diff --git a/src/net.cpp b/src/net.cpp
index 8e781c35c..78f9467c8 100644
--- a/src/net.cpp
+++ b/src/net.cpp
@@ -1,3631 +1,3631 @@
 // Copyright (c) 2009-2010 Satoshi Nakamoto
 // Copyright (c) 2009-2019 The Bitcoin Core developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #if defined(HAVE_CONFIG_H)
 #include <config/bitcoin-config.h>
 #endif
 
 #include <net.h>
 
 #include <addrdb.h>
 #include <avalanche/avalanche.h>
 #include <banman.h>
 #include <clientversion.h>
 #include <compat.h>
 #include <config.h>
 #include <consensus/consensus.h>
 #include <crypto/sha256.h>
 #include <dnsseeds.h>
 #include <i2p.h>
 #include <netaddress.h>
 #include <netbase.h>
 #include <node/ui_interface.h>
 #include <protocol.h>
 #include <random.h>
 #include <scheduler.h>
 #include <util/sock.h>
 #include <util/strencodings.h>
 #include <util/system.h>
 #include <util/thread.h>
 #include <util/translation.h>
 
 #ifdef WIN32
 #include <cstring>
 #else
 #include <fcntl.h>
 #endif
 
 #ifdef USE_POLL
 #include <poll.h>
 #endif
 
 #include <algorithm>
 #include <array>
 #include <cmath>
 #include <cstdint>
 #include <functional>
 #include <limits>
 #include <optional>
 #include <unordered_map>
 
 /** Maximum number of block-relay-only anchor connections */
 static constexpr size_t MAX_BLOCK_RELAY_ONLY_ANCHORS = 2;
 static_assert(MAX_BLOCK_RELAY_ONLY_ANCHORS <=
                   static_cast<size_t>(MAX_BLOCK_RELAY_ONLY_CONNECTIONS),
               "MAX_BLOCK_RELAY_ONLY_ANCHORS must not exceed "
               "MAX_BLOCK_RELAY_ONLY_CONNECTIONS.");
 /** Anchor IP address database file name */
 const char *const ANCHORS_DATABASE_FILENAME = "anchors.dat";
 
 // How often to dump addresses to peers.dat
 static constexpr std::chrono::minutes DUMP_PEERS_INTERVAL{15};
 
 /**
  * Number of DNS seeds to query when the number of connections is low.
  */
 static constexpr int DNSSEEDS_TO_QUERY_AT_ONCE = 3;
 
 /**
  * How long to delay before querying DNS seeds
  *
  * If we have more than THRESHOLD entries in addrman, then it's likely
  * that we got those addresses from having previously connected to the P2P
  * network, and that we'll be able to successfully reconnect to the P2P
  * network via contacting one of them. So if that's the case, spend a
  * little longer trying to connect to known peers before querying the
  * DNS seeds.
  */
 static constexpr std::chrono::seconds DNSSEEDS_DELAY_FEW_PEERS{11};
 static constexpr std::chrono::minutes DNSSEEDS_DELAY_MANY_PEERS{5};
 // "many" vs "few" peers
 static constexpr int DNSSEEDS_DELAY_PEER_THRESHOLD = 1000;
 
 /** The default timeframe for -maxuploadtarget. 1 day. */
 static constexpr std::chrono::seconds MAX_UPLOAD_TIMEFRAME{60 * 60 * 24};
 
 // We add a random period time (0 to 1 seconds) to feeler connections to prevent
 // synchronization.
 #define FEELER_SLEEP_WINDOW 1
 
 /** Used to pass flags to the Bind() function */
 enum BindFlags {
     BF_NONE = 0,
     BF_EXPLICIT = (1U << 0),
     BF_REPORT_ERROR = (1U << 1),
     /**
      * Do not call AddLocal() for our special addresses, e.g., for incoming
      * Tor connections, to prevent gossiping them over the network.
      */
     BF_DONT_ADVERTISE = (1U << 2),
 };
 
 // The set of sockets cannot be modified while waiting
 // The sleep time needs to be small to avoid new sockets stalling
 static const uint64_t SELECT_TIMEOUT_MILLISECONDS = 50;
 
 const std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
 
 // SHA256("netgroup")[0:8]
 static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL;
 // SHA256("localhostnonce")[0:8]
 static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL;
 // SHA256("localhostnonce")[8:16]
 static const uint64_t RANDOMIZER_ID_EXTRAENTROPY = 0x94b05d41679a4ff7ULL;
 // SHA256("addrcache")[0:8]
 static const uint64_t RANDOMIZER_ID_ADDRCACHE = 0x1cf2e4ddd306dda9ULL;
 //
 // Global state variables
 //
 bool fDiscover = true;
 bool fListen = true;
 RecursiveMutex cs_mapLocalHost;
 std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
 static bool vfLimited[NET_MAX] GUARDED_BY(cs_mapLocalHost) = {};
 
 void CConnman::AddAddrFetch(const std::string &strDest) {
     LOCK(m_addr_fetches_mutex);
     m_addr_fetches.push_back(strDest);
 }
 
 uint16_t GetListenPort() {
     return static_cast<uint16_t>(
         gArgs.GetIntArg("-port", Params().GetDefaultPort()));
 }
 
 // find 'best' local address for a particular peer
 bool GetLocal(CService &addr, const CNetAddr *paddrPeer) {
     if (!fListen) {
         return false;
     }
 
     int nBestScore = -1;
     int nBestReachability = -1;
     {
         LOCK(cs_mapLocalHost);
         for (const auto &entry : mapLocalHost) {
             int nScore = entry.second.nScore;
             int nReachability = entry.first.GetReachabilityFrom(paddrPeer);
             if (nReachability > nBestReachability ||
                 (nReachability == nBestReachability && nScore > nBestScore)) {
                 addr = CService(entry.first, entry.second.nPort);
                 nBestReachability = nReachability;
                 nBestScore = nScore;
             }
         }
     }
     return nBestScore >= 0;
 }
 
 //! Convert the pnSeed6 array into usable address objects.
 static std::vector<CAddress>
 convertSeed6(const std::vector<SeedSpec6> &vSeedsIn) {
     // It'll only connect to one or two seed nodes because once it connects,
     // it'll get a pile of addresses with newer timestamps. Seed nodes are given
     // a random 'last seen time' of between one and two weeks ago.
     const int64_t nOneWeek = 7 * 24 * 60 * 60;
     std::vector<CAddress> vSeedsOut;
     vSeedsOut.reserve(vSeedsIn.size());
     FastRandomContext rng;
     for (const auto &seed_in : vSeedsIn) {
         struct in6_addr ip;
         memcpy(&ip, seed_in.addr, sizeof(ip));
         CAddress addr(CService(ip, seed_in.port),
                       GetDesirableServiceFlags(NODE_NONE));
         addr.nTime = GetTime() - rng.randrange(nOneWeek) - nOneWeek;
         vSeedsOut.push_back(addr);
     }
     return vSeedsOut;
 }
 
 // Get best local address for a particular peer as a CAddress. Otherwise, return
 // the unroutable 0.0.0.0 but filled in with the normal parameters, since the IP
 // may be changed to a useful one by discovery.
 CAddress GetLocalAddress(const CNetAddr *paddrPeer,
                          ServiceFlags nLocalServices) {
     CAddress ret(CService(CNetAddr(), GetListenPort()), nLocalServices);
     CService addr;
     if (GetLocal(addr, paddrPeer)) {
         ret = CAddress(addr, nLocalServices);
     }
     ret.nTime = GetAdjustedTime();
     return ret;
 }
 
 static int GetnScore(const CService &addr) {
     LOCK(cs_mapLocalHost);
     if (mapLocalHost.count(addr) == 0) {
         return 0;
     }
     return mapLocalHost[addr].nScore;
 }
 
 // Is our peer's addrLocal potentially useful as an external IP source?
 bool IsPeerAddrLocalGood(CNode *pnode) {
     CService addrLocal = pnode->GetAddrLocal();
     return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
            IsReachable(addrLocal.GetNetwork());
 }
 
 std::optional<CAddress> GetLocalAddrForPeer(CNode *pnode) {
     CAddress addrLocal =
         GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
     if (gArgs.GetBoolArg("-addrmantest", false)) {
         // use IPv4 loopback during addrmantest
         addrLocal =
             CAddress(CService(LookupNumeric("127.0.0.1", GetListenPort())),
                      pnode->GetLocalServices());
     }
     // If discovery is enabled, sometimes give our peer the address it
     // tells us that it sees us as in case it has a better idea of our
     // address than we do.
     FastRandomContext rng;
     if (IsPeerAddrLocalGood(pnode) &&
         (!addrLocal.IsRoutable() ||
          rng.randbits((GetnScore(addrLocal) > LOCAL_MANUAL) ? 3 : 1) == 0)) {
         addrLocal.SetIP(pnode->GetAddrLocal());
     }
     if (addrLocal.IsRoutable() || gArgs.GetBoolArg("-addrmantest", false)) {
         LogPrint(BCLog::NET, "Advertising address %s to peer=%d\n",
                  addrLocal.ToString(), pnode->GetId());
         return addrLocal;
     }
     // Address is unroutable. Don't advertise.
     return std::nullopt;
 }
 
 // Learn a new local address.
 bool AddLocal(const CService &addr, int nScore) {
     if (!addr.IsRoutable()) {
         return false;
     }
 
     if (!fDiscover && nScore < LOCAL_MANUAL) {
         return false;
     }
 
     if (!IsReachable(addr)) {
         return false;
     }
 
     LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
 
     {
         LOCK(cs_mapLocalHost);
         bool fAlready = mapLocalHost.count(addr) > 0;
         LocalServiceInfo &info = mapLocalHost[addr];
         if (!fAlready || nScore >= info.nScore) {
             info.nScore = nScore + (fAlready ? 1 : 0);
             info.nPort = addr.GetPort();
         }
     }
 
     return true;
 }
 
 bool AddLocal(const CNetAddr &addr, int nScore) {
     return AddLocal(CService(addr, GetListenPort()), nScore);
 }
 
 void RemoveLocal(const CService &addr) {
     LOCK(cs_mapLocalHost);
     LogPrintf("RemoveLocal(%s)\n", addr.ToString());
     mapLocalHost.erase(addr);
 }
 
 void SetReachable(enum Network net, bool reachable) {
     if (net == NET_UNROUTABLE || net == NET_INTERNAL) {
         return;
     }
     LOCK(cs_mapLocalHost);
     vfLimited[net] = !reachable;
 }
 
 bool IsReachable(enum Network net) {
     LOCK(cs_mapLocalHost);
     return !vfLimited[net];
 }
 
 bool IsReachable(const CNetAddr &addr) {
     return IsReachable(addr.GetNetwork());
 }
 
 /** vote for a local address */
 bool SeenLocal(const CService &addr) {
     LOCK(cs_mapLocalHost);
     if (mapLocalHost.count(addr) == 0) {
         return false;
     }
     mapLocalHost[addr].nScore++;
     return true;
 }
 
 /** check whether a given address is potentially local */
 bool IsLocal(const CService &addr) {
     LOCK(cs_mapLocalHost);
     return mapLocalHost.count(addr) > 0;
 }
 
 CNode *CConnman::FindNode(const CNetAddr &ip) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (static_cast<CNetAddr>(pnode->addr) == ip) {
             return pnode;
         }
     }
     return nullptr;
 }
 
 CNode *CConnman::FindNode(const CSubNet &subNet) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (subNet.Match(static_cast<CNetAddr>(pnode->addr))) {
             return pnode;
         }
     }
     return nullptr;
 }
 
 CNode *CConnman::FindNode(const std::string &addrName) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (pnode->GetAddrName() == addrName) {
             return pnode;
         }
     }
     return nullptr;
 }
 
 CNode *CConnman::FindNode(const CService &addr) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (static_cast<CService>(pnode->addr) == addr) {
             return pnode;
         }
     }
     return nullptr;
 }
 
 bool CConnman::AlreadyConnectedToAddress(const CAddress &addr) {
     return FindNode(static_cast<CNetAddr>(addr)) ||
            FindNode(addr.ToStringIPPort());
 }
 
 bool CConnman::CheckIncomingNonce(uint64_t nonce) {
     LOCK(cs_vNodes);
     for (const CNode *pnode : vNodes) {
         if (!pnode->fSuccessfullyConnected && !pnode->IsInboundConn() &&
             pnode->GetLocalNonce() == nonce) {
             return false;
         }
     }
     return true;
 }
 
 /** Get the bind address for a socket as CAddress */
 static CAddress GetBindAddress(SOCKET sock) {
     CAddress addr_bind;
     struct sockaddr_storage sockaddr_bind;
     socklen_t sockaddr_bind_len = sizeof(sockaddr_bind);
     if (sock != INVALID_SOCKET) {
         if (!getsockname(sock, (struct sockaddr *)&sockaddr_bind,
                          &sockaddr_bind_len)) {
             addr_bind.SetSockAddr((const struct sockaddr *)&sockaddr_bind);
         } else {
             LogPrint(BCLog::NET, "Warning: getsockname failed\n");
         }
     }
     return addr_bind;
 }
 
 CNode *CConnman::ConnectNode(CAddress addrConnect, const char *pszDest,
                              bool fCountFailure, ConnectionType conn_type) {
     assert(conn_type != ConnectionType::INBOUND);
 
     if (pszDest == nullptr) {
         if (IsLocal(addrConnect)) {
             return nullptr;
         }
 
         // Look for an existing connection
         CNode *pnode = FindNode(static_cast<CService>(addrConnect));
         if (pnode) {
             LogPrintf("Failed to open new connection, already connected\n");
             return nullptr;
         }
     }
 
     /// debug print
     LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n",
              pszDest ? pszDest : addrConnect.ToString(),
              pszDest
                  ? 0.0
                  : (double)(GetAdjustedTime() - addrConnect.nTime) / 3600.0);
 
     // Resolve
     const uint16_t default_port{pszDest != nullptr
                                     ? Params().GetDefaultPort(pszDest)
                                     : Params().GetDefaultPort()};
     if (pszDest) {
         std::vector<CService> resolved;
         if (Lookup(pszDest, resolved, default_port,
                    fNameLookup && !HaveNameProxy(), 256) &&
             !resolved.empty()) {
             addrConnect =
                 CAddress(resolved[GetRand(resolved.size())], NODE_NONE);
             if (!addrConnect.IsValid()) {
                 LogPrint(BCLog::NET,
                          "Resolver returned invalid address %s for %s\n",
                          addrConnect.ToString(), pszDest);
                 return nullptr;
             }
             // It is possible that we already have a connection to the IP/port
             // pszDest resolved to. In that case, drop the connection that was
             // just created, and return the existing CNode instead. Also store
             // the name we used to connect in that CNode, so that future
             // FindNode() calls to that name catch this early.
             LOCK(cs_vNodes);
             CNode *pnode = FindNode(static_cast<CService>(addrConnect));
             if (pnode) {
                 pnode->MaybeSetAddrName(std::string(pszDest));
                 LogPrintf("Failed to open new connection, already connected\n");
                 return nullptr;
             }
         }
     }
 
     // Connect
     bool connected = false;
     std::unique_ptr<Sock> sock;
     proxyType proxy;
     CAddress addr_bind;
     assert(!addr_bind.IsValid());
 
     if (addrConnect.IsValid()) {
         bool proxyConnectionFailed = false;
 
         if (addrConnect.GetNetwork() == NET_I2P &&
             m_i2p_sam_session.get() != nullptr) {
             i2p::Connection conn;
             if (m_i2p_sam_session->Connect(addrConnect, conn,
                                            proxyConnectionFailed)) {
                 connected = true;
                 sock = std::move(conn.sock);
                 addr_bind = CAddress{conn.me, NODE_NONE};
             }
         } else if (GetProxy(addrConnect.GetNetwork(), proxy)) {
             sock = CreateSock(proxy.proxy);
             if (!sock) {
                 return nullptr;
             }
             connected = ConnectThroughProxy(
                 proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), *sock,
                 nConnectTimeout, proxyConnectionFailed);
         } else {
             // no proxy needed (none set for target network)
             sock = CreateSock(addrConnect);
             if (!sock) {
                 return nullptr;
             }
             connected =
                 ConnectSocketDirectly(addrConnect, *sock, nConnectTimeout,
                                       conn_type == ConnectionType::MANUAL);
         }
         if (!proxyConnectionFailed) {
             // If a connection to the node was attempted, and failure (if any)
             // is not caused by a problem connecting to the proxy, mark this as
             // an attempt.
             addrman.Attempt(addrConnect, fCountFailure);
         }
     } else if (pszDest && GetNameProxy(proxy)) {
         sock = CreateSock(proxy.proxy);
         if (!sock) {
             return nullptr;
         }
         std::string host;
         uint16_t port{default_port};
         SplitHostPort(std::string(pszDest), port, host);
         bool proxyConnectionFailed;
         connected = ConnectThroughProxy(proxy, host, port, *sock,
                                         nConnectTimeout, proxyConnectionFailed);
     }
     if (!connected) {
         return nullptr;
     }
 
     // Add node
     NodeId id = GetNewNodeId();
     uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
                          .Write(id)
                          .Finalize();
     uint64_t extra_entropy =
         GetDeterministicRandomizer(RANDOMIZER_ID_EXTRAENTROPY)
             .Write(id)
             .Finalize();
     if (!addr_bind.IsValid()) {
         addr_bind = GetBindAddress(sock->Get());
     }
     CNode *pnode =
         new CNode(id, nLocalServices, sock->Release(), addrConnect,
                   CalculateKeyedNetGroup(addrConnect), nonce, extra_entropy,
                   addr_bind, pszDest ? pszDest : "", conn_type,
                   /* inbound_onion */ false);
     pnode->AddRef();
 
     // We're making a new connection, harvest entropy from the time (and our
     // peer count)
     RandAddEvent(uint32_t(id));
 
     return pnode;
 }
 
 void CNode::CloseSocketDisconnect() {
     fDisconnect = true;
     LOCK(cs_hSocket);
     if (hSocket != INVALID_SOCKET) {
         LogPrint(BCLog::NET, "disconnecting peer=%d\n", id);
         CloseSocket(hSocket);
     }
 }
 
 void CConnman::AddWhitelistPermissionFlags(NetPermissionFlags &flags,
                                            const CNetAddr &addr) const {
     for (const auto &subnet : vWhitelistedRange) {
         if (subnet.m_subnet.Match(addr)) {
             NetPermissions::AddFlag(flags, subnet.m_flags);
         }
     }
 }
 
 std::string CNode::ConnectionTypeAsString() const {
     switch (m_conn_type) {
         case ConnectionType::INBOUND:
             return "inbound";
         case ConnectionType::MANUAL:
             return "manual";
         case ConnectionType::FEELER:
             return "feeler";
         case ConnectionType::OUTBOUND_FULL_RELAY:
             return "outbound-full-relay";
         case ConnectionType::BLOCK_RELAY:
             return "block-relay-only";
         case ConnectionType::ADDR_FETCH:
             return "addr-fetch";
         case ConnectionType::AVALANCHE_OUTBOUND:
             return "avalanche";
     } // no default case, so the compiler can warn about missing cases
 
     assert(false);
 }
 
 std::string CNode::GetAddrName() const {
     LOCK(cs_addrName);
     return addrName;
 }
 
 void CNode::MaybeSetAddrName(const std::string &addrNameIn) {
     LOCK(cs_addrName);
     if (addrName.empty()) {
         addrName = addrNameIn;
     }
 }
 
 CService CNode::GetAddrLocal() const {
     LOCK(cs_addrLocal);
     return addrLocal;
 }
 
 void CNode::SetAddrLocal(const CService &addrLocalIn) {
     LOCK(cs_addrLocal);
     if (addrLocal.IsValid()) {
         error("Addr local already set for node: %i. Refusing to change from %s "
               "to %s",
               id, addrLocal.ToString(), addrLocalIn.ToString());
     } else {
         addrLocal = addrLocalIn;
     }
 }
 
 Network CNode::ConnectedThroughNetwork() const {
     return m_inbound_onion ? NET_ONION : addr.GetNetClass();
 }
 
 void CNode::copyStats(CNodeStats &stats) {
     stats.nodeid = this->GetId();
     stats.nServices = nServices;
     stats.addr = addr;
     stats.addrBind = addrBind;
     stats.m_network = ConnectedThroughNetwork();
     if (m_tx_relay != nullptr) {
         LOCK(m_tx_relay->cs_filter);
         stats.fRelayTxes = m_tx_relay->fRelayTxes;
     } else {
         stats.fRelayTxes = false;
     }
     stats.m_last_send = m_last_send;
     stats.m_last_recv = m_last_recv;
     stats.m_last_tx_time = m_last_tx_time;
     stats.m_last_proof_time = m_last_proof_time;
     stats.m_last_block_time = m_last_block_time;
     stats.m_connected = m_connected;
     stats.nTimeOffset = nTimeOffset;
     stats.addrName = GetAddrName();
     stats.nVersion = nVersion;
     {
         LOCK(cs_SubVer);
         stats.cleanSubVer = cleanSubVer;
     }
     stats.fInbound = IsInboundConn();
     stats.m_manual_connection = IsManualConn();
     stats.m_bip152_highbandwidth_to = m_bip152_highbandwidth_to;
     stats.m_bip152_highbandwidth_from = m_bip152_highbandwidth_from;
     {
         LOCK(cs_vSend);
         stats.mapSendBytesPerMsgCmd = mapSendBytesPerMsgCmd;
         stats.nSendBytes = nSendBytes;
     }
     {
         LOCK(cs_vRecv);
         stats.mapRecvBytesPerMsgCmd = mapRecvBytesPerMsgCmd;
         stats.nRecvBytes = nRecvBytes;
     }
     stats.m_legacyWhitelisted = m_legacyWhitelisted;
     stats.m_permissionFlags = m_permissionFlags;
     if (m_tx_relay != nullptr) {
         LOCK(m_tx_relay->cs_feeFilter);
         stats.minFeeFilter = m_tx_relay->minFeeFilter;
     } else {
         stats.minFeeFilter = Amount::zero();
     }
 
     stats.m_last_ping_time = m_last_ping_time;
     stats.m_min_ping_time = m_min_ping_time;
 
     // Leave string empty if addrLocal invalid (not filled in yet)
     CService addrLocalUnlocked = GetAddrLocal();
     stats.addrLocal =
         addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
 
     stats.m_conn_type_string = ConnectionTypeAsString();
 
     stats.m_availabilityScore = m_avalanche_enabled
                                     ? std::make_optional(getAvailabilityScore())
                                     : std::nullopt;
 }
 
 bool CNode::ReceiveMsgBytes(const Config &config, Span<const uint8_t> msg_bytes,
                             bool &complete) {
     complete = false;
     const auto time = GetTime<std::chrono::microseconds>();
     LOCK(cs_vRecv);
     m_last_recv = std::chrono::duration_cast<std::chrono::seconds>(time);
     nRecvBytes += msg_bytes.size();
     while (msg_bytes.size() > 0) {
         // Absorb network data.
         int handled = m_deserializer->Read(config, msg_bytes);
         if (handled < 0) {
             return false;
         }
 
         if (m_deserializer->Complete()) {
             // decompose a transport agnostic CNetMessage from the deserializer
             CNetMessage msg = m_deserializer->GetMessage(config, time);
 
             // Store received bytes per message command to prevent a memory DOS,
             // only allow valid commands.
             mapMsgCmdSize::iterator i =
                 mapRecvBytesPerMsgCmd.find(msg.m_command);
             if (i == mapRecvBytesPerMsgCmd.end()) {
                 i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
             }
 
             assert(i != mapRecvBytesPerMsgCmd.end());
             i->second += msg.m_raw_message_size;
 
             // push the message to the process queue,
             vRecvMsg.push_back(std::move(msg));
 
             complete = true;
         }
     }
 
     return true;
 }
 
 int V1TransportDeserializer::readHeader(const Config &config,
                                         Span<const uint8_t> msg_bytes) {
     // copy data to temporary parsing buffer
     uint32_t nRemaining = CMessageHeader::HEADER_SIZE - nHdrPos;
     uint32_t nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
 
     memcpy(&hdrbuf[nHdrPos], msg_bytes.data(), nCopy);
     nHdrPos += nCopy;
 
     // if header incomplete, exit
     if (nHdrPos < CMessageHeader::HEADER_SIZE) {
         return nCopy;
     }
 
     // deserialize to CMessageHeader
     try {
         hdrbuf >> hdr;
     } catch (const std::exception &) {
         return -1;
     }
 
     // Reject oversized messages
     if (hdr.IsOversized(config)) {
         LogPrint(BCLog::NET, "Oversized header detected\n");
         return -1;
     }
 
     // switch state to reading message data
     in_data = true;
 
     return nCopy;
 }
 
 int V1TransportDeserializer::readData(Span<const uint8_t> msg_bytes) {
     unsigned int nRemaining = hdr.nMessageSize - nDataPos;
     unsigned int nCopy = std::min<unsigned int>(nRemaining, msg_bytes.size());
 
     if (vRecv.size() < nDataPos + nCopy) {
         // Allocate up to 256 KiB ahead, but never more than the total message
         // size.
         vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
     }
 
     hasher.Write(msg_bytes.first(nCopy));
     memcpy(&vRecv[nDataPos], msg_bytes.data(), nCopy);
     nDataPos += nCopy;
 
     return nCopy;
 }
 
 const uint256 &V1TransportDeserializer::GetMessageHash() const {
     assert(Complete());
     if (data_hash.IsNull()) {
         hasher.Finalize(data_hash);
     }
     return data_hash;
 }
 
 CNetMessage
 V1TransportDeserializer::GetMessage(const Config &config,
                                     const std::chrono::microseconds time) {
     // decompose a single CNetMessage from the TransportDeserializer
     CNetMessage msg(std::move(vRecv));
 
     // store state about valid header, netmagic and checksum
     msg.m_valid_header = hdr.IsValid(config);
     // FIXME Split CheckHeaderMagicAndCommand() into CheckHeaderMagic() and
     // CheckCommand() to prevent the net magic check code duplication.
     msg.m_valid_netmagic =
         (memcmp(std::begin(hdr.pchMessageStart),
                 std::begin(config.GetChainParams().NetMagic()),
                 CMessageHeader::MESSAGE_START_SIZE) == 0);
     uint256 hash = GetMessageHash();
 
     // store command string, payload size
     msg.m_command = hdr.GetCommand();
     msg.m_message_size = hdr.nMessageSize;
     msg.m_raw_message_size = hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
 
     // We just received a message off the wire, harvest entropy from the time
     // (and the message checksum)
     RandAddEvent(ReadLE32(hash.begin()));
 
     msg.m_valid_checksum = (memcmp(hash.begin(), hdr.pchChecksum,
                                    CMessageHeader::CHECKSUM_SIZE) == 0);
 
     if (!msg.m_valid_checksum) {
         LogPrint(
             BCLog::NET, "CHECKSUM ERROR (%s, %u bytes), expected %s was %s\n",
             SanitizeString(msg.m_command), msg.m_message_size,
             HexStr(Span<uint8_t>(hash.begin(),
                                  hash.begin() + CMessageHeader::CHECKSUM_SIZE)),
             HexStr(hdr.pchChecksum));
     }
 
     // store receive time
     msg.m_time = time;
 
     // reset the network deserializer (prepare for the next message)
     Reset();
     return msg;
 }
 
 void V1TransportSerializer::prepareForTransport(const Config &config,
                                                 CSerializedNetMsg &msg,
                                                 std::vector<uint8_t> &header) {
     // create dbl-sha256 checksum
     uint256 hash = Hash(msg.data);
 
     // create header
     CMessageHeader hdr(config.GetChainParams().NetMagic(), msg.m_type.c_str(),
                        msg.data.size());
     memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
 
     // serialize header
     header.reserve(CMessageHeader::HEADER_SIZE);
     CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, header, 0, hdr};
 }
 
 size_t CConnman::SocketSendData(CNode &node) const {
     size_t nSentSize = 0;
     size_t nMsgCount = 0;
 
     for (const auto &data : node.vSendMsg) {
         assert(data.size() > node.nSendOffset);
         int nBytes = 0;
 
         {
             LOCK(node.cs_hSocket);
             if (node.hSocket == INVALID_SOCKET) {
                 break;
             }
 
             nBytes = send(
                 node.hSocket,
                 reinterpret_cast<const char *>(data.data()) + node.nSendOffset,
                 data.size() - node.nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
         }
 
         if (nBytes == 0) {
             // couldn't send anything at all
             break;
         }
 
         if (nBytes < 0) {
             // error
             int nErr = WSAGetLastError();
             if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
                 nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
                 LogPrint(BCLog::NET, "socket send error for peer=%d: %s\n",
                          node.GetId(), NetworkErrorString(nErr));
                 node.CloseSocketDisconnect();
             }
 
             break;
         }
 
         assert(nBytes > 0);
         node.m_last_send = GetTime<std::chrono::seconds>();
         node.nSendBytes += nBytes;
         node.nSendOffset += nBytes;
         nSentSize += nBytes;
         if (node.nSendOffset != data.size()) {
             // could not send full message; stop sending more
             break;
         }
 
         node.nSendOffset = 0;
         node.nSendSize -= data.size();
         node.fPauseSend = node.nSendSize > nSendBufferMaxSize;
         nMsgCount++;
     }
 
     node.vSendMsg.erase(node.vSendMsg.begin(),
                         node.vSendMsg.begin() + nMsgCount);
 
     if (node.vSendMsg.empty()) {
         assert(node.nSendOffset == 0);
         assert(node.nSendSize == 0);
     }
 
     return nSentSize;
 }
 
 static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a,
                                           const NodeEvictionCandidate &b) {
     return a.m_min_ping_time > b.m_min_ping_time;
 }
 
 static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a,
                                             const NodeEvictionCandidate &b) {
     return a.m_connected > b.m_connected;
 }
 
 static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a,
                                  const NodeEvictionCandidate &b) {
     return a.nKeyedNetGroup < b.nKeyedNetGroup;
 }
 
 static bool CompareNodeBlockTime(const NodeEvictionCandidate &a,
                                  const NodeEvictionCandidate &b) {
     // There is a fall-through here because it is common for a node to have many
     // peers which have not yet relayed a block.
     if (a.m_last_block_time != b.m_last_block_time) {
         return a.m_last_block_time < b.m_last_block_time;
     }
 
     if (a.fRelevantServices != b.fRelevantServices) {
         return b.fRelevantServices;
     }
 
     return a.m_connected > b.m_connected;
 }
 
 static bool CompareNodeTXTime(const NodeEvictionCandidate &a,
                               const NodeEvictionCandidate &b) {
     // There is a fall-through here because it is common for a node to have more
     // than a few peers that have not yet relayed txn.
     if (a.m_last_tx_time != b.m_last_tx_time) {
         return a.m_last_tx_time < b.m_last_tx_time;
     }
 
     if (a.fRelayTxes != b.fRelayTxes) {
         return b.fRelayTxes;
     }
 
     if (a.fBloomFilter != b.fBloomFilter) {
         return a.fBloomFilter;
     }
 
     return a.m_connected > b.m_connected;
 }
 
 static bool CompareNodeProofTime(const NodeEvictionCandidate &a,
                                  const NodeEvictionCandidate &b) {
     // There is a fall-through here because it is common for a node to have more
     // than a few peers that have not yet relayed proofs. This fallback is also
     // used in the case avalanche is not enabled.
     if (a.m_last_proof_time != b.m_last_proof_time) {
         return a.m_last_proof_time < b.m_last_proof_time;
     }
 
     return a.m_connected > b.m_connected;
 }
 
 // Pick out the potential block-relay only peers, and sort them by last block
 // time.
 static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a,
                                           const NodeEvictionCandidate &b) {
     if (a.fRelayTxes != b.fRelayTxes) {
         return a.fRelayTxes;
     }
 
     if (a.m_last_block_time != b.m_last_block_time) {
         return a.m_last_block_time < b.m_last_block_time;
     }
 
     if (a.fRelevantServices != b.fRelevantServices) {
         return b.fRelevantServices;
     }
 
     return a.m_connected > b.m_connected;
 }
 
 static bool CompareNodeAvailabilityScore(const NodeEvictionCandidate &a,
                                          const NodeEvictionCandidate &b) {
     // Equality can happen if the nodes have no score or it has not been
     // computed yet.
     if (a.availabilityScore != b.availabilityScore) {
         return a.availabilityScore < b.availabilityScore;
     }
 
     return a.m_connected > b.m_connected;
 }
 
 /**
  * Sort eviction candidates by network/localhost and connection uptime.
  * Candidates near the beginning are more likely to be evicted, and those
  * near the end are more likely to be protected, e.g. less likely to be evicted.
  * - First, nodes that are not `is_local` and that do not belong to `network`,
  *   sorted by increasing uptime (from most recently connected to connected
  *   longer).
  * - Then, nodes that are `is_local` or belong to `network`, sorted by
  *   increasing uptime.
  */
 struct CompareNodeNetworkTime {
     const bool m_is_local;
     const Network m_network;
     CompareNodeNetworkTime(bool is_local, Network network)
         : m_is_local(is_local), m_network(network) {}
     bool operator()(const NodeEvictionCandidate &a,
                     const NodeEvictionCandidate &b) const {
         if (m_is_local && a.m_is_local != b.m_is_local) {
             return b.m_is_local;
         }
         if ((a.m_network == m_network) != (b.m_network == m_network)) {
             return b.m_network == m_network;
         }
         return a.m_connected > b.m_connected;
     };
 };
 
 //! Sort an array by the specified comparator, then erase the last K elements
 //! where predicate is true.
 template <typename T, typename Comparator>
 static void EraseLastKElements(
     std::vector<T> &elements, Comparator comparator, size_t k,
     std::function<bool(const NodeEvictionCandidate &)> predicate =
         [](const NodeEvictionCandidate &n) { return true; }) {
     std::sort(elements.begin(), elements.end(), comparator);
     size_t eraseSize = std::min(k, elements.size());
     elements.erase(
         std::remove_if(elements.end() - eraseSize, elements.end(), predicate),
         elements.end());
 }
 
 void ProtectEvictionCandidatesByRatio(
     std::vector<NodeEvictionCandidate> &eviction_candidates) {
     // Protect the half of the remaining nodes which have been connected the
     // longest. This replicates the non-eviction implicit behavior, and
     // precludes attacks that start later.
     // To promote the diversity of our peer connections, reserve up to half of
     // these protected spots for Tor/onion, localhost and I2P peers, even if
     // they're not the longest uptime overall. This helps protect these
     // higher-latency peers that tend to be otherwise disadvantaged under our
     // eviction criteria.
     const size_t initial_size = eviction_candidates.size();
     const size_t total_protect_size{initial_size / 2};
 
     // Disadvantaged networks to protect: I2P, localhost and Tor/onion. In case
     // of equal counts, earlier array members have first opportunity to recover
     // unused slots from the previous iteration.
     struct Net {
         bool is_local;
         Network id;
         size_t count;
     };
     std::array<Net, 3> networks{{{false, NET_I2P, 0},
                                  {/* localhost */ true, NET_MAX, 0},
                                  {false, NET_ONION, 0}}};
 
     // Count and store the number of eviction candidates per network.
     for (Net &n : networks) {
         n.count = std::count_if(
             eviction_candidates.cbegin(), eviction_candidates.cend(),
             [&n](const NodeEvictionCandidate &c) {
                 return n.is_local ? c.m_is_local : c.m_network == n.id;
             });
     }
     // Sort `networks` by ascending candidate count, to give networks having
     // fewer candidates the first opportunity to recover unused protected slots
     // from the previous iteration.
     std::stable_sort(networks.begin(), networks.end(),
                      [](Net a, Net b) { return a.count < b.count; });
 
     // Protect up to 25% of the eviction candidates by disadvantaged network.
     const size_t max_protect_by_network{total_protect_size / 2};
     size_t num_protected{0};
 
     while (num_protected < max_protect_by_network) {
         // Count the number of disadvantaged networks from which we have peers
         // to protect.
         auto num_networks = std::count_if(networks.begin(), networks.end(),
                                           [](const Net &n) { return n.count; });
         if (num_networks == 0) {
             break;
         }
         const size_t disadvantaged_to_protect{max_protect_by_network -
                                               num_protected};
         const size_t protect_per_network{std::max(
             disadvantaged_to_protect / num_networks, static_cast<size_t>(1))};
 
         // Early exit flag if there are no remaining candidates by disadvantaged
         // network.
         bool protected_at_least_one{false};
 
         for (Net &n : networks) {
             if (n.count == 0) {
                 continue;
             }
             const size_t before = eviction_candidates.size();
             EraseLastKElements(
                 eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id),
                 protect_per_network, [&n](const NodeEvictionCandidate &c) {
                     return n.is_local ? c.m_is_local : c.m_network == n.id;
                 });
             const size_t after = eviction_candidates.size();
             if (before > after) {
                 protected_at_least_one = true;
                 const size_t delta{before - after};
                 num_protected += delta;
                 if (num_protected >= max_protect_by_network) {
                     break;
                 }
                 n.count -= delta;
             }
         }
         if (!protected_at_least_one) {
             break;
         }
     }
 
     // Calculate how many we removed, and update our total number of peers that
     // we want to protect based on uptime accordingly.
     assert(num_protected == initial_size - eviction_candidates.size());
     const size_t remaining_to_protect{total_protect_size - num_protected};
     EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected,
                        remaining_to_protect);
 }
 
 [[nodiscard]] std::optional<NodeId>
 SelectNodeToEvict(std::vector<NodeEvictionCandidate> &&vEvictionCandidates) {
     // Protect connections with certain characteristics
 
     // Deterministically select 4 peers to protect by netgroup.
     // An attacker cannot predict which netgroups will be protected
     EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4);
     // Protect the 8 nodes with the lowest minimum ping time.
     // An attacker cannot manipulate this metric without physically moving nodes
     // closer to the target.
     EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8);
     // Protect 4 nodes that most recently sent us novel transactions accepted
     // into our mempool. An attacker cannot manipulate this metric without
     // performing useful work.
     EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4);
     // Protect 4 nodes that most recently sent us novel proofs accepted
     // into our proof pool. An attacker cannot manipulate this metric without
     // performing useful work.
     // TODO this filter must happen before the last tx time once avalanche is
     // enabled for pre-consensus.
     EraseLastKElements(vEvictionCandidates, CompareNodeProofTime, 4);
     // Protect up to 8 non-tx-relay peers that have sent us novel blocks.
     EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8,
                        [](const NodeEvictionCandidate &n) {
                            return !n.fRelayTxes && n.fRelevantServices;
                        });
 
     // Protect 4 nodes that most recently sent us novel blocks.
     // An attacker cannot manipulate this metric without performing useful work.
     EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4);
 
     // Protect up to 128 nodes that have the highest avalanche availability
     // score.
     EraseLastKElements(vEvictionCandidates, CompareNodeAvailabilityScore, 128,
                        [](NodeEvictionCandidate const &n) {
                            return n.availabilityScore > 0.;
                        });
 
     // Protect some of the remaining eviction candidates by ratios of desirable
     // or disadvantaged characteristics.
     ProtectEvictionCandidatesByRatio(vEvictionCandidates);
 
     if (vEvictionCandidates.empty()) {
         return std::nullopt;
     }
 
     // If any remaining peers are preferred for eviction consider only them.
     // This happens after the other preferences since if a peer is really the
     // best by other criteria (esp relaying blocks)
     // then we probably don't want to evict it no matter what.
     if (std::any_of(
             vEvictionCandidates.begin(), vEvictionCandidates.end(),
             [](NodeEvictionCandidate const &n) { return n.prefer_evict; })) {
         vEvictionCandidates.erase(
             std::remove_if(
                 vEvictionCandidates.begin(), vEvictionCandidates.end(),
                 [](NodeEvictionCandidate const &n) { return !n.prefer_evict; }),
             vEvictionCandidates.end());
     }
 
     // Identify the network group with the most connections and youngest member.
     // (vEvictionCandidates is already sorted by reverse connect time)
     uint64_t naMostConnections;
     unsigned int nMostConnections = 0;
     std::chrono::seconds nMostConnectionsTime{0};
     std::map<uint64_t, std::vector<NodeEvictionCandidate>> mapNetGroupNodes;
     for (const NodeEvictionCandidate &node : vEvictionCandidates) {
         std::vector<NodeEvictionCandidate> &group =
             mapNetGroupNodes[node.nKeyedNetGroup];
         group.push_back(node);
         const auto grouptime{group[0].m_connected};
         size_t group_size = group.size();
         if (group_size > nMostConnections ||
             (group_size == nMostConnections &&
              grouptime > nMostConnectionsTime)) {
             nMostConnections = group_size;
             nMostConnectionsTime = grouptime;
             naMostConnections = node.nKeyedNetGroup;
         }
     }
 
     // Reduce to the network group with the most connections
     vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
 
     // Disconnect from the network group with the most connections
     return vEvictionCandidates.front().id;
 }
 
 /** Try to find a connection to evict when the node is full.
  *  Extreme care must be taken to avoid opening the node to attacker
  *   triggered network partitioning.
  *  The strategy used here is to protect a small number of peers
  *   for each of several distinct characteristics which are difficult
  *   to forge.  In order to partition a node the attacker must be
  *   simultaneously better at all of them than honest peers.
  */
 bool CConnman::AttemptToEvictConnection() {
     std::vector<NodeEvictionCandidate> vEvictionCandidates;
     {
         LOCK(cs_vNodes);
         for (const CNode *node : vNodes) {
             if (node->HasPermission(PF_NOBAN)) {
                 continue;
             }
             if (!node->IsInboundConn()) {
                 continue;
             }
             if (node->fDisconnect) {
                 continue;
             }
             bool peer_relay_txes = false;
             bool peer_filter_not_null = false;
             if (node->m_tx_relay != nullptr) {
                 LOCK(node->m_tx_relay->cs_filter);
                 peer_relay_txes = node->m_tx_relay->fRelayTxes;
                 peer_filter_not_null = node->m_tx_relay->pfilter != nullptr;
             }
 
             NodeEvictionCandidate candidate = {
                 node->GetId(),
                 node->m_connected,
                 node->m_min_ping_time,
                 node->m_last_block_time,
                 node->m_last_proof_time,
                 node->m_last_tx_time,
                 HasAllDesirableServiceFlags(node->nServices),
                 peer_relay_txes,
                 peer_filter_not_null,
                 node->nKeyedNetGroup,
                 node->m_prefer_evict,
                 node->addr.IsLocal(),
                 node->ConnectedThroughNetwork(),
                 node->m_avalanche_enabled
                     ? node->getAvailabilityScore()
                     : -std::numeric_limits<double>::infinity()};
             vEvictionCandidates.push_back(candidate);
         }
     }
     const std::optional<NodeId> node_id_to_evict =
         SelectNodeToEvict(std::move(vEvictionCandidates));
     if (!node_id_to_evict) {
         return false;
     }
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (pnode->GetId() == *node_id_to_evict) {
             LogPrint(
                 BCLog::NET,
                 "selected %s connection for eviction peer=%d; disconnecting\n",
                 pnode->ConnectionTypeAsString(), pnode->GetId());
             pnode->fDisconnect = true;
             return true;
         }
     }
     return false;
 }
 
 void CConnman::AcceptConnection(const ListenSocket &hListenSocket) {
     struct sockaddr_storage sockaddr;
     socklen_t len = sizeof(sockaddr);
     SOCKET hSocket =
         accept(hListenSocket.socket, (struct sockaddr *)&sockaddr, &len);
     CAddress addr;
 
     if (hSocket == INVALID_SOCKET) {
         const int nErr = WSAGetLastError();
         if (nErr != WSAEWOULDBLOCK) {
             LogPrintf("socket error accept failed: %s\n",
                       NetworkErrorString(nErr));
         }
         return;
     }
 
     if (!addr.SetSockAddr((const struct sockaddr *)&sockaddr)) {
         LogPrintf("Warning: Unknown socket family\n");
     }
 
     const CAddress addr_bind = GetBindAddress(hSocket);
 
     NetPermissionFlags permissionFlags = NetPermissionFlags::PF_NONE;
     hListenSocket.AddSocketPermissionFlags(permissionFlags);
 
     CreateNodeFromAcceptedSocket(hSocket, permissionFlags, addr_bind, addr);
 }
 
 void CConnman::CreateNodeFromAcceptedSocket(SOCKET hSocket,
                                             NetPermissionFlags permissionFlags,
                                             const CAddress &addr_bind,
                                             const CAddress &addr) {
     int nInbound = 0;
     int nMaxInbound = nMaxConnections - m_max_outbound;
 
     AddWhitelistPermissionFlags(permissionFlags, addr);
     bool legacyWhitelisted = false;
     if (NetPermissions::HasFlag(permissionFlags,
                                 NetPermissionFlags::PF_ISIMPLICIT)) {
         NetPermissions::ClearFlag(permissionFlags, PF_ISIMPLICIT);
         if (gArgs.GetBoolArg("-whitelistforcerelay",
                              DEFAULT_WHITELISTFORCERELAY)) {
             NetPermissions::AddFlag(permissionFlags, PF_FORCERELAY);
         }
         if (gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) {
             NetPermissions::AddFlag(permissionFlags, PF_RELAY);
         }
         NetPermissions::AddFlag(permissionFlags, PF_MEMPOOL);
         NetPermissions::AddFlag(permissionFlags, PF_NOBAN);
         legacyWhitelisted = true;
     }
 
     {
         LOCK(cs_vNodes);
         for (const CNode *pnode : vNodes) {
             if (pnode->IsInboundConn()) {
                 nInbound++;
             }
         }
     }
 
     if (!fNetworkActive) {
         LogPrint(BCLog::NET,
                  "connection from %s dropped: not accepting new connections\n",
                  addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     if (!IsSelectableSocket(hSocket)) {
         LogPrintf("connection from %s dropped: non-selectable socket\n",
                   addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     // According to the internet TCP_NODELAY is not carried into accepted
     // sockets on all platforms.  Set it again here just to be sure.
     SetSocketNoDelay(hSocket);
 
     // Don't accept connections from banned peers.
     bool banned = m_banman && m_banman->IsBanned(addr);
     if (!NetPermissions::HasFlag(permissionFlags,
                                  NetPermissionFlags::PF_NOBAN) &&
         banned) {
         LogPrint(BCLog::NET, "connection from %s dropped (banned)\n",
                  addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     // Only accept connections from discouraged peers if our inbound slots
     // aren't (almost) full.
     bool discouraged = m_banman && m_banman->IsDiscouraged(addr);
     if (!NetPermissions::HasFlag(permissionFlags,
                                  NetPermissionFlags::PF_NOBAN) &&
         nInbound + 1 >= nMaxInbound && discouraged) {
         LogPrint(BCLog::NET, "connection from %s dropped (discouraged)\n",
                  addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     if (nInbound >= nMaxInbound) {
         if (!AttemptToEvictConnection()) {
             // No connection to evict, disconnect the new connection
             LogPrint(BCLog::NET, "failed to find an eviction candidate - "
                                  "connection dropped (full)\n");
             CloseSocket(hSocket);
             return;
         }
     }
 
     NodeId id = GetNewNodeId();
     uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
                          .Write(id)
                          .Finalize();
     uint64_t extra_entropy =
         GetDeterministicRandomizer(RANDOMIZER_ID_EXTRAENTROPY)
             .Write(id)
             .Finalize();
 
     ServiceFlags nodeServices = nLocalServices;
     if (NetPermissions::HasFlag(permissionFlags, PF_BLOOMFILTER)) {
         nodeServices = static_cast<ServiceFlags>(nodeServices | NODE_BLOOM);
     }
 
     const bool inbound_onion =
         std::find(m_onion_binds.begin(), m_onion_binds.end(), addr_bind) !=
         m_onion_binds.end();
     CNode *pnode = new CNode(
         id, nodeServices, hSocket, addr, CalculateKeyedNetGroup(addr), nonce,
         extra_entropy, addr_bind, "", ConnectionType::INBOUND, inbound_onion);
     pnode->AddRef();
     pnode->m_permissionFlags = permissionFlags;
     // If this flag is present, the user probably expect that RPC and QT report
     // it as whitelisted (backward compatibility)
     pnode->m_legacyWhitelisted = legacyWhitelisted;
     pnode->m_prefer_evict = discouraged;
     for (auto interface : m_msgproc) {
         interface->InitializeNode(*config, pnode);
     }
 
     LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString());
 
     {
         LOCK(cs_vNodes);
         vNodes.push_back(pnode);
     }
 
     // We received a new connection, harvest entropy from the time (and our peer
     // count)
     RandAddEvent(uint32_t(id));
 }
 
 bool CConnman::AddConnection(const std::string &address,
                              ConnectionType conn_type) {
     std::optional<int> max_connections;
     switch (conn_type) {
         case ConnectionType::INBOUND:
         case ConnectionType::MANUAL:
             return false;
         case ConnectionType::OUTBOUND_FULL_RELAY:
             max_connections = m_max_outbound_full_relay;
             break;
         case ConnectionType::BLOCK_RELAY:
             max_connections = m_max_outbound_block_relay;
             break;
         // no limit for ADDR_FETCH because -seednode has no limit either
         case ConnectionType::ADDR_FETCH:
             break;
         // no limit for FEELER connections since they're short-lived
         case ConnectionType::FEELER:
             break;
         case ConnectionType::AVALANCHE_OUTBOUND:
             max_connections = m_max_avalanche_outbound;
             break;
     } // no default case, so the compiler can warn about missing cases
 
     // Count existing connections
     int existing_connections = WITH_LOCK(
         cs_vNodes, return std::count_if(
                        vNodes.begin(), vNodes.end(), [conn_type](CNode *node) {
                            return node->m_conn_type == conn_type;
                        }););
 
     // Max connections of specified type already exist
     if (max_connections != std::nullopt &&
         existing_connections >= max_connections) {
         return false;
     }
 
     // Max total outbound connections already exist
     CSemaphoreGrant grant(*semOutbound, true);
     if (!grant) {
         return false;
     }
 
     OpenNetworkConnection(CAddress(), false, &grant, address.c_str(),
                           conn_type);
     return true;
 }
 
 void CConnman::DisconnectNodes() {
     {
         LOCK(cs_vNodes);
 
         if (!fNetworkActive) {
             // Disconnect any connected nodes
             for (CNode *pnode : vNodes) {
                 if (!pnode->fDisconnect) {
                     LogPrint(BCLog::NET,
                              "Network not active, dropping peer=%d\n",
                              pnode->GetId());
                     pnode->fDisconnect = true;
                 }
             }
         }
 
         // Disconnect unused nodes
         std::vector<CNode *> vNodesCopy = vNodes;
         for (CNode *pnode : vNodesCopy) {
             if (pnode->fDisconnect) {
                 // remove from vNodes
                 vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode),
                              vNodes.end());
 
                 // release outbound grant (if any)
                 pnode->grantOutbound.Release();
 
                 // close socket and cleanup
                 pnode->CloseSocketDisconnect();
 
                 // hold in disconnected pool until all refs are released
                 pnode->Release();
                 vNodesDisconnected.push_back(pnode);
             }
         }
     }
     {
         // Delete disconnected nodes
         std::list<CNode *> vNodesDisconnectedCopy = vNodesDisconnected;
         for (CNode *pnode : vNodesDisconnectedCopy) {
             // wait until threads are done using it
             if (pnode->GetRefCount() <= 0) {
                 bool fDelete = false;
                 {
                     TRY_LOCK(pnode->cs_vSend, lockSend);
                     if (lockSend) {
                         fDelete = true;
                     }
                 }
                 if (fDelete) {
                     vNodesDisconnected.remove(pnode);
                     DeleteNode(pnode);
                 }
             }
         }
     }
 }
 
 void CConnman::NotifyNumConnectionsChanged() {
     size_t vNodesSize;
     {
         LOCK(cs_vNodes);
         vNodesSize = vNodes.size();
     }
     if (vNodesSize != nPrevNodeCount) {
         nPrevNodeCount = vNodesSize;
         if (clientInterface) {
             clientInterface->NotifyNumConnectionsChanged(vNodesSize);
         }
     }
 }
 
 bool CConnman::ShouldRunInactivityChecks(const CNode &node,
                                          std::chrono::seconds now) const {
     return node.m_connected + m_peer_connect_timeout < now;
 }
 
 bool CConnman::InactivityCheck(const CNode &node) const {
     // Tests that see disconnects after using mocktime can start nodes with a
     // large timeout. For example, -peertimeout=999999999.
     const auto now{GetTime<std::chrono::seconds>()};
     const auto last_send{node.m_last_send.load()};
     const auto last_recv{node.m_last_recv.load()};
 
     if (!ShouldRunInactivityChecks(node, now)) {
         return false;
     }
 
     if (last_recv.count() == 0 || last_send.count() == 0) {
         LogPrint(BCLog::NET,
                  "socket no message in first %i seconds, %d %d peer=%d\n",
                  count_seconds(m_peer_connect_timeout), last_recv.count() != 0,
                  last_send.count() != 0, node.GetId());
         return true;
     }
 
     if (now > last_send + TIMEOUT_INTERVAL) {
         LogPrint(BCLog::NET, "socket sending timeout: %is peer=%d\n",
                  count_seconds(now - last_send), node.GetId());
         return true;
     }
 
     if (now > last_recv + TIMEOUT_INTERVAL) {
         LogPrint(BCLog::NET, "socket receive timeout: %is peer=%d\n",
                  count_seconds(now - last_recv), node.GetId());
         return true;
     }
 
     if (!node.fSuccessfullyConnected) {
         LogPrint(BCLog::NET, "version handshake timeout peer=%d\n",
                  node.GetId());
         return true;
     }
 
     return false;
 }
 
 bool CConnman::GenerateSelectSet(std::set<SOCKET> &recv_set,
                                  std::set<SOCKET> &send_set,
                                  std::set<SOCKET> &error_set) {
     for (const ListenSocket &hListenSocket : vhListenSocket) {
         recv_set.insert(hListenSocket.socket);
     }
 
     {
         LOCK(cs_vNodes);
         for (CNode *pnode : vNodes) {
             // Implement the following logic:
             // * If there is data to send, select() for sending data. As this
             //   only happens when optimistic write failed, we choose to first
             //   drain the write buffer in this case before receiving more. This
             //   avoids needlessly queueing received data, if the remote peer is
             //   not themselves receiving data. This means properly utilizing
             //   TCP flow control signalling.
             // * Otherwise, if there is space left in the receive buffer,
             //   select() for receiving data.
             // * Hand off all complete messages to the processor, to be handled
             //   without blocking here.
 
             bool select_recv = !pnode->fPauseRecv;
             bool select_send;
             {
                 LOCK(pnode->cs_vSend);
                 select_send = !pnode->vSendMsg.empty();
             }
 
             LOCK(pnode->cs_hSocket);
             if (pnode->hSocket == INVALID_SOCKET) {
                 continue;
             }
 
             error_set.insert(pnode->hSocket);
             if (select_send) {
                 send_set.insert(pnode->hSocket);
                 continue;
             }
             if (select_recv) {
                 recv_set.insert(pnode->hSocket);
             }
         }
     }
 
     return !recv_set.empty() || !send_set.empty() || !error_set.empty();
 }
 
 #ifdef USE_POLL
 void CConnman::SocketEvents(std::set<SOCKET> &recv_set,
                             std::set<SOCKET> &send_set,
                             std::set<SOCKET> &error_set) {
     std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
     if (!GenerateSelectSet(recv_select_set, send_select_set,
                            error_select_set)) {
         interruptNet.sleep_for(
             std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
         return;
     }
 
     std::unordered_map<SOCKET, struct pollfd> pollfds;
     for (SOCKET socket_id : recv_select_set) {
         pollfds[socket_id].fd = socket_id;
         pollfds[socket_id].events |= POLLIN;
     }
 
     for (SOCKET socket_id : send_select_set) {
         pollfds[socket_id].fd = socket_id;
         pollfds[socket_id].events |= POLLOUT;
     }
 
     for (SOCKET socket_id : error_select_set) {
         pollfds[socket_id].fd = socket_id;
         // These flags are ignored, but we set them for clarity
         pollfds[socket_id].events |= POLLERR | POLLHUP;
     }
 
     std::vector<struct pollfd> vpollfds;
     vpollfds.reserve(pollfds.size());
     for (auto it : pollfds) {
         vpollfds.push_back(std::move(it.second));
     }
 
     if (poll(vpollfds.data(), vpollfds.size(), SELECT_TIMEOUT_MILLISECONDS) <
         0) {
         return;
     }
 
     if (interruptNet) {
         return;
     }
 
     for (struct pollfd pollfd_entry : vpollfds) {
         if (pollfd_entry.revents & POLLIN) {
             recv_set.insert(pollfd_entry.fd);
         }
         if (pollfd_entry.revents & POLLOUT) {
             send_set.insert(pollfd_entry.fd);
         }
         if (pollfd_entry.revents & (POLLERR | POLLHUP)) {
             error_set.insert(pollfd_entry.fd);
         }
     }
 }
 #else
 void CConnman::SocketEvents(std::set<SOCKET> &recv_set,
                             std::set<SOCKET> &send_set,
                             std::set<SOCKET> &error_set) {
     std::set<SOCKET> recv_select_set, send_select_set, error_select_set;
     if (!GenerateSelectSet(recv_select_set, send_select_set,
                            error_select_set)) {
         interruptNet.sleep_for(
             std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS));
         return;
     }
 
     //
     // Find which sockets have data to receive
     //
     struct timeval timeout;
     timeout.tv_sec = 0;
     // frequency to poll pnode->vSend
     timeout.tv_usec = SELECT_TIMEOUT_MILLISECONDS * 1000;
 
     fd_set fdsetRecv;
     fd_set fdsetSend;
     fd_set fdsetError;
     FD_ZERO(&fdsetRecv);
     FD_ZERO(&fdsetSend);
     FD_ZERO(&fdsetError);
     SOCKET hSocketMax = 0;
 
     for (SOCKET hSocket : recv_select_set) {
         FD_SET(hSocket, &fdsetRecv);
         hSocketMax = std::max(hSocketMax, hSocket);
     }
 
     for (SOCKET hSocket : send_select_set) {
         FD_SET(hSocket, &fdsetSend);
         hSocketMax = std::max(hSocketMax, hSocket);
     }
 
     for (SOCKET hSocket : error_select_set) {
         FD_SET(hSocket, &fdsetError);
         hSocketMax = std::max(hSocketMax, hSocket);
     }
 
     int nSelect =
         select(hSocketMax + 1, &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
 
     if (interruptNet) {
         return;
     }
 
     if (nSelect == SOCKET_ERROR) {
         int nErr = WSAGetLastError();
         LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
         for (unsigned int i = 0; i <= hSocketMax; i++) {
             FD_SET(i, &fdsetRecv);
         }
         FD_ZERO(&fdsetSend);
         FD_ZERO(&fdsetError);
         if (!interruptNet.sleep_for(
                 std::chrono::milliseconds(SELECT_TIMEOUT_MILLISECONDS))) {
             return;
         }
     }
 
     for (SOCKET hSocket : recv_select_set) {
         if (FD_ISSET(hSocket, &fdsetRecv)) {
             recv_set.insert(hSocket);
         }
     }
 
     for (SOCKET hSocket : send_select_set) {
         if (FD_ISSET(hSocket, &fdsetSend)) {
             send_set.insert(hSocket);
         }
     }
 
     for (SOCKET hSocket : error_select_set) {
         if (FD_ISSET(hSocket, &fdsetError)) {
             error_set.insert(hSocket);
         }
     }
 }
 #endif
 
 void CConnman::SocketHandler() {
     std::set<SOCKET> recv_set, send_set, error_set;
     SocketEvents(recv_set, send_set, error_set);
 
     if (interruptNet) {
         return;
     }
 
     //
     // Accept new connections
     //
     for (const ListenSocket &hListenSocket : vhListenSocket) {
         if (hListenSocket.socket != INVALID_SOCKET &&
             recv_set.count(hListenSocket.socket) > 0) {
             AcceptConnection(hListenSocket);
         }
     }
 
     //
     // Service each socket
     //
     std::vector<CNode *> vNodesCopy;
     {
         LOCK(cs_vNodes);
         vNodesCopy = vNodes;
         for (CNode *pnode : vNodesCopy) {
             pnode->AddRef();
         }
     }
     for (CNode *pnode : vNodesCopy) {
         if (interruptNet) {
             return;
         }
 
         //
         // Receive
         //
         bool recvSet = false;
         bool sendSet = false;
         bool errorSet = false;
         {
             LOCK(pnode->cs_hSocket);
             if (pnode->hSocket == INVALID_SOCKET) {
                 continue;
             }
             recvSet = recv_set.count(pnode->hSocket) > 0;
             sendSet = send_set.count(pnode->hSocket) > 0;
             errorSet = error_set.count(pnode->hSocket) > 0;
         }
         if (recvSet || errorSet) {
             // typical socket buffer is 8K-64K
             uint8_t pchBuf[0x10000];
             int32_t nBytes = 0;
             {
                 LOCK(pnode->cs_hSocket);
                 if (pnode->hSocket == INVALID_SOCKET) {
                     continue;
                 }
                 nBytes = recv(pnode->hSocket, (char *)pchBuf, sizeof(pchBuf),
                               MSG_DONTWAIT);
             }
             if (nBytes > 0) {
                 bool notify = false;
                 if (!pnode->ReceiveMsgBytes(
                         *config, Span<const uint8_t>(pchBuf, nBytes), notify)) {
                     pnode->CloseSocketDisconnect();
                 }
                 RecordBytesRecv(nBytes);
                 if (notify) {
                     size_t nSizeAdded = 0;
                     auto it(pnode->vRecvMsg.begin());
                     for (; it != pnode->vRecvMsg.end(); ++it) {
                         // vRecvMsg contains only completed CNetMessage
                         // the single possible partially deserialized message
                         // are held by TransportDeserializer
                         nSizeAdded += it->m_raw_message_size;
                     }
                     {
                         LOCK(pnode->cs_vProcessMsg);
                         pnode->vProcessMsg.splice(pnode->vProcessMsg.end(),
                                                   pnode->vRecvMsg,
                                                   pnode->vRecvMsg.begin(), it);
                         pnode->nProcessQueueSize += nSizeAdded;
                         pnode->fPauseRecv =
                             pnode->nProcessQueueSize > nReceiveFloodSize;
                     }
                     WakeMessageHandler();
                 }
             } else if (nBytes == 0) {
                 // socket closed gracefully
                 if (!pnode->fDisconnect) {
                     LogPrint(BCLog::NET, "socket closed for peer=%d\n",
                              pnode->GetId());
                 }
                 pnode->CloseSocketDisconnect();
             } else if (nBytes < 0) {
                 // error
                 int nErr = WSAGetLastError();
                 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
                     nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
                     if (!pnode->fDisconnect) {
                         LogPrint(BCLog::NET,
                                  "socket recv error for peer=%d: %s\n",
                                  pnode->GetId(), NetworkErrorString(nErr));
                     }
                     pnode->CloseSocketDisconnect();
                 }
             }
         }
 
         //
         // Send
         //
         if (sendSet) {
             LOCK(pnode->cs_vSend);
             size_t nBytes = SocketSendData(*pnode);
             if (nBytes) {
                 RecordBytesSent(nBytes);
             }
         }
 
         if (InactivityCheck(*pnode)) {
             pnode->fDisconnect = true;
         }
     }
     {
         LOCK(cs_vNodes);
         for (CNode *pnode : vNodesCopy) {
             pnode->Release();
         }
     }
 }
 
 void CConnman::ThreadSocketHandler() {
     while (!interruptNet) {
         DisconnectNodes();
         NotifyNumConnectionsChanged();
         SocketHandler();
     }
 }
 
 void CConnman::WakeMessageHandler() {
     {
         LOCK(mutexMsgProc);
         fMsgProcWake = true;
     }
     condMsgProc.notify_one();
 }
 
 void CConnman::ThreadDNSAddressSeed() {
     FastRandomContext rng;
     std::vector<std::string> seeds =
         GetRandomizedDNSSeeds(config->GetChainParams());
     // Number of seeds left before testing if we have enough connections
     int seeds_right_now = 0;
     int found = 0;
 
     if (gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED)) {
         // When -forcednsseed is provided, query all.
         seeds_right_now = seeds.size();
     } else if (addrman.size() == 0) {
         // If we have no known peers, query all.
         // This will occur on the first run, or if peers.dat has been
         // deleted.
         seeds_right_now = seeds.size();
     }
 
     // goal: only query DNS seed if address need is acute
     // * If we have a reasonable number of peers in addrman, spend
     //   some time trying them first. This improves user privacy by
     //   creating fewer identifying DNS requests, reduces trust by
     //   giving seeds less influence on the network topology, and
     //   reduces traffic to the seeds.
     // * When querying DNS seeds query a few at once, this ensures
     //   that we don't give DNS seeds the ability to eclipse nodes
     //   that query them.
     // * If we continue having problems, eventually query all the
     //   DNS seeds, and if that fails too, also try the fixed seeds.
     //   (done in ThreadOpenConnections)
     const std::chrono::seconds seeds_wait_time =
         (addrman.size() >= DNSSEEDS_DELAY_PEER_THRESHOLD
              ? DNSSEEDS_DELAY_MANY_PEERS
              : DNSSEEDS_DELAY_FEW_PEERS);
 
     for (const std::string &seed : seeds) {
         if (seeds_right_now == 0) {
             seeds_right_now += DNSSEEDS_TO_QUERY_AT_ONCE;
 
             if (addrman.size() > 0) {
                 LogPrintf("Waiting %d seconds before querying DNS seeds.\n",
                           seeds_wait_time.count());
                 std::chrono::seconds to_wait = seeds_wait_time;
                 while (to_wait.count() > 0) {
                     // if sleeping for the MANY_PEERS interval, wake up
                     // early to see if we have enough peers and can stop
                     // this thread entirely freeing up its resources
                     std::chrono::seconds w =
                         std::min(DNSSEEDS_DELAY_FEW_PEERS, to_wait);
                     if (!interruptNet.sleep_for(w)) {
                         return;
                     }
                     to_wait -= w;
 
                     int nRelevant = 0;
                     {
                         LOCK(cs_vNodes);
                         for (const CNode *pnode : vNodes) {
                             if (pnode->fSuccessfullyConnected &&
-                                pnode->IsOutboundOrBlockRelayConn()) {
+                                pnode->IsFullOutboundConn()) {
                                 ++nRelevant;
                             }
                         }
                     }
                     if (nRelevant >= 2) {
                         if (found > 0) {
                             LogPrintf("%d addresses found from DNS seeds\n",
                                       found);
                             LogPrintf(
                                 "P2P peers available. Finished DNS seeding.\n");
                         } else {
                             LogPrintf(
                                 "P2P peers available. Skipped DNS seeding.\n");
                         }
                         return;
                     }
                 }
             }
         }
 
         if (interruptNet) {
             return;
         }
 
         // hold off on querying seeds if P2P network deactivated
         if (!fNetworkActive) {
             LogPrintf("Waiting for network to be reactivated before querying "
                       "DNS seeds.\n");
             do {
                 if (!interruptNet.sleep_for(std::chrono::seconds{1})) {
                     return;
                 }
             } while (!fNetworkActive);
         }
 
         LogPrintf("Loading addresses from DNS seed %s\n", seed);
         if (HaveNameProxy()) {
             AddAddrFetch(seed);
         } else {
             std::vector<CNetAddr> vIPs;
             std::vector<CAddress> vAdd;
             ServiceFlags requiredServiceBits =
                 GetDesirableServiceFlags(NODE_NONE);
             std::string host = strprintf("x%x.%s", requiredServiceBits, seed);
             CNetAddr resolveSource;
             if (!resolveSource.SetInternal(host)) {
                 continue;
             }
 
             // Limits number of IPs learned from a DNS seed
             unsigned int nMaxIPs = 256;
             if (LookupHost(host, vIPs, nMaxIPs, true)) {
                 for (const CNetAddr &ip : vIPs) {
                     int nOneDay = 24 * 3600;
                     CAddress addr = CAddress(
                         CService(ip, config->GetChainParams().GetDefaultPort()),
                         requiredServiceBits);
                     // Use a random age between 3 and 7 days old.
                     addr.nTime =
                         GetTime() - 3 * nOneDay - rng.randrange(4 * nOneDay);
                     vAdd.push_back(addr);
                     found++;
                 }
                 addrman.Add(vAdd, resolveSource);
             } else {
                 // We now avoid directly using results from DNS Seeds which do
                 // not support service bit filtering, instead using them as a
                 // addrfetch to get nodes with our desired service bits.
                 AddAddrFetch(seed);
             }
         }
         --seeds_right_now;
     }
     LogPrintf("%d addresses found from DNS seeds\n", found);
 }
 
 void CConnman::DumpAddresses() {
     int64_t nStart = GetTimeMillis();
 
     DumpPeerAddresses(config->GetChainParams(), ::gArgs, addrman);
 
     LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat  %dms\n",
              addrman.size(), GetTimeMillis() - nStart);
 }
 
 void CConnman::ProcessAddrFetch() {
     std::string strDest;
     {
         LOCK(m_addr_fetches_mutex);
         if (m_addr_fetches.empty()) {
             return;
         }
         strDest = m_addr_fetches.front();
         m_addr_fetches.pop_front();
     }
     CAddress addr;
     CSemaphoreGrant grant(*semOutbound, true);
     if (grant) {
         OpenNetworkConnection(addr, false, &grant, strDest.c_str(),
                               ConnectionType::ADDR_FETCH);
     }
 }
 
 bool CConnman::GetTryNewOutboundPeer() {
     return m_try_another_outbound_peer;
 }
 
 void CConnman::SetTryNewOutboundPeer(bool flag) {
     m_try_another_outbound_peer = flag;
     LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n",
              flag ? "true" : "false");
 }
 
 // Return the number of peers we have over our outbound connection limit.
 // Exclude peers that are marked for disconnect, or are going to be disconnected
 // soon (eg ADDR_FETCH and FEELER).
 // Also exclude peers that haven't finished initial connection handshake yet (so
 // that we don't decide we're over our desired connection limit, and then evict
 // some peer that has finished the handshake).
 int CConnman::GetExtraFullOutboundCount() {
     int full_outbound_peers = 0;
     {
         LOCK(cs_vNodes);
         for (const CNode *pnode : vNodes) {
             if (pnode->fSuccessfullyConnected && !pnode->fDisconnect &&
                 pnode->IsFullOutboundConn()) {
                 ++full_outbound_peers;
             }
         }
     }
     return std::max(full_outbound_peers - m_max_outbound_full_relay -
                         m_max_avalanche_outbound,
                     0);
 }
 
 int CConnman::GetExtraBlockRelayCount() {
     int block_relay_peers = 0;
     {
         LOCK(cs_vNodes);
         for (const CNode *pnode : vNodes) {
             if (pnode->fSuccessfullyConnected && !pnode->fDisconnect &&
                 pnode->IsBlockOnlyConn()) {
                 ++block_relay_peers;
             }
         }
     }
     return std::max(block_relay_peers - m_max_outbound_block_relay, 0);
 }
 
 void CConnman::ThreadOpenConnections(
     const std::vector<std::string> connect,
     std::function<void(const CAddress &, ConnectionType)> mockOpenConnection) {
     // Connect to specific addresses
     if (!connect.empty()) {
         for (int64_t nLoop = 0;; nLoop++) {
             ProcessAddrFetch();
             for (const std::string &strAddr : connect) {
                 CAddress addr(CService(), NODE_NONE);
                 OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(),
                                       ConnectionType::MANUAL);
                 for (int i = 0; i < 10 && i < nLoop; i++) {
                     if (!interruptNet.sleep_for(
                             std::chrono::milliseconds(500))) {
                         return;
                     }
                 }
             }
             if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
                 return;
             }
         }
     }
 
     // Initiate network connections
     auto start = GetTime<std::chrono::microseconds>();
 
     // Minimum time before next feeler connection (in microseconds).
     auto next_feeler = PoissonNextSend(start, FEELER_INTERVAL);
     auto next_extra_block_relay =
         PoissonNextSend(start, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
     const bool dnsseed = gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED);
     bool add_fixed_seeds = gArgs.GetBoolArg("-fixedseeds", DEFAULT_FIXEDSEEDS);
 
     if (!add_fixed_seeds) {
         LogPrintf("Fixed seeds are disabled\n");
     }
 
     while (!interruptNet) {
         ProcessAddrFetch();
 
         // No need to sleep the thread if we are mocking the network connection
         if (!mockOpenConnection &&
             !interruptNet.sleep_for(std::chrono::milliseconds(500))) {
             return;
         }
 
         CSemaphoreGrant grant(*semOutbound);
         if (interruptNet) {
             return;
         }
 
         if (add_fixed_seeds && addrman.size() == 0) {
             // When the node starts with an empty peers.dat, there are a few
             // other sources of peers before we fallback on to fixed seeds:
             // -dnsseed, -seednode, -addnode If none of those are available, we
             // fallback on to fixed seeds immediately, else we allow 60 seconds
             // for any of those sources to populate addrman.
             bool add_fixed_seeds_now = false;
             // It is cheapest to check if enough time has passed first.
             if (GetTime<std::chrono::seconds>() >
                 start + std::chrono::minutes{1}) {
                 add_fixed_seeds_now = true;
                 LogPrintf("Adding fixed seeds as 60 seconds have passed and "
                           "addrman is empty\n");
             }
 
             // Checking !dnsseed is cheaper before locking 2 mutexes.
             if (!add_fixed_seeds_now && !dnsseed) {
                 LOCK2(m_addr_fetches_mutex, cs_vAddedNodes);
                 if (m_addr_fetches.empty() && vAddedNodes.empty()) {
                     add_fixed_seeds_now = true;
                     LogPrintf(
                         "Adding fixed seeds as -dnsseed=0, -addnode is not "
                         "provided and all -seednode(s) attempted\n");
                 }
             }
 
             if (add_fixed_seeds_now) {
                 CNetAddr local;
                 local.SetInternal("fixedseeds");
                 addrman.Add(convertSeed6(config->GetChainParams().FixedSeeds()),
                             local);
                 add_fixed_seeds = false;
             }
         }
 
         //
         // Choose an address to connect to based on most recently seen
         //
         CAddress addrConnect;
 
         // Only connect out to one peer per network group (/16 for IPv4).
         int nOutboundFullRelay = 0;
         int nOutboundBlockRelay = 0;
         int nOutboundAvalanche = 0;
         std::set<std::vector<uint8_t>> setConnected;
 
         {
             LOCK(cs_vNodes);
             for (const CNode *pnode : vNodes) {
                 if (pnode->IsAvalancheOutboundConnection()) {
                     nOutboundAvalanche++;
                 } else if (pnode->IsFullOutboundConn()) {
                     nOutboundFullRelay++;
                 } else if (pnode->IsBlockOnlyConn()) {
                     nOutboundBlockRelay++;
                 }
 
                 // Netgroups for inbound and manual peers are not excluded
                 // because our goal here is to not use multiple of our
                 // limited outbound slots on a single netgroup but inbound
                 // and manual peers do not use our outbound slots. Inbound
                 // peers also have the added issue that they could be attacker
                 // controlled and could be used to prevent us from connecting
                 // to particular hosts if we used them here.
                 switch (pnode->m_conn_type) {
                     case ConnectionType::INBOUND:
                     case ConnectionType::MANUAL:
                         break;
                     case ConnectionType::AVALANCHE_OUTBOUND:
                     case ConnectionType::OUTBOUND_FULL_RELAY:
                     case ConnectionType::BLOCK_RELAY:
                     case ConnectionType::ADDR_FETCH:
                     case ConnectionType::FEELER:
                         setConnected.insert(
                             pnode->addr.GetGroup(addrman.GetAsmap()));
                 } // no default case, so the compiler can warn about missing
                   // cases
             }
         }
 
         ConnectionType conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
         auto now = GetTime<std::chrono::microseconds>();
         bool anchor = false;
         bool fFeeler = false;
 
         // Determine what type of connection to open. Opening
         // BLOCK_RELAY connections to addresses from anchors.dat gets the
         // highest priority. Then we open AVALANCHE_OUTBOUND connection until we
         // hit our avalanche outbound peer limit, which is 0 if avalanche is not
         // enabled. We fallback after 50 retries to OUTBOUND_FULL_RELAY if the
         // peer is not avalanche capable until we meet our full-relay capacity.
         // Then we open BLOCK_RELAY connection until we hit our block-relay-only
         // peer limit.
         // GetTryNewOutboundPeer() gets set when a stale tip is detected, so we
         // try opening an additional OUTBOUND_FULL_RELAY connection. If none of
         // these conditions are met, check to see if it's time to try an extra
         // block-relay-only peer (to confirm our tip is current, see below) or
         // the next_feeler timer to decide if we should open a FEELER.
 
         if (!m_anchors.empty() &&
             (nOutboundBlockRelay < m_max_outbound_block_relay)) {
             conn_type = ConnectionType::BLOCK_RELAY;
             anchor = true;
         } else if (g_avalanche &&
                    (nOutboundAvalanche < m_max_avalanche_outbound)) {
             conn_type = ConnectionType::AVALANCHE_OUTBOUND;
         } else if (nOutboundFullRelay < m_max_outbound_full_relay) {
             // OUTBOUND_FULL_RELAY
         } else if (nOutboundBlockRelay < m_max_outbound_block_relay) {
             conn_type = ConnectionType::BLOCK_RELAY;
         } else if (GetTryNewOutboundPeer()) {
             // OUTBOUND_FULL_RELAY
         } else if (now > next_extra_block_relay &&
                    m_start_extra_block_relay_peers) {
             // Periodically connect to a peer (using regular outbound selection
             // methodology from addrman) and stay connected long enough to sync
             // headers, but not much else.
             //
             // Then disconnect the peer, if we haven't learned anything new.
             //
             // The idea is to make eclipse attacks very difficult to pull off,
             // because every few minutes we're finding a new peer to learn
             // headers from.
             //
             // This is similar to the logic for trying extra outbound
             // (full-relay) peers, except:
             // - we do this all the time on a poisson timer, rather than just
             //   when our tip is stale
             // - we potentially disconnect our next-youngest block-relay-only
             //   peer, if our newest block-relay-only peer delivers a block more
             //   recently.
             //   See the eviction logic in net_processing.cpp.
             //
             // Because we can promote these connections to block-relay-only
             // connections, they do not get their own ConnectionType enum
             // (similar to how we deal with extra outbound peers).
             next_extra_block_relay =
                 PoissonNextSend(now, EXTRA_BLOCK_RELAY_ONLY_PEER_INTERVAL);
             conn_type = ConnectionType::BLOCK_RELAY;
         } else if (now > next_feeler) {
             next_feeler = PoissonNextSend(now, FEELER_INTERVAL);
             conn_type = ConnectionType::FEELER;
             fFeeler = true;
         } else {
             // skip to next iteration of while loop
             continue;
         }
 
         addrman.ResolveCollisions();
 
         int64_t nANow = GetAdjustedTime();
         int nTries = 0;
         while (!interruptNet) {
             if (anchor && !m_anchors.empty()) {
                 const CAddress addr = m_anchors.back();
                 m_anchors.pop_back();
                 if (!addr.IsValid() || IsLocal(addr) || !IsReachable(addr) ||
                     !HasAllDesirableServiceFlags(addr.nServices) ||
                     setConnected.count(addr.GetGroup(addrman.GetAsmap()))) {
                     continue;
                 }
                 addrConnect = addr;
                 LogPrint(BCLog::NET,
                          "Trying to make an anchor connection to %s\n",
                          addrConnect.ToString());
                 break;
             }
             // If we didn't find an appropriate destination after trying 100
             // addresses fetched from addrman, stop this loop, and let the outer
             // loop run again (which sleeps, adds seed nodes, recalculates
             // already-connected network ranges, ...) before trying new addrman
             // addresses.
             nTries++;
             if (nTries > 100) {
                 break;
             }
 
             CAddress addr;
             int64_t addr_last_try{0};
 
             if (fFeeler) {
                 // First, try to get a tried table collision address. This
                 // returns an empty (invalid) address if there are no collisions
                 // to try.
                 std::tie(addr, addr_last_try) = addrman.SelectTriedCollision();
 
                 if (!addr.IsValid()) {
                     // No tried table collisions. Select a new table address
                     // for our feeler.
                     std::tie(addr, addr_last_try) = addrman.Select(true);
                 } else if (AlreadyConnectedToAddress(addr)) {
                     // If test-before-evict logic would have us connect to a
                     // peer that we're already connected to, just mark that
                     // address as Good(). We won't be able to initiate the
                     // connection anyway, so this avoids inadvertently evicting
                     // a currently-connected peer.
                     addrman.Good(addr);
                     // Select a new table address for our feeler instead.
                     std::tie(addr, addr_last_try) = addrman.Select(true);
                 }
             } else {
                 // Not a feeler
                 std::tie(addr, addr_last_try) = addrman.Select();
             }
 
             // Require outbound connections, other than feelers and avalanche,
             // to be to distinct network groups
             if (!fFeeler && conn_type != ConnectionType::AVALANCHE_OUTBOUND &&
                 setConnected.count(addr.GetGroup(addrman.GetAsmap()))) {
                 break;
             }
 
             // if we selected an invalid or local address, restart
             if (!addr.IsValid() || IsLocal(addr)) {
                 break;
             }
 
             if (!IsReachable(addr)) {
                 continue;
             }
 
             // only consider very recently tried nodes after 30 failed attempts
             if (nANow - addr_last_try < 600 && nTries < 30) {
                 continue;
             }
 
             // for non-feelers, require all the services we'll want,
             // for feelers, only require they be a full node (only because most
             // SPV clients don't have a good address DB available)
             if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) {
                 continue;
             }
 
             if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) {
                 continue;
             }
 
             // Do not connect to bad ports, unless 50 invalid addresses have
             // been selected already.
             if (nTries < 50 && (addr.IsIPv4() || addr.IsIPv6()) &&
                 IsBadPort(addr.GetPort())) {
                 continue;
             }
 
             // For avalanche peers, check they have the avalanche service bit
             // set.
             if (conn_type == ConnectionType::AVALANCHE_OUTBOUND &&
                 !(addr.nServices & NODE_AVALANCHE)) {
                 // If this peer is not suitable as an avalanche one and we tried
                 // over 50 addresses already, see if we can fallback to a non
                 // avalanche full outbound.
                 if (nTries < 50 ||
                     nOutboundFullRelay >= m_max_outbound_full_relay ||
                     setConnected.count(addr.GetGroup(addrman.GetAsmap()))) {
                     // Fallback is not desirable or possible, try another one
                     continue;
                 }
 
                 // Fallback is possible, update the connection type accordingly
                 conn_type = ConnectionType::OUTBOUND_FULL_RELAY;
             }
 
             addrConnect = addr;
             break;
         }
 
         if (addrConnect.IsValid()) {
             if (fFeeler) {
                 // Add small amount of random noise before connection to avoid
                 // synchronization.
                 int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
                 if (!interruptNet.sleep_for(
                         std::chrono::milliseconds(randsleep))) {
                     return;
                 }
                 LogPrint(BCLog::NET, "Making feeler connection to %s\n",
                          addrConnect.ToString());
             }
 
             // This mock is for testing purpose only. It prevents the thread
             // from attempting the connection which is useful for testing.
             if (mockOpenConnection) {
                 mockOpenConnection(addrConnect, conn_type);
             } else {
                 OpenNetworkConnection(addrConnect,
                                       int(setConnected.size()) >=
                                           std::min(nMaxConnections - 1, 2),
                                       &grant, nullptr, conn_type);
             }
         }
     }
 }
 
 std::vector<CAddress> CConnman::GetCurrentBlockRelayOnlyConns() const {
     std::vector<CAddress> ret;
     LOCK(cs_vNodes);
     for (const CNode *pnode : vNodes) {
         if (pnode->IsBlockOnlyConn()) {
             ret.push_back(pnode->addr);
         }
     }
 
     return ret;
 }
 
 std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() {
     std::vector<AddedNodeInfo> ret;
 
     std::list<std::string> lAddresses(0);
     {
         LOCK(cs_vAddedNodes);
         ret.reserve(vAddedNodes.size());
         std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(),
                   std::back_inserter(lAddresses));
     }
 
     // Build a map of all already connected addresses (by IP:port and by name)
     // to inbound/outbound and resolved CService
     std::map<CService, bool> mapConnected;
     std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
     {
         LOCK(cs_vNodes);
         for (const CNode *pnode : vNodes) {
             if (pnode->addr.IsValid()) {
                 mapConnected[pnode->addr] = pnode->IsInboundConn();
             }
             std::string addrName = pnode->GetAddrName();
             if (!addrName.empty()) {
                 mapConnectedByName[std::move(addrName)] =
                     std::make_pair(pnode->IsInboundConn(),
                                    static_cast<const CService &>(pnode->addr));
             }
         }
     }
 
     for (const std::string &strAddNode : lAddresses) {
         CService service(
             LookupNumeric(strAddNode, Params().GetDefaultPort(strAddNode)));
         AddedNodeInfo addedNode{strAddNode, CService(), false, false};
         if (service.IsValid()) {
             // strAddNode is an IP:port
             auto it = mapConnected.find(service);
             if (it != mapConnected.end()) {
                 addedNode.resolvedAddress = service;
                 addedNode.fConnected = true;
                 addedNode.fInbound = it->second;
             }
         } else {
             // strAddNode is a name
             auto it = mapConnectedByName.find(strAddNode);
             if (it != mapConnectedByName.end()) {
                 addedNode.resolvedAddress = it->second.second;
                 addedNode.fConnected = true;
                 addedNode.fInbound = it->second.first;
             }
         }
         ret.emplace_back(std::move(addedNode));
     }
 
     return ret;
 }
 
 void CConnman::ThreadOpenAddedConnections() {
     while (true) {
         CSemaphoreGrant grant(*semAddnode);
         std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
         bool tried = false;
         for (const AddedNodeInfo &info : vInfo) {
             if (!info.fConnected) {
                 if (!grant.TryAcquire()) {
                     // If we've used up our semaphore and need a new one, let's
                     // not wait here since while we are waiting the
                     // addednodeinfo state might change.
                     break;
                 }
                 tried = true;
                 CAddress addr(CService(), NODE_NONE);
                 OpenNetworkConnection(addr, false, &grant,
                                       info.strAddedNode.c_str(),
                                       ConnectionType::MANUAL);
                 if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) {
                     return;
                 }
             }
         }
         // Retry every 60 seconds if a connection was attempted, otherwise two
         // seconds.
         if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) {
             return;
         }
     }
 }
 
 // If successful, this moves the passed grant to the constructed node.
 void CConnman::OpenNetworkConnection(const CAddress &addrConnect,
                                      bool fCountFailure,
                                      CSemaphoreGrant *grantOutbound,
                                      const char *pszDest,
                                      ConnectionType conn_type) {
     assert(conn_type != ConnectionType::INBOUND);
 
     //
     // Initiate outbound network connection
     //
     if (interruptNet) {
         return;
     }
     if (!fNetworkActive) {
         return;
     }
     if (!pszDest) {
         bool banned_or_discouraged =
             m_banman && (m_banman->IsDiscouraged(addrConnect) ||
                          m_banman->IsBanned(addrConnect));
         if (IsLocal(addrConnect) || banned_or_discouraged ||
             AlreadyConnectedToAddress(addrConnect)) {
             return;
         }
     } else if (FindNode(std::string(pszDest))) {
         return;
     }
 
     CNode *pnode = ConnectNode(addrConnect, pszDest, fCountFailure, conn_type);
 
     if (!pnode) {
         return;
     }
     if (grantOutbound) {
         grantOutbound->MoveTo(pnode->grantOutbound);
     }
 
     for (auto interface : m_msgproc) {
         interface->InitializeNode(*config, pnode);
     }
 
     {
         LOCK(cs_vNodes);
         vNodes.push_back(pnode);
     }
 }
 
 void CConnman::ThreadMessageHandler() {
     while (!flagInterruptMsgProc) {
         std::vector<CNode *> vNodesCopy;
         {
             LOCK(cs_vNodes);
             vNodesCopy = vNodes;
             for (CNode *pnode : vNodesCopy) {
                 pnode->AddRef();
             }
         }
 
         bool fMoreWork = false;
 
         for (CNode *pnode : vNodesCopy) {
             if (pnode->fDisconnect) {
                 continue;
             }
 
             bool fMoreNodeWork = false;
             // Receive messages
             for (auto interface : m_msgproc) {
                 fMoreNodeWork |= interface->ProcessMessages(
                     *config, pnode, flagInterruptMsgProc);
             }
             fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
             if (flagInterruptMsgProc) {
                 return;
             }
 
             // Send messages
             {
                 LOCK(pnode->cs_sendProcessing);
                 for (auto interface : m_msgproc) {
                     interface->SendMessages(*config, pnode);
                 }
             }
 
             if (flagInterruptMsgProc) {
                 return;
             }
         }
 
         {
             LOCK(cs_vNodes);
             for (CNode *pnode : vNodesCopy) {
                 pnode->Release();
             }
         }
 
         WAIT_LOCK(mutexMsgProc, lock);
         if (!fMoreWork) {
             condMsgProc.wait_until(lock,
                                    std::chrono::steady_clock::now() +
                                        std::chrono::milliseconds(100),
                                    [this]() EXCLUSIVE_LOCKS_REQUIRED(
                                        mutexMsgProc) { return fMsgProcWake; });
         }
         fMsgProcWake = false;
     }
 }
 
 void CConnman::ThreadI2PAcceptIncoming() {
     static constexpr auto err_wait_begin = 1s;
     static constexpr auto err_wait_cap = 5min;
     auto err_wait = err_wait_begin;
 
     bool advertising_listen_addr = false;
     i2p::Connection conn;
 
     while (!interruptNet) {
         if (!m_i2p_sam_session->Listen(conn)) {
             if (advertising_listen_addr && conn.me.IsValid()) {
                 RemoveLocal(conn.me);
                 advertising_listen_addr = false;
             }
 
             interruptNet.sleep_for(err_wait);
             if (err_wait < err_wait_cap) {
                 err_wait *= 2;
             }
 
             continue;
         }
 
         if (!advertising_listen_addr) {
             AddLocal(conn.me, LOCAL_MANUAL);
             advertising_listen_addr = true;
         }
 
         if (!m_i2p_sam_session->Accept(conn)) {
             continue;
         }
 
         CreateNodeFromAcceptedSocket(
             conn.sock->Release(), NetPermissionFlags::PF_NONE,
             CAddress{conn.me, NODE_NONE}, CAddress{conn.peer, NODE_NONE});
     }
 }
 
 bool CConnman::BindListenPort(const CService &addrBind, bilingual_str &strError,
                               NetPermissionFlags permissions) {
     int nOne = 1;
 
     // Create socket for listening for incoming connections
     struct sockaddr_storage sockaddr;
     socklen_t len = sizeof(sockaddr);
     if (!addrBind.GetSockAddr((struct sockaddr *)&sockaddr, &len)) {
         strError = strprintf(
             Untranslated("Error: Bind address family for %s not supported"),
             addrBind.ToString());
         LogPrintf("%s\n", strError.original);
         return false;
     }
 
     std::unique_ptr<Sock> sock = CreateSock(addrBind);
     if (!sock) {
         strError =
             strprintf(Untranslated("Error: Couldn't open socket for incoming "
                                    "connections (socket returned error %s)"),
                       NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError.original);
         return false;
     }
 
     // Allow binding if the port is still in TIME_WAIT state after
     // the program was closed and restarted.
     setsockopt(sock->Get(), SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne,
                sizeof(int));
 
     // Some systems don't have IPV6_V6ONLY but are always v6only; others do have
     // the option and enable it by default or not. Try to enable it, if
     // possible.
     if (addrBind.IsIPv6()) {
 #ifdef IPV6_V6ONLY
         setsockopt(sock->Get(), IPPROTO_IPV6, IPV6_V6ONLY,
                    (sockopt_arg_type)&nOne, sizeof(int));
 #endif
 #ifdef WIN32
         int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
         setsockopt(sock->Get(), IPPROTO_IPV6, IPV6_PROTECTION_LEVEL,
                    (sockopt_arg_type)&nProtLevel, sizeof(int));
 #endif
     }
 
     if (::bind(sock->Get(), (struct sockaddr *)&sockaddr, len) ==
         SOCKET_ERROR) {
         int nErr = WSAGetLastError();
         if (nErr == WSAEADDRINUSE) {
             strError = strprintf(_("Unable to bind to %s on this computer. %s "
                                    "is probably already running."),
                                  addrBind.ToString(), PACKAGE_NAME);
         } else {
             strError = strprintf(_("Unable to bind to %s on this computer "
                                    "(bind returned error %s)"),
                                  addrBind.ToString(), NetworkErrorString(nErr));
         }
         LogPrintf("%s\n", strError.original);
         return false;
     }
     LogPrintf("Bound to %s\n", addrBind.ToString());
 
     // Listen for incoming connections
     if (listen(sock->Get(), SOMAXCONN) == SOCKET_ERROR) {
         strError = strprintf(_("Error: Listening for incoming connections "
                                "failed (listen returned error %s)"),
                              NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError.original);
         return false;
     }
 
     vhListenSocket.push_back(ListenSocket(sock->Release(), permissions));
     return true;
 }
 
 void Discover() {
     if (!fDiscover) {
         return;
     }
 
 #ifdef WIN32
     // Get local host IP
     char pszHostName[256] = "";
     if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) {
         std::vector<CNetAddr> vaddr;
         if (LookupHost(pszHostName, vaddr, 0, true)) {
             for (const CNetAddr &addr : vaddr) {
                 if (AddLocal(addr, LOCAL_IF)) {
                     LogPrintf("%s: %s - %s\n", __func__, pszHostName,
                               addr.ToString());
                 }
             }
         }
     }
 #elif (HAVE_DECL_GETIFADDRS && HAVE_DECL_FREEIFADDRS)
     // Get local host ip
     struct ifaddrs *myaddrs;
     if (getifaddrs(&myaddrs) == 0) {
         for (struct ifaddrs *ifa = myaddrs; ifa != nullptr;
              ifa = ifa->ifa_next) {
             if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0 ||
                 strcmp(ifa->ifa_name, "lo") == 0 ||
                 strcmp(ifa->ifa_name, "lo0") == 0) {
                 continue;
             }
             if (ifa->ifa_addr->sa_family == AF_INET) {
                 struct sockaddr_in *s4 =
                     reinterpret_cast<struct sockaddr_in *>(ifa->ifa_addr);
                 CNetAddr addr(s4->sin_addr);
                 if (AddLocal(addr, LOCAL_IF)) {
                     LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name,
                               addr.ToString());
                 }
             } else if (ifa->ifa_addr->sa_family == AF_INET6) {
                 struct sockaddr_in6 *s6 =
                     reinterpret_cast<struct sockaddr_in6 *>(ifa->ifa_addr);
                 CNetAddr addr(s6->sin6_addr);
                 if (AddLocal(addr, LOCAL_IF)) {
                     LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name,
                               addr.ToString());
                 }
             }
         }
         freeifaddrs(myaddrs);
     }
 #endif
 }
 
 void CConnman::SetNetworkActive(bool active) {
     LogPrintf("%s: %s\n", __func__, active);
 
     if (fNetworkActive == active) {
         return;
     }
 
     fNetworkActive = active;
     uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
 }
 
 CConnman::CConnman(const Config &configIn, uint64_t nSeed0In, uint64_t nSeed1In,
                    AddrMan &addrmanIn, bool network_active)
     : config(&configIn), addrman(addrmanIn), nSeed0(nSeed0In),
       nSeed1(nSeed1In) {
     SetTryNewOutboundPeer(false);
 
     Options connOptions;
     Init(connOptions);
     SetNetworkActive(network_active);
 }
 
 NodeId CConnman::GetNewNodeId() {
     return nLastNodeId.fetch_add(1);
 }
 
 bool CConnman::Bind(const CService &addr, unsigned int flags,
                     NetPermissionFlags permissions) {
     if (!(flags & BF_EXPLICIT) && !IsReachable(addr)) {
         return false;
     }
     bilingual_str strError;
     if (!BindListenPort(addr, strError, permissions)) {
         if ((flags & BF_REPORT_ERROR) && clientInterface) {
             clientInterface->ThreadSafeMessageBox(
                 strError, "", CClientUIInterface::MSG_ERROR);
         }
         return false;
     }
 
     if (addr.IsRoutable() && fDiscover && !(flags & BF_DONT_ADVERTISE) &&
         !(permissions & PF_NOBAN)) {
         AddLocal(addr, LOCAL_BIND);
     }
 
     return true;
 }
 
 bool CConnman::InitBinds(const Options &options) {
     bool fBound = false;
     for (const auto &addrBind : options.vBinds) {
         fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR),
                        NetPermissionFlags::PF_NONE);
     }
     for (const auto &addrBind : options.vWhiteBinds) {
         fBound |= Bind(addrBind.m_service, (BF_EXPLICIT | BF_REPORT_ERROR),
                        addrBind.m_flags);
     }
     for (const auto &addr_bind : options.onion_binds) {
         fBound |= Bind(addr_bind, BF_EXPLICIT | BF_DONT_ADVERTISE,
                        NetPermissionFlags::PF_NONE);
     }
     if (options.bind_on_any) {
         struct in_addr inaddr_any;
         inaddr_any.s_addr = htonl(INADDR_ANY);
         struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT;
         fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE,
                        NetPermissionFlags::PF_NONE);
         fBound |= Bind(CService(inaddr_any, GetListenPort()),
                        !fBound ? BF_REPORT_ERROR : BF_NONE,
                        NetPermissionFlags::PF_NONE);
     }
     return fBound;
 }
 
 bool CConnman::Start(CScheduler &scheduler, const Options &connOptions) {
     Init(connOptions);
 
     if (fListen && !InitBinds(connOptions)) {
         if (clientInterface) {
             clientInterface->ThreadSafeMessageBox(
                 _("Failed to listen on any port. Use -listen=0 if you want "
                   "this."),
                 "", CClientUIInterface::MSG_ERROR);
         }
         return false;
     }
 
     proxyType i2p_sam;
     if (GetProxy(NET_I2P, i2p_sam)) {
         m_i2p_sam_session = std::make_unique<i2p::sam::Session>(
             gArgs.GetDataDirNet() / "i2p_private_key", i2p_sam.proxy,
             &interruptNet);
     }
 
     for (const auto &strDest : connOptions.vSeedNodes) {
         AddAddrFetch(strDest);
     }
 
     if (m_use_addrman_outgoing) {
         // Load addresses from anchors.dat
         m_anchors =
             ReadAnchors(config->GetChainParams(),
                         gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME);
         if (m_anchors.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
             m_anchors.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
         }
         LogPrintf(
             "%i block-relay-only anchors will be tried for connections.\n",
             m_anchors.size());
     }
 
     uiInterface.InitMessage(_("Starting network threads...").translated);
 
     fAddressesInitialized = true;
 
     if (semOutbound == nullptr) {
         // initialize semaphore
         semOutbound = std::make_unique<CSemaphore>(
             std::min(m_max_outbound, nMaxConnections));
     }
     if (semAddnode == nullptr) {
         // initialize semaphore
         semAddnode = std::make_unique<CSemaphore>(nMaxAddnode);
     }
 
     //
     // Start threads
     //
     assert(m_msgproc.size() > 0);
     InterruptSocks5(false);
     interruptNet.reset();
     flagInterruptMsgProc = false;
 
     {
         LOCK(mutexMsgProc);
         fMsgProcWake = false;
     }
 
     // Send and receive from sockets, accept connections
     threadSocketHandler = std::thread(&util::TraceThread, "net",
                                       [this] { ThreadSocketHandler(); });
 
     if (!gArgs.GetBoolArg("-dnsseed", DEFAULT_DNSSEED)) {
         LogPrintf("DNS seeding disabled\n");
     } else {
         threadDNSAddressSeed = std::thread(&util::TraceThread, "dnsseed",
                                            [this] { ThreadDNSAddressSeed(); });
     }
 
     // Initiate manual connections
     threadOpenAddedConnections = std::thread(
         &util::TraceThread, "addcon", [this] { ThreadOpenAddedConnections(); });
 
     if (connOptions.m_use_addrman_outgoing &&
         !connOptions.m_specified_outgoing.empty()) {
         if (clientInterface) {
             clientInterface->ThreadSafeMessageBox(
                 _("Cannot provide specific connections and have addrman find "
                   "outgoing connections at the same."),
                 "", CClientUIInterface::MSG_ERROR);
         }
         return false;
     }
     if (connOptions.m_use_addrman_outgoing ||
         !connOptions.m_specified_outgoing.empty()) {
         threadOpenConnections =
             std::thread(&util::TraceThread, "opencon",
                         [this, connect = connOptions.m_specified_outgoing] {
                             ThreadOpenConnections(connect, nullptr);
                         });
     }
 
     // Process messages
     threadMessageHandler = std::thread(&util::TraceThread, "msghand",
                                        [this] { ThreadMessageHandler(); });
 
     if (connOptions.m_i2p_accept_incoming &&
         m_i2p_sam_session.get() != nullptr) {
         threadI2PAcceptIncoming =
             std::thread(&util::TraceThread, "i2paccept",
                         [this] { ThreadI2PAcceptIncoming(); });
     }
 
     // Dump network addresses
     scheduler.scheduleEvery(
         [this]() {
             this->DumpAddresses();
             return true;
         },
         DUMP_PEERS_INTERVAL);
 
     return true;
 }
 
 class CNetCleanup {
 public:
     CNetCleanup() {}
 
     ~CNetCleanup() {
 #ifdef WIN32
         // Shutdown Windows Sockets
         WSACleanup();
 #endif
     }
 };
 static CNetCleanup instance_of_cnetcleanup;
 
 void CConnman::Interrupt() {
     {
         LOCK(mutexMsgProc);
         flagInterruptMsgProc = true;
     }
     condMsgProc.notify_all();
 
     interruptNet();
     InterruptSocks5(true);
 
     if (semOutbound) {
         for (int i = 0; i < m_max_outbound; i++) {
             semOutbound->post();
         }
     }
 
     if (semAddnode) {
         for (int i = 0; i < nMaxAddnode; i++) {
             semAddnode->post();
         }
     }
 }
 
 void CConnman::StopThreads() {
     if (threadI2PAcceptIncoming.joinable()) {
         threadI2PAcceptIncoming.join();
     }
     if (threadMessageHandler.joinable()) {
         threadMessageHandler.join();
     }
     if (threadOpenConnections.joinable()) {
         threadOpenConnections.join();
     }
     if (threadOpenAddedConnections.joinable()) {
         threadOpenAddedConnections.join();
     }
     if (threadDNSAddressSeed.joinable()) {
         threadDNSAddressSeed.join();
     }
     if (threadSocketHandler.joinable()) {
         threadSocketHandler.join();
     }
 }
 
 void CConnman::StopNodes() {
     if (fAddressesInitialized) {
         DumpAddresses();
         fAddressesInitialized = false;
 
         if (m_use_addrman_outgoing) {
             // Anchor connections are only dumped during clean shutdown.
             std::vector<CAddress> anchors_to_dump =
                 GetCurrentBlockRelayOnlyConns();
             if (anchors_to_dump.size() > MAX_BLOCK_RELAY_ONLY_ANCHORS) {
                 anchors_to_dump.resize(MAX_BLOCK_RELAY_ONLY_ANCHORS);
             }
             DumpAnchors(config->GetChainParams(),
                         gArgs.GetDataDirNet() / ANCHORS_DATABASE_FILENAME,
                         anchors_to_dump);
         }
     }
 
     // Delete peer connections.
     std::vector<CNode *> nodes;
     WITH_LOCK(cs_vNodes, nodes.swap(vNodes));
     for (CNode *pnode : nodes) {
         pnode->CloseSocketDisconnect();
         DeleteNode(pnode);
     }
 
     // Close listening sockets.
     for (ListenSocket &hListenSocket : vhListenSocket) {
         if (hListenSocket.socket != INVALID_SOCKET) {
             if (!CloseSocket(hListenSocket.socket)) {
                 LogPrintf("CloseSocket(hListenSocket) failed with error %s\n",
                           NetworkErrorString(WSAGetLastError()));
             }
         }
     }
 
     for (CNode *pnode : vNodesDisconnected) {
         DeleteNode(pnode);
     }
     vNodesDisconnected.clear();
     vhListenSocket.clear();
     semOutbound.reset();
     semAddnode.reset();
 }
 
 void CConnman::DeleteNode(CNode *pnode) {
     assert(pnode);
     for (auto interface : m_msgproc) {
         interface->FinalizeNode(*config, *pnode);
     }
     delete pnode;
 }
 
 CConnman::~CConnman() {
     Interrupt();
     Stop();
 }
 
 std::vector<CAddress> CConnman::GetAddresses(size_t max_addresses,
                                              size_t max_pct,
                                              std::optional<Network> network) {
     std::vector<CAddress> addresses =
         addrman.GetAddr(max_addresses, max_pct, network);
     if (m_banman) {
         addresses.erase(std::remove_if(addresses.begin(), addresses.end(),
                                        [this](const CAddress &addr) {
                                            return m_banman->IsDiscouraged(
                                                       addr) ||
                                                   m_banman->IsBanned(addr);
                                        }),
                         addresses.end());
     }
     return addresses;
 }
 
 std::vector<CAddress>
 CConnman::GetAddresses(CNode &requestor, size_t max_addresses, size_t max_pct) {
     auto local_socket_bytes = requestor.addrBind.GetAddrBytes();
     uint64_t cache_id =
         GetDeterministicRandomizer(RANDOMIZER_ID_ADDRCACHE)
             .Write(requestor.addr.GetNetwork())
             .Write(local_socket_bytes.data(), local_socket_bytes.size())
             .Finalize();
     const auto current_time = GetTime<std::chrono::microseconds>();
     auto r = m_addr_response_caches.emplace(cache_id, CachedAddrResponse{});
     CachedAddrResponse &cache_entry = r.first->second;
     // New CachedAddrResponse have expiration 0.
     if (cache_entry.m_cache_entry_expiration < current_time) {
         cache_entry.m_addrs_response_cache =
             GetAddresses(max_addresses, max_pct, /* network */ std::nullopt);
         // Choosing a proper cache lifetime is a trade-off between the privacy
         // leak minimization and the usefulness of ADDR responses to honest
         // users.
         //
         // Longer cache lifetime makes it more difficult for an attacker to
         // scrape enough AddrMan data to maliciously infer something useful. By
         // the time an attacker scraped enough AddrMan records, most of the
         // records should be old enough to not leak topology info by e.g.
         // analyzing real-time changes in timestamps.
         //
         // It takes only several hundred requests to scrape everything from an
         // AddrMan containing 100,000 nodes, so ~24 hours of cache lifetime
         // indeed makes the data less inferable by the time most of it could be
         // scraped (considering that timestamps are updated via ADDR
         // self-announcements and when nodes communicate). We also should be
         // robust to those attacks which may not require scraping *full*
         // victim's AddrMan (because even several timestamps of the same handful
         // of nodes may leak privacy).
         //
         // On the other hand, longer cache lifetime makes ADDR responses
         // outdated and less useful for an honest requestor, e.g. if most nodes
         // in the ADDR response are no longer active.
         //
         // However, the churn in the network is known to be rather low. Since we
         // consider nodes to be "terrible" (see IsTerrible()) if the timestamps
         // are older than 30 days, max. 24 hours of "penalty" due to cache
         // shouldn't make any meaningful difference in terms of the freshness of
         // the response.
         cache_entry.m_cache_entry_expiration =
             current_time + std::chrono::hours(21) +
             GetRandMillis(std::chrono::hours(6));
     }
     return cache_entry.m_addrs_response_cache;
 }
 
 bool CConnman::AddNode(const std::string &strNode) {
     LOCK(cs_vAddedNodes);
     for (const std::string &it : vAddedNodes) {
         if (strNode == it) {
             return false;
         }
     }
 
     vAddedNodes.push_back(strNode);
     return true;
 }
 
 bool CConnman::RemoveAddedNode(const std::string &strNode) {
     LOCK(cs_vAddedNodes);
     for (std::vector<std::string>::iterator it = vAddedNodes.begin();
          it != vAddedNodes.end(); ++it) {
         if (strNode == *it) {
             vAddedNodes.erase(it);
             return true;
         }
     }
     return false;
 }
 
 size_t CConnman::GetNodeCount(NumConnections flags) {
     LOCK(cs_vNodes);
     // Shortcut if we want total
     if (flags == CConnman::CONNECTIONS_ALL) {
         return vNodes.size();
     }
 
     int nNum = 0;
     for (const auto &pnode : vNodes) {
         if (flags &
             (pnode->IsInboundConn() ? CONNECTIONS_IN : CONNECTIONS_OUT)) {
             nNum++;
         }
     }
 
     return nNum;
 }
 
 void CConnman::GetNodeStats(std::vector<CNodeStats> &vstats) {
     vstats.clear();
     LOCK(cs_vNodes);
     vstats.reserve(vNodes.size());
     for (CNode *pnode : vNodes) {
         vstats.emplace_back();
         pnode->copyStats(vstats.back());
         vstats.back().m_mapped_as = pnode->addr.GetMappedAS(addrman.GetAsmap());
     }
 }
 
 bool CConnman::DisconnectNode(const std::string &strNode) {
     LOCK(cs_vNodes);
     if (CNode *pnode = FindNode(strNode)) {
         LogPrint(BCLog::NET,
                  "disconnect by address%s matched peer=%d; disconnecting\n",
                  (fLogIPs ? strprintf("=%s", strNode) : ""), pnode->GetId());
         pnode->fDisconnect = true;
         return true;
     }
     return false;
 }
 
 bool CConnman::DisconnectNode(const CSubNet &subnet) {
     bool disconnected = false;
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (subnet.Match(pnode->addr)) {
             LogPrint(BCLog::NET,
                      "disconnect by subnet%s matched peer=%d; disconnecting\n",
                      (fLogIPs ? strprintf("=%s", subnet.ToString()) : ""),
                      pnode->GetId());
             pnode->fDisconnect = true;
             disconnected = true;
         }
     }
     return disconnected;
 }
 
 bool CConnman::DisconnectNode(const CNetAddr &addr) {
     return DisconnectNode(CSubNet(addr));
 }
 
 bool CConnman::DisconnectNode(NodeId id) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (id == pnode->GetId()) {
             LogPrint(BCLog::NET, "disconnect by id peer=%d; disconnecting\n",
                      pnode->GetId());
             pnode->fDisconnect = true;
             return true;
         }
     }
     return false;
 }
 
 void CConnman::RecordBytesRecv(uint64_t bytes) {
     LOCK(cs_totalBytesRecv);
     nTotalBytesRecv += bytes;
 }
 
 void CConnman::RecordBytesSent(uint64_t bytes) {
     LOCK(cs_totalBytesSent);
     nTotalBytesSent += bytes;
 
     const auto now = GetTime<std::chrono::seconds>();
     if (nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME < now) {
         // timeframe expired, reset cycle
         nMaxOutboundCycleStartTime = now;
         nMaxOutboundTotalBytesSentInCycle = 0;
     }
 
     // TODO, exclude peers with download permission
     nMaxOutboundTotalBytesSentInCycle += bytes;
 }
 
 uint64_t CConnman::GetMaxOutboundTarget() {
     LOCK(cs_totalBytesSent);
     return nMaxOutboundLimit;
 }
 
 std::chrono::seconds CConnman::GetMaxOutboundTimeframe() {
     return MAX_UPLOAD_TIMEFRAME;
 }
 
 std::chrono::seconds CConnman::GetMaxOutboundTimeLeftInCycle() {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0) {
         return 0s;
     }
 
     if (nMaxOutboundCycleStartTime.count() == 0) {
         return MAX_UPLOAD_TIMEFRAME;
     }
 
     const std::chrono::seconds cycleEndTime =
         nMaxOutboundCycleStartTime + MAX_UPLOAD_TIMEFRAME;
     const auto now = GetTime<std::chrono::seconds>();
     return (cycleEndTime < now) ? 0s : cycleEndTime - now;
 }
 
 bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0) {
         return false;
     }
 
     if (historicalBlockServingLimit) {
         // keep a large enough buffer to at least relay each block once.
         const std::chrono::seconds timeLeftInCycle =
             GetMaxOutboundTimeLeftInCycle();
         const uint64_t buffer =
             timeLeftInCycle / std::chrono::minutes{10} * ONE_MEGABYTE;
         if (buffer >= nMaxOutboundLimit ||
             nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) {
             return true;
         }
     } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) {
         return true;
     }
 
     return false;
 }
 
 uint64_t CConnman::GetOutboundTargetBytesLeft() {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0) {
         return 0;
     }
 
     return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
                ? 0
                : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
 }
 
 uint64_t CConnman::GetTotalBytesRecv() {
     LOCK(cs_totalBytesRecv);
     return nTotalBytesRecv;
 }
 
 uint64_t CConnman::GetTotalBytesSent() {
     LOCK(cs_totalBytesSent);
     return nTotalBytesSent;
 }
 
 ServiceFlags CConnman::GetLocalServices() const {
     return nLocalServices;
 }
 
 unsigned int CConnman::GetReceiveFloodSize() const {
     return nReceiveFloodSize;
 }
 
 void CNode::invsPolled(uint32_t count) {
     invCounters += count;
 }
 
 void CNode::invsVoted(uint32_t count) {
     invCounters += uint64_t(count) << 32;
 }
 
 void CNode::updateAvailabilityScore() {
     if (!m_avalanche_enabled) {
         return;
     }
 
     uint64_t windowInvCounters = invCounters.exchange(0);
     double previousScore = availabilityScore;
 
     int64_t polls = windowInvCounters & std::numeric_limits<uint32_t>::max();
     int64_t votes = windowInvCounters >> 32;
 
     availabilityScore =
         AVALANCHE_STATISTICS_DECAY_FACTOR * (2 * votes - polls) +
         (1. - AVALANCHE_STATISTICS_DECAY_FACTOR) * previousScore;
 }
 
 double CNode::getAvailabilityScore() const {
     // The score is set atomically so there is no need to lock the statistics
     // when reading.
     return availabilityScore;
 }
 
 CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, SOCKET hSocketIn,
              const CAddress &addrIn, uint64_t nKeyedNetGroupIn,
              uint64_t nLocalHostNonceIn, uint64_t nLocalExtraEntropyIn,
              const CAddress &addrBindIn, const std::string &addrNameIn,
              ConnectionType conn_type_in, bool inbound_onion)
     : m_connected(GetTime<std::chrono::seconds>()), addr(addrIn),
       addrBind(addrBindIn), m_inbound_onion(inbound_onion),
       nKeyedNetGroup(nKeyedNetGroupIn),
       m_tx_relay(conn_type_in != ConnectionType::BLOCK_RELAY
                      ? std::make_unique<TxRelay>()
                      : nullptr),
       m_proof_relay(isAvalancheEnabled(gArgs) ? std::make_unique<ProofRelay>()
                                               : nullptr),
       // Don't relay addr messages to peers that we connect to as
       // block-relay-only peers (to prevent adversaries from inferring these
       // links from addr traffic).
       id(idIn), nLocalHostNonce(nLocalHostNonceIn),
       nLocalExtraEntropy(nLocalExtraEntropyIn), m_conn_type(conn_type_in),
       nLocalServices(nLocalServicesIn) {
     if (inbound_onion) {
         assert(conn_type_in == ConnectionType::INBOUND);
     }
     hSocket = hSocketIn;
     addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
 
     for (const std::string &msg : getAllNetMessageTypes()) {
         mapRecvBytesPerMsgCmd[msg] = 0;
     }
     mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
 
     if (fLogIPs) {
         LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id);
     } else {
         LogPrint(BCLog::NET, "Added connection peer=%d\n", id);
     }
 
     m_deserializer = std::make_unique<V1TransportDeserializer>(
         V1TransportDeserializer(GetConfig().GetChainParams().NetMagic(),
                                 SER_NETWORK, INIT_PROTO_VERSION));
     m_serializer =
         std::make_unique<V1TransportSerializer>(V1TransportSerializer());
 }
 
 CNode::~CNode() {
     CloseSocket(hSocket);
 }
 
 bool CConnman::NodeFullyConnected(const CNode *pnode) {
     return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
 }
 
 void CConnman::PushMessage(CNode *pnode, CSerializedNetMsg &&msg) {
     size_t nMessageSize = msg.data.size();
     LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n",
              SanitizeString(msg.m_type), nMessageSize, pnode->GetId());
 
     // make sure we use the appropriate network transport format
     std::vector<uint8_t> serializedHeader;
     pnode->m_serializer->prepareForTransport(*config, msg, serializedHeader);
     size_t nTotalSize = nMessageSize + serializedHeader.size();
 
     size_t nBytesSent = 0;
     {
         LOCK(pnode->cs_vSend);
         bool optimisticSend(pnode->vSendMsg.empty());
 
         // log total amount of bytes per message type
         pnode->mapSendBytesPerMsgCmd[msg.m_type] += nTotalSize;
         pnode->nSendSize += nTotalSize;
 
         if (pnode->nSendSize > nSendBufferMaxSize) {
             pnode->fPauseSend = true;
         }
         pnode->vSendMsg.push_back(std::move(serializedHeader));
         if (nMessageSize) {
             pnode->vSendMsg.push_back(std::move(msg.data));
         }
 
         // If write queue empty, attempt "optimistic write"
         if (optimisticSend == true) {
             nBytesSent = SocketSendData(*pnode);
         }
     }
     if (nBytesSent) {
         RecordBytesSent(nBytesSent);
     }
 }
 
 bool CConnman::ForNode(NodeId id, std::function<bool(CNode *pnode)> func) {
     CNode *found = nullptr;
     LOCK(cs_vNodes);
     for (auto &&pnode : vNodes) {
         if (pnode->GetId() == id) {
             found = pnode;
             break;
         }
     }
     return found != nullptr && NodeFullyConnected(found) && func(found);
 }
 
 std::chrono::microseconds
 CConnman::PoissonNextSendInbound(std::chrono::microseconds now,
                                  std::chrono::seconds average_interval) {
     if (m_next_send_inv_to_incoming.load() < now) {
         // If this function were called from multiple threads simultaneously
         // it would be possible that both update the next send variable, and
         // return a different result to their caller. This is not possible in
         // practice as only the net processing thread invokes this function.
         m_next_send_inv_to_incoming = PoissonNextSend(now, average_interval);
     }
     return m_next_send_inv_to_incoming;
 }
 
 std::chrono::microseconds
 PoissonNextSend(std::chrono::microseconds now,
                 std::chrono::seconds average_interval) {
     double unscaled = -log1p(GetRand(1ULL << 48) *
                              -0.0000000000000035527136788 /* -1/2^48 */);
     return now + std::chrono::duration_cast<std::chrono::microseconds>(
                      unscaled * average_interval + 0.5us);
 }
 
 CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const {
     return CSipHasher(nSeed0, nSeed1).Write(id);
 }
 
 uint64_t CConnman::CalculateKeyedNetGroup(const CAddress &ad) const {
     std::vector<uint8_t> vchNetGroup(ad.GetGroup(addrman.GetAsmap()));
 
     return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP)
         .Write(vchNetGroup.data(), vchNetGroup.size())
         .Finalize();
 }
 
 /**
  * This function convert MaxBlockSize from byte to
  * MB with a decimal precision one digit rounded down
  * E.g.
  * 1660000 -> 1.6
  * 2010000 -> 2.0
  * 1000000 -> 1.0
  * 230000  -> 0.2
  * 50000   -> 0.0
  *
  *  NB behavior for EB<1MB not standardized yet still
  *  the function applies the same algo used for
  *  EB greater or equal to 1MB
  */
 std::string getSubVersionEB(uint64_t MaxBlockSize) {
     // Prepare EB string we are going to add to SubVer:
     // 1) translate from byte to MB and convert to string
     // 2) limit the EB string to the first decimal digit (floored)
     std::stringstream ebMBs;
     ebMBs << (MaxBlockSize / (ONE_MEGABYTE / 10));
     std::string eb = ebMBs.str();
     eb.insert(eb.size() - 1, ".", 1);
     if (eb.substr(0, 1) == ".") {
         eb = "0" + eb;
     }
     return eb;
 }
 
 std::string userAgent(const Config &config) {
     // format excessive blocksize value
     std::string eb = getSubVersionEB(config.GetMaxBlockSize());
     std::vector<std::string> uacomments;
     uacomments.push_back("EB" + eb);
 
     // Comments are checked for char compliance at startup, it is safe to add
     // them to the user agent string
     for (const std::string &cmt : gArgs.GetArgs("-uacomment")) {
         uacomments.push_back(cmt);
     }
 
     const std::string client_name = gArgs.GetArg("-uaclientname", CLIENT_NAME);
     const std::string client_version =
         gArgs.GetArg("-uaclientversion", FormatVersion(CLIENT_VERSION));
 
     // Size compliance is checked at startup, it is safe to not check it again
     return FormatUserAgent(client_name, client_version, uacomments);
 }