diff --git a/src/addrman.cpp b/src/addrman.cpp index 094c913e9..c41ee3f9f 100644 --- a/src/addrman.cpp +++ b/src/addrman.cpp @@ -1,490 +1,490 @@ // Copyright (c) 2012 Pieter Wuille // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "addrman.h" #include "hash.h" #include "serialize.h" #include "streams.h" using namespace std; int CAddrInfo::GetTriedBucket(const uint256& nKey) const { uint64_t hash1 = (CHashWriter(SER_GETHASH, 0) << nKey << GetKey()).GetHash().GetCheapHash(); uint64_t hash2 = (CHashWriter(SER_GETHASH, 0) << nKey << GetGroup() << (hash1 % ADDRMAN_TRIED_BUCKETS_PER_GROUP)).GetHash().GetCheapHash(); return hash2 % ADDRMAN_TRIED_BUCKET_COUNT; } int CAddrInfo::GetNewBucket(const uint256& nKey, const CNetAddr& src) const { std::vector<unsigned char> vchSourceGroupKey = src.GetGroup(); uint64_t hash1 = (CHashWriter(SER_GETHASH, 0) << nKey << GetGroup() << vchSourceGroupKey).GetHash().GetCheapHash(); uint64_t hash2 = (CHashWriter(SER_GETHASH, 0) << nKey << vchSourceGroupKey << (hash1 % ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP)).GetHash().GetCheapHash(); return hash2 % ADDRMAN_NEW_BUCKET_COUNT; } int CAddrInfo::GetBucketPosition(const uint256 &nKey, bool fNew, int nBucket) const { uint64_t hash1 = (CHashWriter(SER_GETHASH, 0) << nKey << (fNew ? 'N' : 'K') << nBucket << GetKey()).GetHash().GetCheapHash(); return hash1 % ADDRMAN_BUCKET_SIZE; } bool CAddrInfo::IsTerrible(int64_t nNow) const { if (nLastTry && nLastTry >= nNow - 60) // never remove things tried in the last minute return false; if (nTime > nNow + 10 * 60) // came in a flying DeLorean return true; if (nTime == 0 || nNow - nTime > ADDRMAN_HORIZON_DAYS * 24 * 60 * 60) // not seen in recent history return true; if (nLastSuccess == 0 && nAttempts >= ADDRMAN_RETRIES) // tried N times and never a success return true; if (nNow - nLastSuccess > ADDRMAN_MIN_FAIL_DAYS * 24 * 60 * 60 && nAttempts >= ADDRMAN_MAX_FAILURES) // N successive failures in the last week return true; return false; } double CAddrInfo::GetChance(int64_t nNow) const { double fChance = 1.0; int64_t nSinceLastSeen = nNow - nTime; int64_t nSinceLastTry = nNow - nLastTry; if (nSinceLastSeen < 0) nSinceLastSeen = 0; if (nSinceLastTry < 0) nSinceLastTry = 0; // deprioritize very recent attempts away if (nSinceLastTry < 60 * 10) fChance *= 0.01; // deprioritize 66% after each failed attempt, but at most 1/28th to avoid the search taking forever or overly penalizing outages. fChance *= pow(0.66, min(nAttempts, 8)); return fChance; } CAddrInfo* CAddrMan::Find(const CNetAddr& addr, int* pnId) { std::map<CNetAddr, int>::iterator it = mapAddr.find(addr); if (it == mapAddr.end()) return NULL; if (pnId) *pnId = (*it).second; std::map<int, CAddrInfo>::iterator it2 = mapInfo.find((*it).second); if (it2 != mapInfo.end()) return &(*it2).second; return NULL; } CAddrInfo* CAddrMan::Create(const CAddress& addr, const CNetAddr& addrSource, int* pnId) { int nId = nIdCount++; mapInfo[nId] = CAddrInfo(addr, addrSource); mapAddr[addr] = nId; mapInfo[nId].nRandomPos = vRandom.size(); vRandom.push_back(nId); if (pnId) *pnId = nId; return &mapInfo[nId]; } void CAddrMan::SwapRandom(unsigned int nRndPos1, unsigned int nRndPos2) { if (nRndPos1 == nRndPos2) return; assert(nRndPos1 < vRandom.size() && nRndPos2 < vRandom.size()); int nId1 = vRandom[nRndPos1]; int nId2 = vRandom[nRndPos2]; assert(mapInfo.count(nId1) == 1); assert(mapInfo.count(nId2) == 1); mapInfo[nId1].nRandomPos = nRndPos2; mapInfo[nId2].nRandomPos = nRndPos1; vRandom[nRndPos1] = nId2; vRandom[nRndPos2] = nId1; } void CAddrMan::Delete(int nId) { assert(mapInfo.count(nId) != 0); CAddrInfo& info = mapInfo[nId]; assert(!info.fInTried); assert(info.nRefCount == 0); SwapRandom(info.nRandomPos, vRandom.size() - 1); vRandom.pop_back(); mapAddr.erase(info); mapInfo.erase(nId); nNew--; } void CAddrMan::ClearNew(int nUBucket, int nUBucketPos) { // if there is an entry in the specified bucket, delete it. if (vvNew[nUBucket][nUBucketPos] != -1) { int nIdDelete = vvNew[nUBucket][nUBucketPos]; CAddrInfo& infoDelete = mapInfo[nIdDelete]; assert(infoDelete.nRefCount > 0); infoDelete.nRefCount--; vvNew[nUBucket][nUBucketPos] = -1; if (infoDelete.nRefCount == 0) { Delete(nIdDelete); } } } void CAddrMan::MakeTried(CAddrInfo& info, int nId) { // remove the entry from all new buckets for (int bucket = 0; bucket < ADDRMAN_NEW_BUCKET_COUNT; bucket++) { int pos = info.GetBucketPosition(nKey, true, bucket); if (vvNew[bucket][pos] == nId) { vvNew[bucket][pos] = -1; info.nRefCount--; } } nNew--; assert(info.nRefCount == 0); // which tried bucket to move the entry to int nKBucket = info.GetTriedBucket(nKey); int nKBucketPos = info.GetBucketPosition(nKey, false, nKBucket); // first make space to add it (the existing tried entry there is moved to new, deleting whatever is there). if (vvTried[nKBucket][nKBucketPos] != -1) { // find an item to evict int nIdEvict = vvTried[nKBucket][nKBucketPos]; assert(mapInfo.count(nIdEvict) == 1); CAddrInfo& infoOld = mapInfo[nIdEvict]; // Remove the to-be-evicted item from the tried set. infoOld.fInTried = false; vvTried[nKBucket][nKBucketPos] = -1; nTried--; // find which new bucket it belongs to int nUBucket = infoOld.GetNewBucket(nKey); int nUBucketPos = infoOld.GetBucketPosition(nKey, true, nUBucket); ClearNew(nUBucket, nUBucketPos); assert(vvNew[nUBucket][nUBucketPos] == -1); // Enter it into the new set again. infoOld.nRefCount = 1; vvNew[nUBucket][nUBucketPos] = nIdEvict; nNew++; } assert(vvTried[nKBucket][nKBucketPos] == -1); vvTried[nKBucket][nKBucketPos] = nId; nTried++; info.fInTried = true; } void CAddrMan::Good_(const CService& addr, int64_t nTime) { int nId; CAddrInfo* pinfo = Find(addr, &nId); // if not found, bail out if (!pinfo) return; CAddrInfo& info = *pinfo; // check whether we are talking about the exact same CService (including same port) if (info != addr) return; // update info info.nLastSuccess = nTime; info.nLastTry = nTime; info.nAttempts = 0; // nTime is not updated here, to avoid leaking information about // currently-connected peers. // if it is already in the tried set, don't do anything else if (info.fInTried) return; // find a bucket it is in now int nRnd = GetRandInt(ADDRMAN_NEW_BUCKET_COUNT); int nUBucket = -1; for (unsigned int n = 0; n < ADDRMAN_NEW_BUCKET_COUNT; n++) { int nB = (n + nRnd) % ADDRMAN_NEW_BUCKET_COUNT; int nBpos = info.GetBucketPosition(nKey, true, nB); if (vvNew[nB][nBpos] == nId) { nUBucket = nB; break; } } // if no bucket is found, something bad happened; // TODO: maybe re-add the node, but for now, just bail out if (nUBucket == -1) return; LogPrint("addrman", "Moving %s to tried\n", addr.ToString()); // move nId to the tried tables MakeTried(info, nId); } bool CAddrMan::Add_(const CAddress& addr, const CNetAddr& source, int64_t nTimePenalty) { if (!addr.IsRoutable()) return false; bool fNew = false; int nId; CAddrInfo* pinfo = Find(addr, &nId); if (pinfo) { // periodically update nTime bool fCurrentlyOnline = (GetAdjustedTime() - addr.nTime < 24 * 60 * 60); int64_t nUpdateInterval = (fCurrentlyOnline ? 60 * 60 : 24 * 60 * 60); if (addr.nTime && (!pinfo->nTime || pinfo->nTime < addr.nTime - nUpdateInterval - nTimePenalty)) pinfo->nTime = max((int64_t)0, addr.nTime - nTimePenalty); // add services pinfo->nServices |= addr.nServices; // do not update if no new information is present if (!addr.nTime || (pinfo->nTime && addr.nTime <= pinfo->nTime)) return false; // do not update if the entry was already in the "tried" table if (pinfo->fInTried) return false; // do not update if the max reference count is reached if (pinfo->nRefCount == ADDRMAN_NEW_BUCKETS_PER_ADDRESS) return false; // stochastic test: previous nRefCount == N: 2^N times harder to increase it int nFactor = 1; for (int n = 0; n < pinfo->nRefCount; n++) nFactor *= 2; if (nFactor > 1 && (GetRandInt(nFactor) != 0)) return false; } else { pinfo = Create(addr, source, &nId); pinfo->nTime = max((int64_t)0, (int64_t)pinfo->nTime - nTimePenalty); nNew++; fNew = true; } int nUBucket = pinfo->GetNewBucket(nKey, source); int nUBucketPos = pinfo->GetBucketPosition(nKey, true, nUBucket); if (vvNew[nUBucket][nUBucketPos] != nId) { bool fInsert = vvNew[nUBucket][nUBucketPos] == -1; if (!fInsert) { CAddrInfo& infoExisting = mapInfo[vvNew[nUBucket][nUBucketPos]]; if (infoExisting.IsTerrible() || (infoExisting.nRefCount > 1 && pinfo->nRefCount == 0)) { // Overwrite the existing new table entry. fInsert = true; } } if (fInsert) { ClearNew(nUBucket, nUBucketPos); pinfo->nRefCount++; vvNew[nUBucket][nUBucketPos] = nId; } else { if (pinfo->nRefCount == 0) { Delete(nId); } } } return fNew; } void CAddrMan::Attempt_(const CService& addr, int64_t nTime) { CAddrInfo* pinfo = Find(addr); // if not found, bail out if (!pinfo) return; CAddrInfo& info = *pinfo; // check whether we are talking about the exact same CService (including same port) if (info != addr) return; // update info info.nLastTry = nTime; info.nAttempts++; } -CAddress CAddrMan::Select_() +CAddrInfo CAddrMan::Select_() { if (size() == 0) - return CAddress(); + return CAddrInfo(); // Use a 50% chance for choosing between tried and new table entries. if (nTried > 0 && (nNew == 0 || GetRandInt(2) == 0)) { // use a tried node double fChanceFactor = 1.0; while (1) { int nKBucket = GetRandInt(ADDRMAN_TRIED_BUCKET_COUNT); int nKBucketPos = GetRandInt(ADDRMAN_BUCKET_SIZE); if (vvTried[nKBucket][nKBucketPos] == -1) continue; int nId = vvTried[nKBucket][nKBucketPos]; assert(mapInfo.count(nId) == 1); CAddrInfo& info = mapInfo[nId]; if (GetRandInt(1 << 30) < fChanceFactor * info.GetChance() * (1 << 30)) return info; fChanceFactor *= 1.2; } } else { // use a new node double fChanceFactor = 1.0; while (1) { int nUBucket = GetRandInt(ADDRMAN_NEW_BUCKET_COUNT); int nUBucketPos = GetRandInt(ADDRMAN_BUCKET_SIZE); if (vvNew[nUBucket][nUBucketPos] == -1) continue; int nId = vvNew[nUBucket][nUBucketPos]; assert(mapInfo.count(nId) == 1); CAddrInfo& info = mapInfo[nId]; if (GetRandInt(1 << 30) < fChanceFactor * info.GetChance() * (1 << 30)) return info; fChanceFactor *= 1.2; } } } #ifdef DEBUG_ADDRMAN int CAddrMan::Check_() { std::set<int> setTried; std::map<int, int> mapNew; if (vRandom.size() != nTried + nNew) return -7; for (std::map<int, CAddrInfo>::iterator it = mapInfo.begin(); it != mapInfo.end(); it++) { int n = (*it).first; CAddrInfo& info = (*it).second; if (info.fInTried) { if (!info.nLastSuccess) return -1; if (info.nRefCount) return -2; setTried.insert(n); } else { if (info.nRefCount < 0 || info.nRefCount > ADDRMAN_NEW_BUCKETS_PER_ADDRESS) return -3; if (!info.nRefCount) return -4; mapNew[n] = info.nRefCount; } if (mapAddr[info] != n) return -5; if (info.nRandomPos < 0 || info.nRandomPos >= vRandom.size() || vRandom[info.nRandomPos] != n) return -14; if (info.nLastTry < 0) return -6; if (info.nLastSuccess < 0) return -8; } if (setTried.size() != nTried) return -9; if (mapNew.size() != nNew) return -10; for (int n = 0; n < ADDRMAN_TRIED_BUCKET_COUNT; n++) { for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvTried[n][i] != -1) { if (!setTried.count(vvTried[n][i])) return -11; if (mapInfo[vvTried[n][i]].GetTriedBucket(nKey) != n) return -17; if (mapInfo[vvTried[n][i]].GetBucketPosition(nKey, false, n) != i) return -18; setTried.erase(vvTried[n][i]); } } } for (int n = 0; n < ADDRMAN_NEW_BUCKET_COUNT; n++) { for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvNew[n][i] != -1) { if (!mapNew.count(vvNew[n][i])) return -12; if (mapInfo[vvNew[n][i]].GetBucketPosition(nKey, true, n) != i) return -19; if (--mapNew[vvNew[n][i]] == 0) mapNew.erase(vvNew[n][i]); } } } if (setTried.size()) return -13; if (mapNew.size()) return -15; if (nKey.IsNull()) return -16; return 0; } #endif void CAddrMan::GetAddr_(std::vector<CAddress>& vAddr) { unsigned int nNodes = ADDRMAN_GETADDR_MAX_PCT * vRandom.size() / 100; if (nNodes > ADDRMAN_GETADDR_MAX) nNodes = ADDRMAN_GETADDR_MAX; // gather a list of random nodes, skipping those of low quality for (unsigned int n = 0; n < vRandom.size(); n++) { if (vAddr.size() >= nNodes) break; int nRndPos = GetRandInt(vRandom.size() - n) + n; SwapRandom(n, nRndPos); assert(mapInfo.count(vRandom[n]) == 1); const CAddrInfo& ai = mapInfo[vRandom[n]]; if (!ai.IsTerrible()) vAddr.push_back(ai); } } void CAddrMan::Connected_(const CService& addr, int64_t nTime) { CAddrInfo* pinfo = Find(addr); // if not found, bail out if (!pinfo) return; CAddrInfo& info = *pinfo; // check whether we are talking about the exact same CService (including same port) if (info != addr) return; // update info int64_t nUpdateInterval = 20 * 60; if (nTime - info.nTime > nUpdateInterval) info.nTime = nTime; } diff --git a/src/addrman.h b/src/addrman.h index 8116d0b76..5badd4ef9 100644 --- a/src/addrman.h +++ b/src/addrman.h @@ -1,573 +1,574 @@ // Copyright (c) 2012 Pieter Wuille // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_ADDRMAN_H #define BITCOIN_ADDRMAN_H #include "netbase.h" #include "protocol.h" #include "random.h" #include "sync.h" #include "timedata.h" #include "util.h" #include <map> #include <set> #include <stdint.h> #include <vector> /** * Extended statistics about a CAddress */ class CAddrInfo : public CAddress { +public: + //! last try whatsoever by us (memory only) + int64_t nLastTry; + private: //! where knowledge about this address first came from CNetAddr source; //! last successful connection by us int64_t nLastSuccess; - //! last try whatsoever by us: - // int64_t CAddress::nLastTry - //! connection attempts since last successful attempt int nAttempts; //! reference count in new sets (memory only) int nRefCount; //! in tried set? (memory only) bool fInTried; //! position in vRandom int nRandomPos; friend class CAddrMan; public: ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { READWRITE(*(CAddress*)this); READWRITE(source); READWRITE(nLastSuccess); READWRITE(nAttempts); } void Init() { nLastSuccess = 0; nLastTry = 0; nAttempts = 0; nRefCount = 0; fInTried = false; nRandomPos = -1; } CAddrInfo(const CAddress &addrIn, const CNetAddr &addrSource) : CAddress(addrIn), source(addrSource) { Init(); } CAddrInfo() : CAddress(), source() { Init(); } //! Calculate in which "tried" bucket this entry belongs int GetTriedBucket(const uint256 &nKey) const; //! Calculate in which "new" bucket this entry belongs, given a certain source int GetNewBucket(const uint256 &nKey, const CNetAddr& src) const; //! Calculate in which "new" bucket this entry belongs, using its default source int GetNewBucket(const uint256 &nKey) const { return GetNewBucket(nKey, source); } //! Calculate in which position of a bucket to store this entry. int GetBucketPosition(const uint256 &nKey, bool fNew, int nBucket) const; //! Determine whether the statistics about this entry are bad enough so that it can just be deleted bool IsTerrible(int64_t nNow = GetAdjustedTime()) const; //! Calculate the relative chance this entry should be given when selecting nodes to connect to double GetChance(int64_t nNow = GetAdjustedTime()) const; }; /** Stochastic address manager * * Design goals: * * Keep the address tables in-memory, and asynchronously dump the entire to able in peers.dat. * * Make sure no (localized) attacker can fill the entire table with his nodes/addresses. * * To that end: * * Addresses are organized into buckets. * * Address that have not yet been tried go into 1024 "new" buckets. * * Based on the address range (/16 for IPv4) of source of the information, 64 buckets are selected at random * * The actual bucket is chosen from one of these, based on the range the address itself is located. * * One single address can occur in up to 8 different buckets, to increase selection chances for addresses that * are seen frequently. The chance for increasing this multiplicity decreases exponentially. * * When adding a new address to a full bucket, a randomly chosen entry (with a bias favoring less recently seen * ones) is removed from it first. * * Addresses of nodes that are known to be accessible go into 256 "tried" buckets. * * Each address range selects at random 8 of these buckets. * * The actual bucket is chosen from one of these, based on the full address. * * When adding a new good address to a full bucket, a randomly chosen entry (with a bias favoring less recently * tried ones) is evicted from it, back to the "new" buckets. * * Bucket selection is based on cryptographic hashing, using a randomly-generated 256-bit key, which should not * be observable by adversaries. * * Several indexes are kept for high performance. Defining DEBUG_ADDRMAN will introduce frequent (and expensive) * consistency checks for the entire data structure. */ //! total number of buckets for tried addresses #define ADDRMAN_TRIED_BUCKET_COUNT 256 //! total number of buckets for new addresses #define ADDRMAN_NEW_BUCKET_COUNT 1024 //! maximum allowed number of entries in buckets for new and tried addresses #define ADDRMAN_BUCKET_SIZE 64 //! over how many buckets entries with tried addresses from a single group (/16 for IPv4) are spread #define ADDRMAN_TRIED_BUCKETS_PER_GROUP 8 //! over how many buckets entries with new addresses originating from a single group are spread #define ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP 64 //! in how many buckets for entries with new addresses a single address may occur #define ADDRMAN_NEW_BUCKETS_PER_ADDRESS 8 //! how old addresses can maximally be #define ADDRMAN_HORIZON_DAYS 30 //! after how many failed attempts we give up on a new node #define ADDRMAN_RETRIES 3 //! how many successive failures are allowed ... #define ADDRMAN_MAX_FAILURES 10 //! ... in at least this many days #define ADDRMAN_MIN_FAIL_DAYS 7 //! the maximum percentage of nodes to return in a getaddr call #define ADDRMAN_GETADDR_MAX_PCT 23 //! the maximum number of nodes to return in a getaddr call #define ADDRMAN_GETADDR_MAX 2500 /** * Stochastical (IP) address manager */ class CAddrMan { private: //! critical section to protect the inner data structures mutable CCriticalSection cs; //! secret key to randomize bucket select with uint256 nKey; //! last used nId int nIdCount; //! table with information about all nIds std::map<int, CAddrInfo> mapInfo; //! find an nId based on its network address std::map<CNetAddr, int> mapAddr; //! randomly-ordered vector of all nIds std::vector<int> vRandom; // number of "tried" entries int nTried; //! list of "tried" buckets int vvTried[ADDRMAN_TRIED_BUCKET_COUNT][ADDRMAN_BUCKET_SIZE]; //! number of (unique) "new" entries int nNew; //! list of "new" buckets int vvNew[ADDRMAN_NEW_BUCKET_COUNT][ADDRMAN_BUCKET_SIZE]; protected: //! Find an entry. CAddrInfo* Find(const CNetAddr& addr, int *pnId = NULL); //! find an entry, creating it if necessary. //! nTime and nServices of the found node are updated, if necessary. CAddrInfo* Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId = NULL); //! Swap two elements in vRandom. void SwapRandom(unsigned int nRandomPos1, unsigned int nRandomPos2); //! Move an entry from the "new" table(s) to the "tried" table void MakeTried(CAddrInfo& info, int nId); //! Delete an entry. It must not be in tried, and have refcount 0. void Delete(int nId); //! Clear a position in a "new" table. This is the only place where entries are actually deleted. void ClearNew(int nUBucket, int nUBucketPos); //! Mark an entry "good", possibly moving it from "new" to "tried". void Good_(const CService &addr, int64_t nTime); //! Add an entry to the "new" table. bool Add_(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty); //! Mark an entry as attempted to connect. void Attempt_(const CService &addr, int64_t nTime); //! Select an address to connect to. //! nUnkBias determines how much to favor new addresses over tried ones (min=0, max=100) - CAddress Select_(); + CAddrInfo Select_(); #ifdef DEBUG_ADDRMAN //! Perform consistency check. Returns an error code or zero. int Check_(); #endif //! Select several addresses at once. void GetAddr_(std::vector<CAddress> &vAddr); //! Mark an entry as currently-connected-to. void Connected_(const CService &addr, int64_t nTime); public: /** * serialized format: * * version byte (currently 1) * * 0x20 + nKey (serialized as if it were a vector, for backward compatibility) * * nNew * * nTried * * number of "new" buckets XOR 2**30 * * all nNew addrinfos in vvNew * * all nTried addrinfos in vvTried * * for each bucket: * * number of elements * * for each element: index * * 2**30 is xorred with the number of buckets to make addrman deserializer v0 detect it * as incompatible. This is necessary because it did not check the version number on * deserialization. * * Notice that vvTried, mapAddr and vVector are never encoded explicitly; * they are instead reconstructed from the other information. * * vvNew is serialized, but only used if ADDRMAN_UNKOWN_BUCKET_COUNT didn't change, * otherwise it is reconstructed as well. * * This format is more complex, but significantly smaller (at most 1.5 MiB), and supports * changes to the ADDRMAN_ parameters without breaking the on-disk structure. * * We don't use ADD_SERIALIZE_METHODS since the serialization and deserialization code has * very little in common. */ template<typename Stream> void Serialize(Stream &s, int nType, int nVersionDummy) const { LOCK(cs); unsigned char nVersion = 1; s << nVersion; s << ((unsigned char)32); s << nKey; s << nNew; s << nTried; int nUBuckets = ADDRMAN_NEW_BUCKET_COUNT ^ (1 << 30); s << nUBuckets; std::map<int, int> mapUnkIds; int nIds = 0; for (std::map<int, CAddrInfo>::const_iterator it = mapInfo.begin(); it != mapInfo.end(); it++) { mapUnkIds[(*it).first] = nIds; const CAddrInfo &info = (*it).second; if (info.nRefCount) { assert(nIds != nNew); // this means nNew was wrong, oh ow s << info; nIds++; } } nIds = 0; for (std::map<int, CAddrInfo>::const_iterator it = mapInfo.begin(); it != mapInfo.end(); it++) { const CAddrInfo &info = (*it).second; if (info.fInTried) { assert(nIds != nTried); // this means nTried was wrong, oh ow s << info; nIds++; } } for (int bucket = 0; bucket < ADDRMAN_NEW_BUCKET_COUNT; bucket++) { int nSize = 0; for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvNew[bucket][i] != -1) nSize++; } s << nSize; for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvNew[bucket][i] != -1) { int nIndex = mapUnkIds[vvNew[bucket][i]]; s << nIndex; } } } } template<typename Stream> void Unserialize(Stream& s, int nType, int nVersionDummy) { LOCK(cs); Clear(); unsigned char nVersion; s >> nVersion; unsigned char nKeySize; s >> nKeySize; if (nKeySize != 32) throw std::ios_base::failure("Incorrect keysize in addrman deserialization"); s >> nKey; s >> nNew; s >> nTried; int nUBuckets = 0; s >> nUBuckets; if (nVersion != 0) { nUBuckets ^= (1 << 30); } // Deserialize entries from the new table. for (int n = 0; n < nNew; n++) { CAddrInfo &info = mapInfo[n]; s >> info; mapAddr[info] = n; info.nRandomPos = vRandom.size(); vRandom.push_back(n); if (nVersion != 1 || nUBuckets != ADDRMAN_NEW_BUCKET_COUNT) { // In case the new table data cannot be used (nVersion unknown, or bucket count wrong), // immediately try to give them a reference based on their primary source address. int nUBucket = info.GetNewBucket(nKey); int nUBucketPos = info.GetBucketPosition(nKey, true, nUBucket); if (vvNew[nUBucket][nUBucketPos] == -1) { vvNew[nUBucket][nUBucketPos] = n; info.nRefCount++; } } } nIdCount = nNew; // Deserialize entries from the tried table. int nLost = 0; for (int n = 0; n < nTried; n++) { CAddrInfo info; s >> info; int nKBucket = info.GetTriedBucket(nKey); int nKBucketPos = info.GetBucketPosition(nKey, false, nKBucket); if (vvTried[nKBucket][nKBucketPos] == -1) { info.nRandomPos = vRandom.size(); info.fInTried = true; vRandom.push_back(nIdCount); mapInfo[nIdCount] = info; mapAddr[info] = nIdCount; vvTried[nKBucket][nKBucketPos] = nIdCount; nIdCount++; } else { nLost++; } } nTried -= nLost; // Deserialize positions in the new table (if possible). for (int bucket = 0; bucket < nUBuckets; bucket++) { int nSize = 0; s >> nSize; for (int n = 0; n < nSize; n++) { int nIndex = 0; s >> nIndex; if (nIndex >= 0 && nIndex < nNew) { CAddrInfo &info = mapInfo[nIndex]; int nUBucketPos = info.GetBucketPosition(nKey, true, bucket); if (nVersion == 1 && nUBuckets == ADDRMAN_NEW_BUCKET_COUNT && vvNew[bucket][nUBucketPos] == -1 && info.nRefCount < ADDRMAN_NEW_BUCKETS_PER_ADDRESS) { info.nRefCount++; vvNew[bucket][nUBucketPos] = nIndex; } } } } // Prune new entries with refcount 0 (as a result of collisions). int nLostUnk = 0; for (std::map<int, CAddrInfo>::const_iterator it = mapInfo.begin(); it != mapInfo.end(); ) { if (it->second.fInTried == false && it->second.nRefCount == 0) { std::map<int, CAddrInfo>::const_iterator itCopy = it++; Delete(itCopy->first); nLostUnk++; } else { it++; } } if (nLost + nLostUnk > 0) { LogPrint("addrman", "addrman lost %i new and %i tried addresses due to collisions\n", nLostUnk, nLost); } Check(); } unsigned int GetSerializeSize(int nType, int nVersion) const { return (CSizeComputer(nType, nVersion) << *this).size(); } void Clear() { std::vector<int>().swap(vRandom); nKey = GetRandHash(); for (size_t bucket = 0; bucket < ADDRMAN_NEW_BUCKET_COUNT; bucket++) { for (size_t entry = 0; entry < ADDRMAN_BUCKET_SIZE; entry++) { vvNew[bucket][entry] = -1; } } for (size_t bucket = 0; bucket < ADDRMAN_TRIED_BUCKET_COUNT; bucket++) { for (size_t entry = 0; entry < ADDRMAN_BUCKET_SIZE; entry++) { vvTried[bucket][entry] = -1; } } nIdCount = 0; nTried = 0; nNew = 0; } CAddrMan() { Clear(); } ~CAddrMan() { nKey.SetNull(); } //! Return the number of (unique) addresses in all tables. int size() { return vRandom.size(); } //! Consistency check void Check() { #ifdef DEBUG_ADDRMAN { LOCK(cs); int err; if ((err=Check_())) LogPrintf("ADDRMAN CONSISTENCY CHECK FAILED!!! err=%i\n", err); } #endif } //! Add a single address. bool Add(const CAddress &addr, const CNetAddr& source, int64_t nTimePenalty = 0) { bool fRet = false; { LOCK(cs); Check(); fRet |= Add_(addr, source, nTimePenalty); Check(); } if (fRet) LogPrint("addrman", "Added %s from %s: %i tried, %i new\n", addr.ToStringIPPort(), source.ToString(), nTried, nNew); return fRet; } //! Add multiple addresses. bool Add(const std::vector<CAddress> &vAddr, const CNetAddr& source, int64_t nTimePenalty = 0) { int nAdd = 0; { LOCK(cs); Check(); for (std::vector<CAddress>::const_iterator it = vAddr.begin(); it != vAddr.end(); it++) nAdd += Add_(*it, source, nTimePenalty) ? 1 : 0; Check(); } if (nAdd) LogPrint("addrman", "Added %i addresses from %s: %i tried, %i new\n", nAdd, source.ToString(), nTried, nNew); return nAdd > 0; } //! Mark an entry as accessible. void Good(const CService &addr, int64_t nTime = GetAdjustedTime()) { { LOCK(cs); Check(); Good_(addr, nTime); Check(); } } //! Mark an entry as connection attempted to. void Attempt(const CService &addr, int64_t nTime = GetAdjustedTime()) { { LOCK(cs); Check(); Attempt_(addr, nTime); Check(); } } /** * Choose an address to connect to. * nUnkBias determines how much "new" entries are favored over "tried" ones (0-100). */ - CAddress Select() + CAddrInfo Select() { - CAddress addrRet; + CAddrInfo addrRet; { LOCK(cs); Check(); addrRet = Select_(); Check(); } return addrRet; } //! Return a bunch of addresses, selected at random. std::vector<CAddress> GetAddr() { Check(); std::vector<CAddress> vAddr; { LOCK(cs); GetAddr_(vAddr); } Check(); return vAddr; } //! Mark an entry as currently-connected-to. void Connected(const CService &addr, int64_t nTime = GetAdjustedTime()) { { LOCK(cs); Check(); Connected_(addr, nTime); Check(); } } }; #endif // BITCOIN_ADDRMAN_H diff --git a/src/net.cpp b/src/net.cpp index 48e6367f2..e5f67262c 100644 --- a/src/net.cpp +++ b/src/net.cpp @@ -1,2030 +1,2030 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include "config/bitcoin-config.h" #endif #include "net.h" #include "addrman.h" #include "chainparams.h" #include "clientversion.h" #include "primitives/transaction.h" #include "ui_interface.h" #include "crypto/common.h" #ifdef WIN32 #include <string.h> #else #include <fcntl.h> #endif #ifdef USE_UPNP #include <miniupnpc/miniupnpc.h> #include <miniupnpc/miniwget.h> #include <miniupnpc/upnpcommands.h> #include <miniupnpc/upnperrors.h> #endif #include <boost/filesystem.hpp> #include <boost/thread.hpp> // Dump addresses to peers.dat every 15 minutes (900s) #define DUMP_ADDRESSES_INTERVAL 900 #if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version. #ifdef WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif using namespace std; namespace { const int MAX_OUTBOUND_CONNECTIONS = 8; struct ListenSocket { SOCKET socket; bool whitelisted; ListenSocket(SOCKET socket, bool whitelisted) : socket(socket), whitelisted(whitelisted) {} }; } // // Global state variables // bool fDiscover = true; bool fListen = true; uint64_t nLocalServices = NODE_NETWORK; CCriticalSection cs_mapLocalHost; map<CNetAddr, LocalServiceInfo> mapLocalHost; static bool vfReachable[NET_MAX] = {}; static bool vfLimited[NET_MAX] = {}; static CNode* pnodeLocalHost = NULL; uint64_t nLocalHostNonce = 0; static std::vector<ListenSocket> vhListenSocket; CAddrMan addrman; int nMaxConnections = 125; bool fAddressesInitialized = false; vector<CNode*> vNodes; CCriticalSection cs_vNodes; map<CInv, CDataStream> mapRelay; deque<pair<int64_t, CInv> > vRelayExpiration; CCriticalSection cs_mapRelay; limitedmap<CInv, int64_t> mapAlreadyAskedFor(MAX_INV_SZ); static deque<string> vOneShots; CCriticalSection cs_vOneShots; set<CNetAddr> setservAddNodeAddresses; CCriticalSection cs_setservAddNodeAddresses; vector<std::string> vAddedNodes; CCriticalSection cs_vAddedNodes; NodeId nLastNodeId = 0; CCriticalSection cs_nLastNodeId; static CSemaphore *semOutbound = NULL; // Signals for message handling static CNodeSignals g_signals; CNodeSignals& GetNodeSignals() { return g_signals; } void AddOneShot(string strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { return (unsigned short)(GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService& addr, const CNetAddr *paddrPeer) { if (!fListen) return false; int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (map<CNetAddr, LocalServiceInfo>::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++) { int nScore = (*it).second.nScore; int nReachability = (*it).first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService((*it).first, (*it).second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } // get best local address for a particular peer as a CAddress // Otherwise, return the unroutable 0.0.0.0 but filled in with // the normal parameters, since the IP may be changed to a useful // one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer) { CAddress ret(CService("0.0.0.0",GetListenPort()),0); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr); } ret.nServices = nLocalServices; ret.nTime = GetAdjustedTime(); return ret; } int GetnScore(const CService& addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == LOCAL_NONE) return 0; return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { return fDiscover && pnode->addr.IsRoutable() && pnode->addrLocal.IsRoutable() && !IsLimited(pnode->addrLocal.GetNetwork()); } // pushes our own address to a peer void AdvertizeLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr); // If discovery is enabled, sometimes give our peer the address it // tells us that it sees us as in case it has a better idea of our // address than we do. if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0)) { addrLocal.SetIP(pnode->addrLocal); } if (addrLocal.IsRoutable()) { pnode->PushAddress(addrLocal); } } } void SetReachable(enum Network net, bool fFlag) { LOCK(cs_mapLocalHost); vfReachable[net] = fFlag; if (net == NET_IPV6 && fFlag) vfReachable[NET_IPV4] = true; } // learn a new local address bool AddLocal(const CService& addr, int nScore) { if (!addr.IsRoutable()) return false; if (!fDiscover && nScore < LOCAL_MANUAL) return false; if (IsLimited(addr)) return false; LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } SetReachable(addr.GetNetwork()); } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } /** Make a particular network entirely off-limits (no automatic connects to it) */ void SetLimited(enum Network net, bool fLimited) { if (net == NET_UNROUTABLE) return; LOCK(cs_mapLocalHost); vfLimited[net] = fLimited; } bool IsLimited(enum Network net) { LOCK(cs_mapLocalHost); return vfLimited[net]; } bool IsLimited(const CNetAddr &addr) { return IsLimited(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService& addr) { { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) return false; mapLocalHost[addr].nScore++; } return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService& addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } /** check whether a given network is one we can probably connect to */ bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return vfReachable[net] && !vfLimited[net]; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr& addr) { enum Network net = addr.GetNetwork(); return IsReachable(net); } void AddressCurrentlyConnected(const CService& addr) { addrman.Connected(addr); } uint64_t CNode::nTotalBytesRecv = 0; uint64_t CNode::nTotalBytesSent = 0; CCriticalSection CNode::cs_totalBytesRecv; CCriticalSection CNode::cs_totalBytesSent; CNode* FindNode(const CNetAddr& ip) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CNetAddr)pnode->addr == ip) return (pnode); return NULL; } CNode* FindNode(const std::string& addrName) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->addrName == addrName) return (pnode); return NULL; } CNode* FindNode(const CService& addr) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if ((CService)pnode->addr == addr) return (pnode); return NULL; } CNode* ConnectNode(CAddress addrConnect, const char *pszDest) { if (pszDest == NULL) { if (IsLocal(addrConnect)) return NULL; // Look for an existing connection CNode* pnode = FindNode((CService)addrConnect); if (pnode) { pnode->AddRef(); return pnode; } } /// debug print LogPrint("net", "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0); // Connect SOCKET hSocket; bool proxyConnectionFailed = false; if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed) : ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed)) { addrman.Attempt(addrConnect); // Add node CNode* pnode = new CNode(hSocket, addrConnect, pszDest ? pszDest : "", false); pnode->AddRef(); { LOCK(cs_vNodes); vNodes.push_back(pnode); } pnode->nTimeConnected = GetTime(); return pnode; } else if (!proxyConnectionFailed) { // If connecting to the node failed, and failure is not caused by a problem connecting to // the proxy, mark this as an attempt. addrman.Attempt(addrConnect); } return NULL; } void CNode::CloseSocketDisconnect() { fDisconnect = true; if (hSocket != INVALID_SOCKET) { LogPrint("net", "disconnecting peer=%d\n", id); CloseSocket(hSocket); } // in case this fails, we'll empty the recv buffer when the CNode is deleted TRY_LOCK(cs_vRecvMsg, lockRecv); if (lockRecv) vRecvMsg.clear(); } void CNode::PushVersion() { int nBestHeight = g_signals.GetHeight().get_value_or(0); int64_t nTime = (fInbound ? GetAdjustedTime() : GetTime()); CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService("0.0.0.0",0))); CAddress addrMe = GetLocalAddress(&addr); GetRandBytes((unsigned char*)&nLocalHostNonce, sizeof(nLocalHostNonce)); if (fLogIPs) LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), addrYou.ToString(), id); else LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), id); PushMessage("version", PROTOCOL_VERSION, nLocalServices, nTime, addrYou, addrMe, nLocalHostNonce, FormatSubVersion(CLIENT_NAME, CLIENT_VERSION, std::vector<string>()), nBestHeight, true); } std::map<CNetAddr, int64_t> CNode::setBanned; CCriticalSection CNode::cs_setBanned; void CNode::ClearBanned() { setBanned.clear(); } bool CNode::IsBanned(CNetAddr ip) { bool fResult = false; { LOCK(cs_setBanned); std::map<CNetAddr, int64_t>::iterator i = setBanned.find(ip); if (i != setBanned.end()) { int64_t t = (*i).second; if (GetTime() < t) fResult = true; } } return fResult; } bool CNode::Ban(const CNetAddr &addr) { int64_t banTime = GetTime()+GetArg("-bantime", 60*60*24); // Default 24-hour ban { LOCK(cs_setBanned); if (setBanned[addr] < banTime) setBanned[addr] = banTime; } return true; } std::vector<CSubNet> CNode::vWhitelistedRange; CCriticalSection CNode::cs_vWhitelistedRange; bool CNode::IsWhitelistedRange(const CNetAddr &addr) { LOCK(cs_vWhitelistedRange); BOOST_FOREACH(const CSubNet& subnet, vWhitelistedRange) { if (subnet.Match(addr)) return true; } return false; } void CNode::AddWhitelistedRange(const CSubNet &subnet) { LOCK(cs_vWhitelistedRange); vWhitelistedRange.push_back(subnet); } #undef X #define X(name) stats.name = name void CNode::copyStats(CNodeStats &stats) { stats.nodeid = this->GetId(); X(nServices); X(nLastSend); X(nLastRecv); X(nTimeConnected); X(nTimeOffset); X(addrName); X(nVersion); X(cleanSubVer); X(fInbound); X(nStartingHeight); X(nSendBytes); X(nRecvBytes); X(fWhitelisted); // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. // Merely reporting pingtime might fool the caller into thinking the node was still responsive, // since pingtime does not update until the ping is complete, which might take a while. // So, if a ping is taking an unusually long time in flight, // the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :) stats.dPingTime = (((double)nPingUsecTime) / 1e6); stats.dPingWait = (((double)nPingUsecWait) / 1e6); // Leave string empty if addrLocal invalid (not filled in yet) stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : ""; } #undef X // requires LOCK(cs_vRecvMsg) bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes) { while (nBytes > 0) { // get current incomplete message, or create a new one if (vRecvMsg.empty() || vRecvMsg.back().complete()) vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, nRecvVersion)); CNetMessage& msg = vRecvMsg.back(); // absorb network data int handled; if (!msg.in_data) handled = msg.readHeader(pch, nBytes); else handled = msg.readData(pch, nBytes); if (handled < 0) return false; if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) { LogPrint("net", "Oversized message from peer=%i, disconnecting", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) msg.nTime = GetTimeMicros(); } return true; } int CNetMessage::readHeader(const char *pch, unsigned int nBytes) { // copy data to temporary parsing buffer unsigned int nRemaining = 24 - nHdrPos; unsigned int nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) return nCopy; // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception&) { return -1; } // reject messages larger than MAX_SIZE if (hdr.nMessageSize > MAX_SIZE) return -1; // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, unsigned int nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } // requires LOCK(cs_vSend) void SocketSendData(CNode *pnode) { std::deque<CSerializeData>::iterator it = pnode->vSendMsg.begin(); while (it != pnode->vSendMsg.end()) { const CSerializeData &data = *it; assert(data.size() > pnode->nSendOffset); int nBytes = send(pnode->hSocket, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); if (nBytes > 0) { pnode->nLastSend = GetTime(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; pnode->RecordBytesSent(nBytes); if (pnode->nSendOffset == data.size()) { pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); it++; } else { // could not send full message; stop sending more break; } } else { if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrintf("socket send error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } } // couldn't send anything at all break; } } if (it == pnode->vSendMsg.end()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it); } static list<CNode*> vNodesDisconnected; void ThreadSocketHandler() { unsigned int nPrevNodeCount = 0; while (true) { // // Disconnect nodes // { LOCK(cs_vNodes); // Disconnect unused nodes vector<CNode*> vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect || (pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0 && pnode->ssSend.empty())) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released if (pnode->fNetworkNode || pnode->fInbound) pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected; BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) fDelete = true; } } } if (fDelete) { vNodesDisconnected.remove(pnode); delete pnode; } } } } if(vNodes.size() != nPrevNodeCount) { nPrevNodeCount = vNodes.size(); uiInterface.NotifyNumConnectionsChanged(nPrevNodeCount); } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = 50000; // frequency to poll pnode->vSend fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; bool have_fds = false; BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { FD_SET(hListenSocket.socket, &fdsetRecv); hSocketMax = max(hSocketMax, hListenSocket.socket); have_fds = true; } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (pnode->hSocket == INVALID_SOCKET) continue; FD_SET(pnode->hSocket, &fdsetError); hSocketMax = max(hSocketMax, pnode->hSocket); have_fds = true; // Implement the following logic: // * If there is data to send, select() for sending data. As this only // happens when optimistic write failed, we choose to first drain the // write buffer in this case before receiving more. This avoids // needlessly queueing received data, if the remote peer is not themselves // receiving data. This means properly utilizing TCP flow control signalling. // * Otherwise, if there is no (complete) message in the receive buffer, // or there is space left in the buffer, select() for receiving data. // * (if neither of the above applies, there is certainly one message // in the receiver buffer ready to be processed). // Together, that means that at least one of the following is always possible, // so we don't deadlock: // * We send some data. // * We wait for data to be received (and disconnect after timeout). // * We process a message in the buffer (message handler thread). { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend && !pnode->vSendMsg.empty()) { FD_SET(pnode->hSocket, &fdsetSend); continue; } } { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv && ( pnode->vRecvMsg.empty() || !pnode->vRecvMsg.front().complete() || pnode->GetTotalRecvSize() <= ReceiveFloodSize())) FD_SET(pnode->hSocket, &fdsetRecv); } } } int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); boost::this_thread::interruption_point(); if (nSelect == SOCKET_ERROR) { if (have_fds) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) FD_SET(i, &fdsetRecv); } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); MilliSleep(timeout.tv_usec/1000); } // // Accept new connections // BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len); CAddress addr; int nInbound = 0; if (hSocket != INVALID_SOCKET) if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr)) LogPrintf("Warning: Unknown socket family\n"); bool whitelisted = hListenSocket.whitelisted || CNode::IsWhitelistedRange(addr); { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->fInbound) nInbound++; } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); } else if (nInbound >= nMaxConnections - MAX_OUTBOUND_CONNECTIONS) { CloseSocket(hSocket); } else if (CNode::IsBanned(addr) && !whitelisted) { LogPrintf("connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); } else { CNode* pnode = new CNode(hSocket, addr, "", true); pnode->AddRef(); pnode->fWhitelisted = whitelisted; { LOCK(cs_vNodes); vNodes.push_back(pnode); } } } } // // Service each socket // vector<CNode*> vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->AddRef(); } BOOST_FOREACH(CNode* pnode, vNodesCopy) { boost::this_thread::interruption_point(); // // Receive // if (pnode->hSocket == INVALID_SOCKET) continue; if (FD_ISSET(pnode->hSocket, &fdsetRecv) || FD_ISSET(pnode->hSocket, &fdsetError)) { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { { // typical socket buffer is 8K-64K char pchBuf[0x10000]; int nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); if (nBytes > 0) { if (!pnode->ReceiveMsgBytes(pchBuf, nBytes)) pnode->CloseSocketDisconnect(); pnode->nLastRecv = GetTime(); pnode->nRecvBytes += nBytes; pnode->RecordBytesRecv(nBytes); } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) LogPrint("net", "socket closed\n"); pnode->CloseSocketDisconnect(); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) LogPrintf("socket recv error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } } } } } // // Send // if (pnode->hSocket == INVALID_SOCKET) continue; if (FD_ISSET(pnode->hSocket, &fdsetSend)) { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) SocketSendData(pnode); } // // Inactivity checking // int64_t nTime = GetTime(); if (nTime - pnode->nTimeConnected > 60) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } } } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } } } #ifdef USE_UPNP void ThreadMapPort() { std::string port = strprintf("%u", GetListenPort()); const char * multicastif = 0; const char * minissdpdpath = 0; struct UPNPDev * devlist = 0; char lanaddr[64]; #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); #else /* miniupnpc 1.6 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); #endif struct UPNPUrls urls; struct IGDdatas data; int r; r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); if (r == 1) { if (fDiscover) { char externalIPAddress[40]; r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress); if(r != UPNPCOMMAND_SUCCESS) LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); else { if(externalIPAddress[0]) { LogPrintf("UPnP: ExternalIPAddress = %s\n", externalIPAddress); AddLocal(CNetAddr(externalIPAddress), LOCAL_UPNP); } else LogPrintf("UPnP: GetExternalIPAddress failed.\n"); } } string strDesc = "Bitcoin " + FormatFullVersion(); try { while (true) { #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); #else /* miniupnpc 1.6 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); #endif if(r!=UPNPCOMMAND_SUCCESS) LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r)); else LogPrintf("UPnP Port Mapping successful.\n");; MilliSleep(20*60*1000); // Refresh every 20 minutes } } catch (const boost::thread_interrupted&) { r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r); freeUPNPDevlist(devlist); devlist = 0; FreeUPNPUrls(&urls); throw; } } else { LogPrintf("No valid UPnP IGDs found\n"); freeUPNPDevlist(devlist); devlist = 0; if (r != 0) FreeUPNPUrls(&urls); } } void MapPort(bool fUseUPnP) { static boost::thread* upnp_thread = NULL; if (fUseUPnP) { if (upnp_thread) { upnp_thread->interrupt(); upnp_thread->join(); delete upnp_thread; } upnp_thread = new boost::thread(boost::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort)); } else if (upnp_thread) { upnp_thread->interrupt(); upnp_thread->join(); delete upnp_thread; upnp_thread = NULL; } } #else void MapPort(bool) { // Intentionally left blank. } #endif void ThreadDNSAddressSeed() { // goal: only query DNS seeds if address need is acute if ((addrman.size() > 0) && (!GetBoolArg("-forcednsseed", false))) { MilliSleep(11 * 1000); LOCK(cs_vNodes); if (vNodes.size() >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } } const vector<CDNSSeedData> &vSeeds = Params().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) { if (HaveNameProxy()) { AddOneShot(seed.host); } else { vector<CNetAddr> vIPs; vector<CAddress> vAdd; if (LookupHost(seed.host.c_str(), vIPs)) { BOOST_FOREACH(CNetAddr& ip, vIPs) { int nOneDay = 24*3600; CAddress addr = CAddress(CService(ip, Params().GetDefaultPort())); addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old vAdd.push_back(addr); found++; } } addrman.Add(vAdd, CNetAddr(seed.name, true)); } } LogPrintf("%d addresses found from DNS seeds\n", found); } void DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb; adb.Write(addrman); LogPrint("net", "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void static ProcessOneShot() { string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) return; strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { if (!OpenNetworkConnection(addr, &grant, strDest.c_str(), true)) AddOneShot(strDest); } } void ThreadOpenConnections() { // Connect to specific addresses if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); BOOST_FOREACH(string strAddr, mapMultiArgs["-connect"]) { CAddress addr; OpenNetworkConnection(addr, NULL, strAddr.c_str()); for (int i = 0; i < 10 && i < nLoop; i++) { MilliSleep(500); } } MilliSleep(500); } } // Initiate network connections int64_t nStart = GetTime(); while (true) { ProcessOneShot(); MilliSleep(500); CSemaphoreGrant grant(*semOutbound); boost::this_thread::interruption_point(); // Add seed nodes if DNS seeds are all down (an infrastructure attack?). if (addrman.size() == 0 && (GetTime() - nStart > 60)) { static bool done = false; if (!done) { LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n"); addrman.Add(Params().FixedSeeds(), CNetAddr("127.0.0.1")); done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). // Do this here so we don't have to critsect vNodes inside mapAddresses critsect. int nOutbound = 0; set<vector<unsigned char> > setConnected; { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if (!pnode->fInbound) { setConnected.insert(pnode->addr.GetGroup()); nOutbound++; } } } int64_t nANow = GetAdjustedTime(); int nTries = 0; while (true) { - CAddress addr = addrman.Select(); + CAddrInfo addr = addrman.Select(); // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr)) break; // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman, // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman addresses. nTries++; if (nTries > 100) break; if (IsLimited(addr)) continue; // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) continue; // do not allow non-default ports, unless after 50 invalid addresses selected already if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50) continue; addrConnect = addr; break; } if (addrConnect.IsValid()) OpenNetworkConnection(addrConnect, &grant); } } void ThreadOpenAddedConnections() { { LOCK(cs_vAddedNodes); vAddedNodes = mapMultiArgs["-addnode"]; } if (HaveNameProxy()) { while(true) { list<string> lAddresses(0); { LOCK(cs_vAddedNodes); BOOST_FOREACH(string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } BOOST_FOREACH(string& strAddNode, lAddresses) { CAddress addr; CSemaphoreGrant grant(*semOutbound); OpenNetworkConnection(addr, &grant, strAddNode.c_str()); MilliSleep(500); } MilliSleep(120000); // Retry every 2 minutes } } for (unsigned int i = 0; true; i++) { list<string> lAddresses(0); { LOCK(cs_vAddedNodes); BOOST_FOREACH(string& strAddNode, vAddedNodes) lAddresses.push_back(strAddNode); } list<vector<CService> > lservAddressesToAdd(0); BOOST_FOREACH(string& strAddNode, lAddresses) { vector<CService> vservNode(0); if(Lookup(strAddNode.c_str(), vservNode, Params().GetDefaultPort(), fNameLookup, 0)) { lservAddressesToAdd.push_back(vservNode); { LOCK(cs_setservAddNodeAddresses); BOOST_FOREACH(CService& serv, vservNode) setservAddNodeAddresses.insert(serv); } } } // Attempt to connect to each IP for each addnode entry until at least one is successful per addnode entry // (keeping in mind that addnode entries can have many IPs if fNameLookup) { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) for (list<vector<CService> >::iterator it = lservAddressesToAdd.begin(); it != lservAddressesToAdd.end(); it++) BOOST_FOREACH(CService& addrNode, *(it)) if (pnode->addr == addrNode) { it = lservAddressesToAdd.erase(it); it--; break; } } BOOST_FOREACH(vector<CService>& vserv, lservAddressesToAdd) { CSemaphoreGrant grant(*semOutbound); OpenNetworkConnection(CAddress(vserv[i % vserv.size()]), &grant); MilliSleep(500); } MilliSleep(120000); // Retry every 2 minutes } } // if successful, this moves the passed grant to the constructed node bool OpenNetworkConnection(const CAddress& addrConnect, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot) { // // Initiate outbound network connection // boost::this_thread::interruption_point(); if (!pszDest) { if (IsLocal(addrConnect) || FindNode((CNetAddr)addrConnect) || CNode::IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) return false; } else if (FindNode(pszDest)) return false; CNode* pnode = ConnectNode(addrConnect, pszDest); boost::this_thread::interruption_point(); if (!pnode) return false; if (grantOutbound) grantOutbound->MoveTo(pnode->grantOutbound); pnode->fNetworkNode = true; if (fOneShot) pnode->fOneShot = true; return true; } void ThreadMessageHandler() { SetThreadPriority(THREAD_PRIORITY_BELOW_NORMAL); while (true) { vector<CNode*> vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; BOOST_FOREACH(CNode* pnode, vNodesCopy) { pnode->AddRef(); } } // Poll the connected nodes for messages CNode* pnodeTrickle = NULL; if (!vNodesCopy.empty()) pnodeTrickle = vNodesCopy[GetRand(vNodesCopy.size())]; bool fSleep = true; BOOST_FOREACH(CNode* pnode, vNodesCopy) { if (pnode->fDisconnect) continue; // Receive messages { TRY_LOCK(pnode->cs_vRecvMsg, lockRecv); if (lockRecv) { if (!g_signals.ProcessMessages(pnode)) pnode->CloseSocketDisconnect(); if (pnode->nSendSize < SendBufferSize()) { if (!pnode->vRecvGetData.empty() || (!pnode->vRecvMsg.empty() && pnode->vRecvMsg[0].complete())) { fSleep = false; } } } } boost::this_thread::interruption_point(); // Send messages { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) g_signals.SendMessages(pnode, pnode == pnodeTrickle || pnode->fWhitelisted); } boost::this_thread::interruption_point(); } { LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodesCopy) pnode->Release(); } if (fSleep) MilliSleep(100); } } bool BindListenPort(const CService &addrBind, string& strError, bool fWhitelisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } #ifndef WIN32 #ifdef SO_NOSIGPIPE // Different way of disabling SIGPIPE on BSD setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int)); #endif // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. Not an issue on windows! setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int)); #endif // Set to non-blocking, incoming connections will also inherit this if (!SetSocketNonBlocking(hListenSocket, true)) { strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option // and enable it by default or not. Try to enable it, if possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY #ifdef WIN32 setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int)); #else setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int)); #endif #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) strError = strprintf(_("Unable to bind to %s on this computer. Bitcoin Core is probably already running."), addrBind.ToString()); else strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) AddLocal(addrBind, LOCAL_BIND); return true; } void static Discover(boost::thread_group& threadGroup) { if (!fDiscover) return; #ifdef WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { vector<CNetAddr> vaddr; if (LookupHost(pszHostName, vaddr)) { BOOST_FOREACH (const CNetAddr &addr, vaddr) { if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } #else // Get local host ip struct ifaddrs* myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next) { if (ifa->ifa_addr == NULL) continue; if ((ifa->ifa_flags & IFF_UP) == 0) continue; if (strcmp(ifa->ifa_name, "lo") == 0) continue; if (strcmp(ifa->ifa_name, "lo0") == 0) continue; if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } freeifaddrs(myaddrs); } #endif } void StartNode(boost::thread_group& threadGroup) { uiInterface.InitMessage(_("Loading addresses...")); // Load addresses for peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb; if (!adb.Read(addrman)) LogPrintf("Invalid or missing peers.dat; recreating\n"); } LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); fAddressesInitialized = true; if (semOutbound == NULL) { // initialize semaphore int nMaxOutbound = min(MAX_OUTBOUND_CONNECTIONS, nMaxConnections); semOutbound = new CSemaphore(nMaxOutbound); } if (pnodeLocalHost == NULL) pnodeLocalHost = new CNode(INVALID_SOCKET, CAddress(CService("127.0.0.1", 0), nLocalServices)); Discover(threadGroup); // // Start threads // if (!GetBoolArg("-dnsseed", true)) LogPrintf("DNS seeding disabled\n"); else threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "dnsseed", &ThreadDNSAddressSeed)); // Map ports with UPnP MapPort(GetBoolArg("-upnp", DEFAULT_UPNP)); // Send and receive from sockets, accept connections threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "net", &ThreadSocketHandler)); // Initiate outbound connections from -addnode threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "addcon", &ThreadOpenAddedConnections)); // Initiate outbound connections threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "opencon", &ThreadOpenConnections)); // Process messages threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "msghand", &ThreadMessageHandler)); // Dump network addresses threadGroup.create_thread(boost::bind(&LoopForever<void (*)()>, "dumpaddr", &DumpAddresses, DUMP_ADDRESSES_INTERVAL * 1000)); } bool StopNode() { LogPrintf("StopNode()\n"); MapPort(false); if (semOutbound) for (int i=0; i<MAX_OUTBOUND_CONNECTIONS; i++) semOutbound->post(); if (fAddressesInitialized) { DumpAddresses(); fAddressesInitialized = false; } return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { // Close sockets BOOST_FOREACH(CNode* pnode, vNodes) if (pnode->hSocket != INVALID_SOCKET) CloseSocket(pnode->hSocket); BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket) if (hListenSocket.socket != INVALID_SOCKET) if (!CloseSocket(hListenSocket.socket)) LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); // clean up some globals (to help leak detection) BOOST_FOREACH(CNode *pnode, vNodes) delete pnode; BOOST_FOREACH(CNode *pnode, vNodesDisconnected) delete pnode; vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); delete semOutbound; semOutbound = NULL; delete pnodeLocalHost; pnodeLocalHost = NULL; #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void RelayTransaction(const CTransaction& tx) { CDataStream ss(SER_NETWORK, PROTOCOL_VERSION); ss.reserve(10000); ss << tx; RelayTransaction(tx, ss); } void RelayTransaction(const CTransaction& tx, const CDataStream& ss) { CInv inv(MSG_TX, tx.GetHash()); { LOCK(cs_mapRelay); // Expire old relay messages while (!vRelayExpiration.empty() && vRelayExpiration.front().first < GetTime()) { mapRelay.erase(vRelayExpiration.front().second); vRelayExpiration.pop_front(); } // Save original serialized message so newer versions are preserved mapRelay.insert(std::make_pair(inv, ss)); vRelayExpiration.push_back(std::make_pair(GetTime() + 15 * 60, inv)); } LOCK(cs_vNodes); BOOST_FOREACH(CNode* pnode, vNodes) { if(!pnode->fRelayTxes) continue; LOCK(pnode->cs_filter); if (pnode->pfilter) { if (pnode->pfilter->IsRelevantAndUpdate(tx)) pnode->PushInventory(inv); } else pnode->PushInventory(inv); } } void CNode::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CNode::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; } uint64_t CNode::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CNode::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } void CNode::Fuzz(int nChance) { if (!fSuccessfullyConnected) return; // Don't fuzz initial handshake if (GetRand(nChance) != 0) return; // Fuzz 1 of every nChance messages switch (GetRand(3)) { case 0: // xor a random byte with a random value: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend[pos] ^= (unsigned char)(GetRand(256)); } break; case 1: // delete a random byte: if (!ssSend.empty()) { CDataStream::size_type pos = GetRand(ssSend.size()); ssSend.erase(ssSend.begin()+pos); } break; case 2: // insert a random byte at a random position { CDataStream::size_type pos = GetRand(ssSend.size()); char ch = (char)GetRand(256); ssSend.insert(ssSend.begin()+pos, ch); } break; } // Chance of more than one change half the time: // (more changes exponentially less likely): Fuzz(2); } // // CAddrDB // CAddrDB::CAddrDB() { pathAddr = GetDataDir() / "peers.dat"; } bool CAddrDB::Write(const CAddrMan& addr) { // Generate random temporary filename unsigned short randv = 0; GetRandBytes((unsigned char*)&randv, sizeof(randv)); std::string tmpfn = strprintf("peers.dat.%04x", randv); // serialize addresses, checksum data up to that point, then append csum CDataStream ssPeers(SER_DISK, CLIENT_VERSION); ssPeers << FLATDATA(Params().MessageStart()); ssPeers << addr; uint256 hash = Hash(ssPeers.begin(), ssPeers.end()); ssPeers << hash; // open temp output file, and associate with CAutoFile boost::filesystem::path pathTmp = GetDataDir() / tmpfn; FILE *file = fopen(pathTmp.string().c_str(), "wb"); CAutoFile fileout(file, SER_DISK, CLIENT_VERSION); if (fileout.IsNull()) return error("%s: Failed to open file %s", __func__, pathTmp.string()); // Write and commit header, data try { fileout << ssPeers; } catch (const std::exception& e) { return error("%s: Serialize or I/O error - %s", __func__, e.what()); } FileCommit(fileout.Get()); fileout.fclose(); // replace existing peers.dat, if any, with new peers.dat.XXXX if (!RenameOver(pathTmp, pathAddr)) return error("%s: Rename-into-place failed", __func__); return true; } bool CAddrDB::Read(CAddrMan& addr) { // open input file, and associate with CAutoFile FILE *file = fopen(pathAddr.string().c_str(), "rb"); CAutoFile filein(file, SER_DISK, CLIENT_VERSION); if (filein.IsNull()) return error("%s: Failed to open file %s", __func__, pathAddr.string()); // use file size to size memory buffer int fileSize = boost::filesystem::file_size(pathAddr); int dataSize = fileSize - sizeof(uint256); // Don't try to resize to a negative number if file is small if (dataSize < 0) dataSize = 0; vector<unsigned char> vchData; vchData.resize(dataSize); uint256 hashIn; // read data and checksum from file try { filein.read((char *)&vchData[0], dataSize); filein >> hashIn; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } filein.fclose(); CDataStream ssPeers(vchData, SER_DISK, CLIENT_VERSION); // verify stored checksum matches input data uint256 hashTmp = Hash(ssPeers.begin(), ssPeers.end()); if (hashIn != hashTmp) return error("%s: Checksum mismatch, data corrupted", __func__); unsigned char pchMsgTmp[4]; try { // de-serialize file header (network specific magic number) and .. ssPeers >> FLATDATA(pchMsgTmp); // ... verify the network matches ours if (memcmp(pchMsgTmp, Params().MessageStart(), sizeof(pchMsgTmp))) return error("%s: Invalid network magic number", __func__); // de-serialize address data into one CAddrMan object ssPeers >> addr; } catch (const std::exception& e) { return error("%s: Deserialize or I/O error - %s", __func__, e.what()); } return true; } unsigned int ReceiveFloodSize() { return 1000*GetArg("-maxreceivebuffer", 5*1000); } unsigned int SendBufferSize() { return 1000*GetArg("-maxsendbuffer", 1*1000); } CNode::CNode(SOCKET hSocketIn, CAddress addrIn, std::string addrNameIn, bool fInboundIn) : ssSend(SER_NETWORK, INIT_PROTO_VERSION), setAddrKnown(5000) { nServices = 0; hSocket = hSocketIn; nRecvVersion = INIT_PROTO_VERSION; nLastSend = 0; nLastRecv = 0; nSendBytes = 0; nRecvBytes = 0; nTimeConnected = GetTime(); nTimeOffset = 0; addr = addrIn; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; nVersion = 0; strSubVer = ""; fWhitelisted = false; fOneShot = false; fClient = false; // set by version message fInbound = fInboundIn; fNetworkNode = false; fSuccessfullyConnected = false; fDisconnect = false; nRefCount = 0; nSendSize = 0; nSendOffset = 0; hashContinue = uint256(); nStartingHeight = -1; fGetAddr = false; fRelayTxes = false; setInventoryKnown.max_size(SendBufferSize() / 1000); pfilter = new CBloomFilter(); nPingNonceSent = 0; nPingUsecStart = 0; nPingUsecTime = 0; fPingQueued = false; { LOCK(cs_nLastNodeId); id = nLastNodeId++; } if (fLogIPs) LogPrint("net", "Added connection to %s peer=%d\n", addrName, id); else LogPrint("net", "Added connection peer=%d\n", id); // Be shy and don't send version until we hear if (hSocket != INVALID_SOCKET && !fInbound) PushVersion(); GetNodeSignals().InitializeNode(GetId(), this); } CNode::~CNode() { CloseSocket(hSocket); if (pfilter) delete pfilter; GetNodeSignals().FinalizeNode(GetId()); } void CNode::AskFor(const CInv& inv) { if (mapAskFor.size() > MAPASKFOR_MAX_SZ) return; // We're using mapAskFor as a priority queue, // the key is the earliest time the request can be sent int64_t nRequestTime; limitedmap<CInv, int64_t>::const_iterator it = mapAlreadyAskedFor.find(inv); if (it != mapAlreadyAskedFor.end()) nRequestTime = it->second; else nRequestTime = 0; LogPrint("net", "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id); // Make sure not to reuse time indexes to keep things in the same order int64_t nNow = GetTimeMicros() - 1000000; static int64_t nLastTime; ++nLastTime; nNow = std::max(nNow, nLastTime); nLastTime = nNow; // Each retry is 2 minutes after the last nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow); if (it != mapAlreadyAskedFor.end()) mapAlreadyAskedFor.update(it, nRequestTime); else mapAlreadyAskedFor.insert(std::make_pair(inv, nRequestTime)); mapAskFor.insert(std::make_pair(nRequestTime, inv)); } void CNode::BeginMessage(const char* pszCommand) EXCLUSIVE_LOCK_FUNCTION(cs_vSend) { ENTER_CRITICAL_SECTION(cs_vSend); assert(ssSend.size() == 0); ssSend << CMessageHeader(Params().MessageStart(), pszCommand, 0); LogPrint("net", "sending: %s ", SanitizeString(pszCommand)); } void CNode::AbortMessage() UNLOCK_FUNCTION(cs_vSend) { ssSend.clear(); LEAVE_CRITICAL_SECTION(cs_vSend); LogPrint("net", "(aborted)\n"); } void CNode::EndMessage() UNLOCK_FUNCTION(cs_vSend) { // The -*messagestest options are intentionally not documented in the help message, // since they are only used during development to debug the networking code and are // not intended for end-users. if (mapArgs.count("-dropmessagestest") && GetRand(GetArg("-dropmessagestest", 2)) == 0) { LogPrint("net", "dropmessages DROPPING SEND MESSAGE\n"); AbortMessage(); return; } if (mapArgs.count("-fuzzmessagestest")) Fuzz(GetArg("-fuzzmessagestest", 10)); if (ssSend.size() == 0) return; // Set the size unsigned int nSize = ssSend.size() - CMessageHeader::HEADER_SIZE; WriteLE32((uint8_t*)&ssSend[CMessageHeader::MESSAGE_SIZE_OFFSET], nSize); // Set the checksum uint256 hash = Hash(ssSend.begin() + CMessageHeader::HEADER_SIZE, ssSend.end()); unsigned int nChecksum = 0; memcpy(&nChecksum, &hash, sizeof(nChecksum)); assert(ssSend.size () >= CMessageHeader::CHECKSUM_OFFSET + sizeof(nChecksum)); memcpy((char*)&ssSend[CMessageHeader::CHECKSUM_OFFSET], &nChecksum, sizeof(nChecksum)); LogPrint("net", "(%d bytes) peer=%d\n", nSize, id); std::deque<CSerializeData>::iterator it = vSendMsg.insert(vSendMsg.end(), CSerializeData()); ssSend.GetAndClear(*it); nSendSize += (*it).size(); // If write queue empty, attempt "optimistic write" if (it == vSendMsg.begin()) SocketSendData(this); LEAVE_CRITICAL_SECTION(cs_vSend); } diff --git a/src/protocol.cpp b/src/protocol.cpp index 568580a59..dd855aa33 100644 --- a/src/protocol.cpp +++ b/src/protocol.cpp @@ -1,143 +1,142 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "protocol.h" #include "util.h" #include "utilstrencodings.h" #ifndef WIN32 # include <arpa/inet.h> #endif static const char* ppszTypeName[] = { "ERROR", "tx", "block", "filtered block" }; CMessageHeader::CMessageHeader(const MessageStartChars& pchMessageStartIn) { memcpy(pchMessageStart, pchMessageStartIn, MESSAGE_START_SIZE); memset(pchCommand, 0, sizeof(pchCommand)); nMessageSize = -1; nChecksum = 0; } CMessageHeader::CMessageHeader(const MessageStartChars& pchMessageStartIn, const char* pszCommand, unsigned int nMessageSizeIn) { memcpy(pchMessageStart, pchMessageStartIn, MESSAGE_START_SIZE); memset(pchCommand, 0, sizeof(pchCommand)); strncpy(pchCommand, pszCommand, COMMAND_SIZE); nMessageSize = nMessageSizeIn; nChecksum = 0; } std::string CMessageHeader::GetCommand() const { return std::string(pchCommand, pchCommand + strnlen(pchCommand, COMMAND_SIZE)); } bool CMessageHeader::IsValid(const MessageStartChars& pchMessageStartIn) const { // Check start string if (memcmp(pchMessageStart, pchMessageStartIn, MESSAGE_START_SIZE) != 0) return false; // Check the command string for errors for (const char* p1 = pchCommand; p1 < pchCommand + COMMAND_SIZE; p1++) { if (*p1 == 0) { // Must be all zeros after the first zero for (; p1 < pchCommand + COMMAND_SIZE; p1++) if (*p1 != 0) return false; } else if (*p1 < ' ' || *p1 > 0x7E) return false; } // Message size if (nMessageSize > MAX_SIZE) { LogPrintf("CMessageHeader::IsValid(): (%s, %u bytes) nMessageSize > MAX_SIZE\n", GetCommand(), nMessageSize); return false; } return true; } CAddress::CAddress() : CService() { Init(); } CAddress::CAddress(CService ipIn, uint64_t nServicesIn) : CService(ipIn) { Init(); nServices = nServicesIn; } void CAddress::Init() { nServices = NODE_NETWORK; nTime = 100000000; - nLastTry = 0; } CInv::CInv() { type = 0; hash.SetNull(); } CInv::CInv(int typeIn, const uint256& hashIn) { type = typeIn; hash = hashIn; } CInv::CInv(const std::string& strType, const uint256& hashIn) { unsigned int i; for (i = 1; i < ARRAYLEN(ppszTypeName); i++) { if (strType == ppszTypeName[i]) { type = i; break; } } if (i == ARRAYLEN(ppszTypeName)) throw std::out_of_range(strprintf("CInv::CInv(string, uint256): unknown type '%s'", strType)); hash = hashIn; } bool operator<(const CInv& a, const CInv& b) { return (a.type < b.type || (a.type == b.type && a.hash < b.hash)); } bool CInv::IsKnownType() const { return (type >= 1 && type < (int)ARRAYLEN(ppszTypeName)); } const char* CInv::GetCommand() const { if (!IsKnownType()) throw std::out_of_range(strprintf("CInv::GetCommand(): type=%d unknown type", type)); return ppszTypeName[type]; } std::string CInv::ToString() const { return strprintf("%s %s", GetCommand(), hash.ToString()); } diff --git a/src/protocol.h b/src/protocol.h index fd23eae1f..b5e65032a 100644 --- a/src/protocol.h +++ b/src/protocol.h @@ -1,161 +1,158 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2013 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef __cplusplus #error This header can only be compiled as C++. #endif #ifndef BITCOIN_PROTOCOL_H #define BITCOIN_PROTOCOL_H #include "netbase.h" #include "serialize.h" #include "uint256.h" #include "version.h" #include <stdint.h> #include <string> #define MESSAGE_START_SIZE 4 /** Message header. * (4) message start. * (12) command. * (4) size. * (4) checksum. */ class CMessageHeader { public: typedef unsigned char MessageStartChars[MESSAGE_START_SIZE]; CMessageHeader(const MessageStartChars& pchMessageStartIn); CMessageHeader(const MessageStartChars& pchMessageStartIn, const char* pszCommand, unsigned int nMessageSizeIn); std::string GetCommand() const; bool IsValid(const MessageStartChars& messageStart) const; ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { READWRITE(FLATDATA(pchMessageStart)); READWRITE(FLATDATA(pchCommand)); READWRITE(nMessageSize); READWRITE(nChecksum); } // TODO: make private (improves encapsulation) public: enum { COMMAND_SIZE = 12, MESSAGE_SIZE_SIZE = sizeof(int), CHECKSUM_SIZE = sizeof(int), MESSAGE_SIZE_OFFSET = MESSAGE_START_SIZE + COMMAND_SIZE, CHECKSUM_OFFSET = MESSAGE_SIZE_OFFSET + MESSAGE_SIZE_SIZE, HEADER_SIZE = MESSAGE_START_SIZE + COMMAND_SIZE + MESSAGE_SIZE_SIZE + CHECKSUM_SIZE }; char pchMessageStart[MESSAGE_START_SIZE]; char pchCommand[COMMAND_SIZE]; unsigned int nMessageSize; unsigned int nChecksum; }; /** nServices flags */ enum { // NODE_NETWORK means that the node is capable of serving the block chain. It is currently // set by all Bitcoin Core nodes, and is unset by SPV clients or other peers that just want // network services but don't provide them. NODE_NETWORK = (1 << 0), // NODE_GETUTXO means the node is capable of responding to the getutxo protocol request. // Bitcoin Core does not support this but a patch set called Bitcoin XT does. // See BIP 64 for details on how this is implemented. NODE_GETUTXO = (1 << 1), // Bits 24-31 are reserved for temporary experiments. Just pick a bit that // isn't getting used, or one not being used much, and notify the // bitcoin-development mailing list. Remember that service bits are just // unauthenticated advertisements, so your code must be robust against // collisions and other cases where nodes may be advertising a service they // do not actually support. Other service bits should be allocated via the // BIP process. }; /** A CService with information about it as peer */ class CAddress : public CService { public: CAddress(); explicit CAddress(CService ipIn, uint64_t nServicesIn = NODE_NETWORK); void Init(); ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { if (ser_action.ForRead()) Init(); if (nType & SER_DISK) READWRITE(nVersion); if ((nType & SER_DISK) || (nVersion >= CADDR_TIME_VERSION && !(nType & SER_GETHASH))) READWRITE(nTime); READWRITE(nServices); READWRITE(*(CService*)this); } // TODO: make private (improves encapsulation) public: uint64_t nServices; // disk and network only unsigned int nTime; - - // memory only - int64_t nLastTry; }; /** inv message data */ class CInv { public: CInv(); CInv(int typeIn, const uint256& hashIn); CInv(const std::string& strType, const uint256& hashIn); ADD_SERIALIZE_METHODS; template <typename Stream, typename Operation> inline void SerializationOp(Stream& s, Operation ser_action, int nType, int nVersion) { READWRITE(type); READWRITE(hash); } friend bool operator<(const CInv& a, const CInv& b); bool IsKnownType() const; const char* GetCommand() const; std::string ToString() const; // TODO: make private (improves encapsulation) public: int type; uint256 hash; }; enum { MSG_TX = 1, MSG_BLOCK, // Nodes may always request a MSG_FILTERED_BLOCK in a getdata, however, // MSG_FILTERED_BLOCK should not appear in any invs except as a part of getdata. MSG_FILTERED_BLOCK, }; #endif // BITCOIN_PROTOCOL_H