diff --git a/src/test/addrman_tests.cpp b/src/test/addrman_tests.cpp index 14f325587..a95e44c02 100644 --- a/src/test/addrman_tests.cpp +++ b/src/test/addrman_tests.cpp @@ -1,653 +1,653 @@ // Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include class CAddrManTest : public CAddrMan { uint64_t state; public: explicit CAddrManTest(bool makeDeterministic = true) { state = 1; if (makeDeterministic) { // Set addrman addr placement to be deterministic. MakeDeterministic(); } } //! Ensure that bucket placement is always the same for testing purposes. void MakeDeterministic() { nKey.SetNull(); insecure_rand = FastRandomContext(true); } CAddrInfo *Find(const CNetAddr &addr, int *pnId = nullptr) { LOCK(cs); return CAddrMan::Find(addr, pnId); } CAddrInfo *Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId = nullptr) { LOCK(cs); return CAddrMan::Create(addr, addrSource, pnId); } void Delete(int nId) { LOCK(cs); CAddrMan::Delete(nId); } // Simulates connection failure so that we can test eviction of offline // nodes void SimConnFail(CService &addr) { LOCK(cs); int64_t nLastSuccess = 1; // Set last good connection in the deep past. Good_(addr, true, nLastSuccess); bool count_failure = false; int64_t nLastTry = GetAdjustedTime() - 61; Attempt(addr, count_failure, nLastTry); } }; static CNetAddr ResolveIP(const char *ip) { CNetAddr addr; BOOST_CHECK_MESSAGE(LookupHost(ip, addr, false), strprintf("failed to resolve: %s", ip)); return addr; } static CNetAddr ResolveIP(std::string ip) { return ResolveIP(ip.c_str()); } static CService ResolveService(const char *ip, int port = 0) { CService serv; BOOST_CHECK_MESSAGE(Lookup(ip, serv, port, false), strprintf("failed to resolve: %s:%i", ip, port)); return serv; } static CService ResolveService(std::string ip, int port = 0) { return ResolveService(ip.c_str(), port); } BOOST_FIXTURE_TEST_SUITE(addrman_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(addrman_simple) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); // Test: Does Addrman respond correctly when empty. - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddrInfo addr_null = addrman.Select(); BOOST_CHECK_EQUAL(addr_null.ToString(), "[::]:0"); // Test: Does Addrman::Add work as expected. CService addr1 = ResolveService("250.1.1.1", 8333); BOOST_CHECK(addrman.Add(CAddress(addr1, NODE_NONE), source)); - BOOST_CHECK_EQUAL(addrman.size(), 1); + BOOST_CHECK_EQUAL(addrman.size(), 1U); CAddrInfo addr_ret1 = addrman.Select(); BOOST_CHECK_EQUAL(addr_ret1.ToString(), "250.1.1.1:8333"); // Test: Does IP address deduplication work correctly. // Expected dup IP should not be added. CService addr1_dup = ResolveService("250.1.1.1", 8333); BOOST_CHECK(!addrman.Add(CAddress(addr1_dup, NODE_NONE), source)); - BOOST_CHECK_EQUAL(addrman.size(), 1); + BOOST_CHECK_EQUAL(addrman.size(), 1U); // Test: New table has one addr and we add a diff addr we should // have at least one addr. // Note that addrman's size cannot be tested reliably after insertion, as // hash collisions may occur. But we can always be sure of at least one // success. CService addr2 = ResolveService("250.1.1.2", 8333); BOOST_CHECK(addrman.Add(CAddress(addr2, NODE_NONE), source)); BOOST_CHECK(addrman.size() >= 1); // Test: AddrMan::Clear() should empty the new table. addrman.Clear(); - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddrInfo addr_null2 = addrman.Select(); BOOST_CHECK_EQUAL(addr_null2.ToString(), "[::]:0"); // Test: AddrMan::Add multiple addresses works as expected std::vector vAddr; vAddr.push_back(CAddress(ResolveService("250.1.1.3", 8333), NODE_NONE)); vAddr.push_back(CAddress(ResolveService("250.1.1.4", 8333), NODE_NONE)); BOOST_CHECK(addrman.Add(vAddr, source)); BOOST_CHECK(addrman.size() >= 1); } BOOST_AUTO_TEST_CASE(addrman_ports) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); // Test: Addr with same IP but diff port does not replace existing addr. CService addr1 = ResolveService("250.1.1.1", 8333); addrman.Add(CAddress(addr1, NODE_NONE), source); - BOOST_CHECK_EQUAL(addrman.size(), 1); + BOOST_CHECK_EQUAL(addrman.size(), 1U); CService addr1_port = ResolveService("250.1.1.1", 8334); addrman.Add(CAddress(addr1_port, NODE_NONE), source); - BOOST_CHECK_EQUAL(addrman.size(), 1); + BOOST_CHECK_EQUAL(addrman.size(), 1U); CAddrInfo addr_ret2 = addrman.Select(); BOOST_CHECK_EQUAL(addr_ret2.ToString(), "250.1.1.1:8333"); // Test: Add same IP but diff port to tried table, it doesn't get added. // Perhaps this is not ideal behavior but it is the current behavior. addrman.Good(CAddress(addr1_port, NODE_NONE)); - BOOST_CHECK_EQUAL(addrman.size(), 1); + BOOST_CHECK_EQUAL(addrman.size(), 1U); bool newOnly = true; CAddrInfo addr_ret3 = addrman.Select(newOnly); BOOST_CHECK_EQUAL(addr_ret3.ToString(), "250.1.1.1:8333"); } BOOST_AUTO_TEST_CASE(addrman_select) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); // Test: Select from new with 1 addr in new. CService addr1 = ResolveService("250.1.1.1", 8333); addrman.Add(CAddress(addr1, NODE_NONE), source); - BOOST_CHECK_EQUAL(addrman.size(), 1); + BOOST_CHECK_EQUAL(addrman.size(), 1U); bool newOnly = true; CAddrInfo addr_ret1 = addrman.Select(newOnly); BOOST_CHECK_EQUAL(addr_ret1.ToString(), "250.1.1.1:8333"); // Test: move addr to tried, select from new expected nothing returned. addrman.Good(CAddress(addr1, NODE_NONE)); - BOOST_CHECK_EQUAL(addrman.size(), 1); + BOOST_CHECK_EQUAL(addrman.size(), 1U); CAddrInfo addr_ret2 = addrman.Select(newOnly); BOOST_CHECK_EQUAL(addr_ret2.ToString(), "[::]:0"); CAddrInfo addr_ret3 = addrman.Select(); BOOST_CHECK_EQUAL(addr_ret3.ToString(), "250.1.1.1:8333"); - BOOST_CHECK_EQUAL(addrman.size(), 1); + BOOST_CHECK_EQUAL(addrman.size(), 1U); // Add three addresses to new table. CService addr2 = ResolveService("250.3.1.1", 8333); CService addr3 = ResolveService("250.3.2.2", 9999); CService addr4 = ResolveService("250.3.3.3", 9999); addrman.Add(CAddress(addr2, NODE_NONE), ResolveService("250.3.1.1", 8333)); addrman.Add(CAddress(addr3, NODE_NONE), ResolveService("250.3.1.1", 8333)); addrman.Add(CAddress(addr4, NODE_NONE), ResolveService("250.4.1.1", 8333)); // Add three addresses to tried table. CService addr5 = ResolveService("250.4.4.4", 8333); CService addr6 = ResolveService("250.4.5.5", 7777); CService addr7 = ResolveService("250.4.6.6", 8333); addrman.Add(CAddress(addr5, NODE_NONE), ResolveService("250.3.1.1", 8333)); addrman.Good(CAddress(addr5, NODE_NONE)); addrman.Add(CAddress(addr6, NODE_NONE), ResolveService("250.3.1.1", 8333)); addrman.Good(CAddress(addr6, NODE_NONE)); addrman.Add(CAddress(addr7, NODE_NONE), ResolveService("250.1.1.3", 8333)); addrman.Good(CAddress(addr7, NODE_NONE)); // Test: 6 addrs + 1 addr from last test = 7. - BOOST_CHECK_EQUAL(addrman.size(), 7); + BOOST_CHECK_EQUAL(addrman.size(), 7U); // Test: Select pulls from new and tried regardless of port number. std::set ports; for (int i = 0; i < 20; ++i) { ports.insert(addrman.Select().GetPort()); } - BOOST_CHECK_EQUAL(ports.size(), 3); + BOOST_CHECK_EQUAL(ports.size(), 3U); } BOOST_AUTO_TEST_CASE(addrman_new_collisions) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); for (unsigned int i = 1; i < 18; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); addrman.Add(CAddress(addr, NODE_NONE), source); // Test: No collision in new table yet. BOOST_CHECK_EQUAL(addrman.size(), i); } // Test: new table collision! CService addr1 = ResolveService("250.1.1.18"); addrman.Add(CAddress(addr1, NODE_NONE), source); - BOOST_CHECK_EQUAL(addrman.size(), 17); + BOOST_CHECK_EQUAL(addrman.size(), 17U); CService addr2 = ResolveService("250.1.1.19"); addrman.Add(CAddress(addr2, NODE_NONE), source); - BOOST_CHECK_EQUAL(addrman.size(), 18); + BOOST_CHECK_EQUAL(addrman.size(), 18U); } BOOST_AUTO_TEST_CASE(addrman_tried_collisions) { CAddrManTest addrman; CNetAddr source = ResolveIP("252.2.2.2"); - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); for (unsigned int i = 1; i < 80; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); addrman.Add(CAddress(addr, NODE_NONE), source); addrman.Good(CAddress(addr, NODE_NONE)); // Test: No collision in tried table yet. BOOST_CHECK_EQUAL(addrman.size(), i); } // Test: tried table collision! CService addr1 = ResolveService("250.1.1.80"); addrman.Add(CAddress(addr1, NODE_NONE), source); - BOOST_CHECK_EQUAL(addrman.size(), 79); + BOOST_CHECK_EQUAL(addrman.size(), 79U); CService addr2 = ResolveService("250.1.1.81"); addrman.Add(CAddress(addr2, NODE_NONE), source); - BOOST_CHECK_EQUAL(addrman.size(), 80); + BOOST_CHECK_EQUAL(addrman.size(), 80U); } BOOST_AUTO_TEST_CASE(addrman_find) { CAddrManTest addrman; - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.2.1", 9999), NODE_NONE); CAddress addr3 = CAddress(ResolveService("251.255.2.1", 8333), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); CNetAddr source2 = ResolveIP("250.1.2.2"); addrman.Add(addr1, source1); addrman.Add(addr2, source2); addrman.Add(addr3, source1); // Test: ensure Find returns an IP matching what we searched on. CAddrInfo *info1 = addrman.Find(addr1); BOOST_REQUIRE(info1); BOOST_CHECK_EQUAL(info1->ToString(), "250.1.2.1:8333"); // Test: Find does not discriminate by port number. CAddrInfo *info2 = addrman.Find(addr2); BOOST_REQUIRE(info2); BOOST_CHECK_EQUAL(info2->ToString(), info1->ToString()); // Test: Find returns another IP matching what we searched on. CAddrInfo *info3 = addrman.Find(addr3); BOOST_REQUIRE(info3); BOOST_CHECK_EQUAL(info3->ToString(), "251.255.2.1:8333"); } BOOST_AUTO_TEST_CASE(addrman_create) { CAddrManTest addrman; - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); int nId; CAddrInfo *pinfo = addrman.Create(addr1, source1, &nId); // Test: The result should be the same as the input addr. BOOST_CHECK_EQUAL(pinfo->ToString(), "250.1.2.1:8333"); CAddrInfo *info2 = addrman.Find(addr1); BOOST_CHECK_EQUAL(info2->ToString(), "250.1.2.1:8333"); } BOOST_AUTO_TEST_CASE(addrman_delete) { CAddrManTest addrman; - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); int nId; addrman.Create(addr1, source1, &nId); // Test: Delete should actually delete the addr. - BOOST_CHECK_EQUAL(addrman.size(), 1); + BOOST_CHECK_EQUAL(addrman.size(), 1U); addrman.Delete(nId); - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); CAddrInfo *info2 = addrman.Find(addr1); BOOST_CHECK(info2 == nullptr); } BOOST_AUTO_TEST_CASE(addrman_getaddr) { CAddrManTest addrman; // Test: Sanity check, GetAddr should never return anything if addrman // is empty. - BOOST_CHECK_EQUAL(addrman.size(), 0); + BOOST_CHECK_EQUAL(addrman.size(), 0U); std::vector vAddr1 = addrman.GetAddr(); - BOOST_CHECK_EQUAL(vAddr1.size(), 0); + BOOST_CHECK_EQUAL(vAddr1.size(), 0U); CAddress addr1 = CAddress(ResolveService("250.250.2.1", 8333), NODE_NONE); addr1.nTime = GetAdjustedTime(); // Set time so isTerrible = false CAddress addr2 = CAddress(ResolveService("250.251.2.2", 9999), NODE_NONE); addr2.nTime = GetAdjustedTime(); CAddress addr3 = CAddress(ResolveService("251.252.2.3", 8333), NODE_NONE); addr3.nTime = GetAdjustedTime(); CAddress addr4 = CAddress(ResolveService("252.253.3.4", 8333), NODE_NONE); addr4.nTime = GetAdjustedTime(); CAddress addr5 = CAddress(ResolveService("252.254.4.5", 8333), NODE_NONE); addr5.nTime = GetAdjustedTime(); CNetAddr source1 = ResolveIP("250.1.2.1"); CNetAddr source2 = ResolveIP("250.2.3.3"); // Test: Ensure GetAddr works with new addresses. addrman.Add(addr1, source1); addrman.Add(addr2, source2); addrman.Add(addr3, source1); addrman.Add(addr4, source2); addrman.Add(addr5, source1); // GetAddr returns 23% of addresses, 23% of 5 is 1 rounded down. - BOOST_CHECK_EQUAL(addrman.GetAddr().size(), 1); + BOOST_CHECK_EQUAL(addrman.GetAddr().size(), 1U); // Test: Ensure GetAddr works with new and tried addresses. addrman.Good(CAddress(addr1, NODE_NONE)); addrman.Good(CAddress(addr2, NODE_NONE)); - BOOST_CHECK_EQUAL(addrman.GetAddr().size(), 1); + BOOST_CHECK_EQUAL(addrman.GetAddr().size(), 1U); // Test: Ensure GetAddr still returns 23% when addrman has many addrs. for (unsigned int i = 1; i < (8 * 256); i++) { int octet1 = i % 256; int octet2 = i >> 8 % 256; std::string strAddr = std::to_string(octet1) + "." + std::to_string(octet2) + ".1.23"; CAddress addr = CAddress(ResolveService(strAddr), NODE_NONE); // Ensure that for all addrs in addrman, isTerrible == false. addr.nTime = GetAdjustedTime(); addrman.Add(addr, ResolveIP(strAddr)); if (i % 8 == 0) addrman.Good(addr); } std::vector vAddr = addrman.GetAddr(); size_t percent23 = (addrman.size() * 23) / 100; BOOST_CHECK_EQUAL(vAddr.size(), percent23); - BOOST_CHECK_EQUAL(vAddr.size(), 461); + BOOST_CHECK_EQUAL(vAddr.size(), 461U); // (Addrman.size() < number of addresses added) due to address collisions. - BOOST_CHECK_EQUAL(addrman.size(), 2006); + BOOST_CHECK_EQUAL(addrman.size(), 2006U); } BOOST_AUTO_TEST_CASE(caddrinfo_get_tried_bucket) { CAddrManTest addrman; CAddress addr1 = CAddress(ResolveService("250.1.1.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.1.1", 9999), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.1.1"); CAddrInfo info1 = CAddrInfo(addr1, source1); uint256 nKey1 = (uint256)(CHashWriter(SER_GETHASH, 0) << 1).GetHash(); uint256 nKey2 = (uint256)(CHashWriter(SER_GETHASH, 0) << 2).GetHash(); BOOST_CHECK_EQUAL(info1.GetTriedBucket(nKey1), 40); // Test: Make sure key actually randomizes bucket placement. A fail on // this test could be a security issue. BOOST_CHECK(info1.GetTriedBucket(nKey1) != info1.GetTriedBucket(nKey2)); // Test: Two addresses with same IP but different ports can map to // different buckets because they have different keys. CAddrInfo info2 = CAddrInfo(addr2, source1); BOOST_CHECK(info1.GetKey() != info2.GetKey()); BOOST_CHECK(info1.GetTriedBucket(nKey1) != info2.GetTriedBucket(nKey1)); std::set buckets; for (int i = 0; i < 255; i++) { CAddrInfo infoi = CAddrInfo( CAddress(ResolveService("250.1.1." + std::to_string(i)), NODE_NONE), ResolveIP("250.1.1." + std::to_string(i))); int bucket = infoi.GetTriedBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the same group (\16 prefix for IPv4) should // never get more than 8 buckets - BOOST_CHECK_EQUAL(buckets.size(), 8); + BOOST_CHECK_EQUAL(buckets.size(), 8U); buckets.clear(); for (int j = 0; j < 255; j++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService("250." + std::to_string(j) + ".1.1"), NODE_NONE), ResolveIP("250." + std::to_string(j) + ".1.1")); int bucket = infoj.GetTriedBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the different groups should map to more than // 8 buckets. - BOOST_CHECK_EQUAL(buckets.size(), 160); + BOOST_CHECK_EQUAL(buckets.size(), 160U); } BOOST_AUTO_TEST_CASE(caddrinfo_get_new_bucket) { CAddrManTest addrman; CAddress addr1 = CAddress(ResolveService("250.1.2.1", 8333), NODE_NONE); CAddress addr2 = CAddress(ResolveService("250.1.2.1", 9999), NODE_NONE); CNetAddr source1 = ResolveIP("250.1.2.1"); CAddrInfo info1 = CAddrInfo(addr1, source1); uint256 nKey1 = (uint256)(CHashWriter(SER_GETHASH, 0) << 1).GetHash(); uint256 nKey2 = (uint256)(CHashWriter(SER_GETHASH, 0) << 2).GetHash(); // Test: Make sure the buckets are what we expect BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1), 786); BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1, source1), 786); // Test: Make sure key actually randomizes bucket placement. A fail on // this test could be a security issue. BOOST_CHECK(info1.GetNewBucket(nKey1) != info1.GetNewBucket(nKey2)); // Test: Ports should not effect bucket placement in the addr CAddrInfo info2 = CAddrInfo(addr2, source1); BOOST_CHECK(info1.GetKey() != info2.GetKey()); BOOST_CHECK_EQUAL(info1.GetNewBucket(nKey1), info2.GetNewBucket(nKey1)); std::set buckets; for (int i = 0; i < 255; i++) { CAddrInfo infoi = CAddrInfo( CAddress(ResolveService("250.1.1." + std::to_string(i)), NODE_NONE), ResolveIP("250.1.1." + std::to_string(i))); int bucket = infoi.GetNewBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the same group (\16 prefix for IPv4) should // always map to the same bucket. - BOOST_CHECK_EQUAL(buckets.size(), 1); + BOOST_CHECK_EQUAL(buckets.size(), 1U); buckets.clear(); for (int j = 0; j < 4 * 255; j++) { CAddrInfo infoj = CAddrInfo( CAddress(ResolveService(std::to_string(250 + (j / 255)) + "." + std::to_string(j % 256) + ".1.1"), NODE_NONE), ResolveIP("251.4.1.1")); int bucket = infoj.GetNewBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the same source groups should map to no more // than 64 buckets. BOOST_CHECK(buckets.size() <= 64); buckets.clear(); for (int p = 0; p < 255; p++) { CAddrInfo infoj = CAddrInfo(CAddress(ResolveService("250.1.1.1"), NODE_NONE), ResolveIP("250." + std::to_string(p) + ".1.1")); int bucket = infoj.GetNewBucket(nKey1); buckets.insert(bucket); } // Test: IP addresses in the different source groups should map to more // than 64 buckets. BOOST_CHECK(buckets.size() > 64); } BOOST_AUTO_TEST_CASE(addrman_selecttriedcollision) { CAddrManTest addrman; BOOST_CHECK(addrman.size() == 0); // Empty addrman should return blank addrman info. BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // Add twenty two addresses. CNetAddr source = ResolveIP("252.2.2.2"); for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); addrman.Add(CAddress(addr, NODE_NONE), source); addrman.Good(addr); // No collisions yet. BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Ensure Good handles duplicates well. for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); addrman.Good(addr); BOOST_CHECK(addrman.size() == 22); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } } BOOST_AUTO_TEST_CASE(addrman_noevict) { CAddrManTest addrman; // Add twenty two addresses. CNetAddr source = ResolveIP("252.2.2.2"); for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); addrman.Add(CAddress(addr, NODE_NONE), source); addrman.Good(addr); // No collision yet. BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Collision between 23 and 19. CService addr23 = ResolveService("250.1.1.23"); addrman.Add(CAddress(addr23, NODE_NONE), source); addrman.Good(addr23); BOOST_CHECK(addrman.size() == 23); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "250.1.1.19:0"); // 23 should be discarded and 19 not evicted. addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // Lets create two collisions. for (unsigned int i = 24; i < 33; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); addrman.Add(CAddress(addr, NODE_NONE), source); addrman.Good(addr); BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Cause a collision. CService addr33 = ResolveService("250.1.1.33"); addrman.Add(CAddress(addr33, NODE_NONE), source); addrman.Good(addr33); BOOST_CHECK(addrman.size() == 33); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "250.1.1.27:0"); // Cause a second collision. addrman.Add(CAddress(addr23, NODE_NONE), source); addrman.Good(addr23); BOOST_CHECK(addrman.size() == 33); BOOST_CHECK(addrman.SelectTriedCollision().ToString() != "[::]:0"); addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } BOOST_AUTO_TEST_CASE(addrman_evictionworks) { CAddrManTest addrman; BOOST_CHECK(addrman.size() == 0); // Empty addrman should return blank addrman info. BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // Add twenty two addresses. CNetAddr source = ResolveIP("252.2.2.2"); for (unsigned int i = 1; i < 23; i++) { CService addr = ResolveService("250.1.1." + std::to_string(i)); addrman.Add(CAddress(addr, NODE_NONE), source); addrman.Good(addr); // No collision yet. BOOST_CHECK(addrman.size() == i); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } // Collision between 23 and 19. CService addr = ResolveService("250.1.1.23"); addrman.Add(CAddress(addr, NODE_NONE), source); addrman.Good(addr); BOOST_CHECK(addrman.size() == 23); CAddrInfo info = addrman.SelectTriedCollision(); BOOST_CHECK(info.ToString() == "250.1.1.19:0"); // Ensure test of address fails, so that it is evicted. addrman.SimConnFail(info); // Should swap 23 for 19. addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // If 23 was swapped for 19, then this should cause no collisions. addrman.Add(CAddress(addr, NODE_NONE), source); addrman.Good(addr); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); // If we insert 19 is should collide with 23. CService addr19 = ResolveService("250.1.1.19"); addrman.Add(CAddress(addr19, NODE_NONE), source); addrman.Good(addr19); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "250.1.1.23:0"); addrman.ResolveCollisions(); BOOST_CHECK(addrman.SelectTriedCollision().ToString() == "[::]:0"); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/allocator_tests.cpp b/src/test/allocator_tests.cpp index 6ade05b8d..604f25fef 100644 --- a/src/test/allocator_tests.cpp +++ b/src/test/allocator_tests.cpp @@ -1,232 +1,232 @@ // Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include BOOST_FIXTURE_TEST_SUITE(allocator_tests, BasicTestingSetup) BOOST_AUTO_TEST_CASE(arena_tests) { // Fake memory base address for testing // without actually using memory. void *synth_base = reinterpret_cast(0x08000000); const size_t synth_size = 1024 * 1024; Arena b(synth_base, synth_size, 16); void *chunk = b.alloc(1000); #ifdef ARENA_DEBUG b.walk(); #endif BOOST_CHECK(chunk != nullptr); // Aligned to 16 BOOST_CHECK(b.stats().used == 1008); // Nothing has disappeared? BOOST_CHECK(b.stats().total == synth_size); b.free(chunk); #ifdef ARENA_DEBUG b.walk(); #endif BOOST_CHECK(b.stats().used == 0); BOOST_CHECK(b.stats().free == synth_size); try { // Test exception on double-free b.free(chunk); BOOST_CHECK(0); } catch (std::runtime_error &) { } void *a0 = b.alloc(128); void *a1 = b.alloc(256); void *a2 = b.alloc(512); BOOST_CHECK(b.stats().used == 896); BOOST_CHECK(b.stats().total == synth_size); #ifdef ARENA_DEBUG b.walk(); #endif b.free(a0); #ifdef ARENA_DEBUG b.walk(); #endif BOOST_CHECK(b.stats().used == 768); b.free(a1); BOOST_CHECK(b.stats().used == 512); void *a3 = b.alloc(128); #ifdef ARENA_DEBUG b.walk(); #endif BOOST_CHECK(b.stats().used == 640); b.free(a2); BOOST_CHECK(b.stats().used == 128); b.free(a3); BOOST_CHECK(b.stats().used == 0); - BOOST_CHECK_EQUAL(b.stats().chunks_used, 0); + BOOST_CHECK_EQUAL(b.stats().chunks_used, 0U); BOOST_CHECK(b.stats().total == synth_size); BOOST_CHECK(b.stats().free == synth_size); - BOOST_CHECK_EQUAL(b.stats().chunks_free, 1); + BOOST_CHECK_EQUAL(b.stats().chunks_free, 1U); std::vector addr; // allocating 0 always returns nullptr BOOST_CHECK(b.alloc(0) == nullptr); #ifdef ARENA_DEBUG b.walk(); #endif // Sweeping allocate all memory for (int x = 0; x < 1024; ++x) addr.push_back(b.alloc(1024)); BOOST_CHECK(b.stats().free == 0); // memory is full, this must return nullptr BOOST_CHECK(b.alloc(1024) == nullptr); BOOST_CHECK(b.alloc(0) == nullptr); for (int x = 0; x < 1024; ++x) b.free(addr[x]); addr.clear(); BOOST_CHECK(b.stats().total == synth_size); BOOST_CHECK(b.stats().free == synth_size); // Now in the other direction... for (int x = 0; x < 1024; ++x) addr.push_back(b.alloc(1024)); for (int x = 0; x < 1024; ++x) b.free(addr[1023 - x]); addr.clear(); // Now allocate in smaller unequal chunks, then deallocate haphazardly // Not all the chunks will succeed allocating, but freeing nullptr is // allowed so that is no problem. for (int x = 0; x < 2048; ++x) addr.push_back(b.alloc(x + 1)); for (int x = 0; x < 2048; ++x) b.free(addr[((x * 23) % 2048) ^ 242]); addr.clear(); // Go entirely wild: free and alloc interleaved, generate targets and sizes // using pseudo-randomness. for (int x = 0; x < 2048; ++x) addr.push_back(0); uint32_t s = 0x12345678; for (int x = 0; x < 5000; ++x) { int idx = s & (addr.size() - 1); if (s & 0x80000000) { b.free(addr[idx]); addr[idx] = 0; } else if (!addr[idx]) { addr[idx] = b.alloc((s >> 16) & 2047); } bool lsb = s & 1; s >>= 1; // LFSR period 0xf7ffffe0 if (lsb) s ^= 0xf00f00f0; } for (void *ptr : addr) b.free(ptr); addr.clear(); BOOST_CHECK(b.stats().total == synth_size); BOOST_CHECK(b.stats().free == synth_size); } /** Mock LockedPageAllocator for testing */ class TestLockedPageAllocator : public LockedPageAllocator { public: TestLockedPageAllocator(int count_in, int lockedcount_in) : count(count_in), lockedcount(lockedcount_in) {} void *AllocateLocked(size_t len, bool *lockingSuccess) override { *lockingSuccess = false; if (count > 0) { --count; if (lockedcount > 0) { --lockedcount; *lockingSuccess = true; } // Fake address, do not actually use this memory return reinterpret_cast(0x08000000 + (count << 24)); } return 0; } void FreeLocked(void *addr, size_t len) override {} size_t GetLimit() override { return std::numeric_limits::max(); } private: int count; int lockedcount; }; BOOST_AUTO_TEST_CASE(lockedpool_tests_mock) { // Test over three virtual arenas, of which one will succeed being locked std::unique_ptr x(new TestLockedPageAllocator(3, 1)); LockedPool pool(std::move(x)); BOOST_CHECK(pool.stats().total == 0); BOOST_CHECK(pool.stats().locked == 0); // Ensure unreasonable requests are refused without allocating anything void *invalid_toosmall = pool.alloc(0); BOOST_CHECK(invalid_toosmall == nullptr); BOOST_CHECK(pool.stats().used == 0); BOOST_CHECK(pool.stats().free == 0); void *invalid_toobig = pool.alloc(LockedPool::ARENA_SIZE + 1); BOOST_CHECK(invalid_toobig == nullptr); BOOST_CHECK(pool.stats().used == 0); BOOST_CHECK(pool.stats().free == 0); void *a0 = pool.alloc(LockedPool::ARENA_SIZE / 2); BOOST_CHECK(a0); BOOST_CHECK(pool.stats().locked == LockedPool::ARENA_SIZE); void *a1 = pool.alloc(LockedPool::ARENA_SIZE / 2); BOOST_CHECK(a1); void *a2 = pool.alloc(LockedPool::ARENA_SIZE / 2); BOOST_CHECK(a2); void *a3 = pool.alloc(LockedPool::ARENA_SIZE / 2); BOOST_CHECK(a3); void *a4 = pool.alloc(LockedPool::ARENA_SIZE / 2); BOOST_CHECK(a4); void *a5 = pool.alloc(LockedPool::ARENA_SIZE / 2); BOOST_CHECK(a5); // We've passed a count of three arenas, so this allocation should fail void *a6 = pool.alloc(16); BOOST_CHECK(!a6); pool.free(a0); pool.free(a2); pool.free(a4); pool.free(a1); pool.free(a3); pool.free(a5); BOOST_CHECK(pool.stats().total == 3 * LockedPool::ARENA_SIZE); BOOST_CHECK(pool.stats().locked == LockedPool::ARENA_SIZE); BOOST_CHECK(pool.stats().used == 0); } // These tests used the live LockedPoolManager object, this is also used by // other tests so the conditions are somewhat less controllable and thus the // tests are somewhat more error-prone. BOOST_AUTO_TEST_CASE(lockedpool_tests_live) { LockedPoolManager &pool = LockedPoolManager::Instance(); LockedPool::Stats initial = pool.stats(); void *a0 = pool.alloc(16); BOOST_CHECK(a0); // Test reading and writing the allocated memory *((uint32_t *)a0) = 0x1234; BOOST_CHECK(*((uint32_t *)a0) == 0x1234); pool.free(a0); try { // Test exception on double-free pool.free(a0); BOOST_CHECK(0); } catch (std::runtime_error &) { } // If more than one new arena was allocated for the above tests, something // is wrong BOOST_CHECK(pool.stats().total <= (initial.total + LockedPool::ARENA_SIZE)); // Usage must be back to where it started BOOST_CHECK(pool.stats().used == initial.used); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/test/coins_tests.cpp b/src/test/coins_tests.cpp index ab5f0a5b4..eddc209f7 100644 --- a/src/test/coins_tests.cpp +++ b/src/test/coins_tests.cpp @@ -1,914 +1,914 @@ // Copyright (c) 2014-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include