diff --git a/src/net.cpp b/src/net.cpp
index 1e8279ef2..6f8f03908 100644
--- a/src/net.cpp
+++ b/src/net.cpp
@@ -1,2770 +1,2771 @@
 // Copyright (c) 2009-2010 Satoshi Nakamoto
 // Copyright (c) 2009-2016 The Bitcoin Core developers
 // Distributed under the MIT software license, see the accompanying
 // file COPYING or http://www.opensource.org/licenses/mit-license.php.
 
 #if defined(HAVE_CONFIG_H)
 #include "config/bitcoin-config.h"
 #endif
 
 #include "net.h"
 
 #include "addrman.h"
 #include "chainparams.h"
 #include "clientversion.h"
 #include "config.h"
 #include "consensus/consensus.h"
 #include "crypto/common.h"
 #include "crypto/sha256.h"
 #include "globals.h"
 #include "hash.h"
 #include "netbase.h"
 #include "primitives/transaction.h"
 #include "scheduler.h"
 #include "ui_interface.h"
 #include "utilstrencodings.h"
 
 #ifdef WIN32
 #include <string.h>
 #else
 #include <fcntl.h>
 #endif
 
 #ifdef USE_UPNP
 #include <miniupnpc/miniupnpc.h>
 #include <miniupnpc/miniwget.h>
 #include <miniupnpc/upnpcommands.h>
 #include <miniupnpc/upnperrors.h>
 #endif
 
 #include <math.h>
 
 // Dump addresses to peers.dat and banlist.dat every 15 minutes (900s)
 #define DUMP_ADDRESSES_INTERVAL 900
 
 // We add a random period time (0 to 1 seconds) to feeler connections to prevent
 // synchronization.
 #define FEELER_SLEEP_WINDOW 1
 
 #if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
 #define MSG_NOSIGNAL 0
 #endif
 
 // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h.
 // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW
 // version.
 #ifdef WIN32
 #ifndef PROTECTION_LEVEL_UNRESTRICTED
 #define PROTECTION_LEVEL_UNRESTRICTED 10
 #endif
 #ifndef IPV6_PROTECTION_LEVEL
 #define IPV6_PROTECTION_LEVEL 23
 #endif
 #endif
 
 const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*";
 
 // SHA256("netgroup")[0:8]
 static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL;
 // SHA256("localhostnonce")[0:8]
 static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL;
 //
 // Global state variables
 //
 bool fDiscover = true;
 bool fListen = true;
 bool fRelayTxes = true;
 CCriticalSection cs_mapLocalHost;
 std::map<CNetAddr, LocalServiceInfo> mapLocalHost;
 static bool vfLimited[NET_MAX] = {};
 std::string strSubVersion;
 
 limitedmap<uint256, int64_t> mapAlreadyAskedFor(MAX_INV_SZ);
 
 // Signals for message handling
 static CNodeSignals g_signals;
 CNodeSignals &GetNodeSignals() {
     return g_signals;
 }
 
 void CConnman::AddOneShot(const std::string &strDest) {
     LOCK(cs_vOneShots);
     vOneShots.push_back(strDest);
 }
 
 unsigned short GetListenPort() {
     return (unsigned short)(GetArg("-port", Params().GetDefaultPort()));
 }
 
 // find 'best' local address for a particular peer
 bool GetLocal(CService &addr, const CNetAddr *paddrPeer) {
     if (!fListen) return false;
 
     int nBestScore = -1;
     int nBestReachability = -1;
     {
         LOCK(cs_mapLocalHost);
         for (std::map<CNetAddr, LocalServiceInfo>::iterator it =
                  mapLocalHost.begin();
              it != mapLocalHost.end(); it++) {
             int nScore = (*it).second.nScore;
             int nReachability = (*it).first.GetReachabilityFrom(paddrPeer);
             if (nReachability > nBestReachability ||
                 (nReachability == nBestReachability && nScore > nBestScore)) {
                 addr = CService((*it).first, (*it).second.nPort);
                 nBestReachability = nReachability;
                 nBestScore = nScore;
             }
         }
     }
     return nBestScore >= 0;
 }
 
 //! Convert the pnSeeds6 array into usable address objects.
 static std::vector<CAddress>
 convertSeed6(const std::vector<SeedSpec6> &vSeedsIn) {
     // It'll only connect to one or two seed nodes because once it connects,
     // it'll get a pile of addresses with newer timestamps. Seed nodes are given
     // a random 'last seen time' of between one and two weeks ago.
     const int64_t nOneWeek = 7 * 24 * 60 * 60;
     std::vector<CAddress> vSeedsOut;
     vSeedsOut.reserve(vSeedsIn.size());
     for (std::vector<SeedSpec6>::const_iterator i(vSeedsIn.begin());
          i != vSeedsIn.end(); ++i) {
         struct in6_addr ip;
         memcpy(&ip, i->addr, sizeof(ip));
         CAddress addr(CService(ip, i->port), NODE_NETWORK);
         addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek;
         vSeedsOut.push_back(addr);
     }
     return vSeedsOut;
 }
 
 // Get best local address for a particular peer as a CAddress. Otherwise, return
 // the unroutable 0.0.0.0 but filled in with the normal parameters, since the IP
 // may be changed to a useful one by discovery.
 CAddress GetLocalAddress(const CNetAddr *paddrPeer,
                          ServiceFlags nLocalServices) {
     CAddress ret(CService(CNetAddr(), GetListenPort()), NODE_NONE);
     CService addr;
     if (GetLocal(addr, paddrPeer)) {
         ret = CAddress(addr, nLocalServices);
     }
     ret.nTime = GetAdjustedTime();
     return ret;
 }
 
 int GetnScore(const CService &addr) {
     LOCK(cs_mapLocalHost);
     if (mapLocalHost.count(addr) == LOCAL_NONE) return 0;
     return mapLocalHost[addr].nScore;
 }
 
 // Is our peer's addrLocal potentially useful as an external IP source?
 bool IsPeerAddrLocalGood(CNode *pnode) {
     CService addrLocal = pnode->GetAddrLocal();
     return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() &&
            !IsLimited(addrLocal.GetNetwork());
 }
 
 // Pushes our own address to a peer.
 void AdvertiseLocal(CNode *pnode) {
     if (fListen && pnode->fSuccessfullyConnected) {
         CAddress addrLocal =
             GetLocalAddress(&pnode->addr, pnode->GetLocalServices());
         // If discovery is enabled, sometimes give our peer the address it tells
         // us that it sees us as in case it has a better idea of our address
         // than we do.
         if (IsPeerAddrLocalGood(pnode) &&
             (!addrLocal.IsRoutable() ||
              GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8 : 2) == 0)) {
             addrLocal.SetIP(pnode->GetAddrLocal());
         }
         if (addrLocal.IsRoutable()) {
             LogPrint("net", "AdvertiseLocal: advertising address %s\n",
                      addrLocal.ToString());
             FastRandomContext insecure_rand;
             pnode->PushAddress(addrLocal, insecure_rand);
         }
     }
 }
 
 // Learn a new local address.
 bool AddLocal(const CService &addr, int nScore) {
     if (!addr.IsRoutable()) return false;
 
     if (!fDiscover && nScore < LOCAL_MANUAL) return false;
 
     if (IsLimited(addr)) return false;
 
     LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);
 
     {
         LOCK(cs_mapLocalHost);
         bool fAlready = mapLocalHost.count(addr) > 0;
         LocalServiceInfo &info = mapLocalHost[addr];
         if (!fAlready || nScore >= info.nScore) {
             info.nScore = nScore + (fAlready ? 1 : 0);
             info.nPort = addr.GetPort();
         }
     }
 
     return true;
 }
 
 bool AddLocal(const CNetAddr &addr, int nScore) {
     return AddLocal(CService(addr, GetListenPort()), nScore);
 }
 
 bool RemoveLocal(const CService &addr) {
     LOCK(cs_mapLocalHost);
     LogPrintf("RemoveLocal(%s)\n", addr.ToString());
     mapLocalHost.erase(addr);
     return true;
 }
 
 /** Make a particular network entirely off-limits (no automatic connects to it)
  */
 void SetLimited(enum Network net, bool fLimited) {
     if (net == NET_UNROUTABLE) return;
     LOCK(cs_mapLocalHost);
     vfLimited[net] = fLimited;
 }
 
 bool IsLimited(enum Network net) {
     LOCK(cs_mapLocalHost);
     return vfLimited[net];
 }
 
 bool IsLimited(const CNetAddr &addr) {
     return IsLimited(addr.GetNetwork());
 }
 
 /** vote for a local address */
 bool SeenLocal(const CService &addr) {
     {
         LOCK(cs_mapLocalHost);
         if (mapLocalHost.count(addr) == 0) return false;
         mapLocalHost[addr].nScore++;
     }
     return true;
 }
 
 /** check whether a given address is potentially local */
 bool IsLocal(const CService &addr) {
     LOCK(cs_mapLocalHost);
     return mapLocalHost.count(addr) > 0;
 }
 
 /** check whether a given network is one we can probably connect to */
 bool IsReachable(enum Network net) {
     LOCK(cs_mapLocalHost);
     return !vfLimited[net];
 }
 
 /** check whether a given address is in a network we can probably connect to */
 bool IsReachable(const CNetAddr &addr) {
     enum Network net = addr.GetNetwork();
     return IsReachable(net);
 }
 
 CNode *CConnman::FindNode(const CNetAddr &ip) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes)
         if ((CNetAddr)pnode->addr == ip) return (pnode);
     return NULL;
 }
 
 CNode *CConnman::FindNode(const CSubNet &subNet) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes)
         if (subNet.Match((CNetAddr)pnode->addr)) return (pnode);
     return NULL;
 }
 
 CNode *CConnman::FindNode(const std::string &addrName) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (pnode->GetAddrName() == addrName) {
             return (pnode);
         }
     }
     return NULL;
 }
 
 CNode *CConnman::FindNode(const CService &addr) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes)
         if ((CService)pnode->addr == addr) return (pnode);
     return NULL;
 }
 
 bool CConnman::CheckIncomingNonce(uint64_t nonce) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (!pnode->fSuccessfullyConnected && !pnode->fInbound &&
             pnode->GetLocalNonce() == nonce)
             return false;
     }
     return true;
 }
 
 CNode *CConnman::ConnectNode(CAddress addrConnect, const char *pszDest,
                              bool fCountFailure) {
     if (pszDest == NULL) {
         if (IsLocal(addrConnect)) return NULL;
 
         // Look for an existing connection
         CNode *pnode = FindNode((CService)addrConnect);
         if (pnode) {
             LogPrintf("Failed to open new connection, already connected\n");
             return NULL;
         }
     }
 
     /// debug print
     LogPrint("net", "trying connection %s lastseen=%.1fhrs\n",
              pszDest ? pszDest : addrConnect.ToString(),
              pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime) /
                                  3600.0);
 
     // Connect
     SOCKET hSocket;
     bool proxyConnectionFailed = false;
     if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest,
                                       Params().GetDefaultPort(),
                                       nConnectTimeout, &proxyConnectionFailed)
                 : ConnectSocket(addrConnect, hSocket, nConnectTimeout,
                                 &proxyConnectionFailed)) {
         if (!IsSelectableSocket(hSocket)) {
             LogPrintf("Cannot create connection: non-selectable socket created "
                       "(fd >= FD_SETSIZE ?)\n");
             CloseSocket(hSocket);
             return NULL;
         }
 
         if (pszDest && addrConnect.IsValid()) {
             // It is possible that we already have a connection to the IP/port
             // pszDest resolved to. In that case, drop the connection that was
             // just created, and return the existing CNode instead. Also store
             // the name we used to connect in that CNode, so that future
             // FindNode() calls to that name catch this early.
             LOCK(cs_vNodes);
             CNode *pnode = FindNode((CService)addrConnect);
             if (pnode) {
                 pnode->MaybeSetAddrName(std::string(pszDest));
                 CloseSocket(hSocket);
                 LogPrintf("Failed to open new connection, already connected\n");
                 return NULL;
             }
         }
 
         addrman.Attempt(addrConnect, fCountFailure);
 
         // Add node
         NodeId id = GetNewNodeId();
         uint64_t nonce =
             GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
                 .Write(id)
                 .Finalize();
         CNode *pnode =
             new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect,
                       CalculateKeyedNetGroup(addrConnect), nonce,
                       pszDest ? pszDest : "", false);
         pnode->nServicesExpected =
             ServiceFlags(addrConnect.nServices & nRelevantServices);
         pnode->AddRef();
 
         return pnode;
     } else if (!proxyConnectionFailed) {
         // If connecting to the node failed, and failure is not caused by a
         // problem connecting to the proxy, mark this as an attempt.
         addrman.Attempt(addrConnect, fCountFailure);
     }
 
     return NULL;
 }
 
 void CConnman::DumpBanlist() {
     // Clean unused entries (if bantime has expired)
     SweepBanned();
 
     if (!BannedSetIsDirty()) return;
 
     int64_t nStart = GetTimeMillis();
 
     CBanDB bandb;
     banmap_t banmap;
     SetBannedSetDirty(false);
     GetBanned(banmap);
     if (!bandb.Write(banmap)) SetBannedSetDirty(true);
 
     LogPrint("net", "Flushed %d banned node ips/subnets to banlist.dat  %dms\n",
              banmap.size(), GetTimeMillis() - nStart);
 }
 
 void CNode::CloseSocketDisconnect() {
     fDisconnect = true;
     LOCK(cs_hSocket);
     if (hSocket != INVALID_SOCKET) {
         LogPrint("net", "disconnecting peer=%d\n", id);
         CloseSocket(hSocket);
     }
 }
 
 void CConnman::ClearBanned() {
     {
         LOCK(cs_setBanned);
         setBanned.clear();
         setBannedIsDirty = true;
     }
     // Store banlist to disk.
     DumpBanlist();
     if (clientInterface) clientInterface->BannedListChanged();
 }
 
 bool CConnman::IsBanned(CNetAddr ip) {
     bool fResult = false;
     {
         LOCK(cs_setBanned);
         for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end();
              it++) {
             CSubNet subNet = (*it).first;
             CBanEntry banEntry = (*it).second;
 
             if (subNet.Match(ip) && GetTime() < banEntry.nBanUntil)
                 fResult = true;
         }
     }
     return fResult;
 }
 
 bool CConnman::IsBanned(CSubNet subnet) {
     bool fResult = false;
     {
         LOCK(cs_setBanned);
         banmap_t::iterator i = setBanned.find(subnet);
         if (i != setBanned.end()) {
             CBanEntry banEntry = (*i).second;
             if (GetTime() < banEntry.nBanUntil) fResult = true;
         }
     }
     return fResult;
 }
 
 void CConnman::Ban(const CNetAddr &addr, const BanReason &banReason,
                    int64_t bantimeoffset, bool sinceUnixEpoch) {
     CSubNet subNet(addr);
     Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch);
 }
 
 void CConnman::Ban(const CSubNet &subNet, const BanReason &banReason,
                    int64_t bantimeoffset, bool sinceUnixEpoch) {
     CBanEntry banEntry(GetTime());
     banEntry.banReason = banReason;
     if (bantimeoffset <= 0) {
         bantimeoffset = GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME);
         sinceUnixEpoch = false;
     }
     banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime()) + bantimeoffset;
 
     {
         LOCK(cs_setBanned);
         if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) {
             setBanned[subNet] = banEntry;
             setBannedIsDirty = true;
         } else
             return;
     }
     if (clientInterface) clientInterface->BannedListChanged();
     {
         LOCK(cs_vNodes);
         for (CNode *pnode : vNodes) {
             if (subNet.Match((CNetAddr)pnode->addr)) pnode->fDisconnect = true;
         }
     }
     if (banReason == BanReasonManuallyAdded) {
         // Store banlist to disk immediately if user requested ban.
         DumpBanlist();
     }
 }
 
 bool CConnman::Unban(const CNetAddr &addr) {
     CSubNet subNet(addr);
     return Unban(subNet);
 }
 
 bool CConnman::Unban(const CSubNet &subNet) {
     {
         LOCK(cs_setBanned);
         if (!setBanned.erase(subNet)) return false;
         setBannedIsDirty = true;
     }
     if (clientInterface) clientInterface->BannedListChanged();
     // Store banlist to disk immediately.
     DumpBanlist();
     return true;
 }
 
 void CConnman::GetBanned(banmap_t &banMap) {
     LOCK(cs_setBanned);
     // Create a thread safe copy.
     banMap = setBanned;
 }
 
 void CConnman::SetBanned(const banmap_t &banMap) {
     LOCK(cs_setBanned);
     setBanned = banMap;
     setBannedIsDirty = true;
 }
 
 void CConnman::SweepBanned() {
     int64_t now = GetTime();
 
     LOCK(cs_setBanned);
     banmap_t::iterator it = setBanned.begin();
     while (it != setBanned.end()) {
         CSubNet subNet = (*it).first;
         CBanEntry banEntry = (*it).second;
         if (now > banEntry.nBanUntil) {
             setBanned.erase(it++);
             setBannedIsDirty = true;
             LogPrint("net",
                      "%s: Removed banned node ip/subnet from banlist.dat: %s\n",
                      __func__, subNet.ToString());
         } else
             ++it;
     }
 }
 
 bool CConnman::BannedSetIsDirty() {
     LOCK(cs_setBanned);
     return setBannedIsDirty;
 }
 
 void CConnman::SetBannedSetDirty(bool dirty) {
     LOCK(cs_setBanned); // reuse setBanned lock for the isDirty flag
     setBannedIsDirty = dirty;
 }
 
 bool CConnman::IsWhitelistedRange(const CNetAddr &addr) {
     LOCK(cs_vWhitelistedRange);
     for (const CSubNet &subnet : vWhitelistedRange) {
         if (subnet.Match(addr)) return true;
     }
     return false;
 }
 
 void CConnman::AddWhitelistedRange(const CSubNet &subnet) {
     LOCK(cs_vWhitelistedRange);
     vWhitelistedRange.push_back(subnet);
 }
 
 std::string CNode::GetAddrName() const {
     LOCK(cs_addrName);
     return addrName;
 }
 
 void CNode::MaybeSetAddrName(const std::string &addrNameIn) {
     LOCK(cs_addrName);
     if (addrName.empty()) {
         addrName = addrNameIn;
     }
 }
 
 CService CNode::GetAddrLocal() const {
     LOCK(cs_addrLocal);
     return addrLocal;
 }
 
 void CNode::SetAddrLocal(const CService &addrLocalIn) {
     LOCK(cs_addrLocal);
     if (addrLocal.IsValid()) {
         error("Addr local already set for node: %i. Refusing to change from %s "
               "to %s",
               id, addrLocal.ToString(), addrLocalIn.ToString());
     } else {
         addrLocal = addrLocalIn;
     }
 }
 
 #undef X
 #define X(name) stats.name = name
 void CNode::copyStats(CNodeStats &stats) {
     stats.nodeid = this->GetId();
     X(nServices);
     X(addr);
     {
         LOCK(cs_filter);
         X(fRelayTxes);
     }
     X(nLastSend);
     X(nLastRecv);
     X(nTimeConnected);
     X(nTimeOffset);
     stats.addrName = GetAddrName();
     X(nVersion);
     {
         LOCK(cs_SubVer);
         X(cleanSubVer);
     }
     X(fInbound);
     X(fAddnode);
     X(nStartingHeight);
     {
         LOCK(cs_vSend);
         X(mapSendBytesPerMsgCmd);
         X(nSendBytes);
     }
     {
         LOCK(cs_vRecv);
         X(mapRecvBytesPerMsgCmd);
         X(nRecvBytes);
     }
     X(fWhitelisted);
 
     // It is common for nodes with good ping times to suddenly become lagged,
-    // due to a new block arriving or other large transfer.
-    // Merely reporting pingtime might fool the caller into thinking the node
-    // was still responsive,
-    // since pingtime does not update until the ping is complete, which might
-    // take a while.
-    // So, if a ping is taking an unusually long time in flight,
-    // the caller can immediately detect that this is happening.
+    // due to a new block arriving or other large transfer. Merely reporting
+    // pingtime might fool the caller into thinking the node was still
+    // responsive, since pingtime does not update until the ping is complete,
+    // which might take a while. So, if a ping is taking an unusually long time
+    // in flight, the caller can immediately detect that this is happening.
     int64_t nPingUsecWait = 0;
     if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
         nPingUsecWait = GetTimeMicros() - nPingUsecStart;
     }
 
     // Raw ping time is in microseconds, but show it to user as whole seconds
     // (Bitcoin users should be well used to small numbers with many decimal
     // places by now :)
     stats.dPingTime = (((double)nPingUsecTime) / 1e6);
     stats.dMinPing = (((double)nMinPingUsecTime) / 1e6);
     stats.dPingWait = (((double)nPingUsecWait) / 1e6);
 
     // Leave string empty if addrLocal invalid (not filled in yet)
     CService addrLocalUnlocked = GetAddrLocal();
     stats.addrLocal =
         addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : "";
 }
 #undef X
 
 bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes,
                             bool &complete) {
     complete = false;
     int64_t nTimeMicros = GetTimeMicros();
     LOCK(cs_vRecv);
     nLastRecv = nTimeMicros / 1000000;
     nRecvBytes += nBytes;
     while (nBytes > 0) {
-
         // get current incomplete message, or create a new one
         if (vRecvMsg.empty() || vRecvMsg.back().complete())
             vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK,
                                            INIT_PROTO_VERSION));
 
         CNetMessage &msg = vRecvMsg.back();
 
         // absorb network data
         int handled;
         if (!msg.in_data)
             handled = msg.readHeader(pch, nBytes);
         else
             handled = msg.readData(pch, nBytes);
 
         if (handled < 0) return false;
 
         if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
             LogPrint("net", "Oversized message from peer=%i, disconnecting\n",
                      GetId());
             return false;
         }
 
         pch += handled;
         nBytes -= handled;
 
         if (msg.complete()) {
 
             // Store received bytes per message command to prevent a memory DOS,
             // only allow valid commands.
             mapMsgCmdSize::iterator i =
                 mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand);
             if (i == mapRecvBytesPerMsgCmd.end())
                 i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
             assert(i != mapRecvBytesPerMsgCmd.end());
             i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE;
 
             msg.nTime = nTimeMicros;
             complete = true;
         }
     }
 
     return true;
 }
 
 void CNode::SetSendVersion(int nVersionIn) {
     // Send version may only be changed in the version message, and only one
     // version message is allowed per session. We can therefore treat this value
     // as const and even atomic as long as it's only used once a version message
     // has been successfully processed. Any attempt to set this twice is an
     // error.
     if (nSendVersion != 0) {
         error("Send version already set for node: %i. Refusing to change from "
               "%i to %i",
               id, nSendVersion, nVersionIn);
     } else {
         nSendVersion = nVersionIn;
     }
 }
 
 int CNode::GetSendVersion() const {
     // The send version should always be explicitly set to INIT_PROTO_VERSION
     // rather than using this value until SetSendVersion has been called.
     if (nSendVersion == 0) {
         error("Requesting unset send version for node: %i. Using %i", id,
               INIT_PROTO_VERSION);
         return INIT_PROTO_VERSION;
     }
     return nSendVersion;
 }
 
 int CNetMessage::readHeader(const char *pch, unsigned int nBytes) {
     // copy data to temporary parsing buffer
     unsigned int nRemaining = 24 - nHdrPos;
     unsigned int nCopy = std::min(nRemaining, nBytes);
 
     memcpy(&hdrbuf[nHdrPos], pch, nCopy);
     nHdrPos += nCopy;
 
     // if header incomplete, exit
     if (nHdrPos < 24) return nCopy;
 
     // deserialize to CMessageHeader
     try {
         hdrbuf >> hdr;
     } catch (const std::exception &) {
         return -1;
     }
 
     // reject messages larger than MAX_SIZE
     if (hdr.nMessageSize > MAX_SIZE) return -1;
 
     // switch state to reading message data
     in_data = true;
 
     return nCopy;
 }
 
 int CNetMessage::readData(const char *pch, unsigned int nBytes) {
     unsigned int nRemaining = hdr.nMessageSize - nDataPos;
     unsigned int nCopy = std::min(nRemaining, nBytes);
 
     if (vRecv.size() < nDataPos + nCopy) {
         // Allocate up to 256 KiB ahead, but never more than the total message
         // size.
         vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
     }
 
     hasher.Write((const unsigned char *)pch, nCopy);
     memcpy(&vRecv[nDataPos], pch, nCopy);
     nDataPos += nCopy;
 
     return nCopy;
 }
 
 const uint256 &CNetMessage::GetMessageHash() const {
     assert(complete());
     if (data_hash.IsNull()) hasher.Finalize(data_hash.begin());
     return data_hash;
 }
 
 // requires LOCK(cs_vSend)
 size_t CConnman::SocketSendData(CNode *pnode) const {
     auto it = pnode->vSendMsg.begin();
     size_t nSentSize = 0;
 
     while (it != pnode->vSendMsg.end()) {
         const auto &data = *it;
         assert(data.size() > pnode->nSendOffset);
         int nBytes = 0;
         {
             LOCK(pnode->cs_hSocket);
             if (pnode->hSocket == INVALID_SOCKET) break;
             nBytes = send(
                 pnode->hSocket, reinterpret_cast<const char *>(data.data()) +
                                     pnode->nSendOffset,
                 data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
         }
         if (nBytes > 0) {
             pnode->nLastSend = GetSystemTimeInSeconds();
             pnode->nSendBytes += nBytes;
             pnode->nSendOffset += nBytes;
             nSentSize += nBytes;
             if (pnode->nSendOffset == data.size()) {
                 pnode->nSendOffset = 0;
                 pnode->nSendSize -= data.size();
                 pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize;
                 it++;
             } else {
                 // could not send full message; stop sending more
                 break;
             }
         } else {
             if (nBytes < 0) {
                 // error
                 int nErr = WSAGetLastError();
                 if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
                     nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
                     LogPrintf("socket send error %s\n",
                               NetworkErrorString(nErr));
                     pnode->CloseSocketDisconnect();
                 }
             }
             // couldn't send anything at all
             break;
         }
     }
 
     if (it == pnode->vSendMsg.end()) {
         assert(pnode->nSendOffset == 0);
         assert(pnode->nSendSize == 0);
     }
     pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
     return nSentSize;
 }
 
 struct NodeEvictionCandidate {
     NodeId id;
     int64_t nTimeConnected;
     int64_t nMinPingUsecTime;
     int64_t nLastBlockTime;
     int64_t nLastTXTime;
     bool fRelevantServices;
     bool fRelayTxes;
     bool fBloomFilter;
     CAddress addr;
     uint64_t nKeyedNetGroup;
 };
 
 static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a,
                                           const NodeEvictionCandidate &b) {
     return a.nMinPingUsecTime > b.nMinPingUsecTime;
 }
 
 static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a,
                                             const NodeEvictionCandidate &b) {
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a,
                                  const NodeEvictionCandidate &b) {
     return a.nKeyedNetGroup < b.nKeyedNetGroup;
 }
 
 static bool CompareNodeBlockTime(const NodeEvictionCandidate &a,
                                  const NodeEvictionCandidate &b) {
     // There is a fall-through here because it is common for a node to have many
     // peers which have not yet relayed a block.
     if (a.nLastBlockTime != b.nLastBlockTime)
         return a.nLastBlockTime < b.nLastBlockTime;
     if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices;
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 static bool CompareNodeTXTime(const NodeEvictionCandidate &a,
                               const NodeEvictionCandidate &b) {
     // There is a fall-through here because it is common for a node to have more
     // than a few peers that have not yet relayed txn.
     if (a.nLastTXTime != b.nLastTXTime) return a.nLastTXTime < b.nLastTXTime;
     if (a.fRelayTxes != b.fRelayTxes) return b.fRelayTxes;
     if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter;
     return a.nTimeConnected > b.nTimeConnected;
 }
 
 /**
  * Try to find a connection to evict when the node is full. Extreme care must be
  * taken to avoid opening the node to attacker triggered network partitioning.
  * The strategy used here is to protect a small number of peers for each of
  * several distinct characteristics which are difficult to forge. In order to
  * partition a node the attacker must be simultaneously better at all of them
  * than honest peers.
  */
 bool CConnman::AttemptToEvictConnection() {
     std::vector<NodeEvictionCandidate> vEvictionCandidates;
     {
         LOCK(cs_vNodes);
 
         for (CNode *node : vNodes) {
             if (node->fWhitelisted) continue;
             if (!node->fInbound) continue;
             if (node->fDisconnect) continue;
             NodeEvictionCandidate candidate = {
                 node->id,
                 node->nTimeConnected,
                 node->nMinPingUsecTime,
                 node->nLastBlockTime,
                 node->nLastTXTime,
                 (node->nServices & nRelevantServices) == nRelevantServices,
                 node->fRelayTxes,
                 node->pfilter != NULL,
                 node->addr,
                 node->nKeyedNetGroup};
             vEvictionCandidates.push_back(candidate);
         }
     }
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect connections with certain characteristics
 
     // Deterministically select 4 peers to protect by netgroup. An attacker
     // cannot predict which netgroups will be protected.
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(),
               CompareNetGroupKeyed);
     vEvictionCandidates.erase(
         vEvictionCandidates.end() -
             std::min(4, static_cast<int>(vEvictionCandidates.size())),
         vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect the 8 nodes with the lowest minimum ping time. An attacker cannot
     // manipulate this metric without physically moving nodes closer to the
     // target.
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(),
               ReverseCompareNodeMinPingTime);
     vEvictionCandidates.erase(
         vEvictionCandidates.end() -
             std::min(8, static_cast<int>(vEvictionCandidates.size())),
         vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect 4 nodes that most recently sent us transactions. An attacker
     // cannot manipulate this metric without performing useful work.
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(),
               CompareNodeTXTime);
     vEvictionCandidates.erase(
         vEvictionCandidates.end() -
             std::min(4, static_cast<int>(vEvictionCandidates.size())),
         vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect 4 nodes that most recently sent us blocks. An attacker cannot
     // manipulate this metric without performing useful work.
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(),
               CompareNodeBlockTime);
     vEvictionCandidates.erase(
         vEvictionCandidates.end() -
             std::min(4, static_cast<int>(vEvictionCandidates.size())),
         vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Protect the half of the remaining nodes which have been connected the
     // longest. This replicates the non-eviction implicit behavior, and
     // precludes attacks that start later.
     std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(),
               ReverseCompareNodeTimeConnected);
     vEvictionCandidates.erase(
         vEvictionCandidates.end() -
             static_cast<int>(vEvictionCandidates.size() / 2),
         vEvictionCandidates.end());
 
     if (vEvictionCandidates.empty()) return false;
 
     // Identify the network group with the most connections and youngest member.
     // (vEvictionCandidates is already sorted by reverse connect time)
     uint64_t naMostConnections;
     unsigned int nMostConnections = 0;
     int64_t nMostConnectionsTime = 0;
     std::map<uint64_t, std::vector<NodeEvictionCandidate>> mapNetGroupNodes;
     for (const NodeEvictionCandidate &node : vEvictionCandidates) {
         mapNetGroupNodes[node.nKeyedNetGroup].push_back(node);
         int64_t grouptime =
             mapNetGroupNodes[node.nKeyedNetGroup][0].nTimeConnected;
         size_t groupsize = mapNetGroupNodes[node.nKeyedNetGroup].size();
 
         if (groupsize > nMostConnections ||
             (groupsize == nMostConnections &&
              grouptime > nMostConnectionsTime)) {
             nMostConnections = groupsize;
             nMostConnectionsTime = grouptime;
             naMostConnections = node.nKeyedNetGroup;
         }
     }
 
     // Reduce to the network group with the most connections
     vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]);
 
     // Disconnect from the network group with the most connections
     NodeId evicted = vEvictionCandidates.front().id;
     LOCK(cs_vNodes);
     for (std::vector<CNode *>::const_iterator it(vNodes.begin());
          it != vNodes.end(); ++it) {
         if ((*it)->GetId() == evicted) {
             (*it)->fDisconnect = true;
             return true;
         }
     }
     return false;
 }
 
 void CConnman::AcceptConnection(const ListenSocket &hListenSocket) {
     struct sockaddr_storage sockaddr;
     socklen_t len = sizeof(sockaddr);
     SOCKET hSocket =
         accept(hListenSocket.socket, (struct sockaddr *)&sockaddr, &len);
     CAddress addr;
     int nInbound = 0;
     int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler);
 
     if (hSocket != INVALID_SOCKET)
         if (!addr.SetSockAddr((const struct sockaddr *)&sockaddr))
             LogPrintf("Warning: Unknown socket family\n");
 
     bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr);
     {
         LOCK(cs_vNodes);
         for (CNode *pnode : vNodes)
             if (pnode->fInbound) nInbound++;
     }
 
     if (hSocket == INVALID_SOCKET) {
         int nErr = WSAGetLastError();
         if (nErr != WSAEWOULDBLOCK)
             LogPrintf("socket error accept failed: %s\n",
                       NetworkErrorString(nErr));
         return;
     }
 
     if (!fNetworkActive) {
         LogPrintf("connection from %s dropped: not accepting new connections\n",
                   addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     if (!IsSelectableSocket(hSocket)) {
         LogPrintf("connection from %s dropped: non-selectable socket\n",
                   addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     // According to the internet TCP_NODELAY is not carried into accepted
     // sockets on all platforms.  Set it again here just to be sure.
     int set = 1;
 #ifdef WIN32
     setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char *)&set,
                sizeof(int));
 #else
     setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void *)&set, sizeof(int));
 #endif
 
     if (IsBanned(addr) && !whitelisted) {
         LogPrintf("connection from %s dropped (banned)\n", addr.ToString());
         CloseSocket(hSocket);
         return;
     }
 
     if (nInbound >= nMaxInbound) {
         if (!AttemptToEvictConnection()) {
             // No connection to evict, disconnect the new connection
             LogPrint("net", "failed to find an eviction candidate - connection "
                             "dropped (full)\n");
             CloseSocket(hSocket);
             return;
         }
     }
 
     NodeId id = GetNewNodeId();
     uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE)
                          .Write(id)
                          .Finalize();
 
     CNode *pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr,
                              CalculateKeyedNetGroup(addr), nonce, "", true);
     pnode->AddRef();
     pnode->fWhitelisted = whitelisted;
     GetNodeSignals().InitializeNode(pnode, *this);
 
     LogPrint("net", "connection from %s accepted\n", addr.ToString());
 
     {
         LOCK(cs_vNodes);
         vNodes.push_back(pnode);
     }
 }
 
 void CConnman::ThreadSocketHandler() {
     unsigned int nPrevNodeCount = 0;
     while (!interruptNet) {
         //
         // Disconnect nodes
         //
         {
             LOCK(cs_vNodes);
             // Disconnect unused nodes
             std::vector<CNode *> vNodesCopy = vNodes;
             for (CNode *pnode : vNodesCopy) {
                 if (pnode->fDisconnect) {
                     // remove from vNodes
                     vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode),
                                  vNodes.end());
 
                     // release outbound grant (if any)
                     pnode->grantOutbound.Release();
 
                     // close socket and cleanup
                     pnode->CloseSocketDisconnect();
 
                     // hold in disconnected pool until all refs are released
                     pnode->Release();
                     vNodesDisconnected.push_back(pnode);
                 }
             }
         }
         {
             // Delete disconnected nodes
             std::list<CNode *> vNodesDisconnectedCopy = vNodesDisconnected;
             for (CNode *pnode : vNodesDisconnectedCopy) {
                 // wait until threads are done using it
                 if (pnode->GetRefCount() <= 0) {
                     bool fDelete = false;
                     {
                         TRY_LOCK(pnode->cs_inventory, lockInv);
                         if (lockInv) {
                             TRY_LOCK(pnode->cs_vSend, lockSend);
                             if (lockSend) {
                                 fDelete = true;
                             }
                         }
                     }
                     if (fDelete) {
                         vNodesDisconnected.remove(pnode);
                         DeleteNode(pnode);
                     }
                 }
             }
         }
         size_t vNodesSize;
         {
             LOCK(cs_vNodes);
             vNodesSize = vNodes.size();
         }
         if (vNodesSize != nPrevNodeCount) {
             nPrevNodeCount = vNodesSize;
             if (clientInterface)
                 clientInterface->NotifyNumConnectionsChanged(nPrevNodeCount);
         }
 
         //
         // Find which sockets have data to receive
         //
         struct timeval timeout;
         timeout.tv_sec = 0;
         timeout.tv_usec = 50000; // frequency to poll pnode->vSend
 
         fd_set fdsetRecv;
         fd_set fdsetSend;
         fd_set fdsetError;
         FD_ZERO(&fdsetRecv);
         FD_ZERO(&fdsetSend);
         FD_ZERO(&fdsetError);
         SOCKET hSocketMax = 0;
         bool have_fds = false;
 
         for (const ListenSocket &hListenSocket : vhListenSocket) {
             FD_SET(hListenSocket.socket, &fdsetRecv);
             hSocketMax = std::max(hSocketMax, hListenSocket.socket);
             have_fds = true;
         }
 
         {
             LOCK(cs_vNodes);
             for (CNode *pnode : vNodes) {
                 // Implement the following logic:
                 // * If there is data to send, select() for sending data. As
                 // this only happens when optimistic write failed, we choose to
                 // first drain the write buffer in this case before receiving
                 // more. This avoids needlessly queueing received data, if the
                 // remote peer is not themselves receiving data. This means
                 // properly utilizing TCP flow control signalling.
                 // * Otherwise, if there is space left in the receive buffer,
                 // select() for receiving data.
                 // * Hand off all complete messages to the processor, to be
                 // handled without blocking here.
 
                 bool select_recv = !pnode->fPauseRecv;
                 bool select_send;
                 {
                     LOCK(pnode->cs_vSend);
                     select_send = !pnode->vSendMsg.empty();
                 }
 
                 LOCK(pnode->cs_hSocket);
                 if (pnode->hSocket == INVALID_SOCKET) continue;
 
                 FD_SET(pnode->hSocket, &fdsetError);
                 hSocketMax = std::max(hSocketMax, pnode->hSocket);
                 have_fds = true;
 
                 if (select_send) {
                     FD_SET(pnode->hSocket, &fdsetSend);
                     continue;
                 }
                 if (select_recv) {
                     FD_SET(pnode->hSocket, &fdsetRecv);
                 }
             }
         }
 
         int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv,
                              &fdsetSend, &fdsetError, &timeout);
         if (interruptNet) return;
 
         if (nSelect == SOCKET_ERROR) {
             if (have_fds) {
                 int nErr = WSAGetLastError();
                 LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
                 for (unsigned int i = 0; i <= hSocketMax; i++)
                     FD_SET(i, &fdsetRecv);
             }
             FD_ZERO(&fdsetSend);
             FD_ZERO(&fdsetError);
             if (!interruptNet.sleep_for(
                     std::chrono::milliseconds(timeout.tv_usec / 1000)))
                 return;
         }
 
         //
         // Accept new connections
         //
         for (const ListenSocket &hListenSocket : vhListenSocket) {
             if (hListenSocket.socket != INVALID_SOCKET &&
                 FD_ISSET(hListenSocket.socket, &fdsetRecv)) {
                 AcceptConnection(hListenSocket);
             }
         }
 
         //
         // Service each socket
         //
         std::vector<CNode *> vNodesCopy;
         {
             LOCK(cs_vNodes);
             vNodesCopy = vNodes;
             for (CNode *pnode : vNodesCopy)
                 pnode->AddRef();
         }
         for (CNode *pnode : vNodesCopy) {
             if (interruptNet) return;
 
             //
             // Receive
             //
             bool recvSet = false;
             bool sendSet = false;
             bool errorSet = false;
             {
                 LOCK(pnode->cs_hSocket);
                 if (pnode->hSocket == INVALID_SOCKET) continue;
                 recvSet = FD_ISSET(pnode->hSocket, &fdsetRecv);
                 sendSet = FD_ISSET(pnode->hSocket, &fdsetSend);
                 errorSet = FD_ISSET(pnode->hSocket, &fdsetError);
             }
             if (recvSet || errorSet) {
                 {
                     {
                         // typical socket buffer is 8K-64K
                         char pchBuf[0x10000];
                         int nBytes = 0;
                         {
                             LOCK(pnode->cs_hSocket);
                             if (pnode->hSocket == INVALID_SOCKET) continue;
                             nBytes = recv(pnode->hSocket, pchBuf,
                                           sizeof(pchBuf), MSG_DONTWAIT);
                         }
                         if (nBytes > 0) {
                             bool notify = false;
                             if (!pnode->ReceiveMsgBytes(pchBuf, nBytes, notify))
                                 pnode->CloseSocketDisconnect();
                             RecordBytesRecv(nBytes);
                             if (notify) {
                                 size_t nSizeAdded = 0;
                                 auto it(pnode->vRecvMsg.begin());
                                 for (; it != pnode->vRecvMsg.end(); ++it) {
                                     if (!it->complete()) break;
                                     nSizeAdded += it->vRecv.size() +
                                                   CMessageHeader::HEADER_SIZE;
                                 }
                                 {
                                     LOCK(pnode->cs_vProcessMsg);
                                     pnode->vProcessMsg.splice(
                                         pnode->vProcessMsg.end(),
                                         pnode->vRecvMsg,
                                         pnode->vRecvMsg.begin(), it);
                                     pnode->nProcessQueueSize += nSizeAdded;
                                     pnode->fPauseRecv =
                                         pnode->nProcessQueueSize >
                                         nReceiveFloodSize;
                                 }
                                 WakeMessageHandler();
                             }
                         } else if (nBytes == 0) {
                             // socket closed gracefully
                             if (!pnode->fDisconnect)
                                 LogPrint("net", "socket closed\n");
                             pnode->CloseSocketDisconnect();
                         } else if (nBytes < 0) {
                             // error
                             int nErr = WSAGetLastError();
                             if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE &&
                                 nErr != WSAEINTR && nErr != WSAEINPROGRESS) {
                                 if (!pnode->fDisconnect)
                                     LogPrintf("socket recv error %s\n",
                                               NetworkErrorString(nErr));
                                 pnode->CloseSocketDisconnect();
                             }
                         }
                     }
                 }
             }
 
             //
             // Send
             //
             if (sendSet) {
                 LOCK(pnode->cs_vSend);
                 size_t nBytes = SocketSendData(pnode);
                 if (nBytes) {
                     RecordBytesSent(nBytes);
                 }
             }
 
             //
             // Inactivity checking
             //
             int64_t nTime = GetSystemTimeInSeconds();
             if (nTime - pnode->nTimeConnected > 60) {
                 if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) {
                     LogPrint("net", "socket no message in first 60 seconds, %d "
                                     "%d from %d\n",
                              pnode->nLastRecv != 0, pnode->nLastSend != 0,
                              pnode->id);
                     pnode->fDisconnect = true;
                 } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) {
                     LogPrintf("socket sending timeout: %is\n",
                               nTime - pnode->nLastSend);
                     pnode->fDisconnect = true;
                 } else if (nTime - pnode->nLastRecv >
                            (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL
                                                               : 90 * 60)) {
                     LogPrintf("socket receive timeout: %is\n",
                               nTime - pnode->nLastRecv);
                     pnode->fDisconnect = true;
                 } else if (pnode->nPingNonceSent &&
                            pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 <
                                GetTimeMicros()) {
                     LogPrintf("ping timeout: %fs\n",
                               0.000001 *
                                   (GetTimeMicros() - pnode->nPingUsecStart));
                     pnode->fDisconnect = true;
                 } else if (!pnode->fSuccessfullyConnected) {
                     LogPrintf("version handshake timeout from %d\n", pnode->id);
                     pnode->fDisconnect = true;
                 }
             }
         }
         {
             LOCK(cs_vNodes);
             for (CNode *pnode : vNodesCopy) {
                 pnode->Release();
             }
         }
     }
 }
 
 void CConnman::WakeMessageHandler() {
     {
         std::lock_guard<std::mutex> lock(mutexMsgProc);
         fMsgProcWake = true;
     }
     condMsgProc.notify_one();
 }
 
 #ifdef USE_UPNP
 void ThreadMapPort() {
     std::string port = strprintf("%u", GetListenPort());
     const char *multicastif = 0;
     const char *minissdpdpath = 0;
     struct UPNPDev *devlist = 0;
     char lanaddr[64];
 
 #ifndef UPNPDISCOVER_SUCCESS
     /* miniupnpc 1.5 */
     devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0);
 #elif MINIUPNPC_API_VERSION < 14
     /* miniupnpc 1.6 */
     int error = 0;
     devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
 #else
     /* miniupnpc 1.9.20150730 */
     int error = 0;
     devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
 #endif
 
     struct UPNPUrls urls;
     struct IGDdatas data;
     int r;
 
     r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
     if (r == 1) {
         if (fDiscover) {
             char externalIPAddress[40];
             r = UPNP_GetExternalIPAddress(
                 urls.controlURL, data.first.servicetype, externalIPAddress);
             if (r != UPNPCOMMAND_SUCCESS)
                 LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
             else {
                 if (externalIPAddress[0]) {
                     CNetAddr resolved;
                     if (LookupHost(externalIPAddress, resolved, false)) {
                         LogPrintf("UPnP: ExternalIPAddress = %s\n",
                                   resolved.ToString().c_str());
                         AddLocal(resolved, LOCAL_UPNP);
                     }
                 } else
                     LogPrintf("UPnP: GetExternalIPAddress failed.\n");
             }
         }
 
         std::string strDesc = "Bitcoin " + FormatFullVersion();
 
         try {
             while (true) {
 #ifndef UPNPDISCOVER_SUCCESS
                 /* miniupnpc 1.5 */
                 r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
                                         port.c_str(), port.c_str(), lanaddr,
                                         strDesc.c_str(), "TCP", 0);
 #else
                 /* miniupnpc 1.6 */
                 r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
                                         port.c_str(), port.c_str(), lanaddr,
                                         strDesc.c_str(), "TCP", 0, "0");
 #endif
 
-                if (r != UPNPCOMMAND_SUCCESS)
+                if (r != UPNPCOMMAND_SUCCESS) {
                     LogPrintf(
                         "AddPortMapping(%s, %s, %s) failed with code %d (%s)\n",
                         port, port, lanaddr, r, strupnperror(r));
-                else
+                } else {
                     LogPrintf("UPnP Port Mapping successful.\n");
+                }
 
-                MilliSleep(20 * 60 * 1000); // Refresh every 20 minutes
+                // Refresh every 20 minutes
+                MilliSleep(20 * 60 * 1000);
             }
         } catch (const boost::thread_interrupted &) {
             r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype,
                                        port.c_str(), "TCP", 0);
             LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
             freeUPNPDevlist(devlist);
             devlist = 0;
             FreeUPNPUrls(&urls);
             throw;
         }
     } else {
         LogPrintf("No valid UPnP IGDs found\n");
         freeUPNPDevlist(devlist);
         devlist = 0;
         if (r != 0) FreeUPNPUrls(&urls);
     }
 }
 
 void MapPort(bool fUseUPnP) {
     static boost::thread *upnp_thread = NULL;
 
     if (fUseUPnP) {
         if (upnp_thread) {
             upnp_thread->interrupt();
             upnp_thread->join();
             delete upnp_thread;
         }
         upnp_thread = new boost::thread(
             boost::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort));
     } else if (upnp_thread) {
         upnp_thread->interrupt();
         upnp_thread->join();
         delete upnp_thread;
         upnp_thread = NULL;
     }
 }
 
 #else
 void MapPort(bool) {
     // Intentionally left blank.
 }
 #endif
 
 static std::string GetDNSHost(const CDNSSeedData &data,
                               ServiceFlags *requiredServiceBits) {
     // use default host for non-filter-capable seeds or if we use the default
     // service bits (NODE_NETWORK)
     if (!data.supportsServiceBitsFiltering ||
         *requiredServiceBits == NODE_NETWORK) {
         *requiredServiceBits = NODE_NETWORK;
         return data.host;
     }
 
     // See chainparams.cpp, most dnsseeds only support one or two possible
     // servicebits hostnames
     return strprintf("x%x.%s", *requiredServiceBits, data.host);
 }
 
 void CConnman::ThreadDNSAddressSeed() {
     // goal: only query DNS seeds if address need is acute.
     // Avoiding DNS seeds when we don't need them improves user privacy by
     // creating fewer identifying DNS requests, reduces trust by giving seeds
     // less influence on the network topology, and reduces traffic to the seeds.
     if ((addrman.size() > 0) &&
         (!GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) {
         if (!interruptNet.sleep_for(std::chrono::seconds(11))) return;
 
         LOCK(cs_vNodes);
         int nRelevant = 0;
         for (auto pnode : vNodes) {
             nRelevant +=
                 pnode->fSuccessfullyConnected &&
                 ((pnode->nServices & nRelevantServices) == nRelevantServices);
         }
         if (nRelevant >= 2) {
             LogPrintf("P2P peers available. Skipped DNS seeding.\n");
             return;
         }
     }
 
     const std::vector<CDNSSeedData> &vSeeds = Params().DNSSeeds();
     int found = 0;
 
     LogPrintf("Loading addresses from DNS seeds (could take a while)\n");
 
     for (const CDNSSeedData &seed : vSeeds) {
         if (HaveNameProxy()) {
             AddOneShot(seed.host);
         } else {
             std::vector<CNetAddr> vIPs;
             std::vector<CAddress> vAdd;
             ServiceFlags requiredServiceBits = nRelevantServices;
             if (LookupHost(GetDNSHost(seed, &requiredServiceBits).c_str(), vIPs,
                            0, true)) {
                 for (const CNetAddr &ip : vIPs) {
                     int nOneDay = 24 * 3600;
                     CAddress addr =
                         CAddress(CService(ip, Params().GetDefaultPort()),
                                  requiredServiceBits);
                     // Use a random age between 3 and 7 days old.
                     addr.nTime = GetTime() - 3 * nOneDay - GetRand(4 * nOneDay);
                     vAdd.push_back(addr);
                     found++;
                 }
             }
             // TODO: The seed name resolve may fail, yielding an IP of [::],
             // which results in addrman assigning the same source to results
             // from different seeds. This should switch to a hard-coded stable
             // dummy IP for each seed name, so that the resolve is not required
             // at all.
             if (!vIPs.empty()) {
                 CService seedSource;
                 Lookup(seed.name.c_str(), seedSource, 0, true);
                 addrman.Add(vAdd, seedSource);
             }
         }
     }
 
     LogPrintf("%d addresses found from DNS seeds\n", found);
 }
 
 void CConnman::DumpAddresses() {
     int64_t nStart = GetTimeMillis();
 
     CAddrDB adb;
     adb.Write(addrman);
 
     LogPrint("net", "Flushed %d addresses to peers.dat  %dms\n", addrman.size(),
              GetTimeMillis() - nStart);
 }
 
 void CConnman::DumpData() {
     DumpAddresses();
     DumpBanlist();
 }
 
 void CConnman::ProcessOneShot() {
     std::string strDest;
     {
         LOCK(cs_vOneShots);
         if (vOneShots.empty()) return;
         strDest = vOneShots.front();
         vOneShots.pop_front();
     }
     CAddress addr;
     CSemaphoreGrant grant(*semOutbound, true);
     if (grant) {
         if (!OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true))
             AddOneShot(strDest);
     }
 }
 
 void CConnman::ThreadOpenConnections() {
     // Connect to specific addresses
     if (mapMultiArgs.count("-connect") &&
         mapMultiArgs.at("-connect").size() > 0) {
         for (int64_t nLoop = 0;; nLoop++) {
             ProcessOneShot();
             for (const std::string &strAddr : mapMultiArgs.at("-connect")) {
                 CAddress addr(CService(), NODE_NONE);
                 OpenNetworkConnection(addr, false, NULL, strAddr.c_str());
                 for (int i = 0; i < 10 && i < nLoop; i++) {
                     if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
                         return;
                 }
             }
             if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
         }
     }
 
     // Initiate network connections
     int64_t nStart = GetTime();
 
     // Minimum time before next feeler connection (in microseconds).
     int64_t nNextFeeler =
         PoissonNextSend(nStart * 1000 * 1000, FEELER_INTERVAL);
     while (!interruptNet) {
         ProcessOneShot();
 
         if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) return;
 
         CSemaphoreGrant grant(*semOutbound);
         if (interruptNet) return;
 
         // Add seed nodes if DNS seeds are all down (an infrastructure attack?).
         if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
             static bool done = false;
             if (!done) {
                 LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be "
                           "available.\n");
                 CNetAddr local;
                 LookupHost("127.0.0.1", local, false);
                 addrman.Add(convertSeed6(Params().FixedSeeds()), local);
                 done = true;
             }
         }
 
         //
         // Choose an address to connect to based on most recently seen
         //
         CAddress addrConnect;
 
         // Only connect out to one peer per network group (/16 for IPv4). Do
         // this here so we don't have to critsect vNodes inside mapAddresses
         // critsect.
         int nOutbound = 0;
         std::set<std::vector<unsigned char>> setConnected;
         {
             LOCK(cs_vNodes);
             for (CNode *pnode : vNodes) {
                 if (!pnode->fInbound && !pnode->fAddnode) {
                     // Netgroups for inbound and addnode peers are not excluded
                     // because our goal here is to not use multiple of our
                     // limited outbound slots on a single netgroup but inbound
                     // and addnode peers do not use our outbound slots. Inbound
                     // peers also have the added issue that they're attacker
                     // controlled and could be used to prevent us from
                     // connecting to particular hosts if we used them here.
                     setConnected.insert(pnode->addr.GetGroup());
                     nOutbound++;
                 }
             }
         }
 
         // Feeler Connections
         //
         // Design goals:
         //  * Increase the number of connectable addresses in the tried table.
         //
         // Method:
         //  * Choose a random address from new and attempt to connect to it if
         //  we can connect successfully it is added to tried.
         //  * Start attempting feeler connections only after node finishes
         //  making outbound connections.
         //  * Only make a feeler connection once every few minutes.
         //
         bool fFeeler = false;
         if (nOutbound >= nMaxOutbound) {
             // The current time right now (in microseconds).
             int64_t nTime = GetTimeMicros();
             if (nTime > nNextFeeler) {
                 nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL);
                 fFeeler = true;
             } else {
                 continue;
             }
         }
 
         int64_t nANow = GetAdjustedTime();
         int nTries = 0;
         while (!interruptNet) {
             CAddrInfo addr = addrman.Select(fFeeler);
 
             // if we selected an invalid address, restart
             if (!addr.IsValid() || setConnected.count(addr.GetGroup()) ||
                 IsLocal(addr))
                 break;
 
             // If we didn't find an appropriate destination after trying 100
             // addresses fetched from addrman, stop this loop, and let the outer
             // loop run again (which sleeps, adds seed nodes, recalculates
             // already-connected network ranges, ...) before trying new addrman
             // addresses.
             nTries++;
             if (nTries > 100) break;
 
             if (IsLimited(addr)) continue;
 
             // only connect to full nodes
             if ((addr.nServices & REQUIRED_SERVICES) != REQUIRED_SERVICES)
                 continue;
 
             // only consider very recently tried nodes after 30 failed attempts
             if (nANow - addr.nLastTry < 600 && nTries < 30) continue;
 
             // only consider nodes missing relevant services after 40 failed
             // attempts and only if less than half the outbound are up.
             if ((addr.nServices & nRelevantServices) != nRelevantServices &&
                 (nTries < 40 || nOutbound >= (nMaxOutbound >> 1)))
                 continue;
 
             // do not allow non-default ports, unless after 50 invalid addresses
             // selected already.
             if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50)
                 continue;
 
             addrConnect = addr;
             break;
         }
 
         if (addrConnect.IsValid()) {
 
             if (fFeeler) {
                 // Add small amount of random noise before connection to avoid
                 // synchronization.
                 int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000);
                 if (!interruptNet.sleep_for(
                         std::chrono::milliseconds(randsleep)))
                     return;
                 LogPrint("net", "Making feeler connection to %s\n",
                          addrConnect.ToString());
             }
 
             OpenNetworkConnection(addrConnect,
                                   (int)setConnected.size() >=
                                       std::min(nMaxConnections - 1, 2),
                                   &grant, NULL, false, fFeeler);
         }
     }
 }
 
 std::vector<AddedNodeInfo> CConnman::GetAddedNodeInfo() {
     std::vector<AddedNodeInfo> ret;
 
     std::list<std::string> lAddresses(0);
     {
         LOCK(cs_vAddedNodes);
         ret.reserve(vAddedNodes.size());
         for (const std::string &strAddNode : vAddedNodes)
             lAddresses.push_back(strAddNode);
     }
 
     // Build a map of all already connected addresses (by IP:port and by name)
     // to inbound/outbound and resolved CService
     std::map<CService, bool> mapConnected;
     std::map<std::string, std::pair<bool, CService>> mapConnectedByName;
     {
         LOCK(cs_vNodes);
         for (const CNode *pnode : vNodes) {
             if (pnode->addr.IsValid()) {
                 mapConnected[pnode->addr] = pnode->fInbound;
             }
             std::string addrName = pnode->GetAddrName();
             if (!addrName.empty()) {
                 mapConnectedByName[std::move(addrName)] =
                     std::make_pair(pnode->fInbound,
                                    static_cast<const CService &>(pnode->addr));
             }
         }
     }
 
     for (const std::string &strAddNode : lAddresses) {
         CService service(
             LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort()));
         if (service.IsValid()) {
             // strAddNode is an IP:port
             auto it = mapConnected.find(service);
             if (it != mapConnected.end()) {
                 ret.push_back(
                     AddedNodeInfo{strAddNode, service, true, it->second});
             } else {
                 ret.push_back(
                     AddedNodeInfo{strAddNode, CService(), false, false});
             }
         } else {
             // strAddNode is a name
             auto it = mapConnectedByName.find(strAddNode);
             if (it != mapConnectedByName.end()) {
                 ret.push_back(AddedNodeInfo{strAddNode, it->second.second, true,
                                             it->second.first});
             } else {
                 ret.push_back(
                     AddedNodeInfo{strAddNode, CService(), false, false});
             }
         }
     }
 
     return ret;
 }
 
 void CConnman::ThreadOpenAddedConnections() {
     {
         LOCK(cs_vAddedNodes);
         if (mapMultiArgs.count("-addnode"))
             vAddedNodes = mapMultiArgs.at("-addnode");
     }
 
     while (true) {
         CSemaphoreGrant grant(*semAddnode);
         std::vector<AddedNodeInfo> vInfo = GetAddedNodeInfo();
         bool tried = false;
         for (const AddedNodeInfo &info : vInfo) {
             if (!info.fConnected) {
                 if (!grant.TryAcquire()) {
                     // If we've used up our semaphore and need a new one, lets
                     // not wait here since while we are waiting the
                     // addednodeinfo state might change.
                     break;
                 }
                 // If strAddedNode is an IP/port, decode it immediately, so
                 // OpenNetworkConnection can detect existing connections to that
                 // IP/port.
                 tried = true;
                 CService service(LookupNumeric(info.strAddedNode.c_str(),
                                                Params().GetDefaultPort()));
                 OpenNetworkConnection(CAddress(service, NODE_NONE), false,
                                       &grant, info.strAddedNode.c_str(), false,
                                       false, true);
                 if (!interruptNet.sleep_for(std::chrono::milliseconds(500)))
                     return;
             }
         }
         // Retry every 60 seconds if a connection was attempted, otherwise two
         // seconds.
         if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2)))
             return;
     }
 }
 
 // If successful, this moves the passed grant to the constructed node.
 bool CConnman::OpenNetworkConnection(const CAddress &addrConnect,
                                      bool fCountFailure,
                                      CSemaphoreGrant *grantOutbound,
                                      const char *pszDest, bool fOneShot,
                                      bool fFeeler, bool fAddnode) {
     //
     // Initiate outbound network connection
     //
     if (interruptNet) {
         return false;
     }
     if (!fNetworkActive) {
         return false;
     }
     if (!pszDest) {
         if (IsLocal(addrConnect) || FindNode((CNetAddr)addrConnect) ||
             IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort()))
             return false;
     } else if (FindNode(std::string(pszDest)))
         return false;
 
     CNode *pnode = ConnectNode(addrConnect, pszDest, fCountFailure);
 
     if (!pnode) return false;
     if (grantOutbound) grantOutbound->MoveTo(pnode->grantOutbound);
     if (fOneShot) pnode->fOneShot = true;
     if (fFeeler) pnode->fFeeler = true;
     if (fAddnode) pnode->fAddnode = true;
 
     GetNodeSignals().InitializeNode(pnode, *this);
     {
         LOCK(cs_vNodes);
         vNodes.push_back(pnode);
     }
 
     return true;
 }
 
 void CConnman::ThreadMessageHandler() {
     while (!flagInterruptMsgProc) {
         std::vector<CNode *> vNodesCopy;
         {
             LOCK(cs_vNodes);
             vNodesCopy = vNodes;
             for (CNode *pnode : vNodesCopy) {
                 pnode->AddRef();
             }
         }
 
         bool fMoreWork = false;
 
         for (CNode *pnode : vNodesCopy) {
             if (pnode->fDisconnect) continue;
 
             // Receive messages
             // FIXME: Pass the config down here.
             bool fMoreNodeWork = GetNodeSignals().ProcessMessages(
                 GetConfig(), pnode, *this, flagInterruptMsgProc);
             fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend);
             if (flagInterruptMsgProc) return;
 
             // Send messages
             {
                 LOCK(pnode->cs_sendProcessing);
                 GetNodeSignals().SendMessages(GetConfig(), pnode, *this,
                                               flagInterruptMsgProc);
             }
             if (flagInterruptMsgProc) return;
         }
 
         {
             LOCK(cs_vNodes);
             for (CNode *pnode : vNodesCopy) {
                 pnode->Release();
             }
         }
 
         std::unique_lock<std::mutex> lock(mutexMsgProc);
         if (!fMoreWork) {
             condMsgProc.wait_until(lock, std::chrono::steady_clock::now() +
                                              std::chrono::milliseconds(100),
                                    [this] { return fMsgProcWake; });
         }
         fMsgProcWake = false;
     }
 }
 
 bool CConnman::BindListenPort(const CService &addrBind, std::string &strError,
                               bool fWhitelisted) {
     strError = "";
     int nOne = 1;
 
     // Create socket for listening for incoming connections
     struct sockaddr_storage sockaddr;
     socklen_t len = sizeof(sockaddr);
     if (!addrBind.GetSockAddr((struct sockaddr *)&sockaddr, &len)) {
         strError = strprintf("Error: Bind address family for %s not supported",
                              addrBind.ToString());
         LogPrintf("%s\n", strError);
         return false;
     }
 
     SOCKET hListenSocket = socket(((struct sockaddr *)&sockaddr)->sa_family,
                                   SOCK_STREAM, IPPROTO_TCP);
     if (hListenSocket == INVALID_SOCKET) {
         strError = strprintf("Error: Couldn't open socket for incoming "
                              "connections (socket returned error %s)",
                              NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError);
         return false;
     }
     if (!IsSelectableSocket(hListenSocket)) {
         strError = "Error: Couldn't create a listenable socket for incoming "
                    "connections";
         LogPrintf("%s\n", strError);
         return false;
     }
 
 #ifndef WIN32
 #ifdef SO_NOSIGPIPE
     // Different way of disabling SIGPIPE on BSD
     setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void *)&nOne,
                sizeof(int));
 #endif
     // Allow binding if the port is still in TIME_WAIT state after
     // the program was closed and restarted.
     setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void *)&nOne,
                sizeof(int));
     // Disable Nagle's algorithm
     setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void *)&nOne,
                sizeof(int));
 #else
     setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char *)&nOne,
                sizeof(int));
     setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char *)&nOne,
                sizeof(int));
 #endif
 
     // Set to non-blocking, incoming connections will also inherit this
     if (!SetSocketNonBlocking(hListenSocket, true)) {
         strError = strprintf("BindListenPort: Setting listening socket to "
                              "non-blocking failed, error %s\n",
                              NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError);
         return false;
     }
 
     // Some systems don't have IPV6_V6ONLY but are always v6only; others do have
     // the option and enable it by default or not. Try to enable it, if
     // possible.
     if (addrBind.IsIPv6()) {
 #ifdef IPV6_V6ONLY
 #ifdef WIN32
         setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY,
                    (const char *)&nOne, sizeof(int));
 #else
         setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void *)&nOne,
                    sizeof(int));
 #endif
 #endif
 #ifdef WIN32
         int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
         setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL,
                    (const char *)&nProtLevel, sizeof(int));
 #endif
     }
 
     if (::bind(hListenSocket, (struct sockaddr *)&sockaddr, len) ==
         SOCKET_ERROR) {
         int nErr = WSAGetLastError();
         if (nErr == WSAEADDRINUSE) {
             strError = strprintf(_("Unable to bind to %s on this computer. %s "
                                    "is probably already running."),
                                  addrBind.ToString(), _(PACKAGE_NAME));
         } else {
             strError = strprintf(_("Unable to bind to %s on this computer "
                                    "(bind returned error %s)"),
                                  addrBind.ToString(), NetworkErrorString(nErr));
         }
         LogPrintf("%s\n", strError);
         CloseSocket(hListenSocket);
         return false;
     }
     LogPrintf("Bound to %s\n", addrBind.ToString());
 
     // Listen for incoming connections
     if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) {
         strError = strprintf(_("Error: Listening for incoming connections "
                                "failed (listen returned error %s)"),
                              NetworkErrorString(WSAGetLastError()));
         LogPrintf("%s\n", strError);
         CloseSocket(hListenSocket);
         return false;
     }
 
     vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted));
 
     if (addrBind.IsRoutable() && fDiscover && !fWhitelisted)
         AddLocal(addrBind, LOCAL_BIND);
 
     return true;
 }
 
 void Discover(boost::thread_group &threadGroup) {
     if (!fDiscover) return;
 
 #ifdef WIN32
     // Get local host IP
     char pszHostName[256] = "";
     if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) {
         std::vector<CNetAddr> vaddr;
         if (LookupHost(pszHostName, vaddr, 0, true)) {
             for (const CNetAddr &addr : vaddr) {
                 if (AddLocal(addr, LOCAL_IF))
                     LogPrintf("%s: %s - %s\n", __func__, pszHostName,
                               addr.ToString());
             }
         }
     }
 #else
     // Get local host ip
     struct ifaddrs *myaddrs;
     if (getifaddrs(&myaddrs) == 0) {
         for (struct ifaddrs *ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next) {
             if (ifa->ifa_addr == NULL) continue;
             if ((ifa->ifa_flags & IFF_UP) == 0) continue;
             if (strcmp(ifa->ifa_name, "lo") == 0) continue;
             if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
             if (ifa->ifa_addr->sa_family == AF_INET) {
                 struct sockaddr_in *s4 = (struct sockaddr_in *)(ifa->ifa_addr);
                 CNetAddr addr(s4->sin_addr);
                 if (AddLocal(addr, LOCAL_IF))
                     LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name,
                               addr.ToString());
             } else if (ifa->ifa_addr->sa_family == AF_INET6) {
                 struct sockaddr_in6 *s6 =
                     (struct sockaddr_in6 *)(ifa->ifa_addr);
                 CNetAddr addr(s6->sin6_addr);
                 if (AddLocal(addr, LOCAL_IF))
                     LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name,
                               addr.ToString());
             }
         }
         freeifaddrs(myaddrs);
     }
 #endif
 }
 
 void CConnman::SetNetworkActive(bool active) {
     if (fDebug) {
         LogPrint("net", "SetNetworkActive: %s\n", active);
     }
 
     if (!active) {
         fNetworkActive = false;
 
         LOCK(cs_vNodes);
         // Close sockets to all nodes
         for (CNode *pnode : vNodes) {
             pnode->CloseSocketDisconnect();
         }
     } else {
         fNetworkActive = true;
     }
 
     uiInterface.NotifyNetworkActiveChanged(fNetworkActive);
 }
 
 CConnman::CConnman(uint64_t nSeed0In, uint64_t nSeed1In)
     : nSeed0(nSeed0In), nSeed1(nSeed1In) {
     fNetworkActive = true;
     setBannedIsDirty = false;
     fAddressesInitialized = false;
     nLastNodeId = 0;
     nSendBufferMaxSize = 0;
     nReceiveFloodSize = 0;
     semOutbound = NULL;
     semAddnode = NULL;
     nMaxConnections = 0;
     nMaxOutbound = 0;
     nMaxAddnode = 0;
     nBestHeight = 0;
     clientInterface = NULL;
     flagInterruptMsgProc = false;
 }
 
 NodeId CConnman::GetNewNodeId() {
     return nLastNodeId.fetch_add(1, std::memory_order_relaxed);
 }
 
 bool CConnman::Start(CScheduler &scheduler, std::string &strNodeError,
                      Options connOptions) {
     nTotalBytesRecv = 0;
     nTotalBytesSent = 0;
     nMaxOutboundTotalBytesSentInCycle = 0;
     nMaxOutboundCycleStartTime = 0;
 
     nRelevantServices = connOptions.nRelevantServices;
     nLocalServices = connOptions.nLocalServices;
     nMaxConnections = connOptions.nMaxConnections;
     nMaxOutbound = std::min((connOptions.nMaxOutbound), nMaxConnections);
     nMaxAddnode = connOptions.nMaxAddnode;
     nMaxFeeler = connOptions.nMaxFeeler;
 
     nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
     nReceiveFloodSize = connOptions.nReceiveFloodSize;
 
     nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
     nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe;
 
     SetBestHeight(connOptions.nBestHeight);
 
     clientInterface = connOptions.uiInterface;
     if (clientInterface)
         clientInterface->InitMessage(_("Loading addresses..."));
     // Load addresses from peers.dat
     int64_t nStart = GetTimeMillis();
     {
         CAddrDB adb;
-        if (adb.Read(addrman))
+        if (adb.Read(addrman)) {
             LogPrintf("Loaded %i addresses from peers.dat  %dms\n",
                       addrman.size(), GetTimeMillis() - nStart);
-        else {
-            addrman.Clear(); // Addrman can be in an inconsistent state after
-                             // failure, reset it
+        } else {
+            // Addrman can be in an inconsistent state after failure, reset it
+            addrman.Clear();
             LogPrintf("Invalid or missing peers.dat; recreating\n");
             DumpAddresses();
         }
     }
     if (clientInterface) clientInterface->InitMessage(_("Loading banlist..."));
     // Load addresses from banlist.dat
     nStart = GetTimeMillis();
     CBanDB bandb;
     banmap_t banmap;
     if (bandb.Read(banmap)) {
         // thread save setter
         SetBanned(banmap);
         // no need to write down, just read data
         SetBannedSetDirty(false);
         // sweep out unused entries
         SweepBanned();
 
         LogPrint("net",
                  "Loaded %d banned node ips/subnets from banlist.dat  %dms\n",
                  banmap.size(), GetTimeMillis() - nStart);
     } else {
         LogPrintf("Invalid or missing banlist.dat; recreating\n");
         // force write
         SetBannedSetDirty(true);
         DumpBanlist();
     }
 
     uiInterface.InitMessage(_("Starting network threads..."));
 
     fAddressesInitialized = true;
 
     if (semOutbound == NULL) {
         // initialize semaphore
         semOutbound = new CSemaphore(
             std::min((nMaxOutbound + nMaxFeeler), nMaxConnections));
     }
     if (semAddnode == NULL) {
         // initialize semaphore
         semAddnode = new CSemaphore(nMaxAddnode);
     }
 
     //
     // Start threads
     //
     InterruptSocks5(false);
     interruptNet.reset();
     flagInterruptMsgProc = false;
 
     {
         std::unique_lock<std::mutex> lock(mutexMsgProc);
         fMsgProcWake = false;
     }
 
     // Send and receive from sockets, accept connections
     threadSocketHandler = std::thread(
         &TraceThread<std::function<void()>>, "net",
         std::function<void()>(std::bind(&CConnman::ThreadSocketHandler, this)));
 
     if (!GetBoolArg("-dnsseed", true))
         LogPrintf("DNS seeding disabled\n");
     else
         threadDNSAddressSeed =
             std::thread(&TraceThread<std::function<void()>>, "dnsseed",
                         std::function<void()>(
                             std::bind(&CConnman::ThreadDNSAddressSeed, this)));
 
     // Initiate outbound connections from -addnode
     threadOpenAddedConnections =
         std::thread(&TraceThread<std::function<void()>>, "addcon",
                     std::function<void()>(std::bind(
                         &CConnman::ThreadOpenAddedConnections, this)));
 
     // Initiate outbound connections unless connect=0
     if (!mapMultiArgs.count("-connect") ||
         mapMultiArgs.at("-connect").size() != 1 ||
         mapMultiArgs.at("-connect")[0] != "0")
         threadOpenConnections =
             std::thread(&TraceThread<std::function<void()>>, "opencon",
                         std::function<void()>(
                             std::bind(&CConnman::ThreadOpenConnections, this)));
 
     // Process messages
     threadMessageHandler =
         std::thread(&TraceThread<std::function<void()>>, "msghand",
                     std::function<void()>(
                         std::bind(&CConnman::ThreadMessageHandler, this)));
 
     // Dump network addresses
     scheduler.scheduleEvery(boost::bind(&CConnman::DumpData, this),
                             DUMP_ADDRESSES_INTERVAL);
 
     return true;
 }
 
 class CNetCleanup {
 public:
     CNetCleanup() {}
 
     ~CNetCleanup() {
 #ifdef WIN32
         // Shutdown Windows Sockets
         WSACleanup();
 #endif
     }
 } instance_of_cnetcleanup;
 
 void CConnman::Interrupt() {
     {
         std::lock_guard<std::mutex> lock(mutexMsgProc);
         flagInterruptMsgProc = true;
     }
     condMsgProc.notify_all();
 
     interruptNet();
     InterruptSocks5(true);
 
     if (semOutbound) {
         for (int i = 0; i < (nMaxOutbound + nMaxFeeler); i++) {
             semOutbound->post();
         }
     }
 
     if (semAddnode) {
         for (int i = 0; i < nMaxAddnode; i++) {
             semAddnode->post();
         }
     }
 }
 
 void CConnman::Stop() {
     if (threadMessageHandler.joinable()) threadMessageHandler.join();
     if (threadOpenConnections.joinable()) threadOpenConnections.join();
     if (threadOpenAddedConnections.joinable())
         threadOpenAddedConnections.join();
     if (threadDNSAddressSeed.joinable()) threadDNSAddressSeed.join();
     if (threadSocketHandler.joinable()) threadSocketHandler.join();
 
     if (fAddressesInitialized) {
         DumpData();
         fAddressesInitialized = false;
     }
 
     // Close sockets
     for (CNode *pnode : vNodes) {
         pnode->CloseSocketDisconnect();
     }
     for (ListenSocket &hListenSocket : vhListenSocket) {
         if (hListenSocket.socket != INVALID_SOCKET)
             if (!CloseSocket(hListenSocket.socket))
                 LogPrintf("CloseSocket(hListenSocket) failed with error %s\n",
                           NetworkErrorString(WSAGetLastError()));
     }
 
     // clean up some globals (to help leak detection)
     for (CNode *pnode : vNodes) {
         DeleteNode(pnode);
     }
     for (CNode *pnode : vNodesDisconnected) {
         DeleteNode(pnode);
     }
     vNodes.clear();
     vNodesDisconnected.clear();
     vhListenSocket.clear();
     delete semOutbound;
     semOutbound = NULL;
     delete semAddnode;
     semAddnode = NULL;
 }
 
 void CConnman::DeleteNode(CNode *pnode) {
     assert(pnode);
     bool fUpdateConnectionTime = false;
     GetNodeSignals().FinalizeNode(pnode->GetId(), fUpdateConnectionTime);
     if (fUpdateConnectionTime) addrman.Connected(pnode->addr);
     delete pnode;
 }
 
 CConnman::~CConnman() {
     Interrupt();
     Stop();
 }
 
 size_t CConnman::GetAddressCount() const {
     return addrman.size();
 }
 
 void CConnman::SetServices(const CService &addr, ServiceFlags nServices) {
     addrman.SetServices(addr, nServices);
 }
 
 void CConnman::MarkAddressGood(const CAddress &addr) {
     addrman.Good(addr);
 }
 
 void CConnman::AddNewAddress(const CAddress &addr, const CAddress &addrFrom,
                              int64_t nTimePenalty) {
     addrman.Add(addr, addrFrom, nTimePenalty);
 }
 
 void CConnman::AddNewAddresses(const std::vector<CAddress> &vAddr,
                                const CAddress &addrFrom, int64_t nTimePenalty) {
     addrman.Add(vAddr, addrFrom, nTimePenalty);
 }
 
 std::vector<CAddress> CConnman::GetAddresses() {
     return addrman.GetAddr();
 }
 
 bool CConnman::AddNode(const std::string &strNode) {
     LOCK(cs_vAddedNodes);
     for (std::vector<std::string>::const_iterator it = vAddedNodes.begin();
          it != vAddedNodes.end(); ++it) {
         if (strNode == *it) return false;
     }
 
     vAddedNodes.push_back(strNode);
     return true;
 }
 
 bool CConnman::RemoveAddedNode(const std::string &strNode) {
     LOCK(cs_vAddedNodes);
     for (std::vector<std::string>::iterator it = vAddedNodes.begin();
          it != vAddedNodes.end(); ++it) {
         if (strNode == *it) {
             vAddedNodes.erase(it);
             return true;
         }
     }
     return false;
 }
 
 size_t CConnman::GetNodeCount(NumConnections flags) {
     LOCK(cs_vNodes);
-    if (flags == CConnman::CONNECTIONS_ALL) // Shortcut if we want total
-        return vNodes.size();
+    // Shortcut if we want total
+    if (flags == CConnman::CONNECTIONS_ALL) return vNodes.size();
 
     int nNum = 0;
     for (std::vector<CNode *>::const_iterator it = vNodes.begin();
          it != vNodes.end(); ++it)
         if (flags & ((*it)->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT))
             nNum++;
 
     return nNum;
 }
 
 void CConnman::GetNodeStats(std::vector<CNodeStats> &vstats) {
     vstats.clear();
     LOCK(cs_vNodes);
     vstats.reserve(vNodes.size());
     for (std::vector<CNode *>::iterator it = vNodes.begin(); it != vNodes.end();
          ++it) {
         CNode *pnode = *it;
         vstats.emplace_back();
         pnode->copyStats(vstats.back());
     }
 }
 
 bool CConnman::DisconnectNode(const std::string &strNode) {
     LOCK(cs_vNodes);
     if (CNode *pnode = FindNode(strNode)) {
         pnode->fDisconnect = true;
         return true;
     }
     return false;
 }
 bool CConnman::DisconnectNode(NodeId id) {
     LOCK(cs_vNodes);
     for (CNode *pnode : vNodes) {
         if (id == pnode->id) {
             pnode->fDisconnect = true;
             return true;
         }
     }
     return false;
 }
 
 void CConnman::RecordBytesRecv(uint64_t bytes) {
     LOCK(cs_totalBytesRecv);
     nTotalBytesRecv += bytes;
 }
 
 void CConnman::RecordBytesSent(uint64_t bytes) {
     LOCK(cs_totalBytesSent);
     nTotalBytesSent += bytes;
 
     uint64_t now = GetTime();
     if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) {
         // timeframe expired, reset cycle
         nMaxOutboundCycleStartTime = now;
         nMaxOutboundTotalBytesSentInCycle = 0;
     }
 
     // TODO, exclude whitebind peers
     nMaxOutboundTotalBytesSentInCycle += bytes;
 }
 
 void CConnman::SetMaxOutboundTarget(uint64_t limit) {
     LOCK(cs_totalBytesSent);
     nMaxOutboundLimit = limit;
 }
 
 uint64_t CConnman::GetMaxOutboundTarget() {
     LOCK(cs_totalBytesSent);
     return nMaxOutboundLimit;
 }
 
 uint64_t CConnman::GetMaxOutboundTimeframe() {
     LOCK(cs_totalBytesSent);
     return nMaxOutboundTimeframe;
 }
 
 uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0) return 0;
 
     if (nMaxOutboundCycleStartTime == 0) return nMaxOutboundTimeframe;
 
     uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
     uint64_t now = GetTime();
     return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
 }
 
 void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundTimeframe != timeframe) {
         // reset measure-cycle in case of changing the timeframe.
         nMaxOutboundCycleStartTime = GetTime();
     }
     nMaxOutboundTimeframe = timeframe;
 }
 
 bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0) return false;
 
     if (historicalBlockServingLimit) {
         // keep a large enough buffer to at least relay each block once.
         uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
         // FIXME: Pass the config down there instead of using nMaxBlockSize.
         uint64_t buffer = timeLeftInCycle / 600 * nMaxBlockSize;
         if (buffer >= nMaxOutboundLimit ||
             nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
             return true;
     } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
         return true;
 
     return false;
 }
 
 uint64_t CConnman::GetOutboundTargetBytesLeft() {
     LOCK(cs_totalBytesSent);
     if (nMaxOutboundLimit == 0) return 0;
 
     return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
                ? 0
                : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
 }
 
 uint64_t CConnman::GetTotalBytesRecv() {
     LOCK(cs_totalBytesRecv);
     return nTotalBytesRecv;
 }
 
 uint64_t CConnman::GetTotalBytesSent() {
     LOCK(cs_totalBytesSent);
     return nTotalBytesSent;
 }
 
 ServiceFlags CConnman::GetLocalServices() const {
     return nLocalServices;
 }
 
 void CConnman::SetBestHeight(int height) {
     nBestHeight.store(height, std::memory_order_release);
 }
 
 int CConnman::GetBestHeight() const {
     return nBestHeight.load(std::memory_order_acquire);
 }
 
 unsigned int CConnman::GetReceiveFloodSize() const {
     return nReceiveFloodSize;
 }
 unsigned int CConnman::GetSendBufferSize() const {
     return nSendBufferMaxSize;
 }
 
 CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn,
              int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn,
              uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn,
              const std::string &addrNameIn, bool fInboundIn)
     : nTimeConnected(GetSystemTimeInSeconds()), addr(addrIn),
       fInbound(fInboundIn), id(idIn), nKeyedNetGroup(nKeyedNetGroupIn),
       addrKnown(5000, 0.001), filterInventoryKnown(50000, 0.000001),
       nLocalHostNonce(nLocalHostNonceIn), nLocalServices(nLocalServicesIn),
       nMyStartingHeight(nMyStartingHeightIn), nSendVersion(0) {
     nServices = NODE_NONE;
     nServicesExpected = NODE_NONE;
     hSocket = hSocketIn;
     nRecvVersion = INIT_PROTO_VERSION;
     nLastSend = 0;
     nLastRecv = 0;
     nSendBytes = 0;
     nRecvBytes = 0;
     nTimeOffset = 0;
     addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
     nVersion = 0;
     strSubVer = "";
     fWhitelisted = false;
     fOneShot = false;
     fAddnode = false;
     fClient = false; // set by version message
     fFeeler = false;
     fSuccessfullyConnected = false;
     fDisconnect = false;
     nRefCount = 0;
     nSendSize = 0;
     nSendOffset = 0;
     hashContinue = uint256();
     nStartingHeight = -1;
     filterInventoryKnown.reset();
     fSendMempool = false;
     fGetAddr = false;
     nNextLocalAddrSend = 0;
     nNextAddrSend = 0;
     nNextInvSend = 0;
     fRelayTxes = false;
     fSentAddr = false;
     pfilter = new CBloomFilter();
     timeLastMempoolReq = 0;
     nLastBlockTime = 0;
     nLastTXTime = 0;
     nPingNonceSent = 0;
     nPingUsecStart = 0;
     nPingUsecTime = 0;
     fPingQueued = false;
     nMinPingUsecTime = std::numeric_limits<int64_t>::max();
     minFeeFilter = 0;
     lastSentFeeFilter = 0;
     nextSendTimeFeeFilter = 0;
     fPauseRecv = false;
     fPauseSend = false;
     nProcessQueueSize = 0;
 
     for (const std::string &msg : getAllNetMessageTypes()) {
         mapRecvBytesPerMsgCmd[msg] = 0;
     }
     mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;
 
     if (fLogIPs)
         LogPrint("net", "Added connection to %s peer=%d\n", addrName, id);
     else
         LogPrint("net", "Added connection peer=%d\n", id);
 }
 
 CNode::~CNode() {
     CloseSocket(hSocket);
 
     if (pfilter) delete pfilter;
 }
 
 void CNode::AskFor(const CInv &inv) {
     if (mapAskFor.size() > MAPASKFOR_MAX_SZ ||
-        setAskFor.size() > SETASKFOR_MAX_SZ)
+        setAskFor.size() > SETASKFOR_MAX_SZ) {
         return;
+    }
+
     // a peer may not have multiple non-responded queue positions for a single
     // inv item.
     if (!setAskFor.insert(inv.hash).second) return;
 
     // We're using mapAskFor as a priority queue, the key is the earliest time
     // the request can be sent.
     int64_t nRequestTime;
     limitedmap<uint256, int64_t>::const_iterator it =
         mapAlreadyAskedFor.find(inv.hash);
     if (it != mapAlreadyAskedFor.end()) {
         nRequestTime = it->second;
     } else {
         nRequestTime = 0;
     }
     LogPrint("net", "askfor %s  %d (%s) peer=%d\n", inv.ToString(),
              nRequestTime,
              DateTimeStrFormat("%H:%M:%S", nRequestTime / 1000000), id);
 
     // Make sure not to reuse time indexes to keep things in the same order
     int64_t nNow = GetTimeMicros() - 1000000;
     static int64_t nLastTime;
     ++nLastTime;
     nNow = std::max(nNow, nLastTime);
     nLastTime = nNow;
 
     // Each retry is 2 minutes after the last
     nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow);
     if (it != mapAlreadyAskedFor.end())
         mapAlreadyAskedFor.update(it, nRequestTime);
     else
         mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime));
     mapAskFor.insert(std::make_pair(nRequestTime, inv));
 }
 
 bool CConnman::NodeFullyConnected(const CNode *pnode) {
     return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect;
 }
 
 void CConnman::PushMessage(CNode *pnode, CSerializedNetMsg &&msg) {
     size_t nMessageSize = msg.data.size();
     size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE;
     LogPrint("net", "sending %s (%d bytes) peer=%d\n",
              SanitizeString(msg.command.c_str()), nMessageSize, pnode->id);
 
     std::vector<unsigned char> serializedHeader;
     serializedHeader.reserve(CMessageHeader::HEADER_SIZE);
     uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize);
     CMessageHeader hdr(Params().MessageStart(), msg.command.c_str(),
                        nMessageSize);
     memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE);
 
     CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr};
 
     size_t nBytesSent = 0;
     {
         LOCK(pnode->cs_vSend);
         bool optimisticSend(pnode->vSendMsg.empty());
 
         // log total amount of bytes per command
         pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize;
         pnode->nSendSize += nTotalSize;
 
         if (pnode->nSendSize > nSendBufferMaxSize) pnode->fPauseSend = true;
         pnode->vSendMsg.push_back(std::move(serializedHeader));
         if (nMessageSize) pnode->vSendMsg.push_back(std::move(msg.data));
 
         // If write queue empty, attempt "optimistic write"
         if (optimisticSend == true) nBytesSent = SocketSendData(pnode);
     }
     if (nBytesSent) RecordBytesSent(nBytesSent);
 }
 
 bool CConnman::ForNode(NodeId id, std::function<bool(CNode *pnode)> func) {
     CNode *found = nullptr;
     LOCK(cs_vNodes);
     for (auto &&pnode : vNodes) {
         if (pnode->id == id) {
             found = pnode;
             break;
         }
     }
     return found != nullptr && NodeFullyConnected(found) && func(found);
 }
 
 int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) {
     return nNow + (int64_t)(log1p(GetRand(1ULL << 48) *
                                   -0.0000000000000035527136788 /* -1/2^48 */) *
                                 average_interval_seconds * -1000000.0 +
                             0.5);
 }
 
 CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const {
     return CSipHasher(nSeed0, nSeed1).Write(id);
 }
 
 uint64_t CConnman::CalculateKeyedNetGroup(const CAddress &ad) const {
     std::vector<unsigned char> vchNetGroup(ad.GetGroup());
 
     return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP)
         .Write(&vchNetGroup[0], vchNetGroup.size())
         .Finalize();
 }