diff --git a/src/test/serialize_tests.cpp b/src/test/serialize_tests.cpp index c80a23d0f..4f10995dd 100644 --- a/src/test/serialize_tests.cpp +++ b/src/test/serialize_tests.cpp @@ -1,513 +1,525 @@ // Copyright (c) 2012-2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include #include #include #include #include #include BOOST_FIXTURE_TEST_SUITE(serialize_tests, BasicTestingSetup) class CSerializeMethodsTestSingle { protected: int intval; bool boolval; std::string stringval; char charstrval[16]; CTransactionRef txval; avalanche::ProofRef proofval; public: CSerializeMethodsTestSingle() = default; CSerializeMethodsTestSingle(int intvalin, bool boolvalin, std::string stringvalin, const char *charstrvalin, const CTransactionRef &txvalin, const avalanche::ProofRef &proofvalin) : intval(intvalin), boolval(boolvalin), stringval(std::move(stringvalin)), txval(txvalin), proofval(proofvalin) { memcpy(charstrval, charstrvalin, sizeof(charstrval)); } SERIALIZE_METHODS(CSerializeMethodsTestSingle, obj) { READWRITE(obj.intval); READWRITE(obj.boolval); READWRITE(obj.stringval); READWRITE(obj.charstrval); READWRITE(obj.txval); READWRITE(obj.proofval); } bool operator==(const CSerializeMethodsTestSingle &rhs) { return intval == rhs.intval && boolval == rhs.boolval && stringval == rhs.stringval && strcmp(charstrval, rhs.charstrval) == 0 && *txval == *rhs.txval && proofval->getId() == rhs.proofval->getId(); } }; class CSerializeMethodsTestMany : public CSerializeMethodsTestSingle { public: using CSerializeMethodsTestSingle::CSerializeMethodsTestSingle; SERIALIZE_METHODS(CSerializeMethodsTestMany, obj) { READWRITE(obj.intval, obj.boolval, obj.stringval, obj.charstrval, obj.txval, obj.proofval); } }; BOOST_AUTO_TEST_CASE(sizes) { BOOST_CHECK_EQUAL(sizeof(char), GetSerializeSize(char(0))); BOOST_CHECK_EQUAL(sizeof(int8_t), GetSerializeSize(int8_t(0))); BOOST_CHECK_EQUAL(sizeof(uint8_t), GetSerializeSize(uint8_t(0))); BOOST_CHECK_EQUAL(sizeof(int16_t), GetSerializeSize(int16_t(0))); BOOST_CHECK_EQUAL(sizeof(uint16_t), GetSerializeSize(uint16_t(0))); BOOST_CHECK_EQUAL(sizeof(int32_t), GetSerializeSize(int32_t(0))); BOOST_CHECK_EQUAL(sizeof(uint32_t), GetSerializeSize(uint32_t(0))); BOOST_CHECK_EQUAL(sizeof(int64_t), GetSerializeSize(int64_t(0))); BOOST_CHECK_EQUAL(sizeof(uint64_t), GetSerializeSize(uint64_t(0))); BOOST_CHECK_EQUAL(sizeof(float), GetSerializeSize(float(0))); BOOST_CHECK_EQUAL(sizeof(double), GetSerializeSize(double(0))); // Bool is serialized as char BOOST_CHECK_EQUAL(sizeof(char), GetSerializeSize(bool(0))); // Sanity-check GetSerializeSize and c++ type matching BOOST_CHECK_EQUAL(GetSerializeSize(char(0)), 1U); BOOST_CHECK_EQUAL(GetSerializeSize(int8_t(0)), 1U); BOOST_CHECK_EQUAL(GetSerializeSize(uint8_t(0)), 1U); BOOST_CHECK_EQUAL(GetSerializeSize(int16_t(0)), 2U); BOOST_CHECK_EQUAL(GetSerializeSize(uint16_t(0)), 2U); BOOST_CHECK_EQUAL(GetSerializeSize(int32_t(0)), 4U); BOOST_CHECK_EQUAL(GetSerializeSize(uint32_t(0)), 4U); BOOST_CHECK_EQUAL(GetSerializeSize(int64_t(0)), 8U); BOOST_CHECK_EQUAL(GetSerializeSize(uint64_t(0)), 8U); BOOST_CHECK_EQUAL(GetSerializeSize(float(0)), 4U); BOOST_CHECK_EQUAL(GetSerializeSize(double(0)), 8U); BOOST_CHECK_EQUAL(GetSerializeSize(bool(0)), 1U); } BOOST_AUTO_TEST_CASE(floats_conversion) { // Choose values that map unambiguously to binary floating point to avoid // rounding issues at the compiler side. BOOST_CHECK_EQUAL(ser_uint32_to_float(0x00000000), 0.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x3f000000), 0.5F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x3f800000), 1.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x40000000), 2.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x40800000), 4.0F); BOOST_CHECK_EQUAL(ser_uint32_to_float(0x44444444), 785.066650390625F); BOOST_CHECK_EQUAL(ser_float_to_uint32(0.0F), 0x00000000U); BOOST_CHECK_EQUAL(ser_float_to_uint32(0.5F), 0x3f000000U); BOOST_CHECK_EQUAL(ser_float_to_uint32(1.0F), 0x3f800000U); BOOST_CHECK_EQUAL(ser_float_to_uint32(2.0F), 0x40000000U); BOOST_CHECK_EQUAL(ser_float_to_uint32(4.0F), 0x40800000U); BOOST_CHECK_EQUAL(ser_float_to_uint32(785.066650390625F), 0x44444444U); } BOOST_AUTO_TEST_CASE(doubles_conversion) { // Choose values that map unambiguously to binary floating point to avoid // rounding issues at the compiler side. BOOST_CHECK_EQUAL(ser_uint64_to_double(0x0000000000000000ULL), 0.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x3fe0000000000000ULL), 0.5); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x3ff0000000000000ULL), 1.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x4000000000000000ULL), 2.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x4010000000000000ULL), 4.0); BOOST_CHECK_EQUAL(ser_uint64_to_double(0x4088888880000000ULL), 785.066650390625); BOOST_CHECK_EQUAL(ser_double_to_uint64(0.0), 0x0000000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(0.5), 0x3fe0000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(1.0), 0x3ff0000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(2.0), 0x4000000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(4.0), 0x4010000000000000ULL); BOOST_CHECK_EQUAL(ser_double_to_uint64(785.066650390625), 0x4088888880000000ULL); } /* Python code to generate the below hashes: def reversed_hex(x): return b''.join(reversed(x)).hex().encode() def dsha256(x): return hashlib.sha256(hashlib.sha256(x).digest()).digest() reversed_hex(dsha256(b''.join(struct.pack('> j; BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } BOOST_AUTO_TEST_CASE(doubles) { CDataStream ss(SER_DISK, 0); // encode for (int i = 0; i < 1000; i++) { ss << double(i); } BOOST_CHECK(Hash(ss) == uint256S("43d0c82591953c4eafe114590d392676a01585d25b25d433557f0" "d7878b23f96")); // decode for (int i = 0; i < 1000; i++) { double j; ss >> j; BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } BOOST_AUTO_TEST_CASE(varints) { // encode CDataStream ss(SER_DISK, 0); CDataStream::size_type size = 0; for (int i = 0; i < 100000; i++) { ss << VARINT_MODE(i, VarIntMode::NONNEGATIVE_SIGNED); size += ::GetSerializeSize(VARINT_MODE(i, VarIntMode::NONNEGATIVE_SIGNED)); BOOST_CHECK(size == ss.size()); } for (uint64_t i = 0; i < 100000000000ULL; i += 999999937) { ss << VARINT(i); size += ::GetSerializeSize(VARINT(i)); BOOST_CHECK(size == ss.size()); } // decode for (int i = 0; i < 100000; i++) { int j = -1; ss >> VARINT_MODE(j, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } for (uint64_t i = 0; i < 100000000000ULL; i += 999999937) { uint64_t j = std::numeric_limits::max(); ss >> VARINT(j); BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } } BOOST_AUTO_TEST_CASE(varints_bitpatterns) { CDataStream ss(SER_DISK, 0); ss << VARINT_MODE(0, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "00"); ss.clear(); ss << VARINT_MODE(0x7f, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "7f"); ss.clear(); ss << VARINT_MODE((int8_t)0x7f, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "7f"); ss.clear(); ss << VARINT_MODE(0x80, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "8000"); ss.clear(); ss << VARINT((uint8_t)0x80); BOOST_CHECK_EQUAL(HexStr(ss), "8000"); ss.clear(); ss << VARINT_MODE(0x1234, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "a334"); ss.clear(); ss << VARINT_MODE((int16_t)0x1234, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "a334"); ss.clear(); ss << VARINT_MODE(0xffff, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "82fe7f"); ss.clear(); ss << VARINT((uint16_t)0xffff); BOOST_CHECK_EQUAL(HexStr(ss), "82fe7f"); ss.clear(); ss << VARINT_MODE(0x123456, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "c7e756"); ss.clear(); ss << VARINT_MODE((int32_t)0x123456, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "c7e756"); ss.clear(); ss << VARINT(0x80123456U); BOOST_CHECK_EQUAL(HexStr(ss), "86ffc7e756"); ss.clear(); ss << VARINT((uint32_t)0x80123456U); BOOST_CHECK_EQUAL(HexStr(ss), "86ffc7e756"); ss.clear(); ss << VARINT(0xffffffff); BOOST_CHECK_EQUAL(HexStr(ss), "8efefefe7f"); ss.clear(); ss << VARINT_MODE(0x7fffffffffffffffLL, VarIntMode::NONNEGATIVE_SIGNED); BOOST_CHECK_EQUAL(HexStr(ss), "fefefefefefefefe7f"); ss.clear(); ss << VARINT(0xffffffffffffffffULL); BOOST_CHECK_EQUAL(HexStr(ss), "80fefefefefefefefe7f"); ss.clear(); } static bool isTooLargeException(const std::ios_base::failure &ex) { std::ios_base::failure expectedException( "ReadCompactSize(): size too large"); // The string returned by what() can be different for different platforms. // Instead of directly comparing the ex.what() with an expected string, // create an instance of exception to see if ex.what() matches the expected // explanatory string returned by the exception instance. return strcmp(expectedException.what(), ex.what()) == 0; } BOOST_AUTO_TEST_CASE(compactsize) { CDataStream ss(SER_DISK, 0); std::vector::size_type i, j; for (i = 1; i <= MAX_SIZE; i *= 2) { WriteCompactSize(ss, i - 1); WriteCompactSize(ss, i); } for (i = 1; i <= MAX_SIZE; i *= 2) { j = ReadCompactSize(ss); BOOST_CHECK_MESSAGE((i - 1) == j, "decoded:" << j << " expected:" << (i - 1)); j = ReadCompactSize(ss); BOOST_CHECK_MESSAGE(i == j, "decoded:" << j << " expected:" << i); } WriteCompactSize(ss, MAX_SIZE); BOOST_CHECK_EQUAL(ReadCompactSize(ss), MAX_SIZE); WriteCompactSize(ss, MAX_SIZE + 1); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isTooLargeException); WriteCompactSize(ss, std::numeric_limits::max()); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isTooLargeException); WriteCompactSize(ss, std::numeric_limits::max()); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isTooLargeException); } static bool isCanonicalException(const std::ios_base::failure &ex) { std::ios_base::failure expectedException("non-canonical ReadCompactSize()"); // The string returned by what() can be different for different platforms. // Instead of directly comparing the ex.what() with an expected string, // create an instance of exception to see if ex.what() matches the expected // explanatory string returned by the exception instance. return strcmp(expectedException.what(), ex.what()) == 0; } BOOST_AUTO_TEST_CASE(vector_bool) { std::vector vec1{1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1}; std::vector vec2{1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1}; BOOST_CHECK(vec1 == std::vector(vec2.begin(), vec2.end())); BOOST_CHECK(SerializeHash(vec1) == SerializeHash(vec2)); } BOOST_AUTO_TEST_CASE(noncanonical) { // Write some non-canonical CompactSize encodings, and make sure an // exception is thrown when read back. CDataStream ss(SER_DISK, 0); std::vector::size_type n; // zero encoded with three bytes: ss.write("\xfd\x00\x00", 3); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0xfc encoded with three bytes: ss.write("\xfd\xfc\x00", 3); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0xfd encoded with three bytes is OK: ss.write("\xfd\xfd\x00", 3); n = ReadCompactSize(ss); BOOST_CHECK(n == 0xfd); // zero encoded with five bytes: ss.write("\xfe\x00\x00\x00\x00", 5); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0xffff encoded with five bytes: ss.write("\xfe\xff\xff\x00\x00", 5); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // zero encoded with nine bytes: ss.write("\xff\x00\x00\x00\x00\x00\x00\x00\x00", 9); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); // 0x01ffffff encoded with nine bytes: ss.write("\xff\xff\xff\xff\x01\x00\x00\x00\x00", 9); BOOST_CHECK_EXCEPTION(ReadCompactSize(ss), std::ios_base::failure, isCanonicalException); } BOOST_AUTO_TEST_CASE(insert_delete) { // Test inserting/deleting bytes. CDataStream ss(SER_DISK, 0); BOOST_CHECK_EQUAL(ss.size(), 0U); ss.write("\x00\x01\x02\xff", 4); BOOST_CHECK_EQUAL(ss.size(), 4U); char c = (char)11; // Inserting at beginning/end/middle: ss.insert(ss.begin(), c); BOOST_CHECK_EQUAL(ss.size(), 5U); BOOST_CHECK_EQUAL(ss[0], c); BOOST_CHECK_EQUAL(ss[1], 0); ss.insert(ss.end(), c); BOOST_CHECK_EQUAL(ss.size(), 6U); BOOST_CHECK_EQUAL(ss[4], (char)0xff); BOOST_CHECK_EQUAL(ss[5], c); ss.insert(ss.begin() + 2, c); BOOST_CHECK_EQUAL(ss.size(), 7U); BOOST_CHECK_EQUAL(ss[2], c); // Delete at beginning/end/middle ss.erase(ss.begin()); BOOST_CHECK_EQUAL(ss.size(), 6U); BOOST_CHECK_EQUAL(ss[0], 0); ss.erase(ss.begin() + ss.size() - 1); BOOST_CHECK_EQUAL(ss.size(), 5U); BOOST_CHECK_EQUAL(ss[4], (char)0xff); ss.erase(ss.begin() + 1); BOOST_CHECK_EQUAL(ss.size(), 4U); BOOST_CHECK_EQUAL(ss[0], 0); BOOST_CHECK_EQUAL(ss[1], 1); BOOST_CHECK_EQUAL(ss[2], 2); BOOST_CHECK_EQUAL(ss[3], (char)0xff); // Make sure GetAndClear does the right thing: CSerializeData d; ss.GetAndClear(d); BOOST_CHECK_EQUAL(ss.size(), 0U); } BOOST_AUTO_TEST_CASE(class_methods) { int intval(100); bool boolval(true); std::string stringval("testing"); const char charstrval[16] = "testing charstr"; CMutableTransaction txval; CTransactionRef tx_ref{MakeTransactionRef(txval)}; avalanche::ProofBuilder pb(0, 0, CKey::MakeCompressedKey()); avalanche::ProofRef proofval = pb.build(); CSerializeMethodsTestSingle methodtest1(intval, boolval, stringval, charstrval, tx_ref, proofval); CSerializeMethodsTestMany methodtest2(intval, boolval, stringval, charstrval, tx_ref, proofval); CSerializeMethodsTestSingle methodtest3; CSerializeMethodsTestMany methodtest4; CDataStream ss(SER_DISK, PROTOCOL_VERSION); BOOST_CHECK(methodtest1 == methodtest2); ss << methodtest1; ss >> methodtest4; ss << methodtest2; ss >> methodtest3; BOOST_CHECK(methodtest1 == methodtest2); BOOST_CHECK(methodtest2 == methodtest3); BOOST_CHECK(methodtest3 == methodtest4); CDataStream ss2(SER_DISK, PROTOCOL_VERSION, intval, boolval, stringval, charstrval, txval, proofval); ss2 >> methodtest3; BOOST_CHECK(methodtest3 == methodtest4); } BOOST_AUTO_TEST_CASE(difference_formatter) { VectorFormatter formatter; { std::vector indicesIn{0, 1, 2, 5, 10, 20, 50, 100}; std::vector indicesOut; CDataStream ss(SER_DISK, PROTOCOL_VERSION); formatter.Ser(ss, indicesIn); // Check the stream is differentially encoded. Don't care about the // prefixes and vector length here (assumed to be < 253). const std::string streamStr = ss.str(); const std::string differences = HexStr(streamStr.substr(streamStr.size() - indicesIn.size())); BOOST_CHECK_EQUAL(differences, "0000000204091d31"); formatter.Unser(ss, indicesOut); BOOST_CHECK_EQUAL_COLLECTIONS(indicesIn.begin(), indicesIn.end(), indicesOut.begin(), indicesOut.end()); } { std::vector indicesIn{1, 0}; CDataStream ss(SER_DISK, PROTOCOL_VERSION); BOOST_CHECK_EXCEPTION(formatter.Ser(ss, indicesIn), std::ios_base::failure, HasReason("differential value overflow")); } { std::vector indicesOut; // Compute the number of MAX_SIZE increment we need to cause an overflow const uint64_t overflow = uint64_t(std::numeric_limits::max()) + 1; - BOOST_CHECK_GE(overflow, MAX_SIZE); - const uint64_t overflowIter = overflow / MAX_SIZE; + // Due to differential encoding, a value of MAX_SIZE bumps the index by + // MAX_SIZE + 1 + BOOST_CHECK_GE(overflow, MAX_SIZE + 1); + const uint64_t overflowIter = overflow / (MAX_SIZE + 1); - // Make sure the iteration fits in an uint32_t + // Make sure the iteration fits in an uint32_t and is <= MAX_SIZE BOOST_CHECK_LE(overflowIter, std::numeric_limits::max()); - uint32_t remainder = uint32_t(overflow - (MAX_SIZE * overflowIter)); - - CDataStream ss(SER_DISK, PROTOCOL_VERSION); - WriteCompactSize(ss, overflowIter); - for (uint32_t i = 0; i < overflowIter; i++) { - WriteCompactSize(ss, MAX_SIZE); - } - // This is the overflow - WriteCompactSize(ss, remainder); - - BOOST_CHECK_EXCEPTION(formatter.Unser(ss, indicesOut), + BOOST_CHECK_LE(overflowIter, MAX_SIZE); + uint32_t remainder = + uint32_t(overflow - ((MAX_SIZE + 1) * overflowIter)); + + auto buildStream = [&](uint32_t lastItemDifference) { + CDataStream ss(SER_DISK, PROTOCOL_VERSION); + WriteCompactSize(ss, overflowIter + 1); + for (uint32_t i = 0; i < overflowIter; i++) { + WriteCompactSize(ss, MAX_SIZE); + } + // This will cause an overflow if lastItemDifference >= remainder + WriteCompactSize(ss, lastItemDifference); + + return ss; + }; + + auto noThrowStream = buildStream(remainder - 1); + BOOST_CHECK_NO_THROW(formatter.Unser(noThrowStream, indicesOut)); + + auto overflowStream = buildStream(remainder); + BOOST_CHECK_EXCEPTION(formatter.Unser(overflowStream, indicesOut), std::ios_base::failure, HasReason("differential value overflow")); } } BOOST_AUTO_TEST_SUITE_END()