diff --git a/src/avalanche/processor.h b/src/avalanche/processor.h index 000319a42..e8c007156 100644 --- a/src/avalanche/processor.h +++ b/src/avalanche/processor.h @@ -1,438 +1,460 @@ // Copyright (c) 2018-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_AVALANCHE_PROCESSOR_H #define BITCOIN_AVALANCHE_PROCESSOR_H #include <avalanche/config.h> #include <avalanche/node.h> #include <avalanche/proof.h> #include <avalanche/proofcomparator.h> #include <avalanche/protocol.h> #include <avalanche/voterecord.h> // For AVALANCHE_MAX_INFLIGHT_POLL #include <blockindex.h> #include <blockindexcomparators.h> #include <bloom.h> #include <eventloop.h> #include <interfaces/chain.h> #include <interfaces/handler.h> #include <key.h> #include <net.h> #include <primitives/transaction.h> #include <rwcollection.h> #include <util/variant.h> #include <boost/multi_index/composite_key.hpp> #include <boost/multi_index/hashed_index.hpp> #include <boost/multi_index/member.hpp> #include <boost/multi_index/ordered_index.hpp> #include <boost/multi_index_container.hpp> #include <atomic> #include <chrono> #include <cstdint> #include <memory> #include <unordered_map> #include <variant> #include <vector> class ArgsManager; class CConnman; class CNode; class CScheduler; class Config; class PeerManager; struct bilingual_str; /** * Maximum item that can be polled at once. */ static constexpr size_t AVALANCHE_MAX_ELEMENT_POLL = 16; /** * How long before we consider that a query timed out. */ static constexpr std::chrono::milliseconds AVALANCHE_DEFAULT_QUERY_TIMEOUT{ 10000}; /** * The size of the finalized items filter. It should be large enough that an * influx of inventories cannot roll any particular item out of the filter on * demand. For example, transactions will roll blocks out of the filter. * Tracking many more items than can possibly be polled at once ensures that * recently polled items will come to a stable state on the network before * rolling out of the filter. */ static constexpr uint32_t AVALANCHE_FINALIZED_ITEMS_FILTER_NUM_ELEMENTS = AVALANCHE_MAX_INFLIGHT_POLL * 20; namespace avalanche { class Delegation; class PeerManager; class ProofRegistrationState; struct VoteRecord; enum struct VoteStatus : uint8_t { Invalid, Rejected, Accepted, Finalized, Stale, }; using AnyVoteItem = std::variant<const ProofRef, const CBlockIndex *, const CTransactionRef>; class VoteItemUpdate { AnyVoteItem item; VoteStatus status; public: VoteItemUpdate(AnyVoteItem itemIn, VoteStatus statusIn) : item(std::move(itemIn)), status(statusIn) {} const VoteStatus &getStatus() const { return status; } const AnyVoteItem &getVoteItem() const { return item; } }; class VoteMapComparator { const CTxMemPool *mempool{nullptr}; public: VoteMapComparator() {} VoteMapComparator(const CTxMemPool *mempoolIn) : mempool(mempoolIn) {} bool operator()(const AnyVoteItem &lhs, const AnyVoteItem &rhs) const { // If the variants are of different types, sort them by variant index if (lhs.index() != rhs.index()) { return lhs.index() < rhs.index(); } return std::visit( variant::overloaded{ [](const ProofRef &lhs, const ProofRef &rhs) { return ProofComparatorByScore()(lhs, rhs); }, [](const CBlockIndex *lhs, const CBlockIndex *rhs) { // Reverse ordering so we get the highest work first return CBlockIndexWorkComparator()(rhs, lhs); }, [this](const CTransactionRef &lhs, const CTransactionRef &rhs) { const TxId &lhsTxId = lhs->GetId(); const TxId &rhsTxId = rhs->GetId(); // If there is no mempool, sort by TxId. Note that polling // for txs is currently not supported if there is no mempool // so this is only a safety net. if (!mempool) { return lhsTxId < rhsTxId; } LOCK(mempool->cs); auto lhsOptIter = mempool->GetIter(lhsTxId); auto rhsOptIter = mempool->GetIter(rhsTxId); // If the transactions are not in the mempool, tie by TxId if (!lhsOptIter && !rhsOptIter) { return lhsTxId < rhsTxId; } // If only one is in the mempool, pick that one if (lhsOptIter.has_value() != rhsOptIter.has_value()) { return !!lhsOptIter; } // Both are in the mempool, select the highest fee rate // including the fee deltas return CompareTxMemPoolEntryByModifiedFeeRate{}( **lhsOptIter, **rhsOptIter); }, [](const auto &lhs, const auto &rhs) { // This serves 2 purposes: // - This makes sure that we don't forget to implement a // comparison case when adding a new variant type. // - This avoids having to write all the cross type cases // which are already handled by the index sort above. // Because the compiler has no way to determine that, we // cannot use static assertions here without having to // define the whole type matrix also. assert(false); // Return any bool, it's only there to make the compiler // happy. return false; }, }, lhs, rhs); } }; using VoteMap = std::map<AnyVoteItem, VoteRecord, VoteMapComparator>; struct query_timeout {}; namespace { struct AvalancheTest; } // FIXME Implement a proper notification handler for node disconnection instead // of implementing the whole NetEventsInterface for a single interesting event. class Processor final : public NetEventsInterface { Config avaconfig; CConnman *connman; ChainstateManager &chainman; CTxMemPool *mempool; /** * Items to run avalanche on. */ RWCollection<VoteMap> voteRecords; /** * Keep track of peers and queries sent. */ std::atomic<uint64_t> round; /** * Keep track of the peers and associated infos. */ mutable Mutex cs_peerManager; std::unique_ptr<PeerManager> peerManager GUARDED_BY(cs_peerManager); struct Query { NodeId nodeid; uint64_t round; SteadyMilliseconds timeout; /** * We declare this as mutable so it can be modified in the multi_index. * This is ok because we do not use this field to index in anyway. * * /!\ Do not use any mutable field as index. */ mutable std::vector<CInv> invs; }; using QuerySet = boost::multi_index_container< Query, boost::multi_index::indexed_by< // index by nodeid/round boost::multi_index::hashed_unique<boost::multi_index::composite_key< Query, boost::multi_index::member<Query, NodeId, &Query::nodeid>, boost::multi_index::member<Query, uint64_t, &Query::round>>>, // sorted by timeout boost::multi_index::ordered_non_unique< boost::multi_index::tag<query_timeout>, boost::multi_index::member<Query, SteadyMilliseconds, &Query::timeout>>>>; RWCollection<QuerySet> queries; /** Data required to participate. */ struct PeerData; std::unique_ptr<PeerData> peerData; CKey sessionKey; /** Event loop machinery. */ EventLoop eventLoop; /** * Quorum management. */ uint32_t minQuorumScore; double minQuorumConnectedScoreRatio; std::atomic<bool> quorumIsEstablished{false}; std::atomic<bool> m_canShareLocalProof{false}; int64_t minAvaproofsNodeCount; std::atomic<int64_t> avaproofsNodeCounter{0}; /** Voting parameters. */ const uint32_t staleVoteThreshold; const uint32_t staleVoteFactor; /** Registered interfaces::Chain::Notifications handler. */ class NotificationsHandler; std::unique_ptr<interfaces::Handler> chainNotificationsHandler; mutable Mutex cs_finalizationTip; const CBlockIndex *finalizationTip GUARDED_BY(cs_finalizationTip){nullptr}; mutable Mutex cs_delayedAvahelloNodeIds; /** * A list of the nodes that did not get our proof announced via avahello * yet because we had no inbound connection. */ std::unordered_set<NodeId> delayedAvahelloNodeIds GUARDED_BY(cs_delayedAvahelloNodeIds); struct StakingReward { int blockheight; CScript winner; std::vector<CScript> acceptableWinners; }; mutable Mutex cs_stakingRewards; std::unordered_map<BlockHash, StakingReward, SaltedUint256Hasher> stakingRewards GUARDED_BY(cs_stakingRewards); Processor(Config avaconfig, interfaces::Chain &chain, CConnman *connmanIn, ChainstateManager &chainman, CTxMemPool *mempoolIn, CScheduler &scheduler, std::unique_ptr<PeerData> peerDataIn, CKey sessionKeyIn, uint32_t minQuorumTotalScoreIn, double minQuorumConnectedScoreRatioIn, int64_t minAvaproofsNodeCountIn, uint32_t staleVoteThresholdIn, uint32_t staleVoteFactorIn, Amount stakeUtxoDustThresholdIn); public: ~Processor(); static std::unique_ptr<Processor> MakeProcessor(const ArgsManager &argsman, interfaces::Chain &chain, CConnman *connman, ChainstateManager &chainman, CTxMemPool *mempoolIn, CScheduler &scheduler, bilingual_str &error); - bool addToReconcile(const AnyVoteItem &item); + bool addToReconcile(const AnyVoteItem &item) + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_finalizedItems); /** * Wrapper around the addToReconcile for proofs that adds back the * finalization flag to the peer if it is not polled due to being recently * finalized. */ - bool reconcileOrFinalize(const ProofRef &proof); + bool reconcileOrFinalize(const ProofRef &proof) + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_finalizedItems); bool isAccepted(const AnyVoteItem &item) const; int getConfidence(const AnyVoteItem &item) const; - bool isRecentlyFinalized(const uint256 &itemId) const; - void clearFinalizedItems(); + bool isRecentlyFinalized(const uint256 &itemId) const + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_finalizedItems); + void clearFinalizedItems() EXCLUSIVE_LOCKS_REQUIRED(!cs_finalizedItems); // TODO: Refactor the API to remove the dependency on avalanche/protocol.h void sendResponse(CNode *pfrom, Response response) const; bool registerVotes(NodeId nodeid, const Response &response, std::vector<VoteItemUpdate> &updates, int &banscore, - std::string &error); + std::string &error) + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_finalizedItems, + !cs_invalidatedBlocks, !cs_finalizationTip); - template <typename Callable> auto withPeerManager(Callable &&func) const { + template <typename Callable> + auto withPeerManager(Callable &&func) const + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager) { LOCK(cs_peerManager); return func(*peerManager); } CPubKey getSessionPubKey() const; /** * @brief Send a avahello message * * @param pfrom The node to send the message to * @return True if a non-null delegation has been announced */ - bool sendHello(CNode *pfrom); - void sendDelayedAvahello(); + bool sendHello(CNode *pfrom) + EXCLUSIVE_LOCKS_REQUIRED(!cs_delayedAvahelloNodeIds); + void sendDelayedAvahello() + EXCLUSIVE_LOCKS_REQUIRED(!cs_delayedAvahelloNodeIds); ProofRef getLocalProof() const; ProofRegistrationState getLocalProofRegistrationState() const; /* * Return whether the avalanche service flag should be set. */ bool isAvalancheServiceAvailable() { return !!peerData; } bool startEventLoop(CScheduler &scheduler); bool stopEventLoop(); - void avaproofsSent(NodeId nodeid) LOCKS_EXCLUDED(cs_main); + void avaproofsSent(NodeId nodeid) LOCKS_EXCLUDED(cs_main) + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager); int64_t getAvaproofsNodeCounter() const { return avaproofsNodeCounter.load(); } - bool isQuorumEstablished() LOCKS_EXCLUDED(cs_main); + bool isQuorumEstablished() LOCKS_EXCLUDED(cs_main) + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_stakingRewards); bool canShareLocalProof(); - bool computeStakingReward(const CBlockIndex *pindex); - bool eraseStakingRewardWinner(const BlockHash &prevBlockHash); - void cleanupStakingRewards(const int minHeight); + bool computeStakingReward(const CBlockIndex *pindex) + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_stakingRewards); + bool eraseStakingRewardWinner(const BlockHash &prevBlockHash) + EXCLUSIVE_LOCKS_REQUIRED(!cs_stakingRewards); + void cleanupStakingRewards(const int minHeight) + EXCLUSIVE_LOCKS_REQUIRED(!cs_stakingRewards); bool getStakingRewardWinner(const BlockHash &prevBlockHash, - CScript &winner) const; - bool setStakingRewardWinner(const CBlockIndex *pprev, - const CScript &winner); + CScript &winner) const + EXCLUSIVE_LOCKS_REQUIRED(!cs_stakingRewards); + bool setStakingRewardWinner(const CBlockIndex *pprev, const CScript &winner) + EXCLUSIVE_LOCKS_REQUIRED(!cs_stakingRewards); // Implement NetEventInterface. Only FinalizeNode is of interest. void InitializeNode(const ::Config &config, CNode &pnode, ServiceFlags our_services) override {} bool ProcessMessages(const ::Config &config, CNode *pnode, std::atomic<bool> &interrupt) override { return false; } bool SendMessages(const ::Config &config, CNode *pnode) override { return false; } /** Handle removal of a node */ - void FinalizeNode(const ::Config &config, const CNode &node) override - LOCKS_EXCLUDED(cs_main); + void FinalizeNode(const ::Config &config, + const CNode &node) override LOCKS_EXCLUDED(cs_main) + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_delayedAvahelloNodeIds); private: - void updatedBlockTip(); - void runEventLoop(); - void clearTimedoutRequests(); - std::vector<CInv> getInvsForNextPoll(bool forPoll = true); + void updatedBlockTip() + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_finalizedItems); + void runEventLoop() + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_stakingRewards, + !cs_finalizedItems); + void clearTimedoutRequests() EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager); + std::vector<CInv> getInvsForNextPoll(bool forPoll = true) + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_finalizedItems); bool sendHelloInternal(CNode *pfrom) EXCLUSIVE_LOCKS_REQUIRED(cs_delayedAvahelloNodeIds); - AnyVoteItem getVoteItemFromInv(const CInv &inv) const; + AnyVoteItem getVoteItemFromInv(const CInv &inv) const + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager); /** * We don't need many blocks but a low false positive rate. * In the event of a false positive the node might skip polling this block. * Such a block will not get marked as finalized until it is reconsidered * for polling (if the filter changed its state) or another block is found. */ mutable Mutex cs_invalidatedBlocks; CRollingBloomFilter invalidatedBlocks GUARDED_BY(cs_invalidatedBlocks){ 100, 0.0000001}; /** * Rolling bloom filter to track recently finalized inventory items of any * type. Once placed in this filter, those items will not be polled again * unless they roll out. Note that this one filter tracks all types so * blocks may be rolled out by transaction activity for example. * * We want a low false positive rate to prevent accidentally not polling * for an item when it is first seen. */ mutable Mutex cs_finalizedItems; CRollingBloomFilter finalizedItems GUARDED_BY(cs_finalizedItems){ AVALANCHE_FINALIZED_ITEMS_FILTER_NUM_ELEMENTS, 0.0000001}; struct IsWorthPolling { const Processor &processor; IsWorthPolling(const Processor &_processor) : processor(_processor){}; bool operator()(const CBlockIndex *pindex) const LOCKS_EXCLUDED(cs_main); bool operator()(const ProofRef &proof) const LOCKS_EXCLUDED(cs_peerManager); bool operator()(const CTransactionRef &tx) const; }; - bool isWorthPolling(const AnyVoteItem &item) const; + bool isWorthPolling(const AnyVoteItem &item) const + EXCLUSIVE_LOCKS_REQUIRED(!cs_peerManager, !cs_finalizedItems); struct GetLocalAcceptance { const Processor &processor; GetLocalAcceptance(const Processor &_processor) : processor(_processor){}; bool operator()(const CBlockIndex *pindex) const LOCKS_EXCLUDED(cs_main); bool operator()(const ProofRef &proof) const LOCKS_EXCLUDED(cs_peerManager); bool operator()(const CTransactionRef &tx) const; }; bool getLocalAcceptance(const AnyVoteItem &item) const { return std::visit(GetLocalAcceptance(*this), item); } friend struct ::avalanche::AvalancheTest; }; } // namespace avalanche #endif // BITCOIN_AVALANCHE_PROCESSOR_H diff --git a/src/eventloop.h b/src/eventloop.h index 1faaacc0b..ca73fdb1f 100644 --- a/src/eventloop.h +++ b/src/eventloop.h @@ -1,38 +1,40 @@ // Copyright (c) 2020 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_EVENTLOOP_H #define BITCOIN_EVENTLOOP_H #include <sync.h> +#include <threadsafety.h> #include <atomic> #include <chrono> #include <condition_variable> #include <functional> class CScheduler; struct EventLoop { public: EventLoop() {} ~EventLoop(); bool startEventLoop(CScheduler &scheduler, std::function<void()> runEventLoop, - std::chrono::milliseconds delta); - bool stopEventLoop(); + std::chrono::milliseconds delta) + EXCLUSIVE_LOCKS_REQUIRED(!cs_running); + bool stopEventLoop() EXCLUSIVE_LOCKS_REQUIRED(!cs_running); private: /** * Start stop machinery. */ std::atomic<bool> stopRequest{false}; bool running GUARDED_BY(cs_running) = false; Mutex cs_running; std::condition_variable cond_running; }; #endif // BITCOIN_EVENTLOOP_H diff --git a/src/net_processing.cpp b/src/net_processing.cpp index ebf5f5b77..a84d06665 100644 --- a/src/net_processing.cpp +++ b/src/net_processing.cpp @@ -1,7638 +1,7640 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <net_processing.h> #include <addrman.h> #include <avalanche/avalanche.h> #include <avalanche/compactproofs.h> #include <avalanche/peermanager.h> #include <avalanche/processor.h> #include <avalanche/proof.h> #include <avalanche/statistics.h> #include <avalanche/validation.h> #include <banman.h> #include <blockencodings.h> #include <blockfilter.h> #include <blockvalidity.h> #include <chain.h> #include <chainparams.h> #include <config.h> #include <consensus/amount.h> #include <consensus/validation.h> #include <hash.h> #include <index/blockfilterindex.h> #include <invrequest.h> #include <merkleblock.h> #include <netbase.h> #include <netmessagemaker.h> #include <node/blockstorage.h> #include <policy/fees.h> #include <policy/policy.h> #include <primitives/block.h> #include <primitives/transaction.h> #include <random.h> #include <reverse_iterator.h> #include <scheduler.h> #include <streams.h> #include <tinyformat.h> #include <txmempool.h> #include <txorphanage.h> #include <util/check.h> // For NDEBUG compile time check #include <util/strencodings.h> #include <util/system.h> #include <util/trace.h> #include <validation.h> #include <algorithm> #include <atomic> #include <chrono> #include <functional> #include <future> #include <memory> #include <typeinfo> using node::fImporting; using node::fPruneMode; using node::fReindex; using node::ReadBlockFromDisk; /** How long to cache transactions in mapRelay for normal relay */ static constexpr auto RELAY_TX_CACHE_TIME = 15min; /** * How long a transaction has to be in the mempool before it can * unconditionally be relayed (even when not in mapRelay). */ static constexpr auto UNCONDITIONAL_RELAY_DELAY = 2min; /** * Headers download timeout. * Timeout = base + per_header * (expected number of headers) */ static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_BASE = 15min; static constexpr auto HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1ms; /** * Protect at least this many outbound peers from disconnection due to * slow/behind headers chain. */ static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4; /** Timeout for (unprotected) outbound peers to sync to our chainwork */ static constexpr auto CHAIN_SYNC_TIMEOUT{20min}; /** How frequently to check for stale tips */ static constexpr auto STALE_CHECK_INTERVAL{10min}; /** How frequently to check for extra outbound peers and disconnect. */ static constexpr auto EXTRA_PEER_CHECK_INTERVAL{45s}; /** * Minimum time an outbound-peer-eviction candidate must be connected for, in * order to evict */ static constexpr auto MINIMUM_CONNECT_TIME{30s}; /** SHA256("main address relay")[0:8] */ static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL; /// Age after which a stale block will no longer be served if requested as /// protection against fingerprinting. Set to one month, denominated in seconds. static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60; /// Age after which a block is considered historical for purposes of rate /// limiting block relay. Set to one week, denominated in seconds. static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60; /** * Time between pings automatically sent out for latency probing and keepalive. */ static constexpr auto PING_INTERVAL{2min}; /** The maximum number of entries in a locator */ static const unsigned int MAX_LOCATOR_SZ = 101; /** The maximum number of entries in an 'inv' protocol message */ static const unsigned int MAX_INV_SZ = 50000; static_assert(MAX_PROTOCOL_MESSAGE_LENGTH > MAX_INV_SZ * sizeof(CInv), "Max protocol message length must be greater than largest " "possible INV message"); /** Minimum time between 2 successives getavaaddr messages from the same peer */ static constexpr auto GETAVAADDR_INTERVAL{2min}; /** * If no proof was requested from a compact proof message after this timeout * expired, the proof radix tree can be cleaned up. */ static constexpr auto AVALANCHE_AVAPROOFS_TIMEOUT{2min}; struct DataRequestParameters { /** * Maximum number of in-flight data requests from a peer. It is not a hard * limit, but the threshold at which point the overloaded_peer_delay kicks * in. */ const size_t max_peer_request_in_flight; /** * Maximum number of inventories to consider for requesting, per peer. It * provides a reasonable DoS limit to per-peer memory usage spent on * announcements, while covering peers continuously sending INVs at the * maximum rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for * several minutes, while not receiving the actual data (from any peer) in * response to requests for them. */ const size_t max_peer_announcements; /** How long to delay requesting data from non-preferred peers */ const std::chrono::seconds nonpref_peer_delay; /** * How long to delay requesting data from overloaded peers (see * max_peer_request_in_flight). */ const std::chrono::seconds overloaded_peer_delay; /** * How long to wait (in microseconds) before a data request from an * additional peer. */ const std::chrono::microseconds getdata_interval; /** * Permission flags a peer requires to bypass the request limits tracking * limits and delay penalty. */ const NetPermissionFlags bypass_request_limits_permissions; }; static constexpr DataRequestParameters TX_REQUEST_PARAMS{ 100, // max_peer_request_in_flight 5000, // max_peer_announcements std::chrono::seconds(2), // nonpref_peer_delay std::chrono::seconds(2), // overloaded_peer_delay std::chrono::seconds(60), // getdata_interval NetPermissionFlags::Relay, // bypass_request_limits_permissions }; static constexpr DataRequestParameters PROOF_REQUEST_PARAMS{ 100, // max_peer_request_in_flight 5000, // max_peer_announcements std::chrono::seconds(2), // nonpref_peer_delay std::chrono::seconds(2), // overloaded_peer_delay std::chrono::seconds(60), // getdata_interval NetPermissionFlags:: BypassProofRequestLimits, // bypass_request_limits_permissions }; /** * Limit to avoid sending big packets. Not used in processing incoming GETDATA * for compatibility. */ static const unsigned int MAX_GETDATA_SZ = 1000; /** * Number of blocks that can be requested at any given time from a single peer. */ static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16; /** * Time during which a peer must stall block download progress before being * disconnected. */ static constexpr auto BLOCK_STALLING_TIMEOUT{2s}; /** * Number of headers sent in one getheaders result. We rely on the assumption * that if a peer sends * less than this number, we reached its tip. Changing this value is a protocol * upgrade. */ static const unsigned int MAX_HEADERS_RESULTS = 2000; /** * Maximum depth of blocks we're willing to serve as compact blocks to peers * when requested. For older blocks, a regular BLOCK response will be sent. */ static const int MAX_CMPCTBLOCK_DEPTH = 5; /** * Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests * for. */ static const int MAX_BLOCKTXN_DEPTH = 10; /** * Size of the "block download window": how far ahead of our current height do * we fetch? Larger windows tolerate larger download speed differences between * peer, but increase the potential degree of disordering of blocks on disk * (which make reindexing and pruning harder). We'll probably * want to make this a per-peer adaptive value at some point. */ static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024; /** * Block download timeout base, expressed in multiples of the block interval * (i.e. 10 min) */ static constexpr double BLOCK_DOWNLOAD_TIMEOUT_BASE = 1; /** * Additional block download timeout per parallel downloading peer (i.e. 5 min) */ static constexpr double BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 0.5; /** * Maximum number of headers to announce when relaying blocks with headers * message. */ static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8; /** Maximum number of unconnecting headers announcements before DoS score */ static const int MAX_UNCONNECTING_HEADERS = 10; /** Minimum blocks required to signal NODE_NETWORK_LIMITED */ static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288; /** * Average delay between local address broadcasts. */ static constexpr auto AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24h}; /** * Average delay between peer address broadcasts. */ static constexpr auto AVG_ADDRESS_BROADCAST_INTERVAL{30s}; /** Delay between rotating the peers we relay a particular address to */ static constexpr auto ROTATE_ADDR_RELAY_DEST_INTERVAL{24h}; /** * Average delay between trickled inventory transmissions for inbound peers. * Blocks and peers with NetPermissionFlags::NoBan permission bypass this. */ static constexpr auto INBOUND_INVENTORY_BROADCAST_INTERVAL{5s}; /** * Maximum rate of inventory items to send per second. * Limits the impact of low-fee transaction floods. */ static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7; /** Maximum number of inventory items to send per transmission. */ static constexpr unsigned int INVENTORY_BROADCAST_MAX_PER_MB = INVENTORY_BROADCAST_PER_SECOND * count_seconds(INBOUND_INVENTORY_BROADCAST_INTERVAL); /** The number of most recently announced transactions a peer can request. */ static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500; /** * Verify that INVENTORY_MAX_RECENT_RELAY is enough to cache everything * typically relayed before unconditional relay from the mempool kicks in. This * is only a lower bound, and it should be larger to account for higher inv rate * to outbound peers, and random variations in the broadcast mechanism. */ static_assert(INVENTORY_MAX_RECENT_RELAY >= INVENTORY_BROADCAST_PER_SECOND * UNCONDITIONAL_RELAY_DELAY / std::chrono::seconds{1}, "INVENTORY_RELAY_MAX too low"); /** * Average delay between feefilter broadcasts */ static constexpr auto AVG_FEEFILTER_BROADCAST_INTERVAL{10min}; /** * Maximum feefilter broadcast delay after significant change. */ static constexpr auto MAX_FEEFILTER_CHANGE_DELAY{5min}; /** * Maximum number of compact filters that may be requested with one * getcfilters. See BIP 157. */ static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000; /** * Maximum number of cf hashes that may be requested with one getcfheaders. See * BIP 157. */ static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000; /** * the maximum percentage of addresses from our addrman to return in response * to a getaddr message. */ static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23; /** The maximum number of address records permitted in an ADDR message. */ static constexpr size_t MAX_ADDR_TO_SEND{1000}; /** * The maximum rate of address records we're willing to process on average. Can * be bypassed using the NetPermissionFlags::Addr permission. */ static constexpr double MAX_ADDR_RATE_PER_SECOND{0.1}; /** * The soft limit of the address processing token bucket (the regular * MAX_ADDR_RATE_PER_SECOND based increments won't go above this, but the * MAX_ADDR_TO_SEND increment following GETADDR is exempt from this limit). */ static constexpr size_t MAX_ADDR_PROCESSING_TOKEN_BUCKET{MAX_ADDR_TO_SEND}; /** The compactblocks version we support. See BIP 152. */ static constexpr uint64_t CMPCTBLOCKS_VERSION{1}; inline size_t GetMaxAddrToSend() { return gArgs.GetIntArg("-maxaddrtosend", MAX_ADDR_TO_SEND); } // Internal stuff namespace { /** * Blocks that are in flight, and that are in the queue to be downloaded. */ struct QueuedBlock { /** * BlockIndex. We must have this since we only request blocks when we've * already validated the header. */ const CBlockIndex *pindex; /** Optional, used for CMPCTBLOCK downloads */ std::unique_ptr<PartiallyDownloadedBlock> partialBlock; }; /** * Data structure for an individual peer. This struct is not protected by * cs_main since it does not contain validation-critical data. * * Memory is owned by shared pointers and this object is destructed when * the refcount drops to zero. * * Mutexes inside this struct must not be held when locking m_peer_mutex. * * TODO: move most members from CNodeState to this structure. * TODO: move remaining application-layer data members from CNode to this * structure. */ struct Peer { /** Same id as the CNode object for this peer */ const NodeId m_id{0}; /** * Services we offered to this peer. * * This is supplied by CConnman during peer initialization. It's const * because there is no protocol defined for renegotiating services * initially offered to a peer. The set of local services we offer should * not change after initialization. * * An interesting example of this is NODE_NETWORK and initial block * download: a node which starts up from scratch doesn't have any blocks * to serve, but still advertises NODE_NETWORK because it will eventually * fulfill this role after IBD completes. P2P code is written in such a * way that it can gracefully handle peers who don't make good on their * service advertisements. */ const ServiceFlags m_our_services; /** Services this peer offered to us. */ std::atomic<ServiceFlags> m_their_services{NODE_NONE}; /** Protects misbehavior data members */ Mutex m_misbehavior_mutex; /** Accumulated misbehavior score for this peer */ int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0}; /** Whether this peer should be disconnected and marked as discouraged * (unless it has NetPermissionFlags::NoBan permission). */ bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false}; /** Protects block inventory data members */ Mutex m_block_inv_mutex; /** * List of blocks that we'll anounce via an `inv` message. * There is no final sorting before sending, as they are always sent * immediately and in the order requested. */ std::vector<BlockHash> m_blocks_for_inv_relay GUARDED_BY(m_block_inv_mutex); /** * Unfiltered list of blocks that we'd like to announce via a `headers` * message. If we can't announce via a `headers` message, we'll fall back to * announcing via `inv`. */ std::vector<BlockHash> m_blocks_for_headers_relay GUARDED_BY(m_block_inv_mutex); /** * The final block hash that we sent in an `inv` message to this peer. * When the peer requests this block, we send an `inv` message to trigger * the peer to request the next sequence of block hashes. * Most peers use headers-first syncing, which doesn't use this mechanism */ BlockHash m_continuation_block GUARDED_BY(m_block_inv_mutex){}; /** This peer's reported block height when we connected */ std::atomic<int> m_starting_height{-1}; /** The pong reply we're expecting, or 0 if no pong expected. */ std::atomic<uint64_t> m_ping_nonce_sent{0}; /** When the last ping was sent, or 0 if no ping was ever sent */ std::atomic<std::chrono::microseconds> m_ping_start{0us}; /** Whether a ping has been requested by the user */ std::atomic<bool> m_ping_queued{false}; /** * The feerate in the most recent BIP133 `feefilter` message sent to the * peer. * It is *not* a p2p protocol violation for the peer to send us * transactions with a lower fee rate than this. See BIP133. */ Amount m_fee_filter_sent{Amount::zero()}; std::chrono::microseconds m_next_send_feefilter{0}; struct TxRelay { mutable RecursiveMutex m_bloom_filter_mutex; /** * Whether the peer wishes to receive transaction announcements. * * This is initially set based on the fRelay flag in the received * `version` message. If initially set to false, it can only be flipped * to true if we have offered the peer NODE_BLOOM services and it sends * us a `filterload` or `filterclear` message. See BIP37. */ bool m_relay_txs GUARDED_BY(m_bloom_filter_mutex){false}; /** * A bloom filter for which transactions to announce to the peer. * See BIP37. */ std::unique_ptr<CBloomFilter> m_bloom_filter PT_GUARDED_BY(m_bloom_filter_mutex) GUARDED_BY(m_bloom_filter_mutex){nullptr}; mutable RecursiveMutex m_tx_inventory_mutex; /** * A filter of all the txids that the peer has announced to us or we * have announced to the peer. We use this to avoid announcing * the same txid to a peer that already has the transaction. */ CRollingBloomFilter m_tx_inventory_known_filter GUARDED_BY(m_tx_inventory_mutex){50000, 0.000001}; /** * Set of transaction ids we still have to announce. We use the * mempool to sort transactions in dependency order before relay, so * this does not have to be sorted. */ std::set<TxId> m_tx_inventory_to_send GUARDED_BY(m_tx_inventory_mutex); /** * Whether the peer has requested us to send our complete mempool. Only * permitted if the peer has NetPermissionFlags::Mempool. * See BIP35. */ bool m_send_mempool GUARDED_BY(m_tx_inventory_mutex){false}; /** The last time a BIP35 `mempool` request was serviced. */ std::atomic<std::chrono::seconds> m_last_mempool_req{0s}; /** * The next time after which we will send an `inv` message containing * transaction announcements to this peer. */ std::chrono::microseconds m_next_inv_send_time{0}; /** * Minimum fee rate with which to filter transaction announcements to * this node. See BIP133. */ std::atomic<Amount> m_fee_filter_received{Amount::zero()}; }; /* * Initializes a TxRelay struct for this peer. Can be called at most once * for a peer. */ TxRelay *SetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex) { LOCK(m_tx_relay_mutex); Assume(!m_tx_relay); m_tx_relay = std::make_unique<Peer::TxRelay>(); return m_tx_relay.get(); }; TxRelay *GetTxRelay() EXCLUSIVE_LOCKS_REQUIRED(!m_tx_relay_mutex) { return WITH_LOCK(m_tx_relay_mutex, return m_tx_relay.get()); }; struct ProofRelay { mutable RecursiveMutex m_proof_inventory_mutex; std::set<avalanche::ProofId> m_proof_inventory_to_send GUARDED_BY(m_proof_inventory_mutex); // Prevent sending proof invs if the peer already knows about them CRollingBloomFilter m_proof_inventory_known_filter GUARDED_BY(m_proof_inventory_mutex){10000, 0.000001}; std::chrono::microseconds m_next_inv_send_time{0}; RadixTree<const avalanche::Proof, avalanche::ProofRadixTreeAdapter> sharedProofs; std::atomic<std::chrono::seconds> lastSharedProofsUpdate{0s}; std::atomic<bool> compactproofs_requested{false}; }; /** * Proof relay data. Will be a nullptr if we're not relaying * proofs with this peer */ const std::unique_ptr<ProofRelay> m_proof_relay; /** * A vector of addresses to send to the peer, limited to MAX_ADDR_TO_SEND. */ std::vector<CAddress> m_addrs_to_send; /** * Probabilistic filter to track recent addr messages relayed with this * peer. Used to avoid relaying redundant addresses to this peer. * * We initialize this filter for outbound peers (other than * block-relay-only connections) or when an inbound peer sends us an * address related message (ADDR, ADDRV2, GETADDR). * * Presence of this filter must correlate with m_addr_relay_enabled. **/ std::unique_ptr<CRollingBloomFilter> m_addr_known; /** * Whether we are participating in address relay with this connection. * * We set this bool to true for outbound peers (other than * block-relay-only connections), or when an inbound peer sends us an * address related message (ADDR, ADDRV2, GETADDR). * * We use this bool to decide whether a peer is eligible for gossiping * addr messages. This avoids relaying to peers that are unlikely to * forward them, effectively blackholing self announcements. Reasons * peers might support addr relay on the link include that they connected * to us as a block-relay-only peer or they are a light client. * * This field must correlate with whether m_addr_known has been * initialized. */ std::atomic_bool m_addr_relay_enabled{false}; /** Whether a getaddr request to this peer is outstanding. */ bool m_getaddr_sent{false}; /** Guards address sending timers. */ mutable Mutex m_addr_send_times_mutex; /** Time point to send the next ADDR message to this peer. */ std::chrono::microseconds m_next_addr_send GUARDED_BY(m_addr_send_times_mutex){0}; /** Time point to possibly re-announce our local address to this peer. */ std::chrono::microseconds m_next_local_addr_send GUARDED_BY(m_addr_send_times_mutex){0}; /** * Whether the peer has signaled support for receiving ADDRv2 (BIP155) * messages, indicating a preference to receive ADDRv2 instead of ADDR ones. */ std::atomic_bool m_wants_addrv2{false}; /** Whether this peer has already sent us a getaddr message. */ bool m_getaddr_recvd{false}; /** Guards m_addr_token_bucket */ mutable Mutex m_addr_token_bucket_mutex; /** * Number of addresses that can be processed from this peer. Start at 1 * to permit self-announcement. */ double m_addr_token_bucket GUARDED_BY(m_addr_token_bucket_mutex){1.0}; /** When m_addr_token_bucket was last updated */ std::chrono::microseconds m_addr_token_timestamp{ GetTime<std::chrono::microseconds>()}; /** Total number of addresses that were dropped due to rate limiting. */ std::atomic<uint64_t> m_addr_rate_limited{0}; /** * Total number of addresses that were processed (excludes rate-limited * ones). */ std::atomic<uint64_t> m_addr_processed{0}; /** * Set of txids to reconsider once their parent transactions have been * accepted */ std::set<TxId> m_orphan_work_set GUARDED_BY(g_cs_orphans); /** Protects m_getdata_requests **/ Mutex m_getdata_requests_mutex; /** Work queue of items requested by this peer **/ std::deque<CInv> m_getdata_requests GUARDED_BY(m_getdata_requests_mutex); explicit Peer(NodeId id, ServiceFlags our_services) : m_id(id), m_our_services{our_services}, m_proof_relay(isAvalancheEnabled(gArgs) ? std::make_unique<ProofRelay>() : nullptr) {} private: Mutex m_tx_relay_mutex; /** * Transaction relay data. Will be a nullptr if we're not relaying * transactions with this peer (e.g. if it's a block-relay-only peer or * the peer has sent us fRelay=false with bloom filters disabled). */ std::unique_ptr<TxRelay> m_tx_relay GUARDED_BY(m_tx_relay_mutex); }; using PeerRef = std::shared_ptr<Peer>; /** * Maintain validation-specific state about nodes, protected by cs_main, instead * by CNode's own locks. This simplifies asynchronous operation, where * processing of incoming data is done after the ProcessMessage call returns, * and we're no longer holding the node's locks. */ struct CNodeState { //! The best known block we know this peer has announced. const CBlockIndex *pindexBestKnownBlock{nullptr}; //! The hash of the last unknown block this peer has announced. BlockHash hashLastUnknownBlock{}; //! The last full block we both have. const CBlockIndex *pindexLastCommonBlock{nullptr}; //! The best header we have sent our peer. const CBlockIndex *pindexBestHeaderSent{nullptr}; //! Length of current-streak of unconnecting headers announcements int nUnconnectingHeaders{0}; //! Whether we've started headers synchronization with this peer. bool fSyncStarted{false}; //! When to potentially disconnect peer for stalling headers download std::chrono::microseconds m_headers_sync_timeout{0us}; //! Since when we're stalling block download progress (in microseconds), or //! 0. std::chrono::microseconds m_stalling_since{0us}; std::list<QueuedBlock> vBlocksInFlight; //! When the first entry in vBlocksInFlight started downloading. Don't care //! when vBlocksInFlight is empty. std::chrono::microseconds m_downloading_since{0us}; int nBlocksInFlight{0}; //! Whether we consider this a preferred download peer. bool fPreferredDownload{false}; //! Whether this peer wants invs or headers (when possible) for block //! announcements. bool fPreferHeaders{false}; /** * Whether this peer wants invs or cmpctblocks (when possible) for block * announcements. */ bool m_requested_hb_cmpctblocks{false}; /** Whether this peer will send us cmpctblocks if we request them. */ bool m_provides_cmpctblocks{false}; /** * State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL * logic. * * Both are only in effect for outbound, non-manual, non-protected * connections. Any peer protected (m_protect = true) is not chosen for * eviction. A peer is marked as protected if all of these are true: * - its connection type is IsBlockOnlyConn() == false * - it gave us a valid connecting header * - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet * - it has a better chain than we have * * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our * tip, set a timeout CHAIN_SYNC_TIMEOUT in the future: * - If at timeout their best known block now has more work than our tip * when the timeout was set, then either reset the timeout or clear it * (after comparing against our current tip's work) * - If at timeout their best known block still has less work than our tip * did when the timeout was set, then send a getheaders message, and set a * shorter timeout, HEADERS_RESPONSE_TIME seconds in future. If their best * known block is still behind when that new timeout is reached, disconnect. * * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many * outbound peers, drop the outbound one that least recently announced us a * new block. */ struct ChainSyncTimeoutState { //! A timeout used for checking whether our peer has sufficiently //! synced. std::chrono::seconds m_timeout{0s}; //! A header with the work we require on our peer's chain. const CBlockIndex *m_work_header{nullptr}; //! After timeout is reached, set to true after sending getheaders. bool m_sent_getheaders{false}; //! Whether this peer is protected from disconnection due to a bad/slow //! chain. bool m_protect{false}; }; ChainSyncTimeoutState m_chain_sync; //! Time of last new block announcement int64_t m_last_block_announcement{0}; //! Whether this peer is an inbound connection const bool m_is_inbound; //! A rolling bloom filter of all announced tx CInvs to this peer. CRollingBloomFilter m_recently_announced_invs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; //! A rolling bloom filter of all announced Proofs CInvs to this peer. CRollingBloomFilter m_recently_announced_proofs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; CNodeState(bool is_inbound) : m_is_inbound(is_inbound) {} }; class PeerManagerImpl final : public PeerManager { public: PeerManagerImpl(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, bool ignore_incoming_txs); /** Overridden from CValidationInterface. */ void BlockConnected(const std::shared_ptr<const CBlock> &pblock, const CBlockIndex *pindexConnected) override EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex); void BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex *pindex) override EXCLUSIVE_LOCKS_REQUIRED(!m_recent_confirmed_transactions_mutex); void UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void BlockChecked(const CBlock &block, const BlockValidationState &state) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void NewPoWValidBlock(const CBlockIndex *pindex, const std::shared_ptr<const CBlock> &pblock) override EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex); /** Implement NetEventsInterface */ void InitializeNode(const Config &config, CNode &node, ServiceFlags our_services) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void FinalizeNode(const Config &config, const CNode &node) override - EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !cs_proofrequest); bool ProcessMessages(const Config &config, CNode *pfrom, std::atomic<bool> &interrupt) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, - !m_most_recent_block_mutex); + !m_most_recent_block_mutex, !cs_proofrequest); bool SendMessages(const Config &config, CNode *pto) override EXCLUSIVE_LOCKS_REQUIRED(pto->cs_sendProcessing) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, - !m_most_recent_block_mutex); + !m_most_recent_block_mutex, + !cs_proofrequest); /** Implement PeerManager */ void StartScheduledTasks(CScheduler &scheduler) override; void CheckForStaleTipAndEvictPeers() override; std::optional<std::string> FetchBlock(const Config &config, NodeId peer_id, const CBlockIndex &block_index) override; bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); bool IgnoresIncomingTxs() override { return m_ignore_incoming_txs; } void SendPings() override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void RelayTransaction(const TxId &txid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void RelayProof(const avalanche::ProofId &proofid) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void SetBestHeight(int height) override { m_best_height = height; }; void Misbehaving(const NodeId pnode, const int howmuch, const std::string &message) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void ProcessMessage(const Config &config, CNode &pfrom, const std::string &msg_type, CDataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic<bool> &interruptMsgProc) override EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !m_recent_confirmed_transactions_mutex, - !m_most_recent_block_mutex); + !m_most_recent_block_mutex, !cs_proofrequest); void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) override; private: /** * Consider evicting an outbound peer based on the amount of time they've * been behind our tip. */ void ConsiderEviction(CNode &pto, std::chrono::seconds time_in_seconds) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * If we have extra outbound peers, try to disconnect the one with the * oldest block announcement. */ void EvictExtraOutboundPeers(std::chrono::seconds now) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Retrieve unbroadcast transactions from the mempool and reattempt * sending to peers */ void ReattemptInitialBroadcast(CScheduler &scheduler) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Update the avalanche statistics for all the nodes */ void UpdateAvalancheStatistics() const; /** * Process periodic avalanche network messaging and cleanups. */ void AvalanchePeriodicNetworking(CScheduler &scheduler) const; /** * Get a shared pointer to the Peer object. * May return an empty shared_ptr if the Peer object can't be found. */ PeerRef GetPeerRef(NodeId id) const EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Get a shared pointer to the Peer object and remove it from m_peer_map. * May return an empty shared_ptr if the Peer object can't be found. */ PeerRef RemovePeer(NodeId id) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); // overloaded variant of above to operate on CNode*s void Misbehaving(const CNode &node, int howmuch, const std::string &message) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex) { Misbehaving(node.GetId(), howmuch, message); } /** * Potentially mark a node discouraged based on the contents of a * BlockValidationState object * * @param[in] via_compact_block this bool is passed in because * net_processing should punish peers differently depending on whether the * data was provided in a compact block message or not. If the compact block * had a valid header, but contained invalid txs, the peer should not be * punished. See BIP 152. * * @return Returns true if the peer was punished (probably disconnected) */ bool MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState &state, bool via_compact_block, const std::string &message = "") EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Potentially disconnect and discourage a node based on the contents of a * TxValidationState object * * @return Returns true if the peer was punished (probably disconnected) */ bool MaybePunishNodeForTx(NodeId nodeid, const TxValidationState &state, const std::string &message = "") EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Maybe disconnect a peer and discourage future connections from its * address. * * @param[in] pnode The node to check. * @param[in] peer The peer object to check. * @return True if the peer was marked for disconnection in * this function */ bool MaybeDiscourageAndDisconnect(CNode &pnode, Peer &peer); void ProcessOrphanTx(const Config &config, std::set<TxId> &orphan_work_set) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** Process a single headers message from a peer. */ void ProcessHeadersMessage(const Config &config, CNode &pfrom, const Peer &peer, const std::vector<CBlockHeader> &headers, bool via_compact_block) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); void SendBlockTransactions(CNode &pfrom, const CBlock &block, const BlockTransactionsRequest &req) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); /** * Register with InvRequestTracker that a TX INV has been received from a * peer. The announcement parameters are decided in PeerManager and then * passed to InvRequestTracker. */ void AddTxAnnouncement(const CNode &node, const TxId &txid, std::chrono::microseconds current_time) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); /** * Register with InvRequestTracker that a PROOF INV has been received from a * peer. The announcement parameters are decided in PeerManager and then * passed to InvRequestTracker. */ void AddProofAnnouncement(const CNode &node, const avalanche::ProofId &proofid, std::chrono::microseconds current_time, bool preferred) EXCLUSIVE_LOCKS_REQUIRED(cs_proofrequest); /** Send a version message to a peer */ void PushNodeVersion(const Config &config, CNode &pnode, const Peer &peer); /** * Send a ping message every PING_INTERVAL or if requested via RPC. May mark * the peer to be disconnected if a ping has timed out. * We use mockable time for ping timeouts, so setmocktime may cause pings * to time out. */ void MaybeSendPing(CNode &node_to, Peer &peer, std::chrono::microseconds now); /** Send `addr` messages on a regular schedule. */ void MaybeSendAddr(CNode &node, Peer &peer, std::chrono::microseconds current_time); /** Send `feefilter` message. */ void MaybeSendFeefilter(CNode &node, Peer &peer, std::chrono::microseconds current_time); /** * Relay (gossip) an address to a few randomly chosen nodes. * * @param[in] originator The id of the peer that sent us the address. We * don't want to relay it back. * @param[in] addr Address to relay. * @param[in] fReachable Whether the address' network is reachable. We * relay unreachable addresses less. */ void RelayAddress(NodeId originator, const CAddress &addr, bool fReachable) EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); const CChainParams &m_chainparams; CConnman &m_connman; AddrMan &m_addrman; /** * Pointer to this node's banman. May be nullptr - check existence before * dereferencing. */ BanMan *const m_banman; ChainstateManager &m_chainman; CTxMemPool &m_mempool; InvRequestTracker<TxId> m_txrequest GUARDED_BY(::cs_main); Mutex cs_proofrequest; InvRequestTracker<avalanche::ProofId> m_proofrequest GUARDED_BY(cs_proofrequest); /** The height of the best chain */ std::atomic<int> m_best_height{-1}; /** Next time to check for stale tip */ std::chrono::seconds m_stale_tip_check_time{0s}; /** Whether this node is running in blocks only mode */ const bool m_ignore_incoming_txs; /** * Whether we've completed initial sync yet, for determining when to turn * on extra block-relay-only peers. */ bool m_initial_sync_finished{false}; /** * Protects m_peer_map. This mutex must not be locked while holding a lock * on any of the mutexes inside a Peer object. */ mutable Mutex m_peer_mutex; /** * Map of all Peer objects, keyed by peer id. This map is protected * by the m_peer_mutex. Once a shared pointer reference is * taken, the lock may be released. Individual fields are protected by * their own locks. */ std::map<NodeId, PeerRef> m_peer_map GUARDED_BY(m_peer_mutex); /** Map maintaining per-node state. */ std::map<NodeId, CNodeState> m_node_states GUARDED_BY(cs_main); /** * Get a pointer to a const CNodeState, used when not mutating the * CNodeState object. */ const CNodeState *State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Get a pointer to a mutable CNodeState. */ CNodeState *State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main); std::atomic<std::chrono::microseconds> m_next_inv_to_inbounds{0us}; /** Number of nodes with fSyncStarted. */ int nSyncStarted GUARDED_BY(cs_main) = 0; /** * Sources of received blocks, saved to be able to punish them when * processing happens afterwards. * Set mapBlockSource[hash].second to false if the node should not be * punished if the block is invalid. */ std::map<BlockHash, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main); /** Number of outbound peers with m_chain_sync.m_protect. */ int m_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0; /** Number of preferable block download peers. */ int m_num_preferred_download_peers GUARDED_BY(cs_main){0}; bool AlreadyHaveTx(const TxId &txid) EXCLUSIVE_LOCKS_REQUIRED(cs_main, !m_recent_confirmed_transactions_mutex); /** * Filter for transactions that were recently rejected by the mempool. * These are not rerequested until the chain tip changes, at which point * the entire filter is reset. * * Without this filter we'd be re-requesting txs from each of our peers, * increasing bandwidth consumption considerably. For instance, with 100 * peers, half of which relay a tx we don't accept, that might be a 50x * bandwidth increase. A flooding attacker attempting to roll-over the * filter using minimum-sized, 60byte, transactions might manage to send * 1000/sec if we have fast peers, so we pick 120,000 to give our peers a * two minute window to send invs to us. * * Decreasing the false positive rate is fairly cheap, so we pick one in a * million to make it highly unlikely for users to have issues with this * filter. * * Memory used: 1.3 MB */ CRollingBloomFilter m_recent_rejects GUARDED_BY(::cs_main){120'000, 0.000'001}; uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main); /** * Filter for transactions that have been recently confirmed. * We use this to avoid requesting transactions that have already been * confirmed. */ mutable Mutex m_recent_confirmed_transactions_mutex; CRollingBloomFilter m_recent_confirmed_transactions GUARDED_BY(m_recent_confirmed_transactions_mutex){24'000, 0.000'001}; /** * For sending `inv`s to inbound peers, we use a single (exponentially * distributed) timer for all peers. If we used a separate timer for each * peer, a spy node could make multiple inbound connections to us to * accurately determine when we received the transaction (and potentially * determine the transaction's origin). */ std::chrono::microseconds NextInvToInbounds(std::chrono::microseconds now, std::chrono::seconds average_interval); // All of the following cache a recent block, and are protected by // m_most_recent_block_mutex Mutex m_most_recent_block_mutex; std::shared_ptr<const CBlock> m_most_recent_block GUARDED_BY(m_most_recent_block_mutex); std::shared_ptr<const CBlockHeaderAndShortTxIDs> m_most_recent_compact_block GUARDED_BY(m_most_recent_block_mutex); BlockHash m_most_recent_block_hash GUARDED_BY(m_most_recent_block_mutex); /** * Height of the highest block announced using BIP 152 high-bandwidth mode. */ int m_highest_fast_announce{0}; /** Have we requested this block from a peer */ bool IsBlockRequested(const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Remove this block from our tracked requested blocks. Called if: * - the block has been received from a peer * - the request for the block has timed out */ void RemoveBlockRequest(const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Mark a block as in flight * Returns false, still setting pit, if the block was already in flight from * the same peer pit will only be valid as long as the same cs_main lock is * being held */ bool BlockRequested(const Config &config, NodeId nodeid, const CBlockIndex &block, std::list<QueuedBlock>::iterator **pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool TipMayBeStale() EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Update pindexLastCommonBlock and add not-in-flight missing successors to * vBlocks, until it has at most count entries. */ void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector<const CBlockIndex *> &vBlocks, NodeId &nodeStaller) EXCLUSIVE_LOCKS_REQUIRED(cs_main); std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>> mapBlocksInFlight GUARDED_BY(cs_main); /** When our tip was last updated. */ std::atomic<std::chrono::seconds> m_last_tip_update{0s}; /** * Determine whether or not a peer can request a transaction, and return it * (or nullptr if not found or not allowed). */ CTransactionRef FindTxForGetData(const CNode &peer, const TxId &txid, const std::chrono::seconds mempool_req, const std::chrono::seconds now) LOCKS_EXCLUDED(cs_main); void ProcessGetData(const Config &config, CNode &pfrom, Peer &peer, const std::atomic<bool> &interruptMsgProc) EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex, peer.m_getdata_requests_mutex) LOCKS_EXCLUDED(cs_main); /** Process a new block. Perform any post-processing housekeeping */ void ProcessBlock(const Config &config, CNode &node, const std::shared_ptr<const CBlock> &block, bool force_processing); /** Relay map. */ typedef std::map<TxId, CTransactionRef> MapRelay; MapRelay mapRelay GUARDED_BY(cs_main); /** * Expiration-time ordered list of (expire time, relay map entry) pairs, * protected by cs_main). */ std::deque<std::pair<std::chrono::microseconds, MapRelay::iterator>> g_relay_expiration GUARDED_BY(cs_main); /** * When a peer sends us a valid block, instruct it to announce blocks to us * using CMPCTBLOCK if possible by adding its nodeid to the end of * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size * by removing the first element if necessary. */ void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Stack of nodes which we have set to announce using compact blocks */ std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main); /** Number of peers from which we're downloading blocks. */ int m_peers_downloading_from GUARDED_BY(cs_main) = 0; /** Storage for orphan information */ TxOrphanage m_orphanage; void AddToCompactExtraTransactions(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans); /** * Orphan/conflicted/etc transactions that are kept for compact block * reconstruction. * The last * -blockreconstructionextratxn/DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN of * these are kept in a ring buffer */ std::vector<std::pair<TxHash, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_cs_orphans); /** Offset into vExtraTxnForCompact to insert the next tx */ size_t vExtraTxnForCompactIt GUARDED_BY(g_cs_orphans) = 0; /** * Check whether the last unknown block a peer advertised is not yet known. */ void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Update tracking information about which blocks a peer is assumed to have. */ void UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool CanDirectFetch() EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * To prevent fingerprinting attacks, only send blocks/headers outside of * the active chain if they are no more than a month older (both in time, * and in best equivalent proof of work) than the best header chain we know * about and we fully-validated them at some point. */ bool BlockRequestAllowed(const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool AlreadyHaveBlock(const BlockHash &block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool AlreadyHaveProof(const avalanche::ProofId &proofid); void ProcessGetBlockData(const Config &config, CNode &pfrom, Peer &peer, const CInv &inv) EXCLUSIVE_LOCKS_REQUIRED(!m_most_recent_block_mutex); /** * Validation logic for compact filters request handling. * * May disconnect from the peer in the case of a bad request. * * @param[in] node The node that we received the request from * @param[in] peer The peer that we received the request from * @param[in] filter_type The filter type the request is for. Must be * basic filters. * @param[in] start_height The start height for the request * @param[in] stop_hash The stop_hash for the request * @param[in] max_height_diff The maximum number of items permitted to * request, as specified in BIP 157 * @param[out] stop_index The CBlockIndex for the stop_hash block, if * the request can be serviced. * @param[out] filter_index The filter index, if the request can be * serviced. * @return True if the request can be serviced. */ bool PrepareBlockFilterRequest(CNode &node, Peer &peer, BlockFilterType filter_type, uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff, const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index); /** * Handle a cfilters request. * * May disconnect from the peer in the case of a bad request. * * @param[in] node The node that we received the request from * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received */ void ProcessGetCFilters(CNode &node, Peer &peer, CDataStream &vRecv); /** * Handle a cfheaders request. * * May disconnect from the peer in the case of a bad request. * * @param[in] node The node that we received the request from * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received */ void ProcessGetCFHeaders(CNode &node, Peer &peer, CDataStream &vRecv); /** * Handle a getcfcheckpt request. * * May disconnect from the peer in the case of a bad request. * * @param[in] node The node that we received the request from * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received */ void ProcessGetCFCheckPt(CNode &node, Peer &peer, CDataStream &vRecv); /** * Decide a response for an Avalanche poll about the given block. * * @param[in] hash The hash of the block being polled for * @return Our current vote for the block */ uint32_t GetAvalancheVoteForBlock(const BlockHash &hash) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Decide a response for an Avalanche poll about the given transaction. * * @param[in] id The id of the transaction being polled for * @return Our current vote for the transaction */ uint32_t GetAvalancheVoteForTx(const TxId &id) const - EXCLUSIVE_LOCKS_REQUIRED(cs_main); + EXCLUSIVE_LOCKS_REQUIRED(cs_main, + !m_recent_confirmed_transactions_mutex); /** * Checks if address relay is permitted with peer. If needed, initializes * the m_addr_known bloom filter and sets m_addr_relay_enabled to true. * * @return True if address relay is enabled with peer * False if address relay is disallowed */ bool SetupAddressRelay(const CNode &node, Peer &peer); /** * Manage reception of an avalanche proof. * * @return False if the peer is misbehaving, true otherwise */ bool ReceivedAvalancheProof(CNode &node, Peer &peer, const avalanche::ProofRef &proof) - EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex); + EXCLUSIVE_LOCKS_REQUIRED(!m_peer_mutex, !cs_proofrequest); avalanche::ProofRef FindProofForGetData(const CNode &peer, const avalanche::ProofId &proofid, const std::chrono::seconds now); bool isPreferredDownloadPeer(const CNode &pfrom); }; const CNodeState *PeerManagerImpl::State(NodeId pnode) const EXCLUSIVE_LOCKS_REQUIRED(cs_main) { std::map<NodeId, CNodeState>::const_iterator it = m_node_states.find(pnode); if (it == m_node_states.end()) { return nullptr; } return &it->second; } CNodeState *PeerManagerImpl::State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return const_cast<CNodeState *>(std::as_const(*this).State(pnode)); } /** * Whether the peer supports the address. For example, a peer that does not * implement BIP155 cannot receive Tor v3 addresses because it requires * ADDRv2 (BIP155) encoding. */ static bool IsAddrCompatible(const Peer &peer, const CAddress &addr) { return peer.m_wants_addrv2 || addr.IsAddrV1Compatible(); } static void AddAddressKnown(Peer &peer, const CAddress &addr) { assert(peer.m_addr_known); peer.m_addr_known->insert(addr.GetKey()); } static void PushAddress(Peer &peer, const CAddress &addr, FastRandomContext &insecure_rand) { // Known checking here is only to save space from duplicates. // Before sending, we'll filter it again for known addresses that were // added after addresses were pushed. assert(peer.m_addr_known); if (addr.IsValid() && !peer.m_addr_known->contains(addr.GetKey()) && IsAddrCompatible(peer, addr)) { if (peer.m_addrs_to_send.size() >= GetMaxAddrToSend()) { peer.m_addrs_to_send[insecure_rand.randrange( peer.m_addrs_to_send.size())] = addr; } else { peer.m_addrs_to_send.push_back(addr); } } } static void AddKnownTx(Peer &peer, const TxId &txid) { auto tx_relay = peer.GetTxRelay(); if (!tx_relay) { return; } LOCK(tx_relay->m_tx_inventory_mutex); tx_relay->m_tx_inventory_known_filter.insert(txid); } static void AddKnownProof(Peer &peer, const avalanche::ProofId &proofid) { if (peer.m_proof_relay != nullptr) { LOCK(peer.m_proof_relay->m_proof_inventory_mutex); peer.m_proof_relay->m_proof_inventory_known_filter.insert(proofid); } } bool PeerManagerImpl::isPreferredDownloadPeer(const CNode &pfrom) { LOCK(cs_main); const CNodeState *state = State(pfrom.GetId()); return state && state->fPreferredDownload; } /** Whether this peer can serve us blocks. */ static bool CanServeBlocks(const Peer &peer) { return peer.m_their_services & (NODE_NETWORK | NODE_NETWORK_LIMITED); } /** * Whether this peer can only serve limited recent blocks (e.g. because * it prunes old blocks) */ static bool IsLimitedPeer(const Peer &peer) { return (!(peer.m_their_services & NODE_NETWORK) && (peer.m_their_services & NODE_NETWORK_LIMITED)); } std::chrono::microseconds PeerManagerImpl::NextInvToInbounds(std::chrono::microseconds now, std::chrono::seconds average_interval) { if (m_next_inv_to_inbounds.load() < now) { // If this function were called from multiple threads simultaneously // it would possible that both update the next send variable, and return // a different result to their caller. This is not possible in practice // as only the net processing thread invokes this function. m_next_inv_to_inbounds = GetExponentialRand(now, average_interval); } return m_next_inv_to_inbounds; } bool PeerManagerImpl::IsBlockRequested(const BlockHash &hash) { return mapBlocksInFlight.find(hash) != mapBlocksInFlight.end(); } void PeerManagerImpl::RemoveBlockRequest(const BlockHash &hash) { auto it = mapBlocksInFlight.find(hash); if (it == mapBlocksInFlight.end()) { // Block was not requested return; } auto [node_id, list_it] = it->second; CNodeState *state = State(node_id); assert(state != nullptr); if (state->vBlocksInFlight.begin() == list_it) { // First block on the queue was received, update the start download time // for the next one state->m_downloading_since = std::max( state->m_downloading_since, GetTime<std::chrono::microseconds>()); } state->vBlocksInFlight.erase(list_it); state->nBlocksInFlight--; if (state->nBlocksInFlight == 0) { // Last validated block on the queue was received. m_peers_downloading_from--; } state->m_stalling_since = 0us; mapBlocksInFlight.erase(it); } bool PeerManagerImpl::BlockRequested(const Config &config, NodeId nodeid, const CBlockIndex &block, std::list<QueuedBlock>::iterator **pit) { const BlockHash &hash{block.GetBlockHash()}; CNodeState *state = State(nodeid); assert(state != nullptr); // Short-circuit most stuff in case it is from the same node. std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end() && itInFlight->second.first == nodeid) { if (pit) { *pit = &itInFlight->second.second; } return false; } // Make sure it's not listed somewhere already. RemoveBlockRequest(hash); std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert( state->vBlocksInFlight.end(), {&block, std::unique_ptr<PartiallyDownloadedBlock>( pit ? new PartiallyDownloadedBlock(config, &m_mempool) : nullptr)}); state->nBlocksInFlight++; if (state->nBlocksInFlight == 1) { // We're starting a block download (batch) from this peer. state->m_downloading_since = GetTime<std::chrono::microseconds>(); m_peers_downloading_from++; } itInFlight = mapBlocksInFlight .insert(std::make_pair(hash, std::make_pair(nodeid, it))) .first; if (pit) { *pit = &itInFlight->second.second; } return true; } void PeerManagerImpl::MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid) { AssertLockHeld(cs_main); // Never request high-bandwidth mode from peers if we're blocks-only. Our // mempool will not contain the transactions necessary to reconstruct the // compact block. if (m_ignore_incoming_txs) { return; } CNodeState *nodestate = State(nodeid); if (!nodestate) { LogPrint(BCLog::NET, "node state unavailable: peer=%d\n", nodeid); return; } if (!nodestate->m_provides_cmpctblocks) { return; } int num_outbound_hb_peers = 0; for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) { if (*it == nodeid) { lNodesAnnouncingHeaderAndIDs.erase(it); lNodesAnnouncingHeaderAndIDs.push_back(nodeid); return; } CNodeState *state = State(*it); if (state != nullptr && !state->m_is_inbound) { ++num_outbound_hb_peers; } } if (nodestate->m_is_inbound) { // If we're adding an inbound HB peer, make sure we're not removing // our last outbound HB peer in the process. if (lNodesAnnouncingHeaderAndIDs.size() >= 3 && num_outbound_hb_peers == 1) { CNodeState *remove_node = State(lNodesAnnouncingHeaderAndIDs.front()); if (remove_node != nullptr && !remove_node->m_is_inbound) { // Put the HB outbound peer in the second slot, so that it // doesn't get removed. std::swap(lNodesAnnouncingHeaderAndIDs.front(), *std::next(lNodesAnnouncingHeaderAndIDs.begin())); } } } m_connman.ForNode(nodeid, [this](CNode *pfrom) EXCLUSIVE_LOCKS_REQUIRED( ::cs_main) { AssertLockHeld(::cs_main); if (lNodesAnnouncingHeaderAndIDs.size() >= 3) { // As per BIP152, we only get 3 of our peers to announce // blocks using compact encodings. m_connman.ForNode( lNodesAnnouncingHeaderAndIDs.front(), [this](CNode *pnodeStop) { m_connman.PushMessage( pnodeStop, CNetMsgMaker(pnodeStop->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION)); // save BIP152 bandwidth state: we select peer to be // low-bandwidth pnodeStop->m_bip152_highbandwidth_to = false; return true; }); lNodesAnnouncingHeaderAndIDs.pop_front(); } m_connman.PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/true, /*version=*/CMPCTBLOCKS_VERSION)); // save BIP152 bandwidth state: we select peer to be high-bandwidth pfrom->m_bip152_highbandwidth_to = true; lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId()); return true; }); } bool PeerManagerImpl::TipMayBeStale() { AssertLockHeld(cs_main); const Consensus::Params &consensusParams = m_chainparams.GetConsensus(); if (m_last_tip_update.load() == 0s) { m_last_tip_update = GetTime<std::chrono::seconds>(); } return m_last_tip_update.load() < GetTime<std::chrono::seconds>() - std::chrono::seconds{consensusParams.nPowTargetSpacing * 3} && mapBlocksInFlight.empty(); } bool PeerManagerImpl::CanDirectFetch() { return m_chainman.ActiveChain().Tip()->GetBlockTime() > GetAdjustedTime() - m_chainparams.GetConsensus().nPowTargetSpacing * 20; } static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight)) { return true; } if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight)) { return true; } return false; } void PeerManagerImpl::ProcessBlockAvailability(NodeId nodeid) { CNodeState *state = State(nodeid); assert(state != nullptr); if (!state->hashLastUnknownBlock.IsNull()) { const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(state->hashLastUnknownBlock); if (pindex && pindex->nChainWork > 0) { if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } state->hashLastUnknownBlock.SetNull(); } } } void PeerManagerImpl::UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash) { CNodeState *state = State(nodeid); assert(state != nullptr); ProcessBlockAvailability(nodeid); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); if (pindex && pindex->nChainWork > 0) { // An actually better block was announced. if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } } else { // An unknown block was announced; just assume that the latest one is // the best one. state->hashLastUnknownBlock = hash; } } void PeerManagerImpl::FindNextBlocksToDownload( NodeId nodeid, unsigned int count, std::vector<const CBlockIndex *> &vBlocks, NodeId &nodeStaller) { if (count == 0) { return; } vBlocks.reserve(vBlocks.size() + count); CNodeState *state = State(nodeid); assert(state != nullptr); // Make sure pindexBestKnownBlock is up to date, we'll need it. ProcessBlockAvailability(nodeid); if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < m_chainman.ActiveChain().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has nothing interesting. return; } if (state->pindexLastCommonBlock == nullptr) { // Bootstrap quickly by guessing a parent of our best tip is the forking // point. Guessing wrong in either direction is not a problem. state->pindexLastCommonBlock = m_chainman .ActiveChain()[std::min(state->pindexBestKnownBlock->nHeight, m_chainman.ActiveChain().Height())]; } // If the peer reorganized, our previous pindexLastCommonBlock may not be an // ancestor of its current tip anymore. Go back enough to fix that. state->pindexLastCommonBlock = LastCommonAncestor( state->pindexLastCommonBlock, state->pindexBestKnownBlock); if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) { return; } std::vector<const CBlockIndex *> vToFetch; const CBlockIndex *pindexWalk = state->pindexLastCommonBlock; // Never fetch further than the best block we know the peer has, or more // than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last linked block we have in // common with this peer. The +1 is so we can detect stalling, namely if we // would be able to download that next block if the window were 1 larger. int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW; int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1); NodeId waitingfor = -1; while (pindexWalk->nHeight < nMaxHeight) { // Read up to 128 (or more, if more blocks than that are needed) // successors of pindexWalk (towards pindexBestKnownBlock) into // vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as // expensive as iterating over ~100 CBlockIndex* entries anyway. int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128)); vToFetch.resize(nToFetch); pindexWalk = state->pindexBestKnownBlock->GetAncestor( pindexWalk->nHeight + nToFetch); vToFetch[nToFetch - 1] = pindexWalk; for (unsigned int i = nToFetch - 1; i > 0; i--) { vToFetch[i - 1] = vToFetch[i]->pprev; } // Iterate over those blocks in vToFetch (in forward direction), adding // the ones that are not yet downloaded and not in flight to vBlocks. In // the meantime, update pindexLastCommonBlock as long as all ancestors // are already downloaded, or if it's already part of our chain (and // therefore don't need it even if pruned). for (const CBlockIndex *pindex : vToFetch) { if (!pindex->IsValid(BlockValidity::TREE)) { // We consider the chain that this peer is on invalid. return; } if (pindex->nStatus.hasData() || m_chainman.ActiveChain().Contains(pindex)) { if (pindex->HaveTxsDownloaded()) { state->pindexLastCommonBlock = pindex; } } else if (!IsBlockRequested(pindex->GetBlockHash())) { // The block is not already downloaded, and not yet in flight. if (pindex->nHeight > nWindowEnd) { // We reached the end of the window. if (vBlocks.size() == 0 && waitingfor != nodeid) { // We aren't able to fetch anything, but we would be if // the download window was one larger. nodeStaller = waitingfor; } return; } vBlocks.push_back(pindex); if (vBlocks.size() == count) { return; } } else if (waitingfor == -1) { // This is the first already-in-flight block. waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first; } } } } } // namespace template <class InvId> static bool TooManyAnnouncements(const CNode &node, const InvRequestTracker<InvId> &requestTracker, const DataRequestParameters &requestParams) { return !node.HasPermission( requestParams.bypass_request_limits_permissions) && requestTracker.Count(node.GetId()) >= requestParams.max_peer_announcements; } /** * Compute the request time for this announcement, current time plus delays for: * - nonpref_peer_delay for announcements from non-preferred connections * - overloaded_peer_delay for announcements from peers which have at least * max_peer_request_in_flight requests in flight (and don't have * NetPermissionFlags::Relay). */ template <class InvId> static std::chrono::microseconds ComputeRequestTime(const CNode &node, const InvRequestTracker<InvId> &requestTracker, const DataRequestParameters &requestParams, std::chrono::microseconds current_time, bool preferred) { auto delay = std::chrono::microseconds{0}; if (!preferred) { delay += requestParams.nonpref_peer_delay; } if (!node.HasPermission(requestParams.bypass_request_limits_permissions) && requestTracker.CountInFlight(node.GetId()) >= requestParams.max_peer_request_in_flight) { delay += requestParams.overloaded_peer_delay; } return current_time + delay; } void PeerManagerImpl::PushNodeVersion(const Config &config, CNode &pnode, const Peer &peer) { uint64_t my_services{peer.m_our_services}; const int64_t nTime{count_seconds(GetTime<std::chrono::seconds>())}; uint64_t nonce = pnode.GetLocalNonce(); const int nNodeStartingHeight{m_best_height}; NodeId nodeid = pnode.GetId(); CAddress addr = pnode.addr; uint64_t extraEntropy = pnode.GetLocalExtraEntropy(); CService addr_you = addr.IsRoutable() && !IsProxy(addr) && addr.IsAddrV1Compatible() ? addr : CService(); uint64_t your_services{addr.nServices}; const bool tx_relay = !m_ignore_incoming_txs && !pnode.IsBlockOnlyConn() && !pnode.IsFeelerConn(); m_connman.PushMessage( // your_services, addr_you: Together the pre-version-31402 serialization // of CAddress "addrYou" (without nTime) // my_services, CService(): Together the pre-version-31402 serialization // of CAddress "addrMe" (without nTime) &pnode, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::VERSION, PROTOCOL_VERSION, my_services, nTime, your_services, addr_you, my_services, CService(), nonce, userAgent(config), nNodeStartingHeight, tx_relay, extraEntropy)); if (fLogIPs) { LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, them=%s, " "txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addr_you.ToString(), tx_relay, nodeid); } else { LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, " "txrelay=%d, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, tx_relay, nodeid); } } void PeerManagerImpl::AddTxAnnouncement( const CNode &node, const TxId &txid, std::chrono::microseconds current_time) { // For m_txrequest and state AssertLockHeld(::cs_main); if (TooManyAnnouncements(node, m_txrequest, TX_REQUEST_PARAMS)) { return; } const bool preferred = isPreferredDownloadPeer(node); auto reqtime = ComputeRequestTime(node, m_txrequest, TX_REQUEST_PARAMS, current_time, preferred); m_txrequest.ReceivedInv(node.GetId(), txid, preferred, reqtime); } void PeerManagerImpl::AddProofAnnouncement( const CNode &node, const avalanche::ProofId &proofid, std::chrono::microseconds current_time, bool preferred) { // For m_proofrequest AssertLockHeld(cs_proofrequest); if (TooManyAnnouncements(node, m_proofrequest, PROOF_REQUEST_PARAMS)) { return; } auto reqtime = ComputeRequestTime( node, m_proofrequest, PROOF_REQUEST_PARAMS, current_time, preferred); m_proofrequest.ReceivedInv(node.GetId(), proofid, preferred, reqtime); } void PeerManagerImpl::UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) { LOCK(cs_main); CNodeState *state = State(node); if (state) { state->m_last_block_announcement = time_in_seconds; } } void PeerManagerImpl::InitializeNode(const Config &config, CNode &node, ServiceFlags our_services) { NodeId nodeid = node.GetId(); { LOCK(cs_main); m_node_states.emplace_hint(m_node_states.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(node.IsInboundConn())); assert(m_txrequest.Count(nodeid) == 0); } PeerRef peer = std::make_shared<Peer>(nodeid, our_services); { LOCK(m_peer_mutex); m_peer_map.emplace_hint(m_peer_map.end(), nodeid, peer); } if (!node.IsInboundConn()) { PushNodeVersion(config, node, *peer); } } void PeerManagerImpl::ReattemptInitialBroadcast(CScheduler &scheduler) { std::set<TxId> unbroadcast_txids = m_mempool.GetUnbroadcastTxs(); for (const TxId &txid : unbroadcast_txids) { // Sanity check: all unbroadcast txns should exist in the mempool if (m_mempool.exists(txid)) { RelayTransaction(txid); } else { m_mempool.RemoveUnbroadcastTx(txid, true); } } if (g_avalanche && isAvalancheEnabled(gArgs)) { // Get and sanitize the list of proofids to broadcast. The RelayProof // call is done in a second loop to avoid locking cs_vNodes while // cs_peerManager is locked which would cause a potential deadlock due // to reversed lock order. auto unbroadcasted_proofids = g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { auto unbroadcasted_proofids = pm.getUnbroadcastProofs(); auto it = unbroadcasted_proofids.begin(); while (it != unbroadcasted_proofids.end()) { // Sanity check: all unbroadcast proofs should be bound to a // peer in the peermanager if (!pm.isBoundToPeer(*it)) { pm.removeUnbroadcastProof(*it); it = unbroadcasted_proofids.erase(it); continue; } ++it; } return unbroadcasted_proofids; }); // Remaining proofids are the ones to broadcast for (const auto &proofid : unbroadcasted_proofids) { RelayProof(proofid); } } // Schedule next run for 10-15 minutes in the future. // We add randomness on every cycle to avoid the possibility of P2P // fingerprinting. const auto reattemptBroadcastInterval = 10min + GetRandMillis(5min); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, reattemptBroadcastInterval); } void PeerManagerImpl::UpdateAvalancheStatistics() const { m_connman.ForEachNode([](CNode *pnode) { pnode->updateAvailabilityScore(AVALANCHE_STATISTICS_DECAY_FACTOR); }); if (!g_avalanche) { // Not enabled or not ready yet return; } // Generate a peer availability score by computing an exponentially // weighted moving average of the average of node availability scores. // This ensures the peer score is bound to the lifetime of its proof which // incentivizes stable network activity. g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { pm.updateAvailabilityScores( AVALANCHE_STATISTICS_DECAY_FACTOR, [&](NodeId nodeid) -> double { double score{0.0}; m_connman.ForNode(nodeid, [&](CNode *pavanode) { score = pavanode->getAvailabilityScore(); return true; }); return score; }); }); } void PeerManagerImpl::AvalanchePeriodicNetworking(CScheduler &scheduler) const { const auto now = GetTime<std::chrono::seconds>(); std::vector<NodeId> avanode_ids; bool fQuorumEstablished; bool fShouldRequestMoreNodes; if (!g_avalanche) { // Not enabled or not ready yet, retry later goto scheduleLater; } g_avalanche->sendDelayedAvahello(); fQuorumEstablished = g_avalanche->isQuorumEstablished(); fShouldRequestMoreNodes = g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.shouldRequestMoreNodes(); }); m_connman.ForEachNode([&](CNode *pnode) { // Build a list of the avalanche peers nodeids if (pnode->m_avalanche_enabled && (!fQuorumEstablished || !pnode->IsInboundConn())) { avanode_ids.push_back(pnode->GetId()); } PeerRef peer = GetPeerRef(pnode->GetId()); if (peer == nullptr) { return; } // If a proof radix tree timed out, cleanup if (peer->m_proof_relay && now > (peer->m_proof_relay->lastSharedProofsUpdate.load() + AVALANCHE_AVAPROOFS_TIMEOUT)) { peer->m_proof_relay->sharedProofs = {}; } }); if (avanode_ids.empty()) { // No node is available for messaging, retry later goto scheduleLater; } Shuffle(avanode_ids.begin(), avanode_ids.end(), FastRandomContext()); // Request avalanche addresses from our peers for (NodeId avanodeId : avanode_ids) { m_connman.ForNode(avanodeId, [&](CNode *pavanode) { m_connman.PushMessage(pavanode, CNetMsgMaker(pavanode->GetCommonVersion()) .Make(NetMsgType::GETAVAADDR)); PeerRef peer = GetPeerRef(avanodeId); WITH_LOCK(peer->m_addr_token_bucket_mutex, peer->m_addr_token_bucket += GetMaxAddrToSend()); return true; }); // If we have no reason to believe that we need more nodes, only request // addresses from one of our peers. if (fQuorumEstablished && !fShouldRequestMoreNodes) { break; } } if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // Don't request proofs while in IBD. We're likely to orphan them // because we don't have the UTXOs. goto scheduleLater; } // If we never had an avaproofs message yet, be kind and only request to a // subset of our peers as we expect a ton of avaproofs message in the // process. if (g_avalanche->getAvaproofsNodeCounter() == 0) { avanode_ids.resize(std::min<size_t>(avanode_ids.size(), 3)); } for (NodeId nodeid : avanode_ids) { // Send a getavaproofs to all of our peers m_connman.ForNode(nodeid, [&](CNode *pavanode) { PeerRef peer = GetPeerRef(nodeid); if (peer->m_proof_relay) { m_connman.PushMessage(pavanode, CNetMsgMaker(pavanode->GetCommonVersion()) .Make(NetMsgType::GETAVAPROOFS)); peer->m_proof_relay->compactproofs_requested = true; } return true; }); } scheduleLater: // Schedule next run for 2-5 minutes in the future. // We add randomness on every cycle to avoid the possibility of P2P // fingerprinting. const auto avalanchePeriodicNetworkingInterval = 2min + GetRandMillis(3min); scheduler.scheduleFromNow([&] { AvalanchePeriodicNetworking(scheduler); }, avalanchePeriodicNetworkingInterval); } void PeerManagerImpl::FinalizeNode(const Config &config, const CNode &node) { NodeId nodeid = node.GetId(); int misbehavior{0}; { LOCK(cs_main); { // We remove the PeerRef from g_peer_map here, but we don't always // destruct the Peer. Sometimes another thread is still holding a // PeerRef, so the refcount is >= 1. Be careful not to do any // processing here that assumes Peer won't be changed before it's // destructed. PeerRef peer = RemovePeer(nodeid); assert(peer != nullptr); misbehavior = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score); LOCK(m_peer_mutex); m_peer_map.erase(nodeid); } CNodeState *state = State(nodeid); assert(state != nullptr); if (state->fSyncStarted) { nSyncStarted--; } for (const QueuedBlock &entry : state->vBlocksInFlight) { mapBlocksInFlight.erase(entry.pindex->GetBlockHash()); } WITH_LOCK(g_cs_orphans, m_orphanage.EraseForPeer(nodeid)); m_txrequest.DisconnectedPeer(nodeid); m_num_preferred_download_peers -= state->fPreferredDownload; m_peers_downloading_from -= (state->nBlocksInFlight != 0); assert(m_peers_downloading_from >= 0); m_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect; assert(m_outbound_peers_with_protect_from_disconnect >= 0); m_node_states.erase(nodeid); if (m_node_states.empty()) { // Do a consistency check after the last peer is removed. assert(mapBlocksInFlight.empty()); assert(m_num_preferred_download_peers == 0); assert(m_peers_downloading_from == 0); assert(m_outbound_peers_with_protect_from_disconnect == 0); assert(m_txrequest.Size() == 0); assert(m_orphanage.Size() == 0); } } if (node.fSuccessfullyConnected && misbehavior == 0 && !node.IsBlockOnlyConn() && !node.IsInboundConn()) { // Only change visible addrman state for full outbound peers. We don't // call Connected() for feeler connections since they don't have // fSuccessfullyConnected set. m_addrman.Connected(node.addr); } WITH_LOCK(cs_proofrequest, m_proofrequest.DisconnectedPeer(nodeid)); LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid); } PeerRef PeerManagerImpl::GetPeerRef(NodeId id) const { LOCK(m_peer_mutex); auto it = m_peer_map.find(id); return it != m_peer_map.end() ? it->second : nullptr; } PeerRef PeerManagerImpl::RemovePeer(NodeId id) { PeerRef ret; LOCK(m_peer_mutex); auto it = m_peer_map.find(id); if (it != m_peer_map.end()) { ret = std::move(it->second); m_peer_map.erase(it); } return ret; } bool PeerManagerImpl::GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) const { { LOCK(cs_main); const CNodeState *state = State(nodeid); if (state == nullptr) { return false; } stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1; stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1; for (const QueuedBlock &queue : state->vBlocksInFlight) { if (queue.pindex) { stats.vHeightInFlight.push_back(queue.pindex->nHeight); } } } PeerRef peer = GetPeerRef(nodeid); if (peer == nullptr) { return false; } stats.their_services = peer->m_their_services; stats.m_starting_height = peer->m_starting_height; // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node // was still responsive, since pingtime does not update until the ping is // complete, which might take a while. So, if a ping is taking an unusually // long time in flight, the caller can immediately detect that this is // happening. auto ping_wait{0us}; if ((0 != peer->m_ping_nonce_sent) && (0 != peer->m_ping_start.load().count())) { ping_wait = GetTime<std::chrono::microseconds>() - peer->m_ping_start.load(); } if (auto tx_relay = peer->GetTxRelay()) { stats.m_relay_txs = WITH_LOCK(tx_relay->m_bloom_filter_mutex, return tx_relay->m_relay_txs); stats.m_fee_filter_received = tx_relay->m_fee_filter_received.load(); } else { stats.m_relay_txs = false; stats.m_fee_filter_received = Amount::zero(); } stats.m_ping_wait = ping_wait; stats.m_addr_processed = peer->m_addr_processed.load(); stats.m_addr_rate_limited = peer->m_addr_rate_limited.load(); stats.m_addr_relay_enabled = peer->m_addr_relay_enabled.load(); return true; } void PeerManagerImpl::AddToCompactExtraTransactions(const CTransactionRef &tx) { size_t max_extra_txn = gArgs.GetIntArg( "-blockreconstructionextratxn", DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN); if (max_extra_txn <= 0) { return; } if (!vExtraTxnForCompact.size()) { vExtraTxnForCompact.resize(max_extra_txn); } vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetHash(), tx); vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % max_extra_txn; } void PeerManagerImpl::Misbehaving(const NodeId pnode, const int howmuch, const std::string &message) { assert(howmuch > 0); PeerRef peer = GetPeerRef(pnode); if (peer == nullptr) { return; } LOCK(peer->m_misbehavior_mutex); const int score_before{peer->m_misbehavior_score}; peer->m_misbehavior_score += howmuch; const int score_now{peer->m_misbehavior_score}; const std::string message_prefixed = message.empty() ? "" : (": " + message); std::string warning; if (score_now >= DISCOURAGEMENT_THRESHOLD && score_before < DISCOURAGEMENT_THRESHOLD) { warning = " DISCOURAGE THRESHOLD EXCEEDED"; peer->m_should_discourage = true; } LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s%s\n", pnode, score_before, score_now, warning, message_prefixed); } bool PeerManagerImpl::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState &state, bool via_compact_block, const std::string &message) { switch (state.GetResult()) { case BlockValidationResult::BLOCK_RESULT_UNSET: break; // The node is providing invalid data: case BlockValidationResult::BLOCK_CONSENSUS: case BlockValidationResult::BLOCK_MUTATED: if (!via_compact_block) { Misbehaving(nodeid, 100, message); return true; } break; case BlockValidationResult::BLOCK_CACHED_INVALID: { LOCK(cs_main); CNodeState *node_state = State(nodeid); if (node_state == nullptr) { break; } // Ban outbound (but not inbound) peers if on an invalid chain. // Exempt HB compact block peers. Manual connections are always // protected from discouragement. if (!via_compact_block && !node_state->m_is_inbound) { Misbehaving(nodeid, 100, message); return true; } break; } case BlockValidationResult::BLOCK_INVALID_HEADER: case BlockValidationResult::BLOCK_CHECKPOINT: case BlockValidationResult::BLOCK_INVALID_PREV: Misbehaving(nodeid, 100, message); return true; case BlockValidationResult::BLOCK_FINALIZATION: // TODO: Use the state object to report this is probably not the // best idea. This is effectively unreachable, unless there is a bug // somewhere. Misbehaving(nodeid, 20, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case BlockValidationResult::BLOCK_MISSING_PREV: // TODO: Handle this much more gracefully (10 DoS points is super // arbitrary) Misbehaving(nodeid, 10, message); return true; case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE: case BlockValidationResult::BLOCK_TIME_FUTURE: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } bool PeerManagerImpl::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState &state, const std::string &message) { switch (state.GetResult()) { case TxValidationResult::TX_RESULT_UNSET: break; // The node is providing invalid data: case TxValidationResult::TX_CONSENSUS: Misbehaving(nodeid, 100, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE: case TxValidationResult::TX_INPUTS_NOT_STANDARD: case TxValidationResult::TX_NOT_STANDARD: case TxValidationResult::TX_MISSING_INPUTS: case TxValidationResult::TX_PREMATURE_SPEND: case TxValidationResult::TX_CONFLICT: case TxValidationResult::TX_MEMPOOL_POLICY: case TxValidationResult::TX_NO_MEMPOOL: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } bool PeerManagerImpl::BlockRequestAllowed(const CBlockIndex *pindex) { AssertLockHeld(cs_main); if (m_chainman.ActiveChain().Contains(pindex)) { return true; } return pindex->IsValid(BlockValidity::SCRIPTS) && (m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) && (GetBlockProofEquivalentTime( *m_chainman.m_best_header, *pindex, *m_chainman.m_best_header, m_chainparams.GetConsensus()) < STALE_RELAY_AGE_LIMIT); } std::optional<std::string> PeerManagerImpl::FetchBlock(const Config &config, NodeId peer_id, const CBlockIndex &block_index) { if (fImporting) { return "Importing..."; } if (fReindex) { return "Reindexing..."; } LOCK(cs_main); // Ensure this peer exists and hasn't been disconnected CNodeState *state = State(peer_id); if (state == nullptr) { return "Peer does not exist"; } // Mark block as in-flight unless it already is (for this peer). // If a block was already in-flight for a different peer, its BLOCKTXN // response will be dropped. if (!BlockRequested(config, peer_id, block_index)) { return "Already requested from this peer"; } // Construct message to request the block const BlockHash &hash{block_index.GetBlockHash()}; const std::vector<CInv> invs{CInv(MSG_BLOCK, hash)}; // Send block request message to the peer if (!m_connman.ForNode(peer_id, [this, &invs](CNode *node) { const CNetMsgMaker msgMaker(node->GetCommonVersion()); this->m_connman.PushMessage( node, msgMaker.Make(NetMsgType::GETDATA, invs)); return true; })) { return "Node not fully connected"; } LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n", hash.ToString(), peer_id); return std::nullopt; } std::unique_ptr<PeerManager> PeerManager::make(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, bool ignore_incoming_txs) { return std::make_unique<PeerManagerImpl>(connman, addrman, banman, chainman, pool, ignore_incoming_txs); } PeerManagerImpl::PeerManagerImpl(CConnman &connman, AddrMan &addrman, BanMan *banman, ChainstateManager &chainman, CTxMemPool &pool, bool ignore_incoming_txs) : m_chainparams(chainman.GetParams()), m_connman(connman), m_addrman(addrman), m_banman(banman), m_chainman(chainman), m_mempool(pool), m_ignore_incoming_txs(ignore_incoming_txs) {} void PeerManagerImpl::StartScheduledTasks(CScheduler &scheduler) { // Stale tip checking and peer eviction are on two different timers, but we // don't want them to get out of sync due to drift in the scheduler, so we // combine them in one function and schedule at the quicker (peer-eviction) // timer. static_assert( EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer"); scheduler.scheduleEvery( [this]() { this->CheckForStaleTipAndEvictPeers(); return true; }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL}); // schedule next run for 10-15 minutes in the future const auto reattemptBroadcastInterval = 10min + GetRandMillis(5min); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, reattemptBroadcastInterval); // Update the avalanche statistics on a schedule scheduler.scheduleEvery( [this]() { UpdateAvalancheStatistics(); return true; }, AVALANCHE_STATISTICS_REFRESH_PERIOD); // schedule next run for 2-5 minutes in the future const auto avalanchePeriodicNetworkingInterval = 2min + GetRandMillis(3min); scheduler.scheduleFromNow([&] { AvalanchePeriodicNetworking(scheduler); }, avalanchePeriodicNetworkingInterval); } /** * Evict orphan txn pool entries based on a newly connected * block, remember the recently confirmed transactions, and delete tracked * announcements for them. Also save the time of the last tip update. */ void PeerManagerImpl::BlockConnected( const std::shared_ptr<const CBlock> &pblock, const CBlockIndex *pindex) { m_orphanage.EraseForBlock(*pblock); m_last_tip_update = GetTime<std::chrono::seconds>(); { LOCK(m_recent_confirmed_transactions_mutex); for (const CTransactionRef &ptx : pblock->vtx) { m_recent_confirmed_transactions.insert(ptx->GetId()); } } { LOCK(cs_main); for (const auto &ptx : pblock->vtx) { m_txrequest.ForgetInvId(ptx->GetId()); } } } void PeerManagerImpl::BlockDisconnected( const std::shared_ptr<const CBlock> &block, const CBlockIndex *pindex) { // To avoid relay problems with transactions that were previously // confirmed, clear our filter of recently confirmed transactions whenever // there's a reorg. // This means that in a 1-block reorg (where 1 block is disconnected and // then another block reconnected), our filter will drop to having only one // block's worth of transactions in it, but that should be fine, since // presumably the most common case of relaying a confirmed transaction // should be just after a new block containing it is found. LOCK(m_recent_confirmed_transactions_mutex); m_recent_confirmed_transactions.reset(); } /** * Maintain state about the best-seen block and fast-announce a compact block * to compatible peers. */ void PeerManagerImpl::NewPoWValidBlock( const CBlockIndex *pindex, const std::shared_ptr<const CBlock> &pblock) { std::shared_ptr<const CBlockHeaderAndShortTxIDs> pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock); const CNetMsgMaker msgMaker(PROTOCOL_VERSION); LOCK(cs_main); if (pindex->nHeight <= m_highest_fast_announce) { return; } m_highest_fast_announce = pindex->nHeight; BlockHash hashBlock(pblock->GetHash()); const std::shared_future<CSerializedNetMsg> lazy_ser{ std::async(std::launch::deferred, [&] { return msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock); })}; { LOCK(m_most_recent_block_mutex); m_most_recent_block_hash = hashBlock; m_most_recent_block = pblock; m_most_recent_compact_block = pcmpctblock; } m_connman.ForEachNode( [this, pindex, &lazy_ser, &hashBlock](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect) { return; } ProcessBlockAvailability(pnode->GetId()); CNodeState &state = *State(pnode->GetId()); // If the peer has, or we announced to them the previous block // already, but we don't think they have this one, go ahead and // announce it. if (state.m_requested_hb_cmpctblocks && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) { LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock", hashBlock.ToString(), pnode->GetId()); const CSerializedNetMsg &ser_cmpctblock{lazy_ser.get()}; m_connman.PushMessage( pnode, CSerializedNetMsg{ser_cmpctblock.data, ser_cmpctblock.m_type}); state.pindexBestHeaderSent = pindex; } }); } /** * Update our best height and announce any block hashes which weren't previously * in m_chainman.ActiveChain() to our peers. */ void PeerManagerImpl::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { SetBestHeight(pindexNew->nHeight); SetServiceFlagsIBDCache(!fInitialDownload); // Don't relay inventory during initial block download. if (fInitialDownload) { return; } // Find the hashes of all blocks that weren't previously in the best chain. std::vector<BlockHash> vHashes; const CBlockIndex *pindexToAnnounce = pindexNew; while (pindexToAnnounce != pindexFork) { vHashes.push_back(pindexToAnnounce->GetBlockHash()); pindexToAnnounce = pindexToAnnounce->pprev; if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) { // Limit announcements in case of a huge reorganization. Rely on the // peer's synchronization mechanism in that case. break; } } { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { Peer &peer = *it.second; LOCK(peer.m_block_inv_mutex); for (const BlockHash &hash : reverse_iterate(vHashes)) { peer.m_blocks_for_headers_relay.push_back(hash); } } } m_connman.WakeMessageHandler(); } /** * Handle invalid block rejection and consequent peer banning, maintain which * peers announce compact blocks. */ void PeerManagerImpl::BlockChecked(const CBlock &block, const BlockValidationState &state) { LOCK(cs_main); const BlockHash hash = block.GetHash(); std::map<BlockHash, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash); // If the block failed validation, we know where it came from and we're // still connected to that peer, maybe punish. if (state.IsInvalid() && it != mapBlockSource.end() && State(it->second.first)) { MaybePunishNodeForBlock(/*nodeid=*/it->second.first, state, /*via_compact_block=*/!it->second.second); } // Check that: // 1. The block is valid // 2. We're not in initial block download // 3. This is currently the best block we're aware of. We haven't updated // the tip yet so we have no way to check this directly here. Instead we // just check that there are currently no other blocks in flight. else if (state.IsValid() && !m_chainman.ActiveChainstate().IsInitialBlockDownload() && mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) { if (it != mapBlockSource.end()) { MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first); } } if (it != mapBlockSource.end()) { mapBlockSource.erase(it); } } ////////////////////////////////////////////////////////////////////////////// // // Messages // bool PeerManagerImpl::AlreadyHaveTx(const TxId &txid) { if (m_chainman.ActiveChain().Tip()->GetBlockHash() != hashRecentRejectsChainTip) { // If the chain tip has changed previously rejected transactions // might be now valid, e.g. due to a nLockTime'd tx becoming // valid, or a double-spend. Reset the rejects filter and give // those txs a second chance. hashRecentRejectsChainTip = m_chainman.ActiveChain().Tip()->GetBlockHash(); m_recent_rejects.reset(); } if (m_orphanage.HaveTx(txid)) { return true; } { LOCK(m_recent_confirmed_transactions_mutex); if (m_recent_confirmed_transactions.contains(txid)) { return true; } } return m_recent_rejects.contains(txid) || m_mempool.exists(txid); } bool PeerManagerImpl::AlreadyHaveBlock(const BlockHash &block_hash) { return m_chainman.m_blockman.LookupBlockIndex(block_hash) != nullptr; } bool PeerManagerImpl::AlreadyHaveProof(const avalanche::ProofId &proofid) { assert(g_avalanche); auto localProof = g_avalanche->getLocalProof(); if (localProof && localProof->getId() == proofid) { return true; } return g_avalanche->withPeerManager([&proofid](avalanche::PeerManager &pm) { return pm.exists(proofid) || pm.isInvalid(proofid); }); } void PeerManagerImpl::SendPings() { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { it.second->m_ping_queued = true; } } void PeerManagerImpl::RelayTransaction(const TxId &txid) { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { Peer &peer = *it.second; auto tx_relay = peer.GetTxRelay(); if (!tx_relay) { continue; } LOCK(tx_relay->m_tx_inventory_mutex); if (!tx_relay->m_tx_inventory_known_filter.contains(txid)) { tx_relay->m_tx_inventory_to_send.insert(txid); } } } void PeerManagerImpl::RelayProof(const avalanche::ProofId &proofid) { LOCK(m_peer_mutex); for (auto &it : m_peer_map) { Peer &peer = *it.second; if (!peer.m_proof_relay) { continue; } LOCK(peer.m_proof_relay->m_proof_inventory_mutex); if (!peer.m_proof_relay->m_proof_inventory_known_filter.contains( proofid)) { peer.m_proof_relay->m_proof_inventory_to_send.insert(proofid); } } } void PeerManagerImpl::RelayAddress(NodeId originator, const CAddress &addr, bool fReachable) { // We choose the same nodes within a given 24h window (if the list of // connected nodes does not change) and we don't relay to nodes that already // know an address. So within 24h we will likely relay a given address once. // This is to prevent a peer from unjustly giving their address better // propagation by sending it to us repeatedly. if (!fReachable && !addr.IsRelayable()) { return; } // Relay to a limited number of other nodes // Use deterministic randomness to send to the same nodes for 24 hours // at a time so the m_addr_knowns of the chosen nodes prevent repeats const uint64_t hash_addr{CServiceHash(0, 0)(addr)}; const auto current_time{GetTime<std::chrono::seconds>()}; // Adding address hash makes exact rotation time different per address, // while preserving periodicity. const uint64_t time_addr{ (static_cast<uint64_t>(count_seconds(current_time)) + hash_addr) / count_seconds(ROTATE_ADDR_RELAY_DEST_INTERVAL)}; const CSipHasher hasher{ m_connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY) .Write(hash_addr) .Write(time_addr)}; FastRandomContext insecure_rand; // Relay reachable addresses to 2 peers. Unreachable addresses are relayed // randomly to 1 or 2 peers. unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1; std::array<std::pair<uint64_t, Peer *>, 2> best{ {{0, nullptr}, {0, nullptr}}}; assert(nRelayNodes <= best.size()); LOCK(m_peer_mutex); for (auto &[id, peer] : m_peer_map) { if (peer->m_addr_relay_enabled && id != originator && IsAddrCompatible(*peer, addr)) { uint64_t hashKey = CSipHasher(hasher).Write(id).Finalize(); for (unsigned int i = 0; i < nRelayNodes; i++) { if (hashKey > best[i].first) { std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1); best[i] = std::make_pair(hashKey, peer.get()); break; } } } }; for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) { PushAddress(*best[i].second, addr, insecure_rand); } } void PeerManagerImpl::ProcessGetBlockData(const Config &config, CNode &pfrom, Peer &peer, const CInv &inv) { const BlockHash hash(inv.hash); std::shared_ptr<const CBlock> a_recent_block; std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block; { LOCK(m_most_recent_block_mutex); a_recent_block = m_most_recent_block; a_recent_compact_block = m_most_recent_compact_block; } bool need_activate_chain = false; { LOCK(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); if (pindex) { if (pindex->HaveTxsDownloaded() && !pindex->IsValid(BlockValidity::SCRIPTS) && pindex->IsValid(BlockValidity::TREE)) { // If we have the block and all of its parents, but have not yet // validated it, we might be in the middle of connecting it (ie // in the unlock of cs_main before ActivateBestChain but after // AcceptBlock). In this case, we need to run ActivateBestChain // prior to checking the relay conditions below. need_activate_chain = true; } } } // release cs_main before calling ActivateBestChain if (need_activate_chain) { BlockValidationState state; if (!m_chainman.ActiveChainstate().ActivateBestChain(config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); if (!pindex) { return; } if (!BlockRequestAllowed(pindex)) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old " "block that isn't in the main chain\n", __func__, pfrom.GetId()); return; } const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); // Disconnect node in case we have reached the outbound limit for serving // historical blocks. if (m_connman.OutboundTargetReached(true) && (((m_chainman.m_best_header != nullptr) && (m_chainman.m_best_header->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) && // nodes with the download permission may exceed target !pfrom.HasPermission(NetPermissionFlags::Download)) { LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } // Avoid leaking prune-height by never sending blocks below the // NODE_NETWORK_LIMITED threshold. // Add two blocks buffer extension for possible races if (!pfrom.HasPermission(NetPermissionFlags::NoBan) && ((((peer.m_our_services & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((peer.m_our_services & NODE_NETWORK) != NODE_NETWORK) && (m_chainman.ActiveChain().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2)))) { LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED " "threshold, disconnect peer=%d\n", pfrom.GetId()); // disconnect node and prevent it from stalling (would otherwise wait // for the missing block) pfrom.fDisconnect = true; return; } // Pruned nodes may have deleted the block, so check whether it's available // before trying to send. if (!pindex->nStatus.hasData()) { return; } std::shared_ptr<const CBlock> pblock; if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) { pblock = a_recent_block; } else { // Send block from disk std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>(); if (!ReadBlockFromDisk(*pblockRead, pindex, m_chainparams.GetConsensus())) { assert(!"cannot load block from disk"); } pblock = pblockRead; } if (inv.IsMsgBlk()) { m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock)); } else if (inv.IsMsgFilteredBlk()) { bool sendMerkleBlock = false; CMerkleBlock merkleBlock; if (auto tx_relay = peer.GetTxRelay()) { LOCK(tx_relay->m_bloom_filter_mutex); if (tx_relay->m_bloom_filter) { sendMerkleBlock = true; merkleBlock = CMerkleBlock(*pblock, *tx_relay->m_bloom_filter); } } if (sendMerkleBlock) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock)); // CMerkleBlock just contains hashes, so also push any // transactions in the block the client did not see. This avoids // hurting performance by pointlessly requiring a round-trip. // Note that there is currently no way for a node to request any // single transactions we didn't send here - they must either // disconnect and retry or request the full block. Thus, the // protocol spec specified allows for us to provide duplicate // txn here, however we MUST always provide at least what the // remote peer needs. typedef std::pair<size_t, uint256> PairType; for (PairType &pair : merkleBlock.vMatchedTxn) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::TX, *pblock->vtx[pair.first])); } } // else // no response } else if (inv.IsMsgCmpctBlk()) { // If a peer is asking for old blocks, we're almost guaranteed they // won't have a useful mempool to match against a compact block, and // we don't feel like constructing the object for them, so instead // we respond with the full, non-compact block. int nSendFlags = 0; if (CanDirectFetch() && pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_CMPCTBLOCK_DEPTH) { if (a_recent_compact_block && a_recent_compact_block->header.GetHash() == pindex->GetBlockHash()) { m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::CMPCTBLOCK, *a_recent_compact_block)); } else { CBlockHeaderAndShortTxIDs cmpctblock(*pblock); m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } } else { m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCK, *pblock)); } } { LOCK(peer.m_block_inv_mutex); // Trigger the peer node to send a getblocks request for the next // batch of inventory. if (hash == peer.m_continuation_block) { // Send immediately. This must send even if redundant, and // we want it right after the last block so they don't wait for // other stuff first. std::vector<CInv> vInv; vInv.push_back(CInv( MSG_BLOCK, m_chainman.ActiveChain().Tip()->GetBlockHash())); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::INV, vInv)); peer.m_continuation_block = BlockHash(); } } } CTransactionRef PeerManagerImpl::FindTxForGetData(const CNode &peer, const TxId &txid, const std::chrono::seconds mempool_req, const std::chrono::seconds now) { auto txinfo = m_mempool.info(txid); if (txinfo.tx) { // If a TX could have been INVed in reply to a MEMPOOL request, // or is older than UNCONDITIONAL_RELAY_DELAY, permit the request // unconditionally. if ((mempool_req.count() && txinfo.m_time <= mempool_req) || txinfo.m_time <= now - UNCONDITIONAL_RELAY_DELAY) { return std::move(txinfo.tx); } } { LOCK(cs_main); // Otherwise, the transaction must have been announced recently. if (State(peer.GetId())->m_recently_announced_invs.contains(txid)) { // If it was, it can be relayed from either the mempool... if (txinfo.tx) { return std::move(txinfo.tx); } // ... or the relay pool. auto mi = mapRelay.find(txid); if (mi != mapRelay.end()) { return mi->second; } } } return {}; } //! Determine whether or not a peer can request a proof, and return it (or //! nullptr if not found or not allowed). avalanche::ProofRef PeerManagerImpl::FindProofForGetData(const CNode &peer, const avalanche::ProofId &proofid, const std::chrono::seconds now) { avalanche::ProofRef proof; bool send_unconditionally = g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { return pm.forPeer(proofid, [&](const avalanche::Peer &peer) { proof = peer.proof; // If we know that proof for long enough, allow for requesting // it. return peer.registration_time <= now - UNCONDITIONAL_RELAY_DELAY; }); }); if (!proof) { // Always send our local proof if it gets requested, assuming it's // valid. This will make it easier to bind with peers upon startup where // the status of our proof is unknown pending for a block. Note that it // still needs to have been announced first (presumably via an avahello // message). proof = g_avalanche->getLocalProof(); } // We don't have this proof if (!proof) { return avalanche::ProofRef(); } if (send_unconditionally) { return proof; } // Otherwise, the proofs must have been announced recently. LOCK(cs_main); if (State(peer.GetId())->m_recently_announced_proofs.contains(proofid)) { return proof; } return avalanche::ProofRef(); } void PeerManagerImpl::ProcessGetData( const Config &config, CNode &pfrom, Peer &peer, const std::atomic<bool> &interruptMsgProc) { AssertLockNotHeld(cs_main); auto tx_relay = peer.GetTxRelay(); std::deque<CInv>::iterator it = peer.m_getdata_requests.begin(); std::vector<CInv> vNotFound; const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); const auto now{GetTime<std::chrono::seconds>()}; // Get last mempool request time const auto mempool_req = tx_relay != nullptr ? tx_relay->m_last_mempool_req.load() : std::chrono::seconds::min(); // Process as many TX or AVA_PROOF items from the front of the getdata // queue as possible, since they're common and it's efficient to batch // process them. while (it != peer.m_getdata_requests.end()) { if (interruptMsgProc) { return; } // The send buffer provides backpressure. If there's no space in // the buffer, pause processing until the next call. if (pfrom.fPauseSend) { break; } const CInv &inv = *it; if (it->IsMsgProof()) { const avalanche::ProofId proofid(inv.hash); auto proof = FindProofForGetData(pfrom, proofid, now); if (proof) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOF, *proof)); g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { pm.removeUnbroadcastProof(proofid); }); } else { vNotFound.push_back(inv); } ++it; continue; } if (it->IsMsgTx()) { if (tx_relay == nullptr) { // Ignore GETDATA requests for transactions from // block-relay-only peers and peers that asked us not to // announce transactions. continue; } const TxId txid(inv.hash); CTransactionRef tx = FindTxForGetData(pfrom, txid, mempool_req, now); if (tx) { int nSendFlags = 0; m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *tx)); m_mempool.RemoveUnbroadcastTx(txid); // As we're going to send tx, make sure its unconfirmed parents // are made requestable. std::vector<TxId> parent_ids_to_add; { LOCK(m_mempool.cs); auto txiter = m_mempool.GetIter(tx->GetId()); if (txiter) { const CTxMemPoolEntry::Parents &parents = (*txiter)->GetMemPoolParentsConst(); parent_ids_to_add.reserve(parents.size()); for (const CTxMemPoolEntry &parent : parents) { if (parent.GetTime() > now - UNCONDITIONAL_RELAY_DELAY) { parent_ids_to_add.push_back( parent.GetTx().GetId()); } } } } for (const TxId &parent_txid : parent_ids_to_add) { // Relaying a transaction with a recent but unconfirmed // parent. if (WITH_LOCK(tx_relay->m_tx_inventory_mutex, return !tx_relay->m_tx_inventory_known_filter .contains(parent_txid))) { LOCK(cs_main); State(pfrom.GetId()) ->m_recently_announced_invs.insert(parent_txid); } } } else { vNotFound.push_back(inv); } ++it; continue; } // It's neither a proof nor a transaction break; } // Only process one BLOCK item per call, since they're uncommon and can be // expensive to process. if (it != peer.m_getdata_requests.end() && !pfrom.fPauseSend) { const CInv &inv = *it++; if (inv.IsGenBlkMsg()) { ProcessGetBlockData(config, pfrom, peer, inv); } // else: If the first item on the queue is an unknown type, we erase it // and continue processing the queue on the next call. } peer.m_getdata_requests.erase(peer.m_getdata_requests.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it // doesn't have to wait around forever. SPV clients care about this // message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want // to do that because they want to know about (and store and rebroadcast // and risk analyze) the dependencies of transactions relevant to them, // without having to download the entire memory pool. Also, other nodes // can use these messages to automatically request a transaction from // some other peer that annnounced it, and stop waiting for us to // respond. In normal operation, we often send NOTFOUND messages for // parents of transactions that we relay; if a peer is missing a parent, // they may assume we have them and request the parents from us. m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::NOTFOUND, vNotFound)); } } void PeerManagerImpl::SendBlockTransactions( CNode &pfrom, const CBlock &block, const BlockTransactionsRequest &req) { BlockTransactions resp(req); for (size_t i = 0; i < req.indices.size(); i++) { if (req.indices[i] >= block.vtx.size()) { Misbehaving(pfrom, 100, "getblocktxn with out-of-bounds tx indices"); return; } resp.txn[i] = block.vtx[req.indices[i]]; } LOCK(cs_main); const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); int nSendFlags = 0; m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCKTXN, resp)); } void PeerManagerImpl::ProcessHeadersMessage( const Config &config, CNode &pfrom, const Peer &peer, const std::vector<CBlockHeader> &headers, bool via_compact_block) { const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); size_t nCount = headers.size(); if (nCount == 0) { // Nothing interesting. Stop asking this peers for more headers. return; } bool received_new_header = false; const CBlockIndex *pindexLast = nullptr; { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); // If this looks like it could be a block announcement (nCount < // MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that // don't connect: // - Send a getheaders message in response to try to connect the chain. // - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that // don't connect before giving DoS points // - Once a headers message is received that is valid and does connect, // nUnconnectingHeaders gets reset back to 0. if (!m_chainman.m_blockman.LookupBlockIndex(headers[0].hashPrevBlock) && nCount < MAX_BLOCKS_TO_ANNOUNCE) { nodestate->nUnconnectingHeaders++; m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( m_chainman.m_best_header), uint256())); LogPrint( BCLog::NET, "received header %s: missing prev block %s, sending getheaders " "(%d) to end (peer=%d, nUnconnectingHeaders=%d)\n", headers[0].GetHash().ToString(), headers[0].hashPrevBlock.ToString(), m_chainman.m_best_header->nHeight, pfrom.GetId(), nodestate->nUnconnectingHeaders); // Set hashLastUnknownBlock for this peer, so that if we eventually // get the headers - even from a different peer - we can use this // peer to download. UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()); if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS == 0) { // The peer is sending us many headers we can't connect. Misbehaving(pfrom, 20, strprintf("%d non-connecting headers", nodestate->nUnconnectingHeaders)); } return; } BlockHash hashLastBlock; for (const CBlockHeader &header : headers) { if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) { Misbehaving(pfrom, 20, "non-continuous headers sequence"); return; } hashLastBlock = header.GetHash(); } // If we don't have the last header, then they'll have given us // something new (if these headers are valid). if (!m_chainman.m_blockman.LookupBlockIndex(hashLastBlock)) { received_new_header = true; } } BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, headers, state, &pindexLast)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received"); return; } } { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); if (nodestate->nUnconnectingHeaders > 0) { LogPrint(BCLog::NET, "peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n", pfrom.GetId(), nodestate->nUnconnectingHeaders); } nodestate->nUnconnectingHeaders = 0; assert(pindexLast); UpdateBlockAvailability(pfrom.GetId(), pindexLast->GetBlockHash()); // From here, pindexBestKnownBlock should be guaranteed to be non-null, // because it is set in UpdateBlockAvailability. Some nullptr checks are // still present, however, as belt-and-suspenders. if (received_new_header && pindexLast->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } if (nCount == MAX_HEADERS_RESULTS) { // Headers message had its maximum size; the peer may have more // headers. // TODO: optimize: if pindexLast is an ancestor of // m_chainman.ActiveChain().Tip or m_chainman.m_best_header, // continue from there instead. LogPrint( BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom.GetId(), peer.m_starting_height); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator(pindexLast), uint256())); } // If this set of headers is valid and ends in a block with at least as // much work as our tip, download as much as possible. if (CanDirectFetch() && pindexLast->IsValid(BlockValidity::TREE) && m_chainman.ActiveChain().Tip()->nChainWork <= pindexLast->nChainWork) { std::vector<const CBlockIndex *> vToFetch; const CBlockIndex *pindexWalk = pindexLast; // Calculate all the blocks we'd need to switch to pindexLast, up to // a limit. while (pindexWalk && !m_chainman.ActiveChain().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { if (!pindexWalk->nStatus.hasData() && !IsBlockRequested(pindexWalk->GetBlockHash())) { // We don't have this block, and it's not yet in flight. vToFetch.push_back(pindexWalk); } pindexWalk = pindexWalk->pprev; } // If pindexWalk still isn't on our main chain, we're looking at a // very large reorg at a time we think we're close to caught up to // the main chain -- this shouldn't really happen. Bail out on the // direct fetch and rely on parallel download instead. if (!m_chainman.ActiveChain().Contains(pindexWalk)) { LogPrint( BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } else { std::vector<CInv> vGetData; // Download as much as possible, from earliest to latest. for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) { if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { // Can't download any more from this peer break; } vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); BlockRequested(config, pfrom.GetId(), *pindex); LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n", pindex->GetBlockHash().ToString(), pfrom.GetId()); } if (vGetData.size() > 1) { LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers " "direct fetch\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } if (vGetData.size() > 0) { if (!m_ignore_incoming_txs && nodestate->m_provides_cmpctblocks && vGetData.size() == 1 && mapBlocksInFlight.size() == 1 && pindexLast->pprev->IsValid(BlockValidity::CHAIN)) { // In any case, we want to download using a compact // block, not a regular one. vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash); } m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } } } // If we're in IBD, we want outbound peers that will serve us a useful // chain. Disconnect peers that are on chains with insufficient work. if (m_chainman.ActiveChainstate().IsInitialBlockDownload() && nCount != MAX_HEADERS_RESULTS) { // When nCount < MAX_HEADERS_RESULTS, we know we have no more // headers to fetch from this peer. if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has too little work on their headers chain to help // us sync -- disconnect if it is an outbound disconnection // candidate. // Note: We compare their tip to nMinimumChainWork (rather than // m_chainman.ActiveChain().Tip()) because we won't start block // download until we have a headers chain that has at least // nMinimumChainWork, even if a peer has a chain past our tip, // as an anti-DoS measure. if (pfrom.IsOutboundOrBlockRelayConn()) { LogPrintf("Disconnecting outbound peer %d -- headers " "chain has insufficient work\n", pfrom.GetId()); pfrom.fDisconnect = true; } } } // If this is an outbound full-relay peer, check to see if we should // protect it from the bad/lagging chain logic. // Note that outbound block-relay peers are excluded from this // protection, and thus always subject to eviction under the bad/lagging // chain logic. // See ChainSyncTimeoutState. if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) { if (m_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) { LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId()); nodestate->m_chain_sync.m_protect = true; ++m_outbound_peers_with_protect_from_disconnect; } } } } /** * Reconsider orphan transactions after a parent has been accepted to the * mempool. * * @param[in,out] orphan_work_set The set of orphan transactions to * reconsider. Generally only one orphan will be reconsidered on each call of * this function. This set may be added to if accepting an orphan causes its * children to be reconsidered. */ void PeerManagerImpl::ProcessOrphanTx(const Config &config, std::set<TxId> &orphan_work_set) { AssertLockHeld(cs_main); AssertLockHeld(g_cs_orphans); while (!orphan_work_set.empty()) { const TxId orphanTxId = *orphan_work_set.begin(); orphan_work_set.erase(orphan_work_set.begin()); const auto [porphanTx, from_peer] = m_orphanage.GetTx(orphanTxId); if (porphanTx == nullptr) { continue; } const MempoolAcceptResult result = m_chainman.ProcessTransaction(porphanTx); const TxValidationState &state = result.m_state; if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) { LogPrint(BCLog::MEMPOOL, " accepted orphan tx %s\n", orphanTxId.ToString()); RelayTransaction(orphanTxId); m_orphanage.AddChildrenToWorkSet(*porphanTx, orphan_work_set); m_orphanage.EraseTx(orphanTxId); break; } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) { if (state.IsInvalid()) { LogPrint(BCLog::MEMPOOL, " invalid orphan tx %s from peer=%d. %s\n", orphanTxId.ToString(), from_peer, state.ToString()); // Punish peer that gave us an invalid orphan tx MaybePunishNodeForTx(from_peer, state); } // Has inputs but not accepted to mempool // Probably non-standard or insufficient fee LogPrint(BCLog::MEMPOOL, " removed orphan tx %s\n", orphanTxId.ToString()); m_recent_rejects.insert(orphanTxId); m_orphanage.EraseTx(orphanTxId); break; } } } bool PeerManagerImpl::PrepareBlockFilterRequest( CNode &node, Peer &peer, BlockFilterType filter_type, uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff, const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index) { const bool supported_filter_type = (filter_type == BlockFilterType::BASIC && (peer.m_our_services & NODE_COMPACT_FILTERS)); if (!supported_filter_type) { LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n", node.GetId(), static_cast<uint8_t>(filter_type)); node.fDisconnect = true; return false; } { LOCK(cs_main); stop_index = m_chainman.m_blockman.LookupBlockIndex(stop_hash); // Check that the stop block exists and the peer would be allowed to // fetch it. if (!stop_index || !BlockRequestAllowed(stop_index)) { LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n", node.GetId(), stop_hash.ToString()); node.fDisconnect = true; return false; } } uint32_t stop_height = stop_index->nHeight; if (start_height > stop_height) { LogPrint( BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with " /* Continued */ "start height %d and stop height %d\n", node.GetId(), start_height, stop_height); node.fDisconnect = true; return false; } if (stop_height - start_height >= max_height_diff) { LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n", node.GetId(), stop_height - start_height + 1, max_height_diff); node.fDisconnect = true; return false; } filter_index = GetBlockFilterIndex(filter_type); if (!filter_index) { LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type)); return false; } return true; } void PeerManagerImpl::ProcessGetCFilters(CNode &node, Peer &peer, CDataStream &vRecv) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash, MAX_GETCFILTERS_SIZE, stop_index, filter_index)) { return; } std::vector<BlockFilter> filters; if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) { LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } for (const auto &filter : filters) { CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion()) .Make(NetMsgType::CFILTER, filter); m_connman.PushMessage(&node, std::move(msg)); } } void PeerManagerImpl::ProcessGetCFHeaders(CNode &node, Peer &peer, CDataStream &vRecv) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest(node, peer, filter_type, start_height, stop_hash, MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) { return; } uint256 prev_header; if (start_height > 0) { const CBlockIndex *const prev_block = stop_index->GetAncestor(static_cast<int>(start_height - 1)); if (!filter_index->LookupFilterHeader(prev_block, prev_header)) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString()); return; } } std::vector<uint256> filter_hashes; if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) { LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion()) .Make(NetMsgType::CFHEADERS, filter_type_ser, stop_index->GetBlockHash(), prev_header, filter_hashes); m_connman.PushMessage(&node, std::move(msg)); } void PeerManagerImpl::ProcessGetCFCheckPt(CNode &node, Peer &peer, CDataStream &vRecv) { uint8_t filter_type_ser; BlockHash stop_hash; vRecv >> filter_type_ser >> stop_hash; const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( node, peer, filter_type, /*start_height=*/0, stop_hash, /*max_height_diff=*/std::numeric_limits<uint32_t>::max(), stop_index, filter_index)) { return; } std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL); // Populate headers. const CBlockIndex *block_index = stop_index; for (int i = headers.size() - 1; i >= 0; i--) { int height = (i + 1) * CFCHECKPT_INTERVAL; block_index = block_index->GetAncestor(height); if (!filter_index->LookupFilterHeader(block_index, headers[i])) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString()); return; } } CSerializedNetMsg msg = CNetMsgMaker(node.GetCommonVersion()) .Make(NetMsgType::CFCHECKPT, filter_type_ser, stop_index->GetBlockHash(), headers); m_connman.PushMessage(&node, std::move(msg)); } bool IsAvalancheMessageType(const std::string &msg_type) { return msg_type == NetMsgType::AVAHELLO || msg_type == NetMsgType::AVAPOLL || msg_type == NetMsgType::AVARESPONSE || msg_type == NetMsgType::AVAPROOF || msg_type == NetMsgType::GETAVAADDR || msg_type == NetMsgType::GETAVAPROOFS || msg_type == NetMsgType::AVAPROOFS || msg_type == NetMsgType::AVAPROOFSREQ; } uint32_t PeerManagerImpl::GetAvalancheVoteForBlock(const BlockHash &hash) const { AssertLockHeld(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); // Unknown block. if (!pindex) { return -1; } // Invalid block if (pindex->nStatus.isInvalid()) { return 1; } // Parked block if (pindex->nStatus.isOnParkedChain()) { return 2; } const CBlockIndex *pindexTip = m_chainman.ActiveChain().Tip(); const CBlockIndex *pindexFork = LastCommonAncestor(pindex, pindexTip); // Active block. if (pindex == pindexFork) { return 0; } // Fork block. if (pindexFork != pindexTip) { return 3; } // Missing block data. if (!pindex->nStatus.hasData()) { return -2; } // This block is built on top of the tip, we have the data, it // is pending connection or rejection. return -3; }; uint32_t PeerManagerImpl::GetAvalancheVoteForTx(const TxId &id) const { // Accepted in mempool, or in a recent block if (m_mempool.exists(id) || WITH_LOCK(m_recent_confirmed_transactions_mutex, return m_recent_confirmed_transactions.contains(id))) { return 0; } // Invalid tx if (m_recent_rejects.contains(id)) { return 1; } // Orphan tx if (m_orphanage.HaveTx(id)) { return 2; } // Unknown tx return -1; }; /** * Decide a response for an Avalanche poll about the given proof. * * @param[in] id The id of the proof being polled for * @return Our current vote for the proof */ static uint32_t getAvalancheVoteForProof(const avalanche::ProofId &id) { assert(g_avalanche); return g_avalanche->withPeerManager([&id](avalanche::PeerManager &pm) { // Rejected proof if (pm.isInvalid(id)) { return 1; } // The proof is actively bound to a peer if (pm.isBoundToPeer(id)) { return 0; } // Unknown proof if (!pm.exists(id)) { return -1; } // Immature proof if (pm.isImmature(id)) { return 2; } // Not immature, but in conflict with an actively bound proof if (pm.isInConflictingPool(id)) { return 3; } // The proof is known, not rejected, not immature, not a conflict, but // for some reason unbound. This should not happen if the above pools // are managed correctly, but added for robustness. return -2; }); }; void PeerManagerImpl::ProcessBlock(const Config &config, CNode &node, const std::shared_ptr<const CBlock> &block, bool force_processing) { bool new_block{false}; m_chainman.ProcessNewBlock(config, block, force_processing, &new_block); if (new_block) { node.m_last_block_time = GetTime<std::chrono::seconds>(); } else { LOCK(cs_main); mapBlockSource.erase(block->GetHash()); } } void PeerManagerImpl::ProcessMessage( const Config &config, CNode &pfrom, const std::string &msg_type, CDataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic<bool> &interruptMsgProc) { LogPrint(BCLog::NETDEBUG, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId()); PeerRef peer = GetPeerRef(pfrom.GetId()); if (peer == nullptr) { return; } if (IsAvalancheMessageType(msg_type)) { if (!g_avalanche) { LogPrint(BCLog::AVALANCHE, "Avalanche is not initialized, ignoring %s message\n", msg_type); return; } if (!isAvalancheEnabled(gArgs)) { // If avalanche is not enabled, ignore avalanche messages return; } } if (msg_type == NetMsgType::VERSION) { // Each connection can only send one version message if (pfrom.nVersion != 0) { Misbehaving(pfrom, 1, "redundant version message"); return; } int64_t nTime; CService addrMe; uint64_t nNonce = 1; ServiceFlags nServices; int nVersion; std::string cleanSubVer; int starting_height = -1; bool fRelay = true; uint64_t nExtraEntropy = 1; vRecv >> nVersion >> Using<CustomUintFormatter<8>>(nServices) >> nTime; if (nTime < 0) { nTime = 0; } // Ignore the addrMe service bits sent by the peer vRecv.ignore(8); vRecv >> addrMe; if (!pfrom.IsInboundConn()) { m_addrman.SetServices(pfrom.addr, nServices); } if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices)) { LogPrint(BCLog::NET, "peer=%d does not offer the expected services " "(%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices)); pfrom.fDisconnect = true; return; } if (pfrom.IsAvalancheOutboundConnection() && !(nServices & NODE_AVALANCHE)) { LogPrint( BCLog::AVALANCHE, "peer=%d does not offer the avalanche service; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } if (nVersion < MIN_PEER_PROTO_VERSION) { // disconnect from peers older than this proto version LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion); pfrom.fDisconnect = true; return; } if (!vRecv.empty()) { // The version message includes information about the sending node // which we don't use: // - 8 bytes (service bits) // - 16 bytes (ipv6 address) // - 2 bytes (port) vRecv.ignore(26); vRecv >> nNonce; } if (!vRecv.empty()) { std::string strSubVer; vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH); cleanSubVer = SanitizeString(strSubVer); } if (!vRecv.empty()) { vRecv >> starting_height; } if (!vRecv.empty()) { vRecv >> fRelay; } if (!vRecv.empty()) { vRecv >> nExtraEntropy; } // Disconnect if we connected to ourself if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce)) { LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToString()); pfrom.fDisconnect = true; return; } if (pfrom.IsInboundConn() && addrMe.IsRoutable()) { SeenLocal(addrMe); } // Inbound peers send us their version message when they connect. // We send our version message in response. if (pfrom.IsInboundConn()) { PushNodeVersion(config, pfrom, *peer); } // Change version const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION); pfrom.SetCommonVersion(greatest_common_version); pfrom.nVersion = nVersion; const CNetMsgMaker msg_maker(greatest_common_version); m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::VERACK)); // Signal ADDRv2 support (BIP155). m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDADDRV2)); pfrom.m_has_all_wanted_services = HasAllDesirableServiceFlags(nServices); peer->m_their_services = nServices; pfrom.SetAddrLocal(addrMe); { LOCK(pfrom.m_subver_mutex); pfrom.cleanSubVer = cleanSubVer; } peer->m_starting_height = starting_height; // We only initialize the m_tx_relay data structure if: // - this isn't an outbound block-relay-only connection; and // - fRelay=true or we're offering NODE_BLOOM to this peer // (NODE_BLOOM means that the peer may turn on tx relay later) if (!pfrom.IsBlockOnlyConn() && (fRelay || (peer->m_our_services & NODE_BLOOM))) { auto *const tx_relay = peer->SetTxRelay(); { LOCK(tx_relay->m_bloom_filter_mutex); // set to true after we get the first filter* message tx_relay->m_relay_txs = fRelay; } if (fRelay) { pfrom.m_relays_txs = true; } } pfrom.nRemoteHostNonce = nNonce; pfrom.nRemoteExtraEntropy = nExtraEntropy; // Potentially mark this peer as a preferred download peer. { LOCK(cs_main); CNodeState *state = State(pfrom.GetId()); state->fPreferredDownload = (!pfrom.IsInboundConn() || pfrom.HasPermission(NetPermissionFlags::NoBan)) && !pfrom.IsAddrFetchConn() && CanServeBlocks(*peer); m_num_preferred_download_peers += state->fPreferredDownload; } // Self advertisement & GETADDR logic if (!pfrom.IsInboundConn() && SetupAddressRelay(pfrom, *peer)) { // For outbound peers, we try to relay our address (so that other // nodes can try to find us more quickly, as we have no guarantee // that an outbound peer is even aware of how to reach us) and do a // one-time address fetch (to help populate/update our addrman). If // we're starting up for the first time, our addrman may be pretty // empty and no one will know who we are, so these mechanisms are // important to help us connect to the network. // // We skip this for block-relay-only peers. We want to avoid // potentially leaking addr information and we do not want to // indicate to the peer that we will participate in addr relay. if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) { CAddress addr{GetLocalAddress(pfrom.addr), peer->m_our_services, (uint32_t)GetAdjustedTime()}; FastRandomContext insecure_rand; if (addr.IsRoutable()) { LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); PushAddress(*peer, addr, insecure_rand); } else if (IsPeerAddrLocalGood(&pfrom)) { // Override just the address with whatever the peer sees us // as. Leave the port in addr as it was returned by // GetLocalAddress() above, as this is an outbound // connection and the peer cannot observe our listening // port. addr.SetIP(addrMe); LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); PushAddress(*peer, addr, insecure_rand); } } // Get recent addresses m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version) .Make(NetMsgType::GETADDR)); peer->m_getaddr_sent = true; // When requesting a getaddr, accept an additional MAX_ADDR_TO_SEND // addresses in response (bypassing the // MAX_ADDR_PROCESSING_TOKEN_BUCKET limit). WITH_LOCK(peer->m_addr_token_bucket_mutex, peer->m_addr_token_bucket += GetMaxAddrToSend()); } if (!pfrom.IsInboundConn()) { // For non-inbound connections, we update the addrman to record // connection success so that addrman will have an up-to-date // notion of which peers are online and available. // // While we strive to not leak information about block-relay-only // connections via the addrman, not moving an address to the tried // table is also potentially detrimental because new-table entries // are subject to eviction in the event of addrman collisions. We // mitigate the information-leak by never calling // AddrMan::Connected() on block-relay-only peers; see // FinalizeNode(). // // This moves an address from New to Tried table in Addrman, // resolves tried-table collisions, etc. m_addrman.Good(pfrom.addr); } std::string remoteAddr; if (fLogIPs) { remoteAddr = ", peeraddr=" + pfrom.addr.ToString(); } LogPrint(BCLog::NET, "receive version message: [%s] %s: version %d, blocks=%d, " "us=%s, txrelay=%d, peer=%d%s\n", pfrom.addr.ToString(), cleanSubVer, pfrom.nVersion, peer->m_starting_height, addrMe.ToString(), fRelay, pfrom.GetId(), remoteAddr); int64_t currentTime = GetTime(); int64_t nTimeOffset = nTime - currentTime; pfrom.nTimeOffset = nTimeOffset; if (nTime < int64_t(m_chainparams.GenesisBlock().nTime)) { // Ignore time offsets that are improbable (before the Genesis // block) and may underflow our adjusted time. Misbehaving(pfrom, 20, "Ignoring invalid timestamp in version message"); } else if (!pfrom.IsInboundConn()) { // Don't use timedata samples from inbound peers to make it // harder for others to tamper with our adjusted time. AddTimeData(pfrom.addr, nTimeOffset); } // Feeler connections exist only to verify if address is online. if (pfrom.IsFeelerConn()) { LogPrint(BCLog::NET, "feeler connection completed peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (pfrom.nVersion == 0) { // Must have a version message before anything else Misbehaving(pfrom, 10, "non-version message before version handshake"); return; } // At this point, the outgoing message serialization version can't change. const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); if (msg_type == NetMsgType::VERACK) { if (pfrom.fSuccessfullyConnected) { LogPrint(BCLog::NET, "ignoring redundant verack message from peer=%d\n", pfrom.GetId()); return; } if (!pfrom.IsInboundConn()) { LogPrintf( "New outbound peer connected: version: %d, blocks=%d, " "peer=%d%s (%s)\n", pfrom.nVersion.load(), peer->m_starting_height, pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToString()) : ""), pfrom.ConnectionTypeAsString()); } if (pfrom.GetCommonVersion() >= SENDHEADERS_VERSION) { // Tell our peer we prefer to receive headers rather than inv's // We send this to non-NODE NETWORK peers as well, because even // non-NODE NETWORK peers can announce blocks (such as pruning // nodes) m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDHEADERS)); } if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) { // Tell our peer we are willing to provide version 1 // cmpctblocks. However, we do not request new block announcements // using cmpctblock messages. We send this to non-NODE NETWORK peers // as well, because they may wish to request compact blocks from us. m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::SENDCMPCT, /*high_bandwidth=*/false, /*version=*/CMPCTBLOCKS_VERSION)); } if (g_avalanche && isAvalancheEnabled(gArgs)) { if (g_avalanche->sendHello(&pfrom)) { auto localProof = g_avalanche->getLocalProof(); if (localProof) { AddKnownProof(*peer, localProof->getId()); // Add our proof id to the list or the recently announced // proof INVs to this peer. This is used for filtering which // INV can be requested for download. LOCK(cs_main); State(pfrom.GetId()) ->m_recently_announced_proofs.insert( localProof->getId()); } } } pfrom.fSuccessfullyConnected = true; return; } if (!pfrom.fSuccessfullyConnected) { // Must have a verack message before anything else Misbehaving(pfrom, 10, "non-verack message before version handshake"); return; } if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) { int stream_version = vRecv.GetVersion(); if (msg_type == NetMsgType::ADDRV2) { // Add ADDRV2_FORMAT to the version so that the CNetAddr and // CAddress unserialize methods know that an address in v2 format is // coming. stream_version |= ADDRV2_FORMAT; } OverrideStream<CDataStream> s(&vRecv, vRecv.GetType(), stream_version); std::vector<CAddress> vAddr; s >> vAddr; if (!SetupAddressRelay(pfrom, *peer)) { LogPrint(BCLog::NET, "ignoring %s message from %s peer=%d\n", msg_type, pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } if (vAddr.size() > GetMaxAddrToSend()) { Misbehaving( pfrom, 20, strprintf("%s message size = %u", msg_type, vAddr.size())); return; } // Store the new addresses std::vector<CAddress> vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; // Update/increment addr rate limiting bucket. const auto current_time = GetTime<std::chrono::microseconds>(); { LOCK(peer->m_addr_token_bucket_mutex); if (peer->m_addr_token_bucket < MAX_ADDR_PROCESSING_TOKEN_BUCKET) { // Don't increment bucket if it's already full const auto time_diff = std::max(current_time - peer->m_addr_token_timestamp, 0us); const double increment = CountSecondsDouble(time_diff) * MAX_ADDR_RATE_PER_SECOND; peer->m_addr_token_bucket = std::min<double>(peer->m_addr_token_bucket + increment, MAX_ADDR_PROCESSING_TOKEN_BUCKET); } } peer->m_addr_token_timestamp = current_time; const bool rate_limited = !pfrom.HasPermission(NetPermissionFlags::Addr); uint64_t num_proc = 0; uint64_t num_rate_limit = 0; Shuffle(vAddr.begin(), vAddr.end(), FastRandomContext()); for (CAddress &addr : vAddr) { if (interruptMsgProc) { return; } { LOCK(peer->m_addr_token_bucket_mutex); // Apply rate limiting. if (peer->m_addr_token_bucket < 1.0) { if (rate_limited) { ++num_rate_limit; continue; } } else { peer->m_addr_token_bucket -= 1.0; } } // We only bother storing full nodes, though this may include things // which we would not make an outbound connection to, in part // because we may make feeler connections to them. if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) { addr.nTime = nNow - 5 * 24 * 60 * 60; } AddAddressKnown(*peer, addr); if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) { // Do not process banned/discouraged addresses beyond // remembering we received them continue; } ++num_proc; bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !peer->m_getaddr_sent && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes RelayAddress(pfrom.GetId(), addr, fReachable); } // Do not store addresses outside our network if (fReachable) { vAddrOk.push_back(addr); } } peer->m_addr_processed += num_proc; peer->m_addr_rate_limited += num_rate_limit; LogPrint(BCLog::NET, "Received addr: %u addresses (%u processed, %u rate-limited) " "from peer=%d\n", vAddr.size(), num_proc, num_rate_limit, pfrom.GetId()); m_addrman.Add(vAddrOk, pfrom.addr, 2 * 60 * 60); if (vAddr.size() < 1000) { peer->m_getaddr_sent = false; } // AddrFetch: Require multiple addresses to avoid disconnecting on // self-announcements if (pfrom.IsAddrFetchConn() && vAddr.size() > 1) { LogPrint(BCLog::NET, "addrfetch connection completed peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (msg_type == NetMsgType::SENDADDRV2) { peer->m_wants_addrv2 = true; return; } if (msg_type == NetMsgType::SENDHEADERS) { LOCK(cs_main); State(pfrom.GetId())->fPreferHeaders = true; return; } if (msg_type == NetMsgType::SENDCMPCT) { bool sendcmpct_hb{false}; uint64_t sendcmpct_version{0}; vRecv >> sendcmpct_hb >> sendcmpct_version; if (sendcmpct_version != CMPCTBLOCKS_VERSION) { return; } LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); nodestate->m_provides_cmpctblocks = true; nodestate->m_requested_hb_cmpctblocks = sendcmpct_hb; // save whether peer selects us as BIP152 high-bandwidth peer // (receiving sendcmpct(1) signals high-bandwidth, // sendcmpct(0) low-bandwidth) pfrom.m_bip152_highbandwidth_from = sendcmpct_hb; return; } if (msg_type == NetMsgType::INV) { std::vector<CInv> vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("inv message size = %u", vInv.size())); return; } // Reject tx INVs when the -blocksonly setting is enabled, or this is a // block-relay-only peer bool reject_tx_invs{m_ignore_incoming_txs || pfrom.IsBlockOnlyConn()}; // Allow peers with relay permission to send data other than blocks // in blocks only mode if (pfrom.HasPermission(NetPermissionFlags::Relay)) { reject_tx_invs = false; } const auto current_time{GetTime<std::chrono::microseconds>()}; std::optional<BlockHash> best_block; auto logInv = [&](const CInv &inv, bool fAlreadyHave) { LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId()); }; for (CInv &inv : vInv) { if (interruptMsgProc) { return; } if (inv.IsMsgBlk()) { LOCK(cs_main); const bool fAlreadyHave = AlreadyHaveBlock(BlockHash(inv.hash)); logInv(inv, fAlreadyHave); const BlockHash hash{inv.hash}; UpdateBlockAvailability(pfrom.GetId(), hash); if (!fAlreadyHave && !fImporting && !fReindex && !IsBlockRequested(hash)) { // Headers-first is the primary method of announcement on // the network. If a node fell back to sending blocks by // inv, it's probably for a re-org. The final block hash // provided should be the highest, so send a getheaders and // then fetch the blocks we need to catch up. best_block = std::move(hash); } continue; } if (inv.IsMsgProof()) { const avalanche::ProofId proofid(inv.hash); const bool fAlreadyHave = AlreadyHaveProof(proofid); logInv(inv, fAlreadyHave); AddKnownProof(*peer, proofid); if (!fAlreadyHave && g_avalanche && isAvalancheEnabled(gArgs) && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) { const bool preferred = isPreferredDownloadPeer(pfrom); LOCK(cs_proofrequest); AddProofAnnouncement(pfrom, proofid, current_time, preferred); } continue; } if (inv.IsMsgTx()) { LOCK(cs_main); const TxId txid(inv.hash); const bool fAlreadyHave = AlreadyHaveTx(txid); logInv(inv, fAlreadyHave); AddKnownTx(*peer, txid); if (reject_tx_invs) { LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of " "protocol, disconnecting peer=%d\n", txid.ToString(), pfrom.GetId()); pfrom.fDisconnect = true; return; } else if (!fAlreadyHave && !m_chainman.ActiveChainstate() .IsInitialBlockDownload()) { AddTxAnnouncement(pfrom, txid, current_time); } continue; } LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId()); } if (best_block) { LOCK(m_chainman.GetMutex()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( m_chainman.m_best_header), *best_block)); LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n", m_chainman.m_best_header->nHeight, best_block->ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETDATA) { std::vector<CInv> vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("getdata message size = %u", vInv.size())); return; } LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId()); if (vInv.size() > 0) { LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId()); } { LOCK(peer->m_getdata_requests_mutex); peer->m_getdata_requests.insert(peer->m_getdata_requests.end(), vInv.begin(), vInv.end()); ProcessGetData(config, pfrom, *peer, interruptMsgProc); } return; } if (msg_type == NetMsgType::GETBLOCKS) { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } // We might have announced the currently-being-connected tip using a // compact block, which resulted in the peer sending a getblocks // request, which we would otherwise respond to without the new block. // To avoid this situation we simply verify that we are on our best // known chain now. This is super overkill, but we handle it better // for getheaders requests, and there are no known nodes which support // compact blocks but still use getblocks to request blocks. { std::shared_ptr<const CBlock> a_recent_block; { LOCK(m_most_recent_block_mutex); a_recent_block = m_most_recent_block; } BlockValidationState state; if (!m_chainman.ActiveChainstate().ActivateBestChain( config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); // Find the last block the caller has in the main chain const CBlockIndex *pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator); // Send the rest of the chain if (pindex) { pindex = m_chainman.ActiveChain().Next(pindex); } int nLimit = 500; LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId()); for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex)) { if (pindex->GetBlockHash() == hashStop) { LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } // If pruning, don't inv blocks unless we have on disk and are // likely to still have for some reasonable time window (1 hour) // that block relay might require. const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing; if (fPruneMode && (!pindex->nStatus.hasData() || pindex->nHeight <= m_chainman.ActiveChain().Tip()->nHeight - nPrunedBlocksLikelyToHave)) { LogPrint( BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } WITH_LOCK( peer->m_block_inv_mutex, peer->m_blocks_for_inv_relay.push_back(pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll // trigger the peer to getblocks the next batch of inventory. LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); WITH_LOCK(peer->m_block_inv_mutex, { peer->m_continuation_block = pindex->GetBlockHash(); }); break; } } return; } if (msg_type == NetMsgType::GETBLOCKTXN) { BlockTransactionsRequest req; vRecv >> req; std::shared_ptr<const CBlock> recent_block; { LOCK(m_most_recent_block_mutex); if (m_most_recent_block_hash == req.blockhash) { recent_block = m_most_recent_block; } // Unlock m_most_recent_block_mutex to avoid cs_main lock inversion } if (recent_block) { SendBlockTransactions(pfrom, *recent_block, req); return; } { LOCK(cs_main); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(req.blockhash); if (!pindex || !pindex->nStatus.hasData()) { LogPrint( BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId()); return; } if (pindex->nHeight >= m_chainman.ActiveChain().Height() - MAX_BLOCKTXN_DEPTH) { CBlock block; bool ret = ReadBlockFromDisk(block, pindex, m_chainparams.GetConsensus()); assert(ret); SendBlockTransactions(pfrom, block, req); return; } } // If an older block is requested (should never happen in practice, // but can happen in tests) send a block response instead of a // blocktxn response. Sending a full block response instead of a // small blocktxn response is preferable in the case where a peer // might maliciously send lots of getblocktxn requests to trigger // expensive disk reads, because it will require the peer to // actually receive all the data read from disk over the network. LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH); CInv inv; inv.type = MSG_BLOCK; inv.hash = req.blockhash; WITH_LOCK(peer->m_getdata_requests_mutex, peer->m_getdata_requests.push_back(inv)); // The message processing loop will go around again (without pausing) // and we'll respond then (without cs_main) return; } if (msg_type == NetMsgType::GETHEADERS) { CBlockLocator locator; BlockHash hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } if (fImporting || fReindex) { LogPrint( BCLog::NET, "Ignoring getheaders from peer=%d while importing/reindexing\n", pfrom.GetId()); return; } LOCK(cs_main); // Note that if we were to be on a chain that forks from the // checkpointed chain, then serving those headers to a peer that has // seen the checkpointed chain would cause that peer to disconnect us. // Requiring that our chainwork exceed nMinimumChainWork is a protection // against being fed a bogus chain when we started up for the first time // and getting partitioned off the honest network for serving that chain // to others. if (m_chainman.ActiveTip() == nullptr || (m_chainman.ActiveTip()->nChainWork < nMinimumChainWork && !pfrom.HasPermission(NetPermissionFlags::Download))) { LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because active chain " "has too little work\n", pfrom.GetId()); return; } CNodeState *nodestate = State(pfrom.GetId()); const CBlockIndex *pindex = nullptr; if (locator.IsNull()) { // If locator is null, return the hashStop block pindex = m_chainman.m_blockman.LookupBlockIndex(hashStop); if (!pindex) { return; } if (!BlockRequestAllowed(pindex)) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block " "header that isn't in the main chain\n", __func__, pfrom.GetId()); return; } } else { // Find the last block the caller has in the main chain pindex = m_chainman.ActiveChainstate().FindForkInGlobalIndex(locator); if (pindex) { pindex = m_chainman.ActiveChain().Next(pindex); } } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx // count at the end std::vector<CBlock> vHeaders; int nLimit = MAX_HEADERS_RESULTS; LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId()); for (; pindex; pindex = m_chainman.ActiveChain().Next(pindex)) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) { break; } } // pindex can be nullptr either if we sent // m_chainman.ActiveChain().Tip() OR if our peer has // m_chainman.ActiveChain().Tip() (and thus we are sending an empty // headers message). In both cases it's safe to update // pindexBestHeaderSent to be our tip. // // It is important that we simply reset the BestHeaderSent value here, // and not max(BestHeaderSent, newHeaderSent). We might have announced // the currently-being-connected tip using a compact block, which // resulted in the peer sending a headers request, which we respond to // without the new block. By resetting the BestHeaderSent, we ensure we // will re-announce the new block via headers (or compact blocks again) // in the SendMessages logic. nodestate->pindexBestHeaderSent = pindex ? pindex : m_chainman.ActiveChain().Tip(); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); return; } if (msg_type == NetMsgType::TX) { // Stop processing the transaction early if // 1) We are in blocks only mode and peer has no relay permission; OR // 2) This peer is a block-relay-only peer if ((m_ignore_incoming_txs && !pfrom.HasPermission(NetPermissionFlags::Relay)) || pfrom.IsBlockOnlyConn()) { LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } CTransactionRef ptx; vRecv >> ptx; const CTransaction &tx = *ptx; const TxId &txid = tx.GetId(); AddKnownTx(*peer, txid); LOCK2(cs_main, g_cs_orphans); m_txrequest.ReceivedResponse(pfrom.GetId(), txid); if (AlreadyHaveTx(txid)) { if (pfrom.HasPermission(NetPermissionFlags::ForceRelay)) { // Always relay transactions received from peers with // forcerelay permission, even if they were already in the // mempool, allowing the node to function as a gateway for // nodes hidden behind it. if (!m_mempool.exists(tx.GetId())) { LogPrintf("Not relaying non-mempool transaction %s from " "forcerelay peer=%d\n", tx.GetId().ToString(), pfrom.GetId()); } else { LogPrintf("Force relaying tx %s from peer=%d\n", tx.GetId().ToString(), pfrom.GetId()); RelayTransaction(tx.GetId()); } } return; } const MempoolAcceptResult result = m_chainman.ProcessTransaction(ptx); const TxValidationState &state = result.m_state; if (result.m_result_type == MempoolAcceptResult::ResultType::VALID) { // As this version of the transaction was acceptable, we can forget // about any requests for it. m_txrequest.ForgetInvId(tx.GetId()); RelayTransaction(tx.GetId()); m_orphanage.AddChildrenToWorkSet(tx, peer->m_orphan_work_set); pfrom.m_last_tx_time = GetTime<std::chrono::seconds>(); LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s " "(poolsz %u txn, %u kB)\n", pfrom.GetId(), tx.GetId().ToString(), m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000); // Recursively process any orphan transactions that depended on this // one ProcessOrphanTx(config, peer->m_orphan_work_set); } else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS) { // It may be the case that the orphans parents have all been // rejected. bool fRejectedParents = false; // Deduplicate parent txids, so that we don't have to loop over // the same parent txid more than once down below. std::vector<TxId> unique_parents; unique_parents.reserve(tx.vin.size()); for (const CTxIn &txin : tx.vin) { // We start with all parents, and then remove duplicates below. unique_parents.push_back(txin.prevout.GetTxId()); } std::sort(unique_parents.begin(), unique_parents.end()); unique_parents.erase( std::unique(unique_parents.begin(), unique_parents.end()), unique_parents.end()); for (const TxId &parent_txid : unique_parents) { if (m_recent_rejects.contains(parent_txid)) { fRejectedParents = true; break; } } if (!fRejectedParents) { const auto current_time{GetTime<std::chrono::microseconds>()}; for (const TxId &parent_txid : unique_parents) { // FIXME: MSG_TX should use a TxHash, not a TxId. AddKnownTx(*peer, parent_txid); if (!AlreadyHaveTx(parent_txid)) { AddTxAnnouncement(pfrom, parent_txid, current_time); } } if (m_orphanage.AddTx(ptx, pfrom.GetId())) { AddToCompactExtraTransactions(ptx); } // Once added to the orphan pool, a tx is considered // AlreadyHave, and we shouldn't request it anymore. m_txrequest.ForgetInvId(tx.GetId()); // DoS prevention: do not allow m_orphanage to grow // unbounded (see CVE-2012-3789) unsigned int nMaxOrphanTx = (unsigned int)std::max( int64_t(0), gArgs.GetIntArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS)); unsigned int nEvicted = m_orphanage.LimitOrphans(nMaxOrphanTx); if (nEvicted > 0) { LogPrint(BCLog::MEMPOOL, "orphanage overflow, removed %u tx\n", nEvicted); } } else { LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s\n", tx.GetId().ToString()); // We will continue to reject this tx since it has rejected // parents so avoid re-requesting it from other peers. m_recent_rejects.insert(tx.GetId()); m_txrequest.ForgetInvId(tx.GetId()); } } else { m_recent_rejects.insert(tx.GetId()); m_txrequest.ForgetInvId(tx.GetId()); if (RecursiveDynamicUsage(*ptx) < 100000) { AddToCompactExtraTransactions(ptx); } } // If a tx has been detected by m_recent_rejects, we will have reached // this point and the tx will have been ignored. Because we haven't // submitted the tx to our mempool, we won't have computed a DoS // score for it or determined exactly why we consider it invalid. // // This means we won't penalize any peer subsequently relaying a DoSy // tx (even if we penalized the first peer who gave it to us) because // we have to account for m_recent_rejects showing false positives. In // other words, we shouldn't penalize a peer if we aren't *sure* they // submitted a DoSy tx. // // Note that m_recent_rejects doesn't just record DoSy or invalid // transactions, but any tx not accepted by the mempool, which may be // due to node policy (vs. consensus). So we can't blanket penalize a // peer simply for relaying a tx that our m_recent_rejects has caught, // regardless of false positives. if (state.IsInvalid()) { LogPrint(BCLog::MEMPOOLREJ, "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(), pfrom.GetId(), state.ToString()); MaybePunishNodeForTx(pfrom.GetId(), state); } return; } if (msg_type == NetMsgType::CMPCTBLOCK) { // Ignore cmpctblock received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId()); return; } CBlockHeaderAndShortTxIDs cmpctblock; try { vRecv >> cmpctblock; } catch (std::ios_base::failure &e) { // This block has non contiguous or overflowing indexes Misbehaving(pfrom, 100, "cmpctblock-bad-indexes"); return; } bool received_new_header = false; { LOCK(cs_main); if (!m_chainman.m_blockman.LookupBlockIndex( cmpctblock.header.hashPrevBlock)) { // Doesn't connect (or is genesis), instead of DoSing in // AcceptBlockHeader, request deeper headers if (!m_chainman.ActiveChainstate().IsInitialBlockDownload()) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( m_chainman.m_best_header), uint256())); } return; } if (!m_chainman.m_blockman.LookupBlockIndex( cmpctblock.header.GetHash())) { received_new_header = true; } } const CBlockIndex *pindex = nullptr; BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, {cmpctblock.header}, state, &pindex)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block*/ true, "invalid header via cmpctblock"); return; } } // When we succeed in decoding a block's txids from a cmpctblock // message we typically jump to the BLOCKTXN handling code, with a // dummy (empty) BLOCKTXN message, to re-use the logic there in // completing processing of the putative block (without cs_main). bool fProcessBLOCKTXN = false; CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION); // If we end up treating this as a plain headers message, call that as // well // without cs_main. bool fRevertToHeaderProcessing = false; // Keep a CBlock for "optimistic" compactblock reconstructions (see // below) std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>(); bool fBlockReconstructed = false; { LOCK2(cs_main, g_cs_orphans); // If AcceptBlockHeader returned true, it set pindex assert(pindex); UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash()); CNodeState *nodestate = State(pfrom.GetId()); // If this was a new header with more work than our tip, update the // peer's last block announcement time if (received_new_header && pindex->nChainWork > m_chainman.ActiveChain().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>>:: iterator blockInFlightIt = mapBlocksInFlight.find(pindex->GetBlockHash()); bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end(); if (pindex->nStatus.hasData()) { // Nothing to do here return; } if (pindex->nChainWork <= m_chainman.ActiveChain() .Tip() ->nChainWork || // We know something better pindex->nTx != 0) { // We had this block at some point, but pruned it if (fAlreadyInFlight) { // We requested this block for some reason, but our mempool // will probably be useless so we just grab the block via // normal getdata. std::vector<CInv> vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); } return; } // If we're not close to tip yet, give up and let parallel block // fetch work its magic. if (!fAlreadyInFlight && !CanDirectFetch()) { return; } // We want to be a bit conservative just to be extra careful about // DoS possibilities in compact block processing... if (pindex->nHeight <= m_chainman.ActiveChain().Height() + 2) { if ((!fAlreadyInFlight && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) || (fAlreadyInFlight && blockInFlightIt->second.first == pfrom.GetId())) { std::list<QueuedBlock>::iterator *queuedBlockIt = nullptr; if (!BlockRequested(config, pfrom.GetId(), *pindex, &queuedBlockIt)) { if (!(*queuedBlockIt)->partialBlock) { (*queuedBlockIt) ->partialBlock.reset( new PartiallyDownloadedBlock(config, &m_mempool)); } else { // The block was already in flight using compact // blocks from the same peer. LogPrint(BCLog::NET, "Peer sent us compact block " "we were already syncing!\n"); return; } } PartiallyDownloadedBlock &partialBlock = *(*queuedBlockIt)->partialBlock; ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case Misbehaving does not // result in a disconnect RemoveBlockRequest(pindex->GetBlockHash()); Misbehaving(pfrom, 100, "invalid compact block"); return; } else if (status == READ_STATUS_FAILED) { // Duplicate txindices, the block is now in-flight, so // just request it. std::vector<CInv> vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } BlockTransactionsRequest req; for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) { if (!partialBlock.IsTxAvailable(i)) { req.indices.push_back(i); } } if (req.indices.empty()) { // Dirty hack to jump to BLOCKTXN code (TODO: move // message handling into their own functions) BlockTransactions txn; txn.blockhash = cmpctblock.header.GetHash(); blockTxnMsg << txn; fProcessBLOCKTXN = true; } else { req.blockhash = pindex->GetBlockHash(); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETBLOCKTXN, req)); } } else { // This block is either already in flight from a different // peer, or this peer has too many blocks outstanding to // download from. Optimistically try to reconstruct anyway // since we might be able to without any round trips. PartiallyDownloadedBlock tempBlock(config, &m_mempool); ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status != READ_STATUS_OK) { // TODO: don't ignore failures return; } std::vector<CTransactionRef> dummy; status = tempBlock.FillBlock(*pblock, dummy); if (status == READ_STATUS_OK) { fBlockReconstructed = true; } } } else { if (fAlreadyInFlight) { // We requested this block, but its far into the future, so // our mempool will probably be useless - request the block // normally. std::vector<CInv> vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } else { // If this was an announce-cmpctblock, we want the same // treatment as a header message. fRevertToHeaderProcessing = true; } } } // cs_main if (fProcessBLOCKTXN) { return ProcessMessage(config, pfrom, NetMsgType::BLOCKTXN, blockTxnMsg, time_received, interruptMsgProc); } if (fRevertToHeaderProcessing) { // Headers received from HB compact block peers are permitted to be // relayed before full validation (see BIP 152), so we don't want to // disconnect the peer if the header turns out to be for an invalid // block. Note that if a peer tries to build on an invalid chain, // that will be detected and the peer will be banned. return ProcessHeadersMessage(config, pfrom, *peer, {cmpctblock.header}, /*via_compact_block=*/true); } if (fBlockReconstructed) { // If we got here, we were able to optimistically reconstruct a // block that is in flight from some other peer. { LOCK(cs_main); mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false)); } // Setting force_processing to true means that we bypass some of // our anti-DoS protections in AcceptBlock, which filters // unrequested blocks that might be trying to waste our resources // (eg disk space). Because we only try to reconstruct blocks when // we're close to caught up (via the CanDirectFetch() requirement // above, combined with the behavior of not requesting blocks until // we have a chain with at least nMinimumChainWork), and we ignore // compact blocks with less work than our tip, it is safe to treat // reconstructed compact blocks as having been requested. ProcessBlock(config, pfrom, pblock, /*force_processing=*/true); // hold cs_main for CBlockIndex::IsValid() LOCK(cs_main); if (pindex->IsValid(BlockValidity::TRANSACTIONS)) { // Clear download state for this block, which is in process from // some other peer. We do this after calling. ProcessNewBlock so // that a malleated cmpctblock announcement can't be used to // interfere with block relay. RemoveBlockRequest(pblock->GetHash()); } } return; } if (msg_type == NetMsgType::BLOCKTXN) { // Ignore blocktxn received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId()); return; } BlockTransactions resp; vRecv >> resp; std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>(); bool fBlockRead = false; { LOCK(cs_main); std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>>:: iterator it = mapBlocksInFlight.find(resp.blockhash); if (it == mapBlocksInFlight.end() || !it->second.second->partialBlock || it->second.first != pfrom.GetId()) { LogPrint(BCLog::NET, "Peer %d sent us block transactions for block " "we weren't expecting\n", pfrom.GetId()); return; } PartiallyDownloadedBlock &partialBlock = *it->second.second->partialBlock; ReadStatus status = partialBlock.FillBlock(*pblock, resp.txn); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case of Misbehaving does not // result in a disconnect. RemoveBlockRequest(resp.blockhash); Misbehaving( pfrom, 100, "invalid compact block/non-matching block transactions"); return; } else if (status == READ_STATUS_FAILED) { // Might have collided, fall back to getdata now :( std::vector<CInv> invs; invs.push_back(CInv(MSG_BLOCK, resp.blockhash)); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, invs)); } else { // Block is either okay, or possibly we received // READ_STATUS_CHECKBLOCK_FAILED. // Note that CheckBlock can only fail for one of a few reasons: // 1. bad-proof-of-work (impossible here, because we've already // accepted the header) // 2. merkleroot doesn't match the transactions given (already // caught in FillBlock with READ_STATUS_FAILED, so // impossible here) // 3. the block is otherwise invalid (eg invalid coinbase, // block is too big, too many sigChecks, etc). // So if CheckBlock failed, #3 is the only possibility. // Under BIP 152, we don't DoS-ban unless proof of work is // invalid (we don't require all the stateless checks to have // been run). This is handled below, so just treat this as // though the block was successfully read, and rely on the // handling in ProcessNewBlock to ensure the block index is // updated, etc. // it is now an empty pointer RemoveBlockRequest(resp.blockhash); fBlockRead = true; // mapBlockSource is used for potentially punishing peers and // updating which peers send us compact blocks, so the race // between here and cs_main in ProcessNewBlock is fine. // BIP 152 permits peers to relay compact blocks after // validating the header only; we should not punish peers // if the block turns out to be invalid. mapBlockSource.emplace(resp.blockhash, std::make_pair(pfrom.GetId(), false)); } } // Don't hold cs_main when we call into ProcessNewBlock if (fBlockRead) { // Since we requested this block (it was in mapBlocksInFlight), // force it to be processed, even if it would not be a candidate for // new tip (missing previous block, chain not long enough, etc) // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent // disk-space attacks), but this should be safe due to the // protections in the compact block handler -- see related comment // in compact block optimistic reconstruction handling. ProcessBlock(config, pfrom, pblock, /*force_processing=*/true); } return; } if (msg_type == NetMsgType::HEADERS) { // Ignore headers received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId()); return; } std::vector<CBlockHeader> headers; // Bypass the normal CBlock deserialization, as we don't want to risk // deserializing 2000 full blocks. unsigned int nCount = ReadCompactSize(vRecv); if (nCount > MAX_HEADERS_RESULTS) { Misbehaving(pfrom, 20, strprintf("too-many-headers: headers message size = %u", nCount)); return; } headers.resize(nCount); for (unsigned int n = 0; n < nCount; n++) { vRecv >> headers[n]; // Ignore tx count; assume it is 0. ReadCompactSize(vRecv); } return ProcessHeadersMessage(config, pfrom, *peer, headers, /*via_compact_block=*/false); } if (msg_type == NetMsgType::BLOCK) { // Ignore block received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId()); return; } std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>(); vRecv >> *pblock; LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId()); // Process all blocks from whitelisted peers, even if not requested, // unless we're still syncing with the network. Such an unrequested // block may still be processed, subject to the conditions in // AcceptBlock(). bool forceProcessing = pfrom.HasPermission(NetPermissionFlags::NoBan) && !m_chainman.ActiveChainstate().IsInitialBlockDownload(); const BlockHash hash = pblock->GetHash(); { LOCK(cs_main); // Always process the block if we requested it, since we may // need it even when it's not a candidate for a new best tip. forceProcessing = IsBlockRequested(hash); RemoveBlockRequest(hash); // mapBlockSource is only used for punishing peers and setting // which peers send us compact blocks, so the race between here and // cs_main in ProcessNewBlock is fine. mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true)); } ProcessBlock(config, pfrom, pblock, forceProcessing); return; } if (msg_type == NetMsgType::AVAHELLO) { { LOCK(pfrom.cs_avalanche_pubkey); if (pfrom.m_avalanche_pubkey.has_value()) { LogPrint( BCLog::AVALANCHE, "Ignoring avahello from peer %d: already in our node set\n", pfrom.GetId()); return; } avalanche::Delegation delegation; vRecv >> delegation; // A delegation with an all zero limited id indicates that the peer // has no proof, so we're done. if (delegation.getLimitedProofId() != uint256::ZERO) { avalanche::DelegationState state; CPubKey pubkey; if (!delegation.verify(state, pubkey)) { Misbehaving(pfrom, 100, "invalid-delegation"); return; } pfrom.m_avalanche_pubkey = std::move(pubkey); CHashWriter sighasher(SER_GETHASH, 0); sighasher << delegation.getId(); sighasher << pfrom.nRemoteHostNonce; sighasher << pfrom.GetLocalNonce(); sighasher << pfrom.nRemoteExtraEntropy; sighasher << pfrom.GetLocalExtraEntropy(); SchnorrSig sig; vRecv >> sig; if (!(*pfrom.m_avalanche_pubkey) .VerifySchnorr(sighasher.GetHash(), sig)) { Misbehaving(pfrom, 100, "invalid-avahello-signature"); return; } // If we don't know this proof already, add it to the tracker so // it can be requested. const avalanche::ProofId proofid(delegation.getProofId()); if (!AlreadyHaveProof(proofid)) { const bool preferred = isPreferredDownloadPeer(pfrom); LOCK(cs_proofrequest); AddProofAnnouncement(pfrom, proofid, GetTime<std::chrono::microseconds>(), preferred); } // Don't check the return value. If it fails we probably don't // know about the proof yet. g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.addNode(pfrom.GetId(), proofid); }); } pfrom.m_avalanche_enabled = true; } // Send getavaaddr and getavaproofs to our avalanche outbound or // manual connections if (!pfrom.IsInboundConn()) { m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETAVAADDR)); WITH_LOCK(peer->m_addr_token_bucket_mutex, peer->m_addr_token_bucket += GetMaxAddrToSend()); if (peer->m_proof_relay && !m_chainman.ActiveChainstate().IsInitialBlockDownload()) { m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETAVAPROOFS)); peer->m_proof_relay->compactproofs_requested = true; } } return; } if (msg_type == NetMsgType::AVAPOLL) { const auto now = Now<SteadyMilliseconds>(); const int64_t cooldown = gArgs.GetIntArg("-avacooldown", AVALANCHE_DEFAULT_COOLDOWN); const auto last_poll = pfrom.m_last_poll; pfrom.m_last_poll = now; if (now < last_poll + std::chrono::milliseconds(cooldown)) { LogPrint(BCLog::AVALANCHE, "Ignoring repeated avapoll from peer %d: cooldown not " "elapsed\n", pfrom.GetId()); return; } const bool quorum_established = g_avalanche && g_avalanche->isQuorumEstablished(); uint64_t round; Unserialize(vRecv, round); unsigned int nCount = ReadCompactSize(vRecv); if (nCount > AVALANCHE_MAX_ELEMENT_POLL) { Misbehaving( pfrom, 20, strprintf("too-many-ava-poll: poll message size = %u", nCount)); return; } std::vector<avalanche::Vote> votes; votes.reserve(nCount); for (unsigned int n = 0; n < nCount; n++) { CInv inv; vRecv >> inv; // Default vote for unknown inv type uint32_t vote = -1; // We don't vote definitively until we have an established quorum if (!quorum_established) { votes.emplace_back(vote, inv.hash); continue; } // If inv's type is known, get a vote for its hash switch (inv.type) { case MSG_TX: { if (gArgs.GetBoolArg("-avalanchepreconsensus", false)) { vote = WITH_LOCK(cs_main, return GetAvalancheVoteForTx( TxId(inv.hash))); } } break; case MSG_BLOCK: { vote = WITH_LOCK(cs_main, return GetAvalancheVoteForBlock( BlockHash(inv.hash))); } break; case MSG_AVA_PROOF: { vote = getAvalancheVoteForProof(avalanche::ProofId(inv.hash)); } break; default: { LogPrint(BCLog::AVALANCHE, "poll inv type %d unknown from peer=%d\n", inv.type, pfrom.GetId()); } } votes.emplace_back(vote, inv.hash); } // Send the query to the node. g_avalanche->sendResponse( &pfrom, avalanche::Response(round, cooldown, std::move(votes))); return; } if (msg_type == NetMsgType::AVARESPONSE) { // As long as QUIC is not implemented, we need to sign response and // verify response's signatures in order to avoid any manipulation of // messages at the transport level. CHashVerifier<CDataStream> verifier(&vRecv); avalanche::Response response; verifier >> response; SchnorrSig sig; vRecv >> sig; { LOCK(pfrom.cs_avalanche_pubkey); if (!pfrom.m_avalanche_pubkey.has_value() || !(*pfrom.m_avalanche_pubkey) .VerifySchnorr(verifier.GetHash(), sig)) { Misbehaving(pfrom, 100, "invalid-ava-response-signature"); return; } } auto now = GetTime<std::chrono::seconds>(); std::vector<avalanche::VoteItemUpdate> updates; int banscore{0}; std::string error; if (!g_avalanche->registerVotes(pfrom.GetId(), response, updates, banscore, error)) { if (banscore > 0) { // If the banscore was set, just increase the node ban score Misbehaving(pfrom, banscore, error); return; } // Otherwise the node may have got a network issue. Increase the // fault counter instead and only ban if we reached a threshold. // This allows for fault tolerance should there be a temporary // outage while still preventing DoS'ing behaviors, as the counter // is reset if no fault occured over some time period. pfrom.m_avalanche_message_fault_counter++; pfrom.m_avalanche_last_message_fault = now; // Allow up to 12 messages before increasing the ban score. Since // the queries are cleared after 10s, this is at least 2 minutes // of network outage tolerance over the 1h window. if (pfrom.m_avalanche_message_fault_counter > 12) { Misbehaving(pfrom, 2, error); return; } } // If no fault occurred within the last hour, reset the fault counter if (now > (pfrom.m_avalanche_last_message_fault.load() + 1h)) { pfrom.m_avalanche_message_fault_counter = 0; } pfrom.invsVoted(response.GetVotes().size()); auto logVoteUpdate = [](const auto &voteUpdate, const std::string &voteItemTypeStr, const auto &voteItemId) { std::string voteOutcome; switch (voteUpdate.getStatus()) { case avalanche::VoteStatus::Invalid: voteOutcome = "invalidated"; break; case avalanche::VoteStatus::Rejected: voteOutcome = "rejected"; break; case avalanche::VoteStatus::Accepted: voteOutcome = "accepted"; break; case avalanche::VoteStatus::Finalized: voteOutcome = "finalized"; break; case avalanche::VoteStatus::Stale: voteOutcome = "stalled"; break; // No default case, so the compiler can warn about missing // cases } LogPrint(BCLog::AVALANCHE, "Avalanche %s %s %s\n", voteOutcome, voteItemTypeStr, voteItemId.ToString()); }; bool shouldActivateBestChain = false; for (const auto &u : updates) { const avalanche::AnyVoteItem &item = u.getVoteItem(); // Don't use a visitor here as we want to ignore unsupported item // types. This comes in handy when adding new types. if (auto pitem = std::get_if<const avalanche::ProofRef>(&item)) { avalanche::ProofRef proof = *pitem; const avalanche::ProofId &proofid = proof->getId(); logVoteUpdate(u, "proof", proofid); auto rejectionMode = avalanche::PeerManager::RejectionMode::DEFAULT; auto nextCooldownTimePoint = GetTime<std::chrono::seconds>(); switch (u.getStatus()) { case avalanche::VoteStatus::Invalid: g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { pm.setInvalid(proofid); }); // Fallthrough case avalanche::VoteStatus::Stale: // Invalidate mode removes the proof from all proof // pools rejectionMode = avalanche::PeerManager::RejectionMode::INVALIDATE; // Fallthrough case avalanche::VoteStatus::Rejected: if (!g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { return pm.rejectProof(proofid, rejectionMode); })) { LogPrint(BCLog::AVALANCHE, "ERROR: Failed to reject proof: %s\n", proofid.GetHex()); } break; case avalanche::VoteStatus::Finalized: nextCooldownTimePoint += std::chrono::seconds(gArgs.GetIntArg( "-avalanchepeerreplacementcooldown", AVALANCHE_DEFAULT_PEER_REPLACEMENT_COOLDOWN)); case avalanche::VoteStatus::Accepted: if (!g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { pm.registerProof( proof, avalanche::PeerManager:: RegistrationMode::FORCE_ACCEPT); return pm.forPeer( proofid, [&](const avalanche::Peer &peer) { pm.updateNextPossibleConflictTime( peer.peerid, nextCooldownTimePoint); if (u.getStatus() == avalanche::VoteStatus:: Finalized) { pm.setFinalized(peer.peerid); } // Only fail if the peer was not // created return true; }); })) { LogPrint(BCLog::AVALANCHE, "ERROR: Failed to accept proof: %s\n", proofid.GetHex()); } break; } } if (auto pitem = std::get_if<const CBlockIndex *>(&item)) { CBlockIndex *pindex = const_cast<CBlockIndex *>(*pitem); shouldActivateBestChain = true; logVoteUpdate(u, "block", pindex->GetBlockHash()); switch (u.getStatus()) { case avalanche::VoteStatus::Invalid: case avalanche::VoteStatus::Rejected: { BlockValidationState state; m_chainman.ActiveChainstate().ParkBlock(config, state, pindex); if (!state.IsValid()) { LogPrintf("ERROR: Database error: %s\n", state.GetRejectReason()); return; } } break; case avalanche::VoteStatus::Accepted: { LOCK(cs_main); m_chainman.ActiveChainstate().UnparkBlock(pindex); } break; case avalanche::VoteStatus::Finalized: { { LOCK(cs_main); m_chainman.ActiveChainstate().UnparkBlock(pindex); } m_chainman.ActiveChainstate().AvalancheFinalizeBlock( pindex); } break; case avalanche::VoteStatus::Stale: // Fall back on Nakamoto consensus in the absence of // Avalanche votes for other competing or descendant // blocks. break; } } } if (shouldActivateBestChain) { BlockValidationState state; if (!m_chainman.ActiveChainstate().ActivateBestChain(config, state)) { LogPrintf("failed to activate chain (%s)\n", state.ToString()); } } return; } if (msg_type == NetMsgType::AVAPROOF) { auto proof = RCUPtr<avalanche::Proof>::make(); vRecv >> *proof; ReceivedAvalancheProof(pfrom, *peer, proof); return; } if (msg_type == NetMsgType::GETAVAPROOFS) { if (peer->m_proof_relay == nullptr) { return; } peer->m_proof_relay->lastSharedProofsUpdate = GetTime<std::chrono::seconds>(); peer->m_proof_relay->sharedProofs = g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { return pm.getShareableProofsSnapshot(); }); avalanche::CompactProofs compactProofs( peer->m_proof_relay->sharedProofs); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOFS, compactProofs)); return; } if (msg_type == NetMsgType::AVAPROOFS) { if (peer->m_proof_relay == nullptr) { return; } // Only process the compact proofs if we requested them if (!peer->m_proof_relay->compactproofs_requested) { LogPrint(BCLog::AVALANCHE, "Ignoring unsollicited avaproofs\n"); return; } peer->m_proof_relay->compactproofs_requested = false; avalanche::CompactProofs compactProofs; try { vRecv >> compactProofs; } catch (std::ios_base::failure &e) { // This compact proofs have non contiguous or overflowing indexes Misbehaving(pfrom, 100, "avaproofs-bad-indexes"); return; } // If there are prefilled proofs, process them first std::set<uint32_t> prefilledIndexes; for (const auto &prefilledProof : compactProofs.getPrefilledProofs()) { if (!ReceivedAvalancheProof(pfrom, *peer, prefilledProof.proof)) { // If we got an invalid proof, the peer is getting banned and we // can bail out. return; } } // If there is no shortid, avoid parsing/responding/accounting for the // message. if (compactProofs.getShortIDs().size() == 0) { LogPrint(BCLog::AVALANCHE, "Got an avaproofs message with no shortid (peer %d)\n", pfrom.GetId()); return; } // To determine the chance that the number of entries in a bucket // exceeds N, we use the fact that the number of elements in a single // bucket is binomially distributed (with n = the number of shorttxids // S, and p = 1 / the number of buckets), that in the worst case the // number of buckets is equal to S (due to std::unordered_map having a // default load factor of 1.0), and that the chance for any bucket to // exceed N elements is at most buckets * (the chance that any given // bucket is above N elements). Thus: // P(max_elements_per_bucket > N) <= // S * (1 - cdf(binomial(n=S,p=1/S), N)) // If we assume up to 21000000, allowing 15 elements per bucket should // only fail once per ~2.5 million avaproofs transfers (per peer and // connection). // TODO re-evaluate the bucket count to a more realistic value. // TODO: In the case of a shortid-collision, we should request all the // proofs which collided. For now, we only request one, which is not // that bad considering this event is expected to be very rare. auto shortIdProcessor = avalanche::ProofShortIdProcessor(compactProofs.getPrefilledProofs(), compactProofs.getShortIDs(), 15); if (shortIdProcessor.hasOutOfBoundIndex()) { // This should be catched by deserialization, but catch it here as // well as a good measure. Misbehaving(pfrom, 100, "avaproofs-bad-indexes"); return; } if (!shortIdProcessor.isEvenlyDistributed()) { // This is suspicious, don't ban but bail out return; } size_t proofCount = 0; std::vector<std::pair<avalanche::ProofId, bool>> remoteProofsStatus; g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { pm.forEachPeer([&](const avalanche::Peer &peer) { assert(peer.proof); uint64_t shortid = compactProofs.getShortID(peer.getProofId()); int added = shortIdProcessor.matchKnownItem(shortid, peer.proof); // No collision if (added >= 0) { // Because we know the proof, we can determine if our peer // has it (added = 1) or not (added = 0) and update the // remote proof status accordingly. remoteProofsStatus.emplace_back(peer.getProofId(), added > 0); } proofCount += added; // In order to properly determine which proof is missing, we // need to keep scanning for all our proofs. return true; }); }); avalanche::ProofsRequest req; for (size_t i = 0; i < compactProofs.size(); i++) { if (shortIdProcessor.getItem(i) == nullptr) { req.indices.push_back(i); } } m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::AVAPROOFSREQ, req)); const NodeId nodeid = pfrom.GetId(); // We want to keep a count of how many nodes we successfully requested // avaproofs from as this is used to determine when we are confident our // quorum is close enough to the other participants. g_avalanche->avaproofsSent(nodeid); if (pfrom.IsAvalancheOutboundConnection() || pfrom.IsManualConn()) { g_avalanche->withPeerManager( [&remoteProofsStatus, nodeid](avalanche::PeerManager &pm) { for (const auto &[proofid, present] : remoteProofsStatus) { pm.saveRemoteProof(proofid, nodeid, present); } }); } return; } if (msg_type == NetMsgType::AVAPROOFSREQ) { if (peer->m_proof_relay == nullptr) { return; } avalanche::ProofsRequest proofreq; vRecv >> proofreq; auto requestedIndiceIt = proofreq.indices.begin(); uint32_t treeIndice = 0; peer->m_proof_relay->sharedProofs.forEachLeaf([&](const auto &proof) { if (requestedIndiceIt == proofreq.indices.end()) { // No more indice to process return false; } if (treeIndice++ == *requestedIndiceIt) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOF, *proof)); requestedIndiceIt++; } return true; }); peer->m_proof_relay->sharedProofs = {}; return; } if (msg_type == NetMsgType::GETADDR) { // This asymmetric behavior for inbound and outbound connections was // introduced to prevent a fingerprinting attack: an attacker can send // specific fake addresses to users' AddrMan and later request them by // sending getaddr messages. Making nodes which are behind NAT and can // only make outgoing connections ignore the getaddr message mitigates // the attack. if (!pfrom.IsInboundConn()) { LogPrint(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } // Since this must be an inbound connection, SetupAddressRelay will // never fail. Assume(SetupAddressRelay(pfrom, *peer)); // Only send one GetAddr response per connection to reduce resource // waste and discourage addr stamping of INV announcements. if (peer->m_getaddr_recvd) { LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId()); return; } peer->m_getaddr_recvd = true; peer->m_addrs_to_send.clear(); std::vector<CAddress> vAddr; const size_t maxAddrToSend = GetMaxAddrToSend(); if (pfrom.HasPermission(NetPermissionFlags::Addr)) { vAddr = m_connman.GetAddresses(maxAddrToSend, MAX_PCT_ADDR_TO_SEND, /* network */ std::nullopt); } else { vAddr = m_connman.GetAddresses(pfrom, maxAddrToSend, MAX_PCT_ADDR_TO_SEND); } FastRandomContext insecure_rand; for (const CAddress &addr : vAddr) { PushAddress(*peer, addr, insecure_rand); } return; } if (msg_type == NetMsgType::GETAVAADDR) { auto now = GetTime<std::chrono::seconds>(); if (now < pfrom.m_nextGetAvaAddr) { // Prevent a peer from exhausting our resources by spamming // getavaaddr messages. LogPrint(BCLog::AVALANCHE, "Ignoring repeated getavaaddr from peer %d\n", pfrom.GetId()); return; } // Only accept a getavaaddr every GETAVAADDR_INTERVAL at most pfrom.m_nextGetAvaAddr = now + GETAVAADDR_INTERVAL; if (!SetupAddressRelay(pfrom, *peer)) { LogPrint(BCLog::AVALANCHE, "Ignoring getavaaddr message from %s peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } auto availabilityScoreComparator = [](const CNode *lhs, const CNode *rhs) { double scoreLhs = lhs->getAvailabilityScore(); double scoreRhs = rhs->getAvailabilityScore(); if (scoreLhs != scoreRhs) { return scoreLhs > scoreRhs; } return lhs < rhs; }; // Get up to MAX_ADDR_TO_SEND addresses of the nodes which are the // most active in the avalanche network. Account for 0 availability as // well so we can send addresses even if we did not start polling yet. std::set<const CNode *, decltype(availabilityScoreComparator)> avaNodes( availabilityScoreComparator); m_connman.ForEachNode([&](const CNode *pnode) { if (!pnode->m_avalanche_enabled || pnode->getAvailabilityScore() < 0.) { return; } avaNodes.insert(pnode); if (avaNodes.size() > GetMaxAddrToSend()) { avaNodes.erase(std::prev(avaNodes.end())); } }); peer->m_addrs_to_send.clear(); FastRandomContext insecure_rand; for (const CNode *pnode : avaNodes) { PushAddress(*peer, pnode->addr, insecure_rand); } return; } if (msg_type == NetMsgType::MEMPOOL) { if (!(peer->m_our_services & NODE_BLOOM) && !pfrom.HasPermission(NetPermissionFlags::Mempool)) { if (!pfrom.HasPermission(NetPermissionFlags::NoBan)) { LogPrint(BCLog::NET, "mempool request with bloom filters disabled, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(NetPermissionFlags::Mempool)) { if (!pfrom.HasPermission(NetPermissionFlags::NoBan)) { LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (auto tx_relay = peer->GetTxRelay()) { LOCK(tx_relay->m_tx_inventory_mutex); tx_relay->m_send_mempool = true; } return; } if (msg_type == NetMsgType::PING) { if (pfrom.GetCommonVersion() > BIP0031_VERSION) { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful // features: // // 1) A remote node can quickly check if the connection is // operational. // 2) Remote nodes can measure the latency of the network thread. If // this node is overloaded it won't respond to pings quickly and the // remote node can avoid sending us more work, like chain download // requests. // // The nonce stops the remote getting confused between different // pings: without it, if the remote node sends a ping once per // second and this node takes 5 seconds to respond to each, the 5th // ping the remote sends would appear to return very quickly. m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::PONG, nonce)); } return; } if (msg_type == NetMsgType::PONG) { const auto ping_end = time_received; uint64_t nonce = 0; size_t nAvail = vRecv.in_avail(); bool bPingFinished = false; std::string sProblem; if (nAvail >= sizeof(nonce)) { vRecv >> nonce; // Only process pong message if there is an outstanding ping (old // ping without nonce should never pong) if (peer->m_ping_nonce_sent != 0) { if (nonce == peer->m_ping_nonce_sent) { // Matching pong received, this ping is no longer // outstanding bPingFinished = true; const auto ping_time = ping_end - peer->m_ping_start.load(); if (ping_time.count() >= 0) { // Let connman know about this successful ping-pong pfrom.PongReceived(ping_time); } else { // This should never happen sProblem = "Timing mishap"; } } else { // Nonce mismatches are normal when pings are overlapping sProblem = "Nonce mismatch"; if (nonce == 0) { // This is most likely a bug in another implementation // somewhere; cancel this ping bPingFinished = true; sProblem = "Nonce zero"; } } } else { sProblem = "Unsolicited pong without ping"; } } else { // This is most likely a bug in another implementation somewhere; // cancel this ping bPingFinished = true; sProblem = "Short payload"; } if (!(sProblem.empty())) { LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n", pfrom.GetId(), sProblem, peer->m_ping_nonce_sent, nonce, nAvail); } if (bPingFinished) { peer->m_ping_nonce_sent = 0; } return; } if (msg_type == NetMsgType::FILTERLOAD) { if (!(peer->m_our_services & NODE_BLOOM)) { LogPrint(BCLog::NET, "filterload received despite not offering bloom services " "from peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) { // There is no excuse for sending a too-large filter Misbehaving(pfrom, 100, "too-large bloom filter"); } else if (auto tx_relay = peer->GetTxRelay()) { { LOCK(tx_relay->m_bloom_filter_mutex); tx_relay->m_bloom_filter.reset(new CBloomFilter(filter)); tx_relay->m_relay_txs = true; } pfrom.m_bloom_filter_loaded = true; } return; } if (msg_type == NetMsgType::FILTERADD) { if (!(peer->m_our_services & NODE_BLOOM)) { LogPrint(BCLog::NET, "filteradd received despite not offering bloom services " "from peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } std::vector<uint8_t> vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a // script data object, and thus, the maximum size any matched object can // have) in a filteradd message. bool bad = false; if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { bad = true; } else if (auto tx_relay = peer->GetTxRelay()) { LOCK(tx_relay->m_bloom_filter_mutex); if (tx_relay->m_bloom_filter) { tx_relay->m_bloom_filter->insert(vData); } else { bad = true; } } if (bad) { // The structure of this code doesn't really allow for a good error // code. We'll go generic. Misbehaving(pfrom, 100, "bad filteradd message"); } return; } if (msg_type == NetMsgType::FILTERCLEAR) { if (!(peer->m_our_services & NODE_BLOOM)) { LogPrint(BCLog::NET, "filterclear received despite not offering bloom services " "from peer=%d; disconnecting\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } auto tx_relay = peer->GetTxRelay(); if (!tx_relay) { return; } { LOCK(tx_relay->m_bloom_filter_mutex); tx_relay->m_bloom_filter = nullptr; tx_relay->m_relay_txs = true; } pfrom.m_bloom_filter_loaded = false; pfrom.m_relays_txs = true; return; } if (msg_type == NetMsgType::FEEFILTER) { Amount newFeeFilter = Amount::zero(); vRecv >> newFeeFilter; if (MoneyRange(newFeeFilter)) { if (auto tx_relay = peer->GetTxRelay()) { tx_relay->m_fee_filter_received = newFeeFilter; } LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETCFILTERS) { ProcessGetCFilters(pfrom, *peer, vRecv); return; } if (msg_type == NetMsgType::GETCFHEADERS) { ProcessGetCFHeaders(pfrom, *peer, vRecv); return; } if (msg_type == NetMsgType::GETCFCHECKPT) { ProcessGetCFCheckPt(pfrom, *peer, vRecv); return; } if (msg_type == NetMsgType::NOTFOUND) { std::vector<CInv> vInv; vRecv >> vInv; // A peer might send up to 1 notfound per getdata request, but no more if (vInv.size() <= PROOF_REQUEST_PARAMS.max_peer_announcements + TX_REQUEST_PARAMS.max_peer_announcements + MAX_BLOCKS_IN_TRANSIT_PER_PEER) { for (CInv &inv : vInv) { if (inv.IsMsgTx()) { // If we receive a NOTFOUND message for a tx we requested, // mark the announcement for it as completed in // InvRequestTracker. LOCK(::cs_main); m_txrequest.ReceivedResponse(pfrom.GetId(), TxId(inv.hash)); continue; } if (inv.IsMsgProof()) { LOCK(cs_proofrequest); m_proofrequest.ReceivedResponse( pfrom.GetId(), avalanche::ProofId(inv.hash)); } } } return; } // Ignore unknown commands for extensibility LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId()); return; } bool PeerManagerImpl::MaybeDiscourageAndDisconnect(CNode &pnode, Peer &peer) { { LOCK(peer.m_misbehavior_mutex); // There's nothing to do if the m_should_discourage flag isn't set if (!peer.m_should_discourage) { return false; } peer.m_should_discourage = false; } // peer.m_misbehavior_mutex if (pnode.HasPermission(NetPermissionFlags::NoBan)) { // We never disconnect or discourage peers for bad behavior if they have // NetPermissionFlags::NoBan permission LogPrintf("Warning: not punishing noban peer %d!\n", peer.m_id); return false; } if (pnode.IsManualConn()) { // We never disconnect or discourage manual peers for bad behavior LogPrintf("Warning: not punishing manually connected peer %d!\n", peer.m_id); return false; } if (pnode.addr.IsLocal()) { // We disconnect local peers for bad behavior but don't discourage // (since that would discourage all peers on the same local address) LogPrint(BCLog::NET, "Warning: disconnecting but not discouraging %s peer %d!\n", pnode.m_inbound_onion ? "inbound onion" : "local", peer.m_id); pnode.fDisconnect = true; return true; } // Normal case: Disconnect the peer and discourage all nodes sharing the // address LogPrint(BCLog::NET, "Disconnecting and discouraging peer %d!\n", peer.m_id); if (m_banman) { m_banman->Discourage(pnode.addr); } m_connman.DisconnectNode(pnode.addr); return true; } bool PeerManagerImpl::ProcessMessages(const Config &config, CNode *pfrom, std::atomic<bool> &interruptMsgProc) { // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fMoreWork = false; PeerRef peer = GetPeerRef(pfrom->GetId()); if (peer == nullptr) { return false; } { LOCK(peer->m_getdata_requests_mutex); if (!peer->m_getdata_requests.empty()) { ProcessGetData(config, *pfrom, *peer, interruptMsgProc); } } { LOCK2(cs_main, g_cs_orphans); if (!peer->m_orphan_work_set.empty()) { ProcessOrphanTx(config, peer->m_orphan_work_set); } } if (pfrom->fDisconnect) { return false; } // this maintains the order of responses and prevents m_getdata_requests // from growing unbounded { LOCK(peer->m_getdata_requests_mutex); if (!peer->m_getdata_requests.empty()) { return true; } } { LOCK(g_cs_orphans); if (!peer->m_orphan_work_set.empty()) { return true; } } // Don't bother if send buffer is too full to respond anyway if (pfrom->fPauseSend) { return false; } std::list<CNetMessage> msgs; { LOCK(pfrom->cs_vProcessMsg); if (pfrom->vProcessMsg.empty()) { return false; } // Just take one message msgs.splice(msgs.begin(), pfrom->vProcessMsg, pfrom->vProcessMsg.begin()); pfrom->nProcessQueueSize -= msgs.front().m_raw_message_size; pfrom->fPauseRecv = pfrom->nProcessQueueSize > m_connman.GetReceiveFloodSize(); fMoreWork = !pfrom->vProcessMsg.empty(); } CNetMessage &msg(msgs.front()); TRACE6(net, inbound_message, pfrom->GetId(), pfrom->m_addr_name.c_str(), pfrom->ConnectionTypeAsString().c_str(), msg.m_type.c_str(), msg.m_recv.size(), msg.m_recv.data()); if (gArgs.GetBoolArg("-capturemessages", false)) { CaptureMessage(pfrom->addr, msg.m_type, MakeUCharSpan(msg.m_recv), /*is_incoming=*/true); } msg.SetVersion(pfrom->GetCommonVersion()); // Check network magic if (!msg.m_valid_netmagic) { LogPrint(BCLog::NET, "PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", SanitizeString(msg.m_type), pfrom->GetId()); // Make sure we discourage where that come from for some time. if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); pfrom->fDisconnect = true; return false; } // Check header if (!msg.m_valid_header) { LogPrint(BCLog::NET, "PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", SanitizeString(msg.m_type), pfrom->GetId()); return fMoreWork; } // Checksum CDataStream &vRecv = msg.m_recv; if (!msg.m_valid_checksum) { LogPrint(BCLog::NET, "%s(%s, %u bytes): CHECKSUM ERROR peer=%d\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, pfrom->GetId()); if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); return fMoreWork; } try { ProcessMessage(config, *pfrom, msg.m_type, vRecv, msg.m_time, interruptMsgProc); if (interruptMsgProc) { return false; } { LOCK(peer->m_getdata_requests_mutex); if (!peer->m_getdata_requests.empty()) { fMoreWork = true; } } } catch (const std::exception &e) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size, e.what(), typeid(e).name()); } catch (...) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg.m_type), msg.m_message_size); } return fMoreWork; } void PeerManagerImpl::ConsiderEviction(CNode &pto, std::chrono::seconds time_in_seconds) { AssertLockHeld(cs_main); CNodeState &state = *State(pto.GetId()); const CNetMsgMaker msgMaker(pto.GetCommonVersion()); if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) { // This is an outbound peer subject to disconnection if they don't // announce a block with as much work as the current tip within // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if their // chain has more work than ours, we should sync to it, unless it's // invalid, in which case we should find that out and disconnect from // them elsewhere). if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= m_chainman.ActiveChain().Tip()->nChainWork) { if (state.m_chain_sync.m_timeout != 0s) { state.m_chain_sync.m_timeout = 0s; state.m_chain_sync.m_work_header = nullptr; state.m_chain_sync.m_sent_getheaders = false; } } else if (state.m_chain_sync.m_timeout == 0s || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) { // Our best block known by this peer is behind our tip, and we're // either noticing that for the first time, OR this peer was able to // catch up to some earlier point where we checked against our tip. // Either way, set a new timeout based on current tip. state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT; state.m_chain_sync.m_work_header = m_chainman.ActiveChain().Tip(); state.m_chain_sync.m_sent_getheaders = false; } else if (state.m_chain_sync.m_timeout > 0s && time_in_seconds > state.m_chain_sync.m_timeout) { // No evidence yet that our peer has synced to a chain with work // equal to that of our tip, when we first detected it was behind. // Send a single getheaders message to give the peer a chance to // update us. if (state.m_chain_sync.m_sent_getheaders) { // They've run out of time to catch up! LogPrintf( "Disconnecting outbound peer %d for old chain, best known " "block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>"); pto.fDisconnect = true; } else { assert(state.m_chain_sync.m_work_header); LogPrint( BCLog::NET, "sending getheaders to outbound peer=%d to verify chain " "work (current best known block:%s, benchmark blockhash: " "%s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash() .ToString()); m_connman.PushMessage( &pto, msgMaker.Make(NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator( state.m_chain_sync.m_work_header->pprev), uint256())); state.m_chain_sync.m_sent_getheaders = true; constexpr auto HEADERS_RESPONSE_TIME{2min}; // Bump the timeout to allow a response, which could clear the // timeout (if the response shows the peer has synced), reset // the timeout (if the peer syncs to the required work but not // to our tip), or result in disconnect (if we advance to the // timeout and pindexBestKnownBlock has not sufficiently // progressed) state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME; } } } } void PeerManagerImpl::EvictExtraOutboundPeers(std::chrono::seconds now) { // If we have any extra block-relay-only peers, disconnect the youngest // unless it's given us a block -- in which case, compare with the // second-youngest, and out of those two, disconnect the peer who least // recently gave us a block. // The youngest block-relay-only peer would be the extra peer we connected // to temporarily in order to sync our tip; see net.cpp. // Note that we use higher nodeid as a measure for most recent connection. if (m_connman.GetExtraBlockRelayCount() > 0) { std::pair<NodeId, std::chrono::seconds> youngest_peer{-1, 0}, next_youngest_peer{-1, 0}; m_connman.ForEachNode([&](CNode *pnode) { if (!pnode->IsBlockOnlyConn() || pnode->fDisconnect) { return; } if (pnode->GetId() > youngest_peer.first) { next_youngest_peer = youngest_peer; youngest_peer.first = pnode->GetId(); youngest_peer.second = pnode->m_last_block_time; } }); NodeId to_disconnect = youngest_peer.first; if (youngest_peer.second > next_youngest_peer.second) { // Our newest block-relay-only peer gave us a block more recently; // disconnect our second youngest. to_disconnect = next_youngest_peer.first; } m_connman.ForNode( to_disconnect, [&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); // Make sure we're not getting a block right now, and that we've // been connected long enough for this eviction to happen at // all. Note that we only request blocks from a peer if we learn // of a valid headers chain with at least as much work as our // tip. CNodeState *node_state = State(pnode->GetId()); if (node_state == nullptr || (now - pnode->m_connected >= MINIMUM_CONNECT_TIME && node_state->nBlocksInFlight == 0)) { pnode->fDisconnect = true; LogPrint(BCLog::NET, "disconnecting extra block-relay-only peer=%d " "(last block received at time %d)\n", pnode->GetId(), count_seconds(pnode->m_last_block_time)); return true; } else { LogPrint( BCLog::NET, "keeping block-relay-only peer=%d chosen for eviction " "(connect time: %d, blocks_in_flight: %d)\n", pnode->GetId(), count_seconds(pnode->m_connected), node_state->nBlocksInFlight); } return false; }); } // Check whether we have too many OUTBOUND_FULL_RELAY peers if (m_connman.GetExtraFullOutboundCount() <= 0) { return; } // If we have more OUTBOUND_FULL_RELAY peers than we target, disconnect one. // Pick the OUTBOUND_FULL_RELAY peer that least recently announced us a new // block, with ties broken by choosing the more recent connection (higher // node id) NodeId worst_peer = -1; int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max(); m_connman.ForEachNode([&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED( ::cs_main) { AssertLockHeld(::cs_main); // Only consider OUTBOUND_FULL_RELAY peers that are not already marked // for disconnection if (!pnode->IsFullOutboundConn() || pnode->fDisconnect) { return; } CNodeState *state = State(pnode->GetId()); if (state == nullptr) { // shouldn't be possible, but just in case return; } // Don't evict our protected peers if (state->m_chain_sync.m_protect) { return; } if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) { worst_peer = pnode->GetId(); oldest_block_announcement = state->m_last_block_announcement; } }); if (worst_peer == -1) { return; } bool disconnected = m_connman.ForNode( worst_peer, [&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); // Only disconnect a peer that has been connected to us for some // reasonable fraction of our check-frequency, to give it time for // new information to have arrived. Also don't disconnect any peer // we're trying to download a block from. CNodeState &state = *State(pnode->GetId()); if (now - pnode->m_connected > MINIMUM_CONNECT_TIME && state.nBlocksInFlight == 0) { LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block " "announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement); pnode->fDisconnect = true; return true; } else { LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction " "(connect time: %d, blocks_in_flight: %d)\n", pnode->GetId(), count_seconds(pnode->m_connected), state.nBlocksInFlight); return false; } }); if (disconnected) { // If we disconnected an extra peer, that means we successfully // connected to at least one peer after the last time we detected a // stale tip. Don't try any more extra peers until we next detect a // stale tip, to limit the load we put on the network from these extra // connections. m_connman.SetTryNewOutboundPeer(false); } } void PeerManagerImpl::CheckForStaleTipAndEvictPeers() { LOCK(cs_main); auto now{GetTime<std::chrono::seconds>()}; EvictExtraOutboundPeers(now); if (now > m_stale_tip_check_time) { // Check whether our tip is stale, and if so, allow using an extra // outbound peer. if (!fImporting && !fReindex && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale()) { LogPrintf("Potential stale tip detected, will try using extra " "outbound peer (last tip update: %d seconds ago)\n", count_seconds(now - m_last_tip_update.load())); m_connman.SetTryNewOutboundPeer(true); } else if (m_connman.GetTryNewOutboundPeer()) { m_connman.SetTryNewOutboundPeer(false); } m_stale_tip_check_time = now + STALE_CHECK_INTERVAL; } if (!m_initial_sync_finished && CanDirectFetch()) { m_connman.StartExtraBlockRelayPeers(); m_initial_sync_finished = true; } } void PeerManagerImpl::MaybeSendPing(CNode &node_to, Peer &peer, std::chrono::microseconds now) { if (m_connman.ShouldRunInactivityChecks( node_to, std::chrono::duration_cast<std::chrono::seconds>(now)) && peer.m_ping_nonce_sent && now > peer.m_ping_start.load() + TIMEOUT_INTERVAL) { // The ping timeout is using mocktime. To disable the check during // testing, increase -peertimeout. LogPrint(BCLog::NET, "ping timeout: %fs peer=%d\n", 0.000001 * count_microseconds(now - peer.m_ping_start.load()), peer.m_id); node_to.fDisconnect = true; return; } const CNetMsgMaker msgMaker(node_to.GetCommonVersion()); bool pingSend = false; if (peer.m_ping_queued) { // RPC ping request by user pingSend = true; } if (peer.m_ping_nonce_sent == 0 && now > peer.m_ping_start.load() + PING_INTERVAL) { // Ping automatically sent as a latency probe & keepalive. pingSend = true; } if (pingSend) { uint64_t nonce; do { nonce = GetRand<uint64_t>(); } while (nonce == 0); peer.m_ping_queued = false; peer.m_ping_start = now; if (node_to.GetCommonVersion() > BIP0031_VERSION) { peer.m_ping_nonce_sent = nonce; m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING, nonce)); } else { // Peer is too old to support ping command with nonce, pong will // never arrive. peer.m_ping_nonce_sent = 0; m_connman.PushMessage(&node_to, msgMaker.Make(NetMsgType::PING)); } } } void PeerManagerImpl::MaybeSendAddr(CNode &node, Peer &peer, std::chrono::microseconds current_time) { // Nothing to do for non-address-relay peers if (!peer.m_addr_relay_enabled) { return; } LOCK(peer.m_addr_send_times_mutex); if (fListen && !m_chainman.ActiveChainstate().IsInitialBlockDownload() && peer.m_next_local_addr_send < current_time) { // If we've sent before, clear the bloom filter for the peer, so // that our self-announcement will actually go out. This might // be unnecessary if the bloom filter has already rolled over // since our last self-announcement, but there is only a small // bandwidth cost that we can incur by doing this (which happens // once a day on average). if (peer.m_next_local_addr_send != 0us) { peer.m_addr_known->reset(); } if (std::optional<CService> local_service = GetLocalAddrForPeer(node)) { CAddress local_addr{*local_service, peer.m_our_services, (uint32_t)GetAdjustedTime()}; FastRandomContext insecure_rand; PushAddress(peer, local_addr, insecure_rand); } peer.m_next_local_addr_send = GetExponentialRand( current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL); } // We sent an `addr` message to this peer recently. Nothing more to do. if (current_time <= peer.m_next_addr_send) { return; } peer.m_next_addr_send = GetExponentialRand(current_time, AVG_ADDRESS_BROADCAST_INTERVAL); const size_t max_addr_to_send = GetMaxAddrToSend(); if (!Assume(peer.m_addrs_to_send.size() <= max_addr_to_send)) { // Should be impossible since we always check size before adding to // m_addrs_to_send. Recover by trimming the vector. peer.m_addrs_to_send.resize(max_addr_to_send); } // Remove addr records that the peer already knows about, and add new // addrs to the m_addr_known filter on the same pass. auto addr_already_known = [&peer](const CAddress &addr) { bool ret = peer.m_addr_known->contains(addr.GetKey()); if (!ret) { peer.m_addr_known->insert(addr.GetKey()); } return ret; }; peer.m_addrs_to_send.erase(std::remove_if(peer.m_addrs_to_send.begin(), peer.m_addrs_to_send.end(), addr_already_known), peer.m_addrs_to_send.end()); // No addr messages to send if (peer.m_addrs_to_send.empty()) { return; } const char *msg_type; int make_flags; if (peer.m_wants_addrv2) { msg_type = NetMsgType::ADDRV2; make_flags = ADDRV2_FORMAT; } else { msg_type = NetMsgType::ADDR; make_flags = 0; } m_connman.PushMessage( &node, CNetMsgMaker(node.GetCommonVersion()) .Make(make_flags, msg_type, peer.m_addrs_to_send)); peer.m_addrs_to_send.clear(); // we only send the big addr message once if (peer.m_addrs_to_send.capacity() > 40) { peer.m_addrs_to_send.shrink_to_fit(); } } void PeerManagerImpl::MaybeSendFeefilter( CNode &pto, Peer &peer, std::chrono::microseconds current_time) { if (m_ignore_incoming_txs) { return; } if (pto.GetCommonVersion() < FEEFILTER_VERSION) { return; } // peers with the forcerelay permission should not filter txs to us if (pto.HasPermission(NetPermissionFlags::ForceRelay)) { return; } // Don't send feefilter messages to outbound block-relay-only peers since // they should never announce transactions to us, regardless of feefilter // state. if (pto.IsBlockOnlyConn()) { return; } Amount currentFilter = m_mempool .GetMinFee( gArgs.GetIntArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000) .GetFeePerK(); static FeeFilterRounder g_filter_rounder{ CFeeRate{DEFAULT_MIN_RELAY_TX_FEE_PER_KB}}; if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // Received tx-inv messages are discarded when the active // chainstate is in IBD, so tell the peer to not send them. currentFilter = MAX_MONEY; } else { static const Amount MAX_FILTER{g_filter_rounder.round(MAX_MONEY)}; if (peer.m_fee_filter_sent == MAX_FILTER) { // Send the current filter if we sent MAX_FILTER previously // and made it out of IBD. peer.m_next_send_feefilter = 0us; } } if (current_time > peer.m_next_send_feefilter) { Amount filterToSend = g_filter_rounder.round(currentFilter); // We always have a fee filter of at least minRelayTxFee filterToSend = std::max(filterToSend, ::minRelayTxFee.GetFeePerK()); if (filterToSend != peer.m_fee_filter_sent) { m_connman.PushMessage( &pto, CNetMsgMaker(pto.GetCommonVersion()) .Make(NetMsgType::FEEFILTER, filterToSend)); peer.m_fee_filter_sent = filterToSend; } peer.m_next_send_feefilter = GetExponentialRand(current_time, AVG_FEEFILTER_BROADCAST_INTERVAL); } // If the fee filter has changed substantially and it's still more than // MAX_FEEFILTER_CHANGE_DELAY until scheduled broadcast, then move the // broadcast to within MAX_FEEFILTER_CHANGE_DELAY. else if (current_time + MAX_FEEFILTER_CHANGE_DELAY < peer.m_next_send_feefilter && (currentFilter < 3 * peer.m_fee_filter_sent / 4 || currentFilter > 4 * peer.m_fee_filter_sent / 3)) { peer.m_next_send_feefilter = current_time + GetRandomDuration<std::chrono::microseconds>( MAX_FEEFILTER_CHANGE_DELAY); } } namespace { class CompareInvMempoolOrder { CTxMemPool *mp; public: explicit CompareInvMempoolOrder(CTxMemPool *_mempool) : mp(_mempool) {} bool operator()(std::set<TxId>::iterator a, std::set<TxId>::iterator b) { /** * As std::make_heap produces a max-heap, we want the entries which * are topologically earlier to sort later. */ return mp->CompareTopologically(*b, *a); } }; } // namespace bool PeerManagerImpl::SetupAddressRelay(const CNode &node, Peer &peer) { // We don't participate in addr relay with outbound block-relay-only // connections to prevent providing adversaries with the additional // information of addr traffic to infer the link. if (node.IsBlockOnlyConn()) { return false; } if (!peer.m_addr_relay_enabled.exchange(true)) { // First addr message we have received from the peer, initialize // m_addr_known peer.m_addr_known = std::make_unique<CRollingBloomFilter>(5000, 0.001); } return true; } bool PeerManagerImpl::SendMessages(const Config &config, CNode *pto) { PeerRef peer = GetPeerRef(pto->GetId()); if (!peer) { return false; } const Consensus::Params &consensusParams = m_chainparams.GetConsensus(); // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll // disconnect misbehaving peers even before the version handshake is // complete. if (MaybeDiscourageAndDisconnect(*pto, *peer)) { return true; } // Don't send anything until the version handshake is complete if (!pto->fSuccessfullyConnected || pto->fDisconnect) { return true; } // If we get here, the outgoing message serialization version is set and // can't change. const CNetMsgMaker msgMaker(pto->GetCommonVersion()); const auto current_time{GetTime<std::chrono::microseconds>()}; if (pto->IsAddrFetchConn() && current_time - pto->m_connected > 10 * AVG_ADDRESS_BROADCAST_INTERVAL) { LogPrint(BCLog::NET, "addrfetch connection timeout; disconnecting peer=%d\n", pto->GetId()); pto->fDisconnect = true; return true; } MaybeSendPing(*pto, *peer, current_time); // MaybeSendPing may have marked peer for disconnection if (pto->fDisconnect) { return true; } bool sync_blocks_and_headers_from_peer = false; MaybeSendAddr(*pto, *peer, current_time); { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Start block sync if (m_chainman.m_best_header == nullptr) { m_chainman.m_best_header = m_chainman.ActiveChain().Tip(); } // Determine whether we might try initial headers sync or parallel // block download from this peer -- this mostly affects behavior while // in IBD (once out of IBD, we sync from all peers). if (state.fPreferredDownload) { sync_blocks_and_headers_from_peer = true; } else if (CanServeBlocks(*peer) && !pto->IsAddrFetchConn()) { // Typically this is an inbound peer. If we don't have any outbound // peers, or if we aren't downloading any blocks from such peers, // then allow block downloads from this peer, too. // We prefer downloading blocks from outbound peers to avoid // putting undue load on (say) some home user who is just making // outbound connections to the network, but if our only source of // the latest blocks is from an inbound peer, we have to be sure to // eventually download it (and not just wait indefinitely for an // outbound peer to have it). if (m_num_preferred_download_peers == 0 || mapBlocksInFlight.empty()) { sync_blocks_and_headers_from_peer = true; } } if (!state.fSyncStarted && CanServeBlocks(*peer) && !fImporting && !fReindex) { // Only actively request headers from a single peer, unless we're // close to today. if ((nSyncStarted == 0 && sync_blocks_and_headers_from_peer) || m_chainman.m_best_header->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) { state.fSyncStarted = true; state.m_headers_sync_timeout = current_time + HEADERS_DOWNLOAD_TIMEOUT_BASE + ( // Convert HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER to // microseconds before scaling to maintain precision std::chrono::microseconds{ HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER} * (GetAdjustedTime() - m_chainman.m_best_header->GetBlockTime()) / consensusParams.nPowTargetSpacing); nSyncStarted++; const CBlockIndex *pindexStart = m_chainman.m_best_header; /** * If possible, start at the block preceding the currently best * known header. This ensures that we always get a non-empty * list of headers back as long as the peer is up-to-date. With * a non-empty response, we can initialise the peer's known best * block. This wouldn't be possible if we requested starting at * m_best_header and got back an empty response. */ if (pindexStart->pprev) { pindexStart = pindexStart->pprev; } LogPrint( BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), peer->m_starting_height); m_connman.PushMessage( pto, msgMaker.Make( NetMsgType::GETHEADERS, m_chainman.ActiveChain().GetLocator(pindexStart), uint256())); } } // // Try sending block announcements via headers // { // If we have less than MAX_BLOCKS_TO_ANNOUNCE in our list of block // hashes we're relaying, and our peer wants headers announcements, // then find the first header not yet known to our peer but would // connect, and send. If no header would connect, or if we have too // many blocks, or if the peer doesn't want headers, just add all to // the inv queue. LOCK(peer->m_block_inv_mutex); std::vector<CBlock> vHeaders; bool fRevertToInv = ((!state.fPreferHeaders && (!state.m_requested_hb_cmpctblocks || peer->m_blocks_for_headers_relay.size() > 1)) || peer->m_blocks_for_headers_relay.size() > MAX_BLOCKS_TO_ANNOUNCE); // last header queued for delivery const CBlockIndex *pBestIndex = nullptr; // ensure pindexBestKnownBlock is up-to-date ProcessBlockAvailability(pto->GetId()); if (!fRevertToInv) { bool fFoundStartingHeader = false; // Try to find first header that our peer doesn't have, and then // send all headers past that one. If we come across an headers // that aren't on m_chainman.ActiveChain(), give up. for (const BlockHash &hash : peer->m_blocks_for_headers_relay) { const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hash); assert(pindex); if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) { // Bail out if we reorged away from this block fRevertToInv = true; break; } if (pBestIndex != nullptr && pindex->pprev != pBestIndex) { // This means that the list of blocks to announce don't // connect to each other. This shouldn't really be // possible to hit during regular operation (because // reorgs should take us to a chain that has some block // not on the prior chain, which should be caught by the // prior check), but one way this could happen is by // using invalidateblock / reconsiderblock repeatedly on // the tip, causing it to be added multiple times to // m_blocks_for_headers_relay. Robustly deal with this // rare situation by reverting to an inv. fRevertToInv = true; break; } pBestIndex = pindex; if (fFoundStartingHeader) { // add this to the headers message vHeaders.push_back(pindex->GetBlockHeader()); } else if (PeerHasHeader(&state, pindex)) { // Keep looking for the first new block. continue; } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) { // Peer doesn't have this header but they do have the // prior one. Start sending headers. fFoundStartingHeader = true; vHeaders.push_back(pindex->GetBlockHeader()); } else { // Peer doesn't have this header or the prior one -- // nothing will connect, so bail out. fRevertToInv = true; break; } } } if (!fRevertToInv && !vHeaders.empty()) { if (vHeaders.size() == 1 && state.m_requested_hb_cmpctblocks) { // We only send up to 1 block as header-and-ids, as // otherwise probably means we're doing an initial-ish-sync // or they're slow. LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); std::optional<CSerializedNetMsg> cached_cmpctblock_msg; { LOCK(m_most_recent_block_mutex); if (m_most_recent_block_hash == pBestIndex->GetBlockHash()) { cached_cmpctblock_msg = msgMaker.Make(NetMsgType::CMPCTBLOCK, *m_most_recent_compact_block); } } if (cached_cmpctblock_msg.has_value()) { m_connman.PushMessage( pto, std::move(cached_cmpctblock_msg.value())); } else { CBlock block; bool ret = ReadBlockFromDisk(block, pBestIndex, consensusParams); assert(ret); CBlockHeaderAndShortTxIDs cmpctblock(block); m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::CMPCTBLOCK, cmpctblock)); } state.pindexBestHeaderSent = pBestIndex; } else if (state.fPreferHeaders) { if (vHeaders.size() > 1) { LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__, vHeaders.size(), vHeaders.front().GetHash().ToString(), vHeaders.back().GetHash().ToString(), pto->GetId()); } else { LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); } m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); state.pindexBestHeaderSent = pBestIndex; } else { fRevertToInv = true; } } if (fRevertToInv) { // If falling back to using an inv, just try to inv the tip. The // last entry in m_blocks_for_headers_relay was our tip at some // point in the past. if (!peer->m_blocks_for_headers_relay.empty()) { const BlockHash &hashToAnnounce = peer->m_blocks_for_headers_relay.back(); const CBlockIndex *pindex = m_chainman.m_blockman.LookupBlockIndex(hashToAnnounce); assert(pindex); // Warn if we're announcing a block that is not on the main // chain. This should be very rare and could be optimized // out. Just log for now. if (m_chainman.ActiveChain()[pindex->nHeight] != pindex) { LogPrint( BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n", hashToAnnounce.ToString(), m_chainman.ActiveChain() .Tip() ->GetBlockHash() .ToString()); } // If the peer's chain has this block, don't inv it back. if (!PeerHasHeader(&state, pindex)) { peer->m_blocks_for_inv_relay.push_back(hashToAnnounce); LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__, pto->GetId(), hashToAnnounce.ToString()); } } } peer->m_blocks_for_headers_relay.clear(); } } // release cs_main // // Message: inventory // std::vector<CInv> vInv; auto addInvAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { vInv.emplace_back(type, hash); if (vInv.size() == MAX_INV_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::INV, std::move(vInv))); vInv.clear(); } }; { LOCK(cs_main); { LOCK(peer->m_block_inv_mutex); vInv.reserve(std::max<size_t>(peer->m_blocks_for_inv_relay.size(), INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000)); // Add blocks for (const BlockHash &hash : peer->m_blocks_for_inv_relay) { addInvAndMaybeFlush(MSG_BLOCK, hash); } peer->m_blocks_for_inv_relay.clear(); } auto computeNextInvSendTime = [&](std::chrono::microseconds &next) -> bool { bool fSendTrickle = pto->HasPermission(NetPermissionFlags::NoBan); if (next < current_time) { fSendTrickle = true; if (pto->IsInboundConn()) { next = NextInvToInbounds( current_time, INBOUND_INVENTORY_BROADCAST_INTERVAL); } else { // Skip delay for outbound peers, as there is less privacy // concern for them. next = current_time; } } return fSendTrickle; }; // Add proofs to inventory if (peer->m_proof_relay != nullptr) { LOCK(peer->m_proof_relay->m_proof_inventory_mutex); if (computeNextInvSendTime( peer->m_proof_relay->m_next_inv_send_time)) { auto it = peer->m_proof_relay->m_proof_inventory_to_send.begin(); while (it != peer->m_proof_relay->m_proof_inventory_to_send.end()) { const avalanche::ProofId proofid = *it; it = peer->m_proof_relay->m_proof_inventory_to_send.erase( it); if (peer->m_proof_relay->m_proof_inventory_known_filter .contains(proofid)) { continue; } peer->m_proof_relay->m_proof_inventory_known_filter.insert( proofid); addInvAndMaybeFlush(MSG_AVA_PROOF, proofid); State(pto->GetId()) ->m_recently_announced_proofs.insert(proofid); } } } if (auto tx_relay = peer->GetTxRelay()) { LOCK(tx_relay->m_tx_inventory_mutex); // Check whether periodic sends should happen const bool fSendTrickle = computeNextInvSendTime(tx_relay->m_next_inv_send_time); // Time to send but the peer has requested we not relay // transactions. if (fSendTrickle) { LOCK(tx_relay->m_bloom_filter_mutex); if (!tx_relay->m_relay_txs) { tx_relay->m_tx_inventory_to_send.clear(); } } // Respond to BIP35 mempool requests if (fSendTrickle && tx_relay->m_send_mempool) { auto vtxinfo = m_mempool.infoAll(); tx_relay->m_send_mempool = false; const CFeeRate filterrate{ tx_relay->m_fee_filter_received.load()}; LOCK(tx_relay->m_bloom_filter_mutex); for (const auto &txinfo : vtxinfo) { const TxId &txid = txinfo.tx->GetId(); tx_relay->m_tx_inventory_to_send.erase(txid); // Don't send transactions that peers will not put into // their mempool if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } tx_relay->m_tx_inventory_known_filter.insert(txid); // Responses to MEMPOOL requests bypass the // m_recently_announced_invs filter. addInvAndMaybeFlush(MSG_TX, txid); } tx_relay->m_last_mempool_req = std::chrono::duration_cast<std::chrono::seconds>( current_time); } // Determine transactions to relay if (fSendTrickle) { // Produce a vector with all candidates for sending std::vector<std::set<TxId>::iterator> vInvTx; vInvTx.reserve(tx_relay->m_tx_inventory_to_send.size()); for (std::set<TxId>::iterator it = tx_relay->m_tx_inventory_to_send.begin(); it != tx_relay->m_tx_inventory_to_send.end(); it++) { vInvTx.push_back(it); } const CFeeRate filterrate{ tx_relay->m_fee_filter_received.load()}; // Send out the inventory in the order of admission to our // mempool, which is guaranteed to be a topological sort order. // A heap is used so that not all items need sorting if only a // few are being sent. CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool); std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); // No reason to drain out at many times the network's // capacity, especially since we have many peers and some // will draw much shorter delays. unsigned int nRelayedTransactions = 0; LOCK(tx_relay->m_bloom_filter_mutex); while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000) { // Fetch the top element from the heap std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); std::set<TxId>::iterator it = vInvTx.back(); vInvTx.pop_back(); const TxId txid = *it; // Remove it from the to-be-sent set tx_relay->m_tx_inventory_to_send.erase(it); // Check if not in the filter already if (tx_relay->m_tx_inventory_known_filter.contains(txid)) { continue; } // Not in the mempool anymore? don't bother sending it. auto txinfo = m_mempool.info(txid); if (!txinfo.tx) { continue; } // Peer told you to not send transactions at that // feerate? Don't bother sending it. if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (tx_relay->m_bloom_filter && !tx_relay->m_bloom_filter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } // Send State(pto->GetId())->m_recently_announced_invs.insert(txid); addInvAndMaybeFlush(MSG_TX, txid); nRelayedTransactions++; { // Expire old relay messages while (!g_relay_expiration.empty() && g_relay_expiration.front().first < current_time) { mapRelay.erase(g_relay_expiration.front().second); g_relay_expiration.pop_front(); } auto ret = mapRelay.insert( std::make_pair(txid, std::move(txinfo.tx))); if (ret.second) { g_relay_expiration.push_back(std::make_pair( current_time + RELAY_TX_CACHE_TIME, ret.first)); } } tx_relay->m_tx_inventory_known_filter.insert(txid); } } } } // release cs_main if (!vInv.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv)); } { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Detect whether we're stalling if (state.m_stalling_since.count() && state.m_stalling_since < current_time - BLOCK_STALLING_TIMEOUT) { // Stalling only triggers when the block download window cannot // move. During normal steady state, the download window should be // much larger than the to-be-downloaded set of blocks, so // disconnection should only happen during initial block download. LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } // In case there is a block that has been in flight from this peer for // block_interval * (1 + 0.5 * N) (with N the number of peers from which // we're downloading validated blocks), disconnect due to timeout. // We compensate for other peers to prevent killing off peers due to our // own downstream link being saturated. We only count validated // in-flight blocks so peers can't advertise non-existing block hashes // to unreasonably increase our timeout. if (state.vBlocksInFlight.size() > 0) { QueuedBlock &queuedBlock = state.vBlocksInFlight.front(); int nOtherPeersWithValidatedDownloads = m_peers_downloading_from - 1; if (current_time > state.m_downloading_since + std::chrono::seconds{consensusParams.nPowTargetSpacing} * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) { LogPrintf("Timeout downloading block %s from peer=%d, " "disconnecting\n", queuedBlock.pindex->GetBlockHash().ToString(), pto->GetId()); pto->fDisconnect = true; return true; } } // Check for headers sync timeouts if (state.fSyncStarted && state.m_headers_sync_timeout < std::chrono::microseconds::max()) { // Detect whether this is a stalling initial-headers-sync peer if (m_chainman.m_best_header->GetBlockTime() <= GetAdjustedTime() - 24 * 60 * 60) { if (current_time > state.m_headers_sync_timeout && nSyncStarted == 1 && (m_num_preferred_download_peers - state.fPreferredDownload >= 1)) { // Disconnect a peer (without NetPermissionFlags::NoBan // permission) if it is our only sync peer, and we have // others we could be using instead. Note: If all our peers // are inbound, then we won't disconnect our sync peer for // stalling; we have bigger problems if we can't get any // outbound peers. if (!pto->HasPermission(NetPermissionFlags::NoBan)) { LogPrintf("Timeout downloading headers from peer=%d, " "disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } else { LogPrintf("Timeout downloading headers from noban " "peer=%d, not disconnecting\n", pto->GetId()); // Reset the headers sync state so that we have a chance // to try downloading from a different peer. Note: this // will also result in at least one more getheaders // message to be sent to this peer (eventually). state.fSyncStarted = false; nSyncStarted--; state.m_headers_sync_timeout = 0us; } } } else { // After we've caught up once, reset the timeout so we can't // trigger disconnect later. state.m_headers_sync_timeout = std::chrono::microseconds::max(); } } // Check that outbound peers have reasonable chains GetTime() is used by // this anti-DoS logic so we can test this using mocktime. ConsiderEviction(*pto, GetTime<std::chrono::seconds>()); } // release cs_main std::vector<CInv> vGetData; // // Message: getdata (blocks) // { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); if (CanServeBlocks(*peer) && ((sync_blocks_and_headers_from_peer && !IsLimitedPeer(*peer)) || !m_chainman.ActiveChainstate().IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) { std::vector<const CBlockIndex *> vToDownload; NodeId staller = -1; FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller); for (const CBlockIndex *pindex : vToDownload) { vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); BlockRequested(config, pto->GetId(), *pindex); LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(), pindex->nHeight, pto->GetId()); } if (state.nBlocksInFlight == 0 && staller != -1) { if (State(staller)->m_stalling_since == 0us) { State(staller)->m_stalling_since = current_time; LogPrint(BCLog::NET, "Stall started peer=%d\n", staller); } } } } // release cs_main auto addGetDataAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { CInv inv(type, hash); LogPrint(BCLog::NET, "Requesting %s from peer=%d\n", inv.ToString(), pto->GetId()); vGetData.push_back(std::move(inv)); if (vGetData.size() >= MAX_GETDATA_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::GETDATA, std::move(vGetData))); vGetData.clear(); } }; // // Message: getdata (proof) // { LOCK(cs_proofrequest); std::vector<std::pair<NodeId, avalanche::ProofId>> expired; auto requestable = m_proofrequest.GetRequestable(pto->GetId(), current_time, &expired); for (const auto &entry : expired) { LogPrint(BCLog::AVALANCHE, "timeout of inflight proof %s from peer=%d\n", entry.second.ToString(), entry.first); } for (const auto &proofid : requestable) { if (!AlreadyHaveProof(proofid)) { addGetDataAndMaybeFlush(MSG_AVA_PROOF, proofid); m_proofrequest.RequestedData( pto->GetId(), proofid, current_time + PROOF_REQUEST_PARAMS.getdata_interval); } else { // We have already seen this proof, no need to download. // This is just a belt-and-suspenders, as this should // already be called whenever a proof becomes // AlreadyHaveProof(). m_proofrequest.ForgetInvId(proofid); } } } // release cs_proofrequest // // Message: getdata (transactions) // { LOCK(cs_main); std::vector<std::pair<NodeId, TxId>> expired; auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired); for (const auto &entry : expired) { LogPrint(BCLog::NET, "timeout of inflight tx %s from peer=%d\n", entry.second.ToString(), entry.first); } for (const TxId &txid : requestable) { if (!AlreadyHaveTx(txid)) { addGetDataAndMaybeFlush(MSG_TX, txid); m_txrequest.RequestedData( pto->GetId(), txid, current_time + TX_REQUEST_PARAMS.getdata_interval); } else { // We have already seen this transaction, no need to download. // This is just a belt-and-suspenders, as this should already be // called whenever a transaction becomes AlreadyHaveTx(). m_txrequest.ForgetInvId(txid); } } if (!vGetData.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } } // release cs_main MaybeSendFeefilter(*pto, *peer, current_time); return true; } bool PeerManagerImpl::ReceivedAvalancheProof(CNode &node, Peer &peer, const avalanche::ProofRef &proof) { assert(proof != nullptr); const avalanche::ProofId &proofid = proof->getId(); AddKnownProof(peer, proofid); if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // We cannot reliably verify proofs during IBD, so bail out early and // keep the inventory as pending so it can be requested when the node // has synced. return true; } const NodeId nodeid = node.GetId(); auto saveProofIfOutbound = [](const CNode &node, const avalanche::ProofId &proofid, const NodeId nodeid) -> bool { if (node.IsAvalancheOutboundConnection() || node.IsManualConn()) { LogPrint(BCLog::AVALANCHE, "Saving remote proof %s\n", proofid.ToString()); return g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { return pm.saveRemoteProof(proofid, nodeid, true); }); } return false; }; { LOCK(cs_proofrequest); m_proofrequest.ReceivedResponse(nodeid, proofid); if (AlreadyHaveProof(proofid)) { m_proofrequest.ForgetInvId(proofid); saveProofIfOutbound(node, proofid, nodeid); return true; } } // registerProof should not be called while cs_proofrequest because it // holds cs_main and that creates a potential deadlock during shutdown avalanche::ProofRegistrationState state; if (g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.registerProof(proof, state); })) { WITH_LOCK(cs_proofrequest, m_proofrequest.ForgetInvId(proofid)); RelayProof(proofid); node.m_last_proof_time = GetTime<std::chrono::seconds>(); LogPrint(BCLog::NET, "New avalanche proof: peer=%d, proofid %s\n", nodeid, proofid.ToString()); } if (state.GetResult() == avalanche::ProofRegistrationResult::INVALID) { g_avalanche->withPeerManager( [&](avalanche::PeerManager &pm) { pm.setInvalid(proofid); }); Misbehaving(nodeid, 100, state.GetRejectReason()); return false; } if (state.GetResult() == avalanche::ProofRegistrationResult::MISSING_UTXO) { // This is possible that a proof contains a utxo we don't know yet, so // don't ban for this. return false; } if (!g_avalanche->reconcileOrFinalize(proof)) { LogPrint(BCLog::AVALANCHE, "Not polling the avalanche proof (%s): peer=%d, proofid %s\n", state.IsValid() ? "not-worth-polling" : state.GetRejectReason(), nodeid, proofid.ToString()); } saveProofIfOutbound(node, proofid, nodeid); return true; } diff --git a/src/test/net_tests.cpp b/src/test/net_tests.cpp index 6a31670dd..3182d3e88 100644 --- a/src/test/net_tests.cpp +++ b/src/test/net_tests.cpp @@ -1,1373 +1,1375 @@ // Copyright (c) 2012-2019 The Bitcoin Core developers // Copyright (c) 2017-2019 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <net.h> #include <addrman.h> #include <avalanche/avalanche.h> #include <avalanche/processor.h> #include <avalanche/statistics.h> #include <chainparams.h> #include <clientversion.h> #include <compat.h> #include <config.h> #include <net_processing.h> #include <netaddress.h> #include <netbase.h> #include <netmessagemaker.h> #include <serialize.h> #include <span.h> #include <streams.h> #include <test/util/validation.h> +#include <threadsafety.h> #include <timedata.h> #include <util/strencodings.h> #include <util/string.h> #include <util/translation.h> // for bilingual_str #include <version.h> #include <test/util/setup_common.h> #include <boost/test/unit_test.hpp> #include <algorithm> #include <chrono> #include <cmath> #include <condition_variable> #include <cstdint> #include <functional> #include <ios> #include <memory> #include <string> using namespace std::literals; static CNetAddr ip(uint32_t ip) { struct in_addr s; s.s_addr = ip; return CNetAddr(s); } namespace { struct CConnmanTest : public CConnman { using CConnman::CConnman; Mutex cs; size_t outboundFullRelayCount GUARDED_BY(cs); size_t avalancheOutboundsCount GUARDED_BY(cs); std::condition_variable cvar; NodeId nodeid = 0; void AddNode(ConnectionType type) { CAddress addr( CService(ip(GetRand<uint32_t>()), Params().GetDefaultPort()), NODE_NONE); return AddNode(addr, type); } void AddNode(const CAddress &addr, ConnectionType type) { CNode *pnode = new CNode(nodeid++, INVALID_SOCKET, addr, CalculateKeyedNetGroup(addr), /* nLocalHostNonceIn */ 0, /* nLocalExtraEntropyIn */ 0, addr, /* pszDest */ "", type, /* inbound_onion */ false); LOCK(m_nodes_mutex); m_nodes.push_back(pnode); pnode->fSuccessfullyConnected = true; } void ClearNodes() { LOCK(m_nodes_mutex); for (CNode *node : m_nodes) { delete node; } m_nodes.clear(); } void SetMaxOutbounds(int maxFullRelayOutbounds, int maxAvalancheOutbounds) { Options options; options.nMaxConnections = DEFAULT_MAX_PEER_CONNECTIONS; options.m_max_outbound_full_relay = maxFullRelayOutbounds; options.m_max_avalanche_outbound = maxAvalancheOutbounds; Init(options); }; void MakeAddrmanDeterministic() { addrman.MakeDeterministic(); } void Init(const Options &connOptions) { CConnman::Init(connOptions); if (semOutbound == nullptr) { // initialize semaphore semOutbound = std::make_unique<CSemaphore>( std::min(m_max_outbound, nMaxConnections)); } if (semAddnode == nullptr) { // initialize semaphore semAddnode = std::make_unique<CSemaphore>(nMaxAddnode); } } void openNetworkConnection(const CAddress &addrConnect, - ConnectionType connType) { + ConnectionType connType) + EXCLUSIVE_LOCKS_REQUIRED(!cs) { bool newConnection = !AlreadyConnectedToAddress(addrConnect); addrman.Attempt(addrConnect, true); if (newConnection) { { LOCK(cs); if (connType == ConnectionType::AVALANCHE_OUTBOUND) { avalancheOutboundsCount++; } if (connType == ConnectionType::OUTBOUND_FULL_RELAY) { outboundFullRelayCount++; } } AddNode(addrConnect, connType); BOOST_CHECK(AlreadyConnectedToAddress(addrConnect)); addrman.Connected(addrConnect); } cvar.notify_all(); } struct TestAddresses { uint32_t group; uint32_t services; size_t quantity; }; bool checkContiguousAddressesConnection( const std::vector<TestAddresses> &testAddresses, size_t expectedOutboundFullRelayCount, - size_t expectedAvalancheOutboundsCount) { + size_t expectedAvalancheOutboundsCount) EXCLUSIVE_LOCKS_REQUIRED(!cs) { { LOCK(cs); // Reset outboundFullRelayCount = 0; avalancheOutboundsCount = 0; } addrman.Clear(); ClearNodes(); struct IpGen { uint32_t baseIp; uint32_t offset; }; std::vector<IpGen> ipGroups{ {0x00010101, 1}, {0x00010164, 1}, {0x000101c8, 1}, {0x00010201, 1}, {0x00010264, 1}, {0x000102c8, 1}, {0x00010301, 1}, {0x00010364, 1}, {0x000103c8, 1}, {0x00010401, 1}, {0x00010464, 1}, {0x000104c8, 1}}; { // Make sure we produce addresses in different groups as expected std::set<std::vector<uint8_t>> groups; for (auto &[baseIp, _] : ipGroups) { for (uint32_t j = 0; j < 255; j++) { CNetAddr addr = ip(baseIp + (j << 24)); groups.insert(addr.GetGroup({})); } } BOOST_CHECK_EQUAL(groups.size(), ipGroups.size()); } // Generate contiguous addresses auto getAddrGroup = [&](size_t group, uint64_t services) { CNetAddr addr = ip(ipGroups[group].baseIp + (ipGroups[group].offset++ << 24)); return CAddress(CService(addr, Params().GetDefaultPort()), ServiceFlags(services)); }; size_t addressCount = 0; for (const TestAddresses &addresses : testAddresses) { assert(addresses.group < ipGroups.size()); addressCount += addresses.quantity; do { addrman.Add({getAddrGroup(addresses.group, ServiceFlags(addresses.services))}, CNetAddr()); } while (addrman.size() < addressCount); } interruptNet.reset(); std::vector<std::string> empty; threadOpenConnections = std::thread( &CConnman::ThreadOpenConnections, this, empty, std::bind(&CConnmanTest::openNetworkConnection, this, std::placeholders::_1, std::placeholders::_2)); Mutex mutex; WAIT_LOCK(mutex, lock); bool ret = cvar.wait_for(lock, 10s, [&]() { LOCK(cs); return outboundFullRelayCount == expectedOutboundFullRelayCount && avalancheOutboundsCount == expectedAvalancheOutboundsCount; }); interruptNet(); if (threadOpenConnections.joinable()) { threadOpenConnections.join(); } // Check each non avalanche outbound node belongs to a different group std::set<std::vector<uint8_t>> groups; ForEachNode([&](const CNode *pnode) { if (!pnode->IsAvalancheOutboundConnection()) { groups.insert(pnode->addr.GetGroup({})); } }); BOOST_CHECK_EQUAL(groups.size(), expectedOutboundFullRelayCount); return ret; } }; } // namespace class NetTestConfig : public DummyConfig { public: bool SetMaxBlockSize(uint64_t maxBlockSize) override { nMaxBlockSize = maxBlockSize; return true; } uint64_t GetMaxBlockSize() const override { return nMaxBlockSize; } private: uint64_t nMaxBlockSize; }; // Use TestingSetup or a daughter class so that m_node.addrman is non-null BOOST_FIXTURE_TEST_SUITE(net_tests, RegTestingSetup) BOOST_AUTO_TEST_CASE(cnode_listen_port) { // test default uint16_t port{GetListenPort()}; BOOST_CHECK(port == Params().GetDefaultPort()); // test set port uint16_t altPort = 12345; BOOST_CHECK(gArgs.SoftSetArg("-port", ToString(altPort))); port = GetListenPort(); BOOST_CHECK(port == altPort); } BOOST_AUTO_TEST_CASE(cnode_simple_test) { SOCKET hSocket = INVALID_SOCKET; NodeId id = 0; in_addr ipv4Addr; ipv4Addr.s_addr = 0xa0b0c001; CAddress addr = CAddress(CService(ipv4Addr, 7777), NODE_NETWORK); std::string pszDest; auto pnode1 = std::make_unique<CNode>(id++, hSocket, addr, /* nKeyedNetGroupIn = */ 0, /* nLocalHostNonceIn = */ 0, /* nLocalExtraEntropyIn */ 0, CAddress(), pszDest, ConnectionType::OUTBOUND_FULL_RELAY, /* inbound_onion = */ false); BOOST_CHECK(pnode1->IsFullOutboundConn() == true); BOOST_CHECK(pnode1->IsManualConn() == false); BOOST_CHECK(pnode1->IsBlockOnlyConn() == false); BOOST_CHECK(pnode1->IsFeelerConn() == false); BOOST_CHECK(pnode1->IsAddrFetchConn() == false); BOOST_CHECK(pnode1->IsInboundConn() == false); BOOST_CHECK(pnode1->m_inbound_onion == false); BOOST_CHECK_EQUAL(pnode1->ConnectedThroughNetwork(), Network::NET_IPV4); auto pnode2 = std::make_unique<CNode>(id++, hSocket, addr, 1, 1, 1, CAddress(), pszDest, ConnectionType::INBOUND, false); BOOST_CHECK(pnode2->IsFullOutboundConn() == false); BOOST_CHECK(pnode2->IsManualConn() == false); BOOST_CHECK(pnode2->IsBlockOnlyConn() == false); BOOST_CHECK(pnode2->IsFeelerConn() == false); BOOST_CHECK(pnode2->IsAddrFetchConn() == false); BOOST_CHECK(pnode2->IsInboundConn() == true); BOOST_CHECK(pnode2->m_inbound_onion == false); BOOST_CHECK_EQUAL(pnode2->ConnectedThroughNetwork(), Network::NET_IPV4); auto pnode3 = std::make_unique<CNode>( id++, hSocket, addr, 0, 0, 0, CAddress(), pszDest, ConnectionType::OUTBOUND_FULL_RELAY, false); BOOST_CHECK(pnode3->IsFullOutboundConn() == true); BOOST_CHECK(pnode3->IsManualConn() == false); BOOST_CHECK(pnode3->IsBlockOnlyConn() == false); BOOST_CHECK(pnode3->IsFeelerConn() == false); BOOST_CHECK(pnode3->IsAddrFetchConn() == false); BOOST_CHECK(pnode3->IsInboundConn() == false); BOOST_CHECK(pnode3->m_inbound_onion == false); BOOST_CHECK_EQUAL(pnode3->ConnectedThroughNetwork(), Network::NET_IPV4); auto pnode4 = std::make_unique<CNode>(id++, hSocket, addr, 1, 1, 1, CAddress(), pszDest, ConnectionType::INBOUND, true); BOOST_CHECK(pnode4->IsFullOutboundConn() == false); BOOST_CHECK(pnode4->IsManualConn() == false); BOOST_CHECK(pnode4->IsBlockOnlyConn() == false); BOOST_CHECK(pnode4->IsFeelerConn() == false); BOOST_CHECK(pnode4->IsAddrFetchConn() == false); BOOST_CHECK(pnode4->IsInboundConn() == true); BOOST_CHECK(pnode4->m_inbound_onion == true); BOOST_CHECK_EQUAL(pnode4->ConnectedThroughNetwork(), Network::NET_ONION); } BOOST_AUTO_TEST_CASE(test_getSubVersionEB) { BOOST_CHECK_EQUAL(getSubVersionEB(13800000000), "13800.0"); BOOST_CHECK_EQUAL(getSubVersionEB(3800000000), "3800.0"); BOOST_CHECK_EQUAL(getSubVersionEB(14000000), "14.0"); BOOST_CHECK_EQUAL(getSubVersionEB(1540000), "1.5"); BOOST_CHECK_EQUAL(getSubVersionEB(1560000), "1.5"); BOOST_CHECK_EQUAL(getSubVersionEB(210000), "0.2"); BOOST_CHECK_EQUAL(getSubVersionEB(10000), "0.0"); BOOST_CHECK_EQUAL(getSubVersionEB(0), "0.0"); } BOOST_AUTO_TEST_CASE(test_userAgent) { NetTestConfig config; config.SetMaxBlockSize(8000000); const std::string uacomment = "A very nice comment"; gArgs.ForceSetMultiArg("-uacomment", {uacomment}); const std::string versionMessage = "/Bitcoin ABC:" + ToString(CLIENT_VERSION_MAJOR) + "." + ToString(CLIENT_VERSION_MINOR) + "." + ToString(CLIENT_VERSION_REVISION) + "(EB8.0; " + uacomment + ")/"; BOOST_CHECK_EQUAL(userAgent(config), versionMessage); } BOOST_AUTO_TEST_CASE(LimitedAndReachable_Network) { BOOST_CHECK_EQUAL(IsReachable(NET_IPV4), true); BOOST_CHECK_EQUAL(IsReachable(NET_IPV6), true); BOOST_CHECK_EQUAL(IsReachable(NET_ONION), true); SetReachable(NET_IPV4, false); SetReachable(NET_IPV6, false); SetReachable(NET_ONION, false); BOOST_CHECK_EQUAL(IsReachable(NET_IPV4), false); BOOST_CHECK_EQUAL(IsReachable(NET_IPV6), false); BOOST_CHECK_EQUAL(IsReachable(NET_ONION), false); SetReachable(NET_IPV4, true); SetReachable(NET_IPV6, true); SetReachable(NET_ONION, true); BOOST_CHECK_EQUAL(IsReachable(NET_IPV4), true); BOOST_CHECK_EQUAL(IsReachable(NET_IPV6), true); BOOST_CHECK_EQUAL(IsReachable(NET_ONION), true); } BOOST_AUTO_TEST_CASE(LimitedAndReachable_NetworkCaseUnroutableAndInternal) { BOOST_CHECK_EQUAL(IsReachable(NET_UNROUTABLE), true); BOOST_CHECK_EQUAL(IsReachable(NET_INTERNAL), true); SetReachable(NET_UNROUTABLE, false); SetReachable(NET_INTERNAL, false); // Ignored for both networks BOOST_CHECK_EQUAL(IsReachable(NET_UNROUTABLE), true); BOOST_CHECK_EQUAL(IsReachable(NET_INTERNAL), true); } CNetAddr UtilBuildAddress(uint8_t p1, uint8_t p2, uint8_t p3, uint8_t p4) { uint8_t ip[] = {p1, p2, p3, p4}; struct sockaddr_in sa; // initialize the memory block memset(&sa, 0, sizeof(sockaddr_in)); memcpy(&(sa.sin_addr), &ip, sizeof(ip)); return CNetAddr(sa.sin_addr); } BOOST_AUTO_TEST_CASE(LimitedAndReachable_CNetAddr) { // 1.1.1.1 CNetAddr addr = UtilBuildAddress(0x001, 0x001, 0x001, 0x001); SetReachable(NET_IPV4, true); BOOST_CHECK_EQUAL(IsReachable(addr), true); SetReachable(NET_IPV4, false); BOOST_CHECK_EQUAL(IsReachable(addr), false); // have to reset this, because this is stateful. SetReachable(NET_IPV4, true); } BOOST_AUTO_TEST_CASE(LocalAddress_BasicLifecycle) { // 2.1.1.1:1000 CService addr = CService(UtilBuildAddress(0x002, 0x001, 0x001, 0x001), 1000); SetReachable(NET_IPV4, true); BOOST_CHECK_EQUAL(IsLocal(addr), false); BOOST_CHECK_EQUAL(AddLocal(addr, 1000), true); BOOST_CHECK_EQUAL(IsLocal(addr), true); RemoveLocal(addr); BOOST_CHECK_EQUAL(IsLocal(addr), false); } BOOST_AUTO_TEST_CASE(cnetaddr_basic) { CNetAddr addr; // IPv4, INADDR_ANY BOOST_REQUIRE(LookupHost("0.0.0.0", addr, false)); BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsIPv4()); BOOST_CHECK(addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "0.0.0.0"); // IPv4, INADDR_NONE BOOST_REQUIRE(LookupHost("255.255.255.255", addr, false)); BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsIPv4()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "255.255.255.255"); // IPv4, casual BOOST_REQUIRE(LookupHost("12.34.56.78", addr, false)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv4()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "12.34.56.78"); // IPv6, in6addr_any BOOST_REQUIRE(LookupHost("::", addr, false)); BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "::"); // IPv6, casual BOOST_REQUIRE( LookupHost("1122:3344:5566:7788:9900:aabb:ccdd:eeff", addr, false)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "1122:3344:5566:7788:9900:aabb:ccdd:eeff"); // IPv6, scoped/link-local. See https://tools.ietf.org/html/rfc4007 // We support non-negative decimal integers (uint32_t) as zone id indices. // Normal link-local scoped address functionality is to append "%" plus the // zone id, for example, given a link-local address of "fe80::1" and a zone // id of "32", return the address as "fe80::1%32". const std::string link_local{"fe80::1"}; const std::string scoped_addr{link_local + "%32"}; BOOST_REQUIRE(LookupHost(scoped_addr, addr, false)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK_EQUAL(addr.ToString(), scoped_addr); // Test that the delimiter "%" and default zone id of 0 can be omitted for // the default scope. BOOST_REQUIRE(LookupHost(link_local + "%0", addr, false)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsIPv6()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK_EQUAL(addr.ToString(), link_local); // TORv2 BOOST_REQUIRE(addr.SetSpecial("6hzph5hv6337r6p2.onion")); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsTor()); BOOST_CHECK(!addr.IsI2P()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "6hzph5hv6337r6p2.onion"); // TORv3 const char *torv3_addr = "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion"; BOOST_REQUIRE(addr.SetSpecial(torv3_addr)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsTor()); BOOST_CHECK(!addr.IsI2P()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), torv3_addr); // TORv3, broken, with wrong checksum BOOST_CHECK(!addr.SetSpecial( "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscsad.onion")); // TORv3, broken, with wrong version BOOST_CHECK(!addr.SetSpecial( "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscrye.onion")); // TORv3, malicious BOOST_CHECK(!addr.SetSpecial(std::string{ "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd\0wtf.onion", 66})); // TOR, bogus length BOOST_CHECK(!addr.SetSpecial(std::string{"mfrggzak.onion"})); // TOR, invalid base32 BOOST_CHECK(!addr.SetSpecial(std::string{"mf*g zak.onion"})); // I2P const char *i2p_addr = "UDHDrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna.b32.I2P"; BOOST_REQUIRE(addr.SetSpecial(i2p_addr)); BOOST_REQUIRE(addr.IsValid()); BOOST_REQUIRE(addr.IsI2P()); BOOST_CHECK(!addr.IsTor()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), ToLower(i2p_addr)); // I2P, correct length, but decodes to less than the expected number of // bytes. BOOST_CHECK(!addr.SetSpecial( "udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jn=.b32.i2p")); // I2P, extra unnecessary padding BOOST_CHECK(!addr.SetSpecial( "udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v4jna=.b32.i2p")); // I2P, malicious BOOST_CHECK(!addr.SetSpecial( "udhdrtrcetjm5sxzskjyr5ztpeszydbh4dpl3pl4utgqqw2v\0wtf.b32.i2p"s)); // I2P, valid but unsupported (56 Base32 characters) // See "Encrypted LS with Base 32 Addresses" in // https://geti2p.net/spec/encryptedleaseset.txt BOOST_CHECK(!addr.SetSpecial( "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscsad.b32.i2p")); // I2P, invalid base32 BOOST_CHECK(!addr.SetSpecial(std::string{"tp*szydbh4dp.b32.i2p"})); // Internal addr.SetInternal("esffpp"); // "internal" is considered invalid BOOST_REQUIRE(!addr.IsValid()); BOOST_REQUIRE(addr.IsInternal()); BOOST_CHECK(!addr.IsBindAny()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "esffpvrt3wpeaygy.internal"); // Totally bogus BOOST_CHECK(!addr.SetSpecial("totally bogus")); } BOOST_AUTO_TEST_CASE(cnetaddr_serialize_v1) { CNetAddr addr; CDataStream s(SER_NETWORK, PROTOCOL_VERSION); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "00000000000000000000000000000000"); s.clear(); BOOST_REQUIRE(LookupHost("1.2.3.4", addr, false)); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "00000000000000000000ffff01020304"); s.clear(); BOOST_REQUIRE( LookupHost("1a1b:2a2b:3a3b:4a4b:5a5b:6a6b:7a7b:8a8b", addr, false)); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "1a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b"); s.clear(); BOOST_REQUIRE(addr.SetSpecial("6hzph5hv6337r6p2.onion")); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "fd87d87eeb43f1f2f3f4f5f6f7f8f9fa"); s.clear(); BOOST_REQUIRE(addr.SetSpecial( "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion")); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "00000000000000000000000000000000"); s.clear(); addr.SetInternal("a"); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "fd6b88c08724ca978112ca1bbdcafac2"); s.clear(); } BOOST_AUTO_TEST_CASE(cnetaddr_serialize_v2) { CNetAddr addr; CDataStream s(SER_NETWORK, PROTOCOL_VERSION); // Add ADDRV2_FORMAT to the version so that the CNetAddr // serialize method produces an address in v2 format. s.SetVersion(s.GetVersion() | ADDRV2_FORMAT); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "021000000000000000000000000000000000"); s.clear(); BOOST_REQUIRE(LookupHost("1.2.3.4", addr, false)); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "010401020304"); s.clear(); BOOST_REQUIRE( LookupHost("1a1b:2a2b:3a3b:4a4b:5a5b:6a6b:7a7b:8a8b", addr, false)); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "02101a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b"); s.clear(); BOOST_REQUIRE(addr.SetSpecial("6hzph5hv6337r6p2.onion")); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "030af1f2f3f4f5f6f7f8f9fa"); s.clear(); BOOST_REQUIRE(addr.SetSpecial( "kpgvmscirrdqpekbqjsvw5teanhatztpp2gl6eee4zkowvwfxwenqaid.onion")); s << addr; BOOST_CHECK_EQUAL( HexStr(s), "042053cd5648488c4707914182655b7664034e09e66f7e8cbf1084e654eb56c5bd88"); s.clear(); BOOST_REQUIRE(addr.SetInternal("a")); s << addr; BOOST_CHECK_EQUAL(HexStr(s), "0210fd6b88c08724ca978112ca1bbdcafac2"); s.clear(); } BOOST_AUTO_TEST_CASE(cnetaddr_unserialize_v2) { CNetAddr addr; CDataStream s(SER_NETWORK, PROTOCOL_VERSION); // Add ADDRV2_FORMAT to the version so that the CNetAddr // unserialize method expects an address in v2 format. s.SetVersion(s.GetVersion() | ADDRV2_FORMAT); // Valid IPv4. s << Span{ParseHex("01" // network type (IPv4) "04" // address length "01020304")}; // address s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsIPv4()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "1.2.3.4"); BOOST_REQUIRE(s.empty()); // Invalid IPv4, valid length but address itself is shorter. s << Span{ParseHex("01" // network type (IPv4) "04" // address length "0102")}; // address BOOST_CHECK_EXCEPTION(s >> addr, std::ios_base::failure, HasReason("end of data")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Invalid IPv4, with bogus length. s << Span{ParseHex("01" // network type (IPv4) "05" // address length "01020304")}; // address BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 IPv4 address with length 5 (should be 4)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Invalid IPv4, with extreme length. s << Span{ParseHex("01" // network type (IPv4) "fd0102" // address length (513 as CompactSize) "01020304")}; // address BOOST_CHECK_EXCEPTION(s >> addr, std::ios_base::failure, HasReason("Address too long: 513 > 512")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid IPv6. s << Span{ParseHex("02" // network type (IPv6) "10" // address length "0102030405060708090a0b0c0d0e0f10")}; // address s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsIPv6()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "102:304:506:708:90a:b0c:d0e:f10"); BOOST_REQUIRE(s.empty()); // Valid IPv6, contains embedded "internal". s << Span{ ParseHex("02" // network type (IPv6) "10" // address length "fd6b88c08724ca978112ca1bbdcafac2")}; // address: 0xfd + // sha256("bitcoin")[0:5] // + sha256(name)[0:10] s >> addr; BOOST_CHECK(addr.IsInternal()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "zklycewkdo64v6wc.internal"); BOOST_REQUIRE(s.empty()); // Invalid IPv6, with bogus length. s << Span{ParseHex("02" // network type (IPv6) "04" // address length "00")}; // address BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 IPv6 address with length 4 (should be 16)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Invalid IPv6, contains embedded IPv4. s << Span{ParseHex("02" // network type (IPv6) "10" // address length "00000000000000000000ffff01020304")}; // address s >> addr; BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Invalid IPv6, contains embedded TORv2. s << Span{ParseHex("02" // network type (IPv6) "10" // address length "fd87d87eeb430102030405060708090a")}; // address s >> addr; BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Valid TORv2. s << Span{ParseHex("03" // network type (TORv2) "0a" // address length "f1f2f3f4f5f6f7f8f9fa")}; // address s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsTor()); BOOST_CHECK(addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "6hzph5hv6337r6p2.onion"); BOOST_REQUIRE(s.empty()); // Invalid TORv2, with bogus length. s << Span{ParseHex("03" // network type (TORv2) "07" // address length "00")}; // address BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 TORv2 address with length 7 (should be 10)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid TORv3. s << Span{ParseHex("04" // network type (TORv3) "20" // address length "79bcc625184b05194975c28b66b66b04" // address "69f7f6556fb1ac3189a79b40dda32f1f")}; s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsTor()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL( addr.ToString(), "pg6mmjiyjmcrsslvykfwnntlaru7p5svn6y2ymmju6nubxndf4pscryd.onion"); BOOST_REQUIRE(s.empty()); // Invalid TORv3, with bogus length. s << Span{ParseHex("04" // network type (TORv3) "00" // address length "00" // address )}; BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 TORv3 address with length 0 (should be 32)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid I2P. s << Span{ParseHex("05" // network type (I2P) "20" // address length "a2894dabaec08c0051a481a6dac88b64" // address "f98232ae42d4b6fd2fa81952dfe36a87")}; s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsI2P()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL( addr.ToString(), "ukeu3k5oycgaauneqgtnvselmt4yemvoilkln7jpvamvfx7dnkdq.b32.i2p"); BOOST_REQUIRE(s.empty()); // Invalid I2P, with bogus length. s << Span{ParseHex("05" // network type (I2P) "03" // address length "00" // address )}; BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 I2P address with length 3 (should be 32)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Valid CJDNS. s << Span{ParseHex("06" // network type (CJDNS) "10" // address length "fc000001000200030004000500060007" // address )}; s >> addr; BOOST_CHECK(addr.IsValid()); BOOST_CHECK(addr.IsCJDNS()); BOOST_CHECK(!addr.IsAddrV1Compatible()); BOOST_CHECK_EQUAL(addr.ToString(), "fc00:1:2:3:4:5:6:7"); BOOST_REQUIRE(s.empty()); // Invalid CJDNS, with bogus length. s << Span{ParseHex("06" // network type (CJDNS) "01" // address length "00" // address )}; BOOST_CHECK_EXCEPTION( s >> addr, std::ios_base::failure, HasReason("BIP155 CJDNS address with length 1 (should be 16)")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Unknown, with extreme length. s << Span{ParseHex("aa" // network type (unknown) "fe00000002" // address length (CompactSize's MAX_SIZE) "01020304050607" // address )}; BOOST_CHECK_EXCEPTION(s >> addr, std::ios_base::failure, HasReason("Address too long: 33554432 > 512")); BOOST_REQUIRE(!s.empty()); // The stream is not consumed on invalid input. s.clear(); // Unknown, with reasonable length. s << Span{ParseHex("aa" // network type (unknown) "04" // address length "01020304" // address )}; s >> addr; BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); // Unknown, with zero length. s << Span{ParseHex("aa" // network type (unknown) "00" // address length "" // address )}; s >> addr; BOOST_CHECK(!addr.IsValid()); BOOST_REQUIRE(s.empty()); } // prior to PR #14728, this test triggers an undefined behavior BOOST_AUTO_TEST_CASE(ipv4_peer_with_ipv6_addrMe_test) { // set up local addresses; all that's necessary to reproduce the bug is // that a normal IPv4 address is among the entries, but if this address is // !IsRoutable the undefined behavior is easier to trigger deterministically in_addr raw_addr; raw_addr.s_addr = htonl(0x7f000001); const CNetAddr mapLocalHost_entry = CNetAddr(raw_addr); { LOCK(g_maplocalhost_mutex); LocalServiceInfo lsi; lsi.nScore = 23; lsi.nPort = 42; mapLocalHost[mapLocalHost_entry] = lsi; } // create a peer with an IPv4 address in_addr ipv4AddrPeer; ipv4AddrPeer.s_addr = 0xa0b0c001; CAddress addr = CAddress(CService(ipv4AddrPeer, 7777), NODE_NETWORK); std::unique_ptr<CNode> pnode = std::make_unique<CNode>( 0, INVALID_SOCKET, addr, /* nKeyedNetGroupIn */ 0, /* nLocalHostNonceIn */ 0, /* nLocalExtraEntropyIn */ 0, CAddress{}, /* pszDest */ std::string{}, ConnectionType::OUTBOUND_FULL_RELAY, /* inbound_onion = */ false); pnode->fSuccessfullyConnected.store(true); // the peer claims to be reaching us via IPv6 in6_addr ipv6AddrLocal; memset(ipv6AddrLocal.s6_addr, 0, 16); ipv6AddrLocal.s6_addr[0] = 0xcc; CAddress addrLocal = CAddress(CService(ipv6AddrLocal, 7777), NODE_NETWORK); pnode->SetAddrLocal(addrLocal); // before patch, this causes undefined behavior detectable with clang's // -fsanitize=memory GetLocalAddrForPeer(*pnode); // suppress no-checks-run warning; if this test fails, it's by triggering a // sanitizer BOOST_CHECK(1); // Cleanup, so that we don't confuse other tests. { LOCK(g_maplocalhost_mutex); mapLocalHost.erase(mapLocalHost_entry); } } BOOST_AUTO_TEST_CASE(get_local_addr_for_peer_port) { // Test that GetLocalAddrForPeer() properly selects the address to // self-advertise: // // 1. GetLocalAddrForPeer() calls GetLocalAddress() which returns an address // that is // not routable. // 2. GetLocalAddrForPeer() overrides the address with whatever the peer has // told us // he sees us as. // 2.1. For inbound connections we must override both the address and the // port. 2.2. For outbound connections we must override only the address. // Pretend that we bound to this port. const uint16_t bind_port = 20001; m_node.args->ForceSetArg("-bind", strprintf("3.4.5.6:%u", bind_port)); // Our address:port as seen from the peer, completely different from the // above. in_addr peer_us_addr; peer_us_addr.s_addr = htonl(0x02030405); const CService peer_us{peer_us_addr, 20002}; // Create a peer with a routable IPv4 address (outbound). in_addr peer_out_in_addr; peer_out_in_addr.s_addr = htonl(0x01020304); CNode peer_out{ /*id=*/0, /*hSocketIn=*/INVALID_SOCKET, /*addrIn=*/CAddress{CService{peer_out_in_addr, 8333}, NODE_NETWORK}, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, /*nLocalExtraEntropyIn=*/0, /*addrBindIn=*/CAddress{}, /*addrNameIn=*/std::string{}, /*conn_type_in=*/ConnectionType::OUTBOUND_FULL_RELAY, /*inbound_onion=*/false}; peer_out.fSuccessfullyConnected = true; peer_out.SetAddrLocal(peer_us); // Without the fix peer_us:8333 is chosen instead of the proper // peer_us:bind_port. auto chosen_local_addr = GetLocalAddrForPeer(peer_out); BOOST_REQUIRE(chosen_local_addr); const CService expected{peer_us_addr, bind_port}; BOOST_CHECK(*chosen_local_addr == expected); // Create a peer with a routable IPv4 address (inbound). in_addr peer_in_in_addr; peer_in_in_addr.s_addr = htonl(0x05060708); CNode peer_in{ /*id=*/0, /*hSocketIn=*/INVALID_SOCKET, /*addrIn=*/CAddress{CService{peer_in_in_addr, 8333}, NODE_NETWORK}, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, /*nLocalExtraEntropyIn=*/0, /*addrBindIn=*/CAddress{}, /*addrNameIn=*/std::string{}, /*conn_type_in=*/ConnectionType::INBOUND, /*inbound_onion=*/false}; peer_in.fSuccessfullyConnected = true; peer_in.SetAddrLocal(peer_us); // Without the fix peer_us:8333 is chosen instead of the proper // peer_us:peer_us.GetPort(). chosen_local_addr = GetLocalAddrForPeer(peer_in); BOOST_REQUIRE(chosen_local_addr); BOOST_CHECK(*chosen_local_addr == peer_us); m_node.args->ForceSetArg("-bind", ""); } BOOST_AUTO_TEST_CASE(avalanche_statistics) { const std::vector<std::tuple<uint32_t, uint32_t, double>> testCases = { // {step, tau, decay_factor} {10, 100, 1. - std::exp(-1. * 10 / 100)}, // Current defaults {AVALANCHE_STATISTICS_REFRESH_PERIOD.count(), AVALANCHE_STATISTICS_TIME_CONSTANT.count(), AVALANCHE_STATISTICS_DECAY_FACTOR}, }; for (const auto &[step, tau, decayFactor] : testCases) { in_addr ipv4Addr; ipv4Addr.s_addr = 0xa0b0c001; CAddress addr = CAddress(CService(ipv4Addr, 7777), NODE_NETWORK); std::unique_ptr<CNode> pnode = std::make_unique<CNode>( 0, INVALID_SOCKET, addr, 0, 0, 0, CAddress(), std::string{}, ConnectionType::OUTBOUND_FULL_RELAY, false); pnode->m_avalanche_enabled = true; double previousScore = pnode->getAvailabilityScore(); BOOST_CHECK_SMALL(previousScore, 1e-6); // Check the statistics follow an exponential response for 1 to 10 tau for (size_t i = 1; i <= 10; i++) { for (uint32_t j = 0; j < tau; j += step) { pnode->invsPolled(1); // Always respond to everything correctly pnode->invsVoted(1); pnode->updateAvailabilityScore(decayFactor); // Expect a monotonic rise double currentScore = pnode->getAvailabilityScore(); BOOST_CHECK_GE(currentScore, previousScore); previousScore = currentScore; } // We expect (1 - e^-i) after i * tau. The tolerance is expressed // as a percentage, and we add a (large) 0.1% margin to account for // floating point errors. BOOST_CHECK_CLOSE(previousScore, -1 * std::expm1(-1. * i), 100.1 / tau); } // After 10 tau we should be very close to 100% (about 99.995%) BOOST_CHECK_CLOSE(previousScore, 1., 0.01); for (size_t i = 1; i <= 3; i++) { for (uint32_t j = 0; j < tau; j += step) { pnode->invsPolled(2); // Stop responding to the polls. pnode->invsVoted(1); pnode->updateAvailabilityScore(decayFactor); // Expect a monotonic fall double currentScore = pnode->getAvailabilityScore(); BOOST_CHECK_LE(currentScore, previousScore); previousScore = currentScore; } // There is a slight error in the expected value because we did not // start the decay at exactly 100%, but the 0.1% margin is at least // an order of magnitude larger than the expected error so it // doesn't matter. BOOST_CHECK_CLOSE(previousScore, 1. + std::expm1(-1. * i), 100.1 / tau); } // After 3 more tau we should be under 5% BOOST_CHECK_LT(previousScore, .05); for (size_t i = 1; i <= 100; i++) { pnode->invsPolled(10); // Completely stop responding to the polls. pnode->invsVoted(0); pnode->updateAvailabilityScore(decayFactor); // It's still a monotonic fall, and the score should turn negative. double currentScore = pnode->getAvailabilityScore(); BOOST_CHECK_LE(currentScore, previousScore); BOOST_CHECK_LE(currentScore, 0.); previousScore = currentScore; } } } BOOST_AUTO_TEST_CASE(get_extra_full_outbound_count) { CConnmanTest connman(GetConfig(), 0x1337, 0x1337, *m_node.addrman); auto checkExtraFullOutboundCount = [&](size_t fullOutboundCount, size_t avalancheOutboundCount, int expectedExtraCount) { connman.ClearNodes(); for (size_t i = 0; i < fullOutboundCount; i++) { connman.AddNode(ConnectionType::OUTBOUND_FULL_RELAY); } for (size_t i = 0; i < avalancheOutboundCount; i++) { connman.AddNode(ConnectionType::AVALANCHE_OUTBOUND); } BOOST_CHECK_EQUAL(connman.GetExtraFullOutboundCount(), expectedExtraCount); }; connman.SetMaxOutbounds(0, 0); checkExtraFullOutboundCount(0, 0, 0); checkExtraFullOutboundCount(1, 0, 1); checkExtraFullOutboundCount(0, 1, 1); checkExtraFullOutboundCount(5, 5, 10); connman.SetMaxOutbounds(4, 0); checkExtraFullOutboundCount(0, 0, 0); checkExtraFullOutboundCount(1, 0, 0); checkExtraFullOutboundCount(0, 1, 0); checkExtraFullOutboundCount(4, 0, 0); checkExtraFullOutboundCount(0, 4, 0); checkExtraFullOutboundCount(2, 2, 0); checkExtraFullOutboundCount(5, 5, 6); connman.SetMaxOutbounds(4, 4); checkExtraFullOutboundCount(0, 0, 0); checkExtraFullOutboundCount(1, 0, 0); checkExtraFullOutboundCount(0, 1, 0); checkExtraFullOutboundCount(4, 0, 0); checkExtraFullOutboundCount(0, 4, 0); checkExtraFullOutboundCount(4, 4, 0); checkExtraFullOutboundCount(5, 5, 2); } BOOST_FIXTURE_TEST_CASE(net_group_limit, TestChain100Setup) { m_node.connman = std::make_unique<CConnmanTest>(GetConfig(), 0x1337, 0x1337, *m_node.addrman); m_node.peerman = PeerManager::make(*m_node.connman, *m_node.addrman, m_node.banman.get(), *m_node.chainman, *m_node.mempool, false); bilingual_str error; // Init the global avalanche object otherwise the avalanche outbound // slots are not allocated. g_avalanche = avalanche::Processor::MakeProcessor( *m_node.args, *m_node.chain, m_node.connman.get(), *m_node.chainman, m_node.mempool.get(), *m_node.scheduler, error); BOOST_CHECK(g_avalanche); CConnman::Options options; options.nMaxConnections = 200; options.m_max_outbound_full_relay = 8; options.m_max_avalanche_outbound = 60; auto connman = static_cast<CConnmanTest *>(m_node.connman.get()); connman->MakeAddrmanDeterministic(); connman->Init(options); // Single full relay outbound is no problem BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK, 1}, }, 1, // Expected full-relay outbound count 0 // Expected avalanche outbound count )); // Adding more contiguous full relay outbounds fails due to network group // limitation BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK, 3}, }, 1, // Expected full-relay outbound count 0 // Expected avalanche outbound count )); // Outbounds from different groups can be connected BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK, 1}, {1, NODE_NETWORK, 1}, {2, NODE_NETWORK, 1}, }, 3, // Expected full-relay outbound count 0 // Expected avalanche outbound count )); // Up to the max BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK, 1}, {1, NODE_NETWORK, 1}, {2, NODE_NETWORK, 1}, {3, NODE_NETWORK, 1}, {4, NODE_NETWORK, 1}, {5, NODE_NETWORK, 1}, {6, NODE_NETWORK, 1}, {7, NODE_NETWORK, 1}, {8, NODE_NETWORK, 1}, {9, NODE_NETWORK, 1}, {10, NODE_NETWORK, 1}, {11, NODE_NETWORK, 1}, }, options.m_max_outbound_full_relay, // Expected full-relay outbound count 0 // Expected avalanche outbound count )); // Avalanche outbounds are prioritized, so contiguous full relay outbounds // will fail due to network group limitation BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK | NODE_AVALANCHE, 1}, {0, NODE_NETWORK, 3}, }, 0, // Expected full-relay outbound count 1 // Expected avalanche outbound count )); // Adding more avalanche outbounds is fine BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK | NODE_AVALANCHE, 3}, {0, NODE_NETWORK, 3}, }, 0, // Expected full-relay outbound count 3 // Expected avalanche outbound count )); // Group limit still applies to non avalanche outbounds, which also remain // capped to the max from the connman options. BOOST_CHECK(connman->checkContiguousAddressesConnection( { // group, services, quantity {0, NODE_NETWORK | NODE_AVALANCHE, 50}, {1, NODE_NETWORK, 10}, {2, NODE_NETWORK, 10}, {3, NODE_NETWORK, 10}, {4, NODE_NETWORK, 10}, {5, NODE_NETWORK, 10}, {6, NODE_NETWORK, 10}, {7, NODE_NETWORK, 10}, {8, NODE_NETWORK, 10}, {9, NODE_NETWORK, 10}, {10, NODE_NETWORK, 10}, {11, NODE_NETWORK, 10}, }, options.m_max_outbound_full_relay, // Expected full-relay outbound count 50 // Expected avalanche outbound count )); g_avalanche.reset(); } BOOST_AUTO_TEST_CASE(initial_advertise_from_version_message) { // Tests the following scenario: // * -bind=3.4.5.6:20001 is specified // * we make an outbound connection to a peer // * the peer reports he sees us as 2.3.4.5:20002 in the version message // (20002 is a random port assigned by our OS for the outgoing TCP // connection, we cannot accept connections to it) // * we should self-advertise to that peer as 2.3.4.5:20001 // Pretend that we bound to this port. const uint16_t bind_port = 20001; m_node.args->ForceSetArg("-bind", strprintf("3.4.5.6:%u", bind_port)); m_node.args->ForceSetArg("-capturemessages", "1"); // Our address:port as seen from the peer - 2.3.4.5:20002 (different from // the above). in_addr peer_us_addr; peer_us_addr.s_addr = htonl(0x02030405); const CService peer_us{peer_us_addr, 20002}; // Create a peer with a routable IPv4 address. in_addr peer_in_addr; peer_in_addr.s_addr = htonl(0x01020304); CNode peer{/*id=*/0, /*hSocketIn=*/INVALID_SOCKET, /*addrIn=*/CAddress{CService{peer_in_addr, 8333}, NODE_NETWORK}, /*nKeyedNetGroupIn=*/0, /*nLocalHostNonceIn=*/0, /*nLocalExtraEntropyIn=*/0, /*addrBindIn=*/CAddress{}, /*addrNameIn=*/std::string{}, /*conn_type_in=*/ConnectionType::OUTBOUND_FULL_RELAY, /*inbound_onion=*/false}; const uint64_t services{NODE_NETWORK}; const int64_t time{0}; const CNetMsgMaker msg_maker{PROTOCOL_VERSION}; // Force CChainState::IsInitialBlockDownload() to return false. // Otherwise PushAddress() isn't called by PeerManager::ProcessMessage(). TestChainState &chainstate = *static_cast<TestChainState *>(&m_node.chainman->ActiveChainstate()); chainstate.JumpOutOfIbd(); const Config &config = GetConfig(); m_node.peerman->InitializeNode(config, peer, NODE_NETWORK); std::atomic<bool> interrupt_dummy{false}; std::chrono::microseconds time_received_dummy{0}; const auto msg_version = msg_maker.Make(NetMsgType::VERSION, PROTOCOL_VERSION, services, time, services, peer_us); CDataStream msg_version_stream{msg_version.data, SER_NETWORK, PROTOCOL_VERSION}; m_node.peerman->ProcessMessage(config, peer, NetMsgType::VERSION, msg_version_stream, time_received_dummy, interrupt_dummy); const auto msg_verack = msg_maker.Make(NetMsgType::VERACK); CDataStream msg_verack_stream{msg_verack.data, SER_NETWORK, PROTOCOL_VERSION}; // Will set peer.fSuccessfullyConnected to true (necessary in // SendMessages()). m_node.peerman->ProcessMessage(config, peer, NetMsgType::VERACK, msg_verack_stream, time_received_dummy, interrupt_dummy); // Ensure that peer_us_addr:bind_port is sent to the peer. const CService expected{peer_us_addr, bind_port}; bool sent{false}; const auto CaptureMessageOrig = CaptureMessage; CaptureMessage = [&sent, &expected](const CAddress &addr, const std::string &msg_type, Span<const uint8_t> data, bool is_incoming) -> void { if (!is_incoming && msg_type == "addr") { CDataStream s(data, SER_NETWORK, PROTOCOL_VERSION); std::vector<CAddress> addresses; s >> addresses; for (const auto &deserialized_addr : addresses) { if (deserialized_addr == expected) { sent = true; return; } } } }; { LOCK(peer.cs_sendProcessing); m_node.peerman->SendMessages(config, &peer); } BOOST_CHECK(sent); CaptureMessage = CaptureMessageOrig; chainstate.ResetIbd(); m_node.args->ForceSetArg("-capturemessages", "0"); m_node.args->ForceSetArg("-bind", ""); // PeerManager::ProcessMessage() calls AddTimeData() which changes the // internal state in timedata.cpp and later confuses the test // "timedata_tests/addtimedata". Thus reset that state as it was before our // test was run. TestOnlyResetTimeData(); } BOOST_AUTO_TEST_SUITE_END() diff --git a/src/validation.h b/src/validation.h index 2d06fcea4..60c93d90b 100644 --- a/src/validation.h +++ b/src/validation.h @@ -1,1438 +1,1451 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2019 The Bitcoin Core developers // Copyright (c) 2017-2020 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_VALIDATION_H #define BITCOIN_VALIDATION_H #if defined(HAVE_CONFIG_H) #include <config/bitcoin-config.h> #endif #include <arith_uint256.h> #include <attributes.h> #include <blockfileinfo.h> #include <blockindexcomparators.h> #include <bloom.h> #include <chain.h> #include <chainparams.h> #include <config.h> #include <consensus/amount.h> #include <consensus/consensus.h> #include <disconnectresult.h> #include <flatfile.h> #include <fs.h> #include <node/blockstorage.h> #include <policy/packages.h> #include <script/script_error.h> #include <script/script_metrics.h> #include <shutdown.h> #include <sync.h> #include <txdb.h> #include <txmempool.h> // For CTxMemPool::cs #include <uint256.h> #include <util/check.h> #include <util/translation.h> #include <atomic> #include <cstdint> #include <map> #include <memory> #include <optional> #include <set> #include <string> #include <thread> #include <utility> #include <vector> class BlockPolicyValidationState; class CChainParams; class Chainstate; class ChainstateManager; class CScriptCheck; class CTxMemPool; class CTxUndo; class DisconnectedBlockTransactions; struct ChainTxData; struct FlatFilePos; struct PrecomputedTransactionData; struct LockPoints; struct AssumeutxoData; namespace node { class SnapshotMetadata; } // namespace node namespace Consensus { struct Params; } // namespace Consensus namespace Consensus { struct Params; } #define MIN_TRANSACTION_SIZE \ (::GetSerializeSize(CTransaction(), PROTOCOL_VERSION)) /** Default for -minrelaytxfee, minimum relay fee for transactions */ static const Amount DEFAULT_MIN_RELAY_TX_FEE_PER_KB(1000 * SATOSHI); /** Default for -excessutxocharge for transactions transactions */ static const Amount DEFAULT_UTXO_FEE = Amount::zero(); /** * Default for -mempoolexpiry, expiration time for mempool transactions in * hours. */ static const unsigned int DEFAULT_MEMPOOL_EXPIRY = 336; /** Maximum number of dedicated script-checking threads allowed */ static const int MAX_SCRIPTCHECK_THREADS = 15; /** -par default (number of script-checking threads, 0 = auto) */ static const int DEFAULT_SCRIPTCHECK_THREADS = 0; static const int64_t DEFAULT_MAX_TIP_AGE = 24 * 60 * 60; static const bool DEFAULT_CHECKPOINTS_ENABLED = true; static const bool DEFAULT_TXINDEX = false; static constexpr bool DEFAULT_COINSTATSINDEX{false}; static const char *const DEFAULT_BLOCKFILTERINDEX = "0"; /** Default for -persistmempool */ static const bool DEFAULT_PERSIST_MEMPOOL = true; static const bool DEFAULT_PEERBLOOMFILTERS = true; /** Default for -stopatheight */ static const int DEFAULT_STOPATHEIGHT = 0; /** * Block files containing a block-height within MIN_BLOCKS_TO_KEEP of * ActiveChain().Tip() will not be pruned. */ static const unsigned int MIN_BLOCKS_TO_KEEP = 288; static const signed int DEFAULT_CHECKBLOCKS = 6; static const unsigned int DEFAULT_CHECKLEVEL = 3; /** * Require that user allocate at least 550 MiB for block & undo files * (blk???.dat and rev???.dat) * At 1MB per block, 288 blocks = 288MB. * Add 15% for Undo data = 331MB * Add 20% for Orphan block rate = 397MB * We want the low water mark after pruning to be at least 397 MB and since we * prune in full block file chunks, we need the high water mark which triggers * the prune to be one 128MB block file + added 15% undo data = 147MB greater * for a total of 545MB * Setting the target to >= 550 MiB will make it likely we can respect the * target. */ static const uint64_t MIN_DISK_SPACE_FOR_BLOCK_FILES = 550 * 1024 * 1024; /** Current sync state passed to tip changed callbacks. */ enum class SynchronizationState { INIT_REINDEX, INIT_DOWNLOAD, POST_INIT }; extern RecursiveMutex cs_main; extern Mutex g_best_block_mutex; extern std::condition_variable g_best_block_cv; /** Used to notify getblocktemplate RPC of new tips. */ extern uint256 g_best_block; extern bool fRequireStandard; extern bool fCheckBlockIndex; extern bool fCheckpointsEnabled; /** * A fee rate smaller than this is considered zero fee (for relaying, mining and * transaction creation) */ extern CFeeRate minRelayTxFee; /** * If the tip is older than this (in seconds), the node is considered to be in * initial block download. */ extern int64_t nMaxTipAge; /** * Block hash whose ancestors we will assume to have valid scripts without * checking them. */ extern BlockHash hashAssumeValid; /** * Minimum work we will assume exists on some valid chain. */ extern arith_uint256 nMinimumChainWork; /** Documentation for argument 'checklevel'. */ extern const std::vector<std::string> CHECKLEVEL_DOC; class BlockValidationOptions { private: uint64_t excessiveBlockSize; bool checkPoW : 1; bool checkMerkleRoot : 1; public: // Do full validation by default explicit BlockValidationOptions(const Config &config); explicit BlockValidationOptions(uint64_t _excessiveBlockSize, bool _checkPow = true, bool _checkMerkleRoot = true) : excessiveBlockSize(_excessiveBlockSize), checkPoW(_checkPow), checkMerkleRoot(_checkMerkleRoot) {} BlockValidationOptions withCheckPoW(bool _checkPoW = true) const { BlockValidationOptions ret = *this; ret.checkPoW = _checkPoW; return ret; } BlockValidationOptions withCheckMerkleRoot(bool _checkMerkleRoot = true) const { BlockValidationOptions ret = *this; ret.checkMerkleRoot = _checkMerkleRoot; return ret; } bool shouldValidatePoW() const { return checkPoW; } bool shouldValidateMerkleRoot() const { return checkMerkleRoot; } uint64_t getExcessiveBlockSize() const { return excessiveBlockSize; } }; /** * Run instances of script checking worker threads */ void StartScriptCheckWorkerThreads(int threads_num); /** * Stop all of the script checking worker threads */ void StopScriptCheckWorkerThreads(); Amount GetBlockSubsidy(int nHeight, const Consensus::Params &consensusParams); bool AbortNode(BlockValidationState &state, const std::string &strMessage, const bilingual_str &userMessage = bilingual_str{}); /** * Guess verification progress (as a fraction between 0.0=genesis and * 1.0=current tip). */ double GuessVerificationProgress(const ChainTxData &data, const CBlockIndex *pindex); /** Prune block files up to a given height */ void PruneBlockFilesManual(Chainstate &active_chainstate, int nManualPruneHeight); /** * Validation result for a single transaction mempool acceptance. */ struct MempoolAcceptResult { /** Used to indicate the results of mempool validation. */ enum class ResultType { //! Fully validated, valid. VALID, //! Invalid. INVALID, //! Valid, transaction was already in the mempool. MEMPOOL_ENTRY, }; const ResultType m_result_type; const TxValidationState m_state; // The following fields are only present when m_result_type = // ResultType::VALID or MEMPOOL_ENTRY /** * Virtual size as used by the mempool, calculated using serialized size * and sigchecks. */ const std::optional<int64_t> m_vsize; /** Raw base fees in satoshis. */ const std::optional<Amount> m_base_fees; static MempoolAcceptResult Failure(TxValidationState state) { return MempoolAcceptResult(state); } /** Constructor for success case */ static MempoolAcceptResult Success(int64_t vsize, Amount fees) { return MempoolAcceptResult(ResultType::VALID, vsize, fees); } /** * Constructor for already-in-mempool case. It wouldn't replace any * transactions. */ static MempoolAcceptResult MempoolTx(int64_t vsize, Amount fees) { return MempoolAcceptResult(ResultType::MEMPOOL_ENTRY, vsize, fees); } // Private constructors. Use static methods MempoolAcceptResult::Success, // etc. to construct. private: /** Constructor for failure case */ explicit MempoolAcceptResult(TxValidationState state) : m_result_type(ResultType::INVALID), m_state(state), m_base_fees(std::nullopt) { // Can be invalid or error Assume(!state.IsValid()); } /** Generic constructor for success cases */ explicit MempoolAcceptResult(ResultType result_type, int64_t vsize, Amount fees) : m_result_type(result_type), m_vsize{vsize}, m_base_fees(fees) {} }; /** * Validation result for package mempool acceptance. */ struct PackageMempoolAcceptResult { const PackageValidationState m_state; /** * Map from txid to finished MempoolAcceptResults. The client is * responsible for keeping track of the transaction objects themselves. * If a result is not present, it means validation was unfinished for that * transaction. If there was a package-wide error (see result in m_state), * m_tx_results will be empty. */ std::map<const TxId, const MempoolAcceptResult> m_tx_results; explicit PackageMempoolAcceptResult( PackageValidationState state, std::map<const TxId, const MempoolAcceptResult> &&results) : m_state{state}, m_tx_results(std::move(results)) {} /** * Constructor to create a PackageMempoolAcceptResult from a * MempoolAcceptResult */ explicit PackageMempoolAcceptResult(const TxId &txid, const MempoolAcceptResult &result) : m_tx_results{{txid, result}} {} }; /** * Try to add a transaction to the mempool. This is an internal function and is * exposed only for testing. Client code should use * ChainstateManager::ProcessTransaction() * * @param[in] config The global configuration. * @param[in] active_chainstate Reference to the active chainstate. * @param[in] tx The transaction to submit for mempool * acceptance. * @param[in] accept_time The timestamp for adding the transaction to * the mempool. * It is also used to determine when the entry * expires. * @param[in] bypass_limits When true, don't enforce mempool fee and * capacity limits. * @param[in] test_accept When true, run validation checks but don't * submit to mempool. * @param[in] heightOverride Override the block height of the transaction. * Used only upon reorg. * * @returns a MempoolAcceptResult indicating whether the transaction was * accepted/rejected with reason. */ MempoolAcceptResult AcceptToMemoryPool(const Config &config, Chainstate &active_chainstate, const CTransactionRef &tx, int64_t accept_time, bool bypass_limits, bool test_accept = false, unsigned int heightOverride = 0) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Validate (and maybe submit) a package to the mempool. * See doc/policy/packages.md for full detailson package validation rules. * * @param[in] test_accept When true, run validation checks but don't * submit to mempool. * @returns a PackageMempoolAcceptResult which includes a MempoolAcceptResult * for each transaction. If a transaction fails, validation will exit early * and some results may be missing. It is also possible for the package to * be partially submitted. */ PackageMempoolAcceptResult ProcessNewPackage(const Config &config, Chainstate &active_chainstate, CTxMemPool &pool, const Package &txns, bool test_accept) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Simple class for regulating resource usage during CheckInputScripts (and * CScriptCheck), atomic so as to be compatible with parallel validation. */ class CheckInputsLimiter { protected: std::atomic<int64_t> remaining; public: explicit CheckInputsLimiter(int64_t limit) : remaining(limit) {} bool consume_and_check(int consumed) { auto newvalue = (remaining -= consumed); return newvalue >= 0; } bool check() { return remaining >= 0; } }; class TxSigCheckLimiter : public CheckInputsLimiter { public: TxSigCheckLimiter() : CheckInputsLimiter(MAX_TX_SIGCHECKS) {} // Let's make this bad boy copiable. TxSigCheckLimiter(const TxSigCheckLimiter &rhs) : CheckInputsLimiter(rhs.remaining.load()) {} TxSigCheckLimiter &operator=(const TxSigCheckLimiter &rhs) { remaining = rhs.remaining.load(); return *this; } static TxSigCheckLimiter getDisabled() { TxSigCheckLimiter txLimiter; // Historically, there has not been a transaction with more than 20k sig // checks on testnet or mainnet, so this effectively disable sigchecks. txLimiter.remaining = 20000; return txLimiter; } }; class ConnectTrace; /** * Check whether all of this transaction's input scripts succeed. * * This involves ECDSA signature checks so can be computationally intensive. * This function should only be called after the cheap sanity checks in * CheckTxInputs passed. * * If pvChecks is not nullptr, script checks are pushed onto it instead of being * performed inline. Any script checks which are not necessary (eg due to script * execution cache hits) are, obviously, not pushed onto pvChecks/run. * * Upon success nSigChecksOut will be filled in with either: * - correct total for all inputs, or, * - 0, in the case when checks were pushed onto pvChecks (i.e., a cache miss * with pvChecks non-null), in which case the total can be found by executing * pvChecks and adding the results. * * Setting sigCacheStore/scriptCacheStore to false will remove elements from the * corresponding cache which are matched. This is useful for checking blocks * where we will likely never need the cache entry again. * * pLimitSigChecks can be passed to limit the sigchecks count either in parallel * or serial validation. With pvChecks null (serial validation), breaking the * pLimitSigChecks limit will abort evaluation early and return false. With * pvChecks not-null (parallel validation): the cached nSigChecks may itself * break the limit in which case false is returned, OR, each entry in the * returned pvChecks must be executed exactly once in order to probe the limit * accurately. */ bool CheckInputScripts(const CTransaction &tx, TxValidationState &state, const CCoinsViewCache &view, const uint32_t flags, bool sigCacheStore, bool scriptCacheStore, const PrecomputedTransactionData &txdata, int &nSigChecksOut, TxSigCheckLimiter &txLimitSigChecks, CheckInputsLimiter *pBlockLimitSigChecks, std::vector<CScriptCheck> *pvChecks) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Handy shortcut to full fledged CheckInputScripts call. */ static inline bool CheckInputScripts(const CTransaction &tx, TxValidationState &state, const CCoinsViewCache &view, const uint32_t flags, bool sigCacheStore, bool scriptCacheStore, const PrecomputedTransactionData &txdata, int &nSigChecksOut) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { TxSigCheckLimiter nSigChecksTxLimiter; return CheckInputScripts(tx, state, view, flags, sigCacheStore, scriptCacheStore, txdata, nSigChecksOut, nSigChecksTxLimiter, nullptr, nullptr); } /** * Mark all the coins corresponding to a given transaction inputs as spent. */ void SpendCoins(CCoinsViewCache &view, const CTransaction &tx, CTxUndo &txundo, int nHeight); /** * Apply the effects of this transaction on the UTXO set represented by view. */ void UpdateCoins(CCoinsViewCache &view, const CTransaction &tx, CTxUndo &txundo, int nHeight); /** * Check if transaction will be BIP68 final in the next block to be created on * top of tip. * @param[in] tip Chain tip to check tx sequence locks against. * For example, the tip of the current active chain. * @param[in] coins_view Any CCoinsView that provides access to the * relevant coins for checking sequence locks. For example, it can be a * CCoinsViewCache that isn't connected to anything but contains all the * relevant coins, or a CCoinsViewMemPool that is connected to the mempool * and chainstate UTXO set. In the latter case, the caller is responsible * for holding the appropriate locks to ensure that calls to GetCoin() * return correct coins. * Simulates calling SequenceLocks() with data from the tip passed in. * Optionally stores in LockPoints the resulting height and time * calculated and the hash of the block needed for calculation or skips the * calculation and uses the LockPoints passed in for evaluation. The LockPoints * should not be considered valid if CheckSequenceLocksAtTip returns false. */ bool CheckSequenceLocksAtTip(CBlockIndex *tip, const CCoinsView &coins_view, const CTransaction &tx, LockPoints *lp = nullptr, bool useExistingLockPoints = false); /** * Closure representing one script verification. * Note that this stores references to the spending transaction. * * Note that if pLimitSigChecks is passed, then failure does not imply that * scripts have failed. */ class CScriptCheck { private: CTxOut m_tx_out; const CTransaction *ptxTo; unsigned int nIn; uint32_t nFlags; bool cacheStore; ScriptError error; ScriptExecutionMetrics metrics; PrecomputedTransactionData txdata; TxSigCheckLimiter *pTxLimitSigChecks; CheckInputsLimiter *pBlockLimitSigChecks; public: CScriptCheck() : ptxTo(nullptr), nIn(0), nFlags(0), cacheStore(false), error(ScriptError::UNKNOWN), txdata(), pTxLimitSigChecks(nullptr), pBlockLimitSigChecks(nullptr) {} CScriptCheck(const CTxOut &outIn, const CTransaction &txToIn, unsigned int nInIn, uint32_t nFlagsIn, bool cacheIn, const PrecomputedTransactionData &txdataIn, TxSigCheckLimiter *pTxLimitSigChecksIn = nullptr, CheckInputsLimiter *pBlockLimitSigChecksIn = nullptr) : m_tx_out(outIn), ptxTo(&txToIn), nIn(nInIn), nFlags(nFlagsIn), cacheStore(cacheIn), error(ScriptError::UNKNOWN), txdata(txdataIn), pTxLimitSigChecks(pTxLimitSigChecksIn), pBlockLimitSigChecks(pBlockLimitSigChecksIn) {} bool operator()(); void swap(CScriptCheck &check) noexcept { std::swap(ptxTo, check.ptxTo); std::swap(m_tx_out, check.m_tx_out); std::swap(nIn, check.nIn); std::swap(nFlags, check.nFlags); std::swap(cacheStore, check.cacheStore); std::swap(error, check.error); std::swap(metrics, check.metrics); std::swap(txdata, check.txdata); std::swap(pTxLimitSigChecks, check.pTxLimitSigChecks); std::swap(pBlockLimitSigChecks, check.pBlockLimitSigChecks); } ScriptError GetScriptError() const { return error; } ScriptExecutionMetrics GetScriptExecutionMetrics() const { return metrics; } }; /** Functions for validating blocks and updating the block tree */ /** * Context-independent validity checks. * * Returns true if the provided block is valid (has valid header, * transactions are valid, block is a valid size, etc.) */ bool CheckBlock(const CBlock &block, BlockValidationState &state, const Consensus::Params ¶ms, BlockValidationOptions validationOptions); /** * This is a variant of ContextualCheckTransaction which computes the contextual * check for a transaction based on the chain tip. * * See consensus/consensus.h for flag definitions. */ bool ContextualCheckTransactionForCurrentBlock( const CBlockIndex *active_chain_tip, const Consensus::Params ¶ms, const CTransaction &tx, TxValidationState &state) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); /** * Check a block is completely valid from start to finish (only works on top of * our current best block) */ bool TestBlockValidity(BlockValidationState &state, const CChainParams ¶ms, Chainstate &chainstate, const CBlock &block, CBlockIndex *pindexPrev, BlockValidationOptions validationOptions) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * RAII wrapper for VerifyDB: Verify consistency of the block and coin * databases. */ class CVerifyDB { public: CVerifyDB(); ~CVerifyDB(); bool VerifyDB(Chainstate &chainstate, const Config &config, CCoinsView &coinsview, int nCheckLevel, int nCheckDepth) EXCLUSIVE_LOCKS_REQUIRED(cs_main); }; /** @see Chainstate::FlushStateToDisk */ enum class FlushStateMode { NONE, IF_NEEDED, PERIODIC, ALWAYS }; /** * A convenience class for constructing the CCoinsView* hierarchy used * to facilitate access to the UTXO set. * * This class consists of an arrangement of layered CCoinsView objects, * preferring to store and retrieve coins in memory via `m_cacheview` but * ultimately falling back on cache misses to the canonical store of UTXOs on * disk, `m_dbview`. */ class CoinsViews { public: //! The lowest level of the CoinsViews cache hierarchy sits in a leveldb //! database on disk. All unspent coins reside in this store. CCoinsViewDB m_dbview GUARDED_BY(cs_main); //! This view wraps access to the leveldb instance and handles read errors //! gracefully. CCoinsViewErrorCatcher m_catcherview GUARDED_BY(cs_main); //! This is the top layer of the cache hierarchy - it keeps as many coins in //! memory as can fit per the dbcache setting. std::unique_ptr<CCoinsViewCache> m_cacheview GUARDED_BY(cs_main); //! This constructor initializes CCoinsViewDB and CCoinsViewErrorCatcher //! instances, but it *does not* create a CCoinsViewCache instance by //! default. This is done separately because the presence of the cache has //! implications on whether or not we're allowed to flush the cache's state //! to disk, which should not be done until the health of the database is //! verified. //! //! All arguments forwarded onto CCoinsViewDB. CoinsViews(std::string ldb_name, size_t cache_size_bytes, bool in_memory, bool should_wipe); //! Initialize the CCoinsViewCache member. void InitCache() EXCLUSIVE_LOCKS_REQUIRED(::cs_main); }; enum class CoinsCacheSizeState { //! The coins cache is in immediate need of a flush. CRITICAL = 2, //! The cache is at >= 90% capacity. LARGE = 1, OK = 0 }; /** * Chainstate stores and provides an API to update our local knowledge of the * current best chain. * * Eventually, the API here is targeted at being exposed externally as a * consumable libconsensus library, so any functions added must only call * other class member functions, pure functions in other parts of the consensus * library, callbacks via the validation interface, or read/write-to-disk * functions (eventually this will also be via callbacks). * * Anything that is contingent on the current tip of the chain is stored here, * whereas block information and metadata independent of the current tip is * kept in `BlockManager`. */ class Chainstate { protected: /** * The ChainState Mutex. * A lock that must be held when modifying this ChainState. */ Mutex m_chainstate_mutex; /** * Every received block is assigned a unique and increasing identifier, so * we know which one to give priority in case of a fork. * Blocks loaded from disk are assigned id 0, so start the counter at 1. */ std::atomic<int32_t> nBlockSequenceId{1}; /** Decreasing counter (used by subsequent preciousblock calls). */ int32_t nBlockReverseSequenceId = -1; /** chainwork for the last block that preciousblock has been applied to. */ arith_uint256 nLastPreciousChainwork = 0; /** * Whether this chainstate is undergoing initial block download. * * Mutable because we need to be able to mark IsInitialBlockDownload() * const, which latches this for caching purposes. */ mutable std::atomic<bool> m_cached_finished_ibd{false}; //! Optional mempool that is kept in sync with the chain. //! Only the active chainstate has a mempool. CTxMemPool *m_mempool; //! Manages the UTXO set, which is a reflection of the contents of //! `m_chain`. std::unique_ptr<CoinsViews> m_coins_views; //! This toggle exists for use when doing background validation for UTXO //! snapshots. //! //! In the expected case, it is set once the background validation chain //! reaches the same height as the base of the snapshot and its UTXO set is //! found to hash to the expected assumeutxo value. It signals that we //! should no longer connect blocks to the background chainstate. When set //! on the background validation chainstate, it signifies that we have fully //! validated the snapshot chainstate. //! //! In the unlikely case that the snapshot chainstate is found to be //! invalid, this is set to true on the snapshot chainstate. bool m_disabled GUARDED_BY(::cs_main){false}; mutable Mutex cs_avalancheFinalizedBlockIndex; /** * The best block via avalanche voting. * This block cannot be reorged in any way except by explicit user action. */ const CBlockIndex *m_avalancheFinalizedBlockIndex GUARDED_BY(cs_avalancheFinalizedBlockIndex) = nullptr; /** * Filter to prevent parking a block due to block policies more than once. * After first application of block policies, Avalanche voting will * determine the final acceptance state. Rare false positives will be * reconciled by the network and should not have any negative impact. */ CRollingBloomFilter m_filterParkingPoliciesApplied = CRollingBloomFilter{1000, 0.000001}; CBlockIndex const *m_best_fork_tip = nullptr; CBlockIndex const *m_best_fork_base = nullptr; public: //! Reference to a BlockManager instance which itself is shared across all //! Chainstate instances. node::BlockManager &m_blockman; /** Chain parameters for this chainstate */ const CChainParams &m_params; //! The chainstate manager that owns this chainstate. The reference is //! necessary so that this instance can check whether it is the active //! chainstate within deeply nested method calls. ChainstateManager &m_chainman; explicit Chainstate( CTxMemPool *mempool, node::BlockManager &blockman, ChainstateManager &chainman, std::optional<BlockHash> from_snapshot_blockhash = std::nullopt); /** * Initialize the CoinsViews UTXO set database management data structures. * The in-memory cache is initialized separately. * * All parameters forwarded to CoinsViews. */ void InitCoinsDB(size_t cache_size_bytes, bool in_memory, bool should_wipe, std::string leveldb_name = "chainstate"); //! Initialize the in-memory coins cache (to be done after the health of the //! on-disk database is verified). void InitCoinsCache(size_t cache_size_bytes) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); //! @returns whether or not the CoinsViews object has been fully initialized //! and we can //! safely flush this object to disk. bool CanFlushToDisk() const EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); return m_coins_views && m_coins_views->m_cacheview; } //! The current chain of blockheaders we consult and build on. //! @see CChain, CBlockIndex. CChain m_chain; /** * The blockhash which is the base of the snapshot this chainstate was * created from. * * std::nullopt if this chainstate was not created from a snapshot. */ const std::optional<BlockHash> m_from_snapshot_blockhash{}; //! Return true if this chainstate relies on blocks that are assumed-valid. //! In practice this means it was created based on a UTXO snapshot. bool reliesOnAssumedValid() { return m_from_snapshot_blockhash.has_value(); } /** * The set of all CBlockIndex entries with either BLOCK_VALID_TRANSACTIONS * (for itself and all ancestors) *or* BLOCK_ASSUMED_VALID (if using * background chainstates) and as good as our current tip or better. * Entries may be failed, though, and pruning nodes may be missing the data * for the block. */ std::set<CBlockIndex *, CBlockIndexWorkComparator> setBlockIndexCandidates; //! @returns A reference to the in-memory cache of the UTXO set. CCoinsViewCache &CoinsTip() EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); Assert(m_coins_views); return *Assert(m_coins_views->m_cacheview); } //! @returns A reference to the on-disk UTXO set database. CCoinsViewDB &CoinsDB() EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); return Assert(m_coins_views)->m_dbview; } //! @returns A pointer to the mempool. CTxMemPool *GetMempool() { return m_mempool; } //! @returns A reference to a wrapped view of the in-memory UTXO set that //! handles disk read errors gracefully. CCoinsViewErrorCatcher &CoinsErrorCatcher() EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(::cs_main); return Assert(m_coins_views)->m_catcherview; } //! Destructs all objects related to accessing the UTXO set. void ResetCoinsViews() { m_coins_views.reset(); } //! Does this chainstate have a UTXO set attached? bool HasCoinsViews() const { return (bool)m_coins_views; } //! The cache size of the on-disk coins view. size_t m_coinsdb_cache_size_bytes{0}; //! The cache size of the in-memory coins view. size_t m_coinstip_cache_size_bytes{0}; //! Resize the CoinsViews caches dynamically and flush state to disk. //! @returns true unless an error occurred during the flush. bool ResizeCoinsCaches(size_t coinstip_size, size_t coinsdb_size) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); /** Import blocks from an external file */ void LoadExternalBlockFile(const Config &config, FILE *fileIn, FlatFilePos *dbp = nullptr) - EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex); + EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex, + !cs_avalancheFinalizedBlockIndex); /** * Update the on-disk chain state. * The caches and indexes are flushed depending on the mode we're called * with if they're too large, if it's been a while since the last write, or * always and in all cases if we're in prune mode and are deleting files. * * If FlushStateMode::NONE is used, then FlushStateToDisk(...) won't do * anything besides checking if we need to prune. * * @returns true unless a system error occurred */ bool FlushStateToDisk(BlockValidationState &state, FlushStateMode mode, int nManualPruneHeight = 0); //! Unconditionally flush all changes to disk. void ForceFlushStateToDisk(); //! Prune blockfiles from the disk if necessary and then flush chainstate //! changes if we pruned. void PruneAndFlush(); /** * Find the best known block, and make it the tip of the block chain. The * result is either failure or an activated best chain. pblock is either * nullptr or a pointer to a block that is already loaded (to avoid loading * it again from disk). * * ActivateBestChain is split into steps (see ActivateBestChainStep) so that * we avoid holding cs_main for an extended period of time; the length of * this call may be quite long during reindexing or a substantial reorg. * * May not be called with cs_main held. May not be called in a * validationinterface callback. * * Note that if this is called while a snapshot chainstate is active, and if * it is called on a background chainstate whose tip has reached the base * block of the snapshot, its execution will take *MINUTES* while it hashes * the background UTXO set to verify the assumeutxo value the snapshot was * activated with. `cs_main` will be held during this time. * * @returns true unless a system error occurred */ bool ActivateBestChain(const Config &config, BlockValidationState &state, std::shared_ptr<const CBlock> pblock = nullptr) - EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex) LOCKS_EXCLUDED(cs_main); + EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex, + !cs_avalancheFinalizedBlockIndex) + LOCKS_EXCLUDED(cs_main); bool AcceptBlock(const Config &config, const std::shared_ptr<const CBlock> &pblock, BlockValidationState &state, bool fRequested, const FlatFilePos *dbp, bool *fNewBlock) EXCLUSIVE_LOCKS_REQUIRED(cs_main); // Block (dis)connection on a given view: DisconnectResult DisconnectBlock(const CBlock &block, const CBlockIndex *pindex, CCoinsViewCache &view) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); bool ConnectBlock(const CBlock &block, BlockValidationState &state, CBlockIndex *pindex, CCoinsViewCache &view, BlockValidationOptions options, Amount *blockFees = nullptr, bool fJustCheck = false) EXCLUSIVE_LOCKS_REQUIRED(cs_main); // Apply the effects of a block disconnection on the UTXO set. bool DisconnectTip(BlockValidationState &state, DisconnectedBlockTransactions *disconnectpool) EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_mempool->cs); // Manual block validity manipulation: /** * Mark a block as precious and reorganize. * * May not be called in a validationinterface callback. */ bool PreciousBlock(const Config &config, BlockValidationState &state, CBlockIndex *pindex) - EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex) LOCKS_EXCLUDED(cs_main); + EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex, + !cs_avalancheFinalizedBlockIndex) + LOCKS_EXCLUDED(cs_main); /** Mark a block as invalid. */ bool InvalidateBlock(const Config &config, BlockValidationState &state, CBlockIndex *pindex) LOCKS_EXCLUDED(cs_main) - EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex); + EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex, + !cs_avalancheFinalizedBlockIndex); /** Park a block. */ bool ParkBlock(const Config &config, BlockValidationState &state, CBlockIndex *pindex) LOCKS_EXCLUDED(cs_main) - EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex); + EXCLUSIVE_LOCKS_REQUIRED(!m_chainstate_mutex, + !cs_avalancheFinalizedBlockIndex); /** * Mark a block as finalized by avalanche. */ - bool AvalancheFinalizeBlock(CBlockIndex *pindex); + bool AvalancheFinalizeBlock(CBlockIndex *pindex) + EXCLUSIVE_LOCKS_REQUIRED(!cs_avalancheFinalizedBlockIndex); /** * Clear avalanche finalization. */ - void ClearAvalancheFinalizedBlock(); + void ClearAvalancheFinalizedBlock() + EXCLUSIVE_LOCKS_REQUIRED(!cs_avalancheFinalizedBlockIndex); /** * Checks if a block is finalized by avalanche voting. */ - bool IsBlockAvalancheFinalized(const CBlockIndex *pindex) const; + bool IsBlockAvalancheFinalized(const CBlockIndex *pindex) const + EXCLUSIVE_LOCKS_REQUIRED(!cs_avalancheFinalizedBlockIndex); /** Remove invalidity status from a block and its descendants. */ void ResetBlockFailureFlags(CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main); template <typename F> bool UpdateFlagsForBlock(CBlockIndex *pindexBase, CBlockIndex *pindex, F f) EXCLUSIVE_LOCKS_REQUIRED(cs_main); template <typename F, typename C, typename AC> void UpdateFlags(CBlockIndex *pindex, CBlockIndex *&pindexReset, F f, C fChild, AC fAncestorWasChanged) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Remove parked status from a block and its descendants. */ void UnparkBlockAndChildren(CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Remove parked status from a block. */ void UnparkBlock(CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** Replay blocks that aren't fully applied to the database. */ bool ReplayBlocks(); /** * Ensures we have a genesis block in the block tree, possibly writing one * to disk. */ bool LoadGenesisBlock(); void PruneBlockIndexCandidates(); void UnloadBlockIndex() EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Check whether we are doing an initial block download (synchronizing from * disk or network) */ bool IsInitialBlockDownload() const; /** Find the last common block of this chain and a locator. */ const CBlockIndex *FindForkInGlobalIndex(const CBlockLocator &locator) const EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Make various assertions about the state of the block index. * * By default this only executes fully when using the Regtest chain; see: * fCheckBlockIndex. */ void CheckBlockIndex(); /** Load the persisted mempool from disk */ void LoadMempool(const Config &config, const ArgsManager &args); /** Update the chain tip based on database information, i.e. CoinsTip()'s * best block. */ bool LoadChainTip() EXCLUSIVE_LOCKS_REQUIRED(cs_main); //! Dictates whether we need to flush the cache to disk or not. //! //! @return the state of the size of the coins cache. CoinsCacheSizeState GetCoinsCacheSizeState() EXCLUSIVE_LOCKS_REQUIRED(::cs_main); CoinsCacheSizeState GetCoinsCacheSizeState(size_t max_coins_cache_size_bytes, size_t max_mempool_size_bytes) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); std::string ToString() EXCLUSIVE_LOCKS_REQUIRED(::cs_main); //! Indirection necessary to make lock annotations work with an optional //! mempool. RecursiveMutex *MempoolMutex() const LOCK_RETURNED(m_mempool->cs) { return m_mempool ? &m_mempool->cs : nullptr; } private: bool ActivateBestChainStep(const Config &config, BlockValidationState &state, CBlockIndex *pindexMostWork, const std::shared_ptr<const CBlock> &pblock, bool &fInvalidFound, ConnectTrace &connectTrace) - EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_mempool->cs); + EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_mempool->cs, + !cs_avalancheFinalizedBlockIndex); bool ConnectTip(const Config &config, BlockValidationState &state, BlockPolicyValidationState &blockPolicyState, CBlockIndex *pindexNew, const std::shared_ptr<const CBlock> &pblock, ConnectTrace &connectTrace, DisconnectedBlockTransactions &disconnectpool) - EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_mempool->cs); + EXCLUSIVE_LOCKS_REQUIRED(cs_main, m_mempool->cs, + !cs_avalancheFinalizedBlockIndex); void InvalidBlockFound(CBlockIndex *pindex, const BlockValidationState &state) - EXCLUSIVE_LOCKS_REQUIRED(cs_main); + EXCLUSIVE_LOCKS_REQUIRED(cs_main, !cs_avalancheFinalizedBlockIndex); CBlockIndex * FindMostWorkChain(std::vector<const CBlockIndex *> &blocksToReconcile) - EXCLUSIVE_LOCKS_REQUIRED(cs_main); + EXCLUSIVE_LOCKS_REQUIRED(cs_main, !cs_avalancheFinalizedBlockIndex); void ReceivedBlockTransactions(const CBlock &block, CBlockIndex *pindexNew, const FlatFilePos &pos) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool RollforwardBlock(const CBlockIndex *pindex, CCoinsViewCache &inputs) EXCLUSIVE_LOCKS_REQUIRED(cs_main); void UnparkBlockImpl(CBlockIndex *pindex, bool fClearChildren) EXCLUSIVE_LOCKS_REQUIRED(cs_main); bool UnwindBlock(const Config &config, BlockValidationState &state, CBlockIndex *pindex, bool invalidate) - EXCLUSIVE_LOCKS_REQUIRED(m_chainstate_mutex); + EXCLUSIVE_LOCKS_REQUIRED(m_chainstate_mutex, + !cs_avalancheFinalizedBlockIndex); void CheckForkWarningConditions() EXCLUSIVE_LOCKS_REQUIRED(cs_main); void CheckForkWarningConditionsOnNewFork(CBlockIndex *pindexNewForkTip) EXCLUSIVE_LOCKS_REQUIRED(cs_main); void InvalidChainFound(CBlockIndex *pindexNew) - EXCLUSIVE_LOCKS_REQUIRED(cs_main); + EXCLUSIVE_LOCKS_REQUIRED(cs_main, !cs_avalancheFinalizedBlockIndex); const CBlockIndex *FindBlockToFinalize(CBlockIndex *pindexNew) EXCLUSIVE_LOCKS_REQUIRED(cs_main); /** * Check warning conditions and do some notifications on new chain tip set. */ void UpdateTip(const CBlockIndex *pindexNew) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); /** * In case of an invalid snapshot, rename the coins leveldb directory so * that it can be examined for issue diagnosis. */ void InvalidateCoinsDBOnDisk() EXCLUSIVE_LOCKS_REQUIRED(::cs_main); friend ChainstateManager; }; enum class SnapshotCompletionResult { SUCCESS, SKIPPED, // Expected assumeutxo configuration data is not found for the height of the // base block. MISSING_CHAINPARAMS, // Failed to generate UTXO statistics (to check UTXO set hash) for the // background chainstate. STATS_FAILED, // The UTXO set hash of the background validation chainstate does not match // the one expected by assumeutxo chainparams. HASH_MISMATCH, // The blockhash of the current tip of the background validation chainstate // does not match the one expected by the snapshot chainstate. BASE_BLOCKHASH_MISMATCH, }; /** * Provides an interface for creating and interacting with one or two * chainstates: an IBD chainstate generated by downloading blocks, and * an optional snapshot chainstate loaded from a UTXO snapshot. Managed * chainstates can be maintained at different heights simultaneously. * * This class provides abstractions that allow the retrieval of the current * most-work chainstate ("Active") as well as chainstates which may be in * background use to validate UTXO snapshots. * * Definitions: * * *IBD chainstate*: a chainstate whose current state has been "fully" * validated by the initial block download process. * * *Snapshot chainstate*: a chainstate populated by loading in an * assumeutxo UTXO snapshot. * * *Active chainstate*: the chainstate containing the current most-work * chain. Consulted by most parts of the system (net_processing, * wallet) as a reflection of the current chain and UTXO set. * This may either be an IBD chainstate or a snapshot chainstate. * * *Background IBD chainstate*: an IBD chainstate for which the * IBD process is happening in the background while use of the * active (snapshot) chainstate allows the rest of the system to function. */ class ChainstateManager { private: //! The chainstate used under normal operation (i.e. "regular" IBD) or, if //! a snapshot is in use, for background validation. //! //! Its contents (including on-disk data) will be deleted *upon shutdown* //! after background validation of the snapshot has completed. We do not //! free the chainstate contents immediately after it finishes validation //! to cautiously avoid a case where some other part of the system is still //! using this pointer (e.g. net_processing). //! //! Once this pointer is set to a corresponding chainstate, it will not //! be reset until init.cpp:Shutdown(). //! //! This is especially important when, e.g., calling ActivateBestChain() //! on all chainstates because we are not able to hold ::cs_main going into //! that call. std::unique_ptr<Chainstate> m_ibd_chainstate GUARDED_BY(::cs_main); //! A chainstate initialized on the basis of a UTXO snapshot. If this is //! non-null, it is always our active chainstate. //! //! Once this pointer is set to a corresponding chainstate, it will not //! be reset until init.cpp:Shutdown(). //! //! This is especially important when, e.g., calling ActivateBestChain() //! on all chainstates because we are not able to hold ::cs_main going into //! that call. std::unique_ptr<Chainstate> m_snapshot_chainstate GUARDED_BY(::cs_main); //! Points to either the ibd or snapshot chainstate; indicates our //! most-work chain. //! //! Once this pointer is set to a corresponding chainstate, it will not //! be reset until init.cpp:Shutdown(). //! //! This is especially important when, e.g., calling ActivateBestChain() //! on all chainstates because we are not able to hold ::cs_main going into //! that call. Chainstate *m_active_chainstate GUARDED_BY(::cs_main){nullptr}; CBlockIndex *m_best_invalid GUARDED_BY(::cs_main){nullptr}; CBlockIndex *m_best_parked GUARDED_BY(::cs_main){nullptr}; const Config &m_config; //! Internal helper for ActivateSnapshot(). [[nodiscard]] bool PopulateAndValidateSnapshot(Chainstate &snapshot_chainstate, AutoFile &coins_file, const node::SnapshotMetadata &metadata); /** * If a block header hasn't already been seen, call CheckBlockHeader on it, * ensure that it doesn't descend from an invalid block, and then add it to * m_block_index. */ bool AcceptBlockHeader(const Config &config, const CBlockHeader &block, BlockValidationState &state, CBlockIndex **ppindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main); friend Chainstate; //! Returns nullptr if no snapshot has been loaded. const CBlockIndex *GetSnapshotBaseBlock() const EXCLUSIVE_LOCKS_REQUIRED(::cs_main); //! Return the height of the base block of the snapshot in use, if one //! exists, else nullopt. std::optional<int> GetSnapshotBaseHeight() const EXCLUSIVE_LOCKS_REQUIRED(::cs_main); //! Return true if a chainstate is considered usable. //! //! This is false when a background validation chainstate has completed its //! validation of an assumed-valid chainstate, or when a snapshot //! chainstate has been found to be invalid. bool IsUsable(const Chainstate *const pchainstate) const EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { return pchainstate && !pchainstate->m_disabled; } public: explicit ChainstateManager(const Config &config) : m_config{config} {} const CChainParams &GetParams() const { return m_config.GetChainParams(); } const Consensus::Params &GetConsensus() const { return m_config.GetChainParams().GetConsensus(); } /** * Alias for ::cs_main. * Should be used in new code to make it easier to make ::cs_main a member * of this class. * Generally, methods of this class should be annotated to require this * mutex. This will make calling code more verbose, but also help to: * - Clarify that the method will acquire a mutex that heavily affects * overall performance. * - Force call sites to think how long they need to acquire the mutex to * get consistent results. */ RecursiveMutex &GetMutex() const LOCK_RETURNED(::cs_main) { return ::cs_main; } std::thread m_load_block; //! A single BlockManager instance is shared across each constructed //! chainstate to avoid duplicating block metadata. node::BlockManager m_blockman; /** * In order to efficiently track invalidity of headers, we keep the set of * blocks which we tried to connect and found to be invalid here (ie which * were set to BLOCK_FAILED_VALID since the last restart). We can then * walk this set and check if a new header is a descendant of something in * this set, preventing us from having to walk m_block_index when we try * to connect a bad block and fail. * * While this is more complicated than marking everything which descends * from an invalid block as invalid at the time we discover it to be * invalid, doing so would require walking all of m_block_index to find all * descendants. Since this case should be very rare, keeping track of all * BLOCK_FAILED_VALID blocks in a set should be just fine and work just as * well. * * Because we already walk m_block_index in height-order at startup, we go * ahead and mark descendants of invalid blocks as FAILED_CHILD at that * time, instead of putting things in this set. */ std::set<CBlockIndex *> m_failed_blocks; /** * Best header we've seen so far (used for getheaders queries' starting * points). */ CBlockIndex *m_best_header = nullptr; //! The total number of bytes available for us to use across all in-memory //! coins caches. This will be split somehow across chainstates. int64_t m_total_coinstip_cache{0}; // //! The total number of bytes available for us to use across all leveldb //! coins databases. This will be split somehow across chainstates. int64_t m_total_coinsdb_cache{0}; //! Instantiate a new chainstate. //! //! @param[in] mempool The mempool to pass to the chainstate // constructor Chainstate &InitializeChainstate(CTxMemPool *mempool) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); //! Get all chainstates currently being used. std::vector<Chainstate *> GetAll(); //! Construct and activate a Chainstate on the basis of UTXO snapshot data. //! //! Steps: //! //! - Initialize an unused Chainstate. //! - Load its `CoinsViews` contents from `coins_file`. //! - Verify that the hash of the resulting coinsdb matches the expected //! hash per assumeutxo chain parameters. //! - Wait for our headers chain to include the base block of the snapshot. //! - "Fast forward" the tip of the new chainstate to the base of the //! snapshot, faking nTx* block index data along the way. //! - Move the new chainstate to `m_snapshot_chainstate` and make it our //! ActiveChainstate(). [[nodiscard]] bool ActivateSnapshot(AutoFile &coins_file, const node::SnapshotMetadata &metadata, bool in_memory); //! Once the background validation chainstate has reached the height which //! is the base of the UTXO snapshot in use, compare its coins to ensure //! they match those expected by the snapshot. //! //! If the coins match (expected), then mark the validation chainstate for //! deletion and continue using the snapshot chainstate as active. //! Otherwise, revert to using the ibd chainstate and shutdown. SnapshotCompletionResult MaybeCompleteSnapshotValidation( std::function<void(bilingual_str)> shutdown_fnc = [](bilingual_str msg) { AbortNode(msg.original, msg); }) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); //! The most-work chain. Chainstate &ActiveChainstate() const; CChain &ActiveChain() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex()) { return ActiveChainstate().m_chain; } int ActiveHeight() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex()) { return ActiveChain().Height(); } CBlockIndex *ActiveTip() const EXCLUSIVE_LOCKS_REQUIRED(GetMutex()) { return ActiveChain().Tip(); } node::BlockMap &BlockIndex() EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); return m_blockman.m_block_index; } //! @returns true if a snapshot-based chainstate is in use. Also implies //! that a background validation chainstate is also in use. bool IsSnapshotActive() const; std::optional<BlockHash> SnapshotBlockhash() const; //! Is there a snapshot in use and has it been fully validated? bool IsSnapshotValidated() const EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { return m_snapshot_chainstate && m_ibd_chainstate && m_ibd_chainstate->m_disabled; } /** * Process an incoming block. This only returns after the best known valid * block is made active. Note that it does not, however, guarantee that the * specific block passed to it has been checked for validity! * * If you want to *possibly* get feedback on whether block is valid, you * must install a CValidationInterface (see validationinterface.h) - this * will have its BlockChecked method called whenever *any* block completes * validation. * * Note that we guarantee that either the proof-of-work is valid on block, * or (and possibly also) BlockChecked will have been called. * * May not be called in a validationinterface callback. * * @param[in] config The global config. * @param[in] block The block we want to process. * @param[in] force_processing Process this block even if unrequested; * used for non-network block sources. * @param[out] new_block A boolean which is set to indicate if the block * was first received via this call. * @returns If the block was processed, independently of block validity */ bool ProcessNewBlock(const Config &config, const std::shared_ptr<const CBlock> &block, bool force_processing, bool *new_block) LOCKS_EXCLUDED(cs_main); /** * Process incoming block headers. * * May not be called in a validationinterface callback. * * @param[in] config The config. * @param[in] block The block headers themselves. * @param[out] state This may be set to an Error state if any error * occurred processing them. * @param[out] ppindex If set, the pointer will be set to point to the * last new block index object for the given * headers. * @return True if block headers were accepted as valid. */ bool ProcessNewBlockHeaders(const Config &config, const std::vector<CBlockHeader> &block, BlockValidationState &state, const CBlockIndex **ppindex = nullptr) LOCKS_EXCLUDED(cs_main); /** * Try to add a transaction to the memory pool. * * @param[in] tx The transaction to submit for mempool * acceptance. * @param[in] test_accept When true, run validation checks but don't * submit to mempool. */ [[nodiscard]] MempoolAcceptResult ProcessTransaction(const CTransactionRef &tx, bool test_accept = false) EXCLUSIVE_LOCKS_REQUIRED(cs_main); //! Load the block tree and coins database from disk, initializing state if //! we're running with -reindex bool LoadBlockIndex() EXCLUSIVE_LOCKS_REQUIRED(cs_main); //! Check to see if caches are out of balance and if so, call //! ResizeCoinsCaches() as needed. void MaybeRebalanceCaches() EXCLUSIVE_LOCKS_REQUIRED(::cs_main); //! When starting up, search the datadir for a chainstate based on a UTXO //! snapshot that is in the process of being validated. bool DetectSnapshotChainstate(CTxMemPool *mempool) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); void ResetChainstates() EXCLUSIVE_LOCKS_REQUIRED(::cs_main); //! Switch the active chainstate to one based on a UTXO snapshot that was //! loaded previously. Chainstate &ActivateExistingSnapshot(CTxMemPool *mempool, BlockHash base_blockhash) EXCLUSIVE_LOCKS_REQUIRED(::cs_main); //! If we have validated a snapshot chain during this runtime, copy its //! chainstate directory over to the main `chainstate` location, completing //! validation of the snapshot. //! //! If the cleanup succeeds, the caller will need to ensure chainstates are //! reinitialized, since ResetChainstates() will be called before leveldb //! directories are moved or deleted. //! //! @sa node/chainstate:LoadChainstate() bool ValidatedSnapshotCleanup() EXCLUSIVE_LOCKS_REQUIRED(::cs_main); }; /** Dump the mempool to disk. */ bool DumpMempool(const CTxMemPool &pool); /** Load the mempool from disk. */ bool LoadMempool(const Config &config, CTxMemPool &pool, Chainstate &active_chainstate); /** * Return the expected assumeutxo value for a given height, if one exists. * * @param[in] height Get the assumeutxo value for this height. * * @returns empty if no assumeutxo configuration exists for the given height. */ const AssumeutxoData *ExpectedAssumeutxo(const int height, const CChainParams ¶ms); #endif // BITCOIN_VALIDATION_H