diff --git a/src/avalanche.h b/src/avalanche.h index 804085a4b..e1d6a21de 100644 --- a/src/avalanche.h +++ b/src/avalanche.h @@ -1,371 +1,372 @@ // Copyright (c) 2018-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_AVALANCHE_H #define BITCOIN_AVALANCHE_H #include #include #include #include #include // for CInv #include #include #include #include #include #include #include #include #include #include #include #include class Config; class CBlockIndex; class CScheduler; namespace { /** * Is avalanche enabled by default. */ static const bool AVALANCHE_DEFAULT_ENABLED = false; /** * Finalization score. */ static const int AVALANCHE_FINALIZATION_SCORE = 128; /** * Maximum item that can be polled at once. */ static const size_t AVALANCHE_MAX_ELEMENT_POLL = 16; /** * Avalanche default cooldown in milliseconds. */ static const size_t AVALANCHE_DEFAULT_COOLDOWN = 100; /** * How long before we consider that a query timed out. */ static const int AVALANCHE_DEFAULT_QUERY_TIMEOUT_DURATION_MILLISECONDS = 10000; /** * How many inflight requests can exist for one item. */ static const int AVALANCHE_MAX_INFLIGHT_POLL = 10; /** * Special NodeId that represent no node. */ static const NodeId NO_NODE = -1; } // namespace /** * Vote history. */ struct VoteRecord { private: // confidence's LSB bit is the result. Higher bits are actual confidence // score. uint16_t confidence = 0; // Historical record of votes. uint8_t votes = 0; // Each bit indicate if the vote is to be considered. uint8_t consider = 0; // How many in flight requests exists for this element. mutable std::atomic inflight{0}; // Seed for pseudorandom operations. const uint32_t seed = 0; // Track how many successful votes occured. uint32_t successfulVotes = 0; // Track the nodes which are part of the quorum. std::array nodeFilter{{0, 0, 0, 0, 0, 0, 0, 0}}; public: VoteRecord(bool accepted) : confidence(accepted) {} /** * Copy semantic */ VoteRecord(const VoteRecord &other) : confidence(other.confidence), votes(other.votes), consider(other.consider), inflight(other.inflight.load()), successfulVotes(other.successfulVotes), nodeFilter(other.nodeFilter) { } /** * Vote accounting facilities. */ bool isAccepted() const { return confidence & 0x01; } uint16_t getConfidence() const { return confidence >> 1; } bool hasFinalized() const { return getConfidence() >= AVALANCHE_FINALIZATION_SCORE; } /** * Register a new vote for an item and update confidence accordingly. * Returns true if the acceptance or finalization state changed. */ bool registerVote(NodeId nodeid, uint32_t error); /** * Register that a request is being made regarding that item. * The method is made const so that it can be accessed via a read only view * of vote_records. It's not a problem as it is made thread safe. */ bool registerPoll() const; /** * Return if this item is in condition to be polled at the moment. */ bool shouldPoll() const { return inflight < AVALANCHE_MAX_INFLIGHT_POLL; } /** * Clear `count` inflight requests. */ void clearInflightRequest(uint8_t count = 1) { inflight -= count; } private: /** * Add the node to the quorum. * Returns true if the node was added, false if the node already was in the * quorum. */ bool addNodeToQuorum(NodeId nodeid); }; class AvalancheVote { uint32_t error; uint256 hash; public: AvalancheVote() : error(-1), hash() {} AvalancheVote(uint32_t errorIn, uint256 hashIn) : error(errorIn), hash(hashIn) {} const uint256 &GetHash() const { return hash; } uint32_t GetError() const { return error; } // serialization support ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(error); READWRITE(hash); } }; class AvalancheResponse { uint64_t round; uint32_t cooldown; std::vector votes; public: + AvalancheResponse() : round(-1), cooldown(-1) {} AvalancheResponse(uint64_t roundIn, uint32_t cooldownIn, std::vector votesIn) : round(roundIn), cooldown(cooldownIn), votes(votesIn) {} uint64_t getRound() const { return round; } uint32_t getCooldown() const { return cooldown; } const std::vector &GetVotes() const { return votes; } // serialization support ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(round); READWRITE(cooldown); READWRITE(votes); } }; class AvalanchePoll { uint64_t round; std::vector invs; public: AvalanchePoll(uint64_t roundIn, std::vector invsIn) : round(roundIn), invs(invsIn) {} const std::vector &GetInvs() const { return invs; } // serialization support ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(round); READWRITE(invs); } }; class AvalancheBlockUpdate { union { CBlockIndex *pindex; uintptr_t raw; }; static const size_t STATUS_BITS = 2; static const uintptr_t MASK = (1 << STATUS_BITS) - 1; static_assert( alignof(CBlockIndex) >= (1 << STATUS_BITS), "CBlockIndex alignement doesn't allow for Status to be stored."); public: enum Status : uint8_t { Invalid, Rejected, Accepted, Finalized, }; AvalancheBlockUpdate(CBlockIndex *pindexIn, Status statusIn) : pindex(pindexIn) { raw |= statusIn; } Status getStatus() const { return Status(raw & MASK); } CBlockIndex *getBlockIndex() { return reinterpret_cast(raw & ~MASK); } const CBlockIndex *getBlockIndex() const { return const_cast(this)->getBlockIndex(); } }; using BlockVoteMap = std::map; struct next_request_time {}; struct query_timeout {}; class AvalancheProcessor { private: CConnman *connman; std::chrono::milliseconds queryTimeoutDuration; /** * Blocks to run avalanche on. */ RWCollection vote_records; /** * Keep track of peers and queries sent. */ std::atomic round; using TimePoint = std::chrono::time_point; struct Peer { NodeId nodeid; int64_t score; TimePoint nextRequestTime; CPubKey pubkey; }; using PeerSet = boost::multi_index_container< Peer, boost::multi_index::indexed_by< // index by nodeid boost::multi_index::hashed_unique< boost::multi_index::member>, // sorted by nextRequestTime boost::multi_index::ordered_non_unique< boost::multi_index::tag, boost::multi_index::member>>>; RWCollection peerSet; struct Query { NodeId nodeid; uint64_t round; TimePoint timeout; /** * We declare this as mutable so it can be modified in the multi_index. * This is ok because we do not use this field to index in anyway. * * /!\ Do not use any mutable field as index. */ mutable std::vector invs; }; using QuerySet = boost::multi_index_container< Query, boost::multi_index::indexed_by< // index by nodeid/round boost::multi_index::ordered_unique< boost::multi_index::composite_key< Query, boost::multi_index::member, boost::multi_index::member>>, // sorted by timeout boost::multi_index::ordered_non_unique< boost::multi_index::tag, boost::multi_index::member>>>; RWCollection queries; /** The key used to sign responses. */ CKey sessionKey; /** Event loop machinery. */ EventLoop eventLoop; public: AvalancheProcessor(CConnman *connmanIn); ~AvalancheProcessor(); void setQueryTimeoutDuration(std::chrono::milliseconds d) { queryTimeoutDuration = d; } bool addBlockToReconcile(const CBlockIndex *pindex); bool isAccepted(const CBlockIndex *pindex) const; int getConfidence(const CBlockIndex *pindex) const; void sendResponse(CNode *pfrom, AvalancheResponse response) const; bool registerVotes(NodeId nodeid, const AvalancheResponse &response, std::vector &updates); bool addPeer(NodeId nodeid, int64_t score, CPubKey pubkey); CPubKey getPubKey(NodeId nodeid) const; CPubKey getSessionPubKey() const { return sessionKey.GetPubKey(); } bool startEventLoop(CScheduler &scheduler); bool stopEventLoop(); private: void runEventLoop(); void clearTimedoutRequests(); std::vector getInvsForNextPoll(bool forPoll = true) const; NodeId getSuitableNodeToQuery(); friend struct AvalancheTest; }; /** * Global avalanche instance. */ extern std::unique_ptr g_avalanche; #endif // BITCOIN_AVALANCHE_H diff --git a/src/net_processing.cpp b/src/net_processing.cpp index 724652223..4bb9d5d45 100644 --- a/src/net_processing.cpp +++ b/src/net_processing.cpp @@ -1,4840 +1,4877 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(NDEBUG) #error "Bitcoin cannot be compiled without assertions." #endif /** Expiration time for orphan transactions in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_TIME = 20 * 60; /** Minimum time between orphan transactions expire time checks in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_INTERVAL = 5 * 60; /** * Headers download timeout expressed in microseconds. * Timeout = base + per_header * (expected number of headers) */ // 15 minutes static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_BASE = 15 * 60 * 1000000; // 1ms/header static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1000; /** * Protect at least this many outbound peers from disconnection due to * slow/behind headers chain. */ static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4; /** * Timeout for (unprotected) outbound peers to sync to our chainwork, in * seconds. */ // 20 minutes static constexpr int64_t CHAIN_SYNC_TIMEOUT = 20 * 60; /** How frequently to check for stale tips, in seconds */ // 10 minutes static constexpr int64_t STALE_CHECK_INTERVAL = 10 * 60; /** * How frequently to check for extra outbound peers and disconnect, in seconds. */ static constexpr int64_t EXTRA_PEER_CHECK_INTERVAL = 45; /** * Minimum time an outbound-peer-eviction candidate must be connected for, in * order to evict, in seconds. */ static constexpr int64_t MINIMUM_CONNECT_TIME = 30; /** SHA256("main address relay")[0:8] */ static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL; /// Age after which a stale block will no longer be served if requested as /// protection against fingerprinting. Set to one month, denominated in seconds. static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60; /// Age after which a block is considered historical for purposes of rate /// limiting block relay. Set to one week, denominated in seconds. static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60; /** Maximum number of in-flight transactions from a peer */ static constexpr int32_t MAX_PEER_TX_IN_FLIGHT = 100; /** Maximum number of announced transactions from a peer */ static constexpr int32_t MAX_PEER_TX_ANNOUNCEMENTS = 2 * MAX_INV_SZ; /** How many microseconds to delay requesting transactions from inbound peers */ // 2 seconds static constexpr int64_t INBOUND_PEER_TX_DELAY = 2 * 1000000; /** * How long to wait (in microseconds) before downloading a transaction from an * additional peer. */ // 1 minute static constexpr int64_t GETDATA_TX_INTERVAL = 60 * 1000000; /** * Maximum delay (in microseconds) for transaction requests to avoid biasing * some peers over others. */ // 2 seconds static constexpr int64_t MAX_GETDATA_RANDOM_DELAY = 2 * 1000000; /** * How long to wait (in microseconds) before expiring an in-flight getdata * request to a peer. */ static constexpr int64_t TX_EXPIRY_INTERVAL = 10 * GETDATA_TX_INTERVAL; static_assert(INBOUND_PEER_TX_DELAY >= MAX_GETDATA_RANDOM_DELAY, "To preserve security, MAX_GETDATA_RANDOM_DELAY should not " "exceed INBOUND_PEER_DELAY"); /** * Limit to avoid sending big packets. Not used in processing incoming GETDATA * for compatibility. */ static const unsigned int MAX_GETDATA_SZ = 1000; /// How many non standard orphan do we consider from a node before ignoring it. static constexpr uint32_t MAX_NON_STANDARD_ORPHAN_PER_NODE = 5; struct COrphanTx { // When modifying, adapt the copy of this definition in tests/DoS_tests. CTransactionRef tx; NodeId fromPeer; int64_t nTimeExpire; }; CCriticalSection g_cs_orphans; std::map mapOrphanTransactions GUARDED_BY(g_cs_orphans); void EraseOrphansFor(NodeId peer); /** * Average delay between local address broadcasts in seconds. */ static constexpr unsigned int AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL = 24 * 60 * 60; /** * Average delay between peer address broadcasts in seconds. */ static const unsigned int AVG_ADDRESS_BROADCAST_INTERVAL = 30; /** * Average delay between trickled inventory transmissions in seconds. * Blocks and whitelisted receivers bypass this, outbound peers get half this * delay. */ static const unsigned int INVENTORY_BROADCAST_INTERVAL = 5; /** * Maximum number of inventory items to send per transmission. * Limits the impact of low-fee transaction floods. */ static constexpr unsigned int INVENTORY_BROADCAST_MAX_PER_MB = 7 * INVENTORY_BROADCAST_INTERVAL; /** * Average delay between feefilter broadcasts in seconds. */ static constexpr unsigned int AVG_FEEFILTER_BROADCAST_INTERVAL = 10 * 60; /** * Maximum feefilter broadcast delay after significant change. */ static constexpr unsigned int MAX_FEEFILTER_CHANGE_DELAY = 5 * 60; // Internal stuff namespace { /** Number of nodes with fSyncStarted. */ int nSyncStarted GUARDED_BY(cs_main) = 0; /** * Sources of received blocks, saved to be able to send them reject messages or * ban them when processing happens afterwards. * Set mapBlockSource[hash].second to false if the node should not be punished * if the block is invalid. */ std::map> mapBlockSource GUARDED_BY(cs_main); /** * Filter for transactions that were recently rejected by AcceptToMemoryPool. * These are not rerequested until the chain tip changes, at which point the * entire filter is reset. * * Without this filter we'd be re-requesting txs from each of our peers, * increasing bandwidth consumption considerably. For instance, with 100 peers, * half of which relay a tx we don't accept, that might be a 50x bandwidth * increase. A flooding attacker attempting to roll-over the filter using * minimum-sized, 60byte, transactions might manage to send 1000/sec if we have * fast peers, so we pick 120,000 to give our peers a two minute window to send * invs to us. * * Decreasing the false positive rate is fairly cheap, so we pick one in a * million to make it highly unlikely for users to have issues with this filter. * * Memory used: 1.3 MB */ std::unique_ptr recentRejects GUARDED_BY(cs_main); uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main); /** * Blocks that are in flight, and that are in the queue to be downloaded. */ struct QueuedBlock { uint256 hash; //! Optional. const CBlockIndex *pindex; //! Whether this block has validated headers at the time of request. bool fValidatedHeaders; //! Optional, used for CMPCTBLOCK downloads std::unique_ptr partialBlock; }; std::map::iterator>> mapBlocksInFlight GUARDED_BY(cs_main); /** Stack of nodes which we have set to announce using compact blocks */ std::list lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main); /** Number of preferable block download peers. */ int nPreferredDownload GUARDED_BY(cs_main) = 0; /** Number of peers from which we're downloading blocks. */ int nPeersWithValidatedDownloads GUARDED_BY(cs_main) = 0; /** Number of outbound peers with m_chain_sync.m_protect. */ int g_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0; /** When our tip was last updated. */ std::atomic g_last_tip_update(0); /** Relay map. */ typedef std::map MapRelay; MapRelay mapRelay GUARDED_BY(cs_main); /** * Expiration-time ordered list of (expire time, relay map entry) pairs, * protected by cs_main). */ std::deque> vRelayExpiration GUARDED_BY(cs_main); // Used only to inform the wallet of when we last received a block std::atomic nTimeBestReceived(0); struct IteratorComparator { template bool operator()(const I &a, const I &b) const { return &(*a) < &(*b); } }; std::map::iterator, IteratorComparator>> mapOrphanTransactionsByPrev GUARDED_BY(g_cs_orphans); static size_t vExtraTxnForCompactIt GUARDED_BY(g_cs_orphans) = 0; static std::vector> vExtraTxnForCompact GUARDED_BY(g_cs_orphans); } // namespace namespace { struct CBlockReject { uint8_t chRejectCode; std::string strRejectReason; uint256 hashBlock; }; /** * Maintain validation-specific state about nodes, protected by cs_main, instead * by CNode's own locks. This simplifies asynchronous operation, where * processing of incoming data is done after the ProcessMessage call returns, * and we're no longer holding the node's locks. */ struct CNodeState { //! The peer's address const CService address; //! Whether we have a fully established connection. bool fCurrentlyConnected; //! Accumulated misbehaviour score for this peer. int nMisbehavior; //! Whether this peer should be disconnected and banned (unless //! whitelisted). bool fShouldBan; //! String name of this peer (debugging/logging purposes). const std::string name; //! List of asynchronously-determined block rejections to notify this peer //! about. std::vector rejects; //! The best known block we know this peer has announced. const CBlockIndex *pindexBestKnownBlock; //! The hash of the last unknown block this peer has announced. BlockHash hashLastUnknownBlock; //! The last full block we both have. const CBlockIndex *pindexLastCommonBlock; //! The best header we have sent our peer. const CBlockIndex *pindexBestHeaderSent; //! Length of current-streak of unconnecting headers announcements int nUnconnectingHeaders; //! Whether we've started headers synchronization with this peer. bool fSyncStarted; //! When to potentially disconnect peer for stalling headers download int64_t nHeadersSyncTimeout; //! Since when we're stalling block download progress (in microseconds), or //! 0. int64_t nStallingSince; std::list vBlocksInFlight; //! When the first entry in vBlocksInFlight started downloading. Don't care //! when vBlocksInFlight is empty. int64_t nDownloadingSince; int nBlocksInFlight; int nBlocksInFlightValidHeaders; //! Whether we consider this a preferred download peer. bool fPreferredDownload; //! Whether this peer wants invs or headers (when possible) for block //! announcements. bool fPreferHeaders; //! Whether this peer wants invs or cmpctblocks (when possible) for block //! announcements. bool fPreferHeaderAndIDs; /** * Whether this peer will send us cmpctblocks if we request them. * This is not used to gate request logic, as we really only care about * fSupportsDesiredCmpctVersion, but is used as a flag to "lock in" the * version of compact blocks we send. */ bool fProvidesHeaderAndIDs; /** * If we've announced NODE_WITNESS to this peer: whether the peer sends * witnesses in cmpctblocks/blocktxns, otherwise: whether this peer sends * non-witnesses in cmpctblocks/blocktxns. */ bool fSupportsDesiredCmpctVersion; /** * State used to enforce CHAIN_SYNC_TIMEOUT * Only in effect for outbound, non-manual connections, * with m_protect == false * Algorithm: if a peer's best known block has less work than our tip, set a * timeout CHAIN_SYNC_TIMEOUT seconds in the future: * - If at timeout their best known block now has more work than our tip * when the timeout was set, then either reset the timeout or clear it * (after comparing against our current tip's work) * - If at timeout their best known block still has less work than our tip * did when the timeout was set, then send a getheaders message, and set a * shorter timeout, HEADERS_RESPONSE_TIME seconds in future. If their best * known block is still behind when that new timeout is reached, disconnect. */ struct ChainSyncTimeoutState { //! A timeout used for checking whether our peer has sufficiently //! synced. int64_t m_timeout; //! A header with the work we require on our peer's chain. const CBlockIndex *m_work_header; //! After timeout is reached, set to true after sending getheaders. bool m_sent_getheaders; //! Whether this peer is protected from disconnection due to a bad/slow //! chain. bool m_protect; }; ChainSyncTimeoutState m_chain_sync; //! Time of last new block announcement int64_t m_last_block_announcement; /* * State associated with transaction download. * * Tx download algorithm: * * When inv comes in, queue up (process_time, txid) inside the peer's * CNodeState (m_tx_process_time) as long as m_tx_announced for the peer * isn't too big (MAX_PEER_TX_ANNOUNCEMENTS). * * The process_time for a transaction is set to nNow for outbound peers, * nNow + 2 seconds for inbound peers. This is the time at which we'll * consider trying to request the transaction from the peer in * SendMessages(). The delay for inbound peers is to allow outbound peers * a chance to announce before we request from inbound peers, to prevent * an adversary from using inbound connections to blind us to a * transaction (InvBlock). * * When we call SendMessages() for a given peer, * we will loop over the transactions in m_tx_process_time, looking * at the transactions whose process_time <= nNow. We'll request each * such transaction that we don't have already and that hasn't been * requested from another peer recently, up until we hit the * MAX_PEER_TX_IN_FLIGHT limit for the peer. Then we'll update * g_already_asked_for for each requested txid, storing the time of the * GETDATA request. We use g_already_asked_for to coordinate transaction * requests amongst our peers. * * For transactions that we still need but we have already recently * requested from some other peer, we'll reinsert (process_time, txid) * back into the peer's m_tx_process_time at the point in the future at * which the most recent GETDATA request would time out (ie * GETDATA_TX_INTERVAL + the request time stored in g_already_asked_for). * We add an additional delay for inbound peers, again to prefer * attempting download from outbound peers first. * We also add an extra small random delay up to 2 seconds * to avoid biasing some peers over others. (e.g., due to fixed ordering * of peer processing in ThreadMessageHandler). * * When we receive a transaction from a peer, we remove the txid from the * peer's m_tx_in_flight set and from their recently announced set * (m_tx_announced). We also clear g_already_asked_for for that entry, so * that if somehow the transaction is not accepted but also not added to * the reject filter, then we will eventually redownload from other * peers. */ struct TxDownloadState { /** * Track when to attempt download of announced transactions (process * time in micros -> txid) */ std::multimap m_tx_process_time; //! Store all the transactions a peer has recently announced std::set m_tx_announced; //! Store transactions which were requested by us, with timestamp std::map m_tx_in_flight; //! Periodically check for stuck getdata requests int64_t m_check_expiry_timer{0}; }; TxDownloadState m_tx_download; struct AvalancheState { std::chrono::time_point last_poll; }; AvalancheState m_avalanche_state; CNodeState(CAddress addrIn, std::string addrNameIn) : address(addrIn), name(addrNameIn) { fCurrentlyConnected = false; nMisbehavior = 0; fShouldBan = false; pindexBestKnownBlock = nullptr; hashLastUnknownBlock = BlockHash(); pindexLastCommonBlock = nullptr; pindexBestHeaderSent = nullptr; nUnconnectingHeaders = 0; fSyncStarted = false; nHeadersSyncTimeout = 0; nStallingSince = 0; nDownloadingSince = 0; nBlocksInFlight = 0; nBlocksInFlightValidHeaders = 0; fPreferredDownload = false; fPreferHeaders = false; fPreferHeaderAndIDs = false; fProvidesHeaderAndIDs = false; fSupportsDesiredCmpctVersion = false; m_chain_sync = {0, nullptr, false, false}; m_last_block_announcement = 0; } }; // Keeps track of the time (in microseconds) when transactions were requested // last time limitedmap g_already_asked_for GUARDED_BY(cs_main)(MAX_INV_SZ); /** Map maintaining per-node state. */ static std::map mapNodeState GUARDED_BY(cs_main); static CNodeState *State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { std::map::iterator it = mapNodeState.find(pnode); if (it == mapNodeState.end()) { return nullptr; } return &it->second; } static void UpdatePreferredDownload(CNode *node, CNodeState *state) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { nPreferredDownload -= state->fPreferredDownload; // Whether this node should be marked as a preferred download node. state->fPreferredDownload = (!node->fInbound || node->fWhitelisted) && !node->fOneShot && !node->fClient; nPreferredDownload += state->fPreferredDownload; } static void PushNodeVersion(const Config &config, CNode *pnode, CConnman *connman, int64_t nTime) { ServiceFlags nLocalNodeServices = pnode->GetLocalServices(); uint64_t nonce = pnode->GetLocalNonce(); int nNodeStartingHeight = pnode->GetMyStartingHeight(); NodeId nodeid = pnode->GetId(); CAddress addr = pnode->addr; CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService(), addr.nServices)); CAddress addrMe = CAddress(CService(), nLocalNodeServices); connman->PushMessage(pnode, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::VERSION, PROTOCOL_VERSION, uint64_t(nLocalNodeServices), nTime, addrYou, addrMe, nonce, userAgent(config), nNodeStartingHeight, ::fRelayTxes)); if (fLogIPs) { LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, us=%s, them=%s, " "peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), addrYou.ToString(), nodeid); } else { LogPrint( BCLog::NET, "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), nodeid); } LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid); } // Returns a bool indicating whether we requested this block. // Also used if a block was /not/ received and timed out or started with another // peer. static bool MarkBlockAsReceived(const uint256 &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { std::map::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end()) { CNodeState *state = State(itInFlight->second.first); assert(state != nullptr); state->nBlocksInFlightValidHeaders -= itInFlight->second.second->fValidatedHeaders; if (state->nBlocksInFlightValidHeaders == 0 && itInFlight->second.second->fValidatedHeaders) { // Last validated block on the queue was received. nPeersWithValidatedDownloads--; } if (state->vBlocksInFlight.begin() == itInFlight->second.second) { // First block on the queue was received, update the start download // time for the next one state->nDownloadingSince = std::max(state->nDownloadingSince, GetTimeMicros()); } state->vBlocksInFlight.erase(itInFlight->second.second); state->nBlocksInFlight--; state->nStallingSince = 0; mapBlocksInFlight.erase(itInFlight); return true; } return false; } // returns false, still setting pit, if the block was already in flight from the // same peer // pit will only be valid as long as the same cs_main lock is being held. static bool MarkBlockAsInFlight(const Config &config, NodeId nodeid, const uint256 &hash, const Consensus::Params &consensusParams, const CBlockIndex *pindex = nullptr, std::list::iterator **pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState *state = State(nodeid); assert(state != nullptr); // Short-circuit most stuff in case it is from the same node. std::map::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end() && itInFlight->second.first == nodeid) { if (pit) { *pit = &itInFlight->second.second; } return false; } // Make sure it's not listed somewhere already. MarkBlockAsReceived(hash); std::list::iterator it = state->vBlocksInFlight.insert( state->vBlocksInFlight.end(), {hash, pindex, pindex != nullptr, std::unique_ptr( pit ? new PartiallyDownloadedBlock(config, &g_mempool) : nullptr)}); state->nBlocksInFlight++; state->nBlocksInFlightValidHeaders += it->fValidatedHeaders; if (state->nBlocksInFlight == 1) { // We're starting a block download (batch) from this peer. state->nDownloadingSince = GetTimeMicros(); } if (state->nBlocksInFlightValidHeaders == 1 && pindex != nullptr) { nPeersWithValidatedDownloads++; } itInFlight = mapBlocksInFlight .insert(std::make_pair(hash, std::make_pair(nodeid, it))) .first; if (pit) { *pit = &itInFlight->second.second; } return true; } /** Check whether the last unknown block a peer advertised is not yet known. */ static void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState *state = State(nodeid); assert(state != nullptr); if (!state->hashLastUnknownBlock.IsNull()) { const CBlockIndex *pindex = LookupBlockIndex(state->hashLastUnknownBlock); if (pindex && pindex->nChainWork > 0) { if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } state->hashLastUnknownBlock.SetNull(); } } } /** Update tracking information about which blocks a peer is assumed to have. */ static void UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState *state = State(nodeid); assert(state != nullptr); ProcessBlockAvailability(nodeid); const CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex && pindex->nChainWork > 0) { // An actually better block was announced. if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } } else { // An unknown block was announced; just assume that the latest one is // the best one. state->hashLastUnknownBlock = hash; } } /** * When a peer sends us a valid block, instruct it to announce blocks to us * using CMPCTBLOCK if possible by adding its nodeid to the end of * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by * removing the first element if necessary. */ static void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid, CConnman *connman) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); CNodeState *nodestate = State(nodeid); if (!nodestate) { LogPrint(BCLog::NET, "node state unavailable: peer=%d\n", nodeid); return; } if (!nodestate->fProvidesHeaderAndIDs) { return; } for (std::list::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) { if (*it == nodeid) { lNodesAnnouncingHeaderAndIDs.erase(it); lNodesAnnouncingHeaderAndIDs.push_back(nodeid); return; } } connman->ForNode(nodeid, [&connman](CNode *pfrom) { AssertLockHeld(cs_main); uint64_t nCMPCTBLOCKVersion = 1; if (lNodesAnnouncingHeaderAndIDs.size() >= 3) { // As per BIP152, we only get 3 of our peers to announce // blocks using compact encodings. connman->ForNode( lNodesAnnouncingHeaderAndIDs.front(), [&connman, nCMPCTBLOCKVersion](CNode *pnodeStop) { AssertLockHeld(cs_main); connman->PushMessage( pnodeStop, CNetMsgMaker(pnodeStop->GetSendVersion()) .Make(NetMsgType::SENDCMPCT, /*fAnnounceUsingCMPCTBLOCK=*/false, nCMPCTBLOCKVersion)); return true; }); lNodesAnnouncingHeaderAndIDs.pop_front(); } connman->PushMessage(pfrom, CNetMsgMaker(pfrom->GetSendVersion()) .Make(NetMsgType::SENDCMPCT, /*fAnnounceUsingCMPCTBLOCK=*/true, nCMPCTBLOCKVersion)); lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId()); return true; }); } static bool TipMayBeStale(const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); if (g_last_tip_update == 0) { g_last_tip_update = GetTime(); } return g_last_tip_update < GetTime() - consensusParams.nPowTargetSpacing * 3 && mapBlocksInFlight.empty(); } static bool CanDirectFetch(const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return ::ChainActive().Tip()->GetBlockTime() > GetAdjustedTime() - consensusParams.nPowTargetSpacing * 20; } static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight)) { return true; } if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight)) { return true; } return false; } /** * Update pindexLastCommonBlock and add not-in-flight missing successors to * vBlocks, until it has at most count entries. */ static void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector &vBlocks, NodeId &nodeStaller, const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (count == 0) { return; } vBlocks.reserve(vBlocks.size() + count); CNodeState *state = State(nodeid); assert(state != nullptr); // Make sure pindexBestKnownBlock is up to date, we'll need it. ProcessBlockAvailability(nodeid); if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < ::ChainActive().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has nothing interesting. return; } if (state->pindexLastCommonBlock == nullptr) { // Bootstrap quickly by guessing a parent of our best tip is the forking // point. Guessing wrong in either direction is not a problem. state->pindexLastCommonBlock = ::ChainActive()[std::min( state->pindexBestKnownBlock->nHeight, ::ChainActive().Height())]; } // If the peer reorganized, our previous pindexLastCommonBlock may not be an // ancestor of its current tip anymore. Go back enough to fix that. state->pindexLastCommonBlock = LastCommonAncestor( state->pindexLastCommonBlock, state->pindexBestKnownBlock); if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) { return; } std::vector vToFetch; const CBlockIndex *pindexWalk = state->pindexLastCommonBlock; // Never fetch further than the best block we know the peer has, or more // than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last linked block we have in // common with this peer. The +1 is so we can detect stalling, namely if we // would be able to download that next block if the window were 1 larger. int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW; int nMaxHeight = std::min(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1); NodeId waitingfor = -1; while (pindexWalk->nHeight < nMaxHeight) { // Read up to 128 (or more, if more blocks than that are needed) // successors of pindexWalk (towards pindexBestKnownBlock) into // vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as // expensive as iterating over ~100 CBlockIndex* entries anyway. int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max(count - vBlocks.size(), 128)); vToFetch.resize(nToFetch); pindexWalk = state->pindexBestKnownBlock->GetAncestor( pindexWalk->nHeight + nToFetch); vToFetch[nToFetch - 1] = pindexWalk; for (unsigned int i = nToFetch - 1; i > 0; i--) { vToFetch[i - 1] = vToFetch[i]->pprev; } // Iterate over those blocks in vToFetch (in forward direction), adding // the ones that are not yet downloaded and not in flight to vBlocks. In // the meantime, update pindexLastCommonBlock as long as all ancestors // are already downloaded, or if it's already part of our chain (and // therefore don't need it even if pruned). for (const CBlockIndex *pindex : vToFetch) { if (!pindex->IsValid(BlockValidity::TREE)) { // We consider the chain that this peer is on invalid. return; } if (pindex->nStatus.hasData() || ::ChainActive().Contains(pindex)) { if (pindex->HaveTxsDownloaded()) { state->pindexLastCommonBlock = pindex; } } else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) { // The block is not already downloaded, and not yet in flight. if (pindex->nHeight > nWindowEnd) { // We reached the end of the window. if (vBlocks.size() == 0 && waitingfor != nodeid) { // We aren't able to fetch anything, but we would be if // the download window was one larger. nodeStaller = waitingfor; } return; } vBlocks.push_back(pindex); if (vBlocks.size() == count) { return; } } else if (waitingfor == -1) { // This is the first already-in-flight block. waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first; } } } } void EraseTxRequest(const TxId &txid) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { g_already_asked_for.erase(txid); } int64_t GetTxRequestTime(const TxId &txid) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { auto it = g_already_asked_for.find(txid); if (it != g_already_asked_for.end()) { return it->second; } return 0; } void UpdateTxRequestTime(const TxId &txid, int64_t request_time) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { auto it = g_already_asked_for.find(txid); if (it == g_already_asked_for.end()) { g_already_asked_for.insert(std::make_pair(txid, request_time)); } else { g_already_asked_for.update(it, request_time); } } int64_t CalculateTxGetDataTime(const TxId &txid, int64_t current_time, bool use_inbound_delay) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { int64_t process_time; int64_t last_request_time = GetTxRequestTime(txid); // First time requesting this tx if (last_request_time == 0) { process_time = current_time; } else { // Randomize the delay to avoid biasing some peers over others (such as // due to fixed ordering of peer processing in ThreadMessageHandler) process_time = last_request_time + GETDATA_TX_INTERVAL + GetRand(MAX_GETDATA_RANDOM_DELAY); } // We delay processing announcements from inbound peers if (use_inbound_delay) { process_time += INBOUND_PEER_TX_DELAY; } return process_time; } void RequestTx(CNodeState *state, const TxId &txid, int64_t nNow) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState::TxDownloadState &peer_download_state = state->m_tx_download; if (peer_download_state.m_tx_announced.size() >= MAX_PEER_TX_ANNOUNCEMENTS || peer_download_state.m_tx_process_time.size() >= MAX_PEER_TX_ANNOUNCEMENTS || peer_download_state.m_tx_announced.count(txid)) { // Too many queued announcements from this peer, or we already have // this announcement return; } peer_download_state.m_tx_announced.insert(txid); // Calculate the time to try requesting this transaction. Use // fPreferredDownload as a proxy for outbound peers. int64_t process_time = CalculateTxGetDataTime(txid, nNow, !state->fPreferredDownload); peer_download_state.m_tx_process_time.emplace(process_time, txid); } } // namespace // This function is used for testing the stale tip eviction logic, see // denialofservice_tests.cpp void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) { LOCK(cs_main); CNodeState *state = State(node); if (state) { state->m_last_block_announcement = time_in_seconds; } } // Returns true for outbound peers, excluding manual connections, feelers, and // one-shots. static bool IsOutboundDisconnectionCandidate(const CNode *node) { return !(node->fInbound || node->m_manual_connection || node->fFeeler || node->fOneShot); } void PeerLogicValidation::InitializeNode(const Config &config, CNode *pnode) { CAddress addr = pnode->addr; std::string addrName = pnode->GetAddrName(); NodeId nodeid = pnode->GetId(); { LOCK(cs_main); mapNodeState.emplace_hint( mapNodeState.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(addr, std::move(addrName))); } if (!pnode->fInbound) { PushNodeVersion(config, pnode, connman, GetTime()); } } void PeerLogicValidation::FinalizeNode(const Config &config, NodeId nodeid, bool &fUpdateConnectionTime) { fUpdateConnectionTime = false; LOCK(cs_main); CNodeState *state = State(nodeid); assert(state != nullptr); if (state->fSyncStarted) { nSyncStarted--; } if (state->nMisbehavior == 0 && state->fCurrentlyConnected) { fUpdateConnectionTime = true; } for (const QueuedBlock &entry : state->vBlocksInFlight) { mapBlocksInFlight.erase(entry.hash); } EraseOrphansFor(nodeid); nPreferredDownload -= state->fPreferredDownload; nPeersWithValidatedDownloads -= (state->nBlocksInFlightValidHeaders != 0); assert(nPeersWithValidatedDownloads >= 0); g_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect; assert(g_outbound_peers_with_protect_from_disconnect >= 0); mapNodeState.erase(nodeid); if (mapNodeState.empty()) { // Do a consistency check after the last peer is removed. assert(mapBlocksInFlight.empty()); assert(nPreferredDownload == 0); assert(nPeersWithValidatedDownloads == 0); assert(g_outbound_peers_with_protect_from_disconnect == 0); } LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid); } bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) { LOCK(cs_main); CNodeState *state = State(nodeid); if (state == nullptr) { return false; } stats.nMisbehavior = state->nMisbehavior; stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1; stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1; for (const QueuedBlock &queue : state->vBlocksInFlight) { if (queue.pindex) { stats.vHeightInFlight.push_back(queue.pindex->nHeight); } } return true; } ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // static void AddToCompactExtraTransactions(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) { size_t max_extra_txn = gArgs.GetArg("-blockreconstructionextratxn", DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN); if (max_extra_txn <= 0) { return; } if (!vExtraTxnForCompact.size()) { vExtraTxnForCompact.resize(max_extra_txn); } vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetHash(), tx); vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % max_extra_txn; } bool AddOrphanTx(const CTransactionRef &tx, NodeId peer) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) { const uint256 &txid = tx->GetId(); if (mapOrphanTransactions.count(txid)) { return false; } // Ignore big transactions, to avoid a send-big-orphans memory exhaustion // attack. If a peer has a legitimate large transaction with a missing // parent then we assume it will rebroadcast it later, after the parent // transaction(s) have been mined or received. // 100 orphans, each of which is at most 99,999 bytes big is at most 10 // megabytes of orphans and somewhat more byprev index (in the worst case): unsigned int sz = tx->GetTotalSize(); if (sz >= MAX_STANDARD_TX_SIZE) { LogPrint(BCLog::MEMPOOL, "ignoring large orphan tx (size: %u, hash: %s)\n", sz, txid.ToString()); return false; } auto ret = mapOrphanTransactions.emplace( txid, COrphanTx{tx, peer, GetTime() + ORPHAN_TX_EXPIRE_TIME}); assert(ret.second); for (const CTxIn &txin : tx->vin) { mapOrphanTransactionsByPrev[txin.prevout].insert(ret.first); } AddToCompactExtraTransactions(tx); LogPrint(BCLog::MEMPOOL, "stored orphan tx %s (mapsz %u outsz %u)\n", txid.ToString(), mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size()); return true; } static int EraseOrphanTx(uint256 hash) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) { std::map::iterator it = mapOrphanTransactions.find(hash); if (it == mapOrphanTransactions.end()) { return 0; } for (const CTxIn &txin : it->second.tx->vin) { auto itPrev = mapOrphanTransactionsByPrev.find(txin.prevout); if (itPrev == mapOrphanTransactionsByPrev.end()) { continue; } itPrev->second.erase(it); if (itPrev->second.empty()) { mapOrphanTransactionsByPrev.erase(itPrev); } } mapOrphanTransactions.erase(it); return 1; } void EraseOrphansFor(NodeId peer) { LOCK(g_cs_orphans); int nErased = 0; std::map::iterator iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { // Increment to avoid iterator becoming invalid. std::map::iterator maybeErase = iter++; if (maybeErase->second.fromPeer == peer) { nErased += EraseOrphanTx(maybeErase->second.tx->GetId()); } } if (nErased > 0) { LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx from peer=%d\n", nErased, peer); } } unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) { LOCK(g_cs_orphans); unsigned int nEvicted = 0; static int64_t nNextSweep; int64_t nNow = GetTime(); if (nNextSweep <= nNow) { // Sweep out expired orphan pool entries: int nErased = 0; int64_t nMinExpTime = nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL; std::map::iterator iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { std::map::iterator maybeErase = iter++; if (maybeErase->second.nTimeExpire <= nNow) { nErased += EraseOrphanTx(maybeErase->second.tx->GetId()); } else { nMinExpTime = std::min(maybeErase->second.nTimeExpire, nMinExpTime); } } // Sweep again 5 minutes after the next entry that expires in order to // batch the linear scan. nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL; if (nErased > 0) { LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx due to expiration\n", nErased); } } FastRandomContext rng; while (mapOrphanTransactions.size() > nMaxOrphans) { // Evict a random orphan: uint256 randomhash = rng.rand256(); std::map::iterator it = mapOrphanTransactions.lower_bound(randomhash); if (it == mapOrphanTransactions.end()) { it = mapOrphanTransactions.begin(); } EraseOrphanTx(it->first); ++nEvicted; } return nEvicted; } /** * Mark a misbehaving peer to be banned depending upon the value of `-banscore`. */ void Misbehaving(NodeId pnode, int howmuch, const std::string &reason) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (howmuch == 0) { return; } CNodeState *state = State(pnode); if (state == nullptr) { return; } state->nMisbehavior += howmuch; int banscore = gArgs.GetArg("-banscore", DEFAULT_BANSCORE_THRESHOLD); if (state->nMisbehavior >= banscore && state->nMisbehavior - howmuch < banscore) { LogPrintf( "%s: %s peer=%d (%d -> %d) reason: %s BAN THRESHOLD EXCEEDED\n", __func__, state->name, pnode, state->nMisbehavior - howmuch, state->nMisbehavior, reason.c_str()); state->fShouldBan = true; } else { LogPrintf("%s: %s peer=%d (%d -> %d) reason: %s\n", __func__, state->name, pnode, state->nMisbehavior - howmuch, state->nMisbehavior, reason.c_str()); } } // overloaded variant of above to operate on CNode*s static void Misbehaving(CNode *node, int howmuch, const std::string &reason) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { Misbehaving(node->GetId(), howmuch, reason); } ////////////////////////////////////////////////////////////////////////////// // // blockchain -> download logic notification // // To prevent fingerprinting attacks, only send blocks/headers outside of the // active chain if they are no more than a month older (both in time, and in // best equivalent proof of work) than the best header chain we know about and // we fully-validated them at some point. static bool BlockRequestAllowed(const CBlockIndex *pindex, const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); if (::ChainActive().Contains(pindex)) { return true; } return pindex->IsValid(BlockValidity::SCRIPTS) && (pindexBestHeader != nullptr) && (pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) && (GetBlockProofEquivalentTime(*pindexBestHeader, *pindex, *pindexBestHeader, consensusParams) < STALE_RELAY_AGE_LIMIT); } PeerLogicValidation::PeerLogicValidation(CConnman *connmanIn, BanMan *banman, CScheduler &scheduler, bool enable_bip61) : connman(connmanIn), m_banman(banman), m_stale_tip_check_time(0), m_enable_bip61(enable_bip61) { // Initialize global variables that cannot be constructed at startup. recentRejects.reset(new CRollingBloomFilter(120000, 0.000001)); const Consensus::Params &consensusParams = Params().GetConsensus(); // Stale tip checking and peer eviction are on two different timers, but we // don't want them to get out of sync due to drift in the scheduler, so we // combine them in one function and schedule at the quicker (peer-eviction) // timer. static_assert( EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer"); scheduler.scheduleEvery( [this, &consensusParams]() { this->CheckForStaleTipAndEvictPeers(consensusParams); return true; }, EXTRA_PEER_CHECK_INTERVAL * 1000); } /** * Evict orphan txn pool entries (EraseOrphanTx) based on a newly connected * block. Also save the time of the last tip update. */ void PeerLogicValidation::BlockConnected( const std::shared_ptr &pblock, const CBlockIndex *pindex, const std::vector &vtxConflicted) { LOCK(g_cs_orphans); std::vector vOrphanErase; for (const CTransactionRef &ptx : pblock->vtx) { const CTransaction &tx = *ptx; // Which orphan pool entries must we evict? for (const auto &txin : tx.vin) { auto itByPrev = mapOrphanTransactionsByPrev.find(txin.prevout); if (itByPrev == mapOrphanTransactionsByPrev.end()) { continue; } for (auto mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const CTransaction &orphanTx = *(*mi)->second.tx; const uint256 &orphanHash = orphanTx.GetHash(); vOrphanErase.push_back(orphanHash); } } } // Erase orphan transactions included or precluded by this block if (vOrphanErase.size()) { int nErased = 0; for (const uint256 &orphanId : vOrphanErase) { nErased += EraseOrphanTx(orphanId); } LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx included or conflicted by block\n", nErased); } g_last_tip_update = GetTime(); } // All of the following cache a recent block, and are protected by // cs_most_recent_block static CCriticalSection cs_most_recent_block; static std::shared_ptr most_recent_block GUARDED_BY(cs_most_recent_block); static std::shared_ptr most_recent_compact_block GUARDED_BY(cs_most_recent_block); static uint256 most_recent_block_hash GUARDED_BY(cs_most_recent_block); /** * Maintain state about the best-seen block and fast-announce a compact block * to compatible peers. */ void PeerLogicValidation::NewPoWValidBlock( const CBlockIndex *pindex, const std::shared_ptr &pblock) { std::shared_ptr pcmpctblock = std::make_shared(*pblock); const CNetMsgMaker msgMaker(PROTOCOL_VERSION); LOCK(cs_main); static int nHighestFastAnnounce = 0; if (pindex->nHeight <= nHighestFastAnnounce) { return; } nHighestFastAnnounce = pindex->nHeight; uint256 hashBlock(pblock->GetHash()); { LOCK(cs_most_recent_block); most_recent_block_hash = hashBlock; most_recent_block = pblock; most_recent_compact_block = pcmpctblock; } connman->ForEachNode([this, &pcmpctblock, pindex, &msgMaker, &hashBlock](CNode *pnode) { AssertLockHeld(cs_main); // TODO: Avoid the repeated-serialization here if (pnode->nVersion < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect) { return; } ProcessBlockAvailability(pnode->GetId()); CNodeState &state = *State(pnode->GetId()); // If the peer has, or we announced to them the previous block already, // but we don't think they have this one, go ahead and announce it. if (state.fPreferHeaderAndIDs && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) { LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerLogicValidation::NewPoWValidBlock", hashBlock.ToString(), pnode->GetId()); connman->PushMessage( pnode, msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock)); state.pindexBestHeaderSent = pindex; } }); } /** * Update our best height and announce any block hashes which weren't previously * in ::ChainActive() to our peers. */ void PeerLogicValidation::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { const int nNewHeight = pindexNew->nHeight; connman->SetBestHeight(nNewHeight); SetServiceFlagsIBDCache(!fInitialDownload); if (!fInitialDownload) { // Find the hashes of all blocks that weren't previously in the best // chain. std::vector vHashes; const CBlockIndex *pindexToAnnounce = pindexNew; while (pindexToAnnounce != pindexFork) { vHashes.push_back(pindexToAnnounce->GetBlockHash()); pindexToAnnounce = pindexToAnnounce->pprev; if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) { // Limit announcements in case of a huge reorganization. Rely on // the peer's synchronization mechanism in that case. break; } } // Relay inventory, but don't relay old inventory during initial block // download. connman->ForEachNode([nNewHeight, &vHashes](CNode *pnode) { if (nNewHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : 0)) { for (const BlockHash &hash : reverse_iterate(vHashes)) { pnode->PushBlockHash(hash); } } }); connman->WakeMessageHandler(); } nTimeBestReceived = GetTime(); } /** * Handle invalid block rejection and consequent peer banning, maintain which * peers announce compact blocks. */ void PeerLogicValidation::BlockChecked(const CBlock &block, const CValidationState &state) { LOCK(cs_main); const uint256 hash(block.GetHash()); std::map>::iterator it = mapBlockSource.find(hash); int nDoS = 0; if (state.IsInvalid(nDoS)) { // Don't send reject message with code 0 or an internal reject code. if (it != mapBlockSource.end() && State(it->second.first) && state.GetRejectCode() > 0 && state.GetRejectCode() < REJECT_INTERNAL) { CBlockReject reject = { uint8_t(state.GetRejectCode()), state.GetRejectReason().substr(0, MAX_REJECT_MESSAGE_LENGTH), hash}; State(it->second.first)->rejects.push_back(reject); if (nDoS > 0 && it->second.second) { Misbehaving(it->second.first, nDoS, state.GetRejectReason()); } } } // Check that: // 1. The block is valid // 2. We're not in initial block download // 3. This is currently the best block we're aware of. We haven't updated // the tip yet so we have no way to check this directly here. Instead we // just check that there are currently no other blocks in flight. else if (state.IsValid() && !IsInitialBlockDownload() && mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) { if (it != mapBlockSource.end()) { MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first, connman); } } if (it != mapBlockSource.end()) { mapBlockSource.erase(it); } } ////////////////////////////////////////////////////////////////////////////// // // Messages // static bool AlreadyHave(const CInv &inv) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { switch (inv.type) { case MSG_TX: { assert(recentRejects); if (::ChainActive().Tip()->GetBlockHash() != hashRecentRejectsChainTip) { // If the chain tip has changed previously rejected transactions // might be now valid, e.g. due to a nLockTime'd tx becoming // valid, or a double-spend. Reset the rejects filter and give // those txs a second chance. hashRecentRejectsChainTip = ::ChainActive().Tip()->GetBlockHash(); recentRejects->reset(); } { LOCK(g_cs_orphans); if (mapOrphanTransactions.count(inv.hash)) { return true; } } // Use pcoinsTip->HaveCoinInCache as a quick approximation to // exclude requesting or processing some txs which have already been // included in a block. As this is best effort, we only check for // output 0 and 1. This works well enough in practice and we get // diminishing returns with 2 onward. const TxId txid(inv.hash); return recentRejects->contains(inv.hash) || g_mempool.exists(txid) || pcoinsTip->HaveCoinInCache(COutPoint(txid, 0)) || pcoinsTip->HaveCoinInCache(COutPoint(txid, 1)); } case MSG_BLOCK: return LookupBlockIndex(BlockHash(inv.hash)) != nullptr; } // Don't know what it is, just say we already got one return true; } static void RelayTransaction(const CTransaction &tx, CConnman *connman) { CInv inv(MSG_TX, tx.GetId()); connman->ForEachNode([&inv](CNode *pnode) { pnode->PushInventory(inv); }); } static void RelayAddress(const CAddress &addr, bool fReachable, CConnman *connman) { // Limited relaying of addresses outside our network(s) unsigned int nRelayNodes = fReachable ? 2 : 1; // Relay to a limited number of other nodes. // Use deterministic randomness to send to the same nodes for 24 hours at a // time so the addrKnowns of the chosen nodes prevent repeats. uint64_t hashAddr = addr.GetHash(); const CSipHasher hasher = connman->GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY) .Write(hashAddr << 32) .Write((GetTime() + hashAddr) / (24 * 60 * 60)); FastRandomContext insecure_rand; std::array, 2> best{ {{0, nullptr}, {0, nullptr}}}; assert(nRelayNodes <= best.size()); auto sortfunc = [&best, &hasher, nRelayNodes](CNode *pnode) { if (pnode->nVersion >= CADDR_TIME_VERSION) { uint64_t hashKey = CSipHasher(hasher).Write(pnode->GetId()).Finalize(); for (unsigned int i = 0; i < nRelayNodes; i++) { if (hashKey > best[i].first) { std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1); best[i] = std::make_pair(hashKey, pnode); break; } } } }; auto pushfunc = [&addr, &best, nRelayNodes, &insecure_rand] { for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) { best[i].second->PushAddress(addr, insecure_rand); } }; connman->ForEachNodeThen(std::move(sortfunc), std::move(pushfunc)); } static void ProcessGetBlockData(const Config &config, CNode *pfrom, const CInv &inv, CConnman *connman, const std::atomic &interruptMsgProc) { const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); const BlockHash hash(inv.hash); bool send = false; std::shared_ptr a_recent_block; std::shared_ptr a_recent_compact_block; { LOCK(cs_most_recent_block); a_recent_block = most_recent_block; a_recent_compact_block = most_recent_compact_block; } bool need_activate_chain = false; { LOCK(cs_main); const CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex) { if (pindex->HaveTxsDownloaded() && !pindex->IsValid(BlockValidity::SCRIPTS) && pindex->IsValid(BlockValidity::TREE)) { // If we have the block and all of its parents, but have not yet // validated it, we might be in the middle of connecting it (ie // in the unlock of cs_main before ActivateBestChain but after // AcceptBlock). In this case, we need to run ActivateBestChain // prior to checking the relay conditions below. need_activate_chain = true; } } } // release cs_main before calling ActivateBestChain if (need_activate_chain) { CValidationState state; if (!ActivateBestChain(config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", FormatStateMessage(state)); } } LOCK(cs_main); const CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex) { send = BlockRequestAllowed(pindex, consensusParams); if (!send) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old " "block that isn't in the main chain\n", __func__, pfrom->GetId()); } } const CNetMsgMaker msgMaker(pfrom->GetSendVersion()); // Disconnect node in case we have reached the outbound limit for serving // historical blocks. // Never disconnect whitelisted nodes. if (send && connman->OutboundTargetReached(true) && (((pindexBestHeader != nullptr) && (pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.type == MSG_FILTERED_BLOCK) && !pfrom->fWhitelisted) { LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom->GetId()); // disconnect node pfrom->fDisconnect = true; send = false; } // Avoid leaking prune-height by never sending blocks below the // NODE_NETWORK_LIMITED threshold. // Add two blocks buffer extension for possible races if (send && !pfrom->fWhitelisted && ((((pfrom->GetLocalServices() & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((pfrom->GetLocalServices() & NODE_NETWORK) != NODE_NETWORK) && (::ChainActive().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2)))) { LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED " "threshold from peer=%d\n", pfrom->GetId()); // disconnect node and prevent it from stalling (would otherwise wait // for the missing block) pfrom->fDisconnect = true; send = false; } // Pruned nodes may have deleted the block, so check whether it's available // before trying to send. if (send && pindex->nStatus.hasData()) { std::shared_ptr pblock; if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) { pblock = a_recent_block; } else { // Send block from disk std::shared_ptr pblockRead = std::make_shared(); if (!ReadBlockFromDisk(*pblockRead, pindex, consensusParams)) { assert(!"cannot load block from disk"); } pblock = pblockRead; } if (inv.type == MSG_BLOCK) { connman->PushMessage(pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock)); } else if (inv.type == MSG_FILTERED_BLOCK) { bool sendMerkleBlock = false; CMerkleBlock merkleBlock; { LOCK(pfrom->cs_filter); if (pfrom->pfilter) { sendMerkleBlock = true; merkleBlock = CMerkleBlock(*pblock, *pfrom->pfilter); } } if (sendMerkleBlock) { connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock)); // CMerkleBlock just contains hashes, so also push any // transactions in the block the client did not see. This avoids // hurting performance by pointlessly requiring a round-trip. // Note that there is currently no way for a node to request any // single transactions we didn't send here - they must either // disconnect and retry or request the full block. Thus, the // protocol spec specified allows for us to provide duplicate // txn here, however we MUST always provide at least what the // remote peer needs. typedef std::pair PairType; for (PairType &pair : merkleBlock.vMatchedTxn) { connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::TX, *pblock->vtx[pair.first])); } } // else // no response } else if (inv.type == MSG_CMPCT_BLOCK) { // If a peer is asking for old blocks, we're almost guaranteed they // won't have a useful mempool to match against a compact block, and // we don't feel like constructing the object for them, so instead // we respond with the full, non-compact block. int nSendFlags = 0; if (CanDirectFetch(consensusParams) && pindex->nHeight >= ::ChainActive().Height() - MAX_CMPCTBLOCK_DEPTH) { CBlockHeaderAndShortTxIDs cmpctblock(*pblock); connman->PushMessage( pfrom, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } else { connman->PushMessage( pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCK, *pblock)); } } // Trigger the peer node to send a getblocks request for the next batch // of inventory. if (hash == pfrom->hashContinue) { // Bypass PushInventory, this must send even if redundant, and we // want it right after the last block so they don't wait for other // stuff first. std::vector vInv; vInv.push_back( CInv(MSG_BLOCK, ::ChainActive().Tip()->GetBlockHash())); connman->PushMessage(pfrom, msgMaker.Make(NetMsgType::INV, vInv)); pfrom->hashContinue = BlockHash(); } } } static void ProcessGetData(const Config &config, CNode *pfrom, CConnman *connman, const std::atomic &interruptMsgProc) LOCKS_EXCLUDED(cs_main) { AssertLockNotHeld(cs_main); std::deque::iterator it = pfrom->vRecvGetData.begin(); std::vector vNotFound; const CNetMsgMaker msgMaker(pfrom->GetSendVersion()); { LOCK(cs_main); while (it != pfrom->vRecvGetData.end() && it->type == MSG_TX) { if (interruptMsgProc) { return; } // Don't bother if send buffer is too full to respond anyway. if (pfrom->fPauseSend) { break; } const CInv &inv = *it; it++; // Send stream from relay memory bool push = false; auto mi = mapRelay.find(inv.hash); int nSendFlags = 0; if (mi != mapRelay.end()) { connman->PushMessage( pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *mi->second)); push = true; } else if (pfrom->timeLastMempoolReq) { auto txinfo = g_mempool.info(TxId(inv.hash)); // To protect privacy, do not answer getdata using the mempool // when that TX couldn't have been INVed in reply to a MEMPOOL // request. if (txinfo.tx && txinfo.nTime <= pfrom->timeLastMempoolReq) { connman->PushMessage( pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *txinfo.tx)); push = true; } } if (!push) { vNotFound.push_back(inv); } } } // release cs_main if (it != pfrom->vRecvGetData.end() && !pfrom->fPauseSend) { const CInv &inv = *it; if (inv.type == MSG_BLOCK || inv.type == MSG_FILTERED_BLOCK || inv.type == MSG_CMPCT_BLOCK) { it++; ProcessGetBlockData(config, pfrom, inv, connman, interruptMsgProc); } } pfrom->vRecvGetData.erase(pfrom->vRecvGetData.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it // doesn't have to wait around forever. SPV clients care about this // message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want // to do that because they want to know about (and store and rebroadcast // and risk analyze) the dependencies of transactions relevant to them, // without having to download the entire memory pool. Also, other nodes // can use these messages to automatically request a transaction from // some other peer that annnounced it, and stop waiting for us to // respond. In normal operation, we often send NOTFOUND messages for // parents of transactions that we relay; if a peer is missing a parent, // they may assume we have them and request the parents from us. connman->PushMessage(pfrom, msgMaker.Make(NetMsgType::NOTFOUND, vNotFound)); } } inline static void SendBlockTransactions(const CBlock &block, const BlockTransactionsRequest &req, CNode *pfrom, CConnman *connman) { BlockTransactions resp(req); for (size_t i = 0; i < req.indices.size(); i++) { if (req.indices[i] >= block.vtx.size()) { LOCK(cs_main); Misbehaving(pfrom, 100, "out-of-bound-tx-index"); LogPrintf( "Peer %d sent us a getblocktxn with out-of-bounds tx indices\n", pfrom->GetId()); return; } resp.txn[i] = block.vtx[req.indices[i]]; } LOCK(cs_main); const CNetMsgMaker msgMaker(pfrom->GetSendVersion()); int nSendFlags = 0; connman->PushMessage(pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCKTXN, resp)); } static bool ProcessHeadersMessage(const Config &config, CNode *pfrom, CConnman *connman, const std::vector &headers, bool punish_duplicate_invalid) { const CChainParams &chainparams = config.GetChainParams(); const CNetMsgMaker msgMaker(pfrom->GetSendVersion()); size_t nCount = headers.size(); if (nCount == 0) { // Nothing interesting. Stop asking this peers for more headers. return true; } bool received_new_header = false; const CBlockIndex *pindexLast = nullptr; { LOCK(cs_main); CNodeState *nodestate = State(pfrom->GetId()); // If this looks like it could be a block announcement (nCount < // MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that // don't connect: // - Send a getheaders message in response to try to connect the chain. // - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that // don't connect before giving DoS points // - Once a headers message is received that is valid and does connect, // nUnconnectingHeaders gets reset back to 0. if (!LookupBlockIndex(headers[0].hashPrevBlock) && nCount < MAX_BLOCKS_TO_ANNOUNCE) { nodestate->nUnconnectingHeaders++; connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexBestHeader), uint256())); LogPrint( BCLog::NET, "received header %s: missing prev block %s, sending getheaders " "(%d) to end (peer=%d, nUnconnectingHeaders=%d)\n", headers[0].GetHash().ToString(), headers[0].hashPrevBlock.ToString(), pindexBestHeader->nHeight, pfrom->GetId(), nodestate->nUnconnectingHeaders); // Set hashLastUnknownBlock for this peer, so that if we eventually // get the headers - even from a different peer - we can use this // peer to download. UpdateBlockAvailability(pfrom->GetId(), headers.back().GetHash()); if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS == 0) { // The peer is sending us many headers we can't connect. Misbehaving(pfrom, 20, "too-many-unconnected-headers"); } return true; } BlockHash hashLastBlock; for (const CBlockHeader &header : headers) { if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) { Misbehaving(pfrom, 20, "disconnected-header"); return error("non-continuous headers sequence"); } hashLastBlock = header.GetHash(); } // If we don't have the last header, then they'll have given us // something new (if these headers are valid). if (!LookupBlockIndex(hashLastBlock)) { received_new_header = true; } } CValidationState state; CBlockHeader first_invalid_header; if (!ProcessNewBlockHeaders(config, headers, state, &pindexLast, &first_invalid_header)) { int nDoS; if (state.IsInvalid(nDoS)) { LOCK(cs_main); if (nDoS > 0) { Misbehaving(pfrom, nDoS, state.GetRejectReason()); } if (punish_duplicate_invalid && LookupBlockIndex(first_invalid_header.GetHash())) { // Goal: don't allow outbound peers to use up our outbound // connection slots if they are on incompatible chains. // // We ask the caller to set punish_invalid appropriately based // on the peer and the method of header delivery (compact blocks // are allowed to be invalid in some circumstances, under BIP // 152). // Here, we try to detect the narrow situation that we have a // valid block header (ie it was valid at the time the header // was received, and hence stored in mapBlockIndex) but know the // block is invalid, and that a peer has announced that same // block as being on its active chain. Disconnect the peer in // such a situation. // // Note: if the header that is invalid was not accepted to our // mapBlockIndex at all, that may also be grounds for // disconnecting the peer, as the chain they are on is likely to // be incompatible. However, there is a circumstance where that // does not hold: if the header's timestamp is more than 2 hours // ahead of our current time. In that case, the header may // become valid in the future, and we don't want to disconnect a // peer merely for serving us one too-far-ahead block header, to // prevent an attacker from splitting the network by mining a // block right at the 2 hour boundary. // // TODO: update the DoS logic (or, rather, rewrite the // DoS-interface between validation and net_processing) so that // the interface is cleaner, and so that we disconnect on all // the reasons that a peer's headers chain is incompatible with // ours (eg block->nVersion softforks, MTP violations, etc), and // not just the duplicate-invalid case. pfrom->fDisconnect = true; } return error("invalid header received"); } } { LOCK(cs_main); CNodeState *nodestate = State(pfrom->GetId()); if (nodestate->nUnconnectingHeaders > 0) { LogPrint(BCLog::NET, "peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n", pfrom->GetId(), nodestate->nUnconnectingHeaders); } nodestate->nUnconnectingHeaders = 0; assert(pindexLast); UpdateBlockAvailability(pfrom->GetId(), pindexLast->GetBlockHash()); // From here, pindexBestKnownBlock should be guaranteed to be non-null, // because it is set in UpdateBlockAvailability. Some nullptr checks are // still present, however, as belt-and-suspenders. if (received_new_header && pindexLast->nChainWork > ::ChainActive().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } if (nCount == MAX_HEADERS_RESULTS) { // Headers message had its maximum size; the peer may have more // headers. // TODO: optimize: if pindexLast is an ancestor of // ::ChainActive().Tip or pindexBestHeader, continue from there // instead. LogPrint( BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom->GetId(), pfrom->nStartingHeight); connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexLast), uint256())); } bool fCanDirectFetch = CanDirectFetch(chainparams.GetConsensus()); // If this set of headers is valid and ends in a block with at least as // much work as our tip, download as much as possible. if (fCanDirectFetch && pindexLast->IsValid(BlockValidity::TREE) && ::ChainActive().Tip()->nChainWork <= pindexLast->nChainWork) { std::vector vToFetch; const CBlockIndex *pindexWalk = pindexLast; // Calculate all the blocks we'd need to switch to pindexLast, up to // a limit. while (pindexWalk && !::ChainActive().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { if (!pindexWalk->nStatus.hasData() && !mapBlocksInFlight.count(pindexWalk->GetBlockHash())) { // We don't have this block, and it's not yet in flight. vToFetch.push_back(pindexWalk); } pindexWalk = pindexWalk->pprev; } // If pindexWalk still isn't on our main chain, we're looking at a // very large reorg at a time we think we're close to caught up to // the main chain -- this shouldn't really happen. Bail out on the // direct fetch and rely on parallel download instead. if (!::ChainActive().Contains(pindexWalk)) { LogPrint( BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } else { std::vector vGetData; // Download as much as possible, from earliest to latest. for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) { if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { // Can't download any more from this peer break; } vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); MarkBlockAsInFlight(config, pfrom->GetId(), pindex->GetBlockHash(), chainparams.GetConsensus(), pindex); LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n", pindex->GetBlockHash().ToString(), pfrom->GetId()); } if (vGetData.size() > 1) { LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers " "direct fetch\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } if (vGetData.size() > 0) { if (nodestate->fSupportsDesiredCmpctVersion && vGetData.size() == 1 && mapBlocksInFlight.size() == 1 && pindexLast->pprev->IsValid(BlockValidity::CHAIN)) { // In any case, we want to download using a compact // block, not a regular one. vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash); } connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } } } // If we're in IBD, we want outbound peers that will serve us a useful // chain. Disconnect peers that are on chains with insufficient work. if (IsInitialBlockDownload() && nCount != MAX_HEADERS_RESULTS) { // When nCount < MAX_HEADERS_RESULTS, we know we have no more // headers to fetch from this peer. if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has too little work on their headers chain to help // us sync -- disconnect if using an outbound slot (unless // whitelisted or addnode). // Note: We compare their tip to nMinimumChainWork (rather than // ::ChainActive().Tip()) because we won't start block download // until we have a headers chain that has at least // nMinimumChainWork, even if a peer has a chain past our tip, // as an anti-DoS measure. if (IsOutboundDisconnectionCandidate(pfrom)) { LogPrintf("Disconnecting outbound peer %d -- headers " "chain has insufficient work\n", pfrom->GetId()); pfrom->fDisconnect = true; } } } if (!pfrom->fDisconnect && IsOutboundDisconnectionCandidate(pfrom) && nodestate->pindexBestKnownBlock != nullptr) { // If this is an outbound peer, check to see if we should protect it // from the bad/lagging chain logic. if (g_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= ::ChainActive().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) { LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom->GetId()); nodestate->m_chain_sync.m_protect = true; ++g_outbound_peers_with_protect_from_disconnect; } } } return true; } static bool ProcessMessage(const Config &config, CNode *pfrom, const std::string &strCommand, CDataStream &vRecv, int64_t nTimeReceived, CConnman *connman, const std::atomic &interruptMsgProc, bool enable_bip61) { const CChainParams &chainparams = config.GetChainParams(); LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(strCommand), vRecv.size(), pfrom->GetId()); if (gArgs.IsArgSet("-dropmessagestest") && GetRand(gArgs.GetArg("-dropmessagestest", 0)) == 0) { LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n"); return true; } if (!(pfrom->GetLocalServices() & NODE_BLOOM) && (strCommand == NetMsgType::FILTERLOAD || strCommand == NetMsgType::FILTERADD)) { if (pfrom->nVersion >= NO_BLOOM_VERSION) { LOCK(cs_main); Misbehaving(pfrom, 100, "no-bloom-version"); return false; } else { pfrom->fDisconnect = true; return false; } } if (strCommand == NetMsgType::REJECT) { if (LogAcceptCategory(BCLog::NET)) { try { std::string strMsg; uint8_t ccode; std::string strReason; vRecv >> LIMITED_STRING(strMsg, CMessageHeader::COMMAND_SIZE) >> ccode >> LIMITED_STRING(strReason, MAX_REJECT_MESSAGE_LENGTH); std::ostringstream ss; ss << strMsg << " code " << itostr(ccode) << ": " << strReason; if (strMsg == NetMsgType::BLOCK || strMsg == NetMsgType::TX) { uint256 hash; vRecv >> hash; ss << ": hash " << hash.ToString(); } LogPrint(BCLog::NET, "Reject %s\n", SanitizeString(ss.str())); } catch (const std::ios_base::failure &) { // Avoid feedback loops by preventing reject messages from // triggering a new reject message. LogPrint(BCLog::NET, "Unparseable reject message received\n"); } } return true; } if (strCommand == NetMsgType::VERSION) { // Each connection can only send one version message if (pfrom->nVersion != 0) { if (enable_bip61) { connman->PushMessage( pfrom, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::REJECT, strCommand, REJECT_DUPLICATE, std::string("Duplicate version message"))); } LOCK(cs_main); Misbehaving(pfrom, 1, "multiple-version"); return false; } int64_t nTime; CAddress addrMe; CAddress addrFrom; uint64_t nNonce = 1; uint64_t nServiceInt; ServiceFlags nServices; int nVersion; int nSendVersion; std::string strSubVer; std::string cleanSubVer; int nStartingHeight = -1; bool fRelay = true; vRecv >> nVersion >> nServiceInt >> nTime >> addrMe; nSendVersion = std::min(nVersion, PROTOCOL_VERSION); nServices = ServiceFlags(nServiceInt); if (!pfrom->fInbound) { connman->SetServices(pfrom->addr, nServices); } if (!pfrom->fInbound && !pfrom->fFeeler && !pfrom->m_manual_connection && !HasAllDesirableServiceFlags(nServices)) { LogPrint(BCLog::NET, "peer=%d does not offer the expected services " "(%08x offered, %08x expected); disconnecting\n", pfrom->GetId(), nServices, GetDesirableServiceFlags(nServices)); if (enable_bip61) { connman->PushMessage( pfrom, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::REJECT, strCommand, REJECT_NONSTANDARD, strprintf("Expected to offer services %08x", GetDesirableServiceFlags(nServices)))); } pfrom->fDisconnect = true; return false; } if (nVersion < MIN_PEER_PROTO_VERSION) { // disconnect from peers older than this proto version LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom->GetId(), nVersion); if (enable_bip61) { connman->PushMessage( pfrom, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::REJECT, strCommand, REJECT_OBSOLETE, strprintf("Version must be %d or greater", MIN_PEER_PROTO_VERSION))); } pfrom->fDisconnect = true; return false; } if (!vRecv.empty()) { vRecv >> addrFrom >> nNonce; } if (!vRecv.empty()) { vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH); cleanSubVer = SanitizeString(strSubVer); } if (!vRecv.empty()) { vRecv >> nStartingHeight; } if (!vRecv.empty()) { vRecv >> fRelay; } // Disconnect if we connected to ourself if (pfrom->fInbound && !connman->CheckIncomingNonce(nNonce)) { LogPrintf("connected to self at %s, disconnecting\n", pfrom->addr.ToString()); pfrom->fDisconnect = true; return true; } if (pfrom->fInbound && addrMe.IsRoutable()) { SeenLocal(addrMe); } // Be shy and don't send version until we hear if (pfrom->fInbound) { PushNodeVersion(config, pfrom, connman, GetAdjustedTime()); } connman->PushMessage( pfrom, CNetMsgMaker(INIT_PROTO_VERSION).Make(NetMsgType::VERACK)); pfrom->nServices = nServices; pfrom->SetAddrLocal(addrMe); { LOCK(pfrom->cs_SubVer); pfrom->strSubVer = strSubVer; pfrom->cleanSubVer = cleanSubVer; } pfrom->nStartingHeight = nStartingHeight; // set nodes not relaying blocks and tx and not serving (parts) of the // historical blockchain as "clients" pfrom->fClient = (!(nServices & NODE_NETWORK) && !(nServices & NODE_NETWORK_LIMITED)); // set nodes not capable of serving the complete blockchain history as // "limited nodes" pfrom->m_limited_node = (!(nServices & NODE_NETWORK) && (nServices & NODE_NETWORK_LIMITED)); { LOCK(pfrom->cs_filter); // set to true after we get the first filter* message pfrom->fRelayTxes = fRelay; } // Change version pfrom->SetSendVersion(nSendVersion); pfrom->nVersion = nVersion; // Potentially mark this peer as a preferred download peer. { LOCK(cs_main); UpdatePreferredDownload(pfrom, State(pfrom->GetId())); } if (!pfrom->fInbound) { // Advertise our address if (fListen && !IsInitialBlockDownload()) { CAddress addr = GetLocalAddress(&pfrom->addr, pfrom->GetLocalServices()); FastRandomContext insecure_rand; if (addr.IsRoutable()) { LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); pfrom->PushAddress(addr, insecure_rand); } else if (IsPeerAddrLocalGood(pfrom)) { addr.SetIP(addrMe); LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); pfrom->PushAddress(addr, insecure_rand); } } // Get recent addresses if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || connman->GetAddressCount() < 1000) { connman->PushMessage( pfrom, CNetMsgMaker(nSendVersion).Make(NetMsgType::GETADDR)); pfrom->fGetAddr = true; } connman->MarkAddressGood(pfrom->addr); } std::string remoteAddr; if (fLogIPs) { remoteAddr = ", peeraddr=" + pfrom->addr.ToString(); } LogPrint(BCLog::NET, "receive version message: [%s] %s: version %d, blocks=%d, " "us=%s, peer=%d%s\n", pfrom->addr.ToString().c_str(), cleanSubVer, pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString(), pfrom->GetId(), remoteAddr); int64_t nTimeOffset = nTime - GetTime(); pfrom->nTimeOffset = nTimeOffset; AddTimeData(pfrom->addr, nTimeOffset); // If the peer is old enough to have the old alert system, send it the // final alert. if (pfrom->nVersion <= 70012) { CDataStream finalAlert( ParseHex( "60010000000000000000000000ffffff7f00000000ffffff7ffeffff7f" "01ffffff7f00000000ffffff7f00ffffff7f002f555247454e543a2041" "6c657274206b657920636f6d70726f6d697365642c2075706772616465" "207265717569726564004630440220653febd6410f470f6bae11cad19c" "48413becb1ac2c17f908fd0fd53bdc3abd5202206d0e9c96fe88d4a0f0" "1ed9dedae2b6f9e00da94cad0fecaae66ecf689bf71b50"), SER_NETWORK, PROTOCOL_VERSION); connman->PushMessage( pfrom, CNetMsgMaker(nSendVersion).Make("alert", finalAlert)); } // Feeler connections exist only to verify if address is online. if (pfrom->fFeeler) { assert(pfrom->fInbound == false); pfrom->fDisconnect = true; } return true; } if (pfrom->nVersion == 0) { // Must have a version message before anything else LOCK(cs_main); Misbehaving(pfrom, 1, "missing-version"); return false; } // At this point, the outgoing message serialization version can't change. const CNetMsgMaker msgMaker(pfrom->GetSendVersion()); if (strCommand == NetMsgType::VERACK) { pfrom->SetRecvVersion( std::min(pfrom->nVersion.load(), PROTOCOL_VERSION)); if (!pfrom->fInbound) { // Mark this node as currently connected, so we update its timestamp // later. LOCK(cs_main); State(pfrom->GetId())->fCurrentlyConnected = true; LogPrintf( "New outbound peer connected: version: %d, blocks=%d, " "peer=%d%s\n", pfrom->nVersion.load(), pfrom->nStartingHeight, pfrom->GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom->addr.ToString()) : "")); } if (pfrom->nVersion >= SENDHEADERS_VERSION) { // Tell our peer we prefer to receive headers rather than inv's // We send this to non-NODE NETWORK peers as well, because even // non-NODE NETWORK peers can announce blocks (such as pruning // nodes) connman->PushMessage(pfrom, msgMaker.Make(NetMsgType::SENDHEADERS)); } if (pfrom->nVersion >= SHORT_IDS_BLOCKS_VERSION) { // Tell our peer we are willing to provide version 1 or 2 // cmpctblocks. However, we do not request new block announcements // using cmpctblock messages. We send this to non-NODE NETWORK peers // as well, because they may wish to request compact blocks from us. bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 1; connman->PushMessage(pfrom, msgMaker.Make(NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion)); } pfrom->fSuccessfullyConnected = true; return true; } if (!pfrom->fSuccessfullyConnected) { // Must have a verack message before anything else LOCK(cs_main); Misbehaving(pfrom, 1, "missing-verack"); return false; } if (strCommand == NetMsgType::ADDR) { std::vector vAddr; vRecv >> vAddr; // Don't want addr from older versions unless seeding if (pfrom->nVersion < CADDR_TIME_VERSION && connman->GetAddressCount() > 1000) { return true; } if (vAddr.size() > 1000) { LOCK(cs_main); Misbehaving(pfrom, 20, "oversized-addr"); return error("message addr size() = %u", vAddr.size()); } // Store the new addresses std::vector vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; for (CAddress &addr : vAddr) { if (interruptMsgProc) { return true; } // We only bother storing full nodes, though this may include things // which we would not make an outbound connection to, in part // because we may make feeler connections to them. if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) { addr.nTime = nNow - 5 * 24 * 60 * 60; } pfrom->AddAddressKnown(addr); bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes RelayAddress(addr, fReachable, connman); } // Do not store addresses outside our network if (fReachable) { vAddrOk.push_back(addr); } } connman->AddNewAddresses(vAddrOk, pfrom->addr, 2 * 60 * 60); if (vAddr.size() < 1000) { pfrom->fGetAddr = false; } if (pfrom->fOneShot) { pfrom->fDisconnect = true; } return true; } if (strCommand == NetMsgType::SENDHEADERS) { LOCK(cs_main); State(pfrom->GetId())->fPreferHeaders = true; return true; } if (strCommand == NetMsgType::SENDCMPCT) { bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 0; vRecv >> fAnnounceUsingCMPCTBLOCK >> nCMPCTBLOCKVersion; if (nCMPCTBLOCKVersion == 1) { LOCK(cs_main); // fProvidesHeaderAndIDs is used to "lock in" version of compact // blocks we send. if (!State(pfrom->GetId())->fProvidesHeaderAndIDs) { State(pfrom->GetId())->fProvidesHeaderAndIDs = true; } State(pfrom->GetId())->fPreferHeaderAndIDs = fAnnounceUsingCMPCTBLOCK; if (!State(pfrom->GetId())->fSupportsDesiredCmpctVersion) { State(pfrom->GetId())->fSupportsDesiredCmpctVersion = true; } } return true; } if (strCommand == NetMsgType::INV) { std::vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { LOCK(cs_main); Misbehaving(pfrom, 20, "oversized-inv"); return error("message inv size() = %u", vInv.size()); } bool fBlocksOnly = !fRelayTxes; // Allow whitelisted peers to send data other than blocks in blocks only // mode if whitelistrelay is true if (pfrom->fWhitelisted && gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY)) { fBlocksOnly = false; } LOCK(cs_main); int64_t nNow = GetTimeMicros(); for (CInv &inv : vInv) { if (interruptMsgProc) { return true; } bool fAlreadyHave = AlreadyHave(inv); LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom->GetId()); if (inv.type == MSG_BLOCK) { const BlockHash hash(inv.hash); UpdateBlockAvailability(pfrom->GetId(), hash); if (!fAlreadyHave && !fImporting && !fReindex && !mapBlocksInFlight.count(hash)) { // We used to request the full block here, but since // headers-announcements are now the primary method of // announcement on the network, and since, in the case that // a node fell back to inv we probably have a reorg which we // should get the headers for first, we now only provide a // getheaders response here. When we receive the headers, we // will then ask for the blocks we need. connman->PushMessage( pfrom, msgMaker.Make( NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexBestHeader), hash)); LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n", pindexBestHeader->nHeight, hash.ToString(), pfrom->GetId()); } } else { pfrom->AddInventoryKnown(inv); if (fBlocksOnly) { LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of " "protocol peer=%d\n", inv.hash.ToString(), pfrom->GetId()); } else if (!fAlreadyHave && !fImporting && !fReindex && !IsInitialBlockDownload()) { RequestTx(State(pfrom->GetId()), TxId(inv.hash), nNow); } } } return true; } if (strCommand == NetMsgType::GETDATA) { std::vector vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { LOCK(cs_main); Misbehaving(pfrom, 20, "too-many-inv"); return error("message getdata size() = %u", vInv.size()); } LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom->GetId()); if (vInv.size() > 0) { LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom->GetId()); } pfrom->vRecvGetData.insert(pfrom->vRecvGetData.end(), vInv.begin(), vInv.end()); ProcessGetData(config, pfrom, connman, interruptMsgProc); return true; } if (strCommand == NetMsgType::GETBLOCKS) { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom->GetId()); pfrom->fDisconnect = true; return true; } // We might have announced the currently-being-connected tip using a // compact block, which resulted in the peer sending a getblocks // request, which we would otherwise respond to without the new block. // To avoid this situation we simply verify that we are on our best // known chain now. This is super overkill, but we handle it better // for getheaders requests, and there are no known nodes which support // compact blocks but still use getblocks to request blocks. { std::shared_ptr a_recent_block; { LOCK(cs_most_recent_block); a_recent_block = most_recent_block; } CValidationState state; if (!ActivateBestChain(config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", FormatStateMessage(state)); } } LOCK(cs_main); // Find the last block the caller has in the main chain const CBlockIndex *pindex = FindForkInGlobalIndex(::ChainActive(), locator); // Send the rest of the chain if (pindex) { pindex = ::ChainActive().Next(pindex); } int nLimit = 500; LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom->GetId()); for (; pindex; pindex = ::ChainActive().Next(pindex)) { if (pindex->GetBlockHash() == hashStop) { LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } // If pruning, don't inv blocks unless we have on disk and are // likely to still have for some reasonable time window (1 hour) // that block relay might require. const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / chainparams.GetConsensus().nPowTargetSpacing; if (fPruneMode && (!pindex->nStatus.hasData() || pindex->nHeight <= ::ChainActive().Tip()->nHeight - nPrunedBlocksLikelyToHave)) { LogPrint( BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll // trigger the peer to getblocks the next batch of inventory. LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); pfrom->hashContinue = pindex->GetBlockHash(); break; } } return true; } if (strCommand == NetMsgType::GETBLOCKTXN) { BlockTransactionsRequest req; vRecv >> req; std::shared_ptr recent_block; { LOCK(cs_most_recent_block); if (most_recent_block_hash == req.blockhash) { recent_block = most_recent_block; } // Unlock cs_most_recent_block to avoid cs_main lock inversion } if (recent_block) { SendBlockTransactions(*recent_block, req, pfrom, connman); return true; } LOCK(cs_main); const CBlockIndex *pindex = LookupBlockIndex(req.blockhash); if (!pindex || !pindex->nStatus.hasData()) { LogPrint( BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom->GetId()); return true; } if (pindex->nHeight < ::ChainActive().Height() - MAX_BLOCKTXN_DEPTH) { // If an older block is requested (should never happen in practice, // but can happen in tests) send a block response instead of a // blocktxn response. Sending a full block response instead of a // small blocktxn response is preferable in the case where a peer // might maliciously send lots of getblocktxn requests to trigger // expensive disk reads, because it will require the peer to // actually receive all the data read from disk over the network. LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom->GetId(), MAX_BLOCKTXN_DEPTH); CInv inv; inv.type = MSG_BLOCK; inv.hash = req.blockhash; pfrom->vRecvGetData.push_back(inv); // The message processing loop will go around again (without // pausing) and we'll respond then (without cs_main) return true; } CBlock block; bool ret = ReadBlockFromDisk(block, pindex, chainparams.GetConsensus()); assert(ret); SendBlockTransactions(block, req, pfrom, connman); return true; } if (strCommand == NetMsgType::GETHEADERS) { CBlockLocator locator; BlockHash hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom->GetId()); pfrom->fDisconnect = true; return true; } LOCK(cs_main); if (IsInitialBlockDownload() && !pfrom->fWhitelisted) { LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because node is in " "initial block download\n", pfrom->GetId()); return true; } CNodeState *nodestate = State(pfrom->GetId()); const CBlockIndex *pindex = nullptr; if (locator.IsNull()) { // If locator is null, return the hashStop block pindex = LookupBlockIndex(hashStop); if (!pindex) { return true; } if (!BlockRequestAllowed(pindex, chainparams.GetConsensus())) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block " "header that isn't in the main chain\n", __func__, pfrom->GetId()); return true; } } else { // Find the last block the caller has in the main chain pindex = FindForkInGlobalIndex(::ChainActive(), locator); if (pindex) { pindex = ::ChainActive().Next(pindex); } } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx // count at the end std::vector vHeaders; int nLimit = MAX_HEADERS_RESULTS; LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom->GetId()); for (; pindex; pindex = ::ChainActive().Next(pindex)) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) { break; } } // pindex can be nullptr either if we sent ::ChainActive().Tip() OR // if our peer has ::ChainActive().Tip() (and thus we are sending an // empty headers message). In both cases it's safe to update // pindexBestHeaderSent to be our tip. // // It is important that we simply reset the BestHeaderSent value here, // and not max(BestHeaderSent, newHeaderSent). We might have announced // the currently-being-connected tip using a compact block, which // resulted in the peer sending a headers request, which we respond to // without the new block. By resetting the BestHeaderSent, we ensure we // will re-announce the new block via headers (or compact blocks again) // in the SendMessages logic. nodestate->pindexBestHeaderSent = pindex ? pindex : ::ChainActive().Tip(); connman->PushMessage(pfrom, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); return true; } if (strCommand == NetMsgType::TX) { // Stop processing the transaction early if // We are in blocks only mode and peer is either not whitelisted or // whitelistrelay is off if (!fRelayTxes && (!pfrom->fWhitelisted || !gArgs.GetBoolArg("-whitelistrelay", DEFAULT_WHITELISTRELAY))) { LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom->GetId()); return true; } std::deque vWorkQueue; std::vector vEraseQueue; CTransactionRef ptx; vRecv >> ptx; const CTransaction &tx = *ptx; const TxId &txid = tx.GetId(); CInv inv(MSG_TX, txid); pfrom->AddInventoryKnown(inv); LOCK2(cs_main, g_cs_orphans); bool fMissingInputs = false; CValidationState state; CNodeState *nodestate = State(pfrom->GetId()); nodestate->m_tx_download.m_tx_announced.erase(txid); nodestate->m_tx_download.m_tx_in_flight.erase(txid); EraseTxRequest(txid); if (!AlreadyHave(inv) && AcceptToMemoryPool(config, g_mempool, state, ptx, &fMissingInputs, false /* bypass_limits */, Amount::zero() /* nAbsurdFee */)) { g_mempool.check(pcoinsTip.get()); RelayTransaction(tx, connman); for (size_t i = 0; i < tx.vout.size(); i++) { vWorkQueue.emplace_back(txid, i); } pfrom->nLastTXTime = GetTime(); LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s " "(poolsz %u txn, %u kB)\n", pfrom->GetId(), tx.GetId().ToString(), g_mempool.size(), g_mempool.DynamicMemoryUsage() / 1000); // Recursively process any orphan transactions that depended on this // one std::unordered_map rejectCountPerNode; while (!vWorkQueue.empty()) { auto itByPrev = mapOrphanTransactionsByPrev.find(vWorkQueue.front()); vWorkQueue.pop_front(); if (itByPrev == mapOrphanTransactionsByPrev.end()) { continue; } for (auto mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const CTransactionRef &porphanTx = (*mi)->second.tx; const CTransaction &orphanTx = *porphanTx; const TxId &orphanId = orphanTx.GetId(); NodeId fromPeer = (*mi)->second.fromPeer; bool fMissingInputs2 = false; // Use a dummy CValidationState so someone can't setup nodes // to counter-DoS based on orphan resolution (that is, // feeding people an invalid transaction based on LegitTxX // in order to get anyone relaying LegitTxX banned) CValidationState stateDummy; auto it = rejectCountPerNode.find(fromPeer); if (it != rejectCountPerNode.end() && it->second > MAX_NON_STANDARD_ORPHAN_PER_NODE) { continue; } if (AcceptToMemoryPool(config, g_mempool, stateDummy, porphanTx, &fMissingInputs2, false /* bypass_limits */, Amount::zero() /* nAbsurdFee */)) { LogPrint(BCLog::MEMPOOL, " accepted orphan tx %s\n", orphanId.ToString()); RelayTransaction(orphanTx, connman); for (size_t i = 0; i < orphanTx.vout.size(); i++) { vWorkQueue.emplace_back(orphanId, i); } vEraseQueue.push_back(orphanId); } else if (!fMissingInputs2) { int nDos = 0; if (stateDummy.IsInvalid(nDos)) { rejectCountPerNode[fromPeer]++; if (nDos > 0) { // Punish peer that gave us an invalid orphan tx Misbehaving(fromPeer, nDos, "invalid-orphan-tx"); LogPrint(BCLog::MEMPOOL, " invalid orphan tx %s\n", orphanId.ToString()); } } // Has inputs but not accepted to mempool // Probably non-standard or insufficient fee LogPrint(BCLog::MEMPOOL, " removed orphan tx %s\n", orphanId.ToString()); vEraseQueue.push_back(orphanId); if (!stateDummy.CorruptionPossible()) { // Do not use rejection cache for witness // transactions or witness-stripped transactions, as // they can have been malleated. See // https://github.com/bitcoin/bitcoin/issues/8279 // for details. assert(recentRejects); recentRejects->insert(orphanId); } } g_mempool.check(pcoinsTip.get()); } } for (const uint256 &hash : vEraseQueue) { EraseOrphanTx(hash); } } else if (fMissingInputs) { // It may be the case that the orphans parents have all been // rejected. bool fRejectedParents = false; for (const CTxIn &txin : tx.vin) { if (recentRejects->contains(txin.prevout.GetTxId())) { fRejectedParents = true; break; } } if (!fRejectedParents) { int64_t nNow = GetTimeMicros(); for (const CTxIn &txin : tx.vin) { // FIXME: MSG_TX should use a TxHash, not a TxId. const TxId _txid = txin.prevout.GetTxId(); CInv _inv(MSG_TX, _txid); pfrom->AddInventoryKnown(_inv); if (!AlreadyHave(_inv)) { RequestTx(State(pfrom->GetId()), _txid, nNow); } } AddOrphanTx(ptx, pfrom->GetId()); // DoS prevention: do not allow mapOrphanTransactions to grow // unbounded unsigned int nMaxOrphanTx = (unsigned int)std::max( int64_t(0), gArgs.GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS)); unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx); if (nEvicted > 0) { LogPrint(BCLog::MEMPOOL, "mapOrphan overflow, removed %u tx\n", nEvicted); } } else { LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s\n", tx.GetId().ToString()); // We will continue to reject this tx since it has rejected // parents so avoid re-requesting it from other peers. recentRejects->insert(tx.GetId()); } } else { if (!state.CorruptionPossible()) { // Do not use rejection cache for witness transactions or // witness-stripped transactions, as they can have been // malleated. See https://github.com/bitcoin/bitcoin/issues/8279 // for details. assert(recentRejects); recentRejects->insert(tx.GetId()); if (RecursiveDynamicUsage(*ptx) < 100000) { AddToCompactExtraTransactions(ptx); } } if (pfrom->fWhitelisted && gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY)) { // Always relay transactions received from whitelisted peers, // even if they were already in the mempool or rejected from it // due to policy, allowing the node to function as a gateway for // nodes hidden behind it. // // Never relay transactions that we would assign a non-zero DoS // score for, as we expect peers to do the same with us in that // case. int nDoS = 0; if (!state.IsInvalid(nDoS) || nDoS == 0) { LogPrintf("Force relaying tx %s from whitelisted peer=%d\n", tx.GetId().ToString(), pfrom->GetId()); RelayTransaction(tx, connman); } else { LogPrintf("Not relaying invalid transaction %s from " "whitelisted peer=%d (%s)\n", tx.GetId().ToString(), pfrom->GetId(), FormatStateMessage(state)); } } } int nDoS = 0; if (state.IsInvalid(nDoS)) { LogPrint(BCLog::MEMPOOLREJ, "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(), pfrom->GetId(), FormatStateMessage(state)); // Never send AcceptToMemoryPool's internal codes over P2P. if (enable_bip61 && state.GetRejectCode() > 0 && state.GetRejectCode() < REJECT_INTERNAL) { connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::REJECT, strCommand, uint8_t(state.GetRejectCode()), state.GetRejectReason().substr( 0, MAX_REJECT_MESSAGE_LENGTH), inv.hash)); } if (nDoS > 0) { Misbehaving(pfrom, nDoS, state.GetRejectReason()); } } return true; } // Ignore blocks received while importing if (strCommand == NetMsgType::CMPCTBLOCK && !fImporting && !fReindex) { CBlockHeaderAndShortTxIDs cmpctblock; vRecv >> cmpctblock; bool received_new_header = false; { LOCK(cs_main); if (!LookupBlockIndex(cmpctblock.header.hashPrevBlock)) { // Doesn't connect (or is genesis), instead of DoSing in // AcceptBlockHeader, request deeper headers if (!IsInitialBlockDownload()) { connman->PushMessage( pfrom, msgMaker.Make( NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexBestHeader), uint256())); } return true; } if (!LookupBlockIndex(cmpctblock.header.GetHash())) { received_new_header = true; } } const CBlockIndex *pindex = nullptr; CValidationState state; if (!ProcessNewBlockHeaders(config, {cmpctblock.header}, state, &pindex)) { int nDoS; if (state.IsInvalid(nDoS)) { if (nDoS > 0) { LogPrintf("Peer %d sent us invalid header via cmpctblock\n", pfrom->GetId()); LOCK(cs_main); Misbehaving(pfrom, nDoS, state.GetRejectReason()); } else { LogPrint(BCLog::NET, "Peer %d sent us invalid header via cmpctblock\n", pfrom->GetId()); } return true; } } // When we succeed in decoding a block's txids from a cmpctblock // message we typically jump to the BLOCKTXN handling code, with a // dummy (empty) BLOCKTXN message, to re-use the logic there in // completing processing of the putative block (without cs_main). bool fProcessBLOCKTXN = false; CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION); // If we end up treating this as a plain headers message, call that as // well // without cs_main. bool fRevertToHeaderProcessing = false; // Keep a CBlock for "optimistic" compactblock reconstructions (see // below) std::shared_ptr pblock = std::make_shared(); bool fBlockReconstructed = false; { LOCK2(cs_main, g_cs_orphans); // If AcceptBlockHeader returned true, it set pindex assert(pindex); UpdateBlockAvailability(pfrom->GetId(), pindex->GetBlockHash()); CNodeState *nodestate = State(pfrom->GetId()); // If this was a new header with more work than our tip, update the // peer's last block announcement time if (received_new_header && pindex->nChainWork > ::ChainActive().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } std::map::iterator>>:: iterator blockInFlightIt = mapBlocksInFlight.find(pindex->GetBlockHash()); bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end(); if (pindex->nStatus.hasData()) { // Nothing to do here return true; } if (pindex->nChainWork <= ::ChainActive() .Tip() ->nChainWork || // We know something better pindex->nTx != 0) { // We had this block at some point, but pruned it if (fAlreadyInFlight) { // We requested this block for some reason, but our mempool // will probably be useless so we just grab the block via // normal getdata. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); } return true; } // If we're not close to tip yet, give up and let parallel block // fetch work its magic. if (!fAlreadyInFlight && !CanDirectFetch(chainparams.GetConsensus())) { return true; } // We want to be a bit conservative just to be extra careful about // DoS possibilities in compact block processing... if (pindex->nHeight <= ::ChainActive().Height() + 2) { if ((!fAlreadyInFlight && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) || (fAlreadyInFlight && blockInFlightIt->second.first == pfrom->GetId())) { std::list::iterator *queuedBlockIt = nullptr; if (!MarkBlockAsInFlight(config, pfrom->GetId(), pindex->GetBlockHash(), chainparams.GetConsensus(), pindex, &queuedBlockIt)) { if (!(*queuedBlockIt)->partialBlock) { (*queuedBlockIt) ->partialBlock.reset( new PartiallyDownloadedBlock(config, &g_mempool)); } else { // The block was already in flight using compact // blocks from the same peer. LogPrint(BCLog::NET, "Peer sent us compact block " "we were already syncing!\n"); return true; } } PartiallyDownloadedBlock &partialBlock = *(*queuedBlockIt)->partialBlock; ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case of whitelist MarkBlockAsReceived(pindex->GetBlockHash()); Misbehaving(pfrom, 100, "invalid-cmpctblk"); LogPrintf("Peer %d sent us invalid compact block\n", pfrom->GetId()); return true; } else if (status == READ_STATUS_FAILED) { // Duplicate txindices, the block is now in-flight, so // just request it. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return true; } BlockTransactionsRequest req; for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) { if (!partialBlock.IsTxAvailable(i)) { req.indices.push_back(i); } } if (req.indices.empty()) { // Dirty hack to jump to BLOCKTXN code (TODO: move // message handling into their own functions) BlockTransactions txn; txn.blockhash = cmpctblock.header.GetHash(); blockTxnMsg << txn; fProcessBLOCKTXN = true; } else { req.blockhash = pindex->GetBlockHash(); connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::GETBLOCKTXN, req)); } } else { // This block is either already in flight from a different // peer, or this peer has too many blocks outstanding to // download from. Optimistically try to reconstruct anyway // since we might be able to without any round trips. PartiallyDownloadedBlock tempBlock(config, &g_mempool); ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status != READ_STATUS_OK) { // TODO: don't ignore failures return true; } std::vector dummy; status = tempBlock.FillBlock(*pblock, dummy); if (status == READ_STATUS_OK) { fBlockReconstructed = true; } } } else { if (fAlreadyInFlight) { // We requested this block, but its far into the future, so // our mempool will probably be useless - request the block // normally. std::vector vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); connman->PushMessage( pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return true; } else { // If this was an announce-cmpctblock, we want the same // treatment as a header message. fRevertToHeaderProcessing = true; } } } // cs_main if (fProcessBLOCKTXN) { return ProcessMessage(config, pfrom, NetMsgType::BLOCKTXN, blockTxnMsg, nTimeReceived, connman, interruptMsgProc, enable_bip61); } if (fRevertToHeaderProcessing) { // Headers received from HB compact block peers are permitted to be // relayed before full validation (see BIP 152), so we don't want to // disconnect the peer if the header turns out to be for an invalid // block. // Note that if a peer tries to build on an invalid chain, that will // be detected and the peer will be banned. return ProcessHeadersMessage(config, pfrom, connman, {cmpctblock.header}, /*punish_duplicate_invalid=*/false); } if (fBlockReconstructed) { // If we got here, we were able to optimistically reconstruct a // block that is in flight from some other peer. { LOCK(cs_main); mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom->GetId(), false)); } bool fNewBlock = false; // Setting fForceProcessing to true means that we bypass some of // our anti-DoS protections in AcceptBlock, which filters // unrequested blocks that might be trying to waste our resources // (eg disk space). Because we only try to reconstruct blocks when // we're close to caught up (via the CanDirectFetch() requirement // above, combined with the behavior of not requesting blocks until // we have a chain with at least nMinimumChainWork), and we ignore // compact blocks with less work than our tip, it is safe to treat // reconstructed compact blocks as having been requested. ProcessNewBlock(config, pblock, /*fForceProcessing=*/true, &fNewBlock); if (fNewBlock) { pfrom->nLastBlockTime = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(pblock->GetHash()); } // hold cs_main for CBlockIndex::IsValid() LOCK(cs_main); if (pindex->IsValid(BlockValidity::TRANSACTIONS)) { // Clear download state for this block, which is in process from // some other peer. We do this after calling. ProcessNewBlock so // that a malleated cmpctblock announcement can't be used to // interfere with block relay. MarkBlockAsReceived(pblock->GetHash()); } } return true; } // Ignore blocks received while importing if (strCommand == NetMsgType::BLOCKTXN && !fImporting && !fReindex) { BlockTransactions resp; vRecv >> resp; std::shared_ptr pblock = std::make_shared(); bool fBlockRead = false; { LOCK(cs_main); std::map::iterator>>:: iterator it = mapBlocksInFlight.find(resp.blockhash); if (it == mapBlocksInFlight.end() || !it->second.second->partialBlock || it->second.first != pfrom->GetId()) { LogPrint(BCLog::NET, "Peer %d sent us block transactions for block " "we weren't expecting\n", pfrom->GetId()); return true; } PartiallyDownloadedBlock &partialBlock = *it->second.second->partialBlock; ReadStatus status = partialBlock.FillBlock(*pblock, resp.txn); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case of whitelist. MarkBlockAsReceived(resp.blockhash); Misbehaving(pfrom, 100, "invalid-cmpctblk-txns"); LogPrintf("Peer %d sent us invalid compact block/non-matching " "block transactions\n", pfrom->GetId()); return true; } else if (status == READ_STATUS_FAILED) { // Might have collided, fall back to getdata now :( std::vector invs; invs.push_back(CInv(MSG_BLOCK, resp.blockhash)); connman->PushMessage(pfrom, msgMaker.Make(NetMsgType::GETDATA, invs)); } else { // Block is either okay, or possibly we received // READ_STATUS_CHECKBLOCK_FAILED. // Note that CheckBlock can only fail for one of a few reasons: // 1. bad-proof-of-work (impossible here, because we've already // accepted the header) // 2. merkleroot doesn't match the transactions given (already // caught in FillBlock with READ_STATUS_FAILED, so // impossible here) // 3. the block is otherwise invalid (eg invalid coinbase, // block is too big, too many legacy sigops, etc). // So if CheckBlock failed, #3 is the only possibility. // Under BIP 152, we don't DoS-ban unless proof of work is // invalid (we don't require all the stateless checks to have // been run). This is handled below, so just treat this as // though the block was successfully read, and rely on the // handling in ProcessNewBlock to ensure the block index is // updated, reject messages go out, etc. // it is now an empty pointer MarkBlockAsReceived(resp.blockhash); fBlockRead = true; // mapBlockSource is only used for sending reject messages and // DoS scores, so the race between here and cs_main in // ProcessNewBlock is fine. BIP 152 permits peers to relay // compact blocks after validating the header only; we should // not punish peers if the block turns out to be invalid. mapBlockSource.emplace(resp.blockhash, std::make_pair(pfrom->GetId(), false)); } } // Don't hold cs_main when we call into ProcessNewBlock if (fBlockRead) { bool fNewBlock = false; // Since we requested this block (it was in mapBlocksInFlight), // force it to be processed, even if it would not be a candidate for // new tip (missing previous block, chain not long enough, etc) // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent // disk-space attacks), but this should be safe due to the // protections in the compact block handler -- see related comment // in compact block optimistic reconstruction handling. ProcessNewBlock(config, pblock, /*fForceProcessing=*/true, &fNewBlock); if (fNewBlock) { pfrom->nLastBlockTime = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(pblock->GetHash()); } } return true; } // Ignore headers received while importing if (strCommand == NetMsgType::HEADERS && !fImporting && !fReindex) { std::vector headers; // Bypass the normal CBlock deserialization, as we don't want to risk // deserializing 2000 full blocks. unsigned int nCount = ReadCompactSize(vRecv); if (nCount > MAX_HEADERS_RESULTS) { LOCK(cs_main); Misbehaving(pfrom, 20, "too-many-headers"); return error("headers message size = %u", nCount); } headers.resize(nCount); for (unsigned int n = 0; n < nCount; n++) { vRecv >> headers[n]; // Ignore tx count; assume it is 0. ReadCompactSize(vRecv); } // Headers received via a HEADERS message should be valid, and reflect // the chain the peer is on. If we receive a known-invalid header, // disconnect the peer if it is using one of our outbound connection // slots. bool should_punish = !pfrom->fInbound && !pfrom->m_manual_connection; return ProcessHeadersMessage(config, pfrom, connman, headers, should_punish); } // Ignore blocks received while importing if (strCommand == NetMsgType::BLOCK && !fImporting && !fReindex) { std::shared_ptr pblock = std::make_shared(); vRecv >> *pblock; LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom->GetId()); // Process all blocks from whitelisted peers, even if not requested, // unless we're still syncing with the network. Such an unrequested // block may still be processed, subject to the conditions in // AcceptBlock(). bool forceProcessing = pfrom->fWhitelisted && !IsInitialBlockDownload(); const uint256 hash(pblock->GetHash()); { LOCK(cs_main); // Also always process if we requested the block explicitly, as we // may need it even though it is not a candidate for a new best tip. forceProcessing |= MarkBlockAsReceived(hash); // mapBlockSource is only used for sending reject messages and DoS // scores, so the race between here and cs_main in ProcessNewBlock // is fine. mapBlockSource.emplace(hash, std::make_pair(pfrom->GetId(), true)); } bool fNewBlock = false; ProcessNewBlock(config, pblock, forceProcessing, &fNewBlock); if (fNewBlock) { pfrom->nLastBlockTime = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(pblock->GetHash()); } return true; } // Ignore avalanche requests while importing if (strCommand == NetMsgType::AVAPOLL && !fImporting && !fReindex && g_avalanche && gArgs.GetBoolArg("-enableavalanche", AVALANCHE_DEFAULT_ENABLED)) { auto now = std::chrono::steady_clock::now(); int64_t cooldown = gArgs.GetArg("-avacooldown", AVALANCHE_DEFAULT_COOLDOWN); { LOCK(cs_main); auto &node_state = State(pfrom->GetId())->m_avalanche_state; if (now < node_state.last_poll + std::chrono::milliseconds(cooldown)) { Misbehaving(pfrom, 20, "avapool-cooldown"); } node_state.last_poll = now; } uint64_t round; Unserialize(vRecv, round); unsigned int nCount = ReadCompactSize(vRecv); if (nCount > AVALANCHE_MAX_ELEMENT_POLL) { LOCK(cs_main); - Misbehaving(pfrom, 20, "too-many-poll"); + Misbehaving(pfrom, 20, "too-many-ava-poll"); return error("poll message size = %u", nCount); } std::vector votes; votes.reserve(nCount); LogPrint(BCLog::NET, "received avalanche poll from peer=%d\n", pfrom->GetId()); { LOCK(cs_main); for (unsigned int n = 0; n < nCount; n++) { CInv inv; vRecv >> inv; uint32_t error = -1; if (inv.type == MSG_BLOCK) { BlockMap::iterator mi = mapBlockIndex.find(BlockHash(inv.hash)); if (mi != mapBlockIndex.end()) { error = ::ChainActive().Contains(mi->second) ? 0 : 1; } } votes.emplace_back(error, inv.hash); } } // Send the query to the node. g_avalanche->sendResponse( pfrom, AvalancheResponse(round, cooldown, std::move(votes))); return true; } + // Ignore avalanche requests while importing + if (strCommand == NetMsgType::AVARESPONSE && !fImporting && !fReindex && + g_avalanche && + gArgs.GetBoolArg("-enableavalanche", AVALANCHE_DEFAULT_ENABLED)) { + // As long as QUIC is not implemented, we need to sign response and + // verify response's signatures in order to avoid any manipulation of + // messages at the transport level. + CHashVerifier verifier(&vRecv); + AvalancheResponse response; + verifier >> response; + + { + std::array sig; + vRecv >> sig; + + // Unfortunately, the verify API require a vector. + std::vector vchSig{sig.begin(), sig.end()}; + if (!g_avalanche->getPubKey(pfrom->GetId()) + .VerifySchnorr(verifier.GetHash(), vchSig)) { + LOCK(cs_main); + Misbehaving(pfrom, 100, "invalid-ava-response-signature"); + return true; + } + } + + std::vector updates; + if (!g_avalanche->registerVotes(pfrom->GetId(), response, updates)) { + LOCK(cs_main); + Misbehaving(pfrom, 100, "invalid-ava-response-content"); + return true; + } + + // TODO: Actually process the updates. + + return true; + } + if (strCommand == NetMsgType::GETADDR) { // This asymmetric behavior for inbound and outbound connections was // introduced to prevent a fingerprinting attack: an attacker can send // specific fake addresses to users' AddrMan and later request them by // sending getaddr messages. Making nodes which are behind NAT and can // only make outgoing connections ignore the getaddr message mitigates // the attack. if (!pfrom->fInbound) { LogPrint(BCLog::NET, "Ignoring \"getaddr\" from outbound connection. peer=%d\n", pfrom->GetId()); return true; } // Only send one GetAddr response per connection to reduce resource // waste and discourage addr stamping of INV announcements. if (pfrom->fSentAddr) { LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom->GetId()); return true; } pfrom->fSentAddr = true; pfrom->vAddrToSend.clear(); std::vector vAddr = connman->GetAddresses(); FastRandomContext insecure_rand; for (const CAddress &addr : vAddr) { pfrom->PushAddress(addr, insecure_rand); } return true; } if (strCommand == NetMsgType::MEMPOOL) { if (!(pfrom->GetLocalServices() & NODE_BLOOM) && !pfrom->fWhitelisted) { LogPrint(BCLog::NET, "mempool request with bloom filters disabled, disconnect " "peer=%d\n", pfrom->GetId()); pfrom->fDisconnect = true; return true; } if (connman->OutboundTargetReached(false) && !pfrom->fWhitelisted) { LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, disconnect " "peer=%d\n", pfrom->GetId()); pfrom->fDisconnect = true; return true; } LOCK(pfrom->cs_inventory); pfrom->fSendMempool = true; return true; } if (strCommand == NetMsgType::PING) { if (pfrom->nVersion > BIP0031_VERSION) { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful // features: // // 1) A remote node can quickly check if the connection is // operational. // 2) Remote nodes can measure the latency of the network thread. If // this node is overloaded it won't respond to pings quickly and the // remote node can avoid sending us more work, like chain download // requests. // // The nonce stops the remote getting confused between different // pings: without it, if the remote node sends a ping once per // second and this node takes 5 seconds to respond to each, the 5th // ping the remote sends would appear to return very quickly. connman->PushMessage(pfrom, msgMaker.Make(NetMsgType::PONG, nonce)); } return true; } if (strCommand == NetMsgType::PONG) { int64_t pingUsecEnd = nTimeReceived; uint64_t nonce = 0; size_t nAvail = vRecv.in_avail(); bool bPingFinished = false; std::string sProblem; if (nAvail >= sizeof(nonce)) { vRecv >> nonce; // Only process pong message if there is an outstanding ping (old // ping without nonce should never pong) if (pfrom->nPingNonceSent != 0) { if (nonce == pfrom->nPingNonceSent) { // Matching pong received, this ping is no longer // outstanding bPingFinished = true; int64_t pingUsecTime = pingUsecEnd - pfrom->nPingUsecStart; if (pingUsecTime > 0) { // Successful ping time measurement, replace previous pfrom->nPingUsecTime = pingUsecTime; pfrom->nMinPingUsecTime = std::min( pfrom->nMinPingUsecTime.load(), pingUsecTime); } else { // This should never happen sProblem = "Timing mishap"; } } else { // Nonce mismatches are normal when pings are overlapping sProblem = "Nonce mismatch"; if (nonce == 0) { // This is most likely a bug in another implementation // somewhere; cancel this ping bPingFinished = true; sProblem = "Nonce zero"; } } } else { sProblem = "Unsolicited pong without ping"; } } else { // This is most likely a bug in another implementation somewhere; // cancel this ping bPingFinished = true; sProblem = "Short payload"; } if (!(sProblem.empty())) { LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n", pfrom->GetId(), sProblem, pfrom->nPingNonceSent, nonce, nAvail); } if (bPingFinished) { pfrom->nPingNonceSent = 0; } return true; } if (strCommand == NetMsgType::FILTERLOAD) { CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) { // There is no excuse for sending a too-large filter LOCK(cs_main); Misbehaving(pfrom, 100, "oversized-bloom-filter"); } else { LOCK(pfrom->cs_filter); pfrom->pfilter.reset(new CBloomFilter(filter)); pfrom->pfilter->UpdateEmptyFull(); pfrom->fRelayTxes = true; } return true; } if (strCommand == NetMsgType::FILTERADD) { std::vector vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a // script data object, and thus, the maximum size any matched object can // have) in a filteradd message. bool bad = false; if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { bad = true; } else { LOCK(pfrom->cs_filter); if (pfrom->pfilter) { pfrom->pfilter->insert(vData); } else { bad = true; } } if (bad) { LOCK(cs_main); // The structure of this code doesn't really allow for a good error // code. We'll go generic. Misbehaving(pfrom, 100, "invalid-filteradd"); } return true; } if (strCommand == NetMsgType::FILTERCLEAR) { LOCK(pfrom->cs_filter); if (pfrom->GetLocalServices() & NODE_BLOOM) { pfrom->pfilter.reset(new CBloomFilter()); } pfrom->fRelayTxes = true; return true; } if (strCommand == NetMsgType::FEEFILTER) { Amount newFeeFilter = Amount::zero(); vRecv >> newFeeFilter; if (MoneyRange(newFeeFilter)) { { LOCK(pfrom->cs_feeFilter); pfrom->minFeeFilter = newFeeFilter; } LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom->GetId()); } return true; } if (strCommand == NetMsgType::NOTFOUND) { // Remove the NOTFOUND transactions from the peer LOCK(cs_main); CNodeState *state = State(pfrom->GetId()); std::vector vInv; vRecv >> vInv; if (vInv.size() <= MAX_PEER_TX_IN_FLIGHT + MAX_BLOCKS_IN_TRANSIT_PER_PEER) { for (CInv &inv : vInv) { if (inv.type == MSG_TX) { const TxId txid(inv.hash); // If we receive a NOTFOUND message for a txid we requested, // erase it from our data structures for this peer. auto in_flight_it = state->m_tx_download.m_tx_in_flight.find(txid); if (in_flight_it == state->m_tx_download.m_tx_in_flight.end()) { // Skip any further work if this is a spurious NOTFOUND // message. continue; } state->m_tx_download.m_tx_in_flight.erase(in_flight_it); state->m_tx_download.m_tx_announced.erase(txid); } } } return true; } // Ignore unknown commands for extensibility LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(strCommand), pfrom->GetId()); return true; } bool PeerLogicValidation::SendRejectsAndCheckIfBanned(CNode *pnode, bool enable_bip61) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); CNodeState &state = *State(pnode->GetId()); if (enable_bip61) { for (const CBlockReject &reject : state.rejects) { connman->PushMessage( pnode, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::REJECT, std::string(NetMsgType::BLOCK), reject.chRejectCode, reject.strRejectReason, reject.hashBlock)); } } state.rejects.clear(); if (state.fShouldBan) { state.fShouldBan = false; if (pnode->fWhitelisted) { LogPrintf("Warning: not punishing whitelisted peer %s!\n", pnode->addr.ToString()); } else if (pnode->m_manual_connection) { LogPrintf("Warning: not punishing manually-connected peer %s!\n", pnode->addr.ToString()); } else if (pnode->addr.IsLocal()) { // Disconnect but don't ban _this_ local node LogPrintf("Warning: disconnecting but not banning local peer %s!\n", pnode->addr.ToString()); pnode->fDisconnect = true; } else { // Disconnect and ban all nodes sharing the address if (m_banman) { m_banman->Ban(pnode->addr, BanReasonNodeMisbehaving); } connman->DisconnectNode(pnode->addr); } return true; } return false; } bool PeerLogicValidation::ProcessMessages(const Config &config, CNode *pfrom, std::atomic &interruptMsgProc) { const CChainParams &chainparams = config.GetChainParams(); // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fMoreWork = false; if (!pfrom->vRecvGetData.empty()) { ProcessGetData(config, pfrom, connman, interruptMsgProc); } if (pfrom->fDisconnect) { return false; } // this maintains the order of responses if (!pfrom->vRecvGetData.empty()) { return true; } // Don't bother if send buffer is too full to respond anyway if (pfrom->fPauseSend) { return false; } std::list msgs; { LOCK(pfrom->cs_vProcessMsg); if (pfrom->vProcessMsg.empty()) { return false; } // Just take one message msgs.splice(msgs.begin(), pfrom->vProcessMsg, pfrom->vProcessMsg.begin()); pfrom->nProcessQueueSize -= msgs.front().vRecv.size() + CMessageHeader::HEADER_SIZE; pfrom->fPauseRecv = pfrom->nProcessQueueSize > connman->GetReceiveFloodSize(); fMoreWork = !pfrom->vProcessMsg.empty(); } CNetMessage &msg(msgs.front()); msg.SetVersion(pfrom->GetRecvVersion()); // Scan for message start if (memcmp(std::begin(msg.hdr.pchMessageStart), std::begin(chainparams.NetMagic()), CMessageHeader::MESSAGE_START_SIZE) != 0) { LogPrint(BCLog::NET, "PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", SanitizeString(msg.hdr.GetCommand()), pfrom->GetId()); // Make sure we ban where that come from for some time. if (m_banman) { m_banman->Ban(pfrom->addr, BanReasonNodeMisbehaving); } connman->DisconnectNode(pfrom->addr); pfrom->fDisconnect = true; return false; } // Read header CMessageHeader &hdr = msg.hdr; if (!hdr.IsValid(config)) { LogPrint(BCLog::NET, "PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", SanitizeString(hdr.GetCommand()), pfrom->GetId()); return fMoreWork; } std::string strCommand = hdr.GetCommand(); // Message size unsigned int nMessageSize = hdr.nMessageSize; // Checksum CDataStream &vRecv = msg.vRecv; const uint256 &hash = msg.GetMessageHash(); if (memcmp(hash.begin(), hdr.pchChecksum, CMessageHeader::CHECKSUM_SIZE) != 0) { LogPrint( BCLog::NET, "%s(%s, %u bytes): CHECKSUM ERROR expected %s was %s from " "peer=%d\n", __func__, SanitizeString(strCommand), nMessageSize, HexStr(hash.begin(), hash.begin() + CMessageHeader::CHECKSUM_SIZE), HexStr(hdr.pchChecksum, hdr.pchChecksum + CMessageHeader::CHECKSUM_SIZE), pfrom->GetId()); if (m_banman) { m_banman->Ban(pfrom->addr, BanReasonNodeMisbehaving); } connman->DisconnectNode(pfrom->addr); return fMoreWork; } // Process message bool fRet = false; try { fRet = ProcessMessage(config, pfrom, strCommand, vRecv, msg.nTime, connman, interruptMsgProc, m_enable_bip61); if (interruptMsgProc) { return false; } if (!pfrom->vRecvGetData.empty()) { fMoreWork = true; } } catch (const std::ios_base::failure &e) { if (m_enable_bip61) { connman->PushMessage( pfrom, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::REJECT, strCommand, REJECT_MALFORMED, std::string("error parsing message"))); } if (strstr(e.what(), "end of data")) { // Allow exceptions from under-length message on vRecv LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' caught, normally caused " "by a message being shorter than its stated length\n", __func__, SanitizeString(strCommand), nMessageSize, e.what()); } else if (strstr(e.what(), "size too large")) { // Allow exceptions from over-long size LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' caught\n", __func__, SanitizeString(strCommand), nMessageSize, e.what()); } else if (strstr(e.what(), "non-canonical ReadCompactSize()")) { // Allow exceptions from non-canonical encoding LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' caught\n", __func__, SanitizeString(strCommand), nMessageSize, e.what()); } else { PrintExceptionContinue(&e, "ProcessMessages()"); } } catch (const std::exception &e) { PrintExceptionContinue(&e, "ProcessMessages()"); } catch (...) { PrintExceptionContinue(nullptr, "ProcessMessages()"); } if (!fRet) { LogPrint(BCLog::NET, "%s(%s, %u bytes) FAILED peer=%d\n", __func__, SanitizeString(strCommand), nMessageSize, pfrom->GetId()); } LOCK(cs_main); SendRejectsAndCheckIfBanned(pfrom, m_enable_bip61); return fMoreWork; } void PeerLogicValidation::ConsiderEviction(CNode *pto, int64_t time_in_seconds) { AssertLockHeld(cs_main); CNodeState &state = *State(pto->GetId()); const CNetMsgMaker msgMaker(pto->GetSendVersion()); if (!state.m_chain_sync.m_protect && IsOutboundDisconnectionCandidate(pto) && state.fSyncStarted) { // This is an outbound peer subject to disconnection if they don't // announce a block with as much work as the current tip within // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if their // chain has more work than ours, we should sync to it, unless it's // invalid, in which case we should find that out and disconnect from // them elsewhere). if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= ::ChainActive().Tip()->nChainWork) { if (state.m_chain_sync.m_timeout != 0) { state.m_chain_sync.m_timeout = 0; state.m_chain_sync.m_work_header = nullptr; state.m_chain_sync.m_sent_getheaders = false; } } else if (state.m_chain_sync.m_timeout == 0 || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) { // Our best block known by this peer is behind our tip, and we're // either noticing that for the first time, OR this peer was able to // catch up to some earlier point where we checked against our tip. // Either way, set a new timeout based on current tip. state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT; state.m_chain_sync.m_work_header = ::ChainActive().Tip(); state.m_chain_sync.m_sent_getheaders = false; } else if (state.m_chain_sync.m_timeout > 0 && time_in_seconds > state.m_chain_sync.m_timeout) { // No evidence yet that our peer has synced to a chain with work // equal to that of our tip, when we first detected it was behind. // Send a single getheaders message to give the peer a chance to // update us. if (state.m_chain_sync.m_sent_getheaders) { // They've run out of time to catch up! LogPrintf( "Disconnecting outbound peer %d for old chain, best known " "block = %s\n", pto->GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : ""); pto->fDisconnect = true; } else { assert(state.m_chain_sync.m_work_header); LogPrint( BCLog::NET, "sending getheaders to outbound peer=%d to verify chain " "work (current best known block:%s, benchmark blockhash: " "%s)\n", pto->GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "", state.m_chain_sync.m_work_header->GetBlockHash() .ToString()); connman->PushMessage( pto, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator( state.m_chain_sync.m_work_header->pprev), uint256())); state.m_chain_sync.m_sent_getheaders = true; // 2 minutes constexpr int64_t HEADERS_RESPONSE_TIME = 120; // Bump the timeout to allow a response, which could clear the // timeout (if the response shows the peer has synced), reset // the timeout (if the peer syncs to the required work but not // to our tip), or result in disconnect (if we advance to the // timeout and pindexBestKnownBlock has not sufficiently // progressed) state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME; } } } } void PeerLogicValidation::EvictExtraOutboundPeers(int64_t time_in_seconds) { // Check whether we have too many outbound peers int extra_peers = connman->GetExtraOutboundCount(); if (extra_peers <= 0) { return; } // If we have more outbound peers than we target, disconnect one. // Pick the outbound peer that least recently announced us a new block, with // ties broken by choosing the more recent connection (higher node id) NodeId worst_peer = -1; int64_t oldest_block_announcement = std::numeric_limits::max(); LOCK(cs_main); connman->ForEachNode([&](CNode *pnode) { AssertLockHeld(cs_main); // Ignore non-outbound peers, or nodes marked for disconnect already if (!IsOutboundDisconnectionCandidate(pnode) || pnode->fDisconnect) { return; } CNodeState *state = State(pnode->GetId()); if (state == nullptr) { // shouldn't be possible, but just in case return; } // Don't evict our protected peers if (state->m_chain_sync.m_protect) { return; } if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) { worst_peer = pnode->GetId(); oldest_block_announcement = state->m_last_block_announcement; } }); if (worst_peer == -1) { return; } bool disconnected = connman->ForNode(worst_peer, [&](CNode *pnode) { AssertLockHeld(cs_main); // Only disconnect a peer that has been connected to us for some // reasonable fraction of our check-frequency, to give it time for new // information to have arrived. // Also don't disconnect any peer we're trying to download a block from. CNodeState &state = *State(pnode->GetId()); if (time_in_seconds - pnode->nTimeConnected > MINIMUM_CONNECT_TIME && state.nBlocksInFlight == 0) { LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block " "announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement); pnode->fDisconnect = true; return true; } else { LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction " "(connect time: %d, blocks_in_flight: %d)\n", pnode->GetId(), pnode->nTimeConnected, state.nBlocksInFlight); return false; } }); if (disconnected) { // If we disconnected an extra peer, that means we successfully // connected to at least one peer after the last time we detected a // stale tip. Don't try any more extra peers until we next detect a // stale tip, to limit the load we put on the network from these extra // connections. connman->SetTryNewOutboundPeer(false); } } void PeerLogicValidation::CheckForStaleTipAndEvictPeers( const Consensus::Params &consensusParams) { if (connman == nullptr) { return; } int64_t time_in_seconds = GetTime(); EvictExtraOutboundPeers(time_in_seconds); if (time_in_seconds <= m_stale_tip_check_time) { return; } LOCK(cs_main); // Check whether our tip is stale, and if so, allow using an extra outbound // peer. if (TipMayBeStale(consensusParams)) { LogPrintf("Potential stale tip detected, will try using extra outbound " "peer (last tip update: %d seconds ago)\n", time_in_seconds - g_last_tip_update); connman->SetTryNewOutboundPeer(true); } else if (connman->GetTryNewOutboundPeer()) { connman->SetTryNewOutboundPeer(false); } m_stale_tip_check_time = time_in_seconds + STALE_CHECK_INTERVAL; } namespace { class CompareInvMempoolOrder { CTxMemPool *mp; public: explicit CompareInvMempoolOrder(CTxMemPool *_mempool) { mp = _mempool; } bool operator()(std::set::iterator a, std::set::iterator b) { /** * As std::make_heap produces a max-heap, we want the entries with the * fewest ancestors/highest fee to sort later. */ return mp->CompareDepthAndScore(*b, *a); } }; } // namespace bool PeerLogicValidation::SendMessages(const Config &config, CNode *pto, std::atomic &interruptMsgProc) { const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); // Don't send anything until the version handshake is complete if (!pto->fSuccessfullyConnected || pto->fDisconnect) { return true; } // If we get here, the outgoing message serialization version is set and // can't change. const CNetMsgMaker msgMaker(pto->GetSendVersion()); // // Message: ping // bool pingSend = false; if (pto->fPingQueued) { // RPC ping request by user pingSend = true; } if (pto->nPingNonceSent == 0 && pto->nPingUsecStart + PING_INTERVAL * 1000000 < GetTimeMicros()) { // Ping automatically sent as a latency probe & keepalive. pingSend = true; } if (pingSend) { uint64_t nonce = 0; while (nonce == 0) { GetRandBytes((uint8_t *)&nonce, sizeof(nonce)); } pto->fPingQueued = false; pto->nPingUsecStart = GetTimeMicros(); if (pto->nVersion > BIP0031_VERSION) { pto->nPingNonceSent = nonce; connman->PushMessage(pto, msgMaker.Make(NetMsgType::PING, nonce)); } else { // Peer is too old to support ping command with nonce, pong will // never arrive. pto->nPingNonceSent = 0; connman->PushMessage(pto, msgMaker.Make(NetMsgType::PING)); } } // Acquire cs_main for IsInitialBlockDownload() and CNodeState() TRY_LOCK(cs_main, lockMain); if (!lockMain) { return true; } if (SendRejectsAndCheckIfBanned(pto, m_enable_bip61)) { return true; } CNodeState &state = *State(pto->GetId()); // Address refresh broadcast int64_t nNow = GetTimeMicros(); if (!IsInitialBlockDownload() && pto->nNextLocalAddrSend < nNow) { AdvertiseLocal(pto); pto->nNextLocalAddrSend = PoissonNextSend(nNow, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL); } // // Message: addr // if (pto->nNextAddrSend < nNow) { pto->nNextAddrSend = PoissonNextSend(nNow, AVG_ADDRESS_BROADCAST_INTERVAL); std::vector vAddr; vAddr.reserve(pto->vAddrToSend.size()); for (const CAddress &addr : pto->vAddrToSend) { if (!pto->addrKnown.contains(addr.GetKey())) { pto->addrKnown.insert(addr.GetKey()); vAddr.push_back(addr); // receiver rejects addr messages larger than 1000 if (vAddr.size() >= 1000) { connman->PushMessage( pto, msgMaker.Make(NetMsgType::ADDR, vAddr)); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) { connman->PushMessage(pto, msgMaker.Make(NetMsgType::ADDR, vAddr)); } // we only send the big addr message once if (pto->vAddrToSend.capacity() > 40) { pto->vAddrToSend.shrink_to_fit(); } } // Start block sync if (pindexBestHeader == nullptr) { pindexBestHeader = ::ChainActive().Tip(); } // Download if this is a nice peer, or we have no nice peers and this one // might do. bool fFetch = state.fPreferredDownload || (nPreferredDownload == 0 && !pto->fClient && !pto->fOneShot); if (!state.fSyncStarted && !pto->fClient && !fImporting && !fReindex) { // Only actively request headers from a single peer, unless we're close // to today. if ((nSyncStarted == 0 && fFetch) || pindexBestHeader->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) { state.fSyncStarted = true; state.nHeadersSyncTimeout = GetTimeMicros() + HEADERS_DOWNLOAD_TIMEOUT_BASE + HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER * (GetAdjustedTime() - pindexBestHeader->GetBlockTime()) / (consensusParams.nPowTargetSpacing); nSyncStarted++; const CBlockIndex *pindexStart = pindexBestHeader; /** * If possible, start at the block preceding the currently best * known header. This ensures that we always get a non-empty list of * headers back as long as the peer is up-to-date. With a non-empty * response, we can initialise the peer's known best block. This * wouldn't be possible if we requested starting at pindexBestHeader * and got back an empty response. */ if (pindexStart->pprev) { pindexStart = pindexStart->pprev; } LogPrint(BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), pto->nStartingHeight); connman->PushMessage( pto, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexStart), uint256())); } } // Resend wallet transactions that haven't gotten in a block yet // Except during reindex, importing and IBD, when old wallet transactions // become unconfirmed and spams other nodes. if (!fReindex && !fImporting && !IsInitialBlockDownload()) { GetMainSignals().Broadcast(nTimeBestReceived, connman); } // // Try sending block announcements via headers // { // If we have less than MAX_BLOCKS_TO_ANNOUNCE in our list of block // hashes we're relaying, and our peer wants headers announcements, then // find the first header not yet known to our peer but would connect, // and send. If no header would connect, or if we have too many blocks, // or if the peer doesn't want headers, just add all to the inv queue. LOCK(pto->cs_inventory); std::vector vHeaders; bool fRevertToInv = ((!state.fPreferHeaders && (!state.fPreferHeaderAndIDs || pto->vBlockHashesToAnnounce.size() > 1)) || pto->vBlockHashesToAnnounce.size() > MAX_BLOCKS_TO_ANNOUNCE); // last header queued for delivery const CBlockIndex *pBestIndex = nullptr; // ensure pindexBestKnownBlock is up-to-date ProcessBlockAvailability(pto->GetId()); if (!fRevertToInv) { bool fFoundStartingHeader = false; // Try to find first header that our peer doesn't have, and then // send all headers past that one. If we come across an headers that // aren't on ::ChainActive(), give up. for (const BlockHash &hash : pto->vBlockHashesToAnnounce) { const CBlockIndex *pindex = LookupBlockIndex(hash); assert(pindex); if (::ChainActive()[pindex->nHeight] != pindex) { // Bail out if we reorged away from this block fRevertToInv = true; break; } if (pBestIndex != nullptr && pindex->pprev != pBestIndex) { // This means that the list of blocks to announce don't // connect to each other. This shouldn't really be possible // to hit during regular operation (because reorgs should // take us to a chain that has some block not on the prior // chain, which should be caught by the prior check), but // one way this could happen is by using invalidateblock / // reconsiderblock repeatedly on the tip, causing it to be // added multiple times to vBlockHashesToAnnounce. Robustly // deal with this rare situation by reverting to an inv. fRevertToInv = true; break; } pBestIndex = pindex; if (fFoundStartingHeader) { // add this to the headers message vHeaders.push_back(pindex->GetBlockHeader()); } else if (PeerHasHeader(&state, pindex)) { // Keep looking for the first new block. continue; } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) { // Peer doesn't have this header but they do have the prior // one. // Start sending headers. fFoundStartingHeader = true; vHeaders.push_back(pindex->GetBlockHeader()); } else { // Peer doesn't have this header or the prior one -- // nothing will connect, so bail out. fRevertToInv = true; break; } } } if (!fRevertToInv && !vHeaders.empty()) { if (vHeaders.size() == 1 && state.fPreferHeaderAndIDs) { // We only send up to 1 block as header-and-ids, as otherwise // probably means we're doing an initial-ish-sync or they're // slow. LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); int nSendFlags = 0; bool fGotBlockFromCache = false; { LOCK(cs_most_recent_block); if (most_recent_block_hash == pBestIndex->GetBlockHash()) { CBlockHeaderAndShortTxIDs cmpctblock( *most_recent_block); connman->PushMessage( pto, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); fGotBlockFromCache = true; } } if (!fGotBlockFromCache) { CBlock block; bool ret = ReadBlockFromDisk(block, pBestIndex, consensusParams); assert(ret); CBlockHeaderAndShortTxIDs cmpctblock(block); connman->PushMessage( pto, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } state.pindexBestHeaderSent = pBestIndex; } else if (state.fPreferHeaders) { if (vHeaders.size() > 1) { LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__, vHeaders.size(), vHeaders.front().GetHash().ToString(), vHeaders.back().GetHash().ToString(), pto->GetId()); } else { LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); } connman->PushMessage( pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); state.pindexBestHeaderSent = pBestIndex; } else { fRevertToInv = true; } } if (fRevertToInv) { // If falling back to using an inv, just try to inv the tip. The // last entry in vBlockHashesToAnnounce was our tip at some point in // the past. if (!pto->vBlockHashesToAnnounce.empty()) { const BlockHash &hashToAnnounce = pto->vBlockHashesToAnnounce.back(); const CBlockIndex *pindex = LookupBlockIndex(hashToAnnounce); assert(pindex); // Warn if we're announcing a block that is not on the main // chain. This should be very rare and could be optimized out. // Just log for now. if (::ChainActive()[pindex->nHeight] != pindex) { LogPrint(BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n", hashToAnnounce.ToString(), ::ChainActive().Tip()->GetBlockHash().ToString()); } // If the peer's chain has this block, don't inv it back. if (!PeerHasHeader(&state, pindex)) { pto->PushInventory(CInv(MSG_BLOCK, hashToAnnounce)); LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__, pto->GetId(), hashToAnnounce.ToString()); } } } pto->vBlockHashesToAnnounce.clear(); } // // Message: inventory // std::vector vInv; { LOCK(pto->cs_inventory); vInv.reserve(std::max(pto->vInventoryBlockToSend.size(), INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000)); // Add blocks for (const uint256 &hash : pto->vInventoryBlockToSend) { vInv.push_back(CInv(MSG_BLOCK, hash)); if (vInv.size() == MAX_INV_SZ) { connman->PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv)); vInv.clear(); } } pto->vInventoryBlockToSend.clear(); // Check whether periodic sends should happen bool fSendTrickle = pto->fWhitelisted; if (pto->nNextInvSend < nNow) { fSendTrickle = true; if (pto->fInbound) { pto->nNextInvSend = connman->PoissonNextSendInbound( nNow, INVENTORY_BROADCAST_INTERVAL); } else { // Use half the delay for outbound peers, as there is less // privacy concern for them. pto->nNextInvSend = PoissonNextSend(nNow, INVENTORY_BROADCAST_INTERVAL >> 1); } } // Time to send but the peer has requested we not relay transactions. if (fSendTrickle) { LOCK(pto->cs_filter); if (!pto->fRelayTxes) { pto->setInventoryTxToSend.clear(); } } // Respond to BIP35 mempool requests if (fSendTrickle && pto->fSendMempool) { auto vtxinfo = g_mempool.infoAll(); pto->fSendMempool = false; Amount filterrate = Amount::zero(); { LOCK(pto->cs_feeFilter); filterrate = pto->minFeeFilter; } LOCK(pto->cs_filter); for (const auto &txinfo : vtxinfo) { const TxId &txid = txinfo.tx->GetId(); CInv inv(MSG_TX, txid); pto->setInventoryTxToSend.erase(txid); if (filterrate != Amount::zero() && txinfo.feeRate.GetFeePerK() < filterrate) { continue; } if (pto->pfilter && !pto->pfilter->IsRelevantAndUpdate(*txinfo.tx)) { continue; } pto->filterInventoryKnown.insert(txid); vInv.push_back(inv); if (vInv.size() == MAX_INV_SZ) { connman->PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv)); vInv.clear(); } } pto->timeLastMempoolReq = GetTime(); } // Determine transactions to relay if (fSendTrickle) { // Produce a vector with all candidates for sending std::vector::iterator> vInvTx; vInvTx.reserve(pto->setInventoryTxToSend.size()); for (std::set::iterator it = pto->setInventoryTxToSend.begin(); it != pto->setInventoryTxToSend.end(); it++) { vInvTx.push_back(it); } Amount filterrate = Amount::zero(); { LOCK(pto->cs_feeFilter); filterrate = pto->minFeeFilter; } // Topologically and fee-rate sort the inventory we send for privacy // and priority reasons. A heap is used so that not all items need // sorting if only a few are being sent. CompareInvMempoolOrder compareInvMempoolOrder(&g_mempool); std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); // No reason to drain out at many times the network's capacity, // especially since we have many peers and some will draw much // shorter delays. unsigned int nRelayedTransactions = 0; LOCK(pto->cs_filter); while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000) { // Fetch the top element from the heap std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); std::set::iterator it = vInvTx.back(); vInvTx.pop_back(); TxId txid = *it; // Remove it from the to-be-sent set pto->setInventoryTxToSend.erase(it); // Check if not in the filter already if (pto->filterInventoryKnown.contains(txid)) { continue; } // Not in the mempool anymore? don't bother sending it. auto txinfo = g_mempool.info(txid); if (!txinfo.tx) { continue; } if (filterrate != Amount::zero() && txinfo.feeRate.GetFeePerK() < filterrate) { continue; } if (pto->pfilter && !pto->pfilter->IsRelevantAndUpdate(*txinfo.tx)) { continue; } // Send vInv.push_back(CInv(MSG_TX, txid)); nRelayedTransactions++; { // Expire old relay messages while (!vRelayExpiration.empty() && vRelayExpiration.front().first < nNow) { mapRelay.erase(vRelayExpiration.front().second); vRelayExpiration.pop_front(); } auto ret = mapRelay.insert( std::make_pair(txid, std::move(txinfo.tx))); if (ret.second) { vRelayExpiration.push_back(std::make_pair( nNow + 15 * 60 * 1000000, ret.first)); } } if (vInv.size() == MAX_INV_SZ) { connman->PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv)); vInv.clear(); } pto->filterInventoryKnown.insert(txid); } } } if (!vInv.empty()) { connman->PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv)); } // Detect whether we're stalling nNow = GetTimeMicros(); if (state.nStallingSince && state.nStallingSince < nNow - 1000000 * BLOCK_STALLING_TIMEOUT) { // Stalling only triggers when the block download window cannot move. // During normal steady state, the download window should be much larger // than the to-be-downloaded set of blocks, so disconnection should only // happen during initial block download. LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } // In case there is a block that has been in flight from this peer for 2 + // 0.5 * N times the block interval (with N the number of peers from which // we're downloading validated blocks), disconnect due to timeout. We // compensate for other peers to prevent killing off peers due to our own // downstream link being saturated. We only count validated in-flight blocks // so peers can't advertise non-existing block hashes to unreasonably // increase our timeout. if (state.vBlocksInFlight.size() > 0) { QueuedBlock &queuedBlock = state.vBlocksInFlight.front(); int nOtherPeersWithValidatedDownloads = nPeersWithValidatedDownloads - (state.nBlocksInFlightValidHeaders > 0); if (nNow > state.nDownloadingSince + consensusParams.nPowTargetSpacing * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) { LogPrintf("Timeout downloading block %s from peer=%d, " "disconnecting\n", queuedBlock.hash.ToString(), pto->GetId()); pto->fDisconnect = true; return true; } } // Check for headers sync timeouts if (state.fSyncStarted && state.nHeadersSyncTimeout < std::numeric_limits::max()) { // Detect whether this is a stalling initial-headers-sync peer if (pindexBestHeader->GetBlockTime() <= GetAdjustedTime() - 24 * 60 * 60) { if (nNow > state.nHeadersSyncTimeout && nSyncStarted == 1 && (nPreferredDownload - state.fPreferredDownload >= 1)) { // Disconnect a (non-whitelisted) peer if it is our only sync // peer, and we have others we could be using instead. // Note: If all our peers are inbound, then we won't disconnect // our sync peer for stalling; we have bigger problems if we // can't get any outbound peers. if (!pto->fWhitelisted) { LogPrintf("Timeout downloading headers from peer=%d, " "disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } else { LogPrintf("Timeout downloading headers from whitelisted " "peer=%d, not disconnecting\n", pto->GetId()); // Reset the headers sync state so that we have a chance to // try downloading from a different peer. // Note: this will also result in at least one more // getheaders message to be sent to this peer (eventually). state.fSyncStarted = false; nSyncStarted--; state.nHeadersSyncTimeout = 0; } } } else { // After we've caught up once, reset the timeout so we can't trigger // disconnect later. state.nHeadersSyncTimeout = std::numeric_limits::max(); } } // Check that outbound peers have reasonable chains GetTime() is used by // this anti-DoS logic so we can test this using mocktime. ConsiderEviction(pto, GetTime()); // // Message: getdata (blocks) // std::vector vGetData; if (!pto->fClient && ((fFetch && !pto->m_limited_node) || !IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) { std::vector vToDownload; NodeId staller = -1; FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller, consensusParams); for (const CBlockIndex *pindex : vToDownload) { vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); MarkBlockAsInFlight(config, pto->GetId(), pindex->GetBlockHash(), consensusParams, pindex); LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(), pindex->nHeight, pto->GetId()); } if (state.nBlocksInFlight == 0 && staller != -1) { if (State(staller)->nStallingSince == 0) { State(staller)->nStallingSince = nNow; LogPrint(BCLog::NET, "Stall started peer=%d\n", staller); } } } // // Message: getdata (transactions) // // For robustness, expire old requests after a long timeout, so that we can // resume downloading transactions from a peer even if they were // unresponsive in the past. Eventually we should consider disconnecting // peers, but this is conservative. if (state.m_tx_download.m_check_expiry_timer <= nNow) { for (auto it = state.m_tx_download.m_tx_in_flight.begin(); it != state.m_tx_download.m_tx_in_flight.end();) { if (it->second <= nNow - TX_EXPIRY_INTERVAL) { LogPrint(BCLog::NET, "timeout of inflight tx %s from peer=%d\n", it->first.ToString(), pto->GetId()); state.m_tx_download.m_tx_announced.erase(it->first); state.m_tx_download.m_tx_in_flight.erase(it++); } else { ++it; } } // On average, we do this check every TX_EXPIRY_INTERVAL. Randomize // so that we're not doing this for all peers at the same time. state.m_tx_download.m_check_expiry_timer = nNow + TX_EXPIRY_INTERVAL / 2 + GetRand(TX_EXPIRY_INTERVAL); } auto &tx_process_time = state.m_tx_download.m_tx_process_time; while (!tx_process_time.empty() && tx_process_time.begin()->first <= nNow && state.m_tx_download.m_tx_in_flight.size() < MAX_PEER_TX_IN_FLIGHT) { const TxId txid = tx_process_time.begin()->second; // Erase this entry from tx_process_time (it may be added back for // processing at a later time, see below) tx_process_time.erase(tx_process_time.begin()); CInv inv(MSG_TX, txid); if (!AlreadyHave(inv)) { // If this transaction was last requested more than 1 minute ago, // then request. int64_t last_request_time = GetTxRequestTime(txid); if (last_request_time <= nNow - GETDATA_TX_INTERVAL) { LogPrint(BCLog::NET, "Requesting %s peer=%d\n", inv.ToString(), pto->GetId()); vGetData.push_back(inv); if (vGetData.size() >= MAX_GETDATA_SZ) { connman->PushMessage( pto, msgMaker.Make(NetMsgType::GETDATA, vGetData)); vGetData.clear(); } UpdateTxRequestTime(txid, nNow); state.m_tx_download.m_tx_in_flight.emplace(txid, nNow); } else { // This transaction is in flight from someone else; queue // up processing to happen after the download times out // (with a slight delay for inbound peers, to prefer // requests to outbound peers). int64_t next_process_time = CalculateTxGetDataTime( txid, nNow, !state.fPreferredDownload); tx_process_time.emplace(next_process_time, txid); } } else { // We have already seen this transaction, no need to download. state.m_tx_download.m_tx_announced.erase(txid); state.m_tx_download.m_tx_in_flight.erase(txid); } } if (!vGetData.empty()) { connman->PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } // // Message: feefilter // // We don't want white listed peers to filter txs to us if we have // -whitelistforcerelay if (pto->nVersion >= FEEFILTER_VERSION && gArgs.GetBoolArg("-feefilter", DEFAULT_FEEFILTER) && !(pto->fWhitelisted && gArgs.GetBoolArg("-whitelistforcerelay", DEFAULT_WHITELISTFORCERELAY))) { Amount currentFilter = g_mempool .GetMinFee( gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000) .GetFeePerK(); int64_t timeNow = GetTimeMicros(); if (timeNow > pto->nextSendTimeFeeFilter) { static CFeeRate default_feerate = CFeeRate(DEFAULT_MIN_RELAY_TX_FEE_PER_KB); static FeeFilterRounder filterRounder(default_feerate); Amount filterToSend = filterRounder.round(currentFilter); filterToSend = std::max(filterToSend, ::minRelayTxFee.GetFeePerK()); if (filterToSend != pto->lastSentFeeFilter) { connman->PushMessage( pto, msgMaker.Make(NetMsgType::FEEFILTER, filterToSend)); pto->lastSentFeeFilter = filterToSend; } pto->nextSendTimeFeeFilter = PoissonNextSend(timeNow, AVG_FEEFILTER_BROADCAST_INTERVAL); } // If the fee filter has changed substantially and it's still more than // MAX_FEEFILTER_CHANGE_DELAY until scheduled broadcast, then move the // broadcast to within MAX_FEEFILTER_CHANGE_DELAY. else if (timeNow + MAX_FEEFILTER_CHANGE_DELAY * 1000000 < pto->nextSendTimeFeeFilter && (currentFilter < 3 * pto->lastSentFeeFilter / 4 || currentFilter > 4 * pto->lastSentFeeFilter / 3)) { pto->nextSendTimeFeeFilter = timeNow + GetRandInt(MAX_FEEFILTER_CHANGE_DELAY) * 1000000; } } return true; } class CNetProcessingCleanup { public: CNetProcessingCleanup() {} ~CNetProcessingCleanup() { // orphan transactions mapOrphanTransactions.clear(); mapOrphanTransactionsByPrev.clear(); } } instance_of_cnetprocessingcleanup; diff --git a/test/functional/abc-p2p-avalanche.py b/test/functional/abc-p2p-avalanche.py index fc9ebd7fd..d81a47327 100755 --- a/test/functional/abc-p2p-avalanche.py +++ b/test/functional/abc-p2p-avalanche.py @@ -1,206 +1,221 @@ #!/usr/bin/env python3 # Copyright (c) 2018 The Bitcoin developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the resolution of forks via avalanche.""" import random from test_framework.mininode import P2PInterface, mininode_lock from test_framework.messages import ( + AvalancheResponse, AvalancheVote, CInv, msg_avapoll, + msg_tcpavaresponse, + TCPAvalancheResponse, ) from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, sync_blocks, wait_until, ) from test_framework import schnorr BLOCK_ACCEPTED = 0 BLOCK_REJECTED = 1 BLOCK_UNKNOWN = -1 class TestNode(P2PInterface): def __init__(self): self.round = 0 self.avaresponses = [] self.avapolls = [] super().__init__() def on_avaresponse(self, message): with mininode_lock: self.avaresponses.append(message.response) def on_avapoll(self, message): with mininode_lock: self.avapolls.append(message.poll) + def send_avaresponse(self, round, votes, privkey): + response = AvalancheResponse(round, 0, votes) + sig = schnorr.sign(privkey, response.get_hash()) + msg = msg_tcpavaresponse() + msg.response = TCPAvalancheResponse(response, sig) + self.send_message(msg) + def send_poll(self, hashes): msg = msg_avapoll() msg.poll.round = self.round self.round += 1 for h in hashes: msg.poll.invs.append(CInv(2, h)) self.send_message(msg) def wait_for_avaresponse(self, timeout=5): wait_until( lambda: len(self.avaresponses) > 0, timeout=timeout, lock=mininode_lock) with mininode_lock: return self.avaresponses.pop(0) def wait_for_avapoll(self, timeout=5): wait_until( lambda: len(self.avapolls) > 0, timeout=timeout, lock=mininode_lock) with mininode_lock: return self.avapolls.pop(0) class AvalancheTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 self.extra_args = [ ['-enableavalanche=1', '-avacooldown=0'], ['-enableavalanche=1', '-avacooldown=0', '-noparkdeepreorg', '-maxreorgdepth=-1']] def run_test(self): node = self.nodes[0] # Create a fake node and connect it to our real node. poll_node = TestNode() node.add_p2p_connection(poll_node) poll_node.wait_for_verack() poll_node.sync_with_ping() # Get our own node id so we can use it later. nodeid = node.getpeerinfo()[-1]['id'] # Generate many block and poll for them. address = node.get_deterministic_priv_key().address node.generatetoaddress(100, address) fork_node = self.nodes[1] # Make sure the fork node has synced the blocks sync_blocks([node, fork_node]) # Get the key so we can verify signatures. avakey = bytes.fromhex(node.getavalanchekey()) self.log.info("Poll for the chain tip...") best_block_hash = int(node.getbestblockhash(), 16) poll_node.send_poll([best_block_hash]) def assert_response(expected): response = poll_node.wait_for_avaresponse() r = response.response assert_equal(r.cooldown, 0) # Verify signature. assert schnorr.verify(response.sig, avakey, r.get_hash()) votes = r.votes assert_equal(len(votes), len(expected)) for i in range(0, len(votes)): assert_equal(repr(votes[i]), repr(expected[i])) assert_response([AvalancheVote(BLOCK_ACCEPTED, best_block_hash)]) self.log.info("Poll for a selection of blocks...") various_block_hashes = [ int(node.getblockhash(0), 16), int(node.getblockhash(1), 16), int(node.getblockhash(10), 16), int(node.getblockhash(25), 16), int(node.getblockhash(42), 16), int(node.getblockhash(96), 16), int(node.getblockhash(99), 16), int(node.getblockhash(100), 16), ] poll_node.send_poll(various_block_hashes) assert_response([AvalancheVote(BLOCK_ACCEPTED, h) for h in various_block_hashes]) self.log.info( "Poll for a selection of blocks, but some are now invalid...") invalidated_block = node.getblockhash(76) node.invalidateblock(invalidated_block) # We need to send the coin to a new address in order to make sure we do # not regenerate the same block. node.generatetoaddress( 26, 'bchreg:pqv2r67sgz3qumufap3h2uuj0zfmnzuv8v7ej0fffv') node.reconsiderblock(invalidated_block) poll_node.send_poll(various_block_hashes) assert_response([AvalancheVote(BLOCK_ACCEPTED, h) for h in various_block_hashes[:5]] + [AvalancheVote(BLOCK_REJECTED, h) for h in various_block_hashes[-3:]]) self.log.info("Poll for unknown blocks...") various_block_hashes = [ int(node.getblockhash(0), 16), int(node.getblockhash(25), 16), int(node.getblockhash(42), 16), various_block_hashes[5], various_block_hashes[6], various_block_hashes[7], random.randrange(1 << 255, (1 << 256) - 1), random.randrange(1 << 255, (1 << 256) - 1), random.randrange(1 << 255, (1 << 256) - 1), ] poll_node.send_poll(various_block_hashes) assert_response([AvalancheVote(BLOCK_ACCEPTED, h) for h in various_block_hashes[:3]] + [AvalancheVote(BLOCK_REJECTED, h) for h in various_block_hashes[3:6]] + [AvalancheVote(BLOCK_UNKNOWN, h) for h in various_block_hashes[-3:]]) self.log.info("Trigger polling from the node...") # duplicate the deterministic sig test from src/test/key_tests.cpp privkey = bytes.fromhex( "12b004fff7f4b69ef8650e767f18f11ede158148b425660723b9f9a66e61f747") pubkey = schnorr.getpubkey(privkey, compressed=True) node.addavalanchepeer(nodeid, pubkey.hex()) # Make sure the fork node has synced the blocks sync_blocks([node, fork_node]) # Create a fork 2 blocks deep. This should trigger polling. fork_node.invalidateblock(fork_node.getblockhash(100)) fork_address = fork_node.get_deterministic_priv_key().address fork_node.generatetoaddress(2, fork_address) def can_find_block_in_poll(hash): poll = poll_node.wait_for_avapoll() invs = poll.invs votes = [] found_hash = False for inv in invs: # Look for what we expect if inv.hash == hash: found_hash = True # Vote yes to everything votes.append(AvalancheVote(BLOCK_ACCEPTED, inv.hash)) + poll_node.send_avaresponse(poll.round, votes, privkey) return found_hash # Because the new tip is a deep reorg, the node should start to poll # for it. hash_to_find = int(fork_node.getbestblockhash(), 16) wait_until(lambda: can_find_block_in_poll(hash_to_find), timeout=5) + # To verify that responses are processed, do it a few more times. + for _ in range(10): + wait_until(lambda: can_find_block_in_poll(hash_to_find), timeout=5) + if __name__ == '__main__': AvalancheTest().main() diff --git a/test/functional/test_framework/messages.py b/test/functional/test_framework/messages.py index dfc2234c9..27d4850eb 100755 --- a/test/functional/test_framework/messages.py +++ b/test/functional/test_framework/messages.py @@ -1,1476 +1,1476 @@ #!/usr/bin/env python3 # Copyright (c) 2010 ArtForz -- public domain half-a-node # Copyright (c) 2012 Jeff Garzik # Copyright (c) 2010-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Bitcoin test framework primitive and message structures CBlock, CTransaction, CBlockHeader, CTxIn, CTxOut, etc....: data structures that should map to corresponding structures in bitcoin/primitives msg_block, msg_tx, msg_headers, etc.: data structures that represent network messages ser_*, deser_*: functions that handle serialization/deserialization. Classes use __slots__ to ensure extraneous attributes aren't accidentally added by tests, compromising their intended effect. """ from codecs import encode import copy import hashlib from io import BytesIO import random import socket import struct import time from test_framework.siphash import siphash256 from test_framework.util import hex_str_to_bytes MIN_VERSION_SUPPORTED = 60001 # past bip-31 for ping/pong MY_VERSION = 70014 MY_SUBVERSION = b"/python-mininode-tester:0.0.3/" # from version 70001 onwards, fRelay should be appended to version # messages (BIP37) MY_RELAY = 1 MAX_INV_SZ = 50000 MAX_LOCATOR_SZ = 101 MAX_BLOCK_BASE_SIZE = 1000000 # 1 BCH in satoshis COIN = 100000000 NODE_NETWORK = (1 << 0) # NODE_GETUTXO = (1 << 1) NODE_BLOOM = (1 << 2) # NODE_WITNESS = (1 << 3) NODE_XTHIN = (1 << 4) NODE_BITCOIN_CASH = (1 << 5) NODE_NETWORK_LIMITED = (1 << 10) NODE_AVALANCHE = (1 << 24) MSG_TX = 1 MSG_BLOCK = 2 MSG_CMPCTBLOCK = 4 MSG_TYPE_MASK = 0xffffffff >> 2 # Serialization/deserialization tools def sha256(s): return hashlib.new('sha256', s).digest() def ripemd160(s): return hashlib.new('ripemd160', s).digest() def hash256(s): return sha256(sha256(s)) def ser_compact_size(l): r = b"" if l < 253: r = struct.pack("B", l) elif l < 0x10000: r = struct.pack(">= 32 return rs def uint256_from_str(s): r = 0 t = struct.unpack("> 24) & 0xFF v = (c & 0xFFFFFF) << (8 * (nbytes - 3)) return v def deser_vector(f, c): nit = deser_compact_size(f) r = [] for i in range(nit): t = c() t.deserialize(f) r.append(t) return r # ser_function_name: Allow for an alternate serialization function on the # entries in the vector. def ser_vector(l, ser_function_name=None): r = ser_compact_size(len(l)) for i in l: if ser_function_name: r += getattr(i, ser_function_name)() else: r += i.serialize() return r def deser_uint256_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_uint256(f) r.append(t) return r def ser_uint256_vector(l): r = ser_compact_size(len(l)) for i in l: r += ser_uint256(i) return r def deser_string_vector(f): nit = deser_compact_size(f) r = [] for i in range(nit): t = deser_string(f) r.append(t) return r def ser_string_vector(l): r = ser_compact_size(len(l)) for sv in l: r += ser_string(sv) return r # Deserialize from a hex string representation (eg from RPC) def FromHex(obj, hex_string): obj.deserialize(BytesIO(hex_str_to_bytes(hex_string))) return obj # Convert a binary-serializable object to hex (eg for submission via RPC) def ToHex(obj): return obj.serialize().hex() # Objects that map to bitcoind objects, which can be serialized/deserialized class CAddress: __slots__ = ("ip", "nServices", "pchReserved", "port", "time") def __init__(self): self.time = 0 self.nServices = 1 self.pchReserved = b"\x00" * 10 + b"\xff" * 2 self.ip = "0.0.0.0" self.port = 0 def deserialize(self, f, with_time=True): if with_time: self.time = struct.unpack("H", f.read(2))[0] def serialize(self, with_time=True): r = b"" if with_time: r += struct.pack("H", self.port) return r def __repr__(self): return "CAddress(nServices={} ip={} port={})".format( self.nServices, self.ip, self.port) class CInv: __slots__ = ("hash", "type") typemap = { 0: "Error", 1: "TX", 2: "Block", 4: "CompactBlock" } def __init__(self, t=0, h=0): self.type = t self.hash = h def deserialize(self, f): self.type = struct.unpack(" 21000000 * COIN: return False return True def __repr__(self): return "CTransaction(nVersion={} vin={} vout={} nLockTime={})".format( self.nVersion, repr(self.vin), repr(self.vout), self.nLockTime) class CBlockHeader: __slots__ = ("hash", "hashMerkleRoot", "hashPrevBlock", "nBits", "nNonce", "nTime", "nVersion", "sha256") def __init__(self, header=None): if header is None: self.set_null() else: self.nVersion = header.nVersion self.hashPrevBlock = header.hashPrevBlock self.hashMerkleRoot = header.hashMerkleRoot self.nTime = header.nTime self.nBits = header.nBits self.nNonce = header.nNonce self.sha256 = header.sha256 self.hash = header.hash self.calc_sha256() def set_null(self): self.nVersion = 1 self.hashPrevBlock = 0 self.hashMerkleRoot = 0 self.nTime = 0 self.nBits = 0 self.nNonce = 0 self.sha256 = None self.hash = None def deserialize(self, f): self.nVersion = struct.unpack(" 1: newhashes = [] for i in range(0, len(hashes), 2): i2 = min(i + 1, len(hashes) - 1) newhashes.append(hash256(hashes[i] + hashes[i2])) hashes = newhashes return uint256_from_str(hashes[0]) def calc_merkle_root(self): hashes = [] for tx in self.vtx: tx.calc_sha256() hashes.append(ser_uint256(tx.sha256)) return self.get_merkle_root(hashes) def is_valid(self): self.calc_sha256() target = uint256_from_compact(self.nBits) if self.sha256 > target: return False for tx in self.vtx: if not tx.is_valid(): return False if self.calc_merkle_root() != self.hashMerkleRoot: return False return True def solve(self): self.rehash() target = uint256_from_compact(self.nBits) while self.sha256 > target: self.nNonce += 1 self.rehash() def __repr__(self): return "CBlock(nVersion={} hashPrevBlock={:064x} hashMerkleRoot={:064x} nTime={} nBits={:08x} nNonce={:08x} vtx={})".format( self.nVersion, self.hashPrevBlock, self.hashMerkleRoot, time.ctime(self.nTime), self.nBits, self.nNonce, repr(self.vtx)) class PrefilledTransaction: __slots__ = ("index", "tx") def __init__(self, index=0, tx=None): self.index = index self.tx = tx def deserialize(self, f): self.index = deser_compact_size(f) self.tx = CTransaction() self.tx.deserialize(f) def serialize(self): r = b"" r += ser_compact_size(self.index) r += self.tx.serialize() return r def __repr__(self): return "PrefilledTransaction(index={}, tx={})".format( self.index, repr(self.tx)) # This is what we send on the wire, in a cmpctblock message. class P2PHeaderAndShortIDs: __slots__ = ("header", "nonce", "prefilled_txn", "prefilled_txn_length", "shortids", "shortids_length") def __init__(self): self.header = CBlockHeader() self.nonce = 0 self.shortids_length = 0 self.shortids = [] self.prefilled_txn_length = 0 self.prefilled_txn = [] def deserialize(self, f): self.header.deserialize(f) self.nonce = struct.unpack("= 70001: # Relay field is optional for version 70001 onwards try: self.nRelay = struct.unpack(" class msg_headers: __slots__ = ("headers",) command = b"headers" def __init__(self, headers=None): self.headers = headers if headers is not None else [] def deserialize(self, f): # comment in bitcoind indicates these should be deserialized as blocks blocks = deser_vector(f, CBlock) for x in blocks: self.headers.append(CBlockHeader(x)) def serialize(self): blocks = [CBlock(x) for x in self.headers] return ser_vector(blocks) def __repr__(self): return "msg_headers(headers={})".format(repr(self.headers)) class msg_reject: __slots__ = ("code", "data", "message", "reason") command = b"reject" REJECT_MALFORMED = 1 def __init__(self): self.message = b"" self.code = 0 self.reason = b"" self.data = 0 def deserialize(self, f): self.message = deser_string(f) self.code = struct.unpack("