diff --git a/src/test/addrman_tests.cpp b/src/test/addrman_tests.cpp index 9c29934cd..7140ebaa7 100644 --- a/src/test/addrman_tests.cpp +++ b/src/test/addrman_tests.cpp @@ -1,651 +1,657 @@ // Copyright (c) 2012-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include class CAddrManTest : public CAddrMan { public: explicit CAddrManTest(bool makeDeterministic = true) { if (makeDeterministic) { // Set addrman addr placement to be deterministic. MakeDeterministic(); } } //! Ensure that bucket placement is always the same for testing purposes. void MakeDeterministic() { nKey.SetNull(); insecure_rand = FastRandomContext(true); } CAddrInfo *Find(const CNetAddr &addr, int *pnId = nullptr) { LOCK(cs); return CAddrMan::Find(addr, pnId); } CAddrInfo *Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId = nullptr) { LOCK(cs); return CAddrMan::Create(addr, addrSource, pnId); } void Delete(int nId) { LOCK(cs); CAddrMan::Delete(nId); } // Simulates connection failure so that we can test eviction of offline // nodes void SimConnFail(CService &addr) { LOCK(cs); int64_t nLastSuccess = 1; // Set last good connection in the deep past. Good_(addr, true, nLastSuccess); bool count_failure = false; int64_t nLastTry = GetAdjustedTime() - 61; Attempt(addr, count_failure, nLastTry); } }; static CNetAddr ResolveIP(const char *ip) { CNetAddr addr; BOOST_CHECK_MESSAGE(LookupHost(ip, addr, false), strprintf("failed to resolve: %s", ip)); return addr; } static CNetAddr ResolveIP(std::string ip) { return ResolveIP(ip.c_str()); } static CService ResolveService(const char *ip, int port = 0) { CService serv; BOOST_CHECK_MESSAGE(Lookup(ip, serv, port, false), strprintf("failed to resolve: %s:%i", ip, port)); return serv; } static CService ResolveService(std::string ip, int port = 0) { return ResolveService(ip.c_str(), port); } BOOST_FIXTURE_TEST_SUITE(addrman_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(addrman_simple) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); // Test: Does Addrman respond correctly when empty. BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddrInfo addr_null = addrman.Select(); BOOST_CHECK_EQUAL(addr_null.ToString(), "[::]:0"); // Test: Does Addrman::Add work as expected. CService addr1 = ResolveService("250.1.1.1", 8333); BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); CAddrInfo addr_ret1 = addrman.Select(); BOOST_CHECK_EQUAL(addr_ret1.ToString(), "250.1.1.1:8333"); // Test: Does IP address deduplication work correctly. // Expected dup IP should not be added. CService addr1_dup = ResolveService("250.1.1.1", 8333); BOOST_CHECK(!addrman.Add(CAddress(addr1_dup, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); // Test: New table has one addr and we add a diff addr we should // have at least one addr. // Note that addrman's size cannot be tested reliably after insertion, as // hash collisions may occur. But we can always be sure of at least one // success. CService addr2 = ResolveService("250.1.1.2", 8333); BOOST_CHECK(addrman.Add(CAddress(addr2, NODE_NONE), source)); BOOST_CHECK(addrman.size() >= 1); // Test: AddrMan::Clear() should empty the new table. addrman.Clear(); BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddrInfo addr_null2 = addrman.Select(); BOOST_CHECK_EQUAL(addr_null2.ToString(), "[::]:0"); // Test: AddrMan::Add multiple addresses works as expected std::vector vAddr; vAddr.push_back(CAddress(ResolveService("250.1.1.3", 8333), NODE_NONE)); vAddr.push_back(CAddress(ResolveService("250.1.1.4", 8333), NODE_NONE)); BOOST_CHECK(addrman.Add(vAddr, source)); BOOST_CHECK(addrman.size() >= 1); } BOOST_AUTO_TEST_CASE(addrman_ports) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); BOOST_CHECK_EQUAL(addrman.size(), 0U); // Test: Addr with same IP but diff port does not replace existing addr. CService addr1 = ResolveService("250.1.1.1", 8333); - addrman.Add(CAddress(addr1, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); CService addr1_port = ResolveService("250.1.1.1", 8334); - addrman.Add(CAddress(addr1_port, NODE_NONE), source); + BOOST_CHECK(!addrman.Add(CAddress(addr1_port, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); CAddrInfo addr_ret2 = addrman.Select(); BOOST_CHECK_EQUAL(addr_ret2.ToString(), "250.1.1.1:8333"); // Test: Add same IP but diff port to tried table, it doesn't get added. // Perhaps this is not ideal behavior but it is the current behavior. addrman.Good(CAddress(addr1_port, NODE_NONE)); BOOST_CHECK_EQUAL(addrman.size(), 1U); bool newOnly = true; CAddrInfo addr_ret3 = addrman.Select(newOnly); BOOST_CHECK_EQUAL(addr_ret3.ToString(), "250.1.1.1:8333"); } BOOST_AUTO_TEST_CASE(addrman_select) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); // Test: Select from new with 1 addr in new. CService addr1 = ResolveService("250.1.1.1", 8333); - addrman.Add(CAddress(addr1, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 1U); bool newOnly = true; CAddrInfo addr_ret1 = addrman.Select(newOnly); BOOST_CHECK_EQUAL(addr_ret1.ToString(), "250.1.1.1:8333"); // Test: move addr to tried, select from new expected nothing returned. addrman.Good(CAddress(addr1, NODE_NONE)); BOOST_CHECK_EQUAL(addrman.size(), 1U); CAddrInfo addr_ret2 = addrman.Select(newOnly); BOOST_CHECK_EQUAL(addr_ret2.ToString(), "[::]:0"); CAddrInfo addr_ret3 = addrman.Select(); BOOST_CHECK_EQUAL(addr_ret3.ToString(), "250.1.1.1:8333"); BOOST_CHECK_EQUAL(addrman.size(), 1U); // Add three addresses to new table. CService addr2 = ResolveService("250.3.1.1", 8333); CService addr3 = ResolveService("250.3.2.2", 9999); CService addr4 = ResolveService("250.3.3.3", 9999); - addrman.Add(CAddress(addr2, NODE_NONE), ResolveService("250.3.1.1", 8333)); - addrman.Add(CAddress(addr3, NODE_NONE), ResolveService("250.3.1.1", 8333)); - addrman.Add(CAddress(addr4, NODE_NONE), ResolveService("250.4.1.1", 8333)); + BOOST_CHECK(addrman.Add(CAddress(addr2, NODE_NONE), + ResolveService("250.3.1.1", 8333))); + BOOST_CHECK(addrman.Add(CAddress(addr3, NODE_NONE), + ResolveService("250.3.1.1", 8333))); + BOOST_CHECK(addrman.Add(CAddress(addr4, NODE_NONE), + ResolveService("250.4.1.1", 8333))); // Add three addresses to tried table. CService addr5 = ResolveService("250.4.4.4", 8333); CService addr6 = ResolveService("250.4.5.5", 7777); CService addr7 = ResolveService("250.4.6.6", 8333); - addrman.Add(CAddress(addr5, NODE_NONE), ResolveService("250.3.1.1", 8333)); + BOOST_CHECK(addrman.Add(CAddress(addr5, NODE_NONE), + ResolveService("250.3.1.1", 8333))); addrman.Good(CAddress(addr5, NODE_NONE)); - addrman.Add(CAddress(addr6, NODE_NONE), ResolveService("250.3.1.1", 8333)); + BOOST_CHECK(addrman.Add(CAddress(addr6, NODE_NONE), + ResolveService("250.3.1.1", 8333))); addrman.Good(CAddress(addr6, NODE_NONE)); - addrman.Add(CAddress(addr7, NODE_NONE), ResolveService("250.1.1.3", 8333)); + BOOST_CHECK(addrman.Add(CAddress(addr7, NODE_NONE), + ResolveService("250.1.1.3", 8333))); addrman.Good(CAddress(addr7, NODE_NONE)); // Test: 6 addrs + 1 addr from last test = 7. BOOST_CHECK_EQUAL(addrman.size(), 7U); // Test: Select pulls from new and tried regardless of port number. std::set ports; for (int i = 0; i < 20; ++i) { ports.insert(addrman.Select().GetPort()); } BOOST_CHECK_EQUAL(ports.size(), 3U); } BOOST_AUTO_TEST_CASE(addrman_new_collisions) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); BOOST_CHECK_EQUAL(addrman.size(), 0U); for (unsigned int i = 1; i < 18; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); - addrman.Add(CAddress(addr, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); // Test: No collision in new table yet. BOOST_CHECK_EQUAL(addrman.size(), i); } // Test: new table collision! CService addr1 = ResolveService("250.1.1.18"); - addrman.Add(CAddress(addr1, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 17U); CService addr2 = ResolveService("250.1.1.19"); - addrman.Add(CAddress(addr2, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr2, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 18U); } BOOST_AUTO_TEST_CASE(addrman_tried_collisions) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); BOOST_CHECK_EQUAL(addrman.size(), 0U); for (unsigned int i = 1; i < 80; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); - addrman.Add(CAddress(addr, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(CAddress(addr, NODE_NONE)); // Test: No collision in tried table yet. BOOST_CHECK_EQUAL(addrman.size(), i); } // Test: tried table collision! CService addr1 = ResolveService("250.1.1.80"); - addrman.Add(CAddress(addr1, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 79U); CService addr2 = ResolveService("250.1.1.81"); - addrman.Add(CAddress(addr2, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr2, NODE_NONE), source)); BOOST_CHECK_EQUAL(addrman.size(), 80U); } BOOST_AUTO_TEST_CASE(addrman_find) { CAddrManTest addrman; BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.2.1", 9999), NODE_NONE); CAddress addr3 = CAddress(ResolveService("251.255.2.1", 8333), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); CNetAddr source2 = ResolveIP("250.1.2.2"); - addrman.Add(addr1, source1); - addrman.Add(addr2, source2); - addrman.Add(addr3, source1); + BOOST_CHECK(addrman.Add(addr1, source1)); + BOOST_CHECK(!addrman.Add(addr2, source2)); + BOOST_CHECK(addrman.Add(addr3, source1)); // Test: ensure Find returns an IP matching what we searched on. CAddrInfo *info1 = addrman.Find(addr1); BOOST_REQUIRE(info1); BOOST_CHECK_EQUAL(info1->ToString(), "250.1.2.1:8333"); // Test: Find does not discriminate by port number. CAddrInfo *info2 = addrman.Find(addr2); BOOST_REQUIRE(info2); BOOST_CHECK_EQUAL(info2->ToString(), info1->ToString()); // Test: Find returns another IP matching what we searched on. CAddrInfo *info3 = addrman.Find(addr3); BOOST_REQUIRE(info3); BOOST_CHECK_EQUAL(info3->ToString(), "251.255.2.1:8333"); } BOOST_AUTO_TEST_CASE(addrman_create) { CAddrManTest addrman; BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); int nId; CAddrInfo *pinfo = addrman.Create(addr1, source1, &nId); // Test: The result should be the same as the input addr. BOOST_CHECK_EQUAL(pinfo->ToString(), "250.1.2.1:8333"); CAddrInfo *info2 = addrman.Find(addr1); BOOST_CHECK_EQUAL(info2->ToString(), "250.1.2.1:8333"); } BOOST_AUTO_TEST_CASE(addrman_delete) { CAddrManTest addrman; BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); int nId; addrman.Create(addr1, source1, &nId); // Test: Delete should actually delete the addr. BOOST_CHECK_EQUAL(addrman.size(), 1U); addrman.Delete(nId); BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddrInfo *info2 = addrman.Find(addr1); BOOST_CHECK(info2 == nullptr); } BOOST_AUTO_TEST_CASE(addrman_getaddr) { CAddrManTest addrman; // Test: Sanity check, GetAddr should never return anything if addrman // is empty. BOOST_CHECK_EQUAL(addrman.size(), 0U); std::vector vAddr1 = addrman.GetAddr(); BOOST_CHECK_EQUAL(vAddr1.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.250.2.1", 8333), NODE_NONE); addr1.nTime = GetAdjustedTime(); // Set time so isTerrible = false CAddress addr2 = CAddress(ResolveService("250.251.2.2", 9999), NODE_NONE); addr2.nTime = GetAdjustedTime(); CAddress addr3 = CAddress(ResolveService("251.252.2.3", 8333), NODE_NONE); addr3.nTime = GetAdjustedTime(); CAddress addr4 = CAddress(ResolveService("252.253.3.4", 8333), NODE_NONE); addr4.nTime = GetAdjustedTime(); CAddress addr5 = CAddress(ResolveService("252.254.4.5", 8333), NODE_NONE); addr5.nTime = GetAdjustedTime(); CNetAddr source1 = ResolveIP("250.1.2.1"); CNetAddr source2 = ResolveIP("250.2.3.3"); // Test: Ensure GetAddr works with new addresses. - addrman.Add(addr1, source1); - addrman.Add(addr2, source2); - addrman.Add(addr3, source1); - addrman.Add(addr4, source2); - addrman.Add(addr5, source1); + BOOST_CHECK(addrman.Add(addr1, source1)); + BOOST_CHECK(addrman.Add(addr2, source2)); + BOOST_CHECK(addrman.Add(addr3, source1)); + BOOST_CHECK(addrman.Add(addr4, source2)); + BOOST_CHECK(addrman.Add(addr5, source1)); // GetAddr returns 23% of addresses, 23% of 5 is 1 rounded down. BOOST_CHECK_EQUAL(addrman.GetAddr().size(), 1U); // Test: Ensure GetAddr works with new and tried addresses. addrman.Good(CAddress(addr1, NODE_NONE)); addrman.Good(CAddress(addr2, NODE_NONE)); BOOST_CHECK_EQUAL(addrman.GetAddr().size(), 1U); // Test: Ensure GetAddr still returns 23% when addrman has many addrs. for (unsigned int i = 1; i < (8 * 256); i++) { int octet1 = i % 256; int octet2 = i >> 8 % 256; std::string strAddr = std::to_string(octet1) + "." + std::to_string(octet2) + ".1.23"; CAddress addr = CAddress(ResolveService(strAddr), NODE_NONE); // Ensure that for all addrs in addrman, isTerrible == false. addr.nTime = GetAdjustedTime(); addrman.Add(addr, ResolveIP(strAddr)); if (i % 8 == 0) { addrman.Good(addr); } } std::vector vAddr = addrman.GetAddr(); size_t percent23 = (addrman.size() * 23) / 100; BOOST_CHECK_EQUAL(vAddr.size(), percent23); BOOST_CHECK_EQUAL(vAddr.size(), 461U); // (Addrman.size() < number of addresses added) due to address collisions. BOOST_CHECK_EQUAL(addrman.size(), 2006U); } BOOST_AUTO_TEST_CASE(caddrinfo_get_tried_bucket) { CAddrManTest addrman; CAddress addr1 = CAddress(ResolveService("250.1.1.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.1.1", 9999), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.1.1"); CAddrInfo info1 = CAddrInfo(addr1, source1); uint256 nKey1 = (uint256)(CHashWriter(SER_GETHASH, 0) << 1).GetHash(); uint256 nKey2 = (uint256)(CHashWriter(SER_GETHASH, 0) << 2).GetHash(); BOOST_CHECK_EQUAL(info1.GetTriedBucket(nKey1), 40); // Test: Make sure key actually randomizes bucket placement. A fail on // this test could be a security issue. BOOST_CHECK(info1.GetTriedBucket(nKey1) != info1.GetTriedBucket(nKey2)); // Test: Two addresses with same IP but different ports can map to // different buckets because they have different keys. CAddrInfo info2 = CAddrInfo(addr2, source1); BOOST_CHECK(info1.GetKey() != info2.GetKey()); BOOST_CHECK(info1.GetTriedBucket(nKey1) != info2.GetTriedBucket(nKey1)); std::set buckets; for (int i = 0; i < 255; i++) { CAddrInfo infoi = CAddrInfo( CAddress(ResolveService("250.1.1." + std::to_string(i)), NODE_NONE), ResolveIP("250.1.1." + std::to_string(i))); int bucket = infoi.GetTriedBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the same group (\16 prefix for IPv4) should // never get more than 8 buckets BOOST_CHECK_EQUAL(buckets.size(), 8U); buckets.clear(); for (int j = 0; j < 255; j++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService("250." + std::to_string(j) + ".1.1"), NODE_NONE), ResolveIP("250." + std::to_string(j) + ".1.1")); int bucket = infoj.GetTriedBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the different groups should map to more than // 8 buckets. BOOST_CHECK_EQUAL(buckets.size(), 160U); } BOOST_AUTO_TEST_CASE(caddrinfo_get_new_bucket) { CAddrManTest addrman; CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.2.1", 9999), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); CAddrInfo info1 = CAddrInfo(addr1, source1); uint256 nKey1 = (uint256)(CHashWriter(SER_GETHASH, 0) << 1).GetHash(); uint256 nKey2 = (uint256)(CHashWriter(SER_GETHASH, 0) << 2).GetHash(); // Test: Make sure the buckets are what we expect BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1), 786); BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1, source1), 786); // Test: Make sure key actually randomizes bucket placement. A fail on // this test could be a security issue. BOOST_CHECK(info1.GetNewBucket(nKey1) != info1.GetNewBucket(nKey2)); // Test: Ports should not affect bucket placement in the addr CAddrInfo info2 = CAddrInfo(addr2, source1); BOOST_CHECK(info1.GetKey() != info2.GetKey()); BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1), info2.GetNewBucket(nKey1)); std::set buckets; for (int i = 0; i < 255; i++) { CAddrInfo infoi = CAddrInfo( CAddress(ResolveService("250.1.1." + std::to_string(i)), NODE_NONE), ResolveIP("250.1.1." + std::to_string(i))); int bucket = infoi.GetNewBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the same group (\16 prefix for IPv4) should // always map to the same bucket. BOOST_CHECK_EQUAL(buckets.size(), 1U); buckets.clear(); for (int j = 0; j < 4 * 255; j++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService(std::to_string(250 + (j / 255)) + "." + std::to_string(j % 256) + ".1.1"), NODE_NONE), ResolveIP("251.4.1.1")); int bucket = infoj.GetNewBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the same source groups should map to no more // than 64 buckets. BOOST_CHECK(buckets.size() <= 64); buckets.clear(); for (int p = 0; p < 255; p++) { CAddrInfo infoj = CAddrInfo(CAddress(ResolveService("250.1.1.1"), NODE_NONE), ResolveIP("250." + std::to_string(p) + ".1.1")); int bucket = infoj.GetNewBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the different source groups should map to more // than 64 buckets. BOOST_CHECK(buckets.size() > 64); } BOOST_AUTO_TEST_CASE(addrman_selecttriedcollision) { CAddrManTest addrman; BOOST_CHECK(addrman.size() == 0); // Empty addrman should return blank addrman info. BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // Add twenty two addresses. CNetAddr source = ResolveIP("252.2.2.2"); for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); - addrman.Add(CAddress(addr, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); // No collisions yet. BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Ensure Good handles duplicates well. for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); addrman.Good(addr); BOOST_CHECK(addrman.size() == 22); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } } BOOST_AUTO_TEST_CASE(addrman_noevict) { CAddrManTest addrman; // Add twenty two addresses. CNetAddr source = ResolveIP("252.2.2.2"); for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); - addrman.Add(CAddress(addr, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); // No collision yet. BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Collision between 23 and 19. CService addr23 = ResolveService("250.1.1.23"); - addrman.Add(CAddress(addr23, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr23, NODE_NONE), source)); addrman.Good(addr23); BOOST_CHECK(addrman.size() == 23); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "250.1.1.19:0"); // 23 should be discarded and 19 not evicted. addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // Lets create two collisions. for (unsigned int i = 24; i < 33; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); - addrman.Add(CAddress(addr, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Cause a collision. CService addr33 = ResolveService("250.1.1.33"); - addrman.Add(CAddress(addr33, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr33, NODE_NONE), source)); addrman.Good(addr33); BOOST_CHECK(addrman.size() == 33); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "250.1.1.27:0"); // Cause a second collision. - addrman.Add(CAddress(addr23, NODE_NONE), source); + BOOST_CHECK(!addrman.Add(CAddress(addr23, NODE_NONE), source)); addrman.Good(addr23); BOOST_CHECK(addrman.size() == 33); BOOST_CHECK(addrman.SelectTriedCollision().ToString() != "[::]:0"); addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } BOOST_AUTO_TEST_CASE(addrman_evictionworks) { CAddrManTest addrman; BOOST_CHECK(addrman.size() == 0); // Empty addrman should return blank addrman info. BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // Add twenty two addresses. CNetAddr source = ResolveIP("252.2.2.2"); for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); - addrman.Add(CAddress(addr, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); // No collision yet. BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Collision between 23 and 19. CService addr = ResolveService("250.1.1.23"); - addrman.Add(CAddress(addr, NODE_NONE), source); + BOOST_CHECK(addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); BOOST_CHECK(addrman.size() == 23); CAddrInfo info = addrman.SelectTriedCollision(); BOOST_CHECK(info.ToString() == "250.1.1.19:0"); // Ensure test of address fails, so that it is evicted. addrman.SimConnFail(info); // Should swap 23 for 19. addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // If 23 was swapped for 19, then this should cause no collisions. - addrman.Add(CAddress(addr, NODE_NONE), source); + BOOST_CHECK(!addrman.Add(CAddress(addr, NODE_NONE), source)); addrman.Good(addr); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // If we insert 19 is should collide with 23. CService addr19 = ResolveService("250.1.1.19"); - addrman.Add(CAddress(addr19, NODE_NONE), source); + BOOST_CHECK(!addrman.Add(CAddress(addr19, NODE_NONE), source)); addrman.Good(addr19); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "250.1.1.23:0"); addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/checkqueue_tests.cpp b/src/test/checkqueue_tests.cpp index 41f61091d..98e462288 100644 --- a/src/test/checkqueue_tests.cpp +++ b/src/test/checkqueue_tests.cpp @@ -1,416 +1,418 @@ // Copyright (c) 2012-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include #include #include #include // BasicTestingSetup not sufficient because nScriptCheckThreads is not set // otherwise. BOOST_FIXTURE_TEST_SUITE(checkqueue_tests, TestingSetup) static const unsigned int QUEUE_BATCH_SIZE = 128; struct FakeCheck { bool operator()() { return true; } void swap(FakeCheck &x){}; }; struct FakeCheckCheckCompletion { static std::atomic n_calls; bool operator()() { n_calls.fetch_add(1, std::memory_order_relaxed); return true; } void swap(FakeCheckCheckCompletion &x){}; }; struct FailingCheck { bool fails; FailingCheck(bool _fails) : fails(_fails){}; FailingCheck() : fails(true){}; bool operator()() { return !fails; } void swap(FailingCheck &x) { std::swap(fails, x.fails); }; }; struct UniqueCheck { static std::mutex m; static std::unordered_multiset results; size_t check_id; UniqueCheck(size_t check_id_in) : check_id(check_id_in){}; UniqueCheck() : check_id(0){}; bool operator()() { std::lock_guard l(m); results.insert(check_id); return true; } void swap(UniqueCheck &x) { std::swap(x.check_id, check_id); }; }; struct MemoryCheck { static std::atomic fake_allocated_memory; bool b{false}; bool operator()() { return true; } MemoryCheck(){}; MemoryCheck(const MemoryCheck &x) { // We have to do this to make sure that destructor calls are paired // // Really, copy constructor should be deletable, but CCheckQueue breaks // if it is deleted because of internal push_back. fake_allocated_memory.fetch_add(b, std::memory_order_relaxed); }; MemoryCheck(bool b_) : b(b_) { fake_allocated_memory.fetch_add(b, std::memory_order_relaxed); }; ~MemoryCheck() { fake_allocated_memory.fetch_sub(b, std::memory_order_relaxed); }; void swap(MemoryCheck &x) { std::swap(b, x.b); }; }; struct FrozenCleanupCheck { static std::atomic nFrozen; static std::condition_variable cv; static std::mutex m; // Freezing can't be the default initialized behavior given how the queue // swaps in default initialized Checks. bool should_freeze{false}; bool operator()() { return true; } FrozenCleanupCheck() {} ~FrozenCleanupCheck() { if (should_freeze) { std::unique_lock l(m); nFrozen.store(1, std::memory_order_relaxed); cv.notify_one(); cv.wait( l, [] { return nFrozen.load(std::memory_order_relaxed) == 0; }); } } void swap(FrozenCleanupCheck &x) { std::swap(should_freeze, x.should_freeze); }; }; // Static Allocations std::mutex FrozenCleanupCheck::m{}; std::atomic FrozenCleanupCheck::nFrozen{0}; std::condition_variable FrozenCleanupCheck::cv{}; std::mutex UniqueCheck::m; std::unordered_multiset UniqueCheck::results; std::atomic FakeCheckCheckCompletion::n_calls{0}; std::atomic MemoryCheck::fake_allocated_memory{0}; // Queue Typedefs typedef CCheckQueue Correct_Queue; typedef CCheckQueue Standard_Queue; typedef CCheckQueue Failing_Queue; typedef CCheckQueue Unique_Queue; typedef CCheckQueue Memory_Queue; typedef CCheckQueue FrozenCleanup_Queue; /** This test case checks that the CCheckQueue works properly * with each specified size_t Checks pushed. */ static void Correct_Queue_range(std::vector range) { auto small_queue = std::make_unique(QUEUE_BATCH_SIZE); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { small_queue->Thread(); }); } // Make vChecks here to save on malloc (this test can be slow...) std::vector vChecks; for (const size_t i : range) { size_t total = i; FakeCheckCheckCompletion::n_calls = 0; CCheckQueueControl control(small_queue.get()); while (total) { vChecks.resize(std::min(total, (size_t)InsecureRandRange(10))); total -= vChecks.size(); control.Add(vChecks); } BOOST_REQUIRE(control.Wait()); if (FakeCheckCheckCompletion::n_calls != i) { BOOST_REQUIRE_EQUAL(FakeCheckCheckCompletion::n_calls, i); } } tg.interrupt_all(); tg.join_all(); } /** Test that 0 checks is correct */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Zero) { std::vector range; range.push_back((size_t)0); Correct_Queue_range(range); } /** Test that 1 check is correct */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_One) { std::vector range; range.push_back((size_t)1); Correct_Queue_range(range); } /** Test that MAX check is correct */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Max) { std::vector range; range.push_back(100000); Correct_Queue_range(range); } /** Test that random numbers of checks are correct */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Correct_Random) { std::vector range; range.reserve(100000 / 1000); for (size_t i = 2; i < 100000; i += std::max((size_t)1, (size_t)InsecureRandRange(std::min( (size_t)1000, ((size_t)100000) - i)))) { range.push_back(i); } Correct_Queue_range(range); } /** Test that failing checks are caught */ BOOST_AUTO_TEST_CASE(test_CheckQueue_Catches_Failure) { auto fail_queue = std::make_unique(QUEUE_BATCH_SIZE); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { fail_queue->Thread(); }); } for (size_t i = 0; i < 1001; ++i) { CCheckQueueControl control(fail_queue.get()); size_t remaining = i; while (remaining) { size_t r = InsecureRandRange(10); std::vector vChecks; vChecks.reserve(r); for (size_t k = 0; k < r && remaining; k++, remaining--) { vChecks.emplace_back(remaining == 1); } control.Add(vChecks); } bool success = control.Wait(); if (i > 0) { BOOST_REQUIRE(!success); } else if (i == 0) { BOOST_REQUIRE(success); } } tg.interrupt_all(); tg.join_all(); } // Test that a block validation which fails does not interfere with // future blocks, ie, the bad state is cleared. BOOST_AUTO_TEST_CASE(test_CheckQueue_Recovers_From_Failure) { auto fail_queue = std::make_unique(QUEUE_BATCH_SIZE); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { fail_queue->Thread(); }); } for (auto times = 0; times < 10; ++times) { for (const bool end_fails : {true, false}) { CCheckQueueControl control(fail_queue.get()); { std::vector vChecks; vChecks.resize(100, false); vChecks[99] = end_fails; control.Add(vChecks); } bool r = control.Wait(); BOOST_REQUIRE(r != end_fails); } } tg.interrupt_all(); tg.join_all(); } // Test that unique checks are actually all called individually, rather than // just one check being called repeatedly. Test that checks are not called // more than once as well BOOST_AUTO_TEST_CASE(test_CheckQueue_UniqueCheck) { auto queue = std::make_unique(QUEUE_BATCH_SIZE); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { queue->Thread(); }); } size_t COUNT = 100000; size_t total = COUNT; { CCheckQueueControl control(queue.get()); while (total) { size_t r = InsecureRandRange(10); std::vector vChecks; for (size_t k = 0; k < r && total; k++) { vChecks.emplace_back(--total); } control.Add(vChecks); } } bool r = true; BOOST_REQUIRE_EQUAL(UniqueCheck::results.size(), COUNT); for (size_t i = 0; i < COUNT; ++i) { r = r && UniqueCheck::results.count(i) == 1; } BOOST_REQUIRE(r); tg.interrupt_all(); tg.join_all(); } // Test that blocks which might allocate lots of memory free their memory // aggressively. // // This test attempts to catch a pathological case where by lazily freeing // checks might mean leaving a check un-swapped out, and decreasing by 1 each // time could leave the data hanging across a sequence of blocks. BOOST_AUTO_TEST_CASE(test_CheckQueue_Memory) { auto queue = std::make_unique(QUEUE_BATCH_SIZE); boost::thread_group tg; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { queue->Thread(); }); } for (size_t i = 0; i < 1000; ++i) { size_t total = i; { CCheckQueueControl control(queue.get()); while (total) { size_t r = InsecureRandRange(10); std::vector vChecks; for (size_t k = 0; k < r && total; k++) { total--; // Each iteration leaves data at the front, back, and middle // to catch any sort of deallocation failure vChecks.emplace_back(total == 0 || total == i || total == i / 2); } control.Add(vChecks); } } BOOST_REQUIRE_EQUAL(MemoryCheck::fake_allocated_memory, 0U); } tg.interrupt_all(); tg.join_all(); } // Test that a new verification cannot occur until all checks // have been destructed BOOST_AUTO_TEST_CASE(test_CheckQueue_FrozenCleanup) { auto queue = std::make_unique(QUEUE_BATCH_SIZE); boost::thread_group tg; bool fails = false; for (auto x = 0; x < nScriptCheckThreads; ++x) { tg.create_thread([&] { queue->Thread(); }); } std::thread t0([&]() { CCheckQueueControl control(queue.get()); std::vector vChecks(1); // Freezing can't be the default initialized behavior given how the // queue // swaps in default initialized Checks (otherwise freezing destructor // would get called twice). vChecks[0].should_freeze = true; control.Add(vChecks); - control.Wait(); // Hangs here + // Hangs here + bool waitResult = control.Wait(); + assert(waitResult); }); { std::unique_lock l(FrozenCleanupCheck::m); // Wait until the queue has finished all jobs and frozen FrozenCleanupCheck::cv.wait( l, []() { return FrozenCleanupCheck::nFrozen == 1; }); } // Try to get control of the queue a bunch of times for (auto x = 0; x < 100 && !fails; ++x) { fails = queue->ControlMutex.try_lock(); } { // Unfreeze (we need lock n case of spurious wakeup) std::unique_lock l(FrozenCleanupCheck::m); FrozenCleanupCheck::nFrozen = 0; } // Awaken frozen destructor FrozenCleanupCheck::cv.notify_one(); // Wait for control to finish t0.join(); tg.interrupt_all(); tg.join_all(); BOOST_REQUIRE(!fails); } /** Test that CCheckQueueControl is threadsafe */ BOOST_AUTO_TEST_CASE(test_CheckQueueControl_Locks) { auto queue = std::make_unique(QUEUE_BATCH_SIZE); { boost::thread_group tg; std::atomic nThreads{0}; std::atomic fails{0}; for (size_t i = 0; i < 3; ++i) { tg.create_thread([&] { CCheckQueueControl control(queue.get()); // While sleeping, no other thread should execute to this point auto observed = ++nThreads; UninterruptibleSleep(std::chrono::milliseconds{10}); fails += observed != nThreads; }); } tg.join_all(); BOOST_REQUIRE_EQUAL(fails, 0); } { boost::thread_group tg; std::mutex m; std::condition_variable cv; bool has_lock{false}; bool has_tried{false}; bool done{false}; bool done_ack{false}; { std::unique_lock l(m); tg.create_thread([&] { CCheckQueueControl control(queue.get()); std::unique_lock ll(m); has_lock = true; cv.notify_one(); cv.wait(ll, [&] { return has_tried; }); done = true; cv.notify_one(); // Wait until the done is acknowledged // cv.wait(ll, [&] { return done_ack; }); }); // Wait for thread to get the lock cv.wait(l, [&]() { return has_lock; }); bool fails = false; for (auto x = 0; x < 100 && !fails; ++x) { fails = queue->ControlMutex.try_lock(); } has_tried = true; cv.notify_one(); cv.wait(l, [&]() { return done; }); // Acknowledge the done done_ack = true; cv.notify_one(); BOOST_REQUIRE(!fails); } tg.join_all(); } } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/coins_tests.cpp b/src/test/coins_tests.cpp index da19aa20e..04a7f5f00 100644 --- a/src/test/coins_tests.cpp +++ b/src/test/coins_tests.cpp @@ -1,918 +1,918 @@ // Copyright (c) 2014-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include