diff --git a/src/net_processing.cpp b/src/net_processing.cpp index 071a928fa..16f8148fd 100644 --- a/src/net_processing.cpp +++ b/src/net_processing.cpp @@ -1,5958 +1,5972 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include <net_processing.h> #include <addrman.h> #include <avalanche/avalanche.h> #include <avalanche/peermanager.h> #include <avalanche/processor.h> #include <avalanche/proof.h> #include <avalanche/validation.h> #include <banman.h> #include <blockdb.h> #include <blockencodings.h> #include <blockfilter.h> #include <blockvalidity.h> #include <chain.h> #include <chainparams.h> #include <config.h> #include <consensus/validation.h> #include <hash.h> #include <index/blockfilterindex.h> #include <merkleblock.h> #include <netbase.h> #include <netmessagemaker.h> #include <policy/fees.h> #include <policy/policy.h> #include <primitives/block.h> #include <primitives/transaction.h> #include <random.h> #include <reverse_iterator.h> #include <scheduler.h> #include <streams.h> #include <tinyformat.h> #include <txmempool.h> #include <util/check.h> // For NDEBUG compile time check #include <util/strencodings.h> #include <util/system.h> #include <validation.h> #include <memory> #include <typeinfo> /** Expiration time for orphan transactions in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_TIME = 20 * 60; /** Minimum time between orphan transactions expire time checks in seconds */ static constexpr int64_t ORPHAN_TX_EXPIRE_INTERVAL = 5 * 60; /** How long to cache transactions in mapRelay for normal relay */ static constexpr std::chrono::seconds RELAY_TX_CACHE_TIME = std::chrono::minutes{15}; /** How long a transaction has to be in the mempool before it can * unconditionally be relayed (even when not in mapRelay). */ static constexpr std::chrono::seconds UNCONDITIONAL_RELAY_DELAY = std::chrono::minutes{2}; /** * Headers download timeout expressed in microseconds. * Timeout = base + per_header * (expected number of headers) */ // 15 minutes static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_BASE = 15 * 60 * 1000000; // 1ms/header static constexpr int64_t HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER = 1000; /** * Protect at least this many outbound peers from disconnection due to * slow/behind headers chain. */ static constexpr int32_t MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT = 4; /** * Timeout for (unprotected) outbound peers to sync to our chainwork, in * seconds. */ // 20 minutes static constexpr int64_t CHAIN_SYNC_TIMEOUT = 20 * 60; /** How frequently to check for stale tips, in seconds */ // 10 minutes static constexpr int64_t STALE_CHECK_INTERVAL = 10 * 60; /** * How frequently to check for extra outbound peers and disconnect, in seconds. */ static constexpr int64_t EXTRA_PEER_CHECK_INTERVAL = 45; /** * Minimum time an outbound-peer-eviction candidate must be connected for, in * order to evict, in seconds. */ static constexpr int64_t MINIMUM_CONNECT_TIME = 30; /** SHA256("main address relay")[0:8] */ static constexpr uint64_t RANDOMIZER_ID_ADDRESS_RELAY = 0x3cac0035b5866b90ULL; /// Age after which a stale block will no longer be served if requested as /// protection against fingerprinting. Set to one month, denominated in seconds. static constexpr int STALE_RELAY_AGE_LIMIT = 30 * 24 * 60 * 60; /// Age after which a block is considered historical for purposes of rate /// limiting block relay. Set to one week, denominated in seconds. static constexpr int HISTORICAL_BLOCK_AGE = 7 * 24 * 60 * 60; /** * Time between pings automatically sent out for latency probing and keepalive. */ static constexpr std::chrono::minutes PING_INTERVAL{2}; /** The maximum number of entries in a locator */ static const unsigned int MAX_LOCATOR_SZ = 101; /** The maximum number of entries in an 'inv' protocol message */ static const unsigned int MAX_INV_SZ = 50000; static_assert(MAX_PROTOCOL_MESSAGE_LENGTH > MAX_INV_SZ * sizeof(CInv), "Max protocol message length must be greater than largest " "possible INV message"); struct DataRequestParameters { /** * Maximum number of in-flight data requests from a peer. It is not a hard * limit, but the threshold at which point the overloaded_peer_delay kicks * in. */ const size_t max_peer_request_in_flight; /** * Maximum number of inventories to consider for requesting, per peer. It * provides a reasonable DoS limit to per-peer memory usage spent on * announcements, while covering peers continuously sending INVs at the * maximum rate (by our own policy, see INVENTORY_BROADCAST_PER_SECOND) for * several minutes, while not receiving the actual data (from any peer) in * response to requests for them. */ const size_t max_peer_announcements; /** How long to delay requesting data from non-preferred peers */ const std::chrono::seconds nonpref_peer_delay; /** * How long to delay requesting data from overloaded peers (see * max_peer_request_in_flight). */ const std::chrono::seconds overloaded_peer_delay; /** * How long to wait (in microseconds) before a data request from an * additional peer. */ const std::chrono::microseconds getdata_interval; /** * Permission flags a peer requires to bypass the request limits tracking * limits and delay penalty. */ const NetPermissionFlags bypass_request_limits_permissions; }; static constexpr DataRequestParameters TX_REQUEST_PARAMS{ 100, // max_peer_request_in_flight 5000, // max_peer_announcements std::chrono::seconds(2), // nonpref_peer_delay std::chrono::seconds(2), // overloaded_peer_delay std::chrono::seconds(60), // getdata_interval PF_RELAY, // bypass_request_limits_permissions }; static constexpr DataRequestParameters PROOF_REQUEST_PARAMS{ 100, // max_peer_request_in_flight 5000, // max_peer_announcements std::chrono::seconds(2), // nonpref_peer_delay std::chrono::seconds(2), // overloaded_peer_delay std::chrono::seconds(60), // getdata_interval PF_BYPASS_PROOF_REQUEST_LIMITS, // bypass_request_limits_permissions }; /** * Limit to avoid sending big packets. Not used in processing incoming GETDATA * for compatibility. */ static const unsigned int MAX_GETDATA_SZ = 1000; /** * Number of blocks that can be requested at any given time from a single peer. */ static const int MAX_BLOCKS_IN_TRANSIT_PER_PEER = 16; /** * Timeout in seconds during which a peer must stall block download progress * before being disconnected. */ static const unsigned int BLOCK_STALLING_TIMEOUT = 2; /** * Number of headers sent in one getheaders result. We rely on the assumption * that if a peer sends * less than this number, we reached its tip. Changing this value is a protocol * upgrade. */ static const unsigned int MAX_HEADERS_RESULTS = 2000; /** * Maximum depth of blocks we're willing to serve as compact blocks to peers * when requested. For older blocks, a regular BLOCK response will be sent. */ static const int MAX_CMPCTBLOCK_DEPTH = 5; /** * Maximum depth of blocks we're willing to respond to GETBLOCKTXN requests * for. */ static const int MAX_BLOCKTXN_DEPTH = 10; /** * Size of the "block download window": how far ahead of our current height do * we fetch? Larger windows tolerate larger download speed differences between * peer, but increase the potential degree of disordering of blocks on disk * (which make reindexing and pruning harder). We'll probably * want to make this a per-peer adaptive value at some point. */ static const unsigned int BLOCK_DOWNLOAD_WINDOW = 1024; /** * Block download timeout base, expressed in millionths of the block interval * (i.e. 10 min) */ static const int64_t BLOCK_DOWNLOAD_TIMEOUT_BASE = 1000000; /** * Additional block download timeout per parallel downloading peer (i.e. 5 min) */ static const int64_t BLOCK_DOWNLOAD_TIMEOUT_PER_PEER = 500000; /** * Maximum number of headers to announce when relaying blocks with headers * message. */ static const unsigned int MAX_BLOCKS_TO_ANNOUNCE = 8; /** Maximum number of unconnecting headers announcements before DoS score */ static const int MAX_UNCONNECTING_HEADERS = 10; /** Minimum blocks required to signal NODE_NETWORK_LIMITED */ static const unsigned int NODE_NETWORK_LIMITED_MIN_BLOCKS = 288; /** * Average delay between local address broadcasts. */ static constexpr std::chrono::hours AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL{24}; /** * Average delay between peer address broadcasts. */ static const std::chrono::seconds AVG_ADDRESS_BROADCAST_INTERVAL{30}; /** * Average delay between trickled inventory transmissions in seconds. * Blocks and peers with noban permission bypass this, outbound peers * get half this delay. */ static const unsigned int INVENTORY_BROADCAST_INTERVAL = 5; /** * Maximum rate of inventory items to send per second. * Limits the impact of low-fee transaction floods. */ static constexpr unsigned int INVENTORY_BROADCAST_PER_SECOND = 7; /** Maximum number of inventory items to send per transmission. */ static constexpr unsigned int INVENTORY_BROADCAST_MAX_PER_MB = INVENTORY_BROADCAST_PER_SECOND * INVENTORY_BROADCAST_INTERVAL; /** The number of most recently announced transactions a peer can request. */ static constexpr unsigned int INVENTORY_MAX_RECENT_RELAY = 3500; /** * Verify that INVENTORY_MAX_RECENT_RELAY is enough to cache everything * typically relayed before unconditional relay from the mempool kicks in. This * is only a lower bound, and it should be larger to account for higher inv rate * to outbound peers, and random variations in the broadcast mechanism. */ static_assert(INVENTORY_MAX_RECENT_RELAY >= INVENTORY_BROADCAST_PER_SECOND * UNCONDITIONAL_RELAY_DELAY / std::chrono::seconds{1}, "INVENTORY_RELAY_MAX too low"); /** * Average delay between feefilter broadcasts in seconds. */ static constexpr unsigned int AVG_FEEFILTER_BROADCAST_INTERVAL = 10 * 60; /** * Maximum feefilter broadcast delay after significant change. */ static constexpr unsigned int MAX_FEEFILTER_CHANGE_DELAY = 5 * 60; /** * Maximum number of compact filters that may be requested with one * getcfilters. See BIP 157. */ static constexpr uint32_t MAX_GETCFILTERS_SIZE = 1000; /** * Maximum number of cf hashes that may be requested with one getcfheaders. See * BIP 157. */ static constexpr uint32_t MAX_GETCFHEADERS_SIZE = 2000; /** * the maximum percentage of addresses from our addrman to return in response * to a getaddr message. */ static constexpr size_t MAX_PCT_ADDR_TO_SEND = 23; struct COrphanTx { // When modifying, adapt the copy of this definition in tests/DoS_tests. CTransactionRef tx; NodeId fromPeer; int64_t nTimeExpire; size_t list_pos; }; /** Guards orphan transactions and extra txs for compact blocks */ RecursiveMutex g_cs_orphans; /** * Map from txid to orphan transaction record. Limited by * -maxorphantx/DEFAULT_MAX_ORPHAN_TRANSACTIONS */ std::map<TxId, COrphanTx> mapOrphanTransactions GUARDED_BY(g_cs_orphans); void EraseOrphansFor(NodeId peer); // Internal stuff namespace { /** Number of nodes with fSyncStarted. */ int nSyncStarted GUARDED_BY(cs_main) = 0; /** * Sources of received blocks, saved to be able to punish them when processing * happens afterwards. * Set mapBlockSource[hash].second to false if the node should not be punished * if the block is invalid. */ std::map<BlockHash, std::pair<NodeId, bool>> mapBlockSource GUARDED_BY(cs_main); /** * Filter for transactions that were recently rejected by AcceptToMemoryPool. * These are not rerequested until the chain tip changes, at which point the * entire filter is reset. * * Without this filter we'd be re-requesting txs from each of our peers, * increasing bandwidth consumption considerably. For instance, with 100 peers, * half of which relay a tx we don't accept, that might be a 50x bandwidth * increase. A flooding attacker attempting to roll-over the filter using * minimum-sized, 60byte, transactions might manage to send 1000/sec if we have * fast peers, so we pick 120,000 to give our peers a two minute window to send * invs to us. * * Decreasing the false positive rate is fairly cheap, so we pick one in a * million to make it highly unlikely for users to have issues with this filter. * * Memory used: 1.3 MB */ std::unique_ptr<CRollingBloomFilter> recentRejects GUARDED_BY(cs_main); uint256 hashRecentRejectsChainTip GUARDED_BY(cs_main); /** * Filter for proofs that were recently rejected but not orphaned. * These are not rerequested until they are rolled out of the filter. * * Without this filter we'd be re-requesting proofs from each of our peers, * increasing bandwidth consumption considerably. * * Decreasing the false positive rate is fairly cheap, so we pick one in a * million to make it highly unlikely for users to have issues with this filter. */ Mutex cs_rejectedProofs; std::unique_ptr<CRollingBloomFilter> rejectedProofs GUARDED_BY(cs_rejectedProofs); /** * Filter for transactions that have been recently confirmed. * We use this to avoid requesting transactions that have already been * confirmed. */ Mutex g_cs_recent_confirmed_transactions; std::unique_ptr<CRollingBloomFilter> g_recent_confirmed_transactions GUARDED_BY(g_cs_recent_confirmed_transactions); /** * Blocks that are in flight, and that are in the queue to be downloaded. */ struct QueuedBlock { BlockHash hash; //! Optional. const CBlockIndex *pindex; //! Whether this block has validated headers at the time of request. bool fValidatedHeaders; //! Optional, used for CMPCTBLOCK downloads std::unique_ptr<PartiallyDownloadedBlock> partialBlock; }; std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>> mapBlocksInFlight GUARDED_BY(cs_main); /** Stack of nodes which we have set to announce using compact blocks */ std::list<NodeId> lNodesAnnouncingHeaderAndIDs GUARDED_BY(cs_main); /** Number of preferable block download peers. */ int nPreferredDownload GUARDED_BY(cs_main) = 0; /** Number of peers from which we're downloading blocks. */ int nPeersWithValidatedDownloads GUARDED_BY(cs_main) = 0; /** Number of outbound peers with m_chain_sync.m_protect. */ int g_outbound_peers_with_protect_from_disconnect GUARDED_BY(cs_main) = 0; /** When our tip was last updated. */ std::atomic<int64_t> g_last_tip_update(0); /** Relay map. */ typedef std::map<uint256, CTransactionRef> MapRelay; MapRelay mapRelay GUARDED_BY(cs_main); /** * Expiration-time ordered list of (expire time, relay map entry) pairs, * protected by cs_main). */ std::deque<std::pair<int64_t, MapRelay::iterator>> vRelayExpiration GUARDED_BY(cs_main); struct IteratorComparator { template <typename I> bool operator()(const I &a, const I &b) const { return &(*a) < &(*b); } }; /** * Index from the parents' COutPoint into the mapOrphanTransactions. Used * to remove orphan transactions from the mapOrphanTransactions */ std::map<COutPoint, std::set<std::map<TxId, COrphanTx>::iterator, IteratorComparator>> mapOrphanTransactionsByPrev GUARDED_BY(g_cs_orphans); /** Orphan transactions in vector for quick random eviction */ std::vector<std::map<TxId, COrphanTx>::iterator> g_orphan_list GUARDED_BY(g_cs_orphans); /** * Orphan/conflicted/etc transactions that are kept for compact block * reconstruction. * The last -blockreconstructionextratxn/DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN * of these are kept in a ring buffer */ static std::vector<std::pair<TxHash, CTransactionRef>> vExtraTxnForCompact GUARDED_BY(g_cs_orphans); /** Offset into vExtraTxnForCompact to insert the next tx */ static size_t vExtraTxnForCompactIt GUARDED_BY(g_cs_orphans) = 0; } // namespace namespace { /** * Maintain validation-specific state about nodes, protected by cs_main, instead * by CNode's own locks. This simplifies asynchronous operation, where * processing of incoming data is done after the ProcessMessage call returns, * and we're no longer holding the node's locks. */ struct CNodeState { //! The peer's address const CService address; //! Whether we have a fully established connection. bool fCurrentlyConnected; //! The best known block we know this peer has announced. const CBlockIndex *pindexBestKnownBlock; //! The hash of the last unknown block this peer has announced. BlockHash hashLastUnknownBlock; //! The last full block we both have. const CBlockIndex *pindexLastCommonBlock; //! The best header we have sent our peer. const CBlockIndex *pindexBestHeaderSent; //! Length of current-streak of unconnecting headers announcements int nUnconnectingHeaders; //! Whether we've started headers synchronization with this peer. bool fSyncStarted; //! When to potentially disconnect peer for stalling headers download int64_t nHeadersSyncTimeout; //! Since when we're stalling block download progress (in microseconds), or //! 0. int64_t nStallingSince; std::list<QueuedBlock> vBlocksInFlight; //! When the first entry in vBlocksInFlight started downloading. Don't care //! when vBlocksInFlight is empty. int64_t nDownloadingSince; int nBlocksInFlight; int nBlocksInFlightValidHeaders; //! Whether we consider this a preferred download peer. bool fPreferredDownload; //! Whether this peer wants invs or headers (when possible) for block //! announcements. bool fPreferHeaders; //! Whether this peer wants invs or cmpctblocks (when possible) for block //! announcements. bool fPreferHeaderAndIDs; /** * Whether this peer will send us cmpctblocks if we request them. * This is not used to gate request logic, as we really only care about * fSupportsDesiredCmpctVersion, but is used as a flag to "lock in" the * version of compact blocks we send. */ bool fProvidesHeaderAndIDs; /** * If we've announced NODE_WITNESS to this peer: whether the peer sends * witnesses in cmpctblocks/blocktxns, otherwise: whether this peer sends * non-witnesses in cmpctblocks/blocktxns. */ bool fSupportsDesiredCmpctVersion; /** - * State used to enforce CHAIN_SYNC_TIMEOUT - * Only in effect for outbound, non-manual, full-relay connections, with - * m_protect == false - * Algorithm: if a peer's best known block has less work than our tip, set - * a timeout CHAIN_SYNC_TIMEOUT seconds in the future: + * State used to enforce CHAIN_SYNC_TIMEOUT and EXTRA_PEER_CHECK_INTERVAL + * logic. + * + * Both are only in effect for outbound, non-manual, non-protected + * connections. Any peer protected (m_protect = true) is not chosen for + * eviction. A peer is marked as protected if all of these are true: + * - its connection type is IsBlockOnlyConn() == false + * - it gave us a valid connecting header + * - we haven't reached MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT yet + * - it has a better chain than we have + * + * CHAIN_SYNC_TIMEOUT: if a peer's best known block has less work than our + * tip, set a timeout CHAIN_SYNC_TIMEOUT seconds in the future: * - If at timeout their best known block now has more work than our tip * when the timeout was set, then either reset the timeout or clear it * (after comparing against our current tip's work) * - If at timeout their best known block still has less work than our tip * did when the timeout was set, then send a getheaders message, and set a * shorter timeout, HEADERS_RESPONSE_TIME seconds in future. If their best * known block is still behind when that new timeout is reached, disconnect. + * + * EXTRA_PEER_CHECK_INTERVAL: after each interval, if we have too many + * outbound peers, drop the outbound one that least recently announced us a + * new block. */ struct ChainSyncTimeoutState { //! A timeout used for checking whether our peer has sufficiently //! synced. int64_t m_timeout; //! A header with the work we require on our peer's chain. const CBlockIndex *m_work_header; //! After timeout is reached, set to true after sending getheaders. bool m_sent_getheaders; //! Whether this peer is protected from disconnection due to a bad/slow //! chain. bool m_protect; }; ChainSyncTimeoutState m_chain_sync; //! Time of last new block announcement int64_t m_last_block_announcement; struct AvalancheState { std::chrono::time_point<std::chrono::steady_clock> last_poll; }; AvalancheState m_avalanche_state; //! Whether this peer is an inbound connection bool m_is_inbound; //! Whether this peer is a manual connection bool m_is_manual_connection; //! A rolling bloom filter of all announced tx CInvs to this peer. CRollingBloomFilter m_recently_announced_invs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; //! A rolling bloom filter of all announced Proofs CInvs to this peer. CRollingBloomFilter m_recently_announced_proofs = CRollingBloomFilter{INVENTORY_MAX_RECENT_RELAY, 0.000001}; CNodeState(CAddress addrIn, bool is_inbound, bool is_manual) : address(addrIn), m_is_inbound(is_inbound), m_is_manual_connection(is_manual) { fCurrentlyConnected = false; pindexBestKnownBlock = nullptr; hashLastUnknownBlock = BlockHash(); pindexLastCommonBlock = nullptr; pindexBestHeaderSent = nullptr; nUnconnectingHeaders = 0; fSyncStarted = false; nHeadersSyncTimeout = 0; nStallingSince = 0; nDownloadingSince = 0; nBlocksInFlight = 0; nBlocksInFlightValidHeaders = 0; fPreferredDownload = false; fPreferHeaders = false; fPreferHeaderAndIDs = false; fProvidesHeaderAndIDs = false; fSupportsDesiredCmpctVersion = false; m_chain_sync = {0, nullptr, false, false}; m_last_block_announcement = 0; m_recently_announced_invs.reset(); m_recently_announced_proofs.reset(); } }; /** Map maintaining per-node state. */ static std::map<NodeId, CNodeState> mapNodeState GUARDED_BY(cs_main); static CNodeState *State(NodeId pnode) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { std::map<NodeId, CNodeState>::iterator it = mapNodeState.find(pnode); if (it == mapNodeState.end()) { return nullptr; } return &it->second; } /** * Data structure for an individual peer. This struct is not protected by * cs_main since it does not contain validation-critical data. * * Memory is owned by shared pointers and this object is destructed when * the refcount drops to zero. * * TODO: move most members from CNodeState to this structure. * TODO: move remaining application-layer data members from CNode to this * structure. */ struct Peer { /** Same id as the CNode object for this peer */ const NodeId m_id{0}; /** Protects misbehavior data members */ Mutex m_misbehavior_mutex; /** Accumulated misbehavior score for this peer */ int m_misbehavior_score GUARDED_BY(m_misbehavior_mutex){0}; /** Whether this peer should be disconnected and marked as discouraged * (unless it has the noban permission). */ bool m_should_discourage GUARDED_BY(m_misbehavior_mutex){false}; Peer(NodeId id) : m_id(id) {} }; using PeerRef = std::shared_ptr<Peer>; /** * Map of all Peer objects, keyed by peer id. This map is protected * by the global g_peer_mutex. Once a shared pointer reference is * taken, the lock may be released. Individual fields are protected by * their own locks. */ Mutex g_peer_mutex; static std::map<NodeId, PeerRef> g_peer_map GUARDED_BY(g_peer_mutex); /** * Get a shared pointer to the Peer object. * May return nullptr if the Peer object can't be found. */ static PeerRef GetPeerRef(NodeId id) { LOCK(g_peer_mutex); auto it = g_peer_map.find(id); return it != g_peer_map.end() ? it->second : nullptr; } static bool isPreferredDownloadPeer(const CNode &pfrom) { LOCK(cs_main); const CNodeState *state = State(pfrom.GetId()); return state && state->fPreferredDownload; } static void UpdatePreferredDownload(const CNode &node, CNodeState *state) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { nPreferredDownload -= state->fPreferredDownload; // Whether this node should be marked as a preferred download node. state->fPreferredDownload = (!node.IsInboundConn() || node.HasPermission(PF_NOBAN)) && !node.IsAddrFetchConn() && !node.fClient; nPreferredDownload += state->fPreferredDownload; } static void PushNodeVersion(const Config &config, CNode &pnode, CConnman &connman, int64_t nTime) { // Note that pnode.GetLocalServices() is a reflection of the local // services we were offering when the CNode object was created for this // peer. ServiceFlags nLocalNodeServices = pnode.GetLocalServices(); uint64_t nonce = pnode.GetLocalNonce(); int nNodeStartingHeight = pnode.GetMyStartingHeight(); NodeId nodeid = pnode.GetId(); CAddress addr = pnode.addr; uint64_t extraEntropy = pnode.GetLocalExtraEntropy(); CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService(), addr.nServices)); CAddress addrMe = CAddress(CService(), nLocalNodeServices); connman.PushMessage( &pnode, CNetMsgMaker(INIT_PROTO_VERSION) .Make(NetMsgType::VERSION, PROTOCOL_VERSION, uint64_t(nLocalNodeServices), nTime, addrYou, addrMe, nonce, userAgent(config), nNodeStartingHeight, ::g_relay_txes && pnode.m_tx_relay != nullptr, extraEntropy)); if (fLogIPs) { LogPrint(BCLog::NET, "send version message: version %d, blocks=%d, us=%s, them=%s, " "peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), addrYou.ToString(), nodeid); } else { LogPrint( BCLog::NET, "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nNodeStartingHeight, addrMe.ToString(), nodeid); } LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid); } // Returns a bool indicating whether we requested this block. // Also used if a block was /not/ received and timed out or started with another // peer. static bool MarkBlockAsReceived(const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end()) { CNodeState *state = State(itInFlight->second.first); assert(state != nullptr); state->nBlocksInFlightValidHeaders -= itInFlight->second.second->fValidatedHeaders; if (state->nBlocksInFlightValidHeaders == 0 && itInFlight->second.second->fValidatedHeaders) { // Last validated block on the queue was received. nPeersWithValidatedDownloads--; } if (state->vBlocksInFlight.begin() == itInFlight->second.second) { // First block on the queue was received, update the start download // time for the next one state->nDownloadingSince = std::max( state->nDownloadingSince, count_microseconds(GetTime<std::chrono::microseconds>())); } state->vBlocksInFlight.erase(itInFlight->second.second); state->nBlocksInFlight--; state->nStallingSince = 0; mapBlocksInFlight.erase(itInFlight); return true; } return false; } // returns false, still setting pit, if the block was already in flight from the // same peer // pit will only be valid as long as the same cs_main lock is being held. static bool MarkBlockAsInFlight(const Config &config, CTxMemPool &mempool, NodeId nodeid, const BlockHash &hash, const Consensus::Params &consensusParams, const CBlockIndex *pindex = nullptr, std::list<QueuedBlock>::iterator **pit = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState *state = State(nodeid); assert(state != nullptr); // Short-circuit most stuff in case it is from the same node. std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>>::iterator itInFlight = mapBlocksInFlight.find(hash); if (itInFlight != mapBlocksInFlight.end() && itInFlight->second.first == nodeid) { if (pit) { *pit = &itInFlight->second.second; } return false; } // Make sure it's not listed somewhere already. MarkBlockAsReceived(hash); std::list<QueuedBlock>::iterator it = state->vBlocksInFlight.insert( state->vBlocksInFlight.end(), {hash, pindex, pindex != nullptr, std::unique_ptr<PartiallyDownloadedBlock>( pit ? new PartiallyDownloadedBlock(config, &mempool) : nullptr)}); state->nBlocksInFlight++; state->nBlocksInFlightValidHeaders += it->fValidatedHeaders; if (state->nBlocksInFlight == 1) { // We're starting a block download (batch) from this peer. state->nDownloadingSince = GetTime<std::chrono::microseconds>().count(); } if (state->nBlocksInFlightValidHeaders == 1 && pindex != nullptr) { nPeersWithValidatedDownloads++; } itInFlight = mapBlocksInFlight .insert(std::make_pair(hash, std::make_pair(nodeid, it))) .first; if (pit) { *pit = &itInFlight->second.second; } return true; } /** Check whether the last unknown block a peer advertised is not yet known. */ static void ProcessBlockAvailability(NodeId nodeid) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState *state = State(nodeid); assert(state != nullptr); if (!state->hashLastUnknownBlock.IsNull()) { const CBlockIndex *pindex = LookupBlockIndex(state->hashLastUnknownBlock); if (pindex && pindex->nChainWork > 0) { if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } state->hashLastUnknownBlock.SetNull(); } } } /** Update tracking information about which blocks a peer is assumed to have. */ static void UpdateBlockAvailability(NodeId nodeid, const BlockHash &hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { CNodeState *state = State(nodeid); assert(state != nullptr); ProcessBlockAvailability(nodeid); const CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex && pindex->nChainWork > 0) { // An actually better block was announced. if (state->pindexBestKnownBlock == nullptr || pindex->nChainWork >= state->pindexBestKnownBlock->nChainWork) { state->pindexBestKnownBlock = pindex; } } else { // An unknown block was announced; just assume that the latest one is // the best one. state->hashLastUnknownBlock = hash; } } /** * When a peer sends us a valid block, instruct it to announce blocks to us * using CMPCTBLOCK if possible by adding its nodeid to the end of * lNodesAnnouncingHeaderAndIDs, and keeping that list under a certain size by * removing the first element if necessary. */ static void MaybeSetPeerAsAnnouncingHeaderAndIDs(NodeId nodeid, CConnman &connman) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); CNodeState *nodestate = State(nodeid); if (!nodestate) { LogPrint(BCLog::NET, "node state unavailable: peer=%d\n", nodeid); return; } if (!nodestate->fProvidesHeaderAndIDs) { return; } for (std::list<NodeId>::iterator it = lNodesAnnouncingHeaderAndIDs.begin(); it != lNodesAnnouncingHeaderAndIDs.end(); it++) { if (*it == nodeid) { lNodesAnnouncingHeaderAndIDs.erase(it); lNodesAnnouncingHeaderAndIDs.push_back(nodeid); return; } } connman.ForNode(nodeid, [&connman](CNode *pfrom) EXCLUSIVE_LOCKS_REQUIRED( ::cs_main) { AssertLockHeld(::cs_main); uint64_t nCMPCTBLOCKVersion = 1; if (lNodesAnnouncingHeaderAndIDs.size() >= 3) { // As per BIP152, we only get 3 of our peers to announce // blocks using compact encodings. connman.ForNode( lNodesAnnouncingHeaderAndIDs.front(), [&connman, nCMPCTBLOCKVersion](CNode *pnodeStop) { connman.PushMessage( pnodeStop, CNetMsgMaker(pnodeStop->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*fAnnounceUsingCMPCTBLOCK=*/false, nCMPCTBLOCKVersion)); return true; }); lNodesAnnouncingHeaderAndIDs.pop_front(); } connman.PushMessage(pfrom, CNetMsgMaker(pfrom->GetCommonVersion()) .Make(NetMsgType::SENDCMPCT, /*fAnnounceUsingCMPCTBLOCK=*/true, nCMPCTBLOCKVersion)); lNodesAnnouncingHeaderAndIDs.push_back(pfrom->GetId()); return true; }); } static bool TipMayBeStale(const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); if (g_last_tip_update == 0) { g_last_tip_update = GetTime(); } return g_last_tip_update < GetTime() - consensusParams.nPowTargetSpacing * 3 && mapBlocksInFlight.empty(); } static bool CanDirectFetch(const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return ::ChainActive().Tip()->GetBlockTime() > GetAdjustedTime() - consensusParams.nPowTargetSpacing * 20; } static bool PeerHasHeader(CNodeState *state, const CBlockIndex *pindex) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (state->pindexBestKnownBlock && pindex == state->pindexBestKnownBlock->GetAncestor(pindex->nHeight)) { return true; } if (state->pindexBestHeaderSent && pindex == state->pindexBestHeaderSent->GetAncestor(pindex->nHeight)) { return true; } return false; } /** * Update pindexLastCommonBlock and add not-in-flight missing successors to * vBlocks, until it has at most count entries. */ static void FindNextBlocksToDownload(NodeId nodeid, unsigned int count, std::vector<const CBlockIndex *> &vBlocks, NodeId &nodeStaller, const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { if (count == 0) { return; } vBlocks.reserve(vBlocks.size() + count); CNodeState *state = State(nodeid); assert(state != nullptr); // Make sure pindexBestKnownBlock is up to date, we'll need it. ProcessBlockAvailability(nodeid); if (state->pindexBestKnownBlock == nullptr || state->pindexBestKnownBlock->nChainWork < ::ChainActive().Tip()->nChainWork || state->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has nothing interesting. return; } if (state->pindexLastCommonBlock == nullptr) { // Bootstrap quickly by guessing a parent of our best tip is the forking // point. Guessing wrong in either direction is not a problem. state->pindexLastCommonBlock = ::ChainActive()[std::min( state->pindexBestKnownBlock->nHeight, ::ChainActive().Height())]; } // If the peer reorganized, our previous pindexLastCommonBlock may not be an // ancestor of its current tip anymore. Go back enough to fix that. state->pindexLastCommonBlock = LastCommonAncestor( state->pindexLastCommonBlock, state->pindexBestKnownBlock); if (state->pindexLastCommonBlock == state->pindexBestKnownBlock) { return; } std::vector<const CBlockIndex *> vToFetch; const CBlockIndex *pindexWalk = state->pindexLastCommonBlock; // Never fetch further than the best block we know the peer has, or more // than BLOCK_DOWNLOAD_WINDOW + 1 beyond the last linked block we have in // common with this peer. The +1 is so we can detect stalling, namely if we // would be able to download that next block if the window were 1 larger. int nWindowEnd = state->pindexLastCommonBlock->nHeight + BLOCK_DOWNLOAD_WINDOW; int nMaxHeight = std::min<int>(state->pindexBestKnownBlock->nHeight, nWindowEnd + 1); NodeId waitingfor = -1; while (pindexWalk->nHeight < nMaxHeight) { // Read up to 128 (or more, if more blocks than that are needed) // successors of pindexWalk (towards pindexBestKnownBlock) into // vToFetch. We fetch 128, because CBlockIndex::GetAncestor may be as // expensive as iterating over ~100 CBlockIndex* entries anyway. int nToFetch = std::min(nMaxHeight - pindexWalk->nHeight, std::max<int>(count - vBlocks.size(), 128)); vToFetch.resize(nToFetch); pindexWalk = state->pindexBestKnownBlock->GetAncestor( pindexWalk->nHeight + nToFetch); vToFetch[nToFetch - 1] = pindexWalk; for (unsigned int i = nToFetch - 1; i > 0; i--) { vToFetch[i - 1] = vToFetch[i]->pprev; } // Iterate over those blocks in vToFetch (in forward direction), adding // the ones that are not yet downloaded and not in flight to vBlocks. In // the meantime, update pindexLastCommonBlock as long as all ancestors // are already downloaded, or if it's already part of our chain (and // therefore don't need it even if pruned). for (const CBlockIndex *pindex : vToFetch) { if (!pindex->IsValid(BlockValidity::TREE)) { // We consider the chain that this peer is on invalid. return; } if (pindex->nStatus.hasData() || ::ChainActive().Contains(pindex)) { if (pindex->HaveTxsDownloaded()) { state->pindexLastCommonBlock = pindex; } } else if (mapBlocksInFlight.count(pindex->GetBlockHash()) == 0) { // The block is not already downloaded, and not yet in flight. if (pindex->nHeight > nWindowEnd) { // We reached the end of the window. if (vBlocks.size() == 0 && waitingfor != nodeid) { // We aren't able to fetch anything, but we would be if // the download window was one larger. nodeStaller = waitingfor; } return; } vBlocks.push_back(pindex); if (vBlocks.size() == count) { return; } } else if (waitingfor == -1) { // This is the first already-in-flight block. waitingfor = mapBlocksInFlight[pindex->GetBlockHash()].first; } } } } } // namespace template <class InvId> static bool TooManyAnnouncements(const CNode &node, const InvRequestTracker<InvId> &requestTracker, const DataRequestParameters &requestParams) { return !node.HasPermission( requestParams.bypass_request_limits_permissions) && requestTracker.Count(node.GetId()) >= requestParams.max_peer_announcements; } /** * Compute the request time for this announcement, current time plus delays for: * - nonpref_peer_delay for announcements from non-preferred connections * - overloaded_peer_delay for announcements from peers which have at least * max_peer_request_in_flight requests in flight (and don't have PF_RELAY). */ template <class InvId> static std::chrono::microseconds ComputeRequestTime(const CNode &node, const InvRequestTracker<InvId> &requestTracker, const DataRequestParameters &requestParams, std::chrono::microseconds current_time, bool preferred) { auto delay = std::chrono::microseconds{0}; if (!preferred) { delay += requestParams.nonpref_peer_delay; } if (!node.HasPermission(requestParams.bypass_request_limits_permissions) && requestTracker.CountInFlight(node.GetId()) >= requestParams.max_peer_request_in_flight) { delay += requestParams.overloaded_peer_delay; } return current_time + delay; } void PeerManager::AddTxAnnouncement(const CNode &node, const TxId &txid, std::chrono::microseconds current_time) { // For m_txrequest and state AssertLockHeld(::cs_main); if (TooManyAnnouncements(node, m_txrequest, TX_REQUEST_PARAMS)) { return; } const bool preferred = isPreferredDownloadPeer(node); auto reqtime = ComputeRequestTime(node, m_txrequest, TX_REQUEST_PARAMS, current_time, preferred); m_txrequest.ReceivedInv(node.GetId(), txid, preferred, reqtime); } void PeerManager::AddProofAnnouncement(const CNode &node, const avalanche::ProofId &proofid, std::chrono::microseconds current_time, bool preferred) { // For m_proofrequest AssertLockHeld(cs_proofrequest); if (TooManyAnnouncements(node, m_proofrequest, PROOF_REQUEST_PARAMS)) { return; } auto reqtime = ComputeRequestTime( node, m_proofrequest, PROOF_REQUEST_PARAMS, current_time, preferred); m_proofrequest.ReceivedInv(node.GetId(), proofid, preferred, reqtime); } // This function is used for testing the stale tip eviction logic, see // denialofservice_tests.cpp void UpdateLastBlockAnnounceTime(NodeId node, int64_t time_in_seconds) { LOCK(cs_main); CNodeState *state = State(node); if (state) { state->m_last_block_announcement = time_in_seconds; } } void PeerManager::InitializeNode(const Config &config, CNode *pnode) { CAddress addr = pnode->addr; std::string addrName = pnode->GetAddrName(); NodeId nodeid = pnode->GetId(); { LOCK(cs_main); mapNodeState.emplace_hint(mapNodeState.end(), std::piecewise_construct, std::forward_as_tuple(nodeid), std::forward_as_tuple(addr, pnode->IsInboundConn(), pnode->IsManualConn())); assert(m_txrequest.Count(nodeid) == 0); } { PeerRef peer = std::make_shared<Peer>(nodeid); LOCK(g_peer_mutex); g_peer_map.emplace_hint(g_peer_map.end(), nodeid, std::move(peer)); } if (!pnode->IsInboundConn()) { PushNodeVersion(config, *pnode, m_connman, GetTime()); } } void PeerManager::ReattemptInitialBroadcast(CScheduler &scheduler) const { std::set<TxId> unbroadcast_txids = m_mempool.GetUnbroadcastTxs(); for (const TxId &txid : unbroadcast_txids) { // Sanity check: all unbroadcast txns should exist in the mempool if (m_mempool.exists(txid)) { RelayTransaction(txid, m_connman); } else { m_mempool.RemoveUnbroadcastTx(txid, true); } } if (g_avalanche && isAvalancheEnabled(gArgs)) { g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { auto unbroadcasted_proofids = pm.getUnbroadcastProofs(); for (const auto &proofid : unbroadcasted_proofids) { // Sanity check: all unbroadcast proofs should be valid in the // peermanager if (pm.isValid(proofid)) { RelayProof(proofid, m_connman); } else { pm.removeUnbroadcastProof(proofid); } } }); } // Schedule next run for 10-15 minutes in the future. // We add randomness on every cycle to avoid the possibility of P2P // fingerprinting. const std::chrono::milliseconds delta = std::chrono::minutes{10} + GetRandMillis(std::chrono::minutes{5}); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta); } void PeerManager::UpdateAvalancheStatistics() const { m_connman.ForEachNode([](CNode *pnode) { if (pnode->m_avalanche_state) { pnode->m_avalanche_state->updateAvailabilityScore(); } }); } void PeerManager::FinalizeNode(const Config &config, NodeId nodeid, bool &fUpdateConnectionTime) { fUpdateConnectionTime = false; { LOCK(cs_main); int misbehavior{0}; { PeerRef peer = GetPeerRef(nodeid); assert(peer != nullptr); misbehavior = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score); LOCK(g_peer_mutex); g_peer_map.erase(nodeid); } CNodeState *state = State(nodeid); assert(state != nullptr); if (state->fSyncStarted) { nSyncStarted--; } if (misbehavior == 0 && state->fCurrentlyConnected) { fUpdateConnectionTime = true; } for (const QueuedBlock &entry : state->vBlocksInFlight) { mapBlocksInFlight.erase(entry.hash); } EraseOrphansFor(nodeid); m_txrequest.DisconnectedPeer(nodeid); nPreferredDownload -= state->fPreferredDownload; nPeersWithValidatedDownloads -= (state->nBlocksInFlightValidHeaders != 0); assert(nPeersWithValidatedDownloads >= 0); g_outbound_peers_with_protect_from_disconnect -= state->m_chain_sync.m_protect; assert(g_outbound_peers_with_protect_from_disconnect >= 0); mapNodeState.erase(nodeid); if (mapNodeState.empty()) { // Do a consistency check after the last peer is removed. assert(mapBlocksInFlight.empty()); assert(nPreferredDownload == 0); assert(nPeersWithValidatedDownloads == 0); assert(g_outbound_peers_with_protect_from_disconnect == 0); assert(m_txrequest.Size() == 0); } } WITH_LOCK(cs_proofrequest, m_proofrequest.DisconnectedPeer(nodeid)); LogPrint(BCLog::NET, "Cleared nodestate for peer=%d\n", nodeid); } bool GetNodeStateStats(NodeId nodeid, CNodeStateStats &stats) { { LOCK(cs_main); CNodeState *state = State(nodeid); if (state == nullptr) { return false; } stats.nSyncHeight = state->pindexBestKnownBlock ? state->pindexBestKnownBlock->nHeight : -1; stats.nCommonHeight = state->pindexLastCommonBlock ? state->pindexLastCommonBlock->nHeight : -1; for (const QueuedBlock &queue : state->vBlocksInFlight) { if (queue.pindex) { stats.vHeightInFlight.push_back(queue.pindex->nHeight); } } } PeerRef peer = GetPeerRef(nodeid); if (peer == nullptr) { return false; } stats.m_misbehavior_score = WITH_LOCK(peer->m_misbehavior_mutex, return peer->m_misbehavior_score); return true; } ////////////////////////////////////////////////////////////////////////////// // // mapOrphanTransactions // static void AddToCompactExtraTransactions(const CTransactionRef &tx) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) { size_t max_extra_txn = gArgs.GetArg("-blockreconstructionextratxn", DEFAULT_BLOCK_RECONSTRUCTION_EXTRA_TXN); if (max_extra_txn <= 0) { return; } if (!vExtraTxnForCompact.size()) { vExtraTxnForCompact.resize(max_extra_txn); } vExtraTxnForCompact[vExtraTxnForCompactIt] = std::make_pair(tx->GetHash(), tx); vExtraTxnForCompactIt = (vExtraTxnForCompactIt + 1) % max_extra_txn; } bool AddOrphanTx(const CTransactionRef &tx, NodeId peer) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) { const TxId &txid = tx->GetId(); if (mapOrphanTransactions.count(txid)) { return false; } // Ignore big transactions, to avoid a send-big-orphans memory exhaustion // attack. If a peer has a legitimate large transaction with a missing // parent then we assume it will rebroadcast it later, after the parent // transaction(s) have been mined or received. // 100 orphans, each of which is at most 100,000 bytes big is at most 10 // megabytes of orphans and somewhat more byprev index (in the worst case): unsigned int sz = tx->GetTotalSize(); if (sz > MAX_STANDARD_TX_SIZE) { LogPrint(BCLog::MEMPOOL, "ignoring large orphan tx (size: %u, hash: %s)\n", sz, txid.ToString()); return false; } auto ret = mapOrphanTransactions.emplace( txid, COrphanTx{tx, peer, GetTime() + ORPHAN_TX_EXPIRE_TIME, g_orphan_list.size()}); assert(ret.second); g_orphan_list.push_back(ret.first); for (const CTxIn &txin : tx->vin) { mapOrphanTransactionsByPrev[txin.prevout].insert(ret.first); } AddToCompactExtraTransactions(tx); LogPrint(BCLog::MEMPOOL, "stored orphan tx %s (mapsz %u outsz %u)\n", txid.ToString(), mapOrphanTransactions.size(), mapOrphanTransactionsByPrev.size()); return true; } static int EraseOrphanTx(const TxId id) EXCLUSIVE_LOCKS_REQUIRED(g_cs_orphans) { const auto it = mapOrphanTransactions.find(id); if (it == mapOrphanTransactions.end()) { return 0; } for (const CTxIn &txin : it->second.tx->vin) { const auto itPrev = mapOrphanTransactionsByPrev.find(txin.prevout); if (itPrev == mapOrphanTransactionsByPrev.end()) { continue; } itPrev->second.erase(it); if (itPrev->second.empty()) { mapOrphanTransactionsByPrev.erase(itPrev); } } size_t old_pos = it->second.list_pos; assert(g_orphan_list[old_pos] == it); if (old_pos + 1 != g_orphan_list.size()) { // Unless we're deleting the last entry in g_orphan_list, move the last // entry to the position we're deleting. auto it_last = g_orphan_list.back(); g_orphan_list[old_pos] = it_last; it_last->second.list_pos = old_pos; } g_orphan_list.pop_back(); mapOrphanTransactions.erase(it); return 1; } void EraseOrphansFor(NodeId peer) { LOCK(g_cs_orphans); int nErased = 0; auto iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { // Increment to avoid iterator becoming invalid. const auto maybeErase = iter++; if (maybeErase->second.fromPeer == peer) { nErased += EraseOrphanTx(maybeErase->second.tx->GetId()); } } if (nErased > 0) { LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx from peer=%d\n", nErased, peer); } } unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans) { LOCK(g_cs_orphans); unsigned int nEvicted = 0; static int64_t nNextSweep; int64_t nNow = GetTime(); if (nNextSweep <= nNow) { // Sweep out expired orphan pool entries: int nErased = 0; int64_t nMinExpTime = nNow + ORPHAN_TX_EXPIRE_TIME - ORPHAN_TX_EXPIRE_INTERVAL; auto iter = mapOrphanTransactions.begin(); while (iter != mapOrphanTransactions.end()) { const auto maybeErase = iter++; if (maybeErase->second.nTimeExpire <= nNow) { nErased += EraseOrphanTx(maybeErase->second.tx->GetId()); } else { nMinExpTime = std::min(maybeErase->second.nTimeExpire, nMinExpTime); } } // Sweep again 5 minutes after the next entry that expires in order to // batch the linear scan. nNextSweep = nMinExpTime + ORPHAN_TX_EXPIRE_INTERVAL; if (nErased > 0) { LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx due to expiration\n", nErased); } } FastRandomContext rng; while (mapOrphanTransactions.size() > nMaxOrphans) { // Evict a random orphan: size_t randompos = rng.randrange(g_orphan_list.size()); EraseOrphanTx(g_orphan_list[randompos]->first); ++nEvicted; } return nEvicted; } void PeerManager::Misbehaving(const NodeId pnode, const int howmuch, const std::string &message) { assert(howmuch > 0); PeerRef peer = GetPeerRef(pnode); if (peer == nullptr) { return; } LOCK(peer->m_misbehavior_mutex); peer->m_misbehavior_score += howmuch; const std::string message_prefixed = message.empty() ? "" : (": " + message); if (peer->m_misbehavior_score >= DISCOURAGEMENT_THRESHOLD && peer->m_misbehavior_score - howmuch < DISCOURAGEMENT_THRESHOLD) { LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d) BAN THRESHOLD EXCEEDED%s\n", pnode, peer->m_misbehavior_score - howmuch, peer->m_misbehavior_score, message_prefixed); peer->m_should_discourage = true; } else { LogPrint(BCLog::NET, "Misbehaving: peer=%d (%d -> %d)%s\n", pnode, peer->m_misbehavior_score - howmuch, peer->m_misbehavior_score, message_prefixed); } } bool PeerManager::MaybePunishNodeForBlock(NodeId nodeid, const BlockValidationState &state, bool via_compact_block, const std::string &message) { switch (state.GetResult()) { case BlockValidationResult::BLOCK_RESULT_UNSET: break; // The node is providing invalid data: case BlockValidationResult::BLOCK_CONSENSUS: case BlockValidationResult::BLOCK_MUTATED: if (!via_compact_block) { Misbehaving(nodeid, 100, message); return true; } break; case BlockValidationResult::BLOCK_CACHED_INVALID: { LOCK(cs_main); CNodeState *node_state = State(nodeid); if (node_state == nullptr) { break; } // Ban outbound (but not inbound) peers if on an invalid chain. // Exempt HB compact block peers and manual connections. if (!via_compact_block && !node_state->m_is_inbound && !node_state->m_is_manual_connection) { Misbehaving(nodeid, 100, message); return true; } break; } case BlockValidationResult::BLOCK_INVALID_HEADER: case BlockValidationResult::BLOCK_CHECKPOINT: case BlockValidationResult::BLOCK_INVALID_PREV: Misbehaving(nodeid, 100, message); return true; case BlockValidationResult::BLOCK_FINALIZATION: // TODO: Use the state object to report this is probably not the // best idea. This is effectively unreachable, unless there is a bug // somewhere. Misbehaving(nodeid, 20, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case BlockValidationResult::BLOCK_MISSING_PREV: // TODO: Handle this much more gracefully (10 DoS points is super // arbitrary) Misbehaving(nodeid, 10, message); return true; case BlockValidationResult::BLOCK_RECENT_CONSENSUS_CHANGE: case BlockValidationResult::BLOCK_TIME_FUTURE: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } bool PeerManager::MaybePunishNodeForTx(NodeId nodeid, const TxValidationState &state, const std::string &message) { switch (state.GetResult()) { case TxValidationResult::TX_RESULT_UNSET: break; // The node is providing invalid data: case TxValidationResult::TX_CONSENSUS: Misbehaving(nodeid, 100, message); return true; // Conflicting (but not necessarily invalid) data or different policy: case TxValidationResult::TX_RECENT_CONSENSUS_CHANGE: case TxValidationResult::TX_INPUTS_NOT_STANDARD: case TxValidationResult::TX_NOT_STANDARD: case TxValidationResult::TX_MISSING_INPUTS: case TxValidationResult::TX_PREMATURE_SPEND: case TxValidationResult::TX_CONFLICT: case TxValidationResult::TX_MEMPOOL_POLICY: break; } if (message != "") { LogPrint(BCLog::NET, "peer=%d: %s\n", nodeid, message); } return false; } ////////////////////////////////////////////////////////////////////////////// // // blockchain -> download logic notification // // To prevent fingerprinting attacks, only send blocks/headers outside of the // active chain if they are no more than a month older (both in time, and in // best equivalent proof of work) than the best header chain we know about and // we fully-validated them at some point. static bool BlockRequestAllowed(const CBlockIndex *pindex, const Consensus::Params &consensusParams) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { AssertLockHeld(cs_main); if (::ChainActive().Contains(pindex)) { return true; } return pindex->IsValid(BlockValidity::SCRIPTS) && (pindexBestHeader != nullptr) && (pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() < STALE_RELAY_AGE_LIMIT) && (GetBlockProofEquivalentTime(*pindexBestHeader, *pindex, *pindexBestHeader, consensusParams) < STALE_RELAY_AGE_LIMIT); } PeerManager::PeerManager(const CChainParams &chainparams, CConnman &connman, BanMan *banman, CScheduler &scheduler, ChainstateManager &chainman, CTxMemPool &pool) : m_chainparams(chainparams), m_connman(connman), m_banman(banman), m_chainman(chainman), m_mempool(pool), m_stale_tip_check_time(0) { // Initialize global variables that cannot be constructed at startup. recentRejects.reset(new CRollingBloomFilter(120000, 0.000001)); { LOCK(cs_rejectedProofs); rejectedProofs = std::make_unique<CRollingBloomFilter>(100000, 0.000001); } // Blocks don't typically have more than 4000 transactions, so this should // be at least six blocks (~1 hr) worth of transactions that we can store. // If the number of transactions appearing in a block goes up, or if we are // seeing getdata requests more than an hour after initial announcement, we // can increase this number. // The false positive rate of 1/1M should come out to less than 1 // transaction per day that would be inadvertently ignored (which is the // same probability that we have in the reject filter). g_recent_confirmed_transactions.reset( new CRollingBloomFilter(24000, 0.000001)); // Stale tip checking and peer eviction are on two different timers, but we // don't want them to get out of sync due to drift in the scheduler, so we // combine them in one function and schedule at the quicker (peer-eviction) // timer. static_assert( EXTRA_PEER_CHECK_INTERVAL < STALE_CHECK_INTERVAL, "peer eviction timer should be less than stale tip check timer"); scheduler.scheduleEvery( [this]() { this->CheckForStaleTipAndEvictPeers(); return true; }, std::chrono::seconds{EXTRA_PEER_CHECK_INTERVAL}); // schedule next run for 10-15 minutes in the future const std::chrono::milliseconds delta = std::chrono::minutes{10} + GetRandMillis(std::chrono::minutes{5}); scheduler.scheduleFromNow([&] { ReattemptInitialBroadcast(scheduler); }, delta); // Update the avalanche statistics on a schedule scheduler.scheduleEvery( [this]() { UpdateAvalancheStatistics(); return true; }, AVALANCHE_STATISTICS_REFRESH_PERIOD); } /** * Evict orphan txn pool entries (EraseOrphanTx) based on a newly connected * block, remember the recently confirmed transactions, and delete tracked * announcements for them. Also save the time of the last tip update. */ void PeerManager::BlockConnected(const std::shared_ptr<const CBlock> &pblock, const CBlockIndex *pindex) { { LOCK(g_cs_orphans); std::vector<TxId> vOrphanErase; for (const CTransactionRef &ptx : pblock->vtx) { const CTransaction &tx = *ptx; // Which orphan pool entries must we evict? for (const auto &txin : tx.vin) { auto itByPrev = mapOrphanTransactionsByPrev.find(txin.prevout); if (itByPrev == mapOrphanTransactionsByPrev.end()) { continue; } for (auto mi = itByPrev->second.begin(); mi != itByPrev->second.end(); ++mi) { const CTransaction &orphanTx = *(*mi)->second.tx; const TxId &orphanId = orphanTx.GetId(); vOrphanErase.push_back(orphanId); } } } // Erase orphan transactions included or precluded by this block if (vOrphanErase.size()) { int nErased = 0; for (const auto &orphanId : vOrphanErase) { nErased += EraseOrphanTx(orphanId); } LogPrint(BCLog::MEMPOOL, "Erased %d orphan tx included or conflicted by block\n", nErased); } g_last_tip_update = GetTime(); } { LOCK(g_cs_recent_confirmed_transactions); for (const CTransactionRef &ptx : pblock->vtx) { g_recent_confirmed_transactions->insert(ptx->GetId()); } } { LOCK(cs_main); for (const auto &ptx : pblock->vtx) { m_txrequest.ForgetInvId(ptx->GetId()); } } } void PeerManager::BlockDisconnected(const std::shared_ptr<const CBlock> &block, const CBlockIndex *pindex) { // To avoid relay problems with transactions that were previously // confirmed, clear our filter of recently confirmed transactions whenever // there's a reorg. // This means that in a 1-block reorg (where 1 block is disconnected and // then another block reconnected), our filter will drop to having only one // block's worth of transactions in it, but that should be fine, since // presumably the most common case of relaying a confirmed transaction // should be just after a new block containing it is found. LOCK(g_cs_recent_confirmed_transactions); g_recent_confirmed_transactions->reset(); } // All of the following cache a recent block, and are protected by // cs_most_recent_block static RecursiveMutex cs_most_recent_block; static std::shared_ptr<const CBlock> most_recent_block GUARDED_BY(cs_most_recent_block); static std::shared_ptr<const CBlockHeaderAndShortTxIDs> most_recent_compact_block GUARDED_BY(cs_most_recent_block); static uint256 most_recent_block_hash GUARDED_BY(cs_most_recent_block); /** * Maintain state about the best-seen block and fast-announce a compact block * to compatible peers. */ void PeerManager::NewPoWValidBlock( const CBlockIndex *pindex, const std::shared_ptr<const CBlock> &pblock) { std::shared_ptr<const CBlockHeaderAndShortTxIDs> pcmpctblock = std::make_shared<const CBlockHeaderAndShortTxIDs>(*pblock); const CNetMsgMaker msgMaker(PROTOCOL_VERSION); LOCK(cs_main); static int nHighestFastAnnounce = 0; if (pindex->nHeight <= nHighestFastAnnounce) { return; } nHighestFastAnnounce = pindex->nHeight; uint256 hashBlock(pblock->GetHash()); { LOCK(cs_most_recent_block); most_recent_block_hash = hashBlock; most_recent_block = pblock; most_recent_compact_block = pcmpctblock; } m_connman.ForEachNode( [this, &pcmpctblock, pindex, &msgMaker, &hashBlock](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); // TODO: Avoid the repeated-serialization here if (pnode->GetCommonVersion() < INVALID_CB_NO_BAN_VERSION || pnode->fDisconnect) { return; } ProcessBlockAvailability(pnode->GetId()); CNodeState &state = *State(pnode->GetId()); // If the peer has, or we announced to them the previous block // already, but we don't think they have this one, go ahead and // announce it. if (state.fPreferHeaderAndIDs && !PeerHasHeader(&state, pindex) && PeerHasHeader(&state, pindex->pprev)) { LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", "PeerManager::NewPoWValidBlock", hashBlock.ToString(), pnode->GetId()); m_connman.PushMessage( pnode, msgMaker.Make(NetMsgType::CMPCTBLOCK, *pcmpctblock)); state.pindexBestHeaderSent = pindex; } }); } /** * Update our best height and announce any block hashes which weren't previously * in ::ChainActive() to our peers. */ void PeerManager::UpdatedBlockTip(const CBlockIndex *pindexNew, const CBlockIndex *pindexFork, bool fInitialDownload) { const int nNewHeight = pindexNew->nHeight; m_connman.SetBestHeight(nNewHeight); SetServiceFlagsIBDCache(!fInitialDownload); if (!fInitialDownload) { // Find the hashes of all blocks that weren't previously in the best // chain. std::vector<BlockHash> vHashes; const CBlockIndex *pindexToAnnounce = pindexNew; while (pindexToAnnounce != pindexFork) { vHashes.push_back(pindexToAnnounce->GetBlockHash()); pindexToAnnounce = pindexToAnnounce->pprev; if (vHashes.size() == MAX_BLOCKS_TO_ANNOUNCE) { // Limit announcements in case of a huge reorganization. Rely on // the peer's synchronization mechanism in that case. break; } } // Relay inventory, but don't relay old inventory during initial block // download. m_connman.ForEachNode([nNewHeight, &vHashes](CNode *pnode) { LOCK(pnode->cs_inventory); if (nNewHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : 0)) { for (const BlockHash &hash : reverse_iterate(vHashes)) { pnode->vBlockHashesToAnnounce.push_back(hash); } } }); m_connman.WakeMessageHandler(); } } /** * Handle invalid block rejection and consequent peer banning, maintain which * peers announce compact blocks. */ void PeerManager::BlockChecked(const CBlock &block, const BlockValidationState &state) { LOCK(cs_main); const BlockHash hash = block.GetHash(); std::map<BlockHash, std::pair<NodeId, bool>>::iterator it = mapBlockSource.find(hash); // If the block failed validation, we know where it came from and we're // still connected to that peer, maybe punish. if (state.IsInvalid() && it != mapBlockSource.end() && State(it->second.first)) { MaybePunishNodeForBlock(/*nodeid=*/it->second.first, state, /*via_compact_block=*/!it->second.second); } // Check that: // 1. The block is valid // 2. We're not in initial block download // 3. This is currently the best block we're aware of. We haven't updated // the tip yet so we have no way to check this directly here. Instead we // just check that there are currently no other blocks in flight. else if (state.IsValid() && !::ChainstateActive().IsInitialBlockDownload() && mapBlocksInFlight.count(hash) == mapBlocksInFlight.size()) { if (it != mapBlockSource.end()) { MaybeSetPeerAsAnnouncingHeaderAndIDs(it->second.first, m_connman); } } if (it != mapBlockSource.end()) { mapBlockSource.erase(it); } } ////////////////////////////////////////////////////////////////////////////// // // Messages // static bool AlreadyHaveTx(const TxId &txid, const CTxMemPool &mempool) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { assert(recentRejects); if (::ChainActive().Tip()->GetBlockHash() != hashRecentRejectsChainTip) { // If the chain tip has changed previously rejected transactions // might be now valid, e.g. due to a nLockTime'd tx becoming // valid, or a double-spend. Reset the rejects filter and give // those txs a second chance. hashRecentRejectsChainTip = ::ChainActive().Tip()->GetBlockHash(); recentRejects->reset(); } { LOCK(g_cs_orphans); if (mapOrphanTransactions.count(txid)) { return true; } } { LOCK(g_cs_recent_confirmed_transactions); if (g_recent_confirmed_transactions->contains(txid)) { return true; } } return recentRejects->contains(txid) || mempool.exists(txid); } static bool AlreadyHaveBlock(const BlockHash &block_hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return LookupBlockIndex(block_hash) != nullptr; } static bool AlreadyHaveProof(const avalanche::ProofId &proofid) { assert(g_avalanche); const bool hasProof = g_avalanche->withPeerManager( [&proofid](avalanche::PeerManager &pm) { return pm.exists(proofid); }); LOCK(cs_rejectedProofs); return hasProof || rejectedProofs->contains(proofid); } void RelayTransaction(const TxId &txid, const CConnman &connman) { connman.ForEachNode( [&txid](CNode *pnode) { pnode->PushTxInventory(txid); }); } void RelayProof(const avalanche::ProofId &proofid, const CConnman &connman) { connman.ForEachNode( [&proofid](CNode *pnode) { pnode->PushProofInventory(proofid); }); } static void RelayAddress(const CAddress &addr, bool fReachable, const CConnman &connman) { // Relay to a limited number of other nodes. // Use deterministic randomness to send to the same nodes for 24 hours at a // time so the m_addr_knowns of the chosen nodes prevent repeats uint64_t hashAddr = addr.GetHash(); const CSipHasher hasher = connman.GetDeterministicRandomizer(RANDOMIZER_ID_ADDRESS_RELAY) .Write(hashAddr << 32) .Write((GetTime() + hashAddr) / (24 * 60 * 60)); FastRandomContext insecure_rand; // Relay reachable addresses to 2 peers. Unreachable addresses are relayed // randomly to 1 or 2 peers. unsigned int nRelayNodes = (fReachable || (hasher.Finalize() & 1)) ? 2 : 1; std::array<std::pair<uint64_t, CNode *>, 2> best{ {{0, nullptr}, {0, nullptr}}}; assert(nRelayNodes <= best.size()); auto sortfunc = [&best, &hasher, nRelayNodes](CNode *pnode) { if (pnode->RelayAddrsWithConn()) { uint64_t hashKey = CSipHasher(hasher).Write(pnode->GetId()).Finalize(); for (unsigned int i = 0; i < nRelayNodes; i++) { if (hashKey > best[i].first) { std::copy(best.begin() + i, best.begin() + nRelayNodes - 1, best.begin() + i + 1); best[i] = std::make_pair(hashKey, pnode); break; } } } }; auto pushfunc = [&addr, &best, nRelayNodes, &insecure_rand] { for (unsigned int i = 0; i < nRelayNodes && best[i].first != 0; i++) { best[i].second->PushAddress(addr, insecure_rand); } }; connman.ForEachNodeThen(std::move(sortfunc), std::move(pushfunc)); } static void ProcessGetBlockData(const Config &config, CNode &pfrom, const CInv &inv, CConnman &connman, const std::atomic<bool> &interruptMsgProc) { const Consensus::Params &consensusParams = config.GetChainParams().GetConsensus(); const BlockHash hash(inv.hash); bool send = false; std::shared_ptr<const CBlock> a_recent_block; std::shared_ptr<const CBlockHeaderAndShortTxIDs> a_recent_compact_block; { LOCK(cs_most_recent_block); a_recent_block = most_recent_block; a_recent_compact_block = most_recent_compact_block; } bool need_activate_chain = false; { LOCK(cs_main); const CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex) { if (pindex->HaveTxsDownloaded() && !pindex->IsValid(BlockValidity::SCRIPTS) && pindex->IsValid(BlockValidity::TREE)) { // If we have the block and all of its parents, but have not yet // validated it, we might be in the middle of connecting it (ie // in the unlock of cs_main before ActivateBestChain but after // AcceptBlock). In this case, we need to run ActivateBestChain // prior to checking the relay conditions below. need_activate_chain = true; } } } // release cs_main before calling ActivateBestChain if (need_activate_chain) { BlockValidationState state; if (!ActivateBestChain(config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); const CBlockIndex *pindex = LookupBlockIndex(hash); if (pindex) { send = BlockRequestAllowed(pindex, consensusParams); if (!send) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old " "block that isn't in the main chain\n", __func__, pfrom.GetId()); } } const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); // Disconnect node in case we have reached the outbound limit for serving // historical blocks. if (send && connman.OutboundTargetReached(true) && (((pindexBestHeader != nullptr) && (pindexBestHeader->GetBlockTime() - pindex->GetBlockTime() > HISTORICAL_BLOCK_AGE)) || inv.IsMsgFilteredBlk()) && // nodes with the download permission may exceed target !pfrom.HasPermission(PF_DOWNLOAD)) { LogPrint(BCLog::NET, "historical block serving limit reached, disconnect peer=%d\n", pfrom.GetId()); // disconnect node pfrom.fDisconnect = true; send = false; } // Avoid leaking prune-height by never sending blocks below the // NODE_NETWORK_LIMITED threshold. // Add two blocks buffer extension for possible races if (send && !pfrom.HasPermission(PF_NOBAN) && ((((pfrom.GetLocalServices() & NODE_NETWORK_LIMITED) == NODE_NETWORK_LIMITED) && ((pfrom.GetLocalServices() & NODE_NETWORK) != NODE_NETWORK) && (::ChainActive().Tip()->nHeight - pindex->nHeight > (int)NODE_NETWORK_LIMITED_MIN_BLOCKS + 2)))) { LogPrint(BCLog::NET, "Ignore block request below NODE_NETWORK_LIMITED " "threshold from peer=%d\n", pfrom.GetId()); // disconnect node and prevent it from stalling (would otherwise wait // for the missing block) pfrom.fDisconnect = true; send = false; } // Pruned nodes may have deleted the block, so check whether it's available // before trying to send. if (send && pindex->nStatus.hasData()) { std::shared_ptr<const CBlock> pblock; if (a_recent_block && a_recent_block->GetHash() == pindex->GetBlockHash()) { pblock = a_recent_block; } else { // Send block from disk std::shared_ptr<CBlock> pblockRead = std::make_shared<CBlock>(); if (!ReadBlockFromDisk(*pblockRead, pindex, consensusParams)) { assert(!"cannot load block from disk"); } pblock = pblockRead; } if (inv.IsMsgBlk()) { connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::BLOCK, *pblock)); } else if (inv.IsMsgFilteredBlk()) { bool sendMerkleBlock = false; CMerkleBlock merkleBlock; if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); if (pfrom.m_tx_relay->pfilter) { sendMerkleBlock = true; merkleBlock = CMerkleBlock(*pblock, *pfrom.m_tx_relay->pfilter); } } if (sendMerkleBlock) { connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::MERKLEBLOCK, merkleBlock)); // CMerkleBlock just contains hashes, so also push any // transactions in the block the client did not see. This avoids // hurting performance by pointlessly requiring a round-trip. // Note that there is currently no way for a node to request any // single transactions we didn't send here - they must either // disconnect and retry or request the full block. Thus, the // protocol spec specified allows for us to provide duplicate // txn here, however we MUST always provide at least what the // remote peer needs. typedef std::pair<size_t, uint256> PairType; for (PairType &pair : merkleBlock.vMatchedTxn) { connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::TX, *pblock->vtx[pair.first])); } } // else // no response } else if (inv.IsMsgCmpctBlk()) { // If a peer is asking for old blocks, we're almost guaranteed they // won't have a useful mempool to match against a compact block, and // we don't feel like constructing the object for them, so instead // we respond with the full, non-compact block. int nSendFlags = 0; if (CanDirectFetch(consensusParams) && pindex->nHeight >= ::ChainActive().Height() - MAX_CMPCTBLOCK_DEPTH) { CBlockHeaderAndShortTxIDs cmpctblock(*pblock); connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } else { connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCK, *pblock)); } } // Trigger the peer node to send a getblocks request for the next batch // of inventory. if (hash == pfrom.hashContinue) { // Send immediately. This must send even if redundant, and // we want it right after the last block so they don't wait for // other stuff first. std::vector<CInv> vInv; vInv.push_back( CInv(MSG_BLOCK, ::ChainActive().Tip()->GetBlockHash())); connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::INV, vInv)); pfrom.hashContinue = BlockHash(); } } } //! Determine whether or not a peer can request a transaction, and return it (or //! nullptr if not found or not allowed). static CTransactionRef FindTxForGetData(const CTxMemPool &mempool, const CNode &peer, const TxId &txid, const std::chrono::seconds mempool_req, const std::chrono::seconds now) LOCKS_EXCLUDED(cs_main) { auto txinfo = mempool.info(txid); if (txinfo.tx) { // If a TX could have been INVed in reply to a MEMPOOL request, // or is older than UNCONDITIONAL_RELAY_DELAY, permit the request // unconditionally. if ((mempool_req.count() && txinfo.m_time <= mempool_req) || txinfo.m_time <= now - UNCONDITIONAL_RELAY_DELAY) { return std::move(txinfo.tx); } } { LOCK(cs_main); // Otherwise, the transaction must have been announced recently. if (State(peer.GetId())->m_recently_announced_invs.contains(txid)) { // If it was, it can be relayed from either the mempool... if (txinfo.tx) { return std::move(txinfo.tx); } // ... or the relay pool. auto mi = mapRelay.find(txid); if (mi != mapRelay.end()) { return mi->second; } } } return {}; } //! Determine whether or not a peer can request a proof, and return it (or //! nullptr if not found or not allowed). static avalanche::ProofRef FindProofForGetData(const CNode &peer, const avalanche::ProofId &proofid, const std::chrono::seconds now) { avalanche::ProofRef proof = nullptr; bool send_unconditionally = g_avalanche->withPeerManager([&](const avalanche::PeerManager &pm) { return pm.forPeer(proofid, [&](const avalanche::Peer &peer) { proof = peer.proof; // If we know that proof for long enough, allow for requesting // it. return peer.registration_time <= now - UNCONDITIONAL_RELAY_DELAY; }); }); // We don't have this proof if (!proof) { return nullptr; } if (send_unconditionally) { return proof; } // Otherwise, the proofs must have been announced recently. LOCK(cs_main); if (State(peer.GetId())->m_recently_announced_proofs.contains(proofid)) { return proof; } return nullptr; } static void ProcessGetData(const Config &config, CNode &pfrom, CConnman &connman, CTxMemPool &mempool, const std::atomic<bool> &interruptMsgProc) LOCKS_EXCLUDED(cs_main) { AssertLockNotHeld(cs_main); std::deque<CInv>::iterator it = pfrom.vRecvGetData.begin(); std::vector<CInv> vNotFound; const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); const std::chrono::seconds now = GetTime<std::chrono::seconds>(); // Get last mempool request time const std::chrono::seconds mempool_req = pfrom.m_tx_relay != nullptr ? pfrom.m_tx_relay->m_last_mempool_req.load() : std::chrono::seconds::min(); // Process as many TX or AVA_PROOF items from the front of the getdata // queue as possible, since they're common and it's efficient to batch // process them. while (it != pfrom.vRecvGetData.end()) { if (interruptMsgProc) { return; } // The send buffer provides backpressure. If there's no space in // the buffer, pause processing until the next call. if (pfrom.fPauseSend) { break; } const CInv &inv = *it; if (it->IsMsgProof()) { const avalanche::ProofId proofid(inv.hash); auto proof = FindProofForGetData(pfrom, proofid, now); if (proof) { connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::AVAPROOF, *proof)); g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { pm.removeUnbroadcastProof(proofid); }); } else { vNotFound.push_back(inv); } ++it; continue; } if (it->IsMsgTx()) { if (pfrom.m_tx_relay == nullptr) { // Ignore GETDATA requests for transactions from blocks-only // peers. continue; } const TxId txid(inv.hash); CTransactionRef tx = FindTxForGetData(mempool, pfrom, txid, mempool_req, now); if (tx) { int nSendFlags = 0; connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::TX, *tx)); mempool.RemoveUnbroadcastTx(txid); // As we're going to send tx, make sure its unconfirmed parents // are made requestable. std::vector<TxId> parent_ids_to_add; { LOCK(mempool.cs); auto txiter = mempool.GetIter(tx->GetId()); if (txiter) { const CTxMemPoolEntry::Parents &parents = (*txiter)->GetMemPoolParentsConst(); parent_ids_to_add.reserve(parents.size()); for (const CTxMemPoolEntry &parent : parents) { if (parent.GetTime() > now - UNCONDITIONAL_RELAY_DELAY) { parent_ids_to_add.push_back( parent.GetTx().GetId()); } } } } for (const TxId &parent_txid : parent_ids_to_add) { // Relaying a transaction with a recent but unconfirmed // parent. if (WITH_LOCK(pfrom.m_tx_relay->cs_tx_inventory, return !pfrom.m_tx_relay->filterInventoryKnown .contains(parent_txid))) { LOCK(cs_main); State(pfrom.GetId()) ->m_recently_announced_invs.insert(parent_txid); } } } else { vNotFound.push_back(inv); } ++it; continue; } // It's neither a proof nor a transaction break; } // Only process one BLOCK item per call, since they're uncommon and can be // expensive to process. if (it != pfrom.vRecvGetData.end() && !pfrom.fPauseSend) { const CInv &inv = *it++; if (inv.IsGenBlkMsg()) { ProcessGetBlockData(config, pfrom, inv, connman, interruptMsgProc); } // else: If the first item on the queue is an unknown type, we erase it // and continue processing the queue on the next call. } pfrom.vRecvGetData.erase(pfrom.vRecvGetData.begin(), it); if (!vNotFound.empty()) { // Let the peer know that we didn't find what it asked for, so it // doesn't have to wait around forever. SPV clients care about this // message: it's needed when they are recursively walking the // dependencies of relevant unconfirmed transactions. SPV clients want // to do that because they want to know about (and store and rebroadcast // and risk analyze) the dependencies of transactions relevant to them, // without having to download the entire memory pool. Also, other nodes // can use these messages to automatically request a transaction from // some other peer that annnounced it, and stop waiting for us to // respond. In normal operation, we often send NOTFOUND messages for // parents of transactions that we relay; if a peer is missing a parent, // they may assume we have them and request the parents from us. connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::NOTFOUND, vNotFound)); } } void PeerManager::SendBlockTransactions(CNode &pfrom, const CBlock &block, const BlockTransactionsRequest &req) { BlockTransactions resp(req); for (size_t i = 0; i < req.indices.size(); i++) { if (req.indices[i] >= block.vtx.size()) { Misbehaving(pfrom, 100, "getblocktxn with out-of-bounds tx indices"); return; } resp.txn[i] = block.vtx[req.indices[i]]; } LOCK(cs_main); const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); int nSendFlags = 0; m_connman.PushMessage( &pfrom, msgMaker.Make(nSendFlags, NetMsgType::BLOCKTXN, resp)); } void PeerManager::ProcessHeadersMessage( const Config &config, CNode &pfrom, const std::vector<CBlockHeader> &headers, bool via_compact_block) { const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); size_t nCount = headers.size(); if (nCount == 0) { // Nothing interesting. Stop asking this peers for more headers. return; } bool received_new_header = false; const CBlockIndex *pindexLast = nullptr; { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); // If this looks like it could be a block announcement (nCount < // MAX_BLOCKS_TO_ANNOUNCE), use special logic for handling headers that // don't connect: // - Send a getheaders message in response to try to connect the chain. // - The peer can send up to MAX_UNCONNECTING_HEADERS in a row that // don't connect before giving DoS points // - Once a headers message is received that is valid and does connect, // nUnconnectingHeaders gets reset back to 0. if (!LookupBlockIndex(headers[0].hashPrevBlock) && nCount < MAX_BLOCKS_TO_ANNOUNCE) { nodestate->nUnconnectingHeaders++; m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexBestHeader), uint256())); LogPrint( BCLog::NET, "received header %s: missing prev block %s, sending getheaders " "(%d) to end (peer=%d, nUnconnectingHeaders=%d)\n", headers[0].GetHash().ToString(), headers[0].hashPrevBlock.ToString(), pindexBestHeader->nHeight, pfrom.GetId(), nodestate->nUnconnectingHeaders); // Set hashLastUnknownBlock for this peer, so that if we eventually // get the headers - even from a different peer - we can use this // peer to download. UpdateBlockAvailability(pfrom.GetId(), headers.back().GetHash()); if (nodestate->nUnconnectingHeaders % MAX_UNCONNECTING_HEADERS == 0) { // The peer is sending us many headers we can't connect. Misbehaving(pfrom, 20, strprintf("%d non-connecting headers", nodestate->nUnconnectingHeaders)); } return; } BlockHash hashLastBlock; for (const CBlockHeader &header : headers) { if (!hashLastBlock.IsNull() && header.hashPrevBlock != hashLastBlock) { Misbehaving(pfrom, 20, "non-continuous headers sequence"); return; } hashLastBlock = header.GetHash(); } // If we don't have the last header, then they'll have given us // something new (if these headers are valid). if (!LookupBlockIndex(hashLastBlock)) { received_new_header = true; } } BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, headers, state, &pindexLast)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, via_compact_block, "invalid header received"); return; } } { LOCK(cs_main); CNodeState *nodestate = State(pfrom.GetId()); if (nodestate->nUnconnectingHeaders > 0) { LogPrint(BCLog::NET, "peer=%d: resetting nUnconnectingHeaders (%d -> 0)\n", pfrom.GetId(), nodestate->nUnconnectingHeaders); } nodestate->nUnconnectingHeaders = 0; assert(pindexLast); UpdateBlockAvailability(pfrom.GetId(), pindexLast->GetBlockHash()); // From here, pindexBestKnownBlock should be guaranteed to be non-null, // because it is set in UpdateBlockAvailability. Some nullptr checks are // still present, however, as belt-and-suspenders. if (received_new_header && pindexLast->nChainWork > ::ChainActive().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } if (nCount == MAX_HEADERS_RESULTS) { // Headers message had its maximum size; the peer may have more // headers. // TODO: optimize: if pindexLast is an ancestor of // ::ChainActive().Tip or pindexBestHeader, continue from there // instead. LogPrint( BCLog::NET, "more getheaders (%d) to end to peer=%d (startheight:%d)\n", pindexLast->nHeight, pfrom.GetId(), pfrom.nStartingHeight); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexLast), uint256())); } bool fCanDirectFetch = CanDirectFetch(m_chainparams.GetConsensus()); // If this set of headers is valid and ends in a block with at least as // much work as our tip, download as much as possible. if (fCanDirectFetch && pindexLast->IsValid(BlockValidity::TREE) && ::ChainActive().Tip()->nChainWork <= pindexLast->nChainWork) { std::vector<const CBlockIndex *> vToFetch; const CBlockIndex *pindexWalk = pindexLast; // Calculate all the blocks we'd need to switch to pindexLast, up to // a limit. while (pindexWalk && !::ChainActive().Contains(pindexWalk) && vToFetch.size() <= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { if (!pindexWalk->nStatus.hasData() && !mapBlocksInFlight.count(pindexWalk->GetBlockHash())) { // We don't have this block, and it's not yet in flight. vToFetch.push_back(pindexWalk); } pindexWalk = pindexWalk->pprev; } // If pindexWalk still isn't on our main chain, we're looking at a // very large reorg at a time we think we're close to caught up to // the main chain -- this shouldn't really happen. Bail out on the // direct fetch and rely on parallel download instead. if (!::ChainActive().Contains(pindexWalk)) { LogPrint( BCLog::NET, "Large reorg, won't direct fetch to %s (%d)\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } else { std::vector<CInv> vGetData; // Download as much as possible, from earliest to latest. for (const CBlockIndex *pindex : reverse_iterate(vToFetch)) { if (nodestate->nBlocksInFlight >= MAX_BLOCKS_IN_TRANSIT_PER_PEER) { // Can't download any more from this peer break; } vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); MarkBlockAsInFlight(config, m_mempool, pfrom.GetId(), pindex->GetBlockHash(), m_chainparams.GetConsensus(), pindex); LogPrint(BCLog::NET, "Requesting block %s from peer=%d\n", pindex->GetBlockHash().ToString(), pfrom.GetId()); } if (vGetData.size() > 1) { LogPrint(BCLog::NET, "Downloading blocks toward %s (%d) via headers " "direct fetch\n", pindexLast->GetBlockHash().ToString(), pindexLast->nHeight); } if (vGetData.size() > 0) { if (nodestate->fSupportsDesiredCmpctVersion && vGetData.size() == 1 && mapBlocksInFlight.size() == 1 && pindexLast->pprev->IsValid(BlockValidity::CHAIN)) { // In any case, we want to download using a compact // block, not a regular one. vGetData[0] = CInv(MSG_CMPCT_BLOCK, vGetData[0].hash); } m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } } } // If we're in IBD, we want outbound peers that will serve us a useful // chain. Disconnect peers that are on chains with insufficient work. if (::ChainstateActive().IsInitialBlockDownload() && nCount != MAX_HEADERS_RESULTS) { // When nCount < MAX_HEADERS_RESULTS, we know we have no more // headers to fetch from this peer. if (nodestate->pindexBestKnownBlock && nodestate->pindexBestKnownBlock->nChainWork < nMinimumChainWork) { // This peer has too little work on their headers chain to help // us sync -- disconnect if it is an outbound disconnection // candidate. // Note: We compare their tip to nMinimumChainWork (rather than // ::ChainActive().Tip()) because we won't start block download // until we have a headers chain that has at least // nMinimumChainWork, even if a peer has a chain past our tip, // as an anti-DoS measure. if (pfrom.IsOutboundOrBlockRelayConn()) { LogPrintf("Disconnecting outbound peer %d -- headers " "chain has insufficient work\n", pfrom.GetId()); pfrom.fDisconnect = true; } } } + // If this is an outbound full-relay peer, check to see if we should + // protect it from the bad/lagging chain logic. + // Note that outbound block-relay peers are excluded from this + // protection, and thus always subject to eviction under the bad/lagging + // chain logic. + // See ChainSyncTimeoutState. if (!pfrom.fDisconnect && pfrom.IsFullOutboundConn() && nodestate->pindexBestKnownBlock != nullptr) { - // If this is an outbound full-relay peer, check to see if we should - // protect it from the bad/lagging chain logic. Note that - // block-relay-only peers are already implicitly protected, so we - // only consider setting m_protect for the full-relay peers. if (g_outbound_peers_with_protect_from_disconnect < MAX_OUTBOUND_PEERS_TO_PROTECT_FROM_DISCONNECT && nodestate->pindexBestKnownBlock->nChainWork >= ::ChainActive().Tip()->nChainWork && !nodestate->m_chain_sync.m_protect) { LogPrint(BCLog::NET, "Protecting outbound peer=%d from eviction\n", pfrom.GetId()); nodestate->m_chain_sync.m_protect = true; ++g_outbound_peers_with_protect_from_disconnect; } } } } /** * Reconsider orphan transactions after a parent has been accepted to the * mempool. * * @param[in/out] orphan_work_set The set of orphan transactions to * reconsider. Generally only one orphan will be reconsidered on each call of * this function. This set may be added to if accepting an orphan causes its * children to be reconsidered. */ void PeerManager::ProcessOrphanTx(const Config &config, std::set<TxId> &orphan_work_set) EXCLUSIVE_LOCKS_REQUIRED(cs_main, g_cs_orphans) { AssertLockHeld(cs_main); AssertLockHeld(g_cs_orphans); while (!orphan_work_set.empty()) { const TxId orphanTxId = *orphan_work_set.begin(); orphan_work_set.erase(orphan_work_set.begin()); auto orphan_it = mapOrphanTransactions.find(orphanTxId); if (orphan_it == mapOrphanTransactions.end()) { continue; } const CTransactionRef porphanTx = orphan_it->second.tx; TxValidationState state; if (AcceptToMemoryPool(config, m_mempool, state, porphanTx, false /* bypass_limits */, Amount::zero() /* nAbsurdFee */)) { LogPrint(BCLog::MEMPOOL, " accepted orphan tx %s\n", orphanTxId.ToString()); RelayTransaction(orphanTxId, m_connman); for (size_t i = 0; i < porphanTx->vout.size(); i++) { auto it_by_prev = mapOrphanTransactionsByPrev.find(COutPoint(orphanTxId, i)); if (it_by_prev != mapOrphanTransactionsByPrev.end()) { for (const auto &elem : it_by_prev->second) { orphan_work_set.insert(elem->first); } } } EraseOrphanTx(orphanTxId); break; } else if (state.GetResult() != TxValidationResult::TX_MISSING_INPUTS) { if (state.IsInvalid()) { LogPrint(BCLog::MEMPOOL, " invalid orphan tx %s from peer=%d. %s\n", orphanTxId.ToString(), orphan_it->second.fromPeer, state.ToString()); // Punish peer that gave us an invalid orphan tx MaybePunishNodeForTx(orphan_it->second.fromPeer, state); } // Has inputs but not accepted to mempool // Probably non-standard or insufficient fee LogPrint(BCLog::MEMPOOL, " removed orphan tx %s\n", orphanTxId.ToString()); assert(recentRejects); recentRejects->insert(orphanTxId); EraseOrphanTx(orphanTxId); break; } } m_mempool.check(&::ChainstateActive().CoinsTip()); } /** * Validation logic for compact filters request handling. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] chain_params Chain parameters * @param[in] filter_type The filter type the request is for. Must be * basic filters. * @param[in] start_height The start height for the request * @param[in] stop_hash The stop_hash for the request * @param[in] max_height_diff The maximum number of items permitted to * request, as specified in BIP 157 * @param[out] stop_index The CBlockIndex for the stop_hash block, if the * request can be serviced. * @param[out] filter_index The filter index, if the request can be * serviced. * @return True if the request can be serviced. */ static bool PrepareBlockFilterRequest( CNode &peer, const CChainParams &chain_params, BlockFilterType filter_type, uint32_t start_height, const BlockHash &stop_hash, uint32_t max_height_diff, const CBlockIndex *&stop_index, BlockFilterIndex *&filter_index) { const bool supported_filter_type = (filter_type == BlockFilterType::BASIC && (peer.GetLocalServices() & NODE_COMPACT_FILTERS)); if (!supported_filter_type) { LogPrint(BCLog::NET, "peer %d requested unsupported block filter type: %d\n", peer.GetId(), static_cast<uint8_t>(filter_type)); peer.fDisconnect = true; return false; } { LOCK(cs_main); stop_index = LookupBlockIndex(stop_hash); // Check that the stop block exists and the peer would be allowed to // fetch it. if (!stop_index || !BlockRequestAllowed(stop_index, chain_params.GetConsensus())) { LogPrint(BCLog::NET, "peer %d requested invalid block hash: %s\n", peer.GetId(), stop_hash.ToString()); peer.fDisconnect = true; return false; } } uint32_t stop_height = stop_index->nHeight; if (start_height > stop_height) { LogPrint( BCLog::NET, "peer %d sent invalid getcfilters/getcfheaders with " /* Continued */ "start height %d and stop height %d\n", peer.GetId(), start_height, stop_height); peer.fDisconnect = true; return false; } if (stop_height - start_height >= max_height_diff) { LogPrint(BCLog::NET, "peer %d requested too many cfilters/cfheaders: %d / %d\n", peer.GetId(), stop_height - start_height + 1, max_height_diff); peer.fDisconnect = true; return false; } filter_index = GetBlockFilterIndex(filter_type); if (!filter_index) { LogPrint(BCLog::NET, "Filter index for supported type %s not found\n", BlockFilterTypeName(filter_type)); return false; } return true; } /** * Handle a cfilters request. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received * @param[in] chain_params Chain parameters * @param[in] connman Pointer to the connection manager */ static void ProcessGetCFilters(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( peer, chain_params, filter_type, start_height, stop_hash, MAX_GETCFILTERS_SIZE, stop_index, filter_index)) { return; } std::vector<BlockFilter> filters; if (!filter_index->LookupFilterRange(start_height, stop_index, filters)) { LogPrint(BCLog::NET, "Failed to find block filter in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } for (const auto &filter : filters) { CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion()) .Make(NetMsgType::CFILTER, filter); connman.PushMessage(&peer, std::move(msg)); } } /** * Handle a cfheaders request. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received * @param[in] chain_params Chain parameters * @param[in] connman Pointer to the connection manager */ static void ProcessGetCFHeaders(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman) { uint8_t filter_type_ser; uint32_t start_height; BlockHash stop_hash; vRecv >> filter_type_ser >> start_height >> stop_hash; const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( peer, chain_params, filter_type, start_height, stop_hash, MAX_GETCFHEADERS_SIZE, stop_index, filter_index)) { return; } uint256 prev_header; if (start_height > 0) { const CBlockIndex *const prev_block = stop_index->GetAncestor(static_cast<int>(start_height - 1)); if (!filter_index->LookupFilterHeader(prev_block, prev_header)) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), prev_block->GetBlockHash().ToString()); return; } } std::vector<uint256> filter_hashes; if (!filter_index->LookupFilterHashRange(start_height, stop_index, filter_hashes)) { LogPrint(BCLog::NET, "Failed to find block filter hashes in index: filter_type=%s, " "start_height=%d, stop_hash=%s\n", BlockFilterTypeName(filter_type), start_height, stop_hash.ToString()); return; } CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion()) .Make(NetMsgType::CFHEADERS, filter_type_ser, stop_index->GetBlockHash(), prev_header, filter_hashes); connman.PushMessage(&peer, std::move(msg)); } /** * Handle a getcfcheckpt request. * * May disconnect from the peer in the case of a bad request. * * @param[in] peer The peer that we received the request from * @param[in] vRecv The raw message received * @param[in] chain_params Chain parameters * @param[in] connman Pointer to the connection manager */ static void ProcessGetCFCheckPt(CNode &peer, CDataStream &vRecv, const CChainParams &chain_params, CConnman &connman) { uint8_t filter_type_ser; BlockHash stop_hash; vRecv >> filter_type_ser >> stop_hash; const BlockFilterType filter_type = static_cast<BlockFilterType>(filter_type_ser); const CBlockIndex *stop_index; BlockFilterIndex *filter_index; if (!PrepareBlockFilterRequest( peer, chain_params, filter_type, /*start_height=*/0, stop_hash, /*max_height_diff=*/std::numeric_limits<uint32_t>::max(), stop_index, filter_index)) { return; } std::vector<uint256> headers(stop_index->nHeight / CFCHECKPT_INTERVAL); // Populate headers. const CBlockIndex *block_index = stop_index; for (int i = headers.size() - 1; i >= 0; i--) { int height = (i + 1) * CFCHECKPT_INTERVAL; block_index = block_index->GetAncestor(height); if (!filter_index->LookupFilterHeader(block_index, headers[i])) { LogPrint(BCLog::NET, "Failed to find block filter header in index: " "filter_type=%s, block_hash=%s\n", BlockFilterTypeName(filter_type), block_index->GetBlockHash().ToString()); return; } } CSerializedNetMsg msg = CNetMsgMaker(peer.GetCommonVersion()) .Make(NetMsgType::CFCHECKPT, filter_type_ser, stop_index->GetBlockHash(), headers); connman.PushMessage(&peer, std::move(msg)); } bool IsAvalancheMessageType(const std::string &msg_type) { return msg_type == NetMsgType::AVAHELLO || msg_type == NetMsgType::AVAPOLL || msg_type == NetMsgType::AVARESPONSE || msg_type == NetMsgType::AVAPROOF; } void PeerManager::ProcessMessage(const Config &config, CNode &pfrom, const std::string &msg_type, CDataStream &vRecv, const std::chrono::microseconds time_received, const std::atomic<bool> &interruptMsgProc) { LogPrint(BCLog::NET, "received: %s (%u bytes) peer=%d\n", SanitizeString(msg_type), vRecv.size(), pfrom.GetId()); if (gArgs.IsArgSet("-dropmessagestest") && GetRand(gArgs.GetArg("-dropmessagestest", 0)) == 0) { LogPrintf("dropmessagestest DROPPING RECV MESSAGE\n"); return; } if (IsAvalancheMessageType(msg_type)) { if (!g_avalanche) { LogPrint(BCLog::AVALANCHE, "Avalanche is not initialized, ignoring %s message\n", msg_type); return; } if (!isAvalancheEnabled(gArgs)) { Misbehaving(pfrom, 20, "unsolicited-" + msg_type); return; } } if (msg_type == NetMsgType::VERSION) { // Each connection can only send one version message if (pfrom.nVersion != 0) { Misbehaving(pfrom, 1, "redundant version message"); return; } int64_t nTime; CAddress addrMe; CAddress addrFrom; uint64_t nNonce = 1; uint64_t nServiceInt; ServiceFlags nServices; int nVersion; std::string cleanSubVer; int nStartingHeight = -1; bool fRelay = true; uint64_t nExtraEntropy = 1; vRecv >> nVersion >> nServiceInt >> nTime >> addrMe; nServices = ServiceFlags(nServiceInt); if (!pfrom.IsInboundConn()) { m_connman.SetServices(pfrom.addr, nServices); } if (pfrom.ExpectServicesFromConn() && !HasAllDesirableServiceFlags(nServices)) { LogPrint(BCLog::NET, "peer=%d does not offer the expected services " "(%08x offered, %08x expected); disconnecting\n", pfrom.GetId(), nServices, GetDesirableServiceFlags(nServices)); pfrom.fDisconnect = true; return; } if (nVersion < MIN_PEER_PROTO_VERSION) { // disconnect from peers older than this proto version LogPrint(BCLog::NET, "peer=%d using obsolete version %i; disconnecting\n", pfrom.GetId(), nVersion); pfrom.fDisconnect = true; return; } if (!vRecv.empty()) { vRecv >> addrFrom >> nNonce; } if (!vRecv.empty()) { std::string strSubVer; vRecv >> LIMITED_STRING(strSubVer, MAX_SUBVERSION_LENGTH); cleanSubVer = SanitizeString(strSubVer); } if (!vRecv.empty()) { vRecv >> nStartingHeight; } if (!vRecv.empty()) { vRecv >> fRelay; } if (!vRecv.empty()) { vRecv >> nExtraEntropy; } // Disconnect if we connected to ourself if (pfrom.IsInboundConn() && !m_connman.CheckIncomingNonce(nNonce)) { LogPrintf("connected to self at %s, disconnecting\n", pfrom.addr.ToString()); pfrom.fDisconnect = true; return; } if (pfrom.IsInboundConn() && addrMe.IsRoutable()) { SeenLocal(addrMe); } // Be shy and don't send version until we hear if (pfrom.IsInboundConn()) { PushNodeVersion(config, pfrom, m_connman, GetAdjustedTime()); } // Change version const int greatest_common_version = std::min(nVersion, PROTOCOL_VERSION); pfrom.SetCommonVersion(greatest_common_version); pfrom.nVersion = nVersion; const CNetMsgMaker msg_maker(greatest_common_version); m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::VERACK)); // Signal ADDRv2 support (BIP155). m_connman.PushMessage(&pfrom, msg_maker.Make(NetMsgType::SENDADDRV2)); pfrom.nServices = nServices; pfrom.SetAddrLocal(addrMe); { LOCK(pfrom.cs_SubVer); pfrom.cleanSubVer = cleanSubVer; } pfrom.nStartingHeight = nStartingHeight; // set nodes not relaying blocks and tx and not serving (parts) of the // historical blockchain as "clients" pfrom.fClient = (!(nServices & NODE_NETWORK) && !(nServices & NODE_NETWORK_LIMITED)); // set nodes not capable of serving the complete blockchain history as // "limited nodes" pfrom.m_limited_node = (!(nServices & NODE_NETWORK) && (nServices & NODE_NETWORK_LIMITED)); if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); // set to true after we get the first filter* message pfrom.m_tx_relay->fRelayTxes = fRelay; } pfrom.nRemoteHostNonce = nNonce; pfrom.nRemoteExtraEntropy = nExtraEntropy; // Potentially mark this peer as a preferred download peer. { LOCK(cs_main); UpdatePreferredDownload(pfrom, State(pfrom.GetId())); } if (!pfrom.IsInboundConn() && !pfrom.IsBlockOnlyConn()) { // For outbound peers, we try to relay our address (so that other // nodes can try to find us more quickly, as we have no guarantee // that an outbound peer is even aware of how to reach us) and do a // one-time address fetch (to help populate/update our addrman). If // we're starting up for the first time, our addrman may be pretty // empty and no one will know who we are, so these mechanisms are // important to help us connect to the network. // // We also update the addrman to record connection success for // these peers (which include OUTBOUND_FULL_RELAY and FEELER // connections) so that addrman will have an up-to-date notion of // which peers are online and available. // // We skip these operations for BLOCK_RELAY peers to avoid // potentially leaking information about our BLOCK_RELAY // connections via the addrman or address relay. if (fListen && !::ChainstateActive().IsInitialBlockDownload()) { CAddress addr = GetLocalAddress(&pfrom.addr, pfrom.GetLocalServices()); FastRandomContext insecure_rand; if (addr.IsRoutable()) { LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); pfrom.PushAddress(addr, insecure_rand); } else if (IsPeerAddrLocalGood(&pfrom)) { addr.SetIP(addrMe); LogPrint(BCLog::NET, "ProcessMessages: advertising address %s\n", addr.ToString()); pfrom.PushAddress(addr, insecure_rand); } } // Get recent addresses m_connman.PushMessage(&pfrom, CNetMsgMaker(greatest_common_version) .Make(NetMsgType::GETADDR)); pfrom.fGetAddr = true; // Moves address from New to Tried table in Addrman, resolves // tried-table collisions, etc. m_connman.MarkAddressGood(pfrom.addr); } std::string remoteAddr; if (fLogIPs) { remoteAddr = ", peeraddr=" + pfrom.addr.ToString(); } LogPrint(BCLog::NET, "receive version message: [%s] %s: version %d, blocks=%d, " "us=%s, peer=%d%s\n", pfrom.addr.ToString(), cleanSubVer, pfrom.nVersion, pfrom.nStartingHeight, addrMe.ToString(), pfrom.GetId(), remoteAddr); // Ignore time offsets that are improbable (before the Genesis block) // and may underflow the nTimeOffset calculation. int64_t currentTime = GetTime(); if (nTime >= int64_t(m_chainparams.GenesisBlock().nTime)) { int64_t nTimeOffset = nTime - currentTime; pfrom.nTimeOffset = nTimeOffset; AddTimeData(pfrom.addr, nTimeOffset); } else { Misbehaving(pfrom, 20, "Ignoring invalid timestamp in version message"); } // Feeler connections exist only to verify if address is online. if (pfrom.IsFeelerConn()) { pfrom.fDisconnect = true; } return; } if (pfrom.nVersion == 0) { // Must have a version message before anything else Misbehaving(pfrom, 10, "non-version message before version handshake"); return; } // At this point, the outgoing message serialization version can't change. const CNetMsgMaker msgMaker(pfrom.GetCommonVersion()); if (msg_type == NetMsgType::VERACK) { if (!pfrom.IsInboundConn()) { // Mark this node as currently connected, so we update its timestamp // later. LOCK(cs_main); State(pfrom.GetId())->fCurrentlyConnected = true; LogPrintf( "New outbound peer connected: version: %d, blocks=%d, " "peer=%d%s (%s)\n", pfrom.nVersion.load(), pfrom.nStartingHeight, pfrom.GetId(), (fLogIPs ? strprintf(", peeraddr=%s", pfrom.addr.ToString()) : ""), pfrom.m_tx_relay == nullptr ? "block-relay" : "full-relay"); } if (pfrom.GetCommonVersion() >= SENDHEADERS_VERSION) { // Tell our peer we prefer to receive headers rather than inv's // We send this to non-NODE NETWORK peers as well, because even // non-NODE NETWORK peers can announce blocks (such as pruning // nodes) m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDHEADERS)); } if (pfrom.GetCommonVersion() >= SHORT_IDS_BLOCKS_VERSION) { // Tell our peer we are willing to provide version 1 or 2 // cmpctblocks. However, we do not request new block announcements // using cmpctblock messages. We send this to non-NODE NETWORK peers // as well, because they may wish to request compact blocks from us. bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 1; m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::SENDCMPCT, fAnnounceUsingCMPCTBLOCK, nCMPCTBLOCKVersion)); } if ((pfrom.nServices & NODE_AVALANCHE) && g_avalanche && isAvalancheEnabled(gArgs)) { if (g_avalanche->sendHello(&pfrom)) { LogPrint(BCLog::AVALANCHE, "Send avahello to peer %d\n", pfrom.GetId()); auto localProof = g_avalanche->getLocalProof(); // If we sent a hello message, we should have a proof assert(localProof); // Add our proof id to the list or the recently announced proof // INVs to this peer. This is used for filtering which INV can // be requested for download. LOCK(cs_main); State(pfrom.GetId()) ->m_recently_announced_proofs.insert(localProof->getId()); } } pfrom.fSuccessfullyConnected = true; return; } if (!pfrom.fSuccessfullyConnected) { // Must have a verack message before anything else Misbehaving(pfrom, 10, "non-verack message before version handshake"); return; } if (msg_type == NetMsgType::ADDR || msg_type == NetMsgType::ADDRV2) { int stream_version = vRecv.GetVersion(); if (msg_type == NetMsgType::ADDRV2) { // Add ADDRV2_FORMAT to the version so that the CNetAddr and // CAddress unserialize methods know that an address in v2 format is // coming. stream_version |= ADDRV2_FORMAT; } OverrideStream<CDataStream> s(&vRecv, vRecv.GetType(), stream_version); std::vector<CAddress> vAddr; s >> vAddr; if (!pfrom.RelayAddrsWithConn()) { return; } if (vAddr.size() > MAX_ADDR_TO_SEND) { Misbehaving( pfrom, 20, strprintf("%s message size = %u", msg_type, vAddr.size())); return; } // Store the new addresses std::vector<CAddress> vAddrOk; int64_t nNow = GetAdjustedTime(); int64_t nSince = nNow - 10 * 60; for (CAddress &addr : vAddr) { if (interruptMsgProc) { return; } // We only bother storing full nodes, though this may include things // which we would not make an outbound connection to, in part // because we may make feeler connections to them. if (!MayHaveUsefulAddressDB(addr.nServices) && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60) { addr.nTime = nNow - 5 * 24 * 60 * 60; } pfrom.AddAddressKnown(addr); if (m_banman && (m_banman->IsDiscouraged(addr) || m_banman->IsBanned(addr))) { // Do not process banned/discouraged addresses beyond // remembering we received them continue; } bool fReachable = IsReachable(addr); if (addr.nTime > nSince && !pfrom.fGetAddr && vAddr.size() <= 10 && addr.IsRoutable()) { // Relay to a limited number of other nodes RelayAddress(addr, fReachable, m_connman); } // Do not store addresses outside our network if (fReachable) { vAddrOk.push_back(addr); } } m_connman.AddNewAddresses(vAddrOk, pfrom.addr, 2 * 60 * 60); if (vAddr.size() < 1000) { pfrom.fGetAddr = false; } if (pfrom.IsAddrFetchConn()) { pfrom.fDisconnect = true; } return; } if (msg_type == NetMsgType::SENDADDRV2) { pfrom.m_wants_addrv2 = true; return; } if (msg_type == NetMsgType::SENDHEADERS) { LOCK(cs_main); State(pfrom.GetId())->fPreferHeaders = true; return; } if (msg_type == NetMsgType::SENDCMPCT) { bool fAnnounceUsingCMPCTBLOCK = false; uint64_t nCMPCTBLOCKVersion = 0; vRecv >> fAnnounceUsingCMPCTBLOCK >> nCMPCTBLOCKVersion; if (nCMPCTBLOCKVersion == 1) { LOCK(cs_main); // fProvidesHeaderAndIDs is used to "lock in" version of compact // blocks we send. if (!State(pfrom.GetId())->fProvidesHeaderAndIDs) { State(pfrom.GetId())->fProvidesHeaderAndIDs = true; } State(pfrom.GetId())->fPreferHeaderAndIDs = fAnnounceUsingCMPCTBLOCK; if (!State(pfrom.GetId())->fSupportsDesiredCmpctVersion) { State(pfrom.GetId())->fSupportsDesiredCmpctVersion = true; } } return; } if (msg_type == NetMsgType::INV) { std::vector<CInv> vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("inv message size = %u", vInv.size())); return; } // We won't accept tx inv's if we're in blocks-only mode, or this is a // block-relay-only peer bool fBlocksOnly = !g_relay_txes || (pfrom.m_tx_relay == nullptr); // Allow peers with relay permission to send data other than blocks // in blocks only mode if (pfrom.HasPermission(PF_RELAY)) { fBlocksOnly = false; } const auto current_time = GetTime<std::chrono::microseconds>(); std::optional<BlockHash> best_block; auto logInv = [&](const CInv &inv, bool fAlreadyHave) { LogPrint(BCLog::NET, "got inv: %s %s peer=%d\n", inv.ToString(), fAlreadyHave ? "have" : "new", pfrom.GetId()); }; for (CInv &inv : vInv) { if (interruptMsgProc) { return; } if (inv.IsMsgBlk()) { LOCK(cs_main); const bool fAlreadyHave = AlreadyHaveBlock(BlockHash(inv.hash)); logInv(inv, fAlreadyHave); const BlockHash hash{inv.hash}; UpdateBlockAvailability(pfrom.GetId(), hash); if (!fAlreadyHave && !fImporting && !fReindex && !mapBlocksInFlight.count(hash)) { // Headers-first is the primary method of announcement on // the network. If a node fell back to sending blocks by // inv, it's probably for a re-org. The final block hash // provided should be the highest, so send a getheaders and // then fetch the blocks we need to catch up. best_block = std::move(hash); } continue; } if (inv.IsMsgProof()) { const avalanche::ProofId proofid(inv.hash); const bool fAlreadyHave = AlreadyHaveProof(proofid); logInv(inv, fAlreadyHave); pfrom.AddKnownProof(proofid); if (!fAlreadyHave && g_avalanche && isAvalancheEnabled(gArgs)) { const bool preferred = isPreferredDownloadPeer(pfrom); LOCK(cs_proofrequest); AddProofAnnouncement(pfrom, proofid, current_time, preferred); } continue; } if (inv.IsMsgTx()) { LOCK(cs_main); const TxId txid(inv.hash); const bool fAlreadyHave = AlreadyHaveTx(txid, m_mempool); logInv(inv, fAlreadyHave); pfrom.AddKnownTx(txid); if (fBlocksOnly) { LogPrint(BCLog::NET, "transaction (%s) inv sent in violation of " "protocol, disconnecting peer=%d\n", txid.ToString(), pfrom.GetId()); pfrom.fDisconnect = true; return; } else if (!fAlreadyHave && !m_chainman.ActiveChainstate() .IsInitialBlockDownload()) { AddTxAnnouncement(pfrom, txid, current_time); } continue; } LogPrint(BCLog::NET, "Unknown inv type \"%s\" received from peer=%d\n", inv.ToString(), pfrom.GetId()); } if (best_block) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexBestHeader), *best_block)); LogPrint(BCLog::NET, "getheaders (%d) %s to peer=%d\n", pindexBestHeader->nHeight, best_block->ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETDATA) { std::vector<CInv> vInv; vRecv >> vInv; if (vInv.size() > MAX_INV_SZ) { Misbehaving(pfrom, 20, strprintf("getdata message size = %u", vInv.size())); return; } LogPrint(BCLog::NET, "received getdata (%u invsz) peer=%d\n", vInv.size(), pfrom.GetId()); if (vInv.size() > 0) { LogPrint(BCLog::NET, "received getdata for: %s peer=%d\n", vInv[0].ToString(), pfrom.GetId()); } pfrom.vRecvGetData.insert(pfrom.vRecvGetData.end(), vInv.begin(), vInv.end()); ProcessGetData(config, pfrom, m_connman, m_mempool, interruptMsgProc); return; } if (msg_type == NetMsgType::GETBLOCKS) { CBlockLocator locator; uint256 hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getblocks locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } // We might have announced the currently-being-connected tip using a // compact block, which resulted in the peer sending a getblocks // request, which we would otherwise respond to without the new block. // To avoid this situation we simply verify that we are on our best // known chain now. This is super overkill, but we handle it better // for getheaders requests, and there are no known nodes which support // compact blocks but still use getblocks to request blocks. { std::shared_ptr<const CBlock> a_recent_block; { LOCK(cs_most_recent_block); a_recent_block = most_recent_block; } BlockValidationState state; if (!ActivateBestChain(config, state, a_recent_block)) { LogPrint(BCLog::NET, "failed to activate chain (%s)\n", state.ToString()); } } LOCK(cs_main); // Find the last block the caller has in the main chain const CBlockIndex *pindex = FindForkInGlobalIndex(::ChainActive(), locator); // Send the rest of the chain if (pindex) { pindex = ::ChainActive().Next(pindex); } int nLimit = 500; LogPrint(BCLog::NET, "getblocks %d to %s limit %d from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), nLimit, pfrom.GetId()); for (; pindex; pindex = ::ChainActive().Next(pindex)) { if (pindex->GetBlockHash() == hashStop) { LogPrint(BCLog::NET, " getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } // If pruning, don't inv blocks unless we have on disk and are // likely to still have for some reasonable time window (1 hour) // that block relay might require. const int nPrunedBlocksLikelyToHave = MIN_BLOCKS_TO_KEEP - 3600 / m_chainparams.GetConsensus().nPowTargetSpacing; if (fPruneMode && (!pindex->nStatus.hasData() || pindex->nHeight <= ::ChainActive().Tip()->nHeight - nPrunedBlocksLikelyToHave)) { LogPrint( BCLog::NET, " getblocks stopping, pruned or too old block at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); break; } WITH_LOCK(pfrom.cs_inventory, pfrom.vInventoryBlockToSend.push_back( pindex->GetBlockHash())); if (--nLimit <= 0) { // When this block is requested, we'll send an inv that'll // trigger the peer to getblocks the next batch of inventory. LogPrint(BCLog::NET, " getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString()); pfrom.hashContinue = pindex->GetBlockHash(); break; } } return; } if (msg_type == NetMsgType::GETBLOCKTXN) { BlockTransactionsRequest req; vRecv >> req; std::shared_ptr<const CBlock> recent_block; { LOCK(cs_most_recent_block); if (most_recent_block_hash == req.blockhash) { recent_block = most_recent_block; } // Unlock cs_most_recent_block to avoid cs_main lock inversion } if (recent_block) { SendBlockTransactions(pfrom, *recent_block, req); return; } LOCK(cs_main); const CBlockIndex *pindex = LookupBlockIndex(req.blockhash); if (!pindex || !pindex->nStatus.hasData()) { LogPrint( BCLog::NET, "Peer %d sent us a getblocktxn for a block we don't have\n", pfrom.GetId()); return; } if (pindex->nHeight < ::ChainActive().Height() - MAX_BLOCKTXN_DEPTH) { // If an older block is requested (should never happen in practice, // but can happen in tests) send a block response instead of a // blocktxn response. Sending a full block response instead of a // small blocktxn response is preferable in the case where a peer // might maliciously send lots of getblocktxn requests to trigger // expensive disk reads, because it will require the peer to // actually receive all the data read from disk over the network. LogPrint(BCLog::NET, "Peer %d sent us a getblocktxn for a block > %i deep\n", pfrom.GetId(), MAX_BLOCKTXN_DEPTH); CInv inv; inv.type = MSG_BLOCK; inv.hash = req.blockhash; pfrom.vRecvGetData.push_back(inv); // The message processing loop will go around again (without // pausing) and we'll respond then (without cs_main) return; } CBlock block; bool ret = ReadBlockFromDisk(block, pindex, m_chainparams.GetConsensus()); assert(ret); SendBlockTransactions(pfrom, block, req); return; } if (msg_type == NetMsgType::GETHEADERS) { CBlockLocator locator; BlockHash hashStop; vRecv >> locator >> hashStop; if (locator.vHave.size() > MAX_LOCATOR_SZ) { LogPrint(BCLog::NET, "getheaders locator size %lld > %d, disconnect peer=%d\n", locator.vHave.size(), MAX_LOCATOR_SZ, pfrom.GetId()); pfrom.fDisconnect = true; return; } LOCK(cs_main); if (::ChainstateActive().IsInitialBlockDownload() && !pfrom.HasPermission(PF_DOWNLOAD)) { LogPrint(BCLog::NET, "Ignoring getheaders from peer=%d because node is in " "initial block download\n", pfrom.GetId()); return; } CNodeState *nodestate = State(pfrom.GetId()); const CBlockIndex *pindex = nullptr; if (locator.IsNull()) { // If locator is null, return the hashStop block pindex = LookupBlockIndex(hashStop); if (!pindex) { return; } if (!BlockRequestAllowed(pindex, m_chainparams.GetConsensus())) { LogPrint(BCLog::NET, "%s: ignoring request from peer=%i for old block " "header that isn't in the main chain\n", __func__, pfrom.GetId()); return; } } else { // Find the last block the caller has in the main chain pindex = FindForkInGlobalIndex(::ChainActive(), locator); if (pindex) { pindex = ::ChainActive().Next(pindex); } } // we must use CBlocks, as CBlockHeaders won't include the 0x00 nTx // count at the end std::vector<CBlock> vHeaders; int nLimit = MAX_HEADERS_RESULTS; LogPrint(BCLog::NET, "getheaders %d to %s from peer=%d\n", (pindex ? pindex->nHeight : -1), hashStop.IsNull() ? "end" : hashStop.ToString(), pfrom.GetId()); for (; pindex; pindex = ::ChainActive().Next(pindex)) { vHeaders.push_back(pindex->GetBlockHeader()); if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop) { break; } } // pindex can be nullptr either if we sent ::ChainActive().Tip() OR // if our peer has ::ChainActive().Tip() (and thus we are sending an // empty headers message). In both cases it's safe to update // pindexBestHeaderSent to be our tip. // // It is important that we simply reset the BestHeaderSent value here, // and not max(BestHeaderSent, newHeaderSent). We might have announced // the currently-being-connected tip using a compact block, which // resulted in the peer sending a headers request, which we respond to // without the new block. By resetting the BestHeaderSent, we ensure we // will re-announce the new block via headers (or compact blocks again) // in the SendMessages logic. nodestate->pindexBestHeaderSent = pindex ? pindex : ::ChainActive().Tip(); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); return; } if (msg_type == NetMsgType::TX) { // Stop processing the transaction early if // 1) We are in blocks only mode and peer has no relay permission // 2) This peer is a block-relay-only peer if ((!g_relay_txes && !pfrom.HasPermission(PF_RELAY)) || (pfrom.m_tx_relay == nullptr)) { LogPrint(BCLog::NET, "transaction sent in violation of protocol peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; return; } CTransactionRef ptx; vRecv >> ptx; const CTransaction &tx = *ptx; const TxId &txid = tx.GetId(); pfrom.AddKnownTx(txid); LOCK2(cs_main, g_cs_orphans); TxValidationState state; m_txrequest.ReceivedResponse(pfrom.GetId(), txid); if (!AlreadyHaveTx(txid, m_mempool) && AcceptToMemoryPool(config, m_mempool, state, ptx, false /* bypass_limits */, Amount::zero() /* nAbsurdFee */)) { m_mempool.check(&::ChainstateActive().CoinsTip()); // As this version of the transaction was acceptable, we can forget // about any requests for it. m_txrequest.ForgetInvId(tx.GetId()); RelayTransaction(tx.GetId(), m_connman); for (size_t i = 0; i < tx.vout.size(); i++) { auto it_by_prev = mapOrphanTransactionsByPrev.find(COutPoint(txid, i)); if (it_by_prev != mapOrphanTransactionsByPrev.end()) { for (const auto &elem : it_by_prev->second) { pfrom.orphan_work_set.insert(elem->first); } } } pfrom.nLastTXTime = GetTime(); LogPrint(BCLog::MEMPOOL, "AcceptToMemoryPool: peer=%d: accepted %s " "(poolsz %u txn, %u kB)\n", pfrom.GetId(), tx.GetId().ToString(), m_mempool.size(), m_mempool.DynamicMemoryUsage() / 1000); // Recursively process any orphan transactions that depended on this // one ProcessOrphanTx(config, pfrom.orphan_work_set); } else if (state.GetResult() == TxValidationResult::TX_MISSING_INPUTS) { // It may be the case that the orphans parents have all been // rejected. bool fRejectedParents = false; // Deduplicate parent txids, so that we don't have to loop over // the same parent txid more than once down below. std::vector<TxId> unique_parents; unique_parents.reserve(tx.vin.size()); for (const CTxIn &txin : tx.vin) { // We start with all parents, and then remove duplicates below. unique_parents.push_back(txin.prevout.GetTxId()); } std::sort(unique_parents.begin(), unique_parents.end()); unique_parents.erase( std::unique(unique_parents.begin(), unique_parents.end()), unique_parents.end()); for (const TxId &parent_txid : unique_parents) { if (recentRejects->contains(parent_txid)) { fRejectedParents = true; break; } } if (!fRejectedParents) { const auto current_time = GetTime<std::chrono::microseconds>(); for (const TxId &parent_txid : unique_parents) { // FIXME: MSG_TX should use a TxHash, not a TxId. pfrom.AddKnownTx(parent_txid); if (!AlreadyHaveTx(parent_txid, m_mempool)) { AddTxAnnouncement(pfrom, parent_txid, current_time); } } AddOrphanTx(ptx, pfrom.GetId()); // Once added to the orphan pool, a tx is considered // AlreadyHave, and we shouldn't request it anymore. m_txrequest.ForgetInvId(tx.GetId()); // DoS prevention: do not allow mapOrphanTransactions to grow // unbounded (see CVE-2012-3789) unsigned int nMaxOrphanTx = (unsigned int)std::max( int64_t(0), gArgs.GetArg("-maxorphantx", DEFAULT_MAX_ORPHAN_TRANSACTIONS)); unsigned int nEvicted = LimitOrphanTxSize(nMaxOrphanTx); if (nEvicted > 0) { LogPrint(BCLog::MEMPOOL, "mapOrphan overflow, removed %u tx\n", nEvicted); } } else { LogPrint(BCLog::MEMPOOL, "not keeping orphan with rejected parents %s\n", tx.GetId().ToString()); // We will continue to reject this tx since it has rejected // parents so avoid re-requesting it from other peers. recentRejects->insert(tx.GetId()); m_txrequest.ForgetInvId(tx.GetId()); } } else { assert(recentRejects); recentRejects->insert(tx.GetId()); m_txrequest.ForgetInvId(tx.GetId()); if (RecursiveDynamicUsage(*ptx) < 100000) { AddToCompactExtraTransactions(ptx); } if (pfrom.HasPermission(PF_FORCERELAY)) { // Always relay transactions received from peers with // forcerelay permission, even if they were already in the // mempool, allowing the node to function as a gateway for // nodes hidden behind it. if (!m_mempool.exists(tx.GetId())) { LogPrintf("Not relaying non-mempool transaction %s from " "forcerelay peer=%d\n", tx.GetId().ToString(), pfrom.GetId()); } else { LogPrintf("Force relaying tx %s from peer=%d\n", tx.GetId().ToString(), pfrom.GetId()); RelayTransaction(tx.GetId(), m_connman); } } } // If a tx has been detected by recentRejects, we will have reached // this point and the tx will have been ignored. Because we haven't run // the tx through AcceptToMemoryPool, we won't have computed a DoS // score for it or determined exactly why we consider it invalid. // // This means we won't penalize any peer subsequently relaying a DoSy // tx (even if we penalized the first peer who gave it to us) because // we have to account for recentRejects showing false positives. In // other words, we shouldn't penalize a peer if we aren't *sure* they // submitted a DoSy tx. // // Note that recentRejects doesn't just record DoSy or invalid // transactions, but any tx not accepted by the mempool, which may be // due to node policy (vs. consensus). So we can't blanket penalize a // peer simply for relaying a tx that our recentRejects has caught, // regardless of false positives. if (state.IsInvalid()) { LogPrint(BCLog::MEMPOOLREJ, "%s from peer=%d was not accepted: %s\n", tx.GetHash().ToString(), pfrom.GetId(), state.ToString()); MaybePunishNodeForTx(pfrom.GetId(), state); } return; } if (msg_type == NetMsgType::CMPCTBLOCK) { // Ignore cmpctblock received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected cmpctblock message received from peer %d\n", pfrom.GetId()); return; } CBlockHeaderAndShortTxIDs cmpctblock; vRecv >> cmpctblock; bool received_new_header = false; { LOCK(cs_main); if (!LookupBlockIndex(cmpctblock.header.hashPrevBlock)) { // Doesn't connect (or is genesis), instead of DoSing in // AcceptBlockHeader, request deeper headers if (!::ChainstateActive().IsInitialBlockDownload()) { m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator( pindexBestHeader), uint256())); } return; } if (!LookupBlockIndex(cmpctblock.header.GetHash())) { received_new_header = true; } } const CBlockIndex *pindex = nullptr; BlockValidationState state; if (!m_chainman.ProcessNewBlockHeaders(config, {cmpctblock.header}, state, &pindex)) { if (state.IsInvalid()) { MaybePunishNodeForBlock(pfrom.GetId(), state, /*via_compact_block*/ true, "invalid header via cmpctblock"); return; } } // When we succeed in decoding a block's txids from a cmpctblock // message we typically jump to the BLOCKTXN handling code, with a // dummy (empty) BLOCKTXN message, to re-use the logic there in // completing processing of the putative block (without cs_main). bool fProcessBLOCKTXN = false; CDataStream blockTxnMsg(SER_NETWORK, PROTOCOL_VERSION); // If we end up treating this as a plain headers message, call that as // well // without cs_main. bool fRevertToHeaderProcessing = false; // Keep a CBlock for "optimistic" compactblock reconstructions (see // below) std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>(); bool fBlockReconstructed = false; { LOCK2(cs_main, g_cs_orphans); // If AcceptBlockHeader returned true, it set pindex assert(pindex); UpdateBlockAvailability(pfrom.GetId(), pindex->GetBlockHash()); CNodeState *nodestate = State(pfrom.GetId()); // If this was a new header with more work than our tip, update the // peer's last block announcement time if (received_new_header && pindex->nChainWork > ::ChainActive().Tip()->nChainWork) { nodestate->m_last_block_announcement = GetTime(); } std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>>:: iterator blockInFlightIt = mapBlocksInFlight.find(pindex->GetBlockHash()); bool fAlreadyInFlight = blockInFlightIt != mapBlocksInFlight.end(); if (pindex->nStatus.hasData()) { // Nothing to do here return; } if (pindex->nChainWork <= ::ChainActive() .Tip() ->nChainWork || // We know something better pindex->nTx != 0) { // We had this block at some point, but pruned it if (fAlreadyInFlight) { // We requested this block for some reason, but our mempool // will probably be useless so we just grab the block via // normal getdata. std::vector<CInv> vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); } return; } // If we're not close to tip yet, give up and let parallel block // fetch work its magic. if (!fAlreadyInFlight && !CanDirectFetch(m_chainparams.GetConsensus())) { return; } // We want to be a bit conservative just to be extra careful about // DoS possibilities in compact block processing... if (pindex->nHeight <= ::ChainActive().Height() + 2) { if ((!fAlreadyInFlight && nodestate->nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) || (fAlreadyInFlight && blockInFlightIt->second.first == pfrom.GetId())) { std::list<QueuedBlock>::iterator *queuedBlockIt = nullptr; if (!MarkBlockAsInFlight(config, m_mempool, pfrom.GetId(), pindex->GetBlockHash(), m_chainparams.GetConsensus(), pindex, &queuedBlockIt)) { if (!(*queuedBlockIt)->partialBlock) { (*queuedBlockIt) ->partialBlock.reset( new PartiallyDownloadedBlock(config, &m_mempool)); } else { // The block was already in flight using compact // blocks from the same peer. LogPrint(BCLog::NET, "Peer sent us compact block " "we were already syncing!\n"); return; } } PartiallyDownloadedBlock &partialBlock = *(*queuedBlockIt)->partialBlock; ReadStatus status = partialBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case Misbehaving does not // result in a disconnect MarkBlockAsReceived(pindex->GetBlockHash()); Misbehaving(pfrom, 100, "invalid compact block"); return; } else if (status == READ_STATUS_FAILED) { // Duplicate txindices, the block is now in-flight, so // just request it. std::vector<CInv> vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } BlockTransactionsRequest req; for (size_t i = 0; i < cmpctblock.BlockTxCount(); i++) { if (!partialBlock.IsTxAvailable(i)) { req.indices.push_back(i); } } if (req.indices.empty()) { // Dirty hack to jump to BLOCKTXN code (TODO: move // message handling into their own functions) BlockTransactions txn; txn.blockhash = cmpctblock.header.GetHash(); blockTxnMsg << txn; fProcessBLOCKTXN = true; } else { req.blockhash = pindex->GetBlockHash(); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETBLOCKTXN, req)); } } else { // This block is either already in flight from a different // peer, or this peer has too many blocks outstanding to // download from. Optimistically try to reconstruct anyway // since we might be able to without any round trips. PartiallyDownloadedBlock tempBlock(config, &m_mempool); ReadStatus status = tempBlock.InitData(cmpctblock, vExtraTxnForCompact); if (status != READ_STATUS_OK) { // TODO: don't ignore failures return; } std::vector<CTransactionRef> dummy; status = tempBlock.FillBlock(*pblock, dummy); if (status == READ_STATUS_OK) { fBlockReconstructed = true; } } } else { if (fAlreadyInFlight) { // We requested this block, but its far into the future, so // our mempool will probably be useless - request the block // normally. std::vector<CInv> vInv(1); vInv[0] = CInv(MSG_BLOCK, cmpctblock.header.GetHash()); m_connman.PushMessage( &pfrom, msgMaker.Make(NetMsgType::GETDATA, vInv)); return; } else { // If this was an announce-cmpctblock, we want the same // treatment as a header message. fRevertToHeaderProcessing = true; } } } // cs_main if (fProcessBLOCKTXN) { return ProcessMessage(config, pfrom, NetMsgType::BLOCKTXN, blockTxnMsg, time_received, interruptMsgProc); } if (fRevertToHeaderProcessing) { // Headers received from HB compact block peers are permitted to be // relayed before full validation (see BIP 152), so we don't want to // disconnect the peer if the header turns out to be for an invalid // block. Note that if a peer tries to build on an invalid chain, // that will be detected and the peer will be banned. return ProcessHeadersMessage(config, pfrom, {cmpctblock.header}, /*via_compact_block=*/true); } if (fBlockReconstructed) { // If we got here, we were able to optimistically reconstruct a // block that is in flight from some other peer. { LOCK(cs_main); mapBlockSource.emplace(pblock->GetHash(), std::make_pair(pfrom.GetId(), false)); } bool fNewBlock = false; // Setting fForceProcessing to true means that we bypass some of // our anti-DoS protections in AcceptBlock, which filters // unrequested blocks that might be trying to waste our resources // (eg disk space). Because we only try to reconstruct blocks when // we're close to caught up (via the CanDirectFetch() requirement // above, combined with the behavior of not requesting blocks until // we have a chain with at least nMinimumChainWork), and we ignore // compact blocks with less work than our tip, it is safe to treat // reconstructed compact blocks as having been requested. m_chainman.ProcessNewBlock(config, pblock, /*fForceProcessing=*/true, &fNewBlock); if (fNewBlock) { pfrom.nLastBlockTime = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(pblock->GetHash()); } // hold cs_main for CBlockIndex::IsValid() LOCK(cs_main); if (pindex->IsValid(BlockValidity::TRANSACTIONS)) { // Clear download state for this block, which is in process from // some other peer. We do this after calling. ProcessNewBlock so // that a malleated cmpctblock announcement can't be used to // interfere with block relay. MarkBlockAsReceived(pblock->GetHash()); } } return; } if (msg_type == NetMsgType::BLOCKTXN) { // Ignore blocktxn received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected blocktxn message received from peer %d\n", pfrom.GetId()); return; } BlockTransactions resp; vRecv >> resp; std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>(); bool fBlockRead = false; { LOCK(cs_main); std::map<BlockHash, std::pair<NodeId, std::list<QueuedBlock>::iterator>>:: iterator it = mapBlocksInFlight.find(resp.blockhash); if (it == mapBlocksInFlight.end() || !it->second.second->partialBlock || it->second.first != pfrom.GetId()) { LogPrint(BCLog::NET, "Peer %d sent us block transactions for block " "we weren't expecting\n", pfrom.GetId()); return; } PartiallyDownloadedBlock &partialBlock = *it->second.second->partialBlock; ReadStatus status = partialBlock.FillBlock(*pblock, resp.txn); if (status == READ_STATUS_INVALID) { // Reset in-flight state in case of Misbehaving does not // result in a disconnect. MarkBlockAsReceived(resp.blockhash); Misbehaving( pfrom, 100, "invalid compact block/non-matching block transactions"); return; } else if (status == READ_STATUS_FAILED) { // Might have collided, fall back to getdata now :( std::vector<CInv> invs; invs.push_back(CInv(MSG_BLOCK, resp.blockhash)); m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::GETDATA, invs)); } else { // Block is either okay, or possibly we received // READ_STATUS_CHECKBLOCK_FAILED. // Note that CheckBlock can only fail for one of a few reasons: // 1. bad-proof-of-work (impossible here, because we've already // accepted the header) // 2. merkleroot doesn't match the transactions given (already // caught in FillBlock with READ_STATUS_FAILED, so // impossible here) // 3. the block is otherwise invalid (eg invalid coinbase, // block is too big, too many legacy sigops, etc). // So if CheckBlock failed, #3 is the only possibility. // Under BIP 152, we don't DoS-ban unless proof of work is // invalid (we don't require all the stateless checks to have // been run). This is handled below, so just treat this as // though the block was successfully read, and rely on the // handling in ProcessNewBlock to ensure the block index is // updated, etc. // it is now an empty pointer MarkBlockAsReceived(resp.blockhash); fBlockRead = true; // mapBlockSource is used for potentially punishing peers and // updating which peers send us compact blocks, so the race // between here and cs_main in ProcessNewBlock is fine. // BIP 152 permits peers to relay compact blocks after // validating the header only; we should not punish peers // if the block turns out to be invalid. mapBlockSource.emplace(resp.blockhash, std::make_pair(pfrom.GetId(), false)); } } // Don't hold cs_main when we call into ProcessNewBlock if (fBlockRead) { bool fNewBlock = false; // Since we requested this block (it was in mapBlocksInFlight), // force it to be processed, even if it would not be a candidate for // new tip (missing previous block, chain not long enough, etc) // This bypasses some anti-DoS logic in AcceptBlock (eg to prevent // disk-space attacks), but this should be safe due to the // protections in the compact block handler -- see related comment // in compact block optimistic reconstruction handling. m_chainman.ProcessNewBlock(config, pblock, /*fForceProcessing=*/true, &fNewBlock); if (fNewBlock) { pfrom.nLastBlockTime = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(pblock->GetHash()); } } return; } if (msg_type == NetMsgType::HEADERS) { // Ignore headers received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected headers message received from peer %d\n", pfrom.GetId()); return; } std::vector<CBlockHeader> headers; // Bypass the normal CBlock deserialization, as we don't want to risk // deserializing 2000 full blocks. unsigned int nCount = ReadCompactSize(vRecv); if (nCount > MAX_HEADERS_RESULTS) { Misbehaving(pfrom, 20, strprintf("too-many-headers: headers message size = %u", nCount)); return; } headers.resize(nCount); for (unsigned int n = 0; n < nCount; n++) { vRecv >> headers[n]; // Ignore tx count; assume it is 0. ReadCompactSize(vRecv); } return ProcessHeadersMessage(config, pfrom, headers, /*via_compact_block=*/false); } if (msg_type == NetMsgType::BLOCK) { // Ignore block received while importing if (fImporting || fReindex) { LogPrint(BCLog::NET, "Unexpected block message received from peer %d\n", pfrom.GetId()); return; } std::shared_ptr<CBlock> pblock = std::make_shared<CBlock>(); vRecv >> *pblock; LogPrint(BCLog::NET, "received block %s peer=%d\n", pblock->GetHash().ToString(), pfrom.GetId()); // Process all blocks from whitelisted peers, even if not requested, // unless we're still syncing with the network. Such an unrequested // block may still be processed, subject to the conditions in // AcceptBlock(). bool forceProcessing = pfrom.HasPermission(PF_NOBAN) && !::ChainstateActive().IsInitialBlockDownload(); const BlockHash hash = pblock->GetHash(); { LOCK(cs_main); // Also always process if we requested the block explicitly, as we // may need it even though it is not a candidate for a new best tip. forceProcessing |= MarkBlockAsReceived(hash); // mapBlockSource is only used for punishing peers and setting // which peers send us compact blocks, so the race between here and // cs_main in ProcessNewBlock is fine. mapBlockSource.emplace(hash, std::make_pair(pfrom.GetId(), true)); } bool fNewBlock = false; m_chainman.ProcessNewBlock(config, pblock, forceProcessing, &fNewBlock); if (fNewBlock) { pfrom.nLastBlockTime = GetTime(); } else { LOCK(cs_main); mapBlockSource.erase(hash); } return; } if (msg_type == NetMsgType::AVAHELLO) { if (!pfrom.m_avalanche_state) { pfrom.m_avalanche_state = std::make_unique<CNode::AvalancheState>(); } CHashVerifier<CDataStream> verifier(&vRecv); avalanche::Delegation delegation; verifier >> delegation; avalanche::DelegationState state; CPubKey &pubkey = pfrom.m_avalanche_state->pubkey; if (!delegation.verify(state, pubkey)) { Misbehaving(pfrom, 100, "invalid-delegation"); return; } CHashWriter sighasher(SER_GETHASH, 0); sighasher << delegation.getId(); sighasher << pfrom.nRemoteHostNonce; sighasher << pfrom.GetLocalNonce(); sighasher << pfrom.nRemoteExtraEntropy; sighasher << pfrom.GetLocalExtraEntropy(); SchnorrSig sig; verifier >> sig; if (!pubkey.VerifySchnorr(sighasher.GetHash(), sig)) { Misbehaving(pfrom, 100, "invalid-avahello-signature"); return; } // If we don't know this proof already, add it to the tracker so it can // be requested. const avalanche::ProofId proofid(delegation.getProofId()); if (!AlreadyHaveProof(proofid)) { const bool preferred = isPreferredDownloadPeer(pfrom); LOCK(cs_proofrequest); AddProofAnnouncement(pfrom, proofid, GetTime<std::chrono::microseconds>(), preferred); } if (gArgs.GetBoolArg("-enableavalanchepeerdiscovery", AVALANCHE_DEFAULT_PEER_DISCOVERY_ENABLED)) { // Don't check the return value. If it fails we probably don't know // about the proof yet. g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.addNode(pfrom.GetId(), proofid); }); } return; } if (msg_type == NetMsgType::AVAPOLL) { auto now = std::chrono::steady_clock::now(); int64_t cooldown = gArgs.GetArg("-avacooldown", AVALANCHE_DEFAULT_COOLDOWN); { LOCK(cs_main); auto &node_state = State(pfrom.GetId())->m_avalanche_state; if (now < node_state.last_poll + std::chrono::milliseconds(cooldown)) { Misbehaving(pfrom, 20, "avapool-cooldown"); } node_state.last_poll = now; } uint64_t round; Unserialize(vRecv, round); unsigned int nCount = ReadCompactSize(vRecv); if (nCount > AVALANCHE_MAX_ELEMENT_POLL) { Misbehaving( pfrom, 20, strprintf("too-many-ava-poll: poll message size = %u", nCount)); return; } std::vector<avalanche::Vote> votes; votes.reserve(nCount); LogPrint(BCLog::AVALANCHE, "received avalanche poll from peer=%d\n", pfrom.GetId()); { LOCK(cs_main); for (unsigned int n = 0; n < nCount; n++) { CInv inv; vRecv >> inv; const auto insertVote = [&](uint32_t e) { votes.emplace_back(e, inv.hash); }; // Not a block. if (inv.type != MSG_BLOCK) { insertVote(-1); continue; } // We have a block. const CBlockIndex *pindex = LookupBlockIndex(BlockHash(inv.hash)); // Unknown block. if (!pindex) { insertVote(-1); continue; } // Invalid block if (pindex->nStatus.isInvalid()) { insertVote(1); continue; } // Parked block if (pindex->nStatus.isOnParkedChain()) { insertVote(2); continue; } const CBlockIndex *pindexTip = ::ChainActive().Tip(); const CBlockIndex *pindexFork = LastCommonAncestor(pindex, pindexTip); // Active block. if (pindex == pindexFork) { insertVote(0); continue; } // Fork block. if (pindexFork != pindexTip) { insertVote(3); continue; } // Missing block data. if (!pindex->nStatus.hasData()) { insertVote(-2); continue; } // This block is built on top of the tip, we have the data, it // is pending connection or rejection. insertVote(-3); } } // Send the query to the node. g_avalanche->sendResponse( &pfrom, avalanche::Response(round, cooldown, std::move(votes))); return; } if (msg_type == NetMsgType::AVARESPONSE) { // As long as QUIC is not implemented, we need to sign response and // verify response's signatures in order to avoid any manipulation of // messages at the transport level. CHashVerifier<CDataStream> verifier(&vRecv); avalanche::Response response; verifier >> response; SchnorrSig sig; vRecv >> sig; if (!pfrom.m_avalanche_state || !pfrom.m_avalanche_state->pubkey.VerifySchnorr(verifier.GetHash(), sig)) { Misbehaving(pfrom, 100, "invalid-ava-response-signature"); return; } std::vector<avalanche::BlockUpdate> blockUpdates; std::vector<avalanche::ProofUpdate> proofUpdates; int banscore; std::string error; if (!g_avalanche->registerVotes(pfrom.GetId(), response, blockUpdates, proofUpdates, banscore, error)) { Misbehaving(pfrom, banscore, error); return; } pfrom.m_avalanche_state->invsVoted(response.GetVotes().size()); if (blockUpdates.size()) { for (avalanche::BlockUpdate &u : blockUpdates) { CBlockIndex *pindex = u.getVoteItem(); switch (u.getStatus()) { case avalanche::VoteStatus::Invalid: case avalanche::VoteStatus::Rejected: { LogPrintf("Avalanche rejected %s, parking\n", pindex->GetBlockHash().GetHex()); BlockValidationState state; ::ChainstateActive().ParkBlock(config, state, pindex); if (!state.IsValid()) { LogPrintf("ERROR: Database error: %s\n", state.GetRejectReason()); return; } } break; case avalanche::VoteStatus::Accepted: case avalanche::VoteStatus::Finalized: { LogPrintf("Avalanche accepted %s\n", pindex->GetBlockHash().GetHex()); LOCK(cs_main); UnparkBlock(pindex); } break; } } BlockValidationState state; if (!ActivateBestChain(config, state)) { LogPrintf("failed to activate chain (%s)\n", state.ToString()); } } return; } if (msg_type == NetMsgType::AVAPROOF) { auto proof = std::make_shared<avalanche::Proof>(); vRecv >> *proof; const avalanche::ProofId &proofid = proof->getId(); pfrom.AddKnownProof(proofid); const NodeId nodeid = pfrom.GetId(); { LOCK(cs_proofrequest); m_proofrequest.ReceivedResponse(nodeid, proofid); if (AlreadyHaveProof(proofid)) { m_proofrequest.ForgetInvId(proofid); return; } } // addProof should not be called while cs_proofrequest because it holds // cs_main and that creates a potential deadlock during shutdown if (g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.registerProof(proof); })) { WITH_LOCK(cs_proofrequest, m_proofrequest.ForgetInvId(proofid)); RelayProof(proofid, m_connman); pfrom.nLastProofTime = GetTime(); LogPrint(BCLog::NET, "New avalanche proof: peer=%d, proofid %s\n", nodeid, proofid.ToString()); } else { // If the proof couldn't be added, it can be either orphan or // invalid. In the latter case we should increase the ban score. // TODO improve the ban reason by printing the validation state if (!g_avalanche->withPeerManager([&](avalanche::PeerManager &pm) { return pm.isOrphan(proofid); })) { WITH_LOCK(cs_rejectedProofs, rejectedProofs->insert(proofid)); Misbehaving(nodeid, 100, "invalid-avaproof"); } } return; } if (msg_type == NetMsgType::GETADDR) { // This asymmetric behavior for inbound and outbound connections was // introduced to prevent a fingerprinting attack: an attacker can send // specific fake addresses to users' AddrMan and later request them by // sending getaddr messages. Making nodes which are behind NAT and can // only make outgoing connections ignore the getaddr message mitigates // the attack. if (!pfrom.IsInboundConn()) { LogPrint(BCLog::NET, "Ignoring \"getaddr\" from %s connection. peer=%d\n", pfrom.ConnectionTypeAsString(), pfrom.GetId()); return; } // Only send one GetAddr response per connection to reduce resource // waste and discourage addr stamping of INV announcements. if (pfrom.fSentAddr) { LogPrint(BCLog::NET, "Ignoring repeated \"getaddr\". peer=%d\n", pfrom.GetId()); return; } pfrom.fSentAddr = true; pfrom.vAddrToSend.clear(); std::vector<CAddress> vAddr; if (pfrom.HasPermission(PF_ADDR)) { vAddr = m_connman.GetAddresses(MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND); } else { vAddr = m_connman.GetAddresses(pfrom, MAX_ADDR_TO_SEND, MAX_PCT_ADDR_TO_SEND); } FastRandomContext insecure_rand; for (const CAddress &addr : vAddr) { pfrom.PushAddress(addr, insecure_rand); } return; } if (msg_type == NetMsgType::MEMPOOL) { if (!(pfrom.GetLocalServices() & NODE_BLOOM) && !pfrom.HasPermission(PF_MEMPOOL)) { if (!pfrom.HasPermission(PF_NOBAN)) { LogPrint(BCLog::NET, "mempool request with bloom filters disabled, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (m_connman.OutboundTargetReached(false) && !pfrom.HasPermission(PF_MEMPOOL)) { if (!pfrom.HasPermission(PF_NOBAN)) { LogPrint(BCLog::NET, "mempool request with bandwidth limit reached, " "disconnect peer=%d\n", pfrom.GetId()); pfrom.fDisconnect = true; } return; } if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_tx_inventory); pfrom.m_tx_relay->fSendMempool = true; } return; } if (msg_type == NetMsgType::PING) { if (pfrom.GetCommonVersion() > BIP0031_VERSION) { uint64_t nonce = 0; vRecv >> nonce; // Echo the message back with the nonce. This allows for two useful // features: // // 1) A remote node can quickly check if the connection is // operational. // 2) Remote nodes can measure the latency of the network thread. If // this node is overloaded it won't respond to pings quickly and the // remote node can avoid sending us more work, like chain download // requests. // // The nonce stops the remote getting confused between different // pings: without it, if the remote node sends a ping once per // second and this node takes 5 seconds to respond to each, the 5th // ping the remote sends would appear to return very quickly. m_connman.PushMessage(&pfrom, msgMaker.Make(NetMsgType::PONG, nonce)); } return; } if (msg_type == NetMsgType::PONG) { const auto ping_end = time_received; uint64_t nonce = 0; size_t nAvail = vRecv.in_avail(); bool bPingFinished = false; std::string sProblem; if (nAvail >= sizeof(nonce)) { vRecv >> nonce; // Only process pong message if there is an outstanding ping (old // ping without nonce should never pong) if (pfrom.nPingNonceSent != 0) { if (nonce == pfrom.nPingNonceSent) { // Matching pong received, this ping is no longer // outstanding bPingFinished = true; const auto ping_time = ping_end - pfrom.m_ping_start.load(); if (ping_time.count() >= 0) { // Successful ping time measurement, replace previous pfrom.nPingUsecTime = count_microseconds(ping_time); pfrom.nMinPingUsecTime = std::min(pfrom.nMinPingUsecTime.load(), count_microseconds(ping_time)); } else { // This should never happen sProblem = "Timing mishap"; } } else { // Nonce mismatches are normal when pings are overlapping sProblem = "Nonce mismatch"; if (nonce == 0) { // This is most likely a bug in another implementation // somewhere; cancel this ping bPingFinished = true; sProblem = "Nonce zero"; } } } else { sProblem = "Unsolicited pong without ping"; } } else { // This is most likely a bug in another implementation somewhere; // cancel this ping bPingFinished = true; sProblem = "Short payload"; } if (!(sProblem.empty())) { LogPrint(BCLog::NET, "pong peer=%d: %s, %x expected, %x received, %u bytes\n", pfrom.GetId(), sProblem, pfrom.nPingNonceSent, nonce, nAvail); } if (bPingFinished) { pfrom.nPingNonceSent = 0; } return; } if (msg_type == NetMsgType::FILTERLOAD) { if (!(pfrom.GetLocalServices() & NODE_BLOOM)) { pfrom.fDisconnect = true; return; } CBloomFilter filter; vRecv >> filter; if (!filter.IsWithinSizeConstraints()) { // There is no excuse for sending a too-large filter Misbehaving(pfrom, 100, "too-large bloom filter"); } else if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); pfrom.m_tx_relay->pfilter.reset(new CBloomFilter(filter)); pfrom.m_tx_relay->fRelayTxes = true; } return; } if (msg_type == NetMsgType::FILTERADD) { if (!(pfrom.GetLocalServices() & NODE_BLOOM)) { pfrom.fDisconnect = true; return; } std::vector<uint8_t> vData; vRecv >> vData; // Nodes must NEVER send a data item > 520 bytes (the max size for a // script data object, and thus, the maximum size any matched object can // have) in a filteradd message. bool bad = false; if (vData.size() > MAX_SCRIPT_ELEMENT_SIZE) { bad = true; } else if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_filter); if (pfrom.m_tx_relay->pfilter) { pfrom.m_tx_relay->pfilter->insert(vData); } else { bad = true; } } if (bad) { // The structure of this code doesn't really allow for a good error // code. We'll go generic. Misbehaving(pfrom, 100, "bad filteradd message"); } return; } if (msg_type == NetMsgType::FILTERCLEAR) { if (!(pfrom.GetLocalServices() & NODE_BLOOM)) { pfrom.fDisconnect = true; return; } if (pfrom.m_tx_relay == nullptr) { return; } LOCK(pfrom.m_tx_relay->cs_filter); pfrom.m_tx_relay->pfilter = nullptr; pfrom.m_tx_relay->fRelayTxes = true; return; } if (msg_type == NetMsgType::FEEFILTER) { Amount newFeeFilter = Amount::zero(); vRecv >> newFeeFilter; if (MoneyRange(newFeeFilter)) { if (pfrom.m_tx_relay != nullptr) { LOCK(pfrom.m_tx_relay->cs_feeFilter); pfrom.m_tx_relay->minFeeFilter = newFeeFilter; } LogPrint(BCLog::NET, "received: feefilter of %s from peer=%d\n", CFeeRate(newFeeFilter).ToString(), pfrom.GetId()); } return; } if (msg_type == NetMsgType::GETCFILTERS) { ProcessGetCFilters(pfrom, vRecv, m_chainparams, m_connman); return; } if (msg_type == NetMsgType::GETCFHEADERS) { ProcessGetCFHeaders(pfrom, vRecv, m_chainparams, m_connman); return; } if (msg_type == NetMsgType::GETCFCHECKPT) { ProcessGetCFCheckPt(pfrom, vRecv, m_chainparams, m_connman); return; } if (msg_type == NetMsgType::NOTFOUND) { std::vector<CInv> vInv; vRecv >> vInv; // A peer might send up to 1 notfound per getdata request, but no more if (vInv.size() <= PROOF_REQUEST_PARAMS.max_peer_announcements + TX_REQUEST_PARAMS.max_peer_announcements + MAX_BLOCKS_IN_TRANSIT_PER_PEER) { for (CInv &inv : vInv) { if (inv.IsMsgTx()) { // If we receive a NOTFOUND message for a tx we requested, // mark the announcement for it as completed in // InvRequestTracker. LOCK(::cs_main); m_txrequest.ReceivedResponse(pfrom.GetId(), TxId(inv.hash)); continue; } if (inv.IsMsgProof()) { LOCK(cs_proofrequest); m_proofrequest.ReceivedResponse( pfrom.GetId(), avalanche::ProofId(inv.hash)); } } } return; } // Ignore unknown commands for extensibility LogPrint(BCLog::NET, "Unknown command \"%s\" from peer=%d\n", SanitizeString(msg_type), pfrom.GetId()); return; } bool PeerManager::MaybeDiscourageAndDisconnect(CNode &pnode) { const NodeId peer_id{pnode.GetId()}; PeerRef peer = GetPeerRef(peer_id); if (peer == nullptr) { return false; } { LOCK(peer->m_misbehavior_mutex); // There's nothing to do if the m_should_discourage flag isn't set if (!peer->m_should_discourage) { return false; } peer->m_should_discourage = false; } // peer.m_misbehavior_mutex if (pnode.HasPermission(PF_NOBAN)) { // We never disconnect or discourage peers for bad behavior if they have // the NOBAN permission flag LogPrintf("Warning: not punishing noban peer %d!\n", peer_id); return false; } if (pnode.IsManualConn()) { // We never disconnect or discourage manual peers for bad behavior LogPrintf("Warning: not punishing manually connected peer %d!\n", peer_id); return false; } if (pnode.addr.IsLocal()) { // We disconnect local peers for bad behavior but don't discourage // (since that would discourage all peers on the same local address) LogPrintf( "Warning: disconnecting but not discouraging local peer %d!\n", peer_id); pnode.fDisconnect = true; return true; } // Normal case: Disconnect the peer and discourage all nodes sharing the // address LogPrintf("Disconnecting and discouraging peer %d!\n", peer_id); if (m_banman) { m_banman->Discourage(pnode.addr); } m_connman.DisconnectNode(pnode.addr); return true; } bool PeerManager::ProcessMessages(const Config &config, CNode *pfrom, std::atomic<bool> &interruptMsgProc) { // // Message format // (4) message start // (12) command // (4) size // (4) checksum // (x) data // bool fMoreWork = false; if (!pfrom->vRecvGetData.empty()) { ProcessGetData(config, *pfrom, m_connman, m_mempool, interruptMsgProc); } if (!pfrom->orphan_work_set.empty()) { LOCK2(cs_main, g_cs_orphans); ProcessOrphanTx(config, pfrom->orphan_work_set); } if (pfrom->fDisconnect) { return false; } // this maintains the order of responses and prevents vRecvGetData from // growing unbounded if (!pfrom->vRecvGetData.empty()) { return true; } if (!pfrom->orphan_work_set.empty()) { return true; } // Don't bother if send buffer is too full to respond anyway if (pfrom->fPauseSend) { return false; } std::list<CNetMessage> msgs; { LOCK(pfrom->cs_vProcessMsg); if (pfrom->vProcessMsg.empty()) { return false; } // Just take one message msgs.splice(msgs.begin(), pfrom->vProcessMsg, pfrom->vProcessMsg.begin()); pfrom->nProcessQueueSize -= msgs.front().m_raw_message_size; pfrom->fPauseRecv = pfrom->nProcessQueueSize > m_connman.GetReceiveFloodSize(); fMoreWork = !pfrom->vProcessMsg.empty(); } CNetMessage &msg(msgs.front()); msg.SetVersion(pfrom->GetCommonVersion()); // Check network magic if (!msg.m_valid_netmagic) { LogPrint(BCLog::NET, "PROCESSMESSAGE: INVALID MESSAGESTART %s peer=%d\n", SanitizeString(msg.m_command), pfrom->GetId()); // Make sure we discourage where that come from for some time. if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); pfrom->fDisconnect = true; return false; } // Check header if (!msg.m_valid_header) { LogPrint(BCLog::NET, "PROCESSMESSAGE: ERRORS IN HEADER %s peer=%d\n", SanitizeString(msg.m_command), pfrom->GetId()); return fMoreWork; } const std::string &msg_type = msg.m_command; // Message size unsigned int nMessageSize = msg.m_message_size; // Checksum CDataStream &vRecv = msg.m_recv; if (!msg.m_valid_checksum) { LogPrint(BCLog::NET, "%s(%s, %u bytes): CHECKSUM ERROR peer=%d\n", __func__, SanitizeString(msg_type), nMessageSize, pfrom->GetId()); if (m_banman) { m_banman->Discourage(pfrom->addr); } m_connman.DisconnectNode(pfrom->addr); return fMoreWork; } try { ProcessMessage(config, *pfrom, msg_type, vRecv, msg.m_time, interruptMsgProc); if (interruptMsgProc) { return false; } if (!pfrom->vRecvGetData.empty()) { fMoreWork = true; } } catch (const std::exception &e) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Exception '%s' (%s) caught\n", __func__, SanitizeString(msg_type), nMessageSize, e.what(), typeid(e).name()); } catch (...) { LogPrint(BCLog::NET, "%s(%s, %u bytes): Unknown exception caught\n", __func__, SanitizeString(msg_type), nMessageSize); } return fMoreWork; } void PeerManager::ConsiderEviction(CNode &pto, int64_t time_in_seconds) { AssertLockHeld(cs_main); CNodeState &state = *State(pto.GetId()); const CNetMsgMaker msgMaker(pto.GetCommonVersion()); if (!state.m_chain_sync.m_protect && pto.IsOutboundOrBlockRelayConn() && state.fSyncStarted) { // This is an outbound peer subject to disconnection if they don't // announce a block with as much work as the current tip within // CHAIN_SYNC_TIMEOUT + HEADERS_RESPONSE_TIME seconds (note: if their // chain has more work than ours, we should sync to it, unless it's // invalid, in which case we should find that out and disconnect from // them elsewhere). if (state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= ::ChainActive().Tip()->nChainWork) { if (state.m_chain_sync.m_timeout != 0) { state.m_chain_sync.m_timeout = 0; state.m_chain_sync.m_work_header = nullptr; state.m_chain_sync.m_sent_getheaders = false; } } else if (state.m_chain_sync.m_timeout == 0 || (state.m_chain_sync.m_work_header != nullptr && state.pindexBestKnownBlock != nullptr && state.pindexBestKnownBlock->nChainWork >= state.m_chain_sync.m_work_header->nChainWork)) { // Our best block known by this peer is behind our tip, and we're // either noticing that for the first time, OR this peer was able to // catch up to some earlier point where we checked against our tip. // Either way, set a new timeout based on current tip. state.m_chain_sync.m_timeout = time_in_seconds + CHAIN_SYNC_TIMEOUT; state.m_chain_sync.m_work_header = ::ChainActive().Tip(); state.m_chain_sync.m_sent_getheaders = false; } else if (state.m_chain_sync.m_timeout > 0 && time_in_seconds > state.m_chain_sync.m_timeout) { // No evidence yet that our peer has synced to a chain with work // equal to that of our tip, when we first detected it was behind. // Send a single getheaders message to give the peer a chance to // update us. if (state.m_chain_sync.m_sent_getheaders) { // They've run out of time to catch up! LogPrintf( "Disconnecting outbound peer %d for old chain, best known " "block = %s\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>"); pto.fDisconnect = true; } else { assert(state.m_chain_sync.m_work_header); LogPrint( BCLog::NET, "sending getheaders to outbound peer=%d to verify chain " "work (current best known block:%s, benchmark blockhash: " "%s)\n", pto.GetId(), state.pindexBestKnownBlock != nullptr ? state.pindexBestKnownBlock->GetBlockHash().ToString() : "<none>", state.m_chain_sync.m_work_header->GetBlockHash() .ToString()); m_connman.PushMessage( &pto, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator( state.m_chain_sync.m_work_header->pprev), uint256())); state.m_chain_sync.m_sent_getheaders = true; // 2 minutes constexpr int64_t HEADERS_RESPONSE_TIME = 120; // Bump the timeout to allow a response, which could clear the // timeout (if the response shows the peer has synced), reset // the timeout (if the peer syncs to the required work but not // to our tip), or result in disconnect (if we advance to the // timeout and pindexBestKnownBlock has not sufficiently // progressed) state.m_chain_sync.m_timeout = time_in_seconds + HEADERS_RESPONSE_TIME; } } } } void PeerManager::EvictExtraOutboundPeers(int64_t time_in_seconds) { // Check whether we have too many outbound peers int extra_peers = m_connman.GetExtraOutboundCount(); if (extra_peers <= 0) { return; } // If we have more outbound peers than we target, disconnect one. // Pick the outbound peer that least recently announced us a new block, with // ties broken by choosing the more recent connection (higher node id) NodeId worst_peer = -1; int64_t oldest_block_announcement = std::numeric_limits<int64_t>::max(); m_connman.ForEachNode([&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED( ::cs_main) { AssertLockHeld(::cs_main); // Ignore non-outbound peers, or nodes marked for disconnect already if (!pnode->IsOutboundOrBlockRelayConn() || pnode->fDisconnect) { return; } CNodeState *state = State(pnode->GetId()); if (state == nullptr) { // shouldn't be possible, but just in case return; } // Don't evict our protected peers if (state->m_chain_sync.m_protect) { return; } // Don't evict our block-relay-only peers. if (pnode->m_tx_relay == nullptr) { return; } if (state->m_last_block_announcement < oldest_block_announcement || (state->m_last_block_announcement == oldest_block_announcement && pnode->GetId() > worst_peer)) { worst_peer = pnode->GetId(); oldest_block_announcement = state->m_last_block_announcement; } }); if (worst_peer == -1) { return; } bool disconnected = m_connman.ForNode( worst_peer, [&](CNode *pnode) EXCLUSIVE_LOCKS_REQUIRED(::cs_main) { AssertLockHeld(::cs_main); // Only disconnect a peer that has been connected to us for some // reasonable fraction of our check-frequency, to give it time for // new information to have arrived. Also don't disconnect any peer // we're trying to download a block from. CNodeState &state = *State(pnode->GetId()); if (time_in_seconds - pnode->nTimeConnected > MINIMUM_CONNECT_TIME && state.nBlocksInFlight == 0) { LogPrint(BCLog::NET, "disconnecting extra outbound peer=%d (last block " "announcement received at time %d)\n", pnode->GetId(), oldest_block_announcement); pnode->fDisconnect = true; return true; } else { LogPrint(BCLog::NET, "keeping outbound peer=%d chosen for eviction " "(connect time: %d, blocks_in_flight: %d)\n", pnode->GetId(), pnode->nTimeConnected, state.nBlocksInFlight); return false; } }); if (disconnected) { // If we disconnected an extra peer, that means we successfully // connected to at least one peer after the last time we detected a // stale tip. Don't try any more extra peers until we next detect a // stale tip, to limit the load we put on the network from these extra // connections. m_connman.SetTryNewOutboundPeer(false); } } void PeerManager::CheckForStaleTipAndEvictPeers() { LOCK(cs_main); int64_t time_in_seconds = GetTime(); EvictExtraOutboundPeers(time_in_seconds); if (time_in_seconds <= m_stale_tip_check_time) { return; } // Check whether our tip is stale, and if so, allow using an extra outbound // peer. if (!fImporting && !fReindex && m_connman.GetNetworkActive() && m_connman.GetUseAddrmanOutgoing() && TipMayBeStale(m_chainparams.GetConsensus())) { LogPrintf("Potential stale tip detected, will try using extra outbound " "peer (last tip update: %d seconds ago)\n", time_in_seconds - g_last_tip_update); m_connman.SetTryNewOutboundPeer(true); } else if (m_connman.GetTryNewOutboundPeer()) { m_connman.SetTryNewOutboundPeer(false); } m_stale_tip_check_time = time_in_seconds + STALE_CHECK_INTERVAL; } namespace { class CompareInvMempoolOrder { CTxMemPool *mp; public: explicit CompareInvMempoolOrder(CTxMemPool *_mempool) { mp = _mempool; } bool operator()(std::set<TxId>::iterator a, std::set<TxId>::iterator b) { /** * As std::make_heap produces a max-heap, we want the entries with the * fewest ancestors/highest fee to sort later. */ return mp->CompareDepthAndScore(*b, *a); } }; } // namespace bool PeerManager::SendMessages(const Config &config, CNode *pto, std::atomic<bool> &interruptMsgProc) { const Consensus::Params &consensusParams = m_chainparams.GetConsensus(); // We must call MaybeDiscourageAndDisconnect first, to ensure that we'll // disconnect misbehaving peers even before the version handshake is // complete. if (MaybeDiscourageAndDisconnect(*pto)) { return true; } // Don't send anything until the version handshake is complete if (!pto->fSuccessfullyConnected || pto->fDisconnect) { return true; } // If we get here, the outgoing message serialization version is set and // can't change. const CNetMsgMaker msgMaker(pto->GetCommonVersion()); // // Message: ping // bool pingSend = false; if (pto->fPingQueued) { // RPC ping request by user pingSend = true; } if (pto->nPingNonceSent == 0 && pto->m_ping_start.load() + PING_INTERVAL < GetTime<std::chrono::microseconds>()) { // Ping automatically sent as a latency probe & keepalive. pingSend = true; } if (pingSend) { uint64_t nonce = 0; while (nonce == 0) { GetRandBytes((uint8_t *)&nonce, sizeof(nonce)); } pto->fPingQueued = false; pto->m_ping_start = GetTime<std::chrono::microseconds>(); if (pto->GetCommonVersion() > BIP0031_VERSION) { pto->nPingNonceSent = nonce; m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::PING, nonce)); } else { // Peer is too old to support ping command with nonce, pong will // never arrive. pto->nPingNonceSent = 0; m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::PING)); } } auto current_time = GetTime<std::chrono::microseconds>(); bool fFetch; { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Address refresh broadcast if (pto->RelayAddrsWithConn() && !::ChainstateActive().IsInitialBlockDownload() && pto->m_next_local_addr_send < current_time) { AdvertiseLocal(pto); pto->m_next_local_addr_send = PoissonNextSend( current_time, AVG_LOCAL_ADDRESS_BROADCAST_INTERVAL); } // // Message: addr // if (pto->RelayAddrsWithConn() && pto->m_next_addr_send < current_time) { pto->m_next_addr_send = PoissonNextSend(current_time, AVG_ADDRESS_BROADCAST_INTERVAL); std::vector<CAddress> vAddr; vAddr.reserve(pto->vAddrToSend.size()); assert(pto->m_addr_known); const char *msg_type; int make_flags; if (pto->m_wants_addrv2) { msg_type = NetMsgType::ADDRV2; make_flags = ADDRV2_FORMAT; } else { msg_type = NetMsgType::ADDR; make_flags = 0; } for (const CAddress &addr : pto->vAddrToSend) { if (!pto->m_addr_known->contains(addr.GetKey())) { pto->m_addr_known->insert(addr.GetKey()); vAddr.push_back(addr); // receiver rejects addr messages larger than // MAX_ADDR_TO_SEND if (vAddr.size() >= MAX_ADDR_TO_SEND) { m_connman.PushMessage( pto, msgMaker.Make(make_flags, msg_type, vAddr)); vAddr.clear(); } } } pto->vAddrToSend.clear(); if (!vAddr.empty()) { m_connman.PushMessage( pto, msgMaker.Make(make_flags, msg_type, vAddr)); } // we only send the big addr message once if (pto->vAddrToSend.capacity() > 40) { pto->vAddrToSend.shrink_to_fit(); } } // Start block sync if (pindexBestHeader == nullptr) { pindexBestHeader = ::ChainActive().Tip(); } // Download if this is a nice peer, or we have no nice peers and this // one might do. fFetch = state.fPreferredDownload || (nPreferredDownload == 0 && !pto->fClient && !pto->IsAddrFetchConn()); if (!state.fSyncStarted && !pto->fClient && !fImporting && !fReindex) { // Only actively request headers from a single peer, unless we're // close to today. if ((nSyncStarted == 0 && fFetch) || pindexBestHeader->GetBlockTime() > GetAdjustedTime() - 24 * 60 * 60) { state.fSyncStarted = true; state.nHeadersSyncTimeout = count_microseconds(current_time) + HEADERS_DOWNLOAD_TIMEOUT_BASE + HEADERS_DOWNLOAD_TIMEOUT_PER_HEADER * (GetAdjustedTime() - pindexBestHeader->GetBlockTime()) / (consensusParams.nPowTargetSpacing); nSyncStarted++; const CBlockIndex *pindexStart = pindexBestHeader; /** * If possible, start at the block preceding the currently best * known header. This ensures that we always get a non-empty * list of headers back as long as the peer is up-to-date. With * a non-empty response, we can initialise the peer's known best * block. This wouldn't be possible if we requested starting at * pindexBestHeader and got back an empty response. */ if (pindexStart->pprev) { pindexStart = pindexStart->pprev; } LogPrint( BCLog::NET, "initial getheaders (%d) to peer=%d (startheight:%d)\n", pindexStart->nHeight, pto->GetId(), pto->nStartingHeight); m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::GETHEADERS, ::ChainActive().GetLocator(pindexStart), uint256())); } } // // Try sending block announcements via headers // { // If we have less than MAX_BLOCKS_TO_ANNOUNCE in our list of block // hashes we're relaying, and our peer wants headers announcements, // then find the first header not yet known to our peer but would // connect, and send. If no header would connect, or if we have too // many blocks, or if the peer doesn't want headers, just add all to // the inv queue. LOCK(pto->cs_inventory); std::vector<CBlock> vHeaders; bool fRevertToInv = ((!state.fPreferHeaders && (!state.fPreferHeaderAndIDs || pto->vBlockHashesToAnnounce.size() > 1)) || pto->vBlockHashesToAnnounce.size() > MAX_BLOCKS_TO_ANNOUNCE); // last header queued for delivery const CBlockIndex *pBestIndex = nullptr; // ensure pindexBestKnownBlock is up-to-date ProcessBlockAvailability(pto->GetId()); if (!fRevertToInv) { bool fFoundStartingHeader = false; // Try to find first header that our peer doesn't have, and then // send all headers past that one. If we come across an headers // that aren't on ::ChainActive(), give up. for (const BlockHash &hash : pto->vBlockHashesToAnnounce) { const CBlockIndex *pindex = LookupBlockIndex(hash); assert(pindex); if (::ChainActive()[pindex->nHeight] != pindex) { // Bail out if we reorged away from this block fRevertToInv = true; break; } if (pBestIndex != nullptr && pindex->pprev != pBestIndex) { // This means that the list of blocks to announce don't // connect to each other. This shouldn't really be // possible to hit during regular operation (because // reorgs should take us to a chain that has some block // not on the prior chain, which should be caught by the // prior check), but one way this could happen is by // using invalidateblock / reconsiderblock repeatedly on // the tip, causing it to be added multiple times to // vBlockHashesToAnnounce. Robustly deal with this rare // situation by reverting to an inv. fRevertToInv = true; break; } pBestIndex = pindex; if (fFoundStartingHeader) { // add this to the headers message vHeaders.push_back(pindex->GetBlockHeader()); } else if (PeerHasHeader(&state, pindex)) { // Keep looking for the first new block. continue; } else if (pindex->pprev == nullptr || PeerHasHeader(&state, pindex->pprev)) { // Peer doesn't have this header but they do have the // prior one. Start sending headers. fFoundStartingHeader = true; vHeaders.push_back(pindex->GetBlockHeader()); } else { // Peer doesn't have this header or the prior one -- // nothing will connect, so bail out. fRevertToInv = true; break; } } } if (!fRevertToInv && !vHeaders.empty()) { if (vHeaders.size() == 1 && state.fPreferHeaderAndIDs) { // We only send up to 1 block as header-and-ids, as // otherwise probably means we're doing an initial-ish-sync // or they're slow. LogPrint(BCLog::NET, "%s sending header-and-ids %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); int nSendFlags = 0; bool fGotBlockFromCache = false; { LOCK(cs_most_recent_block); if (most_recent_block_hash == pBestIndex->GetBlockHash()) { CBlockHeaderAndShortTxIDs cmpctblock( *most_recent_block); m_connman.PushMessage( pto, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); fGotBlockFromCache = true; } } if (!fGotBlockFromCache) { CBlock block; bool ret = ReadBlockFromDisk(block, pBestIndex, consensusParams); assert(ret); CBlockHeaderAndShortTxIDs cmpctblock(block); m_connman.PushMessage( pto, msgMaker.Make(nSendFlags, NetMsgType::CMPCTBLOCK, cmpctblock)); } state.pindexBestHeaderSent = pBestIndex; } else if (state.fPreferHeaders) { if (vHeaders.size() > 1) { LogPrint(BCLog::NET, "%s: %u headers, range (%s, %s), to peer=%d\n", __func__, vHeaders.size(), vHeaders.front().GetHash().ToString(), vHeaders.back().GetHash().ToString(), pto->GetId()); } else { LogPrint(BCLog::NET, "%s: sending header %s to peer=%d\n", __func__, vHeaders.front().GetHash().ToString(), pto->GetId()); } m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::HEADERS, vHeaders)); state.pindexBestHeaderSent = pBestIndex; } else { fRevertToInv = true; } } if (fRevertToInv) { // If falling back to using an inv, just try to inv the tip. The // last entry in vBlockHashesToAnnounce was our tip at some // point in the past. if (!pto->vBlockHashesToAnnounce.empty()) { const BlockHash &hashToAnnounce = pto->vBlockHashesToAnnounce.back(); const CBlockIndex *pindex = LookupBlockIndex(hashToAnnounce); assert(pindex); // Warn if we're announcing a block that is not on the main // chain. This should be very rare and could be optimized // out. Just log for now. if (::ChainActive()[pindex->nHeight] != pindex) { LogPrint( BCLog::NET, "Announcing block %s not on main chain (tip=%s)\n", hashToAnnounce.ToString(), ::ChainActive().Tip()->GetBlockHash().ToString()); } // If the peer's chain has this block, don't inv it back. if (!PeerHasHeader(&state, pindex)) { pto->vInventoryBlockToSend.push_back(hashToAnnounce); LogPrint(BCLog::NET, "%s: sending inv peer=%d hash=%s\n", __func__, pto->GetId(), hashToAnnounce.ToString()); } } } pto->vBlockHashesToAnnounce.clear(); } } // release cs_main // // Message: inventory // std::vector<CInv> vInv; auto addInvAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { vInv.emplace_back(type, hash); if (vInv.size() == MAX_INV_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::INV, std::move(vInv))); vInv.clear(); } }; { LOCK2(cs_main, pto->cs_inventory); vInv.reserve(std::max<size_t>(pto->vInventoryBlockToSend.size(), INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000)); // Add blocks for (const BlockHash &hash : pto->vInventoryBlockToSend) { addInvAndMaybeFlush(MSG_BLOCK, hash); } pto->vInventoryBlockToSend.clear(); auto computeNextInvSendTime = [&](std::chrono::microseconds &next) -> bool { bool fSendTrickle = pto->HasPermission(PF_NOBAN); if (next < current_time) { fSendTrickle = true; if (pto->IsInboundConn()) { next = std::chrono::microseconds{ m_connman.PoissonNextSendInbound( count_microseconds(current_time), INVENTORY_BROADCAST_INTERVAL)}; } else { // Skip delay for outbound peers, as there is less privacy // concern for them. next = current_time; } } return fSendTrickle; }; // Add proofs to inventory if (pto->m_proof_relay != nullptr) { LOCK(pto->m_proof_relay->cs_proof_inventory); if (computeNextInvSendTime(pto->m_proof_relay->nextInvSend)) { auto it = pto->m_proof_relay->setInventoryProofToSend.begin(); while (it != pto->m_proof_relay->setInventoryProofToSend.end()) { const avalanche::ProofId proofid = *it; it = pto->m_proof_relay->setInventoryProofToSend.erase(it); if (pto->m_proof_relay->filterProofKnown.contains( proofid)) { continue; } pto->m_proof_relay->filterProofKnown.insert(proofid); addInvAndMaybeFlush(MSG_AVA_PROOF, proofid); State(pto->GetId()) ->m_recently_announced_proofs.insert(proofid); } } } if (pto->m_tx_relay != nullptr) { LOCK(pto->m_tx_relay->cs_tx_inventory); // Check whether periodic sends should happen const bool fSendTrickle = computeNextInvSendTime(pto->m_tx_relay->nNextInvSend); // Time to send but the peer has requested we not relay // transactions. if (fSendTrickle) { LOCK(pto->m_tx_relay->cs_filter); if (!pto->m_tx_relay->fRelayTxes) { pto->m_tx_relay->setInventoryTxToSend.clear(); } } // Respond to BIP35 mempool requests if (fSendTrickle && pto->m_tx_relay->fSendMempool) { auto vtxinfo = m_mempool.infoAll(); pto->m_tx_relay->fSendMempool = false; CFeeRate filterrate; { LOCK(pto->m_tx_relay->cs_feeFilter); filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter); } LOCK(pto->m_tx_relay->cs_filter); for (const auto &txinfo : vtxinfo) { const TxId &txid = txinfo.tx->GetId(); pto->m_tx_relay->setInventoryTxToSend.erase(txid); // Don't send transactions that peers will not put into // their mempool if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (pto->m_tx_relay->pfilter && !pto->m_tx_relay->pfilter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } pto->m_tx_relay->filterInventoryKnown.insert(txid); // Responses to MEMPOOL requests bypass the // m_recently_announced_invs filter. addInvAndMaybeFlush(MSG_TX, txid); } pto->m_tx_relay->m_last_mempool_req = GetTime<std::chrono::seconds>(); } // Determine transactions to relay if (fSendTrickle) { // Produce a vector with all candidates for sending std::vector<std::set<TxId>::iterator> vInvTx; vInvTx.reserve(pto->m_tx_relay->setInventoryTxToSend.size()); for (std::set<TxId>::iterator it = pto->m_tx_relay->setInventoryTxToSend.begin(); it != pto->m_tx_relay->setInventoryTxToSend.end(); it++) { vInvTx.push_back(it); } CFeeRate filterrate; { LOCK(pto->m_tx_relay->cs_feeFilter); filterrate = CFeeRate(pto->m_tx_relay->minFeeFilter); } // Topologically and fee-rate sort the inventory we send for // privacy and priority reasons. A heap is used so that not // all items need sorting if only a few are being sent. CompareInvMempoolOrder compareInvMempoolOrder(&m_mempool); std::make_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); // No reason to drain out at many times the network's // capacity, especially since we have many peers and some // will draw much shorter delays. unsigned int nRelayedTransactions = 0; LOCK(pto->m_tx_relay->cs_filter); while (!vInvTx.empty() && nRelayedTransactions < INVENTORY_BROADCAST_MAX_PER_MB * config.GetMaxBlockSize() / 1000000) { // Fetch the top element from the heap std::pop_heap(vInvTx.begin(), vInvTx.end(), compareInvMempoolOrder); std::set<TxId>::iterator it = vInvTx.back(); vInvTx.pop_back(); const TxId txid = *it; // Remove it from the to-be-sent set pto->m_tx_relay->setInventoryTxToSend.erase(it); // Check if not in the filter already if (pto->m_tx_relay->filterInventoryKnown.contains(txid)) { continue; } // Not in the mempool anymore? don't bother sending it. auto txinfo = m_mempool.info(txid); if (!txinfo.tx) { continue; } // Peer told you to not send transactions at that // feerate? Don't bother sending it. if (txinfo.fee < filterrate.GetFee(txinfo.vsize)) { continue; } if (pto->m_tx_relay->pfilter && !pto->m_tx_relay->pfilter->IsRelevantAndUpdate( *txinfo.tx)) { continue; } // Send State(pto->GetId())->m_recently_announced_invs.insert(txid); addInvAndMaybeFlush(MSG_TX, txid); nRelayedTransactions++; { // Expire old relay messages while (!vRelayExpiration.empty() && vRelayExpiration.front().first < count_microseconds(current_time)) { mapRelay.erase(vRelayExpiration.front().second); vRelayExpiration.pop_front(); } auto ret = mapRelay.insert( std::make_pair(txid, std::move(txinfo.tx))); if (ret.second) { vRelayExpiration.push_back(std::make_pair( count_microseconds(current_time) + std::chrono::microseconds{ RELAY_TX_CACHE_TIME} .count(), ret.first)); } } pto->m_tx_relay->filterInventoryKnown.insert(txid); } } } } // release cs_main, pto->cs_inventory if (!vInv.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::INV, vInv)); } { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); // Detect whether we're stalling current_time = GetTime<std::chrono::microseconds>(); if (state.nStallingSince && state.nStallingSince < count_microseconds(current_time) - 1000000 * BLOCK_STALLING_TIMEOUT) { // Stalling only triggers when the block download window cannot // move. During normal steady state, the download window should be // much larger than the to-be-downloaded set of blocks, so // disconnection should only happen during initial block download. LogPrintf("Peer=%d is stalling block download, disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } // In case there is a block that has been in flight from this peer for 2 // + 0.5 * N times the block interval (with N the number of peers from // which we're downloading validated blocks), disconnect due to timeout. // We compensate for other peers to prevent killing off peers due to our // own downstream link being saturated. We only count validated // in-flight blocks so peers can't advertise non-existing block hashes // to unreasonably increase our timeout. if (state.vBlocksInFlight.size() > 0) { QueuedBlock &queuedBlock = state.vBlocksInFlight.front(); int nOtherPeersWithValidatedDownloads = nPeersWithValidatedDownloads - (state.nBlocksInFlightValidHeaders > 0); if (count_microseconds(current_time) > state.nDownloadingSince + consensusParams.nPowTargetSpacing * (BLOCK_DOWNLOAD_TIMEOUT_BASE + BLOCK_DOWNLOAD_TIMEOUT_PER_PEER * nOtherPeersWithValidatedDownloads)) { LogPrintf("Timeout downloading block %s from peer=%d, " "disconnecting\n", queuedBlock.hash.ToString(), pto->GetId()); pto->fDisconnect = true; return true; } } // Check for headers sync timeouts if (state.fSyncStarted && state.nHeadersSyncTimeout < std::numeric_limits<int64_t>::max()) { // Detect whether this is a stalling initial-headers-sync peer if (pindexBestHeader->GetBlockTime() <= GetAdjustedTime() - 24 * 60 * 60) { if (count_microseconds(current_time) > state.nHeadersSyncTimeout && nSyncStarted == 1 && (nPreferredDownload - state.fPreferredDownload >= 1)) { // Disconnect a peer (without the noban permission) if it // is our only sync peer, and we have others we could be // using instead. // Note: If all our peers are inbound, then we won't // disconnect our sync peer for stalling; we have bigger // problems if we can't get any outbound peers. if (!pto->HasPermission(PF_NOBAN)) { LogPrintf("Timeout downloading headers from peer=%d, " "disconnecting\n", pto->GetId()); pto->fDisconnect = true; return true; } else { LogPrintf("Timeout downloading headers from noban " "peer=%d, not disconnecting\n", pto->GetId()); // Reset the headers sync state so that we have a chance // to try downloading from a different peer. Note: this // will also result in at least one more getheaders // message to be sent to this peer (eventually). state.fSyncStarted = false; nSyncStarted--; state.nHeadersSyncTimeout = 0; } } } else { // After we've caught up once, reset the timeout so we can't // trigger disconnect later. state.nHeadersSyncTimeout = std::numeric_limits<int64_t>::max(); } } // Check that outbound peers have reasonable chains GetTime() is used by // this anti-DoS logic so we can test this using mocktime. ConsiderEviction(*pto, GetTime()); } // release cs_main std::vector<CInv> vGetData; // // Message: getdata (blocks) // { LOCK(cs_main); CNodeState &state = *State(pto->GetId()); if (!pto->fClient && ((fFetch && !pto->m_limited_node) || !::ChainstateActive().IsInitialBlockDownload()) && state.nBlocksInFlight < MAX_BLOCKS_IN_TRANSIT_PER_PEER) { std::vector<const CBlockIndex *> vToDownload; NodeId staller = -1; FindNextBlocksToDownload(pto->GetId(), MAX_BLOCKS_IN_TRANSIT_PER_PEER - state.nBlocksInFlight, vToDownload, staller, consensusParams); for (const CBlockIndex *pindex : vToDownload) { vGetData.push_back(CInv(MSG_BLOCK, pindex->GetBlockHash())); MarkBlockAsInFlight(config, m_mempool, pto->GetId(), pindex->GetBlockHash(), consensusParams, pindex); LogPrint(BCLog::NET, "Requesting block %s (%d) peer=%d\n", pindex->GetBlockHash().ToString(), pindex->nHeight, pto->GetId()); } if (state.nBlocksInFlight == 0 && staller != -1) { if (State(staller)->nStallingSince == 0) { State(staller)->nStallingSince = count_microseconds(current_time); LogPrint(BCLog::NET, "Stall started peer=%d\n", staller); } } } } // release cs_main auto addGetDataAndMaybeFlush = [&](uint32_t type, const uint256 &hash) { CInv inv(type, hash); LogPrint(BCLog::NET, "Requesting %s from peer=%d\n", inv.ToString(), pto->GetId()); vGetData.push_back(std::move(inv)); if (vGetData.size() >= MAX_GETDATA_SZ) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::GETDATA, std::move(vGetData))); vGetData.clear(); } }; // // Message: getdata (proof) // { LOCK(cs_proofrequest); std::vector<std::pair<NodeId, avalanche::ProofId>> expired; auto requestable = m_proofrequest.GetRequestable(pto->GetId(), current_time, &expired); for (const auto &entry : expired) { LogPrint(BCLog::AVALANCHE, "timeout of inflight proof %s from peer=%d\n", entry.second.ToString(), entry.first); } for (const auto &proofid : requestable) { if (!AlreadyHaveProof(proofid)) { addGetDataAndMaybeFlush(MSG_AVA_PROOF, proofid); m_proofrequest.RequestedData( pto->GetId(), proofid, current_time + PROOF_REQUEST_PARAMS.getdata_interval); } else { // We have already seen this proof, no need to download. // This is just a belt-and-suspenders, as this should // already be called whenever a transaction becomes // AlreadyHaveProof(). m_proofrequest.ForgetInvId(proofid); } } } // release cs_proofrequest // // Message: getdata (transactions) // { LOCK(cs_main); std::vector<std::pair<NodeId, TxId>> expired; auto requestable = m_txrequest.GetRequestable(pto->GetId(), current_time, &expired); for (const auto &entry : expired) { LogPrint(BCLog::NET, "timeout of inflight tx %s from peer=%d\n", entry.second.ToString(), entry.first); } for (const TxId &txid : requestable) { if (!AlreadyHaveTx(txid, m_mempool)) { addGetDataAndMaybeFlush(MSG_TX, txid); m_txrequest.RequestedData( pto->GetId(), txid, current_time + TX_REQUEST_PARAMS.getdata_interval); } else { // We have already seen this transaction, no need to download. // This is just a belt-and-suspenders, as this should already be // called whenever a transaction becomes AlreadyHaveTx(). m_txrequest.ForgetInvId(txid); } } if (!vGetData.empty()) { m_connman.PushMessage(pto, msgMaker.Make(NetMsgType::GETDATA, vGetData)); } // // Message: feefilter // // peers with the forcerelay permission should not filter txs to us if (pto->m_tx_relay != nullptr && pto->GetCommonVersion() >= FEEFILTER_VERSION && gArgs.GetBoolArg("-feefilter", DEFAULT_FEEFILTER) && !pto->HasPermission(PF_FORCERELAY)) { Amount currentFilter = m_mempool .GetMinFee( gArgs.GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000) .GetFeePerK(); static FeeFilterRounder g_filter_rounder{ CFeeRate{DEFAULT_MIN_RELAY_TX_FEE_PER_KB}}; if (m_chainman.ActiveChainstate().IsInitialBlockDownload()) { // Received tx-inv messages are discarded when the active // chainstate is in IBD, so tell the peer to not send them. currentFilter = MAX_MONEY; } else { static const Amount MAX_FILTER{ g_filter_rounder.round(MAX_MONEY)}; if (pto->m_tx_relay->lastSentFeeFilter == MAX_FILTER) { // Send the current filter if we sent MAX_FILTER previously // and made it out of IBD. pto->m_tx_relay->nextSendTimeFeeFilter = count_microseconds(current_time) - 1; } } if (count_microseconds(current_time) > pto->m_tx_relay->nextSendTimeFeeFilter) { Amount filterToSend = g_filter_rounder.round(currentFilter); filterToSend = std::max(filterToSend, ::minRelayTxFee.GetFeePerK()); if (filterToSend != pto->m_tx_relay->lastSentFeeFilter) { m_connman.PushMessage( pto, msgMaker.Make(NetMsgType::FEEFILTER, filterToSend)); pto->m_tx_relay->lastSentFeeFilter = filterToSend; } pto->m_tx_relay->nextSendTimeFeeFilter = PoissonNextSend(count_microseconds(current_time), AVG_FEEFILTER_BROADCAST_INTERVAL); } // If the fee filter has changed substantially and it's still more // than MAX_FEEFILTER_CHANGE_DELAY until scheduled broadcast, then // move the broadcast to within MAX_FEEFILTER_CHANGE_DELAY. else if (count_microseconds(current_time) + MAX_FEEFILTER_CHANGE_DELAY * 1000000 < pto->m_tx_relay->nextSendTimeFeeFilter && (currentFilter < 3 * pto->m_tx_relay->lastSentFeeFilter / 4 || currentFilter > 4 * pto->m_tx_relay->lastSentFeeFilter / 3)) { pto->m_tx_relay->nextSendTimeFeeFilter = count_microseconds(current_time) + GetRandInt(MAX_FEEFILTER_CHANGE_DELAY) * 1000000; } } } // release cs_main return true; } class CNetProcessingCleanup { public: CNetProcessingCleanup() {} ~CNetProcessingCleanup() { // orphan transactions mapOrphanTransactions.clear(); mapOrphanTransactionsByPrev.clear(); } }; static CNetProcessingCleanup instance_of_cnetprocessingcleanup;