlockFilterType::BASIC && (peer.m_our_services & NODE_COMPACT_FILTERS)); if (!supported_filter_type) { LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n", node.GetId(), static_cast(filter_type)); node.fDisconnect = true; return false; } { LOCK(cs_main); stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash); // Check that the stop block exists and the peer would be allowed to // fetch it. if (!stop_index || !BlockRequestAllowed(stop_index)) { LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n", node.GetId(), stop_hash.ToString()); node.fDisconnect = true; return false; } } uint32_t stop_height = stop_index->nHeight; if (start_height > stop_height) { LogPrint( BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with " /* Continued */ "start height %d and stop height %d\n", node.GetId(), start_height, stop_height); node.fDisconnect = true; return false; } if (stop_height - start_height >= max_height_diff) { LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n", node.GetId(), stop_height - start_height + 1, max_height_diff); node.fDisconnect = true; return false; } filter_index = GetBlockFilterIndex(filter_type); if (!filter_index) { LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type)); return false; } return true; } void PeerManagerImpl::ProcessGetCFilters(CNode &node, Peer &peer, CDataStream &vRecv) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash, MAX_GETCFILTERS_SIZE, stop_index, filter_index)) { return; } std::vector filters; if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) { LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } for (const auto &filter : filters) { CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion()) .Make(NetMsgType::CFILTER, filter); m_connman.PushMessage(&node, std::move(msg)); } } void PeerManagerImpl::ProcessGetCFHeaders(CNode &node, Peer &peer, CDataStream &vRecv) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash, MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) { return; } uint256 prev_header; if (start_height > 0) { const CBlockIndex *const prev_block = stop_index->GetAncestor(static_cast(start_height - 1)); if (!filter_index->LookupFilterHeader(prev_block, prev_header)) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString()); return; } } std::vector filter_hashes; if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) { LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion()) .Make(NetMsgType::CFHEADERS, filter_type_ser, stop_index->GetBlockHash(), prev_header, filter_hashes); m_connman.PushMessage(&node, std::move(msg)); } void PeerManagerImpl::ProcessGetCFCheckPt(CNode &node, Peer &peer, CDataStream &vRecv) { uint8_t filter_type_ser; BlockHash stop_hash; vRecv >> filter_type_ser >> stop_hash; const BlockFilterType filter_type = static_cast(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( node, peer, filter_type, /*start_height=*/0, stop_hash, /*max_height_diff=*/std::numeric_limits::max(), stop_index, filter_index)) { return; } std::vector headers(stop_index->nHeight / CFCHECKPT_INTERVAL); // Populate headers. const CBlockIndex *block_index = stop_index; for (int i = headers.size() - 1; i >= 0; i--) { int height = (i + 1) * CFCHECKPT_INTERVAL; block_index = block_index->GetAncestor(height); if (!filter_index->LookupFilterHeader(block_index, headers[i])) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString()); return; } } CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion()) .Make(NetMsgType::CFCHECKPT, filter_type_ser, stop_index->GetBlockHash(), headers); m_connman.PushMessage(&node, std::move(msg)); } bool IsAvalancheMessageType(const std::string &msg_type) { return msg_type == NetMsgType::AVAHELLO || msg_type == NetMsgType::AVAPOLL || msg_type == NetMsgType::AVARESPONSE || msg_type == NetMsgType::AVAPROOF || msg_type == NetMsgType::GETAVAADDR || msg_type == NetMsgType::GETAVAPROOFS || msg_type == NetMsgType::AVAPROOFS || msg_type == NetMsgType::AVAPROOFSREQ; } uint32_t PeerManagerImpl::GetAvalancheVoteForBlock(const BlockHash &hash) const { AssertLockHeld(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); // Unknown block. if (!pindex) { return -1; } // Invalid block if (pindex->nStatus.isInvalid()) { return 1; } // Parked block if (pindex->nStatus.isOnParkedChain()) { return 2; } const CBlockIndex *pindexTip = m_chainman.ActiveChain().Tip(); const CBlockIndex *pindexFork = LastCommonAncestor(pindex, pindexTip); // Active block. if (pindex == pindexFork) { return 0; } // Fork block. if (pindexFork != pindexTip) { return 3; } // Missing block data. if (!pindex->nStatus.hasData()) { return -2; } // This block is built on top of the tip, we have the data, it // is pending connection or rejection. return -3; }; uint32_t PeerManagerImpl::GetAvalancheVoteForTx(const TxId &id) const { // Accepted in mempool, or in a recent block if (m_mempool.exists(id) || WITH_LOCK(m_recent_confirmed_transactions_mutex, return m_recent_confirmed_transactions.contains(id))) { return 0; } // Invalid tx if (m_recent_rejects.contains(id)) { return 1; } // Orphan tx if (m_orphanage.HaveTx(id)) { return 2; } // Unknown tx return -1; }; /** * Decide a response for an Avalanche poll about the given proof. * * @param[in] id The id of the proof being polled for * @return Our current vote for the proof */ static uint32_t getAvalancheVoteForProof(const avalanche::ProofId &id) { assert(g_avalanche); return g_avalanche->withPeerManager([&id](avalanche::PeerManager &pm) { // Rejected proof if (pm.isInvalid(id)) { return 1; } // The proof is actively bound to a peer if (pm.isBoundToPeer(id)) { return 0; } // Unknown proof if (!pm.exists(id)) { return -1; } // Immature proof if (pm.isImmature(id)) { return 2; } // Not immature, but in conflict with an actively bound proof if (pm.isInConflictingPool(id)) { return 3; } // The proof is known, not rejected, not immature, not a conflict, but // for some reason unbound. This should not happen if the above pools // are managed correctly, but added for robustness. return -2; }); }; void PeerManagerImpl::ProcessBlock(const Config &config, CNode &node, const std::shared_ptr &block, bool force_processing) { bool new_block{false}; m_chainman.ProcessNewBlock(config, block, force_processing, &new_block); if (new_block) { node.m_last_block_time = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(block->GetHash()); } } void PeerManagerImpl::ProcessMessage( const Config &config, CNode &pfrom, const std::string &msg_type, CDataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic &interruptMsgProc) { LogPrint(BCLog::NETDEBUG, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId()); PeerRef peer = GetPeerRef(pfrom.GetId()); if (peer == nullptr) { return; } if (IsAvalancheMessageType(msg_type)) { if (!g_avalanche) { LogPrint(BCLog::AVALANCHE, "Avalanche is not initialized, ignoring %s message\n", msg_type); return; } if (!isAvalancheEnabled(gArgs)) { // If avalanche is not enabled, ignore avalanche messages return; } } if (msg_type == NetMsgType::VERSION) { // Each connection can only send one version message if (pfrom.nVersion != 0) { Misbehaving(pfrom, 1, "redundant version message"); return; } int64_t nTime; CService addrMe; uint64_t nNonce = 1; ServiceFlags nServices; int nVersion; std::string cleanSubVer; int starting_height = -1; bool fRelay = true; uint64_t nExtraEntropy = 1; vRecv >> nVersion >> Using>(nServices) >> nTime; if (nTime < 0) { nTime = 0; } // Ignore the addrMe service bits sent by the peer vRecv.ignore(8); vRecv >> addrMe; if (!pfrom.IsInboundConn()) { m_addrman.SetServices(pfrom.addr, nServices); } if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices)) { LogPrint(BCLog::NET, "peer=%d does not offer the expected services " "(%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices)); pfrom.fDisconnect = true; return; } if (pfrom.IsAvalancheOutboundConnection() && !(nServices & NODE_AVALANCHE)) { LogPrint( BCLog::AVALANCHE, "peer=%d does not offer the avalanche service; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } if (nVersion < MIN_PEER_PROTO_VERSION) { // disconnect from peers older than this proto version LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion); pfrom.fDisconnect = true; return; } if (!vRecv.empty()) { // The version message includes information about the sending node // which we don't use: // - 8 bytes (service bits) // - 16 bytes (ipv6 address) // - 2 bytes (port) vRecv.ignore(26); vRecv >> nNonce; } if (!vRecv.empty()) { std::string strSubVer; vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH); cleanSubVer = SanitizeString(strSubVer); } if (!vRecv.empty()) { vRecv >> starting_height; } if (!vRecv.empty()) { vRecv >> fRelay; } if (!vRecv.empty()) { vRecv >> nExtraEntropy; } // Disconnect if we connected to ourself if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce)) { LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToString()); pfrom.fDisconnect = true; return; } if (pfrom.IsInboundConn() && addrMe.IsRoutable()) { SeenLocal(addrMe); } // Inbound peers send us their version message when they connect. // We send our version message in response. if (pfrom.IsInboundConn()) { PushNodeVersion(config, pfrom, *peer); } // Change version const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION); pfrom.SetCommonVersion(greatest_common_version); pfrom.nVersion = nVersion; const CNetMsgMaker msg_maker(greatest_common_version); m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::VERACK)); // Signal ADDRv2 support (BIP155). m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDADDRV2)); pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices); peer->m_their_services = nServices; pfrom.SetAddrLocal(addrMe); { LOCK(pfrom.m_subver_mutex); pfrom.cleanSubVer = cleanSubVer; } peer->m_starting_height = starting_height; // We only initialize the m_tx_relay data structure if: // - this isn't an outbound block-relay-only connection; and // - fRelay=true or we're offering NODE_BLOOM to this peer // (NODE_BLOOM means that the peer may turn on tx relay later) if (!pfrom.IsBlockOnlyConn() && (fRelay || (peer->m_our_services & NODE_BLOOM))) { auto *const tx_relay = peer->SetTxRelay(); { LOCK(tx_relay->m_bloom_filter_mutex); // set to true after we get the first filter* message tx_relay->m_relay_txs = fRelay; } if (fRelay) { pfrom.m_relays_txs = true; } } pfrom.nRemoteHostNonce = nNonce; pfrom.nRemoteExtraEntropy = nExtraEntropy; // Potentially mark this peer as a preferred download peer. { LOCK(cs_main); CNodeState *state = State(pfrom.GetId()); state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer); m_num_preferred_download_peers += state->fPreferredDownload; } // Self advertisement & GETADDR logic if (!pfrom.IsInboundConn() && SetupAddressRelay(pfrom, *peer)) { // For outbound peers, we try to relay our address (so that other // nodes can try to find us more quickly, as we have no guarantee // that an outbound peer is even aware of how to reach us) and do a // one-time address fetch (to help populate/update our addrman). If // we're starting up for the first time, our addrman may be pretty // empty and no one will know who we are, so these mechanisms are // important to help us connect to the network. // // We skip this for block-relay-only peers. We want to avoid // potentially leaking addr information and we do not want to // indicate to the peer that we will participate in addr relay. if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) { CAddress addr{GetLocalAddress(pfrom.addr), peer->m_our_services, (uint32_t)GetAdjustedTime()}; FastRandomContext insecure_rand; if (addr.IsRoutable()) { LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); PushAddress(*peer, addr, insecure_rand); } else if (IsPeerAddrLocalGood(&pfrom)) { // Override just the address with whatever the peer sees us // as. Leave the port in addr as it was returned by // GetLocalAddress() above, as this is an outbound // connection and the peer cannot observe our listening // port. addr.SetIP(addrMe); LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); PushAddress(*peer, addr, insecure_rand); } } // Get recent addresses m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version) .Make(NetMsgType::GETADDR)); peer->m_getaddr_sent = true; // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND // addresses in response (bypassing the // MAX_ADDR_PROCESSING_TOKEN_BUCKET limit). WITH_LOCK(peer->m_addr_token_bucket_mutex, peer->m_addr_token_bucket += GetMaxAddrToSend()); } if (!pfrom.IsInboundConn()) { // For non-inbound connections, we update the addrman to record // connection success so that addrman will have an up-to-date // notion of which peers are online and available. // // While we strive to not leak information about block-relay-only // connections via the addrman, not moving an address to the tried // table is also potentially detrimental because new-table entries // are subject to eviction in the event of addrman collisions. We // mitigate the information-leak by never calling // AddrMan::Connected() on block-relay-only peers; see // FinalizeNode(). // // This moves an address from New to Tried table in Addrman, // resolves tried-table collisions, etc. m_addrman.Good(pfrom.addr); } std::string remoteAddr; if (fLogIPs) { remoteAddr = ", peeraddr=" + pfrom.addr.ToString(); } LogPrint(BCLog::NET, "receive version message: [%s] %s: version %d, blocks=%d, " "us=%s, txrelay=%d, peer=%d%s\n", pfrom.addr.ToString(), cleanSubVer, pfrom.nVersion, peer->m_starting_height, addrMe.ToString(), fRelay, pfrom.GetId(), remoteAddr); int64_t currentTime = GetTime(); int64_t nTimeOffset = nTime - currentTime; pfrom.nTimeOffset = nTimeOffset; if (nTime < int64_t(m_chainparams.GenesisBlock().nTime)) { // Ignore time offsets that are improbable (before the Genesis // block) and may underflow our adjusted time. Misbehaving(pfrom, 20, "Ignoring invalid timestamp in version message"); } else if (!pfrom.IsInboundConn()) { // Don't use timedata samples from inbound peers to make it // harder for others to tamper with our adjusted time. AddTimeData(pfrom.addr, nTimeOffset); } // Feeler connections exist only to verify if address is online. if (pfrom.IsFeelerConn()) { LogPrint(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (pfrom.nVersion == 0) { // Must have a version message before anything else Misbehaving(pfrom, 10, "non-version message before version handshake"); return; } // At this point, the outgoing message serialization version can't change. const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); if (msg_type == NetMsgType::VERACK) { if (pfrom.fSuccessfullyConnected) { LogPrint(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId()); return; } if (!pfrom.IsInboundConn()) { LogPrintf( "New outbound peer connected: version: %d, blocks=%d, " "peer=%d%s (%s)\n", pfrom.nVersion.load(), peer->m_starting_height, pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToString()) : ""), pfrom.ConnectionTypeAsString()); } if (pfrom.GetCommonVersion() >= SENDHEADERS_VERSION) { // Tell our peer we prefer to receive headers rather than inv's // We send this to non-NODE NETWORK peers as well, because even // non-NODE NETWORK peers can announce blocks (such as pruning // nodes) m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDHEADERS)); } if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) { // Tell our peer we are willing to provide version 1 // cmpctblocks. However, we do not request new block announcements // using cmpctblock messages. We send this to non-NODE NETWORK peers // as well, because they may wish to request compact blocks from us. m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION)); } if (g_avalanche && isAvalancheEnabled(gArgs)) { if (g_avalanche->sendHello(&pfrom)) { auto localProof = g_avalanche->getLocalProof(); if (localProof) { AddKnownProof(*peer, localProof->getId()); // Add our proof id to the list or the recently announced // proof INVs to this peer. This is used for filtering which // INV can be requested for download. LOCK(cs_main); State(pfrom.GetId()) ->m_recently_announced_proofs.insert( localProof->getId()); } } } pfrom.fSuccessfullyConnected = true; return; } if (!pfrom.fSuccessfullyConnected) { // Must have a verack message before anything else Misbehaving(pfrom, 10, "non-verack message before version handshake"); return; } if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) { int stream_version = vRecv.GetVersion(); if (msg_type == NetMsgType::ADDRV2) { // Add ADDRV2_FORMAT to the version so that the CNetAddr and // CAddress unserialize methods know that an address in v2 format is // coming. stream_version |= ADDRV2_FORMAT; } OverrideStream s(&vRecv, vRecv.GetType(), stream_version); std::vector vAddr; s >> vAddr; if (!SetupAddressRelay(pfrom, *peer)) { LogPrint(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } if (vAddr.size() > GetMaxAddrToSend()) { Misbehaving( pfrom, 20, strprintf("%s message size = %u", msg_type, vAddr.size())); return; } // Store the new addresses std::vector vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; // Update/increment addr rate limiting bucket. const auto current_time = GetTime(); { LOCK(peer->m_addr_token_bucket_mutex); if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) { // Don't increment bucket if it's already full const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us); const double increment = CountSecondsDouble(time_diff) * MAX_ADDR_RATE_PER_SECOND; peer->m_addr_token_bucket = std::min(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET); } } peer->m_addr_token_timestamp = current_time; const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr); uint64_t num_proc = 0; uint64_t num_rate_limit = 0; Shuffle(vAddr.begin(), vAddr.end(), FastRandomContext()); for (CAddress &addr : vAddr) { if (interruptMsgProc) { return; } { LOCK(peer->m_addr_token_bucket_mutex); // Apply rate limiting. if (peer->m_addr_token_bucket < 1.0) { if (rate_limited) { ++num_rate_limit; continue; } } else { peer->m_addr_token_bucket -= 1.0; } } // We only bother storing full nodes, though this may include things // which we would not make an outbound connection to, in part // because we may make feeler connections to them. if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) { addr.nTime = nNow - 5 * 24 * 60 * 60; } AddAddressKnown(*peer, addr); if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) { // Do not process banned/discouraged addresses beyond // remembering we received them continue; } ++num_proc; bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes RelayAddress(pfrom.GetId(), addr, fReachable); } // Do not store addresses outside our network if (fReachable) { vAddrOk.push_back(addr); } } peer->m_addr_processed += num_proc; peer->m_addr_rate_limited += num_rate_limit; LogPrint(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) " "from peer=%d\n", vAddr.size(), num_proc, num_rate_limit, pfrom.GetId()); m_addrman.Add(vAddrOk, pfrom.addr, 2 * 60 * 60); if (vAddr.size() < 1000) { peer->m_getaddr_sent = false; } // AddrFetch: Require multiple addresses to avoid disconnecting on // self-announcements if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) { LogPrint(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (msg_type == NetMsgType::SENDADDRV2) { peer->m_wants_addrv2 = true; return; } if (msg_type == NetMsgType::SENDHEADERS) { LOCK(cs_main); State(pfrom.GetId())->fPreferHeaders = true; return; } if (msg_type == NetMsgType::SENDCMPCT) { bool sendcmpct_hb{false}; uint64_t sendcmpct_version{0}; vRecv >> sendcmpct_hb >> sendcmpct_version; if (sendcmpct_version != CMPCTBLOCKS_VERSION) { return; } LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); nodestate->m_provides_cmpctblocks = true; nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb; // save whether peer selects us as BIP152 high-bandwidth peer // (receiving sendcmpct(1) signals high-bandwidth, // sendcmpct(0) low-bandwidth) pfrom.m_bip152_highbandwidth_from = sendcmpct_hb; return; } if (msg_type == NetMsgType::INV) { std::vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("inv message size = %u", vInv.size())); return; } // Reject tx INVs when the -blocksonly setting is enabled, or this is a // block-relay-only peer bool reject_tx_invs{m_ignore_incoming_txs || pfrom.IsBlockOnlyConn()}; // Allow peers with relay permission to send data other than blocks // in blocks only mode if (pfrom.HasPermission(NetPermissionFlags::Relay)) { reject_tx_invs = false; } const auto current_time{GetTime()}; std::optional best_block; auto logInv = [&](const CInv &inv, bool fAlreadyHave) { LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId()); }; for (CInv &inv : vInv) { if (interruptMsgProc) { return; } if (inv.IsMsgBlk()) { LOCK(cs_main); const bool fAlreadyHave = AlreadyHaveBlock(BlockHash(inv.hash)); logInv(inv, fAlreadyHave); const BlockHash hash{inv.hash}; UpdateBlockAvailability(pfrom.GetId(), hash); if (!fAlreadyHave && !fImporting && !fReindex && !IsBlockRequested(hash)) { // Headers-first is the primary method of announcement on // the network. If a node fell back to sending blocks by // inv, it's probably for a re-org. The final block hash // provided should be the highest, so send a getheaders and // then fetch the blocks we need to catch up. best_block = std::move(hash); } continue; } if (inv.IsMsgProof()) { const avalanche::ProofId proofid(inv.hash); const bool fAlreadyHave = AlreadyHaveProof(proofid); logInv(inv, fAlreadyHave); AddKnownProof(*peer, proofid); if (!fAlreadyHave && g_avalanche && isAvalancheEnabled(gArgs) && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) { const bool preferred = isPreferredDownloadPeer(pfrom); LOCK(cs_proofrequest); AddProofAnnouncement(pfrom, proofid, current_time, preferred); } continue; } if (inv.IsMsgTx()) { LOCK(cs_main); const TxId txid(inv.hash); const bool fAlreadyHave = AlreadyHaveTx(txid); logInv(inv, fAlreadyHave); AddKnownTx(*peer, txid); if (reject_tx_invs) { LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of " "protocol, disconnecting peer=%d\n", txid.ToString(), pfrom.GetId()); pfrom.fDisconnect = true; return; } else if (!fAlreadyHave && !m_chainman.ActiveChainstate() .IsInitialBlockDownload()) { AddTxAnnouncement(pfrom, txid, current_time); } continue; } LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId()); } if (best_block) { LOCK(m_chainman.GetMutex()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( m_chainman.m_best_header), *best_block)); LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n", m_chainman.m_best_header->nHeight, best_block->ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETDATA) { std::vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("getdata message size = %u", vInv.size())); return; } LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId()); if (vInv.size() > 0) { LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId()); } { LOCK(peer->m_getdata_requests_mutex); peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end()); ProcessGetData(config, pfrom, *peer, interruptMsgProc); } return; } if (msg_type == NetMsgType::GETBLOCKS) { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } // We might have announced the currently-being-connected tip using a // compact block, which resulted in the peer sending a getblocks // request, which we would otherwise respond to without the new block. // To avoid this situation we simply verify that we are on our best // known chain now. This is super overkill, but we handle it better // for getheaders requests, and there are no known nodes which support // compact blocks but still use getblocks to request blocks. { std::shared_ptr a_recent_block; { LOCK(m_most_recent_block_mutex); a_recent_block = m_most_recent_block; } BlockValidationState state; if (!m_chainman.ActiveChainstate().ActivateBestChain( config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); // Find the last block the caller has in the main chain const CBlockIndex *pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator); // Send the rest of the chain if (pindex) { pindex = m_chainman.ActiveChain().Next(pindex); } int nLimit = 500; LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId()); for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex)) { if (pindex->GetBlockHash() == hashStop) { LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } // If pruning, don't inv blocks unless we have on disk and are // likely to still have for some reasonable time window (1 hour) // that block relay might require. const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing; if (fPruneMode && (!pindex->nStatus.hasData() || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) { LogPrint( BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } WITH_LOCK( peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll // trigger the peer to getblocks the next batch of inventory. LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); WITH_LOCK(peer->m_block_inv_mutex, { peer->m_continuation_block = pindex->GetBlockHash(); }); break; } } return; } if (msg_type == NetMsgType::GETBLOCKTXN) { BlockTransactionsRequest req; vRecv >> req; std::shared_ptr recent_block; { LOCK(m_most_recent_block_mutex); if (m_most_recent_block_hash == req.blockhash) { recent_block = m_most_recent_block; } // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion } if (recent_block) { SendBlockTransactions(pfrom, *recent_block, req); return; } { LOCK(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash); if (!pindex || !pindex->nStatus.hasData()) { LogPrint( BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId()); return; } if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) { CBlock block; bool ret = ReadBlockFromDisk(block, pindex, m_chainparams.GetConsensus()); assert(ret); SendBlockTransactions(pfrom, block, req); return; } } // If an older block is requested (should never happen in practice, // but can happen in tests) send a block response instead of a // blocktxn response. Sending a full block response instead of a // small blocktxn response is preferable in the case where a peer // might maliciously send lots of getblocktxn requests to trigger // expensive disk reads, because it will require the peer to // actually receive all the data read from disk over the network. LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH); CInv inv; inv.type = MSG_BLOCK; inv.hash = req.blockhash; WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv)); // The message processing loop will go around again (without pausing) // and we'll respond then (without cs_main) return; } if (msg_type == NetMsgType::GETHEADERS) { CBlockLocator locator; BlockHash hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } LOCK(cs_main); if (m_chainman.ActiveChainstate().IsInitialBlockDownload() && !pfrom.HasPermission(NetPermissionFlags::Download)) { LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because node is in " "initial block download\n", pfrom.GetId()); return; } CNodeState *nodestate = State(pfrom.GetId()); const CBlockIndex *pindex = nullptr; if (locator.IsNull()) { // If locator is null, return the hashStop block pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop); if (!pindex) { return; } if (!BlockRequestAllowed(pindex)) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block " "header that isn't in the main chain\n", __func__, pfrom.GetId()); return; } } else { // Find the last block the caller has in the main chain pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator); if (pindex) { pindex = m_chainman.ActiveChain().Next(pindex); } } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx // count at the end std::vector vHeaders; int nLimit = MAX_HEADERS_RESULTS; LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId()); for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex)) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) { break; } } // pindex can be nullptr either if we sent // m_chainman.ActiveChain().Tip() OR if our peer has // m_chainman.ActiveChain().Tip() (and thus we are sending an empty // headers message). In both cases it's safe to update // pindexBestHeaderSent to be our tip. // // It is important that we simply reset the BestHeaderSent value here, // and not max(BestHeaderSent, newHeaderSent). We might have announced // the currently-being-connected tip using a compact block, which // resulted in the peer sending a headers request, which we respond to // without the new block. By resetting the BestHeaderSent, we ensure we // will re-announce the new block via headers (or compact blocks again) // in the SendMessages logic. nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip(); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); return; } if (msg_type == NetMsgType::TX) { // Stop processing the transaction early if // 1) We are in blocks only mode and peer has no relay permission; OR // 2) This peer is a block-relay-only peer if ((m_ignore_incoming_txs && !pfrom.HasPermission(NetPermissionFlags::Relay)) || pfrom.IsBlockOnlyConn()) { LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } CTransactionRef ptx; vRecv >> ptx; const CTransaction &tx = *ptx; const TxId &txid = tx.GetId(); AddKnownTx(*peer, txid); LOCK2(cs_main, g_cs_orphans); m_txrequest.ReceivedResponse(pfrom.GetId(), txid); if (AlreadyHaveTx(txid)) { if (pfrom.HasPermission(NetPermissionFlags::ForceRelay)) { // Always relay transactions received from peers with // forcerelay permission, even if they were already in the // mempool, allowing the node to function as a gateway for // nodes hidden behind it. if (!m_mempool.exists(tx.GetId())) { LogPrintf("Not relaying non-mempool transaction %s from " "forcerelay peer=%d\n", tx.GetId().ToString(), pfrom.GetId()); } else { LogPrintf("Force relaying tx %s from peer=%d\n", tx.GetId().ToString(), pfrom.GetId()); RelayTransaction(tx.GetId()); } } return; } const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx); const TxValidationState &state = result.m_state; if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) { // As this version of the transaction was acceptable, we can forget // about any requests for it. m_txrequest.ForgetInvId(tx.GetId()); RelayTransaction(tx.GetId()); m_orphanage.AddChildrenToWorkSet(tx, peer->m_orphan_work_set); pfrom.m_last_tx_time = GetTime(); LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s " "(poolsz %u txn, %u kB)\n", pfrom.GetId(), tx.GetId().ToString(), m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000); // Recursively process any orphan transactions that depended on this // one ProcessOrphanTx(config, peer->m_orphan_work_set); } else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS) { // It may be the case that the orphans parents have all been // rejected. bool fRejectedParents = false; // Deduplicate parent txids, so that we don't have to loop over // the same parent txid more than once down below. std::vector unique_parents; unique_parents.reserve(tx.vin.size()); for (const CTxIn &txin : tx.vin) { // We start with all parents, and then remove duplicates below. unique_parents.push_back(txin.prevout.GetTxId()); } std::sort(unique_parents.begin(), unique_parents.end()); unique_parents.erase( std::unique(unique_parents.begin(), unique_parents.end()), unique_parents.end()); for (const TxId &parent_txid : unique_parents) { if (m_recent_rejects.contains(parent_txid)) { fRejectedParents = true; break; } } if (!fRejectedParents) { const auto current_time{GetTime()}; for (const TxId &parent_txid : unique_parents) { // FIXME: MSG_TX should use a TxHash, not a TxId. AddKnownTx(*peer, parent_txid); if (!AlreadyHaveTx(parent_txid)) { AddTxAnnouncement(pfrom, parent_txid, current_time); } } if (m_orphanage.AddTx(ptx, pfrom.GetId())) { AddToCompactExtraTransactions(ptx); } // Once added to the orphan pool, a tx is considered // AlreadyHave, and we shouldn't request it anymore. m_txrequest.ForgetInvId(tx.GetId()); // DoS prevention: do not allow m_orphanage to grow // unbounded (see CVE-2012-3789) unsigned int nMaxOrphanTx = (unsigned int)std::max( int64_t(0), gArgs.GetIntArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS)); unsigned int nEvicted = m_orphanage.LimitOrphans(nMaxOrphanTx); if (nEvicted > 0) { LogPrint(BCLog::MEMPOOL, "orphanage overflow, removed %u tx\n", nEvicted); } } else { LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s\n", tx.GetId().ToString()); // We will continue to reject this tx since it has rejected // parents so avoid re-requesting it from other peers. m_recent_rejects.insert(tx.GetId()); m_txrequest.ForgetInvId(tx.GetId()); } } else { m_recent_rejects.insert(tx.GetId()); m_txrequest.ForgetInvId(tx.GetId()); if (RecursiveDynamicUsage(*ptx) < 100000) { AddToCompactExtraTransactions(ptx); } } // If a tx has been detected by m_recent_rejects, we will have reached // this point and the tx will have been ignored. Because we haven't // submitted the tx to our mempool, we won't have computed a DoS // score for it or determined exactly why we consider it invalid. // // This means we won't penalize any peer subsequently relaying a DoSy // tx (even if we penalized the first peer who gave it to us) because // we have to account for m_recent_rejects showing false positives. In // other words, we shouldn't penalize a peer if we aren't *sure* they // submitted a DoSy tx. // // Note that m_recent_rejects doesn't just record DoSy or invalid // transactions, but any tx not accepted by the mempool, which may be // due to node policy (vs. consensus). So we can't blanket penalize a // peer simply for relaying a tx that our m_recent_rejects has caught, // regardless of false positives. if (state.IsInvalid()) { LogPrint(BCLog::MEMPOOLREJ, "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(), pfrom.GetId(), state.ToString()); MaybePunishNodeForTx(pfrom.GetId(), state); } return; } if (msg_type == NetMsgType::CMPCTBLOCK) { // Ignore cmpctblock received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId()); return; } CBlockHeaderAndShortTxIDs cmpctblock; try { vRecv >> cmpctblock; } catch (std::ios_base::failure &e) { // This block has non contiguous or overflowing indexes Misbehaving(pfrom, 100, "cmpctblock-bad-indexes"); return; } bool received_new_header = false; { LOCK(cs_main); if (!m_chainman.m_blockman.LookupBlockIndex( cmpctblock.header.hashPrevBlock)) { // Doesn't connect (or is genesis), instead of DoSing in // AcceptBlockHeader, request deeper headers if (!m_chainman.ActiveChainstate().IsInitialBlockDownload()) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( m_chainman.m_best_header), uint256())); } return; } if (!m_chainman.m_blockman.LookupBlockIndex( cmpctblock.header.GetHash())) { received_new_header = true; } } const CBlockIndex *pindex = nullptr; BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, {cmpctblock.header}, state, &pindex)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block*/ true, "invalid header via cmpctblock"); return; } } // When we succeed in decoding a block's txids from a cmpctblock // message we typically jump to the BLOCKTXN handling code, with a // dummy (empty) BLOCKTXN message, to re-use the logic there in // completing processing of the putative block (without cs_main). bool fProcessBLOCKTXN = false; CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION); // If we end up treating this as a plain headers message, call that as // well // without cs_main. bool fRevertToHeaderProcessing = false; // Keep a CBlock for "optimistic" compactblock reconstructions (see // below) std::shared_ptr pblock = std::make_shared(); bool fBlockReconstructed = false; { LOCK2(cs_main, g_cs_orphans); // If AcceptBlockHeader returned true, it set pindex assert(pindex); UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash()); CNodeState *nodestate = State(pfrom.GetId()); // If this was a new header with more work than our tip, update the // peer's last block announcement time if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } std::map::iterator>>:: iterator blockInFlightIt = mapBlocksInFlight.find(pindex->GetBlockHash()); bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end(); if (pindex->nStatus.hasData()) { // Nothing to do here return; } if (pindex->nChainWork <= m_chainman.ActiveChain() .Tip() ->nChainWork || // We know something better pindex->nTx != 0) { // We had this block at some point, but pruned it if (fAlreadyInFlight) { // We requested this block for some reason, but our mempool // will probably be useless so we just grab the block via // normal getdata. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); } return; } // If we're not close to tip yet, give up and let parallel block // fetch work its magic. if (!fAlreadyInFlight && !CanDirectFetch()) { return; } // We want to be a bit conservative just to be extra careful about // DoS possibilities in compact block processing... if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) { if ((!fAlreadyInFlight && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) || (fAlreadyInFlight && blockInFlightIt->second.first == pfrom.GetId())) { std::list::iterator *queuedBlockIt = nullptr; if (!BlockRequested(config, pfrom.GetId(), *pindex, &queuedBlockIt)) { if (!(*queuedBlockIt)->partialBlock) { (*queuedBlockIt) ->partialBlock.reset( new PartiallyDownloadedBlock(config, &m_mempool)); } else { // The block was already in flight using compact // blocks from the same peer. LogPrint(BCLog::NET, "Peer sent us compact block " "we were already syncing!\n"); return; } } PartiallyDownloadedBlock &partialBlock = *(*queuedBlockIt)->partialBlock; ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case Misbehaving does not // result in a disconnect RemoveBlockRequest(pindex->GetBlockHash()); Misbehaving(pfrom, 100, "invalid compact block"); return; } else if (status == READ_STATUS_FAILED) { // Duplicate txindices, the block is now in-flight, so // just request it. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } BlockTransactionsRequest req; for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) { if (!partialBlock.IsTxAvailable(i)) { req.indices.push_back(i); } } if (req.indices.empty()) { // Dirty hack to jump to BLOCKTXN code (TODO: move // message handling into their own functions) BlockTransactions txn; txn.blockhash = cmpctblock.header.GetHash(); blockTxnMsg << txn; fProcessBLOCKTXN = true; } else { req.blockhash = pindex->GetBlockHash(); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETBLOCKTXN, req)); } } else { // This block is either already in flight from a different // peer, or this peer has too many blocks outstanding to // download from. Optimistically try to reconstruct anyway // since we might be able to without any round trips. PartiallyDownloadedBlock tempBlock(config, &m_mempool); ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status != READ_STATUS_OK) { // TODO: don't ignore failures return; } std::vector dummy; status = tempBlock.FillBlock(*pblock, dummy); if (status == READ_STATUS_OK) { fBlockReconstructed = true; } } } else { if (fAlreadyInFlight) { // We requested this block, but its far into the future, so // our mempool will probably be useless - request the block // normally. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } else { // If this was an announce-cmpctblock, we want the same // treatment as a header message. fRevertToHeaderProcessing = true; } } } // cs_main if (fProcessBLOCKTXN) { return ProcessMessage(config, pfrom, NetMsgType::BLOCKTXN, blockTxnMsg, time_received, interruptMsgProc); } if (fRevertToHeaderProcessing) { // Headers received from HB compact block peers are permitted to be // relayed before full validation (see BIP 152), so we don't want to // disconnect the peer if the header turns out to be for an invalid // block. Note that if a peer tries to build on an invalid chain, // that will be detected and the peer will be banned. return ProcessHeadersMessage(config, pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true); } if (fBlockReconstructed) { // If we got here, we were able to optimistically reconstruct a // block that is in flight from some other peer. { LOCK(cs_main); mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false)); } // Setting force_processing to true means that we bypass some of // our anti-DoS protections in AcceptBlock, which filters // unrequested blocks that might be trying to waste our resources // (eg disk space). Because we only try to reconstruct blocks when // we're close to caught up (via the CanDirectFetch() requirement // above, combined with the behavior of not requesting blocks until // we have a chain with at least nMinimumChainWork), and we ignore // compact blocks with less work than our tip, it is safe to treat // reconstructed compact blocks as having been requested. ProcessBlock(config, pfrom, pblock, /*force_processing=*/true); // hold cs_main for CBlockIndex::IsValid() LOCK(cs_main); if (pindex->IsValid(BlockValidity::TRANSACTIONS)) { // Clear download state for this block, which is in process from // some other peer. We do this after calling. ProcessNewBlock so // that a malleated cmpctblock announcement can't be used to // interfere with block relay. RemoveBlockRequest(pblock->GetHash()); } } return; } if (msg_type == NetMsgType::BLOCKTXN) { // Ignore blocktxn received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId()); return; } BlockTransactions resp; vRecv >> resp; std::shared_ptr pblock = std::make_shared(); bool fBlockRead = false; { LOCK(cs_main); std::map::iterator>>:: iterator it = mapBlocksInFlight.find(resp.blockhash); if (it == mapBlocksInFlight.end() || !it->second.second->partialBlock || it->second.first != pfrom.GetId()) { LogPrint(BCLog::NET, "Peer %d sent us block transactions for block " "we weren't expecting\n", pfrom.GetId()); return; } PartiallyDownloadedBlock &partialBlock = *it->second.second->partialBlock; ReadStatus status = partialBlock.FillBlock(*pblock, resp.txn); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case of Misbehaving does not // result in a disconnect. RemoveBlockRequest(resp.blockhash); Misbehaving( pfrom, 100, "invalid compact block/non-matching block transactions"); return; } else if (status == READ_STATUS_FAILED) { // Might have collided, fall back to getdata now :( std::vector invs; invs.push_back(CInv(MSG_BLOCK, resp.blockhash)); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, invs)); } else { // Block is either okay, or possibly we received // READ_STATUS_CHECKBLOCK_FAILED. // Note that CheckBlock can only fail for one of a few reasons: // 1. bad-proof-of-work (impossible here, because we've already // accepted the header) // 2. merkleroot doesn't match the transactions given (already // caught in FillBlock with READ_STATUS_FAILED, so // impossible here) // 3. the block is otherwise invalid (eg invalid coinbase, // block is too big, too many sigChecks, etc). // So if CheckBlock failed, #3 is the only possibility. // Under BIP 152, we don't DoS-ban unless proof of work is // invalid (we don't require all the stateless checks to have // been run). This is handled below, so just treat this as // though the block was successfully read, and rely on the // handling in ProcessNewBlock to ensure the block index is // updated, etc. // it is now an empty pointer RemoveBlockRequest(resp.blockhash); fBlockRead = true; // mapBlockSource is used for potentially punishing peers and // updating which peers send us compact blocks, so the race // between here and cs_main in ProcessNewBlock is fine. // BIP 152 permits peers to relay compact blocks after // validating the header only; we should not punish peers // if the block turns out to be invalid. mapBlockSource.emplace(resp.blockhash, std::make_pair(pfrom.GetId(), false)); } } // Don't hold cs_main when we call into ProcessNewBlock if (fBlockRead) { // Since we requested this block (it was in mapBlocksInFlight), // force it to be processed, even if it would not be a candidate for // new tip (missing previous block, chain not long enough, etc) // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent // disk-space attacks), but this should be safe due to the // protections in the compact block handler -- see related comment // in compact block optimistic reconstruction handling. ProcessBlock(config, pfrom, pblock, /*force_processing=*/true); } return; } if (msg_type == NetMsgType::HEADERS) { // Ignore headers received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId()); return; } std::vector headers; // Bypass the normal CBlock deserialization, as we don't want to risk // deserializing 2000 full blocks. unsigned int nCount = ReadCompactSize(vRecv); if (nCount > MAX_HEADERS_RESULTS) { Misbehaving(pfrom, 20, strprintf("too-many-headers: headers message size = %u", nCount)); return; } headers.resize(nCount); for (unsigned int n = 0; n < nCount; n++) { vRecv >> headers[n]; // Ignore tx count; assume it is 0. ReadCompactSize(vRecv); } return ProcessHeadersMessage(config, pfrom, *peer, headers, /*via_compact_block=*/false); } if (msg_type == NetMsgType::BLOCK) { // Ignore block received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId()); return; } std::shared_ptr pblock = std::make_shared(); vRecv >> *pblock; LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId()); // Process all blocks from whitelisted peers, even if not requested, // unless we're still syncing with the network. Such an unrequested // block may still be processed, subject to the conditions in // AcceptBlock(). bool forceProcessing = pfrom.HasPermission(NetPermissionFlags::NoBan) && !m_chainman.ActiveChainstate().IsInitialBlockDownload(); const BlockHash hash = pblock->GetHash(); { LOCK(cs_main); // Always process the block if we requested it, since we may // need it even when it's not a candidate for a new best tip. forceProcessing = IsBlockRequested(hash); RemoveBlockRequest(hash); // mapBlockSource is only used for punishing peers and setting // which peers send us compact blocks, so the race between here and // cs_main in ProcessNewBlock is fine. mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true)); } ProcessBlock(config, pfrom, pblock, forceProcessing); return; } if (msg_type == NetMsgType::AVAHELLO) { { LOCK(pfrom.cs_avalanche_pubkey); if (pfrom.m_avalanche_pubkey.has_value()) { LogPrint( BCLog::AVALANCHE, "Ignoring avahello from peer %d: already in our node set\n", pfrom.GetId()); return; } avalanche::Delegation delegation; vRecv >> delegation; // A delegation with an all zero limited id indicates that the peer // has no proof, so we're done. if (delegation.getLimitedProofId() != uint256::ZERO) { avalanche::DelegationState state; CPubKey pubkey; if (!delegation.verify(state, pubkey)) { Misbehaving(pfrom, 100, "invalid-delegation"); return; } pfrom.m_avalanche_pubkey = std::move(pubkey); CHashWriter sighasher(SER_GETHASH, 0); sighasher << delegation.getId(); sighasher << pfrom.nRemoteHostNonce; sighasher << pfrom.GetLocalNonce(); sighasher << pfrom.nRemoteExtraEntropy; sighasher << pfrom.GetLocalExtraEntropy(); SchnorrSig sig; vRecv >> sig; if (!(*pfrom.m_avalanche_pubkey) .VerifySchnorr(sighasher.GetHash(), sig)) { Misbehaving(pfrom, 100, "invalid-avahello-signature"); return; } // If we don't know this proof already, add it to the tracker so // it can be requested. const avalanche::ProofId proofid(delegation.getProofId()); if (!AlreadyHaveProof(proofid)) { const bool preferred = isPreferredDownloadPeer(pfrom); LOCK(cs_proofrequest); AddProofAnnouncement(pfrom, proofid, GetTime(), preferred); } // Don't check the return value. If it fails we probably don't // know about the proof yet. g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.addNode(pfrom.GetId(), proofid); }); } pfrom.m_avalanche_enabled = true; } // Send getavaaddr and getavaproofs to our avalanche outbound or // manual connections if (!pfrom.IsInboundConn()) { m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETAVAADDR)); WITH_LOCK(peer->m_addr_token_bucket_mutex, peer->m_addr_token_bucket += GetMaxAddrToSend()); if (peer->m_proof_relay && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) { m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETAVAPROOFS)); peer->m_proof_relay->compactproofs_requested = true; } } return; } if (msg_type == NetMsgType::AVAPOLL) { const auto now = Now(); const int64_t cooldown = gArgs.GetIntArg("-avacooldown", AVALANCHE_DEFAULT_COOLDOWN); const auto last_poll = pfrom.m_last_poll; pfrom.m_last_poll = now; if (now < last_poll + std::chrono::milliseconds(cooldown)) { LogPrint(BCLog::AVALANCHE, "Ignoring repeated avapoll from peer %d: cooldown not " "elapsed\n", pfrom.GetId()); return; } const bool quorum_established = g_avalanche && g_avalanche->isQuorumEstablished(); uint64_t round; Unserialize(vRecv, round); unsigned int nCount = ReadCompactSize(vRecv); if (nCount > AVALANCHE_MAX_ELEMENT_POLL) { Misbehaving( pfrom, 20, strprintf("too-many-ava-poll: poll message size = %u", nCount)); return; } std::vector votes; votes.reserve(nCount); for (unsigned int n = 0; n < nCount; n++) { CInv inv; vRecv >> inv; // Default vote for unknown inv type uint32_t vote = -1; // We don't vote definitively until we have an established quorum if (!quorum_established) { votes.emplace_back(vote, inv.hash); continue; } // If inv's type is known, get a vote for its hash switch (inv.type) { case MSG_TX: { if (gArgs.GetBoolArg("-avalanchepreconsensus", false)) { vote = WITH_LOCK(cs_main, return GetAvalancheVoteForTx( TxId(inv.hash))); } } break; case MSG_BLOCK: { vote = WITH_LOCK(cs_main, return GetAvalancheVoteForBlock( BlockHash(inv.hash))); } break; case MSG_AVA_PROOF: { vote = getAvalancheVoteForProof(avalanche::ProofId(inv.hash)); } break; default: { LogPrint(BCLog::AVALANCHE, "poll inv type %d unknown from peer=%d\n", inv.type, pfrom.GetId()); } } votes.emplace_back(vote, inv.hash); } // Send the query to the node. g_avalanche->sendResponse( &pfrom, avalanche::Response(round, cooldown, std::move(votes))); return; } if (msg_type == NetMsgType::AVARESPONSE) { // As long as QUIC is not implemented, we need to sign response and // verify response's signatures in order to avoid any manipulation of // messages at the transport level. CHashVerifier verifier(&vRecv); avalanche::Response response; verifier >> response; SchnorrSig sig; vRecv >> sig; { LOCK(pfrom.cs_avalanche_pubkey); if (!pfrom.m_avalanche_pubkey.has_value() || !(*pfrom.m_avalanche_pubkey) .VerifySchnorr(verifier.GetHash(), sig)) { Misbehaving(pfrom, 100, "invalid-ava-response-signature"); return; } } auto now = GetTime(); std::vector updates; int banscore{0}; std::string error; if (!g_avalanche->registerVotes(pfrom.GetId(), response, updates, banscore, error)) { if (banscore > 0) { // If the banscore was set, just increase the node ban score Misbehaving(pfrom, banscore, error); return; } // Otherwise the node may have got a network issue. Increase the // fault counter instead and only ban if we reached a threshold. // This allows for fault tolerance should there be a temporary // outage while still preventing DoS'ing behaviors, as the counter // is reset if no fault occured over some time period. pfrom.m_avalanche_message_fault_counter++; pfrom.m_avalanche_last_message_fault = now; // Allow up to 12 messages before increasing the ban score. Since // the queries are cleared after 10s, this is at least 2 minutes // of network outage tolerance over the 1h window. if (pfrom.m_avalanche_message_fault_counter > 12) { Misbehaving(pfrom, 2, error); return; } } // If no fault occurred within the last hour, reset the fault counter if (now > (pfrom.m_avalanche_last_message_fault.load() + 1h)) { pfrom.m_avalanche_message_fault_counter = 0; } pfrom.invsVoted(response.GetVotes().size()); auto logVoteUpdate = [](const auto &voteUpdate, const std::string &voteItemTypeStr, const auto &voteItemId) { std::string voteOutcome; switch (voteUpdate.getStatus()) { case avalanche::VoteStatus::Invalid: voteOutcome = "invalidated"; break; case avalanche::VoteStatus::Rejected: voteOutcome = "rejected"; break; case avalanche::VoteStatus::Accepted: voteOutcome = "accepted"; break; case avalanche::VoteStatus::Finalized: voteOutcome = "finalized"; break; case avalanche::VoteStatus::Stale: voteOutcome = "stalled"; break; // No default case, so the compiler can warn about missing // cases } LogPrint(BCLog::AVALANCHE, "Avalanche %s %s %s\n", voteOutcome, voteItemTypeStr, voteItemId.ToString()); }; bool shouldActivateBestChain = false; for (const auto &u : updates) { const avalanche::AnyVoteItem &item = u.getVoteItem(); // Don't use a visitor here as we want to ignore unsupported item // types. This comes in handy when adding new types. if (auto pitem = std::get_if(&item)) { avalanche::ProofRef proof = *pitem; const avalanche::ProofId &proofid = proof->getId(); logVoteUpdate(u, "proof", proofid); auto rejectionMode = avalanche::PeerManager::RejectionMode::DEFAULT; auto nextCooldownTimePoint = GetTime(); switch (u.getStatus()) { case avalanche::VoteStatus::Invalid: g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { pm.setInvalid(proofid); }); // Fallthrough case avalanche::VoteStatus::Stale: // Invalidate mode removes the proof from all proof // pools rejectionMode = avalanche::PeerManager::RejectionMode::INVALIDATE; // Fallthrough case avalanche::VoteStatus::Rejected: if (!g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { return pm.rejectProof(proofid, rejectionMode); })) { LogPrint(BCLog::AVALANCHE, "ERROR: Failed to reject proof: %s\n", proofid.GetHex()); } break; case avalanche::VoteStatus::Finalized: nextCooldownTimePoint += std::chrono::seconds(gArgs.GetIntArg( "-avalanchepeerreplacementcooldown", AVALANCHE_DEFAULT_PEER_REPLACEMENT_COOLDOWN)); case avalanche::VoteStatus::Accepted: if (!g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { pm.registerProof( proof, avalanche::PeerManager:: RegistrationMode::FORCE_ACCEPT); return pm.forPeer( proofid, [&](const avalanche::Peer &peer) { pm.updateNextPossibleConflictTime( peer.peerid, nextCooldownTimePoint); if (u.getStatus() == avalanche::VoteStatus:: Finalized) { pm.setFinalized(peer.peerid); } // Only fail if the peer was not // created return true; }); })) { LogPrint(BCLog::AVALANCHE, "ERROR: Failed to accept proof: %s\n", proofid.GetHex()); } break; } } if (auto pitem = std::get_if(&item)) { CBlockIndex *pindex = const_cast(*pitem); shouldActivateBestChain = true; logVoteUpdate(u, "block", pindex->GetBlockHash()); switch (u.getStatus()) { case avalanche::VoteStatus::Invalid: case avalanche::VoteStatus::Rejected: { BlockValidationState state; m_chainman.ActiveChainstate().ParkBlock(config, state, pindex); if (!state.IsValid()) { LogPrintf("ERROR: Database error: %s\n", state.GetRejectReason()); return; } } break; case avalanche::VoteStatus::Accepted: { LOCK(cs_main); m_chainman.ActiveChainstate().UnparkBlock(pindex); } break; case avalanche::VoteStatus::Finalized: { { LOCK(cs_main); m_chainman.ActiveChainstate().UnparkBlock(pindex); } m_chainman.ActiveChainstate().AvalancheFinalizeBlock( pindex); } break; case avalanche::VoteStatus::Stale: // Fall back on Nakamoto consensus in the absence of // Avalanche votes for other competing or descendant // blocks. break; } } } if (shouldActivateBestChain) { BlockValidationState state; if (!m_chainman.ActiveChainstate().ActivateBestChain(config, state)) { LogPrintf("failed to activate chain (%s)\n", state.ToString()); } } return; } if (msg_type == NetMsgType::AVAPROOF) { auto proof = RCUPtr::make(); vRecv >> *proof; ReceivedAvalancheProof(pfrom, *peer, proof); return; } if (msg_type == NetMsgType::GETAVAPROOFS) { if (peer->m_proof_relay == nullptr) { return; } peer->m_proof_relay->lastSharedProofsUpdate = GetTime(); peer->m_proof_relay->sharedProofs = g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { return pm.getShareableProofsSnapshot(); }); avalanche::CompactProofs compactProofs( peer->m_proof_relay->sharedProofs); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOFS, compactProofs)); return; } if (msg_type == NetMsgType::AVAPROOFS) { if (peer->m_proof_relay == nullptr) { return; } // Only process the compact proofs if we requested them if (!peer->m_proof_relay->compactproofs_requested) { LogPrint(BCLog::AVALANCHE, "Ignoring unsollicited avaproofs\n"); return; } peer->m_proof_relay->compactproofs_requested = false; avalanche::CompactProofs compactProofs; try { vRecv >> compactProofs; } catch (std::ios_base::failure &e) { // This compact proofs have non contiguous or overflowing indexes Misbehaving(pfrom, 100, "avaproofs-bad-indexes"); return; } // If there are prefilled proofs, process them first std::set prefilledIndexes; for (const auto &prefilledProof : compactProofs.getPrefilledProofs()) { if (!ReceivedAvalancheProof(pfrom, *peer, prefilledProof.proof)) { // If we got an invalid proof, the peer is getting banned and we // can bail out. return; } } // If there is no shortid, avoid parsing/responding/accounting for the // message. if (compactProofs.getShortIDs().size() == 0) { LogPrint(BCLog::AVALANCHE, "Got an avaproofs message with no shortid (peer %d)\n", pfrom.GetId()); return; } // To determine the chance that the number of entries in a bucket // exceeds N, we use the fact that the number of elements in a single // bucket is binomially distributed (with n = the number of shorttxids // S, and p = 1 / the number of buckets), that in the worst case the // number of buckets is equal to S (due to std::unordered_map having a // default load factor of 1.0), and that the chance for any bucket to // exceed N elements is at most buckets * (the chance that any given // bucket is above N elements). Thus: // P(max_elements_per_bucket > N) <= // S * (1 - cdf(binomial(n=S,p=1/S), N)) // If we assume up to 21000000, allowing 15 elements per bucket should // only fail once per ~2.5 million avaproofs transfers (per peer and // connection). // TODO re-evaluate the bucket count to a more realistic value. // TODO: In the case of a shortid-collision, we should request all the // proofs which collided. For now, we only request one, which is not // that bad considering this event is expected to be very rare. auto shortIdProcessor = avalanche::ProofShortIdProcessor(compactProofs.getPrefilledProofs(), compactProofs.getShortIDs(), 15); if (shortIdProcessor.hasOutOfBoundIndex()) { // This should be catched by deserialization, but catch it here as // well as a good measure. Misbehaving(pfrom, 100, "avaproofs-bad-indexes"); return; } if (!shortIdProcessor.isEvenlyDistributed()) { // This is suspicious, don't ban but bail out return; } size_t proofCount = 0; std::vector> remoteProofsStatus; g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { pm.forEachPeer([&](const avalanche::Peer &peer) { assert(peer.proof); uint64_t shortid = compactProofs.getShortID(peer.getProofId()); int added = shortIdProcessor.matchKnownItem(shortid, peer.proof); // No collision if (added >= 0) { // Because we know the proof, we can determine if our peer // has it (added = 1) or not (added = 0) and update the // remote proof status accordingly. remoteProofsStatus.emplace_back(peer.getProofId(), added > 0); } proofCount += added; // In order to properly determine which proof is missing, we // need to keep scanning for all our proofs. return true; }); }); avalanche::ProofsRequest req; for (size_t i = 0; i < compactProofs.size(); i++) { if (shortIdProcessor.getItem(i) == nullptr) { req.indices.push_back(i); } } m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::AVAPROOFSREQ, req)); const NodeId nodeid = pfrom.GetId(); // We want to keep a count of how many nodes we successfully requested // avaproofs from as this is used to determine when we are confident our // quorum is close enough to the other participants. g_avalanche->avaproofsSent(nodeid); if (pfrom.IsAvalancheOutboundConnection() || pfrom.IsManualConn()) { g_avalanche->withPeerManager( [&remoteProofsStatus, nodeid](avalanche::PeerManager &pm) { for (const auto &[proofid, present] : remoteProofsStatus) { pm.saveRemoteProof(proofid, nodeid, present); } }); } return; } if (msg_type == NetMsgType::AVAPROOFSREQ) { if (peer->m_proof_relay == nullptr) { return; } avalanche::ProofsRequest proofreq; vRecv >> proofreq; auto requestedIndiceIt = proofreq.indices.begin(); uint32_t treeIndice = 0; peer->m_proof_relay->sharedProofs.forEachLeaf([&](const auto &proof) { if (requestedIndiceIt == proofreq.indices.end()) { // No more indice to process return false; } if (treeIndice++ == *requestedIndiceIt) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOF, *proof)); requestedIndiceIt++; } return true; }); peer->m_proof_relay->sharedProofs = {}; return; } if (msg_type == NetMsgType::GETADDR) { // This asymmetric behavior for inbound and outbound connections was // introduced to prevent a fingerprinting attack: an attacker can send // specific fake addresses to users' AddrMan and later request them by // sending getaddr messages. Making nodes which are behind NAT and can // only make outgoing connections ignore the getaddr message mitigates // the attack. if (!pfrom.IsInboundConn()) { LogPrint(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } // Since this must be an inbound connection, SetupAddressRelay will // never fail. Assume(SetupAddressRelay(pfrom, *peer)); // Only send one GetAddr response per connection to reduce resource // waste and discourage addr stamping of INV announcements. if (peer->m_getaddr_recvd) { LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId()); return; } peer->m_getaddr_recvd = true; peer->m_addrs_to_send.clear(); std::vector vAddr; const size_t maxAddrToSend = GetMaxAddrToSend(); if (pfrom.HasPermission(NetPermissionFlags::Addr)) { vAddr = m_connman.GetAddresses(maxAddrToSend, MAX_PCT_ADDR_TO_SEND, /* network */ std::nullopt); } else { vAddr = m_connman.GetAddresses(pfrom, maxAddrToSend, MAX_PCT_ADDR_TO_SEND); } FastRandomContext insecure_rand; for (const CAddress &addr : vAddr) { PushAddress(*peer, addr, insecure_rand); } return; } if (msg_type == NetMsgType::GETAVAADDR) { auto now = GetTime(); if (now < pfrom.m_nextGetAvaAddr) { // Prevent a peer from exhausting our resources by spamming // getavaaddr messages. LogPrint(BCLog::AVALANCHE, "Ignoring repeated getavaaddr from peer %d\n", pfrom.GetId()); return; } // Only accept a getavaaddr every GETAVAADDR_INTERVAL at most pfrom.m_nextGetAvaAddr = now + GETAVAADDR_INTERVAL; if (!SetupAddressRelay(pfrom, *peer)) { LogPrint(BCLog::AVALANCHE, "Ignoring getavaaddr message from %s peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } auto availabilityScoreComparator = [](const CNode *lhs, const CNode *rhs) { double scoreLhs = lhs->getAvailabilityScore(); double scoreRhs = rhs->getAvailabilityScore(); if (scoreLhs != scoreRhs) { return scoreLhs > scoreRhs; } return lhs < rhs; }; // Get up to MAX_ADDR_TO_SEND addresses of the nodes which are the // most active in the avalanche network. Account for 0 availability as // well so we can send addresses even if we did not start polling yet. std::set avaNodes( availabilityScoreComparator); m_connman.ForEachNode([&](const CNode *pnode) { if (!pnode->m_avalanche_enabled || pnode->getAvailabilityScore() < 0.) { return; } avaNodes.insert(pnode); if (avaNodes.size() > GetMaxAddrToSend()) { avaNodes.erase(std::prev(avaNodes.end())); } }); peer->m_addrs_to_send.clear(); FastRandomContext insecure_rand; for (const CNode *pnode : avaNodes) { PushAddress(*peer, pnode->addr, insecure_rand); } return; } if (msg_type == NetMsgType::MEMPOOL) { if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool)) { if (!pfrom.HasPermission(NetPermissionFlags::NoBan)) { LogPrint(BCLog::NET, "mempool request with bloom filters disabled, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool)) { if (!pfrom.HasPermission(NetPermissionFlags::NoBan)) { LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (auto tx_relay = peer->GetTxRelay()) { LOCK(tx_relay->m_tx_inventory_mutex); tx_relay->m_send_mempool = true; } return; } if (msg_type == NetMsgType::PING) { if (pfrom.GetCommonVersion() > BIP0031_VERSION) { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful // features: // // 1) A remote node can quickly check if the connection is // operational. // 2) Remote nodes can measure the latency of the network thread. If // this node is overloaded it won't respond to pings quickly and the // remote node can avoid sending us more work, like chain download // requests. // // The nonce stops the remote getting confused between different // pings: without it, if the remote node sends a ping once per // second and this node takes 5 seconds to respond to each, the 5th // ping the remote sends would appear to return very quickly. m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::PONG, nonce)); } return; } if (msg_type == NetMsgType::PONG) { const auto ping_end = time_received; uint64_t nonce = 0; size_t nAvail = vRecv.in_avail(); bool bPingFinished = false; std::string sProblem; if (nAvail >= sizeof(nonce)) { vRecv >> nonce; // Only process pong message if there is an outstanding ping (old // ping without nonce should never pong) if (peer->m_ping_nonce_sent != 0) { if (nonce == peer->m_ping_nonce_sent) { // Matching pong received, this ping is no longer // outstanding bPingFinished = true; const auto ping_time = ping_end - peer->m_ping_start.load(); if (ping_time.count() >= 0) { // Let connman know about this successful ping-pong pfrom.PongReceived(ping_time); } else { // This should never happen sProblem = "Timing mishap"; } } else { // Nonce mismatches are normal when pings are overlapping sProblem = "Nonce mismatch"; if (nonce == 0) { // This is most likely a bug in another implementation // somewhere; cancel this ping bPingFinished = true; sProblem = "Nonce zero"; } } } else { sProblem = "Unsolicited pong without ping"; } } else { // This is most likely a bug in another implementation somewhere; // cancel this ping bPingFinished = true; sProblem = "Short payload"; } if (!(sProblem.empty())) { LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n", pfrom.GetId(), sProblem, peer->m_ping_nonce_sent, nonce, nAvail); } if (bPingFinished) { peer->m_ping_nonce_sent = 0; } return; } if (msg_type == NetMsgType::FILTERLOAD) { if (!(peer->m_our_services & NODE_BLOOM)) { LogPrint(BCLog::NET, "filterload received despite not offering bloom services " "from peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) { // There is no excuse for sending a too-large filter Misbehaving(pfrom, 100, "too-large bloom filter"); } else if (auto tx_relay = peer->GetTxRelay()) { { LOCK(tx_relay->m_bloom_filter_mutex); tx_relay->m_bloom_filter.reset(new CBloomFilter(filter)); tx_relay->m_relay_txs = true; } pfrom.m_bloom_filter_loaded = true; } return; } if (msg_type == NetMsgType::FILTERADD) { if (!(peer->m_our_services & NODE_BLOOM)) { LogPrint(BCLog::NET, "filteradd received despite not offering bloom services " "from peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } std::vector vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a // script data object, and thus, the maximum size any matched object can // have) in a filteradd message. bool bad = false; if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { bad = true; } else if (auto tx_relay = peer->GetTxRelay()) { LOCK(tx_relay->m_bloom_filter_mutex); if (tx_relay->m_bloom_filter) { tx_relay->m_bloom_filter->insert(vData); } else { bad = true; } } if (bad) { // The structure of this code doesn't really allow for a good error // code. We'll go generic. Misbehaving(pfrom, 100, "bad filteradd message"); } return; } if (msg_type == NetMsgType::FILTERCLEAR) { if (!(peer->m_our_services & NODE_BLOOM)) { LogPrint(BCLog::NET, "filterclear received despite not offering bloom services " "from peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } auto tx_relay = peer->GetTxRelay(); if (!tx_relay) { return; } { LOCK(tx_relay->m_bloom_filter_mutex); tx_relay->m_bloom_filter = nullptr; tx_relay->m_relay_txs = true; } pfrom.m_bloom_filter_loaded = false; pfrom.m_relays_txs = true; return; } if (msg_type == NetMsgType::FEEFILTER) { Amount newFeeFilter = Amount::zero(); vRecv >> newFeeFilter; if (MoneyRange(newFeeFilter)) { if (auto tx_relay = peer->GetTxRelay()) { tx_relay->m_fee_filter_received = newFeeFilter; } LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETCFILTERS) { ProcessGetCFilters(pfrom, *peer, vRecv); return; } if (msg_type == NetMsgType::GETCFHEADERS) { ProcessGetCFHeaders(pfrom, *peer, vRecv); return; } if (msg_type == NetMsgType::GETCFCHECKPT) { ProcessGetCFCheckPt(pfrom, *peer, vRecv); return; } if (msg_type == NetMsgType::NOTFOUND) { std::vector vInv; vRecv >> vInv; // A peer might send up to 1 notfound per getdata request, but no more if (vInv.size() <= PROOF_REQUEST_PARAMS.max_peer_announcements + TX_REQUEST_PARAMS.max_peer_announcements + MAX_BLOCKS_IN_TRANSIT_PER_PEER) { for (CInv &inv : vInv) { if (inv.IsMsgTx()) { // If we receive a NOTFOUND message for a tx we requested, // mark the announcement for it as completed in // InvRequestTracker. LOCK(::cs_main); m_txrequest.ReceivedResponse(pfrom.GetId(), TxId(inv.hash)); continue; } if (inv.IsMsgProof()) { LOCK(cs_proofrequest); m_proofrequest.ReceivedResponse( pfrom.GetId(), avalanche::ProofId(inv.hash)); } } } return; } // Ignore unknown commands for extensibility LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId()); return; } bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode &pnode, Peer &peer) { { LOCK(peer.m_misbehavior_mutex); // There's nothing to do if the m_should_discourage flag isn't set if (!peer.m_should_discourage) { return false; } peer.m_should_discourage = false; } // peer.m_misbehavior_mutex if (pnode.HasPermission(NetPermissionFlags::NoBan)) { // We never disconnect or discourage peers for bad behavior if they have // NetPermissionFlags::NoBan permission LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id); return false; } if (pnode.IsManualConn()) { // We never disconnect or discourage manual peers for bad behavior LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id); return false; } if (pnode.addr.IsLocal()) { // We disconnect local peers for bad behavior but don't discourage // (since that would discourage all peers on the same local address) LogPrint(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n", pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id); pnode.fDisconnect = true; return true; } // Normal case: Disconnect the peer and discourage all nodes sharing the // address LogPrint(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id); if (m_banman) { m_banman->Discourage(pnode.addr); } m_connman.DisconnectNode(pnode.addr); return true; } bool PeerManagerImpl::ProcessMessages(const Config &config, CNode *pfrom, std::atomic &interruptMsgProc) { // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fMoreWork = false; PeerRef peer = GetPeerRef(pfrom->GetId()); if (peer == nullptr) { return false; } { LOCK(peer->m_getdata_requests_mutex); if (!peer->m_getdata_requests.empty()) { ProcessGetData(config, *pfrom, *peer, interruptMsgProc); } } { LOCK2(cs_main, g_cs_orphans); if (!peer->m_orphan_work_set.empty()) { ProcessOrphanTx(config, peer->m_orphan_work_set); } } if (pfrom->fDisconnect) { return false; } // this maintains the order of responses and prevents m_getdata_requests // from growing unbounded { LOCK(peer->m_getdata_requests_mutex); if (!peer->m_getdata_requests.empty()) { return true; } } { LOCK(g_cs_orphans); if (!peer->m_orphan_work_set.empty()) { return true; } } // Don't bother if send buffer is too full to respond anyway if (pfrom->fPauseSend) { return false; } std::list msgs; { LOCK(pfrom->cs_vProcessMsg); if (pfrom->vProcessMsg.empty()) { return false; } // Just take one message msgs.splice(msgs.begin(), pfrom->vProcessMsg, pfrom->vProcessMsg.begin()); pfrom->nProcessQueueSize -= msgs.front().m_raw_message_size; pfrom->fPauseRecv = pfrom->nProcessQueueSize > m_connman.GetReceiveFloodSize(); fMoreWork = !pfrom->vProcessMsg.empty(); } CNetMessage &msg(msgs.front()); TRACE6(net, inbound_message, pfrom->GetId(), pfrom->m_addr_name.c_str(), pfrom->ConnectionTypeAsString().c_str(), msg.m_type.c_str(), msg.m_recv.size(), msg.m_recv.data()); if (gArgs.GetBoolArg("-capturemessages", false)) { CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true); } msg.SetVersion(pfrom->GetCommonVersion()); // Check network magic if (!msg.m_valid_netmagic) { LogPrint(BCLog::NET, "PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", SanitizeString(msg.m_type), pfrom->GetId()); // Make sure we discourage where that come from for some time. if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); pfrom->fDisconnect = true; return false; } // Check header if (!msg.m_valid_header) { LogPrint(BCLog::NET, "PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", SanitizeString(msg.m_type), pfrom->GetId()); return fMoreWork; } // Checksum CDataStream &vRecv = msg.m_recv; if (!msg.m_valid_checksum) { LogPrint(BCLog::NET, "%s(%s, %u bytes): CHECKSUM ERROR peer=%d\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, pfrom->GetId()); if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); return fMoreWork; } try { ProcessMessage(config, *pfrom, msg.m_type, vRecv, msg.m_time, interruptMsgProc); if (interruptMsgProc) { return false; } { LOCK(peer->m_getdata_requests_mutex); if (!peer->m_getdata_requests.empty()) { fMoreWork = true; } } } catch (const std::exception &e) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name()); } catch (...) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size); } return fMoreWork; } void PeerManagerImpl::ConsiderEviction(CNode &pto, std::chrono::seconds time_in_seconds) { AssertLockHeld(cs_main); CNodeState &state = *State(pto.GetId()); const CNetMsgMaker msgMaker(pto.GetCommonVersion()); if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) { // This is an outbound peer subject to disconnection if they don't // announce a block with as much work as the current tip within // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if their // chain has more work than ours, we should sync to it, unless it's // invalid, in which case we should find that out and disconnect from // them elsewhere). if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) { if (state.m_chain_sync.m_timeout != 0s) { state.m_chain_sync.m_timeout = 0s; state.m_chain_sync.m_work_header = nullptr; state.m_chain_sync.m_sent_getheaders = false; } } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) { // Our best block known by this peer is behind our tip, and we're // either noticing that for the first time, OR this peer was able to // catch up to some earlier point where we checked against our tip. // Either way, set a new timeout based on current tip. state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT; state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip(); state.m_chain_sync.m_sent_getheaders = false; } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) { // No evidence yet that our peer has synced to a chain with work // equal to that of our tip, when we first detected it was behind. // Send a single getheaders message to give the peer a chance to // update us. if (state.m_chain_sync.m_sent_getheaders) { // They've run out of time to catch up! LogPrintf( "Disconnecting outbound peer %d for old chain, best known " "block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : ""); pto.fDisconnect = true; } else { assert(state.m_chain_sync.m_work_header); LogPrint( BCLog::NET, "sending getheaders to outbound peer=%d to verify chain " "work (current best known block:%s, benchmark blockhash: " "%s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "", state.m_chain_sync.m_work_header->GetBlockHash() .ToString()); m_connman.PushMessage( &pto, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( state.m_chain_sync.m_work_header->pprev), uint256())); state.m_chain_sync.m_sent_getheaders = true; constexpr auto HEADERS_RESPONSE_TIME{2min}; // Bump the timeout to allow a response, which could clear the // timeout (if the response shows the peer has synced), reset // the timeout (if the peer syncs to the required work but not // to our tip), or result in disconnect (if we advance to the // timeout and pindexBestKnownBlock has not sufficiently // progressed) state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME; } } } } void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now) { // If we have any extra block-relay-only peers, disconnect the youngest // unless it's given us a block -- in which case, compare with the // second-youngest, and out of those two, disconnect the peer who least // recently gave us a block. // The youngest block-relay-only peer would be the extra peer we connected // to temporarily in order to sync our tip; see net.cpp. // Note that we use higher nodeid as a measure for most recent connection. if (m_connman.GetExtraBlockRelayCount() > 0) { std::pair youngest_peer{-1, 0}, next_youngest_peer{-1, 0}; m_connman.ForEachNode([&](CNode *pnode) { if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) { return; } if (pnode->GetId() > youngest_peer.first) { next_youngest_peer = youngest_peer; youngest_peer.first = pnode->GetId(); youngest_peer.second = pnode->m_last_block_time; } }); NodeId to_disconnect = youngest_peer.first; if (youngest_peer.second > next_youngest_peer.second) { // Our newest block-relay-only peer gave us a block more recently; // disconnect our second youngest. to_disconnect = next_youngest_peer.first; } m_connman.ForNode( to_disconnect, [&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); // Make sure we're not getting a block right now, and that we've // been connected long enough for this eviction to happen at // all. Note that we only request blocks from a peer if we learn // of a valid headers chain with at least as much work as our // tip. CNodeState *node_state = State(pnode->GetId()); if (node_state == nullptr || (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->nBlocksInFlight == 0)) { pnode->fDisconnect = true; LogPrint(BCLog::NET, "disconnecting extra block-relay-only peer=%d " "(last block received at time %d)\n", pnode->GetId(), count_seconds(pnode->m_last_block_time)); return true; } else { LogPrint( BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction " "(connect time: %d, blocks_in_flight: %d)\n", pnode->GetId(), count_seconds(pnode->m_connected), node_state->nBlocksInFlight); } return false; }); } // Check whether we have too many OUTBOUND_FULL_RELAY peers if (m_connman.GetExtraFullOutboundCount() <= 0) { return; } // If we have more OUTBOUND_FULL_RELAY peers than we target, disconnect one. // Pick the OUTBOUND_FULL_RELAY peer that least recently announced us a new // block, with ties broken by choosing the more recent connection (higher // node id) NodeId worst_peer = -1; int64_t oldest_block_announcement = std::numeric_limits::max(); m_connman.ForEachNode([&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED( ::cs_main) { AssertLockHeld(::cs_main); // Only consider OUTBOUND_FULL_RELAY peers that are not already marked // for disconnection if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) { return; } CNodeState *state = State(pnode->GetId()); if (state == nullptr) { // shouldn't be possible, but just in case return; } // Don't evict our protected peers if (state->m_chain_sync.m_protect) { return; } if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) { worst_peer = pnode->GetId(); oldest_block_announcement = state->m_last_block_announcement; } }); if (worst_peer == -1) { return; } bool disconnected = m_connman.ForNode( worst_peer, [&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); // Only disconnect a peer that has been connected to us for some // reasonable fraction of our check-frequency, to give it time for // new information to have arrived. Also don't disconnect any peer // we're trying to download a block from. CNodeState &state = *State(pnode->GetId()); if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.nBlocksInFlight == 0) { LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block " "announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement); pnode->fDisconnect = true; return true; } else { LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction " "(connect time: %d, blocks_in_flight: %d)\n", pnode->GetId(), count_seconds(pnode->m_connected), state.nBlocksInFlight); return false; } }); if (disconnected) { // If we disconnected an extra peer, that means we successfully // connected to at least one peer after the last time we detected a // stale tip. Don't try any more extra peers until we next detect a // stale tip, to limit the load we put on the network from these extra // connections. m_connman.SetTryNewOutboundPeer(false); } } void PeerManagerImpl::CheckForStaleTipAndEvictPeers() { LOCK(cs_main); auto now{GetTime()}; EvictExtraOutboundPeers(now); if (now > m_stale_tip_check_time) { // Check whether our tip is stale, and if so, allow using an extra // outbound peer. if (!fImporting && !fReindex && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) { LogPrintf("Potential stale tip detected, will try using extra " "outbound peer (last tip update: %d seconds ago)\n", count_seconds(now - m_last_tip_update.load())); m_connman.SetTryNewOutboundPeer(true); } else if (m_connman.GetTryNewOutboundPeer()) { m_connman.SetTryNewOutboundPeer(false); } m_stale_tip_check_time = now + STALE_CHECK_INTERVAL; } if (!m_initial_sync_finished && CanDirectFetch()) { m_connman.StartExtraBlockRelayPeers(); m_initial_sync_finished = true; } } void PeerManagerImpl::MaybeSendPing(CNode &node_to, Peer &peer, std::chrono::microseconds now) { if (m_connman.ShouldRunInactivityChecks( node_to, std::chrono::duration_cast(now)) && peer.m_ping_nonce_sent && now > peer.m_ping_start.load() + TIMEOUT_INTERVAL) { // The ping timeout is using mocktime. To disable the check during // testing, increase -peertimeout. LogPrint(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id); node_to.fDisconnect = true; return; } const CNetMsgMaker msgMaker(node_to.GetCommonVersion()); bool pingSend = false; if (peer.m_ping_queued) { // RPC ping request by user pingSend = true; } if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) { // Ping automatically sent as a latency probe & keepalive. pingSend = true; } if (pingSend) { uint64_t nonce; do { nonce = GetRand(); } while (nonce == 0); peer.m_ping_queued = false; peer.m_ping_start = now; if (node_to.GetCommonVersion() > BIP0031_VERSION) { peer.m_ping_nonce_sent = nonce; m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING, nonce)); } else { // Peer is too old to support ping command with nonce, pong will // never arrive. peer.m_ping_nonce_sent = 0; m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING)); } } } void PeerManagerImpl::MaybeSendAddr(CNode &node, Peer &peer, std::chrono::microseconds current_time) { // Nothing to do for non-address-relay peers if (!peer.m_addr_relay_enabled) { return; } LOCK(peer.m_addr_send_times_mutex); if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload() && peer.m_next_local_addr_send < current_time) { // If we've sent before, clear the bloom filter for the peer, so // that our self-announcement will actually go out. This might // be unnecessary if the bloom filter has already rolled over // since our last self-announcement, but there is only a small // bandwidth cost that we can incur by doing this (which happens // once a day on average). if (peer.m_next_local_addr_send != 0us) { peer.m_addr_known->reset(); } if (std::optional local_service = GetLocalAddrForPeer(node)) { CAddress local_addr{*local_service, peer.m_our_services, (uint32_t)GetAdjustedTime()}; FastRandomContext insecure_rand; PushAddress(peer, local_addr, insecure_rand); } peer.m_next_local_addr_send = GetExponentialRand( current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL); } // We sent an `addr` message to this peer recently. Nothing more to do. if (current_time <= peer.m_next_addr_send) { return; } peer.m_next_addr_send = GetExponentialRand(current_time, AVG_ADDRESS_BROADCAST_INTERVAL); const size_t max_addr_to_send = GetMaxAddrToSend(); if (!Assume(peer.m_addrs_to_send.size() <= max_addr_to_send)) { // Should be impossible since we always check size before adding to // m_addrs_to_send. Recover by trimming the vector. peer.m_addrs_to_send.resize(max_addr_to_send); } // Remove addr records that the peer already knows about, and add new // addrs to the m_addr_known filter on the same pass. auto addr_already_known = [&peer](const CAddress &addr) { bool ret = peer.m_addr_known->contains(addr.GetKey()); if (!ret) { peer.m_addr_known->insert(addr.GetKey()); } return ret; }; peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known), peer.m_addrs_to_send.end()); // No addr messages to send if (peer.m_addrs_to_send.empty()) { return; } const char *msg_type; int make_flags; if (peer.m_wants_addrv2) { msg_type = NetMsgType::ADDRV2; make_flags = ADDRV2_FORMAT; } else { msg_type = NetMsgType::ADDR; make_flags = 0; } m_connman.PushMessage( &node, CNetMsgMaker(node.GetCommonVersion()) .Make(make_flags, msg_type, peer.m_addrs_to_send)); peer.m_addrs_to_send.clear(); // we only send the big addr message once if (peer.m_addrs_to_send.capacity() > 40) { peer.m_addrs_to_send.shrink_to_fit(); } } void PeerManagerImpl::MaybeSendFeefilter( CNode &pto, Peer &peer, std::chrono::microseconds current_time) { if (m_ignore_incoming_txs) { return; } if (pto.GetCommonVersion() < FEEFILTER_VERSION) { return; } // peers with the forcerelay permission should not filter txs to us if (pto.HasPermission(NetPermissionFlags::ForceRelay)) { return; } // Don't send feefilter messages to outbound block-relay-only peers since // they should never announce transactions to us, regardless of feefilter // state. if (pto.IsBlockOnlyConn()) { return; } Amount currentFilter = m_mempool .GetMinFee( gArgs.GetIntArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000) .GetFeePerK(); static FeeFilterRounder g_filter_rounder{ CFeeRate{DEFAULT_MIN_RELAY_TX_FEE_PER_KB}}; if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // Received tx-inv messages are discarded when the active // chainstate is in IBD, so tell the peer to not send them. currentFilter = MAX_MONEY; } else { static const Amount MAX_FILTER{g_filter_rounder.round(MAX_MONEY)}; if (peer.m_fee_filter_sent == MAX_FILTER) { // Send the current filter if we sent MAX_FILTER previously // and made it out of IBD. peer.m_next_send_feefilter = 0us; } } if (current_time > peer.m_next_send_feefilter) { Amount filterToSend = g_filter_rounder.round(currentFilter); // We always have a fee filter of at least minRelayTxFee filterToSend = std::max(filterToSend, ::minRelayTxFee.GetFeePerK()); if (filterToSend != peer.m_fee_filter_sent) { m_connman.PushMessage( &pto, CNetMsgMaker(pto.GetCommonVersion()) .Make(NetMsgType::FEEFILTER, filterToSend)); peer.m_fee_filter_sent = filterToSend; } peer.m_next_send_feefilter = GetExponentialRand(current_time, AVG_FEEFILTER_BROADCAST_INTERVAL); } // If the fee filter has changed substantially and it's still more than // MAX_FEEFILTER_CHANGE_DELAY until scheduled broadcast, then move the // broadcast to within MAX_FEEFILTER_CHANGE_DELAY. else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter && (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) { peer.m_next_send_feefilter = current_time + GetRandomDuration( MAX_FEEFILTER_CHANGE_DELAY); } } namespace { class CompareInvMempoolOrder { CTxMemPool *mp; public: explicit CompareInvMempoolOrder(CTxMemPool *_mempool) : mp(_mempool) {} bool operator()(std::set::iterator a, std::set::iterator b) { /** * As std::make_heap produces a max-heap, we want the entries which * are topologically earlier to sort later. */ return mp->CompareTopologically(*b, *a); } }; } // namespace bool PeerManagerImpl::SetupAddressRelay(const CNode &node, Peer &peer) { // We don't participate in addr relay with outbound block-relay-only // connections to prevent providing adversaries with the additional // information of addr traffic to infer the link. if (node.IsBlockOnlyConn()) { return false; } if (!peer.m_addr_relay_enabled.exchange(true)) { // First addr message we have received from the peer, initialize // m_addr_known peer.m_addr_known = std::make_unique(5000, 0.001); } return true; } bool PeerManagerImpl::SendMessages(const Config &config, CNode *pto) { PeerRef peer = GetPeerRef(pto->GetId()); if (!peer) { return false; } const Consensus::Params &consensusParams = m_chainparams.GetConsensus(); // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll // disconnect misbehaving peers even before the version handshake is // complete. if (MaybeDiscourageAndDisconnect(*pto, *peer)) { return true; } // Don't send anything until the version handshake is complete if (!pto->fSuccessfullyConnected || pto->fDisconnect) { return true; } // If we get here, the outgoing message serialization version is set and // can't change. const CNetMsgMaker msgMaker(pto->GetCommonVersion()); const auto current_time{GetTime()}; if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) { LogPrint(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId()); pto->fDisconnect = true; return true; } MaybeSendPing(*pto, *peer, current_time); // MaybeSendPing may have marked peer for disconnection if (pto->fDisconnect) { return true; } bool fFetch; MaybeSendAddr(*pto, *peer, current_time); { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Start block sync if (m_chainman.m_best_header == nullptr) { m_chainman.m_best_header = m_chainman.ActiveChain().Tip(); } // Download if this is a nice peer, or we have no nice peers and this // one might do. fFetch = state.fPreferredDownload || (m_num_preferred_download_peers == 0 && CanServeBlocks(*peer) && !pto->IsAddrFetchConn()); if (!state.fSyncStarted && CanServeBlocks(*peer) && !fImporting && !fReindex) { // Only actively request headers from a single peer, unless we're // close to today. if ((nSyncStarted == 0 && fFetch) || m_chainman.m_best_header->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) { state.fSyncStarted = true; state.m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE + ( // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to // microseconds before scaling to maintain precision std::chrono::microseconds{ HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} * (GetAdjustedTime() - m_chainman.m_best_header->GetBlockTime()) / consensusParams.nPowTargetSpacing); nSyncStarted++; const CBlockIndex *pindexStart = m_chainman.m_best_header; /** * If possible, start at the block preceding the currently best * known header. This ensures that we always get a non-empty * list of headers back as long as the peer is up-to-date. With * a non-empty response, we can initialise the peer's known best * block. This wouldn't be possible if we requested starting at * m_best_header and got back an empty response. */ if (pindexStart->pprev) { pindexStart = pindexStart->pprev; } LogPrint( BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height); m_connman.PushMessage( pto, msgMaker.Make( NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator(pindexStart), uint256())); } } // // Try sending block announcements via headers // { // If we have less than MAX_BLOCKS_TO_ANNOUNCE in our list of block // hashes we're relaying, and our peer wants headers announcements, // then find the first header not yet known to our peer but would // connect, and send. If no header would connect, or if we have too // many blocks, or if the peer doesn't want headers, just add all to // the inv queue. LOCK(peer->m_block_inv_mutex); std::vector vHeaders; bool fRevertToInv = ((!state.fPreferHeaders && (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) || peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE); // last header queued for delivery const CBlockIndex *pBestIndex = nullptr; // ensure pindexBestKnownBlock is up-to-date ProcessBlockAvailability(pto->GetId()); if (!fRevertToInv) { bool fFoundStartingHeader = false; // Try to find first header that our peer doesn't have, and then // send all headers past that one. If we come across an headers // that aren't on m_chainman.ActiveChain(), give up. for (const BlockHash &hash : peer->m_blocks_for_headers_relay) { const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); assert(pindex); if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) { // Bail out if we reorged away from this block fRevertToInv = true; break; } if (pBestIndex != nullptr && pindex->pprev != pBestIndex) { // This means that the list of blocks to announce don't // connect to each other. This shouldn't really be // possible to hit during regular operation (because // reorgs should take us to a chain that has some block // not on the prior chain, which should be caught by the // prior check), but one way this could happen is by // using invalidateblock / reconsiderblock repeatedly on // the tip, causing it to be added multiple times to // m_blocks_for_headers_relay. Robustly deal with this // rare situation by reverting to an inv. fRevertToInv = true; break; } pBestIndex = pindex; if (fFoundStartingHeader) { // add this to the headers message vHeaders.push_back(pindex->GetBlockHeader()); } else if (PeerHasHeader(&state, pindex)) { // Keep looking for the first new block. continue; } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) { // Peer doesn't have this header but they do have the // prior one. Start sending headers. fFoundStartingHeader = true; vHeaders.push_back(pindex->GetBlockHeader()); } else { // Peer doesn't have this header or the prior one -- // nothing will connect, so bail out. fRevertToInv = true; break; } } } if (!fRevertToInv && !vHeaders.empty()) { if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) { // We only send up to 1 block as header-and-ids, as // otherwise probably means we're doing an initial-ish-sync // or they're slow. LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); bool fGotBlockFromCache = false; { LOCK(m_most_recent_block_mutex); if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) { CBlockHeaderAndShortTxIDs cmpctblock( *m_most_recent_block); m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::CMPCTBLOCK, cmpctblock)); fGotBlockFromCache = true; } } if (!fGotBlockFromCache) { CBlock block; bool ret = ReadBlockFromDisk(block, pBestIndex, consensusParams); assert(ret); CBlockHeaderAndShortTxIDs cmpctblock(block); m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::CMPCTBLOCK, cmpctblock)); } state.pindexBestHeaderSent = pBestIndex; } else if (state.fPreferHeaders) { if (vHeaders.size() > 1) { LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__, vHeaders.size(), vHeaders.front().GetHash().ToString(), vHeaders.back().GetHash().ToString(), pto->GetId()); } else { LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); } m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); state.pindexBestHeaderSent = pBestIndex; } else { fRevertToInv = true; } } if (fRevertToInv) { // If falling back to using an inv, just try to inv the tip. The // last entry in m_blocks_for_headers_relay was our tip at some // point in the past. if (!peer->m_blocks_for_headers_relay.empty()) { const BlockHash &hashToAnnounce = peer->m_blocks_for_headers_relay.back(); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce); assert(pindex); // Warn if we're announcing a block that is not on the main // chain. This should be very rare and could be optimized // out. Just log for now. if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) { LogPrint( BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n", hashToAnnounce.ToString(), m_chainman.ActiveChain() .Tip() ->GetBlockHash() .ToString()); } // If the peer's chain has this block, don't inv it back. if (!PeerHasHeader(&state, pindex)) { peer->m_blocks_for_inv_relay.push_back(hashToAnnounce); LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__, pto->GetId(), hashToAnnounce.ToString()); } } } peer->m_blocks_for_headers_relay.clear(); } } // release cs_main // // Message: inventory // std::vector vInv; auto addInvAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { vInv.emplace_back(type, hash); if (vInv.size() == MAX_INV_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::INV, std::move(vInv))); vInv.clear(); } }; { LOCK(cs_main); { LOCK(peer->m_block_inv_mutex); vInv.reserve(std::max(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000)); // Add blocks for (const BlockHash &hash : peer->m_blocks_for_inv_relay) { addInvAndMaybeFlush(MSG_BLOCK, hash); } peer->m_blocks_for_inv_relay.clear(); } auto computeNextInvSendTime = [&](std::chrono::microseconds &next) -> bool { bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan); if (next < current_time) { fSendTrickle = true; if (pto->IsInboundConn()) { next = NextInvToInbounds( current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL); } else { // Skip delay for outbound peers, as there is less privacy // concern for them. next = current_time; } } return fSendTrickle; }; // Add proofs to inventory if (peer->m_proof_relay != nullptr) { LOCK(peer->m_proof_relay->m_proof_inventory_mutex); if (computeNextInvSendTime( peer->m_proof_relay->m_next_inv_send_time)) { auto it = peer->m_proof_relay->m_proof_inventory_to_send.begin(); while (it != peer->m_proof_relay->m_proof_inventory_to_send.end()) { const avalanche::ProofId proofid = *it; it = peer->m_proof_relay->m_proof_inventory_to_send.erase( it); if (peer->m_proof_relay->m_proof_inventory_known_filter .contains(proofid)) { continue; } peer->m_proof_relay->m_proof_inventory_known_filter.insert( proofid); addInvAndMaybeFlush(MSG_AVA_PROOF, proofid); State(pto->GetId()) ->m_recently_announced_proofs.insert(proofid); } } } if (auto tx_relay = peer->GetTxRelay()) { LOCK(tx_relay->m_tx_inventory_mutex); // Check whether periodic sends should happen const bool fSendTrickle = computeNextInvSendTime(tx_relay->m_next_inv_send_time); // Time to send but the peer has requested we not relay // transactions. if (fSendTrickle) { LOCK(tx_relay->m_bloom_filter_mutex); if (!tx_relay->m_relay_txs) { tx_relay->m_tx_inventory_to_send.clear(); } } // Respond to BIP35 mempool requests if (fSendTrickle && tx_relay->m_send_mempool) { auto vtxinfo = m_mempool.infoAll(); tx_relay->m_send_mempool = false; const CFeeRate filterrate{ tx_relay->m_fee_filter_received.load()}; LOCK(tx_relay->m_bloom_filter_mutex); for (const auto &txinfo : vtxinfo) { const TxId &txid = txinfo.tx->GetId(); tx_relay->m_tx_inventory_to_send.erase(txid); // Don't send transactions that peers will not put into // their mempool if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } tx_relay->m_tx_inventory_known_filter.insert(txid); // Responses to MEMPOOL requests bypass the // m_recently_announced_invs filter. addInvAndMaybeFlush(MSG_TX, txid); } tx_relay->m_last_mempool_req = std::chrono::duration_cast( current_time); } // Determine transactions to relay if (fSendTrickle) { // Produce a vector with all candidates for sending std::vector::iterator> vInvTx; vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size()); for (std::set::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) { vInvTx.push_back(it); } const CFeeRate filterrate{ tx_relay->m_fee_filter_received.load()}; // Send out the inventory in the order of admission to our // mempool, which is guaranteed to be a topological sort order. // A heap is used so that not all items need sorting if only a // few are being sent. CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool); std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); // No reason to drain out at many times the network's // capacity, especially since we have many peers and some // will draw much shorter delays. unsigned int nRelayedTransactions = 0; LOCK(tx_relay->m_bloom_filter_mutex); while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000) { // Fetch the top element from the heap std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); std::set::iterator it = vInvTx.back(); vInvTx.pop_back(); const TxId txid = *it; // Remove it from the to-be-sent set tx_relay->m_tx_inventory_to_send.erase(it); // Check if not in the filter already if (tx_relay->m_tx_inventory_known_filter.contains(txid)) { continue; } // Not in the mempool anymore? don't bother sending it. auto txinfo = m_mempool.info(txid); if (!txinfo.tx) { continue; } // Peer told you to not send transactions at that // feerate? Don't bother sending it. if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } // Send State(pto->GetId())->m_recently_announced_invs.insert(txid); addInvAndMaybeFlush(MSG_TX, txid); nRelayedTransactions++; { // Expire old relay messages while (!g_relay_expiration.empty() && g_relay_expiration.front().first < current_time) { mapRelay.erase(g_relay_expiration.front().second); g_relay_expiration.pop_front(); } auto ret = mapRelay.insert( std::make_pair(txid, std::move(txinfo.tx))); if (ret.second) { g_relay_expiration.push_back(std::make_pair( current_time + RELAY_TX_CACHE_TIME, ret.first)); } } tx_relay->m_tx_inventory_known_filter.insert(txid); } } } } // release cs_main if (!vInv.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv)); } { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Detect whether we're stalling if (state.m_stalling_since.count() && state.m_stalling_since < current_time - BLOCK_STALLING_TIMEOUT) { // Stalling only triggers when the block download window cannot // move. During normal steady state, the download window should be // much larger than the to-be-downloaded set of blocks, so // disconnection should only happen during initial block download. LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } // In case there is a block that has been in flight from this peer for // block_interval * (1 + 0.5 * N) (with N the number of peers from which // we're downloading validated blocks), disconnect due to timeout. // We compensate for other peers to prevent killing off peers due to our // own downstream link being saturated. We only count validated // in-flight blocks so peers can't advertise non-existing block hashes // to unreasonably increase our timeout. if (state.vBlocksInFlight.size() > 0) { QueuedBlock &queuedBlock = state.vBlocksInFlight.front(); int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1; if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) { LogPrintf("Timeout downloading block %s from peer=%d, " "disconnecting\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->GetId()); pto->fDisconnect = true; return true; } } // Check for headers sync timeouts if (state.fSyncStarted && state.m_headers_sync_timeout < std::chrono::microseconds::max()) { // Detect whether this is a stalling initial-headers-sync peer if (m_chainman.m_best_header->GetBlockTime() <= GetAdjustedTime() - 24 * 60 * 60) { if (current_time > state.m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) { // Disconnect a peer (without NetPermissionFlags::NoBan // permission) if it is our only sync peer, and we have // others we could be using instead. Note: If all our peers // are inbound, then we won't disconnect our sync peer for // stalling; we have bigger problems if we can't get any // outbound peers. if (!pto->HasPermission(NetPermissionFlags::NoBan)) { LogPrintf("Timeout downloading headers from peer=%d, " "disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } else { LogPrintf("Timeout downloading headers from noban " "peer=%d, not disconnecting\n", pto->GetId()); // Reset the headers sync state so that we have a chance // to try downloading from a different peer. Note: this // will also result in at least one more getheaders // message to be sent to this peer (eventually). state.fSyncStarted = false; nSyncStarted--; state.m_headers_sync_timeout = 0us; } } } else { // After we've caught up once, reset the timeout so we can't // trigger disconnect later. state.m_headers_sync_timeout = std::chrono::microseconds::max(); } } // Check that outbound peers have reasonable chains GetTime() is used by // this anti-DoS logic so we can test this using mocktime. ConsiderEviction(*pto, GetTime()); } // release cs_main std::vector vGetData; // // Message: getdata (blocks) // { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); if (CanServeBlocks(*peer) && ((fFetch && !IsLimitedPeer(*peer)) || !m_chainman.ActiveChainstate().IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) { std::vector vToDownload; NodeId staller = -1; FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller); for (const CBlockIndex *pindex : vToDownload) { vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); BlockRequested(config, pto->GetId(), *pindex); LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(), pindex->nHeight, pto->GetId()); } if (state.nBlocksInFlight == 0 && staller != -1) { if (State(staller)->m_stalling_since == 0us) { State(staller)->m_stalling_since = current_time; LogPrint(BCLog::NET, "Stall started peer=%d\n", staller); } } } } // release cs_main auto addGetDataAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { CInv inv(type, hash); LogPrint(BCLog::NET, "Requesting %s from peer=%d\n", inv.ToString(), pto->GetId()); vGetData.push_back(std::move(inv)); if (vGetData.size() >= MAX_GETDATA_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::GETDATA, std::move(vGetData))); vGetData.clear(); } }; // // Message: getdata (proof) // { LOCK(cs_proofrequest); std::vector> expired; auto requestable = m_proofrequest.GetRequestable(pto->GetId(), current_time, &expired); for (const auto &entry : expired) { LogPrint(BCLog::AVALANCHE, "timeout of inflight proof %s from peer=%d\n", entry.second.ToString(), entry.first); } for (const auto &proofid : requestable) { if (!AlreadyHaveProof(proofid)) { addGetDataAndMaybeFlush(MSG_AVA_PROOF, proofid); m_proofrequest.RequestedData( pto->GetId(), proofid, current_time + PROOF_REQUEST_PARAMS.getdata_interval); } else { // We have already seen this proof, no need to download. // This is just a belt-and-suspenders, as this should // already be called whenever a proof becomes // AlreadyHaveProof(). m_proofrequest.ForgetInvId(proofid); } } } // release cs_proofrequest // // Message: getdata (transactions) // { LOCK(cs_main); std::vector> expired; auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired); for (const auto &entry : expired) { LogPrint(BCLog::NET, "timeout of inflight tx %s from peer=%d\n", entry.second.ToString(), entry.first); } for (const TxId &txid : requestable) { if (!AlreadyHaveTx(txid)) { addGetDataAndMaybeFlush(MSG_TX, txid); m_txrequest.RequestedData( pto->GetId(), txid, current_time + TX_REQUEST_PARAMS.getdata_interval); } else { // We have already seen this transaction, no need to download. // This is just a belt-and-suspenders, as this should already be // called whenever a transaction becomes AlreadyHaveTx(). m_txrequest.ForgetInvId(txid); } } if (!vGetData.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } } // release cs_main MaybeSendFeefilter(*pto, *peer, current_time); return true; } bool PeerManagerImpl::ReceivedAvalancheProof(CNode &node, Peer &peer, const avalanche::ProofRef &proof) { assert(proof != nullptr); const avalanche::ProofId &proofid = proof->getId(); AddKnownProof(peer, proofid); if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // We cannot reliably verify proofs during IBD, so bail out early and // keep the inventory as pending so it can be requested when the node // has synced. return true; } const NodeId nodeid = node.GetId(); auto saveProofIfOutbound = [](const CNode &node, const avalanche::ProofId &proofid, const NodeId nodeid) -> bool { if (node.IsAvalancheOutboundConnection() || node.IsManualConn()) { LogPrint(BCLog::AVALANCHE, "Saving remote proof %s\n", proofid.ToString()); return g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { return pm.saveRemoteProof(proofid, nodeid, true); }); } return false; }; { LOCK(cs_proofrequest); m_proofrequest.ReceivedResponse(nodeid, proofid); if (AlreadyHaveProof(proofid)) { m_proofrequest.ForgetInvId(proofid); saveProofIfOutbound(node, proofid, nodeid); return true; } } // registerProof should not be called while cs_proofrequest because it // holds cs_main and that creates a potential deadlock during shutdown avalanche::ProofRegistrationState state; if (g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.registerProof(proof, state); })) { WITH_LOCK(cs_proofrequest, m_proofrequest.ForgetInvId(proofid)); RelayProof(proofid); node.m_last_proof_time = GetTime(); LogPrint(BCLog::NET, "New avalanche proof: peer=%d, proofid %s\n", nodeid, proofid.ToString()); } if (state.GetResult() == avalanche::ProofRegistrationResult::INVALID) { g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { pm.setInvalid(proofid); }); Misbehaving(nodeid, 100, state.GetRejectReason()); return false; } if (state.GetResult() == avalanche::ProofRegistrationResult::MISSING_UTXO) { // This is possible that a proof contains a utxo we don't know yet, so // don't ban for this. return false; } if (!g_avalanche->reconcileOrFinalize(proof)) { LogPrint(BCLog::AVALANCHE, "Not polling the avalanche proof (%s): peer=%d, proofid %s\n", state.IsValid() ? "not-worth-polling" : state.GetRejectReason(), nodeid, proofid.ToString()); } saveProofIfOutbound(node, proofid, nodeid); return true; } diff --git a/src/qt/clientmodel.h b/src/qt/clientmodel.h index 46dd0f2a6..f6084b434 100644 --- a/src/qt/clientmodel.h +++ b/src/qt/clientmodel.h @@ -1,130 +1,130 @@ // Copyright (c) 2011-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_QT_CLIENTMODEL_H #define BITCOIN_QT_CLIENTMODEL_H #include #include #include #include #include #include class BanTableModel; class CBlockIndex; class OptionsModel; class PeerTableModel; class CBlockIndex; enum class SynchronizationState; namespace interfaces { class Handler; class Node; } // namespace interfaces QT_BEGIN_NAMESPACE class QTimer; QT_END_NAMESPACE enum class BlockSource { NONE, REINDEX, DISK, NETWORK }; /** Model for Bitcoin network client. */ class ClientModel : public QObject { Q_OBJECT public: enum NumConnections { CONNECTIONS_NONE = 0, CONNECTIONS_IN = (1U << 0), CONNECTIONS_OUT = (1U << 1), CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT), }; explicit ClientModel(interfaces::Node &node, OptionsModel *optionsModel, QObject *parent = nullptr); ~ClientModel(); interfaces::Node &node() const { return m_node; } OptionsModel *getOptionsModel(); PeerTableModel *getPeerTableModel(); BanTableModel *getBanTableModel(); //! Return number of connections, default is in- and outbound (total) int getNumConnections(NumConnections flags = CONNECTIONS_ALL) const; int getNumBlocks() const; - BlockHash getBestBlockHash(); + BlockHash getBestBlockHash() EXCLUSIVE_LOCKS_REQUIRED(!m_cached_tip_mutex); int getHeaderTipHeight() const; int64_t getHeaderTipTime() const; //! Returns enum BlockSource of the current importing/syncing state enum BlockSource getBlockSource() const; //! Return warnings to be displayed in status bar QString getStatusBarWarnings() const; QString formatFullVersion() const; QString formatSubVersion() const; bool isReleaseVersion() const; QString formatClientStartupTime() const; QString dataDir() const; QString blocksDir() const; bool getProxyInfo(std::string &ip_port) const; // caches for the best header: hash, number of blocks and block time mutable std::atomic cachedBestHeaderHeight; mutable std::atomic cachedBestHeaderTime; mutable std::atomic m_cached_num_blocks{-1}; Mutex m_cached_tip_mutex; BlockHash m_cached_tip_blocks GUARDED_BY(m_cached_tip_mutex); private: interfaces::Node &m_node; std::unique_ptr m_handler_show_progress; std::unique_ptr m_handler_notify_num_connections_changed; std::unique_ptr m_handler_notify_network_active_changed; std::unique_ptr m_handler_notify_alert_changed; std::unique_ptr m_handler_banned_list_changed; std::unique_ptr m_handler_notify_block_tip; std::unique_ptr m_handler_notify_header_tip; OptionsModel *optionsModel; PeerTableModel *peerTableModel; BanTableModel *banTableModel; //! A thread to interact with m_node asynchronously QThread *const m_thread; void subscribeToCoreSignals(); void unsubscribeFromCoreSignals(); Q_SIGNALS: void numConnectionsChanged(int count); void numBlocksChanged(int count, const QDateTime &blockDate, double nVerificationProgress, bool header, SynchronizationState sync_state); void mempoolSizeChanged(long count, size_t mempoolSizeInBytes); void networkActiveChanged(bool networkActive); void alertsChanged(const QString &warnings); void bytesChanged(quint64 totalBytesIn, quint64 totalBytesOut); //! Fired when a message should be reported to the user void message(const QString &title, const QString &message, unsigned int style); // Show progress dialog e.g. for verifychain void showProgress(const QString &title, int nProgress); public Q_SLOTS: void updateNumConnections(int numConnections); void updateNetworkActive(bool networkActive); void updateAlert(); void updateBanlist(); }; #endif // BITCOIN_QT_CLIENTMODEL_H diff --git a/src/random.cpp b/src/random.cpp index 99462500a..7b5170513 100644 --- a/src/random.cpp +++ b/src/random.cpp @@ -1,797 +1,800 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #ifdef WIN32 #include // for Windows API #include #endif #include #include #include #include // for LogPrintf() #include #include #include #include #include // for Mutex #include // for GetTimeMicros() #include #include #include #include #ifndef WIN32 #include #include #endif #ifdef HAVE_SYS_GETRANDOM #include #include #endif #if defined(HAVE_GETENTROPY) || \ (defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)) #include #endif #if defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX) #include #endif #ifdef HAVE_SYSCTL_ARND #include #endif [[noreturn]] static void RandFailure() { LogPrintf("Failed to read randomness, aborting\n"); std::abort(); } static inline int64_t GetPerformanceCounter() noexcept { // Read the hardware time stamp counter when available. // See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information. #if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64)) return __rdtsc(); #elif !defined(_MSC_VER) && defined(__i386__) uint64_t r = 0; // Constrain the r variable to the eax:edx pair. __asm__ volatile("rdtsc" : "=A"(r)); return r; #elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__)) uint64_t r1 = 0, r2 = 0; // Constrain r1 to rax and r2 to rdx. __asm__ volatile("rdtsc" : "=a"(r1), "=d"(r2)); return (r2 << 32) | r1; #else // Fall back to using C++11 clock (usually microsecond or nanosecond // precision) return std::chrono::high_resolution_clock::now().time_since_epoch().count(); #endif } #ifdef HAVE_GETCPUID static bool g_rdrand_supported = false; static bool g_rdseed_supported = false; static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000; static constexpr uint32_t CPUID_F7_EBX_RDSEED = 0x00040000; #ifdef bit_RDRND static_assert(CPUID_F1_ECX_RDRAND == bit_RDRND, "Unexpected value for bit_RDRND"); #endif #ifdef bit_RDSEED static_assert(CPUID_F7_EBX_RDSEED == bit_RDSEED, "Unexpected value for bit_RDSEED"); #endif static void InitHardwareRand() { uint32_t eax, ebx, ecx, edx; GetCPUID(1, 0, eax, ebx, ecx, edx); if (ecx & CPUID_F1_ECX_RDRAND) { g_rdrand_supported = true; } GetCPUID(7, 0, eax, ebx, ecx, edx); if (ebx & CPUID_F7_EBX_RDSEED) { g_rdseed_supported = true; } } static void ReportHardwareRand() { // This must be done in a separate function, as InitHardwareRand() may be // indirectly called from global constructors, before logging is // initialized. if (g_rdseed_supported) { LogPrintf("Using RdSeed as additional entropy source\n"); } if (g_rdrand_supported) { LogPrintf("Using RdRand as an additional entropy source\n"); } } /** * Read 64 bits of entropy using rdrand. * * Must only be called when RdRand is supported. */ static uint64_t GetRdRand() noexcept { // RdRand may very rarely fail. Invoke it up to 10 times in a loop to reduce // this risk. #ifdef __i386__ uint8_t ok; // Initialize to 0 to silence a compiler warning that r1 or r2 may be used // uninitialized. Even if rdrand fails (!ok) it will set the output to 0, // but there is no way that the compiler could know that. uint32_t r1 = 0, r2 = 0; for (int i = 0; i < 10; ++i) { // rdrand %eax __asm__ volatile(".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok)::"cc"); if (ok) { break; } } for (int i = 0; i < 10; ++i) { // rdrand %eax __asm__ volatile(".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r2), "=q"(ok)::"cc"); if (ok) { break; } } return (uint64_t(r2) << 32) | r1; #elif defined(__x86_64__) || defined(__amd64__) uint8_t ok; uint64_t r1 = 0; // See above why we initialize to 0. for (int i = 0; i < 10; ++i) { // rdrand %rax __asm__ volatile(".byte 0x48, 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok)::"cc"); if (ok) { break; } } return r1; #else #error "RdRand is only supported on x86 and x86_64" #endif } /** * Read 64 bits of entropy using rdseed. * * Must only be called when RdSeed is supported. */ static uint64_t GetRdSeed() noexcept { // RdSeed may fail when the HW RNG is overloaded. Loop indefinitely until // enough entropy is gathered, but pause after every failure. #ifdef __i386__ uint8_t ok; uint32_t r1, r2; do { // rdseed %eax __asm__ volatile(".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok)::"cc"); if (ok) { break; } __asm__ volatile("pause"); } while (true); do { // rdseed %eax __asm__ volatile(".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r2), "=q"(ok)::"cc"); if (ok) { break; } __asm__ volatile("pause"); } while (true); return (uint64_t(r2) << 32) | r1; #elif defined(__x86_64__) || defined(__amd64__) uint8_t ok; uint64_t r1; do { // rdseed %rax __asm__ volatile(".byte 0x48, 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok)::"cc"); if (ok) { break; } __asm__ volatile("pause"); } while (true); return r1; #else #error "RdSeed is only supported on x86 and x86_64" #endif } #else /** * Access to other hardware random number generators could be added here later, * assuming it is sufficiently fast (in the order of a few hundred CPU cycles). * Slower sources should probably be invoked separately, and/or only from * RandAddPeriodic (which is called once a minute). */ static void InitHardwareRand() {} static void ReportHardwareRand() {} #endif /** * Add 64 bits of entropy gathered from hardware to hasher. Do nothing if not * supported. */ static void SeedHardwareFast(CSHA512 &hasher) noexcept { #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) if (g_rdrand_supported) { uint64_t out = GetRdRand(); hasher.Write((const uint8_t *)&out, sizeof(out)); return; } #endif } /** * Add 256 bits of entropy gathered from hardware to hasher. Do nothing if not * supported. */ static void SeedHardwareSlow(CSHA512 &hasher) noexcept { #if defined(__x86_64__) || defined(__amd64__) || defined(__i386__) // When we want 256 bits of entropy, prefer RdSeed over RdRand, as it's // guaranteed to produce independent randomness on every call. if (g_rdseed_supported) { for (int i = 0; i < 4; ++i) { uint64_t out = GetRdSeed(); hasher.Write((const uint8_t *)&out, sizeof(out)); } return; } // When falling back to RdRand, XOR the result of 1024 results. // This guarantees a reseeding occurs between each. if (g_rdrand_supported) { for (int i = 0; i < 4; ++i) { uint64_t out = 0; for (int j = 0; j < 1024; ++j) { out ^= GetRdRand(); } hasher.Write((const uint8_t *)&out, sizeof(out)); } return; } #endif } /** * Use repeated SHA512 to strengthen the randomness in seed32, and feed into * hasher. */ static void Strengthen(const uint8_t (&seed)[32], int microseconds, CSHA512 &hasher) noexcept { CSHA512 inner_hasher; inner_hasher.Write(seed, sizeof(seed)); // Hash loop uint8_t buffer[64]; int64_t stop = GetTimeMicros() + microseconds; do { for (int i = 0; i < 1000; ++i) { inner_hasher.Finalize(buffer); inner_hasher.Reset(); inner_hasher.Write(buffer, sizeof(buffer)); } // Benchmark operation and feed it into outer hasher. int64_t perf = GetPerformanceCounter(); hasher.Write((const uint8_t *)&perf, sizeof(perf)); } while (GetTimeMicros() < stop); // Produce output from inner state and feed it to outer hasher. inner_hasher.Finalize(buffer); hasher.Write(buffer, sizeof(buffer)); // Try to clean up. inner_hasher.Reset(); memory_cleanse(buffer, sizeof(buffer)); } #ifndef WIN32 /** * Fallback: get 32 bytes of system entropy from /dev/urandom. The most * compatible way to get cryptographic randomness on UNIX-ish platforms. */ static void GetDevURandom(uint8_t *ent32) { int f = open("/dev/urandom", O_RDONLY); if (f == -1) { RandFailure(); } int have = 0; do { ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have); if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) { close(f); RandFailure(); } have += n; } while (have < NUM_OS_RANDOM_BYTES); close(f); } #endif /** Get 32 bytes of system entropy. */ void GetOSRand(uint8_t *ent32) { #if defined(WIN32) HCRYPTPROV hProvider; int ret = CryptAcquireContextW(&hProvider, nullptr, nullptr, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT); if (!ret) { RandFailure(); } ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32); if (!ret) { RandFailure(); } CryptReleaseContext(hProvider, 0); #elif defined(HAVE_SYS_GETRANDOM) /** * Linux. From the getrandom(2) man page: * "If the urandom source has been initialized, reads of up to 256 bytes * will always return as many bytes as requested and will not be interrupted * by signals." */ int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0); if (rv != NUM_OS_RANDOM_BYTES) { if (rv < 0 && errno == ENOSYS) { /* Fallback for kernel <3.17: the return value will be -1 and errno * ENOSYS if the syscall is not available, in that case fall back * to /dev/urandom. */ GetDevURandom(ent32); } else { RandFailure(); } } #elif defined(HAVE_GETENTROPY) && defined(__OpenBSD__) /** * On OpenBSD this can return up to 256 bytes of entropy, will return an * error if more are requested. * The call cannot return less than the requested number of bytes. * getentropy is explicitly limited to openbsd here, as a similar (but not * the same) function may exist on other platforms via glibc. */ if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) { RandFailure(); } // Silence a compiler warning about unused function. (void)GetDevURandom; #elif defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX) /** * getentropy() is available on macOS 10.12 and later. */ if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) { RandFailure(); } // Silence a compiler warning about unused function. (void)GetDevURandom; #elif defined(HAVE_SYSCTL_ARND) /** * FreeBSD and similar. It is possible for the call to return less bytes * than requested, so need to read in a loop. */ static const int name[2] = {CTL_KERN, KERN_ARND}; int have = 0; do { size_t len = NUM_OS_RANDOM_BYTES - have; if (sysctl(name, std::size(name), ent32 + have, &len, nullptr, 0) != 0) { RandFailure(); } have += len; } while (have < NUM_OS_RANDOM_BYTES); // Silence a compiler warning about unused function. (void)GetDevURandom; #else /** * Fall back to /dev/urandom if there is no specific method implemented to * get system entropy for this OS. */ GetDevURandom(ent32); #endif } namespace { class RNGState { Mutex m_mutex; /** * The RNG state consists of 256 bits of entropy, taken from the output of * one operation's SHA512 output, and fed as input to the next one. * Carrying 256 bits of entropy should be sufficient to guarantee * unpredictability as long as any entropy source was ever unpredictable * to an attacker. To protect against situations where an attacker might * observe the RNG's state, fresh entropy is always mixed when * GetStrongRandBytes is called. */ uint8_t m_state[32] GUARDED_BY(m_mutex) = {0}; uint64_t m_counter GUARDED_BY(m_mutex) = 0; bool m_strongly_seeded GUARDED_BY(m_mutex) = false; Mutex m_events_mutex; CSHA256 m_events_hasher GUARDED_BY(m_events_mutex); public: RNGState() noexcept { InitHardwareRand(); } ~RNGState() {} - void AddEvent(uint32_t event_info) noexcept { + void AddEvent(uint32_t event_info) noexcept + EXCLUSIVE_LOCKS_REQUIRED(!m_events_mutex) { LOCK(m_events_mutex); m_events_hasher.Write((const uint8_t *)&event_info, sizeof(event_info)); // Get the low four bytes of the performance counter. This translates to // roughly the subsecond part. uint32_t perfcounter = (GetPerformanceCounter() & 0xffffffff); m_events_hasher.Write((const uint8_t *)&perfcounter, sizeof(perfcounter)); } /** * Feed (the hash of) all events added through AddEvent() to hasher. */ - void SeedEvents(CSHA512 &hasher) noexcept { + void SeedEvents(CSHA512 &hasher) noexcept + EXCLUSIVE_LOCKS_REQUIRED(!m_events_mutex) { // We use only SHA256 for the events hashing to get the ASM speedups we // have for SHA256, since we want it to be fast as network peers may be // able to trigger it repeatedly. LOCK(m_events_mutex); uint8_t events_hash[32]; m_events_hasher.Finalize(events_hash); hasher.Write(events_hash, 32); // Re-initialize the hasher with the finalized state to use later. m_events_hasher.Reset(); m_events_hasher.Write(events_hash, 32); } /** * Extract up to 32 bytes of entropy from the RNG state, mixing in new * entropy from hasher. * * If this function has never been called with strong_seed = true, false is * returned. */ bool MixExtract(uint8_t *out, size_t num, CSHA512 &&hasher, - bool strong_seed) noexcept { + bool strong_seed) noexcept + EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { assert(num <= 32); uint8_t buf[64]; static_assert(sizeof(buf) == CSHA512::OUTPUT_SIZE, "Buffer needs to have hasher's output size"); bool ret; { LOCK(m_mutex); ret = (m_strongly_seeded |= strong_seed); // Write the current state of the RNG into the hasher hasher.Write(m_state, 32); // Write a new counter number into the state hasher.Write((const uint8_t *)&m_counter, sizeof(m_counter)); ++m_counter; // Finalize the hasher hasher.Finalize(buf); // Store the last 32 bytes of the hash output as new RNG state. memcpy(m_state, buf + 32, 32); } // If desired, copy (up to) the first 32 bytes of the hash output as // output. if (num) { assert(out != nullptr); memcpy(out, buf, num); } // Best effort cleanup of internal state hasher.Reset(); memory_cleanse(buf, 64); return ret; } }; RNGState &GetRNGState() noexcept { // This C++11 idiom relies on the guarantee that static variable are // initialized on first call, even when multiple parallel calls are // permitted. static std::vector> g_rng(1); return g_rng[0]; } } // namespace /** * A note on the use of noexcept in the seeding functions below: * * None of the RNG code should ever throw any exception. */ static void SeedTimestamp(CSHA512 &hasher) noexcept { int64_t perfcounter = GetPerformanceCounter(); hasher.Write((const uint8_t *)&perfcounter, sizeof(perfcounter)); } static void SeedFast(CSHA512 &hasher) noexcept { uint8_t buffer[32]; // Stack pointer to indirectly commit to thread/callstack const uint8_t *ptr = buffer; hasher.Write((const uint8_t *)&ptr, sizeof(ptr)); // Hardware randomness is very fast when available; use it always. SeedHardwareFast(hasher); // High-precision timestamp SeedTimestamp(hasher); } static void SeedSlow(CSHA512 &hasher, RNGState &rng) noexcept { uint8_t buffer[32]; // Everything that the 'fast' seeder includes SeedFast(hasher); // OS randomness GetOSRand(buffer); hasher.Write(buffer, sizeof(buffer)); // Add the events hasher into the mix rng.SeedEvents(hasher); // High-precision timestamp. // // Note that we also commit to a timestamp in the Fast seeder, so we // indirectly commit to a benchmark of all the entropy gathering sources in // this function). SeedTimestamp(hasher); } /** Extract entropy from rng, strengthen it, and feed it into hasher. */ static void SeedStrengthen(CSHA512 &hasher, RNGState &rng, int microseconds) noexcept { // Generate 32 bytes of entropy from the RNG, and a copy of the entropy // already in hasher. uint8_t strengthen_seed[32]; rng.MixExtract(strengthen_seed, sizeof(strengthen_seed), CSHA512(hasher), false); // Strengthen the seed, and feed it into hasher. Strengthen(strengthen_seed, microseconds, hasher); } static void SeedPeriodic(CSHA512 &hasher, RNGState &rng) noexcept { // Everything that the 'fast' seeder includes SeedFast(hasher); // High-precision timestamp SeedTimestamp(hasher); // Add the events hasher into the mix rng.SeedEvents(hasher); // Dynamic environment data (performance monitoring, ...) auto old_size = hasher.Size(); RandAddDynamicEnv(hasher); LogPrint(BCLog::RAND, "Feeding %i bytes of dynamic environment data into RNG\n", hasher.Size() - old_size); // Strengthen for 10ms SeedStrengthen(hasher, rng, 10000); } static void SeedStartup(CSHA512 &hasher, RNGState &rng) noexcept { // Gather 256 bits of hardware randomness, if available SeedHardwareSlow(hasher); // Everything that the 'slow' seeder includes. SeedSlow(hasher, rng); // Dynamic environment data (performance monitoring, ...) auto old_size = hasher.Size(); RandAddDynamicEnv(hasher); // Static environment data RandAddStaticEnv(hasher); LogPrint(BCLog::RAND, "Feeding %i bytes of environment data into RNG\n", hasher.Size() - old_size); // Strengthen for 100ms SeedStrengthen(hasher, rng, 100000); } enum class RNGLevel { FAST, //!< Automatically called by GetRandBytes SLOW, //!< Automatically called by GetStrongRandBytes PERIODIC, //!< Called by RandAddPeriodic() }; static void ProcRand(uint8_t *out, int num, RNGLevel level) noexcept { // Make sure the RNG is initialized first (as all Seed* function possibly // need hwrand to be available). RNGState &rng = GetRNGState(); assert(num <= 32); CSHA512 hasher; switch (level) { case RNGLevel::FAST: SeedFast(hasher); break; case RNGLevel::SLOW: SeedSlow(hasher, rng); break; case RNGLevel::PERIODIC: SeedPeriodic(hasher, rng); break; } // Combine with and update state if (!rng.MixExtract(out, num, std::move(hasher), false)) { // On the first invocation, also seed with SeedStartup(). CSHA512 startup_hasher; SeedStartup(startup_hasher, rng); rng.MixExtract(out, num, std::move(startup_hasher), true); } } void GetRandBytes(Span bytes) noexcept { ProcRand(bytes.data(), bytes.size(), RNGLevel::FAST); } void GetStrongRandBytes(Span bytes) noexcept { ProcRand(bytes.data(), bytes.size(), RNGLevel::SLOW); } void RandAddPeriodic() noexcept { ProcRand(nullptr, 0, RNGLevel::PERIODIC); } void RandAddEvent(const uint32_t event_info) noexcept { GetRNGState().AddEvent(event_info); } bool g_mock_deterministic_tests{false}; uint64_t GetRandInternal(uint64_t nMax) noexcept { return FastRandomContext(g_mock_deterministic_tests).randrange(nMax); } uint256 GetRandHash() noexcept { uint256 hash; GetRandBytes(hash); return hash; } void FastRandomContext::RandomSeed() { uint256 seed = GetRandHash(); rng.SetKey(seed.begin(), 32); requires_seed = false; } uint160 FastRandomContext::rand160() noexcept { if (bytebuf_size < 20) { FillByteBuffer(); } uint160 ret; memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 20); bytebuf_size -= 20; return ret; } uint256 FastRandomContext::rand256() noexcept { if (bytebuf_size < 32) { FillByteBuffer(); } uint256 ret; memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32); bytebuf_size -= 32; return ret; } std::vector FastRandomContext::randbytes(size_t len) { if (requires_seed) { RandomSeed(); } std::vector ret(len); if (len > 0) { rng.Keystream(ret.data(), len); } return ret; } FastRandomContext::FastRandomContext(const uint256 &seed) noexcept : requires_seed(false), bytebuf_size(0), bitbuf_size(0) { rng.SetKey(seed.begin(), 32); } bool Random_SanityCheck() { uint64_t start = GetPerformanceCounter(); /** * This does not measure the quality of randomness, but it does test that * GetOSRand() overwrites all 32 bytes of the output given a maximum number * of tries. */ static const ssize_t MAX_TRIES = 1024; uint8_t data[NUM_OS_RANDOM_BYTES]; /* Tracks which bytes have been overwritten at least once */ bool overwritten[NUM_OS_RANDOM_BYTES] = {}; int num_overwritten; int tries = 0; /** * Loop until all bytes have been overwritten at least once, or max number * tries reached. */ do { memset(data, 0, NUM_OS_RANDOM_BYTES); GetOSRand(data); for (int x = 0; x < NUM_OS_RANDOM_BYTES; ++x) { overwritten[x] |= (data[x] != 0); } num_overwritten = 0; for (int x = 0; x < NUM_OS_RANDOM_BYTES; ++x) { if (overwritten[x]) { num_overwritten += 1; } } tries += 1; } while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES); /* If this failed, bailed out after too many tries */ if (num_overwritten != NUM_OS_RANDOM_BYTES) { return false; } // Check that GetPerformanceCounter increases at least during a GetOSRand() // call + 1ms sleep. std::this_thread::sleep_for(std::chrono::milliseconds(1)); uint64_t stop = GetPerformanceCounter(); if (stop == start) { return false; } // We called GetPerformanceCounter. Use it as entropy. CSHA512 to_add; to_add.Write((const uint8_t *)&start, sizeof(start)); to_add.Write((const uint8_t *)&stop, sizeof(stop)); GetRNGState().MixExtract(nullptr, 0, std::move(to_add), false); return true; } FastRandomContext::FastRandomContext(bool fDeterministic) noexcept : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0) { if (!fDeterministic) { return; } uint256 seed; rng.SetKey(seed.begin(), 32); } FastRandomContext & FastRandomContext::operator=(FastRandomContext &&from) noexcept { requires_seed = from.requires_seed; rng = from.rng; std::copy(std::begin(from.bytebuf), std::end(from.bytebuf), std::begin(bytebuf)); bytebuf_size = from.bytebuf_size; bitbuf = from.bitbuf; bitbuf_size = from.bitbuf_size; from.requires_seed = true; from.bytebuf_size = 0; from.bitbuf_size = 0; return *this; } void RandomInit() { // Invoke RNG code to trigger initialization (if not already performed) ProcRand(nullptr, 0, RNGLevel::FAST); ReportHardwareRand(); } std::chrono::microseconds GetExponentialRand(std::chrono::microseconds now, std::chrono::seconds average_interval) { double unscaled = -std::log1p(GetRand(uint64_t{1} << 48) * -0.0000000000000035527136788 /* -1/2^48 */); return now + std::chrono::duration_cast( unscaled * average_interval + 0.5us); } diff --git a/src/scheduler.h b/src/scheduler.h index 6d4c74fa9..d7f5988e5 100644 --- a/src/scheduler.h +++ b/src/scheduler.h @@ -1,171 +1,179 @@ // Copyright (c) 2015 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SCHEDULER_H #define BITCOIN_SCHEDULER_H #include #include #include #include #include #include #include #include #include #include #include /** * Simple class for background tasks that should be run periodically or once * "after a while" * * Usage: * * CScheduler* s = new CScheduler(); * * Assuming a: void doSomething() { } * s->scheduleFromNow(doSomething, std::chrono::milliseconds{11}); * s->scheduleFromNow([=] { this->func(argument); }, * std::chrono::milliseconds{3}); * std::thread *t = new std::thread([?] { s->serviceQueue(); }); * * ... then at program shutdown, make sure to call stop() to clean up the * thread(s) running serviceQueue: * s->stop(); * t->join(); * delete t; * delete s; // Must be done after thread is interrupted/joined. */ class CScheduler { public: CScheduler(); ~CScheduler(); std::thread m_service_thread; typedef std::function Function; typedef std::function Predicate; /** Call func at/after time t */ - void schedule(Function f, std::chrono::steady_clock::time_point t); + void schedule(Function f, std::chrono::steady_clock::time_point t) + EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex); /** Call f once after the delta has passed */ - void scheduleFromNow(Function f, std::chrono::milliseconds delta) { + void scheduleFromNow(Function f, std::chrono::milliseconds delta) + EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex) { schedule(std::move(f), std::chrono::steady_clock::now() + delta); } /** * Repeat p until it return false. First run is after delta has passed once. * * The timing is not exact: Every time p is finished, it is rescheduled to * run again after delta. If you need more accurate scheduling, don't use * this method. */ - void scheduleEvery(Predicate p, std::chrono::milliseconds delta); + void scheduleEvery(Predicate p, std::chrono::milliseconds delta) + EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex); /** * Mock the scheduler to fast forward in time. * Iterates through items on taskQueue and reschedules them * to be delta_seconds sooner. */ - void MockForward(std::chrono::seconds delta_seconds); + void MockForward(std::chrono::seconds delta_seconds) + EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex); /** * Services the queue 'forever'. Should be run in a thread. */ - void serviceQueue(); + void serviceQueue() EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex); /** * Tell any threads running serviceQueue to stop as soon as the current * task is done */ - void stop() { + void stop() EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex) { WITH_LOCK(newTaskMutex, stopRequested = true); newTaskScheduled.notify_all(); if (m_service_thread.joinable()) { m_service_thread.join(); } } /** * Tell any threads running serviceQueue to stop when there is no work * left to be done */ - void StopWhenDrained() { + void StopWhenDrained() EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex) { WITH_LOCK(newTaskMutex, stopWhenEmpty = true); newTaskScheduled.notify_all(); if (m_service_thread.joinable()) { m_service_thread.join(); } } /** * Returns number of tasks waiting to be serviced, * and first and last task times */ size_t getQueueInfo(std::chrono::steady_clock::time_point &first, - std::chrono::steady_clock::time_point &last) const; + std::chrono::steady_clock::time_point &last) const + EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex); /** Returns true if there are threads actively running in serviceQueue() */ - bool AreThreadsServicingQueue() const; + bool AreThreadsServicingQueue() const + EXCLUSIVE_LOCKS_REQUIRED(!newTaskMutex); private: mutable Mutex newTaskMutex; std::condition_variable newTaskScheduled; std::multimap taskQueue GUARDED_BY(newTaskMutex); int nThreadsServicingQueue GUARDED_BY(newTaskMutex){0}; bool stopRequested GUARDED_BY(newTaskMutex){false}; bool stopWhenEmpty GUARDED_BY(newTaskMutex){false}; bool shouldStop() const EXCLUSIVE_LOCKS_REQUIRED(newTaskMutex) { return stopRequested || (stopWhenEmpty && taskQueue.empty()); } }; /** * Class used by CScheduler clients which may schedule multiple jobs * which are required to be run serially. Jobs may not be run on the * same thread, but no two jobs will be executed * at the same time and memory will be release-acquire consistent * (the scheduler will internally do an acquire before invoking a callback * as well as a release at the end). In practice this means that a callback * B() will be able to observe all of the effects of callback A() which executed * before it. */ class SingleThreadedSchedulerClient { private: CScheduler &m_scheduler; Mutex m_callbacks_mutex; std::list> m_callbacks_pending GUARDED_BY(m_callbacks_mutex); bool m_are_callbacks_running GUARDED_BY(m_callbacks_mutex) = false; - void MaybeScheduleProcessQueue(); - void ProcessQueue(); + void MaybeScheduleProcessQueue() + EXCLUSIVE_LOCKS_REQUIRED(!m_callbacks_mutex); + void ProcessQueue() EXCLUSIVE_LOCKS_REQUIRED(!m_callbacks_mutex); public: explicit SingleThreadedSchedulerClient(CScheduler &scheduler LIFETIMEBOUND) : m_scheduler{scheduler} {} /** * Add a callback to be executed. Callbacks are executed serially * and memory is release-acquire consistent between callback executions. * Practially, this means that callbacks can behave as if they are executed * in order by a single thread. */ - void AddToProcessQueue(std::function func); + void AddToProcessQueue(std::function func) + EXCLUSIVE_LOCKS_REQUIRED(!m_callbacks_mutex); /** * Processes all remaining queue members on the calling thread, blocking * until queue is empty. * Must be called after the CScheduler has no remaining processing threads! */ - void EmptyQueue(); + void EmptyQueue() EXCLUSIVE_LOCKS_REQUIRED(!m_callbacks_mutex); - size_t CallbacksPending(); + size_t CallbacksPending() EXCLUSIVE_LOCKS_REQUIRED(!m_callbacks_mutex); }; #endif // BITCOIN_SCHEDULER_H diff --git a/src/sync.h b/src/sync.h index d7fa98c36..c6523daf1 100644 --- a/src/sync.h +++ b/src/sync.h @@ -1,384 +1,396 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SYNC_H #define BITCOIN_SYNC_H #ifdef DEBUG_LOCKCONTENTION #include #include #endif #include #include #include #include #include #include ///////////////////////////////////////////////// // // // THE SIMPLE DEFINITION, EXCLUDING DEBUG CODE // // // ///////////////////////////////////////////////// /* RecursiveMutex mutex; std::recursive_mutex mutex; LOCK(mutex); std::unique_lock criticalblock(mutex); LOCK2(mutex1, mutex2); std::unique_lock criticalblock1(mutex1); std::unique_lock criticalblock2(mutex2); TRY_LOCK(mutex, name); std::unique_lock name(mutex, std::try_to_lock_t); ENTER_CRITICAL_SECTION(mutex); // no RAII mutex.lock(); LEAVE_CRITICAL_SECTION(mutex); // no RAII mutex.unlock(); */ /////////////////////////////// // // // THE ACTUAL IMPLEMENTATION // // // /////////////////////////////// #ifdef DEBUG_LOCKORDER template void EnterCritical(const char *pszName, const char *pszFile, int nLine, MutexType *cs, bool fTry = false); void LeaveCritical(); void CheckLastCritical(void *cs, std::string &lockname, const char *guardname, const char *file, int line); std::string LocksHeld(); template void AssertLockHeldInternal(const char *pszName, const char *pszFile, int nLine, MutexType *cs) EXCLUSIVE_LOCKS_REQUIRED(cs); template void AssertLockNotHeldInternal(const char *pszName, const char *pszFile, int nLine, MutexType *cs) LOCKS_EXCLUDED(cs); void DeleteLock(void *cs); bool LockStackEmpty(); /** * Call abort() if a potential lock order deadlock bug is detected, instead of * just logging information and throwing a logic_error. Defaults to true, and * set to false in DEBUG_LOCKORDER unit tests. */ extern bool g_debug_lockorder_abort; #else template inline void EnterCritical(const char *pszName, const char *pszFile, int nLine, MutexType *cs, bool fTry = false) {} inline void LeaveCritical() {} inline void CheckLastCritical(void *cs, std::string &lockname, const char *guardname, const char *file, int line) {} template inline void AssertLockHeldInternal(const char *pszName, const char *pszFile, int nLine, MutexType *cs) EXCLUSIVE_LOCKS_REQUIRED(cs) {} template void AssertLockNotHeldInternal(const char *pszName, const char *pszFile, int nLine, MutexType *cs) LOCKS_EXCLUDED(cs) {} inline void DeleteLock(void *cs) {} inline bool LockStackEmpty() { return true; } #endif -#define AssertLockHeld(cs) AssertLockHeldInternal(#cs, __FILE__, __LINE__, &cs) -#define AssertLockNotHeld(cs) \ - AssertLockNotHeldInternal(#cs, __FILE__, __LINE__, &cs) /** * Template mixin that adds -Wthread-safety locking annotations and lock order * checking to a subset of the mutex API. */ template class LOCKABLE AnnotatedMixin : public PARENT { public: ~AnnotatedMixin() { DeleteLock((void *)this); } void lock() EXCLUSIVE_LOCK_FUNCTION() { PARENT::lock(); } void unlock() UNLOCK_FUNCTION() { PARENT::unlock(); } bool try_lock() EXCLUSIVE_TRYLOCK_FUNCTION(true) { return PARENT::try_lock(); } using UniqueLock = std::unique_lock; #ifdef __clang__ //! For negative capabilities in the Clang Thread Safety Analysis. //! A negative requirement uses the EXCLUSIVE_LOCKS_REQUIRED attribute, in //! conjunction with the ! operator, to indicate that a mutex should not be //! held. const AnnotatedMixin &operator!() const { return *this; } #endif // __clang__ }; /** * Wrapped mutex: supports recursive locking, but no waiting * TODO: We should move away from using the recursive lock by default. */ using RecursiveMutex = AnnotatedMixin; /** Wrapped mutex: supports waiting but not recursive locking */ -typedef AnnotatedMixin Mutex; +using Mutex = AnnotatedMixin; + +#define AssertLockHeld(cs) AssertLockHeldInternal(#cs, __FILE__, __LINE__, &cs) + +inline void AssertLockNotHeldInline(const char *name, const char *file, + int line, Mutex *cs) + EXCLUSIVE_LOCKS_REQUIRED(!cs) { + AssertLockNotHeldInternal(name, file, line, cs); +} +inline void AssertLockNotHeldInline(const char *name, const char *file, + int line, RecursiveMutex *cs) + LOCKS_EXCLUDED(cs) { + AssertLockNotHeldInternal(name, file, line, cs); +} +#define AssertLockNotHeld(cs) \ + AssertLockNotHeldInline(#cs, __FILE__, __LINE__, &cs) /** Wrapper around std::unique_lock style lock for Mutex. */ template class SCOPED_LOCKABLE UniqueLock : public Base { private: void Enter(const char *pszName, const char *pszFile, int nLine) { EnterCritical(pszName, pszFile, nLine, Base::mutex()); #ifdef DEBUG_LOCKCONTENTION if (Base::try_lock()) { return; } LOG_TIME_MICROS_WITH_CATEGORY( strprintf("lock contention %s, %s:%d", pszName, pszFile, nLine), BCLog::LOCK); #endif Base::lock(); } bool TryEnter(const char *pszName, const char *pszFile, int nLine) { EnterCritical(pszName, pszFile, nLine, Base::mutex(), true); if (Base::try_lock()) { return true; } LeaveCritical(); return false; } public: UniqueLock(Mutex &mutexIn, const char *pszName, const char *pszFile, int nLine, bool fTry = false) EXCLUSIVE_LOCK_FUNCTION(mutexIn) : Base(mutexIn, std::defer_lock) { if (fTry) { TryEnter(pszName, pszFile, nLine); } else { Enter(pszName, pszFile, nLine); } } UniqueLock(Mutex *pmutexIn, const char *pszName, const char *pszFile, int nLine, bool fTry = false) EXCLUSIVE_LOCK_FUNCTION(pmutexIn) { if (!pmutexIn) { return; } *static_cast(this) = Base(*pmutexIn, std::defer_lock); if (fTry) { TryEnter(pszName, pszFile, nLine); } else { Enter(pszName, pszFile, nLine); } } ~UniqueLock() UNLOCK_FUNCTION() { if (Base::owns_lock()) { LeaveCritical(); } } operator bool() { return Base::owns_lock(); } protected: // needed for reverse_lock UniqueLock() {} public: /** * An RAII-style reverse lock. Unlocks on construction and locks on * destruction. */ class reverse_lock { public: explicit reverse_lock(UniqueLock &_lock, const char *_guardname, const char *_file, int _line) : lock(_lock), file(_file), line(_line) { CheckLastCritical((void *)lock.mutex(), lockname, _guardname, _file, _line); lock.unlock(); LeaveCritical(); lock.swap(templock); } ~reverse_lock() { templock.swap(lock); EnterCritical(lockname.c_str(), file.c_str(), line, lock.mutex()); lock.lock(); } private: reverse_lock(reverse_lock const &); reverse_lock &operator=(reverse_lock const &); UniqueLock &lock; UniqueLock templock; std::string lockname; const std::string file; const int line; }; friend class reverse_lock; }; #define REVERSE_LOCK(g) \ typename std::decay::type::reverse_lock PASTE2( \ revlock, __COUNTER__)(g, #g, __FILE__, __LINE__) template using DebugLock = UniqueLock::type>::type>; #define LOCK(cs) \ DebugLock PASTE2(criticalblock, \ __COUNTER__)(cs, #cs, __FILE__, __LINE__) #define LOCK2(cs1, cs2) \ DebugLock criticalblock1(cs1, #cs1, __FILE__, __LINE__); \ DebugLock criticalblock2(cs2, #cs2, __FILE__, __LINE__); #define TRY_LOCK(cs, name) \ DebugLock name(cs, #cs, __FILE__, __LINE__, true) #define WAIT_LOCK(cs, name) \ DebugLock name(cs, #cs, __FILE__, __LINE__) #define ENTER_CRITICAL_SECTION(cs) \ { \ EnterCritical(#cs, __FILE__, __LINE__, &cs); \ (cs).lock(); \ } #define LEAVE_CRITICAL_SECTION(cs) \ { \ std::string lockname; \ CheckLastCritical((void *)(&cs), lockname, #cs, __FILE__, __LINE__); \ (cs).unlock(); \ LeaveCritical(); \ } //! Run code while locking a mutex. //! //! Examples: //! //! WITH_LOCK(cs, shared_val = shared_val + 1); //! //! int val = WITH_LOCK(cs, return shared_val); //! //! Note: //! //! Since the return type deduction follows that of decltype(auto), while the //! deduced type of: //! //! WITH_LOCK(cs, return {int i = 1; return i;}); //! //! is int, the deduced type of: //! //! WITH_LOCK(cs, return {int j = 1; return (j);}); //! //! is &int, a reference to a local variable //! //! The above is detectable at compile-time with the -Wreturn-local-addr flag in //! gcc and the -Wreturn-stack-address flag in clang, both enabled by default. #define WITH_LOCK(cs, code) \ [&]() -> decltype(auto) { \ LOCK(cs); \ code; \ }() class CSemaphore { private: std::condition_variable condition; std::mutex mutex; int value; public: explicit CSemaphore(int init) : value(init) {} void wait() { std::unique_lock lock(mutex); condition.wait(lock, [&]() { return value >= 1; }); value--; } bool try_wait() { std::lock_guard lock(mutex); if (value < 1) { return false; } value--; return true; } void post() { { std::lock_guard lock(mutex); value++; } condition.notify_one(); } }; /** RAII-style semaphore lock */ class CSemaphoreGrant { private: CSemaphore *sem; bool fHaveGrant; public: void Acquire() { if (fHaveGrant) { return; } sem->wait(); fHaveGrant = true; } void Release() { if (!fHaveGrant) { return; } sem->post(); fHaveGrant = false; } bool TryAcquire() { if (!fHaveGrant && sem->try_wait()) { fHaveGrant = true; } return fHaveGrant; } void MoveTo(CSemaphoreGrant &grant) { grant.Release(); grant.sem = sem; grant.fHaveGrant = fHaveGrant; fHaveGrant = false; } CSemaphoreGrant() : sem(nullptr), fHaveGrant(false) {} explicit CSemaphoreGrant(CSemaphore &sema, bool fTry = false) : sem(&sema), fHaveGrant(false) { if (fTry) { TryAcquire(); } else { Acquire(); } } ~CSemaphoreGrant() { Release(); } operator bool() const { return fHaveGrant; } }; #endif // BITCOIN_SYNC_H diff --git a/src/threadinterrupt.h b/src/threadinterrupt.h index 1eb8a1896..616fe5381 100644 --- a/src/threadinterrupt.h +++ b/src/threadinterrupt.h @@ -1,35 +1,38 @@ // Copyright (c) 2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_THREADINTERRUPT_H #define BITCOIN_THREADINTERRUPT_H #include #include #include #include /** * A helper class for interruptible sleeps. Calling operator() will interrupt * any current sleep, and after that point operator bool() will return true * until reset. */ class CThreadInterrupt { public: CThreadInterrupt(); explicit operator bool() const; - void operator()(); + void operator()() EXCLUSIVE_LOCKS_REQUIRED(!mut); void reset(); - bool sleep_for(std::chrono::milliseconds rel_time); - bool sleep_for(std::chrono::seconds rel_time); - bool sleep_for(std::chrono::minutes rel_time); + bool sleep_for(std::chrono::milliseconds rel_time) + EXCLUSIVE_LOCKS_REQUIRED(!mut); + bool sleep_for(std::chrono::seconds rel_time) + EXCLUSIVE_LOCKS_REQUIRED(!mut); + bool sleep_for(std::chrono::minutes rel_time) + EXCLUSIVE_LOCKS_REQUIRED(!mut); private: std::condition_variable cond; Mutex mut; std::atomic flag; }; #endif // BITCOIN_THREADINTERRUPT_H diff --git a/src/validationinterface.cpp b/src/validationinterface.cpp index bd3a7415d..f91b93b0b 100644 --- a/src/validationinterface.cpp +++ b/src/validationinterface.cpp @@ -1,292 +1,295 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include /** * MainSignalsImpl manages a list of shared_ptr * callbacks. * * A std::unordered_map is used to track what callbacks are currently * registered, and a std::list is used to store the callbacks that are * currently registered as well as any callbacks that are just unregistered * and about to be deleted when they are done executing. */ class MainSignalsImpl { private: Mutex m_mutex; //! List entries consist of a callback pointer and reference count. The //! count is equal to the number of current executions of that entry, plus 1 //! if it's registered. It cannot be 0 because that would imply it is //! unregistered and also not being executed (so shouldn't exist). struct ListEntry { std::shared_ptr callbacks; int count = 1; }; std::list m_list GUARDED_BY(m_mutex); std::unordered_map::iterator> m_map GUARDED_BY(m_mutex); public: // We are not allowed to assume the scheduler only runs in one thread, // but must ensure all callbacks happen in-order, so we end up creating // our own queue here :( SingleThreadedSchedulerClient m_schedulerClient; explicit MainSignalsImpl(CScheduler &scheduler LIFETIMEBOUND) : m_schedulerClient(scheduler) {} - void Register(std::shared_ptr callbacks) { + void Register(std::shared_ptr callbacks) + EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { LOCK(m_mutex); auto inserted = m_map.emplace(callbacks.get(), m_list.end()); if (inserted.second) { inserted.first->second = m_list.emplace(m_list.end()); } inserted.first->second->callbacks = std::move(callbacks); } - void Unregister(CValidationInterface *callbacks) { + void Unregister(CValidationInterface *callbacks) + EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { LOCK(m_mutex); auto it = m_map.find(callbacks); if (it != m_map.end()) { if (!--it->second->count) { m_list.erase(it->second); } m_map.erase(it); } } //! Clear unregisters every previously registered callback, erasing every //! map entry. After this call, the list may still contain callbacks that //! are currently executing, but it will be cleared when they are done //! executing. - void Clear() { + void Clear() EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { LOCK(m_mutex); for (const auto &entry : m_map) { if (!--entry.second->count) { m_list.erase(entry.second); } } m_map.clear(); } - template void Iterate(F &&f) { + template + void Iterate(F &&f) EXCLUSIVE_LOCKS_REQUIRED(!m_mutex) { WAIT_LOCK(m_mutex, lock); for (auto it = m_list.begin(); it != m_list.end();) { ++it->count; { REVERSE_LOCK(lock); f(*it->callbacks); } it = --it->count ? std::next(it) : m_list.erase(it); } } }; static CMainSignals g_signals; void CMainSignals::RegisterBackgroundSignalScheduler(CScheduler &scheduler) { assert(!m_internals); m_internals = std::make_unique(scheduler); } void CMainSignals::UnregisterBackgroundSignalScheduler() { m_internals.reset(nullptr); } void CMainSignals::FlushBackgroundCallbacks() { if (m_internals) { m_internals->m_schedulerClient.EmptyQueue(); } } size_t CMainSignals::CallbacksPending() { if (!m_internals) { return 0; } return m_internals->m_schedulerClient.CallbacksPending(); } CMainSignals &GetMainSignals() { return g_signals; } void RegisterSharedValidationInterface( std::shared_ptr callbacks) { // Each connection captures the shared_ptr to ensure that each callback is // executed before the subscriber is destroyed. For more details see #18338. g_signals.m_internals->Register(std::move(callbacks)); } void RegisterValidationInterface(CValidationInterface *callbacks) { // Create a shared_ptr with a no-op deleter - CValidationInterface lifecycle // is managed by the caller. RegisterSharedValidationInterface( {callbacks, [](CValidationInterface *) {}}); } void UnregisterSharedValidationInterface( std::shared_ptr callbacks) { UnregisterValidationInterface(callbacks.get()); } void UnregisterValidationInterface(CValidationInterface *callbacks) { if (g_signals.m_internals) { g_signals.m_internals->Unregister(callbacks); } } void UnregisterAllValidationInterfaces() { if (!g_signals.m_internals) { return; } g_signals.m_internals->Clear(); } void CallFunctionInValidationInterfaceQueue(std::function func) { g_signals.m_internals->m_schedulerClient.AddToProcessQueue(std::move(func)); } void SyncWithValidationInterfaceQueue() { AssertLockNotHeld(cs_main); // Block until the validation queue drains std::promise promise; CallFunctionInValidationInterfaceQueue([&promise] { promise.set_value(); }); promise.get_future().wait(); } // Use a macro instead of a function for conditional logging to prevent // evaluating arguments when logging is not enabled. // // NOTE: The lambda captures all local variables by value. #define ENQUEUE_AND_LOG_EVENT(event, fmt, name, ...) \ do { \ auto local_name = (name); \ LOG_EVENT("Enqueuing " fmt, local_name, __VA_ARGS__); \ m_internals->m_schedulerClient.AddToProcessQueue([=] { \ LOG_EVENT(fmt, local_name, __VA_ARGS__); \ event(); \ }); \ } while (0) #define LOG_EVENT(fmt, ...) LogPrint(BCLog::VALIDATION, fmt "\n", __VA_ARGS__) void CMainSignals::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { // Dependencies exist that require UpdatedBlockTip events to be delivered in // the order in which the chain actually updates. One way to ensure this is // for the caller to invoke this signal in the same critical section where // the chain is updated auto event = [pindexNew, pindexFork, fInitialDownload, this] { m_internals->Iterate([&](CValidationInterface &callbacks) { callbacks.UpdatedBlockTip(pindexNew, pindexFork, fInitialDownload); }); }; ENQUEUE_AND_LOG_EVENT( event, "%s: new block hash=%s fork block hash=%s (in IBD=%s)", __func__, pindexNew->GetBlockHash().ToString(), pindexFork ? pindexFork->GetBlockHash().ToString() : "null", fInitialDownload); } void CMainSignals::TransactionAddedToMempool( const CTransactionRef &tx, std::shared_ptr> spent_coins, uint64_t mempool_sequence) { auto event = [tx, spent_coins, mempool_sequence, this] { m_internals->Iterate([&](CValidationInterface &callbacks) { callbacks.TransactionAddedToMempool(tx, spent_coins, mempool_sequence); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: txid=%s", __func__, tx->GetHash().ToString()); } void CMainSignals::TransactionRemovedFromMempool(const CTransactionRef &tx, MemPoolRemovalReason reason, uint64_t mempool_sequence) { auto event = [tx, reason, mempool_sequence, this] { m_internals->Iterate([&](CValidationInterface &callbacks) { callbacks.TransactionRemovedFromMempool(tx, reason, mempool_sequence); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: txid=%s", __func__, tx->GetHash().ToString()); } void CMainSignals::BlockConnected(const std::shared_ptr &pblock, const CBlockIndex *pindex) { auto event = [pblock, pindex, this] { m_internals->Iterate([&](CValidationInterface &callbacks) { callbacks.BlockConnected(pblock, pindex); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: block hash=%s block height=%d", __func__, pblock->GetHash().ToString(), pindex->nHeight); } void CMainSignals::BlockDisconnected( const std::shared_ptr &pblock, const CBlockIndex *pindex) { auto event = [pblock, pindex, this] { m_internals->Iterate([&](CValidationInterface &callbacks) { callbacks.BlockDisconnected(pblock, pindex); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: block hash=%s", __func__, pblock->GetHash().ToString()); } void CMainSignals::ChainStateFlushed(const CBlockLocator &locator) { auto event = [locator, this] { m_internals->Iterate([&](CValidationInterface &callbacks) { callbacks.ChainStateFlushed(locator); }); }; ENQUEUE_AND_LOG_EVENT(event, "%s: block hash=%s", __func__, locator.IsNull() ? "null" : locator.vHave.front().ToString()); } void CMainSignals::BlockChecked(const CBlock &block, const BlockValidationState &state) { LOG_EVENT("%s: block hash=%s state=%s", __func__, block.GetHash().ToString(), state.ToString()); m_internals->Iterate([&](CValidationInterface &callbacks) { callbacks.BlockChecked(block, state); }); } void CMainSignals::NewPoWValidBlock( const CBlockIndex *pindex, const std::shared_ptr &block) { LOG_EVENT("%s: block hash=%s", __func__, block->GetHash().ToString()); m_internals->Iterate([&](CValidationInterface &callbacks) { callbacks.NewPoWValidBlock(pindex, block); }); } void CMainSignals::BlockFinalized(const CBlockIndex *pindex) { LOG_EVENT("%s: block hash=%s", __func__, pindex ? pindex->GetBlockHash().ToString() : "null"); m_internals->Iterate([&](CValidationInterface &callbacks) { callbacks.BlockFinalized(pindex); }); }