diff --git a/src/avalanche/test/processor_tests.cpp b/src/avalanche/test/processor_tests.cpp index 4b523fac8..ffc35da17 100644 --- a/src/avalanche/test/processor_tests.cpp +++ b/src/avalanche/test/processor_tests.cpp @@ -1,1637 +1,1644 @@ // Copyright (c) 2018-2020 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include // For ::PeerManager #include #include #include #include // For bilingual_str // D6970 moved LookupBlockIndex from chain.h to validation.h TODO: remove this // when LookupBlockIndex is refactored out of validation #include #include #include #include #include #include #include #include using namespace avalanche; namespace avalanche { namespace { struct AvalancheTest { static void runEventLoop(avalanche::Processor &p) { p.runEventLoop(); } static std::vector getInvsForNextPoll(Processor &p) { return p.getInvsForNextPoll(false); } static NodeId getSuitableNodeToQuery(Processor &p) { return WITH_LOCK(p.cs_peerManager, return p.peerManager->selectNode()); } static uint64_t getRound(const Processor &p) { return p.round; } static uint32_t getMinQuorumScore(const Processor &p) { return p.minQuorumScore; } static double getMinQuorumConnectedScoreRatio(const Processor &p) { return p.minQuorumConnectedScoreRatio; } static void clearavaproofsNodeCounter(Processor &p) { p.avaproofsNodeCounter = 0; } }; } // namespace } // namespace avalanche namespace { struct CConnmanTest : public CConnman { using CConnman::CConnman; void AddNode(CNode &node) { LOCK(cs_vNodes); vNodes.push_back(&node); } void ClearNodes() { LOCK(cs_vNodes); for (CNode *node : vNodes) { delete node; } vNodes.clear(); } }; CService ip(uint32_t i) { struct in_addr s; s.s_addr = i; return CService(CNetAddr(s), Params().GetDefaultPort()); } struct AvalancheTestingSetup : public TestChain100Setup { const ::Config &config; CConnmanTest *m_connman; std::unique_ptr m_processor; // The master private key we delegate to. CKey masterpriv; AvalancheTestingSetup() : TestChain100Setup(), config(GetConfig()), masterpriv(CKey::MakeCompressedKey()) { // Deterministic randomness for tests. auto connman = std::make_unique(config, 0x1337, 0x1337); m_connman = connman.get(); m_node.connman = std::move(connman); m_node.peerman = ::PeerManager::make( config.GetChainParams(), *m_connman, m_node.banman.get(), *m_node.scheduler, *m_node.chainman, *m_node.mempool, false); m_node.chain = interfaces::MakeChain(m_node, config.GetChainParams()); // Get the processor ready. bilingual_str error; m_processor = Processor::MakeProcessor( *m_node.args, *m_node.chain, m_node.connman.get(), *Assert(m_node.chainman), *m_node.scheduler, error); BOOST_CHECK(m_processor); gArgs.ForceSetArg("-avaproofstakeutxoconfirmations", "1"); gArgs.ForceSetArg("-enableavalancheproofreplacement", "1"); } ~AvalancheTestingSetup() { m_connman->ClearNodes(); SyncWithValidationInterfaceQueue(); gArgs.ClearForcedArg("-avaproofstakeutxoconfirmations"); gArgs.ClearForcedArg("-enableavalancheproofreplacement"); } CNode *ConnectNode(ServiceFlags nServices) { static NodeId id = 0; CAddress addr(ip(GetRandInt(0xffffffff)), NODE_NONE); auto node = new CNode(id++, ServiceFlags(NODE_NETWORK), INVALID_SOCKET, addr, /* nKeyedNetGroupIn */ 0, /* nLocalHostNonceIn */ 0, /* nLocalExtraEntropyIn */ 0, CAddress(), /* pszDest */ "", ConnectionType::OUTBOUND_FULL_RELAY, /* inbound_onion */ false); node->SetCommonVersion(PROTOCOL_VERSION); node->nServices = nServices; m_node.peerman->InitializeNode(config, node); node->nVersion = 1; node->fSuccessfullyConnected = true; node->m_avalanche_state = std::make_unique(); m_connman->AddNode(*node); return node; } - size_t next_coinbase = 0; ProofRef GetProof() { - size_t current_coinbase = next_coinbase++; - const CTransaction &coinbase = *m_coinbase_txns[current_coinbase]; + const CKey key = CKey::MakeCompressedKey(); + const COutPoint outpoint{TxId(GetRandHash()), 0}; + CScript script = GetScriptForDestination(PKHash(key.GetPubKey())); + const Amount amount = PROOF_DUST_THRESHOLD; + const uint32_t height = 100; + + LOCK(cs_main); + CCoinsViewCache &coins = + Assert(m_node.chainman)->ActiveChainstate().CoinsTip(); + coins.AddCoin(outpoint, Coin(CTxOut(amount, script), height, false), + false); + ProofBuilder pb(0, 0, masterpriv); - BOOST_CHECK(pb.addUTXO(COutPoint(coinbase.GetId(), 0), - coinbase.vout[0].nValue, current_coinbase + 1, - true, coinbaseKey)); + BOOST_CHECK(pb.addUTXO(outpoint, amount, height, false, key)); return pb.build(); } bool addNode(NodeId nodeid, const ProofId &proofid) { return m_processor->withPeerManager([&](avalanche::PeerManager &pm) { return pm.addNode(nodeid, proofid); }); } bool addNode(NodeId nodeid) { auto proof = GetProof(); return m_processor->withPeerManager([&](avalanche::PeerManager &pm) { return pm.registerProof(proof) && pm.addNode(nodeid, proof->getId()); }); } std::array ConnectNodes() { auto proof = GetProof(); BOOST_CHECK( m_processor->withPeerManager([&](avalanche::PeerManager &pm) { return pm.registerProof(proof); })); const ProofId &proofid = proof->getId(); std::array nodes; for (CNode *&n : nodes) { n = ConnectNode(NODE_AVALANCHE); BOOST_CHECK(addNode(n->GetId(), proofid)); } return nodes; } void runEventLoop() { AvalancheTest::runEventLoop(*m_processor); } NodeId getSuitableNodeToQuery() { return AvalancheTest::getSuitableNodeToQuery(*m_processor); } std::vector getInvsForNextPoll() { return AvalancheTest::getInvsForNextPoll(*m_processor); } uint64_t getRound() const { return AvalancheTest::getRound(*m_processor); } bool registerVotes(NodeId nodeid, const avalanche::Response &response, std::vector &blockUpdates) { int banscore; std::string error; std::vector proofUpdates; return m_processor->registerVotes(nodeid, response, blockUpdates, proofUpdates, banscore, error); } }; struct BlockProvider { AvalancheTestingSetup *fixture; std::vector updates; uint32_t invType; BlockProvider(AvalancheTestingSetup *_fixture) : fixture(_fixture), invType(MSG_BLOCK) {} CBlockIndex *buildVoteItem() const { CBlock block = fixture->CreateAndProcessBlock({}, CScript()); const BlockHash blockHash = block.GetHash(); LOCK(cs_main); return Assert(fixture->m_node.chainman) ->m_blockman.LookupBlockIndex(blockHash); } uint256 getVoteItemId(const CBlockIndex *pindex) const { return pindex->GetBlockHash(); } bool registerVotes(NodeId nodeid, const avalanche::Response &response, std::string &error) { int banscore; std::vector proofUpdates; return fixture->m_processor->registerVotes( nodeid, response, updates, proofUpdates, banscore, error); } bool registerVotes(NodeId nodeid, const avalanche::Response &response) { std::string error; return registerVotes(nodeid, response, error); } bool addToReconcile(const CBlockIndex *pindex) { return fixture->m_processor->addBlockToReconcile(pindex); } std::vector buildVotesForItems(uint32_t error, std::vector &&items) { size_t numItems = items.size(); std::vector votes; votes.reserve(numItems); // Votes are sorted by most work first std::sort(items.begin(), items.end(), CBlockIndexWorkComparator()); for (auto &item : reverse_iterate(items)) { votes.emplace_back(error, item->GetBlockHash()); } return votes; } void invalidateItem(CBlockIndex *pindex) { pindex->nStatus = pindex->nStatus.withFailed(); } }; struct ProofProvider { AvalancheTestingSetup *fixture; std::vector updates; uint32_t invType; ProofProvider(AvalancheTestingSetup *_fixture) : fixture(_fixture), invType(MSG_AVA_PROOF) {} ProofRef buildVoteItem() const { const ProofRef proof = fixture->GetProof(); fixture->m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof)); }); return proof; } uint256 getVoteItemId(const ProofRef &proof) const { return proof->getId(); } bool registerVotes(NodeId nodeid, const avalanche::Response &response, std::string &error) { int banscore; std::vector blockUpdates; return fixture->m_processor->registerVotes( nodeid, response, blockUpdates, updates, banscore, error); } bool registerVotes(NodeId nodeid, const avalanche::Response &response) { std::string error; return registerVotes(nodeid, response, error); } bool addToReconcile(const ProofRef &proof) { return fixture->m_processor->addProofToReconcile(proof); } std::vector buildVotesForItems(uint32_t error, std::vector &&items) { size_t numItems = items.size(); std::vector votes; votes.reserve(numItems); // Votes are sorted by high score first std::sort(items.begin(), items.end(), ProofComparatorByScore()); for (auto &item : items) { votes.emplace_back(error, item->getId()); } return votes; } void invalidateItem(const ProofRef &proof) { fixture->m_processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.rejectProof(proof->getId(), avalanche::PeerManager::RejectionMode::INVALIDATE); }); } }; } // namespace BOOST_FIXTURE_TEST_SUITE(processor_tests, AvalancheTestingSetup) // FIXME A std::tuple can be used instead of boost::mpl::list after boost 1.67 using VoteItemProviders = boost::mpl::list; BOOST_AUTO_TEST_CASE(block_update) { CBlockIndex index; CBlockIndex *pindex = &index; std::set status{ VoteStatus::Invalid, VoteStatus::Rejected, VoteStatus::Accepted, VoteStatus::Finalized, VoteStatus::Stale, }; for (auto s : status) { BlockUpdate abu(pindex, s); // The use of BOOST_CHECK instead of BOOST_CHECK_EQUAL prevents from // having to define operator<<() for each argument type. BOOST_CHECK(abu.getVoteItem() == pindex); BOOST_CHECK(abu.getStatus() == s); } } BOOST_AUTO_TEST_CASE_TEMPLATE(item_reconcile_twice, P, VoteItemProviders) { P provider(this); auto item = provider.buildVoteItem(); // Adding the item twice does nothing. BOOST_CHECK(provider.addToReconcile(item)); BOOST_CHECK(!provider.addToReconcile(item)); BOOST_CHECK(m_processor->isAccepted(item)); } BOOST_AUTO_TEST_CASE_TEMPLATE(item_null, P, VoteItemProviders) { P provider(this); // Check that null case is handled on the public interface BOOST_CHECK(!m_processor->isAccepted(nullptr)); BOOST_CHECK_EQUAL(m_processor->getConfidence(nullptr), -1); auto item = decltype(provider.buildVoteItem())(); BOOST_CHECK(item == nullptr); BOOST_CHECK(!provider.addToReconcile(item)); // Check that adding item to vote on doesn't change the outcome. A // comparator is used under the hood, and this is skipped if there are no // vote records. item = provider.buildVoteItem(); BOOST_CHECK(provider.addToReconcile(item)); BOOST_CHECK(!m_processor->isAccepted(nullptr)); BOOST_CHECK_EQUAL(m_processor->getConfidence(nullptr), -1); } namespace { Response next(Response &r) { auto copy = r; r = {r.getRound() + 1, r.getCooldown(), r.GetVotes()}; return copy; } } // namespace BOOST_AUTO_TEST_CASE_TEMPLATE(vote_item_register, P, VoteItemProviders) { P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; const auto item = provider.buildVoteItem(); const auto itemid = provider.getVoteItemId(item); // Create nodes that supports avalanche. auto avanodes = ConnectNodes(); // Querying for random item returns false. BOOST_CHECK(!m_processor->isAccepted(item)); // Add a new item. Check it is added to the polls. BOOST_CHECK(provider.addToReconcile(item)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); BOOST_CHECK(m_processor->isAccepted(item)); int nextNodeIndex = 0; auto registerNewVote = [&](const Response &resp) { runEventLoop(); auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId(); BOOST_CHECK(provider.registerVotes(nodeid, resp)); }; // Let's vote for this item a few times. Response resp{0, 0, {Vote(0, itemid)}}; for (int i = 0; i < 6; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 0); BOOST_CHECK_EQUAL(updates.size(), 0); } // A single neutral vote do not change anything. resp = {getRound(), 0, {Vote(-1, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 0); BOOST_CHECK_EQUAL(updates.size(), 0); resp = {getRound(), 0, {Vote(0, itemid)}}; for (int i = 1; i < 7; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), i); BOOST_CHECK_EQUAL(updates.size(), 0); } // Two neutral votes will stall progress. resp = {getRound(), 0, {Vote(-1, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 6); BOOST_CHECK_EQUAL(updates.size(), 0); registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 6); BOOST_CHECK_EQUAL(updates.size(), 0); resp = {getRound(), 0, {Vote(0, itemid)}}; for (int i = 2; i < 8; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), 6); BOOST_CHECK_EQUAL(updates.size(), 0); } // We vote for it numerous times to finalize it. for (int i = 7; i < AVALANCHE_FINALIZATION_SCORE; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), i); BOOST_CHECK_EQUAL(updates.size(), 0); } // As long as it is not finalized, we poll. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); // Now finalize the decision. registerNewVote(next(resp)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == item); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized); updates.clear(); // Once the decision is finalized, there is no poll for it. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); // Now let's undo this and finalize rejection. BOOST_CHECK(provider.addToReconcile(item)); invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); resp = {getRound(), 0, {Vote(1, itemid)}}; for (int i = 0; i < 6; i++) { registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(updates.size(), 0); } // Now the state will flip. registerNewVote(next(resp)); BOOST_CHECK(!m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == item); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Rejected); updates.clear(); // Now it is rejected, but we can vote for it numerous times. for (int i = 1; i < AVALANCHE_FINALIZATION_SCORE; i++) { registerNewVote(next(resp)); BOOST_CHECK(!m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(updates.size(), 0); } // As long as it is not finalized, we poll. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); // Now finalize the decision. registerNewVote(next(resp)); BOOST_CHECK(!m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == item); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Invalid); updates.clear(); // Once the decision is finalized, there is no poll for it. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); } BOOST_AUTO_TEST_CASE_TEMPLATE(multi_item_register, P, VoteItemProviders) { P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; auto itemA = provider.buildVoteItem(); auto itemidA = provider.getVoteItemId(itemA); auto itemB = provider.buildVoteItem(); auto itemidB = provider.getVoteItemId(itemB); // Create several nodes that support avalanche. auto avanodes = ConnectNodes(); // Querying for random item returns false. BOOST_CHECK(!m_processor->isAccepted(itemA)); BOOST_CHECK(!m_processor->isAccepted(itemB)); // Start voting on item A. BOOST_CHECK(provider.addToReconcile(itemA)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemidA); uint64_t round = getRound(); runEventLoop(); BOOST_CHECK(provider.registerVotes(avanodes[0]->GetId(), {round, 0, {Vote(0, itemidA)}})); BOOST_CHECK_EQUAL(updates.size(), 0); // Start voting on item B after one vote. std::vector votes = provider.buildVotesForItems(0, {itemA, itemB}); Response resp{round + 1, 0, votes}; BOOST_CHECK(provider.addToReconcile(itemB)); invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 2); // Ensure the inv ordering is as expected for (size_t i = 0; i < invs.size(); i++) { BOOST_CHECK_EQUAL(invs[i].type, invType); BOOST_CHECK(invs[i].hash == votes[i].GetHash()); } // Let's vote for these items a few times. for (int i = 0; i < 4; i++) { NodeId nodeid = getSuitableNodeToQuery(); runEventLoop(); BOOST_CHECK(provider.registerVotes(nodeid, next(resp))); BOOST_CHECK_EQUAL(updates.size(), 0); } // Now it is accepted, but we can vote for it numerous times. for (int i = 0; i < AVALANCHE_FINALIZATION_SCORE; i++) { NodeId nodeid = getSuitableNodeToQuery(); runEventLoop(); BOOST_CHECK(provider.registerVotes(nodeid, next(resp))); BOOST_CHECK_EQUAL(updates.size(), 0); } // Running two iterration of the event loop so that vote gets triggered on A // and B. NodeId firstNodeid = getSuitableNodeToQuery(); runEventLoop(); NodeId secondNodeid = getSuitableNodeToQuery(); runEventLoop(); BOOST_CHECK(firstNodeid != secondNodeid); // Next vote will finalize item A. BOOST_CHECK(provider.registerVotes(firstNodeid, next(resp))); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == itemA); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized); updates = {}; // We do not vote on A anymore. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemidB); // Next vote will finalize item B. BOOST_CHECK(provider.registerVotes(secondNodeid, resp)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == itemB); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Finalized); updates = {}; // There is nothing left to vote on. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); } BOOST_AUTO_TEST_CASE_TEMPLATE(poll_and_response, P, VoteItemProviders) { P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; auto item = provider.buildVoteItem(); auto itemid = provider.getVoteItemId(item); // There is no node to query. BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE); // Add enough nodes to have a valid quorum, and the same amount with no // avalanche support std::set avanodeIds; auto avanodes = ConnectNodes(); for (auto avanode : avanodes) { ConnectNode(NODE_NONE); avanodeIds.insert(avanode->GetId()); } auto getSelectedAvanodeId = [&]() { NodeId avanodeid = getSuitableNodeToQuery(); BOOST_CHECK(avanodeIds.find(avanodeid) != avanodeIds.end()); return avanodeid; }; // It returns one of the avalanche peer. NodeId avanodeid = getSelectedAvanodeId(); // Register an item and check it is added to the list of elements to poll. BOOST_CHECK(provider.addToReconcile(item)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); std::set unselectedNodeids = avanodeIds; unselectedNodeids.erase(avanodeid); const size_t remainingNodeIds = unselectedNodeids.size(); uint64_t round = getRound(); for (size_t i = 0; i < remainingNodeIds; i++) { // Trigger a poll on avanode. runEventLoop(); // Another node is selected NodeId nodeid = getSuitableNodeToQuery(); BOOST_CHECK(unselectedNodeids.find(nodeid) != avanodeIds.end()); unselectedNodeids.erase(nodeid); } // There is no more suitable peer available, so return nothing. BOOST_CHECK(unselectedNodeids.empty()); runEventLoop(); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE); // Respond to the request. Response resp = {round, 0, {Vote(0, itemid)}}; BOOST_CHECK(provider.registerVotes(avanodeid, resp)); BOOST_CHECK_EQUAL(updates.size(), 0); // Now that avanode fullfilled his request, it is added back to the list of // queriable nodes. BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); auto checkRegisterVotesError = [&](NodeId nodeid, const avalanche::Response &response, const std::string &expectedError) { std::string error; BOOST_CHECK(!provider.registerVotes(nodeid, response, error)); BOOST_CHECK_EQUAL(error, expectedError); BOOST_CHECK_EQUAL(updates.size(), 0); }; // Sending a response when not polled fails. checkRegisterVotesError(avanodeid, next(resp), "unexpected-ava-response"); // Trigger a poll on avanode. round = getRound(); runEventLoop(); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), NO_NODE); // Sending responses that do not match the request also fails. // 1. Too many results. resp = {round, 0, {Vote(0, itemid), Vote(0, itemid)}}; runEventLoop(); checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-size"); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // 2. Not enough results. resp = {getRound(), 0, {}}; runEventLoop(); checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-size"); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // 3. Do not match the poll. resp = {getRound(), 0, {Vote()}}; runEventLoop(); checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-content"); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // At this stage we have reached the max inflight requests for our inv, so // it won't be requested anymore until the requests are fullfilled. Let's // vote on another item with no inflight request so the remaining tests // makes sense. invs = getInvsForNextPoll(); BOOST_CHECK(invs.empty()); item = provider.buildVoteItem(); itemid = provider.getVoteItemId(item); BOOST_CHECK(provider.addToReconcile(item)); invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); // 4. Invalid round count. Request is not discarded. uint64_t queryRound = getRound(); runEventLoop(); resp = {queryRound + 1, 0, {Vote()}}; checkRegisterVotesError(avanodeid, resp, "unexpected-ava-response"); resp = {queryRound - 1, 0, {Vote()}}; checkRegisterVotesError(avanodeid, resp, "unexpected-ava-response"); // 5. Making request for invalid nodes do not work. Request is not // discarded. resp = {queryRound, 0, {Vote(0, itemid)}}; checkRegisterVotesError(avanodeid + 1234, resp, "unexpected-ava-response"); // Proper response gets processed and avanode is available again. resp = {queryRound, 0, {Vote(0, itemid)}}; BOOST_CHECK(provider.registerVotes(avanodeid, resp)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // Out of order response are rejected. const auto item2 = provider.buildVoteItem(); BOOST_CHECK(provider.addToReconcile(item2)); std::vector votes = provider.buildVotesForItems(0, {item, item2}); resp = {getRound(), 0, {votes[1], votes[0]}}; runEventLoop(); checkRegisterVotesError(avanodeid, resp, "invalid-ava-response-content"); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); // But they are accepted in order. resp = {getRound(), 0, votes}; runEventLoop(); BOOST_CHECK(provider.registerVotes(avanodeid, resp)); BOOST_CHECK_EQUAL(updates.size(), 0); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), avanodeid); } BOOST_AUTO_TEST_CASE_TEMPLATE(dont_poll_invalid_item, P, VoteItemProviders) { P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; auto itemA = provider.buildVoteItem(); auto itemB = provider.buildVoteItem(); auto avanodes = ConnectNodes(); // Build votes to get proper ordering std::vector votes = provider.buildVotesForItems(0, {itemA, itemB}); // Register the items and check they are added to the list of elements to // poll. BOOST_CHECK(provider.addToReconcile(itemA)); BOOST_CHECK(provider.addToReconcile(itemB)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 2); for (size_t i = 0; i < invs.size(); i++) { BOOST_CHECK_EQUAL(invs[i].type, invType); BOOST_CHECK(invs[i].hash == votes[i].GetHash()); } // When an item is marked invalid, stop polling. provider.invalidateItem(itemB); Response goodResp{getRound(), 0, {Vote(0, provider.getVoteItemId(itemA))}}; runEventLoop(); BOOST_CHECK(provider.registerVotes(avanodes[0]->GetId(), goodResp)); BOOST_CHECK_EQUAL(updates.size(), 0); // Votes including itemB are rejected Response badResp{getRound(), 0, votes}; runEventLoop(); std::string error; BOOST_CHECK(!provider.registerVotes(avanodes[1]->GetId(), badResp, error)); BOOST_CHECK_EQUAL(error, "invalid-ava-response-size"); } BOOST_TEST_DECORATOR(*boost::unit_test::timeout(60)) BOOST_AUTO_TEST_CASE_TEMPLATE(poll_inflight_timeout, P, VoteItemProviders) { P provider(this); ArgsManager argsman; ChainstateManager &chainman = *Assert(m_node.chainman); auto queryTimeDuration = std::chrono::milliseconds(10); argsman.ForceSetArg("-avatimeout", ToString(queryTimeDuration.count())); bilingual_str error; m_processor = Processor::MakeProcessor(argsman, *m_node.chain, m_node.connman.get(), chainman, *m_node.scheduler, error); const auto item = provider.buildVoteItem(); const auto itemid = provider.getVoteItemId(item); // Add the item BOOST_CHECK(provider.addToReconcile(item)); // Create a quorum of nodes that support avalanche. ConnectNodes(); NodeId avanodeid = NO_NODE; // Expire requests after some time. for (int i = 0; i < 10; i++) { Response resp = {getRound(), 0, {Vote(0, itemid)}}; avanodeid = getSuitableNodeToQuery(); auto start = std::chrono::steady_clock::now(); runEventLoop(); // We cannot guarantee that we'll wait for just 1ms, so we have to bail // if we aren't within the proper time range. std::this_thread::sleep_for(std::chrono::milliseconds(1)); runEventLoop(); bool ret = provider.registerVotes(avanodeid, next(resp)); if (std::chrono::steady_clock::now() > start + queryTimeDuration) { // We waited for too long, bail. Because we can't know for sure when // previous steps ran, ret is not deterministic and we do not check // it. i--; continue; } // We are within time bounds, so the vote should have worked. BOOST_CHECK(ret); avanodeid = getSuitableNodeToQuery(); // Now try again but wait for expiration. runEventLoop(); std::this_thread::sleep_for(queryTimeDuration); runEventLoop(); BOOST_CHECK(!provider.registerVotes(avanodeid, next(resp))); } } BOOST_AUTO_TEST_CASE_TEMPLATE(poll_inflight_count, P, VoteItemProviders) { P provider(this); const uint32_t invType = provider.invType; // Create enough nodes so that we run into the inflight request limit. auto proof = GetProof(); BOOST_CHECK(m_processor->withPeerManager( [&](avalanche::PeerManager &pm) { return pm.registerProof(proof); })); std::array nodes; for (auto &n : nodes) { n = ConnectNode(NODE_AVALANCHE); BOOST_CHECK(addNode(n->GetId(), proof->getId())); } // Add an item to poll const auto item = provider.buildVoteItem(); const auto itemid = provider.getVoteItemId(item); BOOST_CHECK(provider.addToReconcile(item)); // Ensure there are enough requests in flight. std::map node_round_map; for (int i = 0; i < AVALANCHE_MAX_INFLIGHT_POLL; i++) { NodeId nodeid = getSuitableNodeToQuery(); BOOST_CHECK(node_round_map.find(nodeid) == node_round_map.end()); node_round_map.insert(std::pair(nodeid, getRound())); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); runEventLoop(); } // Now that we have enough in flight requests, we shouldn't poll. auto suitablenodeid = getSuitableNodeToQuery(); BOOST_CHECK(suitablenodeid != NO_NODE); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); runEventLoop(); BOOST_CHECK_EQUAL(getSuitableNodeToQuery(), suitablenodeid); // Send one response, now we can poll again. auto it = node_round_map.begin(); Response resp = {it->second, 0, {Vote(0, itemid)}}; BOOST_CHECK(provider.registerVotes(it->first, resp)); node_round_map.erase(it); invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); } BOOST_AUTO_TEST_CASE(quorum_diversity) { std::vector updates; CBlock block = CreateAndProcessBlock({}, CScript()); const BlockHash blockHash = block.GetHash(); const CBlockIndex *pindex; { LOCK(cs_main); pindex = Assert(m_node.chainman)->m_blockman.LookupBlockIndex(blockHash); } // Create nodes that supports avalanche. auto avanodes = ConnectNodes(); // Querying for random block returns false. BOOST_CHECK(!m_processor->isAccepted(pindex)); // Add a new block. Check it is added to the polls. BOOST_CHECK(m_processor->addBlockToReconcile(pindex)); // Do one valid round of voting. uint64_t round = getRound(); Response resp{round, 0, {Vote(0, blockHash)}}; // Check that all nodes can vote. for (size_t i = 0; i < avanodes.size(); i++) { runEventLoop(); BOOST_CHECK(registerVotes(avanodes[i]->GetId(), next(resp), updates)); } // Generate a query for every single node. const NodeId firstNodeId = getSuitableNodeToQuery(); std::map node_round_map; round = getRound(); for (size_t i = 0; i < avanodes.size(); i++) { NodeId nodeid = getSuitableNodeToQuery(); BOOST_CHECK(node_round_map.find(nodeid) == node_round_map.end()); node_round_map[nodeid] = getRound(); runEventLoop(); } // Now only the first node can vote. All others would be duplicate in the // quorum. auto confidence = m_processor->getConfidence(pindex); BOOST_REQUIRE(confidence > 0); for (auto &[nodeid, r] : node_round_map) { if (nodeid == firstNodeId) { // Node 0 is the only one which can vote at this stage. round = r; continue; } BOOST_CHECK( registerVotes(nodeid, {r, 0, {Vote(0, blockHash)}}, updates)); BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), confidence); } BOOST_CHECK( registerVotes(firstNodeId, {round, 0, {Vote(0, blockHash)}}, updates)); BOOST_CHECK_EQUAL(m_processor->getConfidence(pindex), confidence + 1); } BOOST_AUTO_TEST_CASE(event_loop) { CScheduler s; CBlock block = CreateAndProcessBlock({}, CScript()); const BlockHash blockHash = block.GetHash(); const CBlockIndex *pindex; { LOCK(cs_main); pindex = Assert(m_node.chainman)->m_blockman.LookupBlockIndex(blockHash); } // Starting the event loop. BOOST_CHECK(m_processor->startEventLoop(s)); // There is one task planned in the next hour (our event loop). std::chrono::system_clock::time_point start, stop; BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1); // Starting twice doesn't start it twice. BOOST_CHECK(!m_processor->startEventLoop(s)); // Start the scheduler thread. std::thread schedulerThread(std::bind(&CScheduler::serviceQueue, &s)); // Create a quorum of nodes that support avalanche. auto avanodes = ConnectNodes(); // There is no query in flight at the moment. NodeId nodeid = getSuitableNodeToQuery(); BOOST_CHECK_NE(nodeid, NO_NODE); // Add a new block. Check it is added to the polls. uint64_t queryRound = getRound(); BOOST_CHECK(m_processor->addBlockToReconcile(pindex)); // Wait until all nodes got a poll for (int i = 0; i < 60 * 1000; i++) { // Technically, this is a race condition, but this should do just fine // as we wait up to 1 minute for an event that should take 80ms. UninterruptibleSleep(std::chrono::milliseconds(1)); if (getRound() == queryRound + avanodes.size()) { break; } } // Check that we effectively got a request and not timed out. BOOST_CHECK(getRound() > queryRound); // Respond and check the cooldown time is respected. uint64_t responseRound = getRound(); auto queryTime = std::chrono::steady_clock::now() + std::chrono::milliseconds(100); std::vector updates; // Only the first node answers, so it's the only one that gets polled again registerVotes(nodeid, {queryRound, 100, {Vote(0, blockHash)}}, updates); for (int i = 0; i < 10000; i++) { // We make sure that we do not get a request before queryTime. UninterruptibleSleep(std::chrono::milliseconds(1)); if (getRound() != responseRound) { BOOST_CHECK(std::chrono::steady_clock::now() > queryTime); break; } } // But we eventually get one. BOOST_CHECK(getRound() > responseRound); // Stop event loop. BOOST_CHECK(m_processor->stopEventLoop()); // We don't have any task scheduled anymore. BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0); // Can't stop the event loop twice. BOOST_CHECK(!m_processor->stopEventLoop()); // Wait for the scheduler to stop. s.StopWhenDrained(); schedulerThread.join(); } BOOST_AUTO_TEST_CASE(destructor) { CScheduler s; std::chrono::system_clock::time_point start, stop; std::thread schedulerThread; BOOST_CHECK(m_processor->startEventLoop(s)); BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 1); // Start the service thread after the queue size check to prevent a race // condition where the thread may be processing the event loop task during // the check. schedulerThread = std::thread(std::bind(&CScheduler::serviceQueue, &s)); // Destroy the processor. m_processor.reset(); // Now that avalanche is destroyed, there is no more scheduled tasks. BOOST_CHECK_EQUAL(s.getQueueInfo(start, stop), 0); // Wait for the scheduler to stop. s.StopWhenDrained(); schedulerThread.join(); } BOOST_AUTO_TEST_CASE(add_proof_to_reconcile) { uint32_t score = MIN_VALID_PROOF_SCORE; CChainState &active_chainstate = Assert(m_node.chainman)->ActiveChainstate(); auto addProofToReconcile = [&](uint32_t proofScore) { auto proof = buildRandomProof(active_chainstate, proofScore); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof)); }); BOOST_CHECK(m_processor->addProofToReconcile(proof)); return proof; }; for (size_t i = 0; i < AVALANCHE_MAX_ELEMENT_POLL; i++) { auto proof = addProofToReconcile(++score); auto invs = AvalancheTest::getInvsForNextPoll(*m_processor); BOOST_CHECK_EQUAL(invs.size(), i + 1); BOOST_CHECK(invs.front().IsMsgProof()); BOOST_CHECK_EQUAL(invs.front().hash, proof->getId()); } // From here a new proof is only polled if its score is in the top // AVALANCHE_MAX_ELEMENT_POLL ProofId lastProofId; for (size_t i = 0; i < 10; i++) { auto proof = addProofToReconcile(++score); auto invs = AvalancheTest::getInvsForNextPoll(*m_processor); BOOST_CHECK_EQUAL(invs.size(), AVALANCHE_MAX_ELEMENT_POLL); BOOST_CHECK(invs.front().IsMsgProof()); BOOST_CHECK_EQUAL(invs.front().hash, proof->getId()); lastProofId = proof->getId(); } for (size_t i = 0; i < 10; i++) { auto proof = addProofToReconcile(--score); auto invs = AvalancheTest::getInvsForNextPoll(*m_processor); BOOST_CHECK_EQUAL(invs.size(), AVALANCHE_MAX_ELEMENT_POLL); BOOST_CHECK(invs.front().IsMsgProof()); BOOST_CHECK_EQUAL(invs.front().hash, lastProofId); } { // The score is not high enough to get polled auto proof = addProofToReconcile(--score); auto invs = AvalancheTest::getInvsForNextPoll(*m_processor); for (auto &inv : invs) { BOOST_CHECK_NE(inv.hash, proof->getId()); } } { // If proof replacement is not enabled there is no point polling for the // proof. auto proof = buildRandomProof(active_chainstate, MIN_VALID_PROOF_SCORE); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof)); }); gArgs.ForceSetArg("-enableavalancheproofreplacement", "0"); BOOST_CHECK(!m_processor->addProofToReconcile(proof)); gArgs.ForceSetArg("-enableavalancheproofreplacement", "1"); BOOST_CHECK(m_processor->addProofToReconcile(proof)); gArgs.ClearForcedArg("-enableavalancheproofreplacement"); } } BOOST_AUTO_TEST_CASE(proof_record) { gArgs.ForceSetArg("-avaproofstakeutxoconfirmations", "2"); gArgs.ForceSetArg("-avalancheconflictingproofcooldown", "0"); BOOST_CHECK(!m_processor->isAccepted(nullptr)); BOOST_CHECK_EQUAL(m_processor->getConfidence(nullptr), -1); const CKey key = CKey::MakeCompressedKey(); const COutPoint conflictingOutpoint{TxId(GetRandHash()), 0}; const COutPoint immatureOutpoint{TxId(GetRandHash()), 0}; { CScript script = GetScriptForDestination(PKHash(key.GetPubKey())); LOCK(cs_main); CCoinsViewCache &coins = Assert(m_node.chainman)->ActiveChainstate().CoinsTip(); coins.AddCoin(conflictingOutpoint, Coin(CTxOut(PROOF_DUST_THRESHOLD, script), 10, false), false); coins.AddCoin(immatureOutpoint, Coin(CTxOut(PROOF_DUST_THRESHOLD, script), 100, false), false); } auto buildProof = [&](const COutPoint &outpoint, uint64_t sequence, uint32_t height = 10) { ProofBuilder pb(sequence, 0, key); BOOST_CHECK( pb.addUTXO(outpoint, PROOF_DUST_THRESHOLD, height, false, key)); return pb.build(); }; auto conflictingProof = buildProof(conflictingOutpoint, 1); auto validProof = buildProof(conflictingOutpoint, 2); auto orphanProof = buildProof(immatureOutpoint, 3, 100); BOOST_CHECK(!m_processor->isAccepted(conflictingProof)); BOOST_CHECK(!m_processor->isAccepted(validProof)); BOOST_CHECK(!m_processor->isAccepted(orphanProof)); BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), -1); BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), -1); BOOST_CHECK_EQUAL(m_processor->getConfidence(orphanProof), -1); // Reconciling proofs that don't exist will fail BOOST_CHECK(!m_processor->addProofToReconcile(conflictingProof)); BOOST_CHECK(!m_processor->addProofToReconcile(validProof)); BOOST_CHECK(!m_processor->addProofToReconcile(orphanProof)); m_processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(conflictingProof)); BOOST_CHECK(pm.registerProof(validProof)); BOOST_CHECK(!pm.registerProof(orphanProof)); BOOST_CHECK(pm.isBoundToPeer(validProof->getId())); BOOST_CHECK(pm.isInConflictingPool(conflictingProof->getId())); BOOST_CHECK(pm.isOrphan(orphanProof->getId())); }); BOOST_CHECK(m_processor->addProofToReconcile(conflictingProof)); BOOST_CHECK(!m_processor->isAccepted(conflictingProof)); BOOST_CHECK(!m_processor->isAccepted(validProof)); BOOST_CHECK(!m_processor->isAccepted(orphanProof)); BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), -1); BOOST_CHECK_EQUAL(m_processor->getConfidence(orphanProof), -1); BOOST_CHECK(m_processor->addProofToReconcile(validProof)); BOOST_CHECK(!m_processor->isAccepted(conflictingProof)); BOOST_CHECK(m_processor->isAccepted(validProof)); BOOST_CHECK(!m_processor->isAccepted(orphanProof)); BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(orphanProof), -1); BOOST_CHECK(!m_processor->addProofToReconcile(orphanProof)); BOOST_CHECK(!m_processor->isAccepted(conflictingProof)); BOOST_CHECK(m_processor->isAccepted(validProof)); BOOST_CHECK(!m_processor->isAccepted(orphanProof)); BOOST_CHECK_EQUAL(m_processor->getConfidence(conflictingProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(validProof), 0); BOOST_CHECK_EQUAL(m_processor->getConfidence(orphanProof), -1); gArgs.ClearForcedArg("-avaproofstakeutxoconfirmations"); gArgs.ClearForcedArg("-avalancheconflictingproofcooldown"); } BOOST_AUTO_TEST_CASE(quorum_detection) { // Set min quorum parameters for our test int minStake = 4'000'000; gArgs.ForceSetArg("-avaminquorumstake", ToString(minStake)); gArgs.ForceSetArg("-avaminquorumconnectedstakeratio", "0.5"); // Create a new processor with our given quorum parameters const auto currency = Currency::get(); uint32_t minScore = Proof::amountToScore(minStake * currency.baseunit); CChainState &active_chainstate = Assert(m_node.chainman)->ActiveChainstate(); const CKey key = CKey::MakeCompressedKey(); auto localProof = buildRandomProof(active_chainstate, minScore / 4, 100, key); gArgs.ForceSetArg("-avamasterkey", EncodeSecret(key)); gArgs.ForceSetArg("-avaproof", localProof->ToHex()); bilingual_str error; ChainstateManager &chainman = *Assert(m_node.chainman); std::unique_ptr processor = Processor::MakeProcessor( *m_node.args, *m_node.chain, m_node.connman.get(), chainman, *m_node.scheduler, error); BOOST_CHECK(processor != nullptr); BOOST_CHECK(processor->getLocalProof() != nullptr); BOOST_CHECK_EQUAL(processor->getLocalProof()->getId(), localProof->getId()); BOOST_CHECK_EQUAL(AvalancheTest::getMinQuorumScore(*processor), minScore); BOOST_CHECK_EQUAL( AvalancheTest::getMinQuorumConnectedScoreRatio(*processor), 0.5); // The local proof has not been validated yet processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 0); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), 0); }); BOOST_CHECK(!processor->isQuorumEstablished()); // Register the local proof. This is normally done when the chain tip is // updated. The local proof should be accounted for in the min quorum // computation but the peer manager doesn't know about that. processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(processor->getLocalProof())); BOOST_CHECK(pm.isBoundToPeer(processor->getLocalProof()->getId())); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), 0); }); BOOST_CHECK(!processor->isQuorumEstablished()); // Add enough nodes to get a conclusive vote for (NodeId id = 0; id < 8; id++) { processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.addNode(id, processor->getLocalProof()->getId()); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); } // Add part of the required stake and make sure we still report no quorum auto proof1 = buildRandomProof(active_chainstate, minScore / 2); processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof1)); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 3 * minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(!processor->isQuorumEstablished()); // Add the rest of the stake, but we are still lacking connected stake auto proof2 = buildRandomProof(active_chainstate, minScore / 4); processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof2)); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(!processor->isQuorumEstablished()); // Adding a node should cause the quorum to be detected and locked-in processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.addNode(8, proof2->getId()); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore); // The peer manager knows that proof2 has a node attached ... BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 2); }); // ... but the processor also account for the local proof, so we reached 50% BOOST_CHECK(processor->isQuorumEstablished()); // Go back to not having enough connected score, but we've already latched // the quorum as established processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.removeNode(8); BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(processor->isQuorumEstablished()); // Removing one more node drops our count below the minimum and the quorum // is no longer ready processor->withPeerManager( [&](avalanche::PeerManager &pm) { pm.removeNode(7); }); BOOST_CHECK(!processor->isQuorumEstablished()); // It resumes when we have enough nodes again processor->withPeerManager([&](avalanche::PeerManager &pm) { pm.addNode(7, processor->getLocalProof()->getId()); }); BOOST_CHECK(processor->isQuorumEstablished()); // Remove peers one at a time until the quorum is no longer established auto spendProofUtxo = [&processor, &chainman](ProofRef proof) { { LOCK(cs_main); CCoinsViewCache &coins = chainman.ActiveChainstate().CoinsTip(); coins.SpendCoin(proof->getStakes()[0].getStake().getUTXO()); } processor->withPeerManager([&proof](avalanche::PeerManager &pm) { pm.updatedBlockTip(); BOOST_CHECK(!pm.isBoundToPeer(proof->getId())); }); }; spendProofUtxo(proof2); processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 3 * minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(processor->isQuorumEstablished()); spendProofUtxo(proof1); processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), minScore / 4); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), minScore / 4); }); BOOST_CHECK(processor->isQuorumEstablished()); spendProofUtxo(processor->getLocalProof()); processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK_EQUAL(pm.getTotalPeersScore(), 0); BOOST_CHECK_EQUAL(pm.getConnectedPeersScore(), 0); }); // There is no node left BOOST_CHECK(!processor->isQuorumEstablished()); gArgs.ClearForcedArg("-avamasterkey"); gArgs.ClearForcedArg("-avaproof"); gArgs.ClearForcedArg("-avaminquorumstake"); gArgs.ClearForcedArg("-avaminquorumconnectedstakeratio"); } BOOST_AUTO_TEST_CASE(quorum_detection_parameter_validation) { // Create vector of tuples of: // std::vector> tests = { // All parameters are invalid {"", "", "", false}, {"-1", "-1", "-1", false}, // Min stake is out of range {"-1", "0", "0", false}, {"-0.01", "0", "0", false}, {"21000000000000.01", "0", "0", false}, // Min connected ratio is out of range {"0", "-1", "0", false}, {"0", "1.1", "0", false}, // Min avaproofs messages ratio is out of range {"0", "0", "-1", false}, // All parameters are valid {"0", "0", "0", true}, {"0.00", "0", "0", true}, {"0.01", "0", "0", true}, {"1", "0.1", "0", true}, {"10", "0.5", "0", true}, {"10", "1", "0", true}, {"21000000000000.00", "0", "0", true}, {"0", "0", "1", true}, {"0", "0", "100", true}, }; // For each case set the parameters and check that making the processor // succeeds or fails as expected for (auto it = tests.begin(); it != tests.end(); ++it) { gArgs.ForceSetArg("-avaminquorumstake", std::get<0>(*it)); gArgs.ForceSetArg("-avaminquorumconnectedstakeratio", std::get<1>(*it)); gArgs.ForceSetArg("-avaminavaproofsnodecount", std::get<2>(*it)); bilingual_str error; std::unique_ptr processor = Processor::MakeProcessor( *m_node.args, *m_node.chain, m_node.connman.get(), *Assert(m_node.chainman), *m_node.scheduler, error); if (std::get<3>(*it)) { BOOST_CHECK(processor != nullptr); BOOST_CHECK(error.empty()); BOOST_CHECK_EQUAL(error.original, ""); } else { BOOST_CHECK(processor == nullptr); BOOST_CHECK(!error.empty()); BOOST_CHECK(error.original != ""); } } gArgs.ClearForcedArg("-avaminquorumstake"); gArgs.ClearForcedArg("-avaminquorumconnectedstakeratio"); gArgs.ClearForcedArg("-avaminavaproofsnodecount"); } BOOST_AUTO_TEST_CASE(min_avaproofs_messages) { ArgsManager argsman; argsman.ForceSetArg("-avaminquorumstake", "0"); argsman.ForceSetArg("-avaminquorumconnectedstakeratio", "0"); ChainstateManager &chainman = *Assert(m_node.chainman); auto checkMinAvaproofsMessages = [&](int64_t minAvaproofsMessages) { argsman.ForceSetArg("-avaminavaproofsnodecount", ToString(minAvaproofsMessages)); bilingual_str error; auto processor = Processor::MakeProcessor( argsman, *m_node.chain, m_node.connman.get(), chainman, *m_node.scheduler, error); auto addNode = [&](NodeId nodeid) { auto proof = buildRandomProof(chainman.ActiveChainstate(), MIN_VALID_PROOF_SCORE); processor->withPeerManager([&](avalanche::PeerManager &pm) { BOOST_CHECK(pm.registerProof(proof)); BOOST_CHECK(pm.addNode(nodeid, proof->getId())); }); }; // Add enough node to have a conclusive vote, but don't account any // avaproofs. // NOTE: we can't use the test facilites like ConnectNodes() because we // are not testing on m_processor. for (NodeId id = 100; id < 108; id++) { addNode(id); } BOOST_CHECK_EQUAL(processor->isQuorumEstablished(), minAvaproofsMessages <= 0); for (int64_t i = 0; i < minAvaproofsMessages - 1; i++) { addNode(i); processor->avaproofsSent(i); BOOST_CHECK_EQUAL(processor->getAvaproofsNodeCounter(), i + 1); // Receiving again on the same node does not increase the counter processor->avaproofsSent(i); BOOST_CHECK_EQUAL(processor->getAvaproofsNodeCounter(), i + 1); BOOST_CHECK(!processor->isQuorumEstablished()); } addNode(minAvaproofsMessages); processor->avaproofsSent(minAvaproofsMessages); BOOST_CHECK(processor->isQuorumEstablished()); // Check the latch AvalancheTest::clearavaproofsNodeCounter(*processor); BOOST_CHECK(processor->isQuorumEstablished()); }; checkMinAvaproofsMessages(0); checkMinAvaproofsMessages(1); checkMinAvaproofsMessages(10); checkMinAvaproofsMessages(100); } BOOST_AUTO_TEST_CASE_TEMPLATE(voting_parameters, P, VoteItemProviders) { // Check that setting voting parameters has the expected effect gArgs.ForceSetArg("-avastalevotethreshold", ToString(AVALANCHE_VOTE_STALE_MIN_THRESHOLD)); gArgs.ForceSetArg("-avastalevotefactor", "2"); std::vector> testCases = { // {number of yes votes, number of neutral votes} {0, AVALANCHE_VOTE_STALE_MIN_THRESHOLD}, {AVALANCHE_FINALIZATION_SCORE + 4, AVALANCHE_FINALIZATION_SCORE - 6}, }; bilingual_str error; m_processor = Processor::MakeProcessor( *m_node.args, *m_node.chain, m_node.connman.get(), *Assert(m_node.chainman), *m_node.scheduler, error); BOOST_CHECK(m_processor != nullptr); BOOST_CHECK(error.empty()); P provider(this); auto &updates = provider.updates; const uint32_t invType = provider.invType; const auto item = provider.buildVoteItem(); const auto itemid = provider.getVoteItemId(item); // Create nodes that supports avalanche. auto avanodes = ConnectNodes(); int nextNodeIndex = 0; for (auto &testCase : testCases) { // Add a new item. Check it is added to the polls. BOOST_CHECK(provider.addToReconcile(item)); auto invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); BOOST_CHECK(m_processor->isAccepted(item)); auto registerNewVote = [&](const Response &resp) { runEventLoop(); auto nodeid = avanodes[nextNodeIndex++ % avanodes.size()]->GetId(); BOOST_CHECK(provider.registerVotes(nodeid, resp)); }; // Add some confidence for (int i = 0; i < std::get<0>(testCase); i++) { Response resp = {getRound(), 0, {Vote(0, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK(m_processor->isAccepted(item)); BOOST_CHECK_EQUAL(m_processor->getConfidence(item), i >= 6 ? i - 5 : 0); BOOST_CHECK_EQUAL(updates.size(), 0); } // Vote until just before item goes stale for (int i = 0; i < std::get<1>(testCase); i++) { Response resp = {getRound(), 0, {Vote(-1, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK_EQUAL(updates.size(), 0); } // As long as it is not stale, we poll. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 1); BOOST_CHECK_EQUAL(invs[0].type, invType); BOOST_CHECK(invs[0].hash == itemid); // Now stale Response resp = {getRound(), 0, {Vote(-1, itemid)}}; registerNewVote(next(resp)); BOOST_CHECK_EQUAL(updates.size(), 1); BOOST_CHECK(updates[0].getVoteItem() == item); BOOST_CHECK(updates[0].getStatus() == VoteStatus::Stale); updates.clear(); // Once stale, there is no poll for it. invs = getInvsForNextPoll(); BOOST_CHECK_EQUAL(invs.size(), 0); } gArgs.ClearForcedArg("-avastalevotethreshold"); gArgs.ClearForcedArg("-avastalevotefactor"); } BOOST_AUTO_TEST_SUITE_END()