diff --git a/contrib/seeds/README.md b/contrib/seeds/README.md index afe902fd7..1f2279ede 100644 --- a/contrib/seeds/README.md +++ b/contrib/seeds/README.md @@ -1,19 +1,21 @@ # Seeds Utility to generate the seeds.txt list that is compiled into the client (see [src/chainparamsseeds.h](/src/chainparamsseeds.h) and other utilities in [contrib/seeds](/contrib/seeds)). Be sure to update `PATTERN_AGENT` in `makeseeds.py` to include the current version, -and remove old versions as necessary. +and remove old versions as necessary (at a minimum when GetDesireableServiceFlags +changes its default return value, as those are the services which seeds are added +to addrman with). The seeds compiled into the release are created from sipa's DNS seed data, like this: curl -s http://bitcoin.sipa.be/seeds.txt > seeds_main.txt python3 makeseeds.py < seeds_main.txt > nodes_main.txt python3 generate-seeds.py . > ../../src/chainparamsseeds.h ## Dependencies Ubuntu: sudo apt-get install python3-dnspython diff --git a/src/chainparams.cpp b/src/chainparams.cpp index 709079c80..8c61ffa4a 100644 --- a/src/chainparams.cpp +++ b/src/chainparams.cpp @@ -1,494 +1,497 @@ // Copyright (c) 2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Copyright (c) 2017-2018 The Bitcoin developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include "chainparams.h" #include "consensus/merkle.h" #include "tinyformat.h" #include "util.h" #include "utilstrencodings.h" #include #include "chainparamsseeds.h" static CBlock CreateGenesisBlock(const char *pszTimestamp, const CScript &genesisOutputScript, uint32_t nTime, uint32_t nNonce, uint32_t nBits, int32_t nVersion, const Amount genesisReward) { CMutableTransaction txNew; txNew.nVersion = 1; txNew.vin.resize(1); txNew.vout.resize(1); txNew.vin[0].scriptSig = CScript() << 486604799 << CScriptNum(4) << std::vector((const uint8_t *)pszTimestamp, (const uint8_t *)pszTimestamp + strlen(pszTimestamp)); txNew.vout[0].nValue = genesisReward; txNew.vout[0].scriptPubKey = genesisOutputScript; CBlock genesis; genesis.nTime = nTime; genesis.nBits = nBits; genesis.nNonce = nNonce; genesis.nVersion = nVersion; genesis.vtx.push_back(MakeTransactionRef(std::move(txNew))); genesis.hashPrevBlock.SetNull(); genesis.hashMerkleRoot = BlockMerkleRoot(genesis); return genesis; } /** * Build the genesis block. Note that the output of its generation transaction * cannot be spent since it did not originally exist in the database. * * CBlock(hash=000000000019d6, ver=1, hashPrevBlock=00000000000000, * hashMerkleRoot=4a5e1e, nTime=1231006505, nBits=1d00ffff, nNonce=2083236893, * vtx=1) * CTransaction(hash=4a5e1e, ver=1, vin.size=1, vout.size=1, nLockTime=0) * CTxIn(COutPoint(000000, -1), coinbase * 04ffff001d0104455468652054696d65732030332f4a616e2f32303039204368616e63656c6c6f72206f6e206272696e6b206f66207365636f6e64206261696c6f757420666f722062616e6b73) * CTxOut(nValue=50.00000000, scriptPubKey=0x5F1DF16B2B704C8A578D0B) * vMerkleTree: 4a5e1e */ static CBlock CreateGenesisBlock(uint32_t nTime, uint32_t nNonce, uint32_t nBits, int32_t nVersion, const Amount genesisReward) { const char *pszTimestamp = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks"; const CScript genesisOutputScript = CScript() << ParseHex("04678afdb0fe5548271967f1a67130b7105cd6a828e03909" "a67962e0ea1f61deb649f6bc3f4cef38c4f35504e51ec112" "de5c384df7ba0b8d578a4c702b6bf11d5f") << OP_CHECKSIG; return CreateGenesisBlock(pszTimestamp, genesisOutputScript, nTime, nNonce, nBits, nVersion, genesisReward); } /** * Main network */ /** * What makes a good checkpoint block? * + Is surrounded by blocks with reasonable timestamps * (no blocks before with a timestamp after, none after with * timestamp before) * + Contains no strange transactions */ class CMainParams : public CChainParams { public: CMainParams() { strNetworkID = "main"; consensus.nSubsidyHalvingInterval = 210000; consensus.BIP34Height = 227931; consensus.BIP34Hash = uint256S( "000000000000024b89b42a942fe0d9fea3bb44ab7bd1b19115dd6a759c0808b8"); // 000000000000000004c2b624ed5d7756c508d90fd0da2c7c679febfa6c4735f0 consensus.BIP65Height = 388381; // 00000000000000000379eaa19dce8c9b722d46ae6a57c2f1a988119488b50931 consensus.BIP66Height = 363725; // 000000000000000004a1b34462cb8aeebd5799177f7a29cf28f2d1961716b5b5 consensus.CSVHeight = 419328; consensus.powLimit = uint256S( "00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); // two weeks consensus.nPowTargetTimespan = 14 * 24 * 60 * 60; consensus.nPowTargetSpacing = 10 * 60; consensus.fPowAllowMinDifficultyBlocks = false; consensus.fPowNoRetargeting = false; // 95% of 2016 consensus.nRuleChangeActivationThreshold = 1916; // nPowTargetTimespan / nPowTargetSpacing consensus.nMinerConfirmationWindow = 2016; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].bit = 28; // January 1, 2008 consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nStartTime = 1199145601; // December 31, 2008 consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nTimeout = 1230767999; // The best chain should have at least this much work. consensus.nMinimumChainWork = uint256S( "000000000000000000000000000000000000000000b8702680bcb0fec8548e05"); // By default assume that the signatures in ancestors of this block are // valid. consensus.defaultAssumeValid = uint256S( "0000000000000000007e11995a8969e2d8838e72da271cdd1903ae4c6753064a"); // August 1, 2017 hard fork consensus.uahfHeight = 478558; // November 13, 2017 hard fork consensus.daaHeight = 504031; // Nov 15, 2018 hard fork consensus.magneticAnomalyActivationTime = 1542300000; // Wed, 15 May 2019 12:00:00 UTC hard fork consensus.greatWallActivationTime = 1557921600; /** * The message start string is designed to be unlikely to occur in * normal data. The characters are rarely used upper ASCII, not valid as * UTF-8, and produce a large 32-bit integer with any alignment. */ diskMagic[0] = 0xf9; diskMagic[1] = 0xbe; diskMagic[2] = 0xb4; diskMagic[3] = 0xd9; netMagic[0] = 0xe3; netMagic[1] = 0xe1; netMagic[2] = 0xf3; netMagic[3] = 0xe8; nDefaultPort = 8333; nPruneAfterHeight = 100000; genesis = CreateGenesisBlock(1231006505, 2083236893, 0x1d00ffff, 1, 50 * COIN); consensus.hashGenesisBlock = genesis.GetHash(); assert(consensus.hashGenesisBlock == uint256S("000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1" "b60a8ce26f")); assert(genesis.hashMerkleRoot == uint256S("4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b" "7afdeda33b")); - // Note that of those with the service bits flag, most only support a - // subset of possible options. + // Note that of those which support the service bits prefix, most only + // support a subset of possible options. This is fine at runtime as + // we'll fall back to using them as a oneshot if they dont support the + // service bits we want, but we should get them updated to support all + // service bits wanted by any release ASAP to avoid it where possible. // Bitcoin ABC seeder - vSeeds.emplace_back("seed.bitcoinabc.org", true); + vSeeds.emplace_back("seed.bitcoinabc.org"); // bitcoinforks seeders - vSeeds.emplace_back("seed-abc.bitcoinforks.org", true); + vSeeds.emplace_back("seed-abc.bitcoinforks.org"); // BU backed seeder - vSeeds.emplace_back("btccash-seeder.bitcoinunlimited.info", true); + vSeeds.emplace_back("btccash-seeder.bitcoinunlimited.info"); // Bitprim - vSeeds.emplace_back("seed.bitprim.org", true); + vSeeds.emplace_back("seed.bitprim.org"); // Amaury SÉCHET - vSeeds.emplace_back("seed.deadalnix.me", true); + vSeeds.emplace_back("seed.deadalnix.me"); // criptolayer.net - vSeeds.emplace_back("seeder.criptolayer.net", true); + vSeeds.emplace_back("seeder.criptolayer.net"); base58Prefixes[PUBKEY_ADDRESS] = std::vector(1, 0); base58Prefixes[SCRIPT_ADDRESS] = std::vector(1, 5); base58Prefixes[SECRET_KEY] = std::vector(1, 128); base58Prefixes[EXT_PUBLIC_KEY] = {0x04, 0x88, 0xB2, 0x1E}; base58Prefixes[EXT_SECRET_KEY] = {0x04, 0x88, 0xAD, 0xE4}; cashaddrPrefix = "bitcoincash"; vFixedSeeds = std::vector( pnSeed6_main, pnSeed6_main + ARRAYLEN(pnSeed6_main)); fDefaultConsistencyChecks = false; fRequireStandard = true; fMineBlocksOnDemand = false; checkpointData = { .mapCheckpoints = { {11111, uint256S("0000000069e244f73d78e8fd29ba2fd2ed618bd6fa2ee" "92559f542fdb26e7c1d")}, {33333, uint256S("000000002dd5588a74784eaa7ab0507a18ad16a236e7b" "1ce69f00d7ddfb5d0a6")}, {74000, uint256S("0000000000573993a3c9e41ce34471c079dcf5f52a0e8" "24a81e7f953b8661a20")}, {105000, uint256S("00000000000291ce28027faea320c8d2b054b2e0fe44" "a773f3eefb151d6bdc97")}, {134444, uint256S("00000000000005b12ffd4cd315cd34ffd4a594f430ac" "814c91184a0d42d2b0fe")}, {168000, uint256S("000000000000099e61ea72015e79632f216fe6cb33d7" "899acb35b75c8303b763")}, {193000, uint256S("000000000000059f452a5f7340de6682a977387c1701" "0ff6e6c3bd83ca8b1317")}, {210000, uint256S("000000000000048b95347e83192f69cf0366076336c6" "39f9b7228e9ba171342e")}, {216116, uint256S("00000000000001b4f4b433e81ee46494af945cf96014" "816a4e2370f11b23df4e")}, {225430, uint256S("00000000000001c108384350f74090433e7fcf79a606" "b8e797f065b130575932")}, {250000, uint256S("000000000000003887df1f29024b06fc2200b55f8af8" "f35453d7be294df2d214")}, {279000, uint256S("0000000000000001ae8c72a0b0c301f67e3afca10e81" "9efa9041e458e9bd7e40")}, {295000, uint256S("00000000000000004d9b4ef50f0f9d686fd69db2e03a" "f35a100370c64632a983")}, // UAHF fork block. {478558, uint256S("0000000000000000011865af4122fe3b144e2cbeea86" "142e8ff2fb4107352d43")}, // Nov, 13 DAA activation block. {504031, uint256S("0000000000000000011ebf65b60d0a3de80b8175be70" "9d653b4c1a1beeb6ab9c")}, // Monolith activation. {530359, uint256S("0000000000000000011ada8bd08f46074f44a8f15539" "6f43e38acf9501c49103")}, }}; // Data as of block // 000000000000000001d2ce557406b017a928be25ee98906397d339c3f68eec5d // (height 523992). chainTxData = ChainTxData{ // UNIX timestamp of last known number of transactions. 1522608016, // Total number of transactions between genesis and that timestamp // (the tx=... number in the SetBestChain debug.log lines) 248589038, // Estimated number of transactions per second after that timestamp. 3.2}; } }; /** * Testnet (v3) */ class CTestNetParams : public CChainParams { public: CTestNetParams() { strNetworkID = "test"; consensus.nSubsidyHalvingInterval = 210000; consensus.BIP34Height = 21111; consensus.BIP34Hash = uint256S( "0000000023b3a96d3484e5abb3755c413e7d41500f8e2a5c3f0dd01299cd8ef8"); // 00000000007f6655f22f98e72ed80d8b06dc761d5da09df0fa1dc4be4f861eb6 consensus.BIP65Height = 581885; // 000000002104c8c45e99a8853285a3b592602a3ccde2b832481da85e9e4ba182 consensus.BIP66Height = 330776; // 00000000025e930139bac5c6c31a403776da130831ab85be56578f3fa75369bb consensus.CSVHeight = 770112; consensus.powLimit = uint256S( "00000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); // two weeks consensus.nPowTargetTimespan = 14 * 24 * 60 * 60; consensus.nPowTargetSpacing = 10 * 60; consensus.fPowAllowMinDifficultyBlocks = true; consensus.fPowNoRetargeting = false; // 75% for testchains consensus.nRuleChangeActivationThreshold = 1512; // nPowTargetTimespan / nPowTargetSpacing consensus.nMinerConfirmationWindow = 2016; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].bit = 28; // January 1, 2008 consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nStartTime = 1199145601; // December 31, 2008 consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nTimeout = 1230767999; // The best chain should have at least this much work. consensus.nMinimumChainWork = uint256S( "000000000000000000000000000000000000000000000030015a07e503af3227"); // By default assume that the signatures in ancestors of this block are // valid. consensus.defaultAssumeValid = uint256S( "00000000000000ba5624709777f8df34b911c16a33a474562aec7360580218cc"); // August 1, 2017 hard fork consensus.uahfHeight = 1155875; // November 13, 2017 hard fork consensus.daaHeight = 1188697; // Nov 15, 2018 hard fork consensus.magneticAnomalyActivationTime = 1542300000; // Wed, 15 May 2019 12:00:00 UTC hard fork consensus.greatWallActivationTime = 1557921600; diskMagic[0] = 0x0b; diskMagic[1] = 0x11; diskMagic[2] = 0x09; diskMagic[3] = 0x07; netMagic[0] = 0xf4; netMagic[1] = 0xe5; netMagic[2] = 0xf3; netMagic[3] = 0xf4; nDefaultPort = 18333; nPruneAfterHeight = 1000; genesis = CreateGenesisBlock(1296688602, 414098458, 0x1d00ffff, 1, 50 * COIN); consensus.hashGenesisBlock = genesis.GetHash(); assert(consensus.hashGenesisBlock == uint256S("000000000933ea01ad0ee984209779baaec3ced90fa3f408719526" "f8d77f4943")); assert(genesis.hashMerkleRoot == uint256S("4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b" "7afdeda33b")); vFixedSeeds.clear(); vSeeds.clear(); // nodes with support for servicebits filtering should be at the top // Bitcoin ABC seeder - vSeeds.emplace_back("testnet-seed.bitcoinabc.org", true); + vSeeds.emplace_back("testnet-seed.bitcoinabc.org"); // bitcoinforks seeders - vSeeds.emplace_back("testnet-seed-abc.bitcoinforks.org", true); + vSeeds.emplace_back("testnet-seed-abc.bitcoinforks.org"); // Bitprim - vSeeds.emplace_back("testnet-seed.bitprim.org", true); + vSeeds.emplace_back("testnet-seed.bitprim.org"); // Amaury SÉCHET - vSeeds.emplace_back("testnet-seed.deadalnix.me", true); + vSeeds.emplace_back("testnet-seed.deadalnix.me"); // criptolayer.net - vSeeds.emplace_back("testnet-seeder.criptolayer.net", true); + vSeeds.emplace_back("testnet-seeder.criptolayer.net"); base58Prefixes[PUBKEY_ADDRESS] = std::vector(1, 111); base58Prefixes[SCRIPT_ADDRESS] = std::vector(1, 196); base58Prefixes[SECRET_KEY] = std::vector(1, 239); base58Prefixes[EXT_PUBLIC_KEY] = {0x04, 0x35, 0x87, 0xCF}; base58Prefixes[EXT_SECRET_KEY] = {0x04, 0x35, 0x83, 0x94}; cashaddrPrefix = "bchtest"; vFixedSeeds = std::vector( pnSeed6_test, pnSeed6_test + ARRAYLEN(pnSeed6_test)); fDefaultConsistencyChecks = false; fRequireStandard = false; fMineBlocksOnDemand = false; checkpointData = { .mapCheckpoints = { {546, uint256S("000000002a936ca763904c3c35fce2f3556c559c0214345" "d31b1bcebf76acb70")}, // UAHF fork block. {1155875, uint256S("00000000f17c850672894b9a75b63a1e72830bbd5f4" "c8889b5c1a80e7faef138")}, // Nov, 13. DAA activation block. {1188697, uint256S("0000000000170ed0918077bde7b4d36cc4c91be69fa" "09211f748240dabe047fb")}, }}; // Data as of block // 000000000005b07ecf85563034d13efd81c1a29e47e22b20f4fc6919d5b09cd6 // (height 1223263) chainTxData = ChainTxData{1522608381, 15052068, 0.15}; } }; /** * Regression test */ class CRegTestParams : public CChainParams { public: CRegTestParams() { strNetworkID = "regtest"; consensus.nSubsidyHalvingInterval = 150; // BIP34 has not activated on regtest (far in the future so block v1 are // not rejected in tests) consensus.BIP34Height = 100000000; consensus.BIP34Hash = uint256(); // BIP65 activated on regtest (Used in rpc activation tests) consensus.BIP65Height = 1351; // BIP66 activated on regtest (Used in rpc activation tests) consensus.BIP66Height = 1251; // CSV activated on regtest (Used in rpc activation tests) consensus.CSVHeight = 576; consensus.powLimit = uint256S( "7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); // two weeks consensus.nPowTargetTimespan = 14 * 24 * 60 * 60; consensus.nPowTargetSpacing = 10 * 60; consensus.fPowAllowMinDifficultyBlocks = true; consensus.fPowNoRetargeting = true; // 75% for testchains consensus.nRuleChangeActivationThreshold = 108; // Faster than normal for regtest (144 instead of 2016) consensus.nMinerConfirmationWindow = 144; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].bit = 28; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nStartTime = 0; consensus.vDeployments[Consensus::DEPLOYMENT_TESTDUMMY].nTimeout = 999999999999ULL; // The best chain should have at least this much work. consensus.nMinimumChainWork = uint256S("0x00"); // By default assume that the signatures in ancestors of this block are // valid. consensus.defaultAssumeValid = uint256S("0x00"); // UAHF is always enabled on regtest. consensus.uahfHeight = 0; // November 13, 2017 hard fork is always on on regtest. consensus.daaHeight = 0; // Nov 15, 2018 hard fork consensus.magneticAnomalyActivationTime = 1542300000; // Wed, 15 May 2019 12:00:00 UTC hard fork consensus.greatWallActivationTime = 1557921600; diskMagic[0] = 0xfa; diskMagic[1] = 0xbf; diskMagic[2] = 0xb5; diskMagic[3] = 0xda; netMagic[0] = 0xda; netMagic[1] = 0xb5; netMagic[2] = 0xbf; netMagic[3] = 0xfa; nDefaultPort = 18444; nPruneAfterHeight = 1000; genesis = CreateGenesisBlock(1296688602, 2, 0x207fffff, 1, 50 * COIN); consensus.hashGenesisBlock = genesis.GetHash(); assert(consensus.hashGenesisBlock == uint256S("0x0f9188f13cb7b2c71f2a335e3a4fc328bf5beb436012afca590b" "1a11466e2206")); assert(genesis.hashMerkleRoot == uint256S("0x4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab212" "7b7afdeda33b")); //!< Regtest mode doesn't have any fixed seeds. vFixedSeeds.clear(); //!< Regtest mode doesn't have any DNS seeds. vSeeds.clear(); fDefaultConsistencyChecks = true; fRequireStandard = false; fMineBlocksOnDemand = true; checkpointData = {.mapCheckpoints = { {0, uint256S("0f9188f13cb7b2c71f2a335e3a4fc328bf5" "beb436012afca590b1a11466e2206")}, }}; chainTxData = ChainTxData{0, 0, 0}; base58Prefixes[PUBKEY_ADDRESS] = std::vector(1, 111); base58Prefixes[SCRIPT_ADDRESS] = std::vector(1, 196); base58Prefixes[SECRET_KEY] = std::vector(1, 239); base58Prefixes[EXT_PUBLIC_KEY] = {0x04, 0x35, 0x87, 0xCF}; base58Prefixes[EXT_SECRET_KEY] = {0x04, 0x35, 0x83, 0x94}; cashaddrPrefix = "bchreg"; } }; static std::unique_ptr globalChainParams; const CChainParams &Params() { assert(globalChainParams); return *globalChainParams; } std::unique_ptr CreateChainParams(const std::string &chain) { if (chain == CBaseChainParams::MAIN) { return std::unique_ptr(new CMainParams()); } if (chain == CBaseChainParams::TESTNET) { return std::unique_ptr(new CTestNetParams()); } if (chain == CBaseChainParams::REGTEST) { return std::unique_ptr(new CRegTestParams()); } throw std::runtime_error( strprintf("%s: Unknown chain %s.", __func__, chain)); } void SelectParams(const std::string &network) { SelectBaseParams(network); globalChainParams = CreateChainParams(network); } diff --git a/src/chainparams.h b/src/chainparams.h index dc903e991..a63c82153 100644 --- a/src/chainparams.h +++ b/src/chainparams.h @@ -1,129 +1,121 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_CHAINPARAMS_H #define BITCOIN_CHAINPARAMS_H #include "chainparamsbase.h" #include "consensus/params.h" #include "primitives/block.h" #include "protocol.h" #include #include -struct CDNSSeedData { - std::string host; - bool supportsServiceBitsFiltering; - CDNSSeedData(const std::string &strHost, - bool supportsServiceBitsFilteringIn) - : host(strHost), - supportsServiceBitsFiltering(supportsServiceBitsFilteringIn) {} -}; - struct SeedSpec6 { uint8_t addr[16]; uint16_t port; }; typedef std::map MapCheckpoints; struct CCheckpointData { MapCheckpoints mapCheckpoints; }; struct ChainTxData { int64_t nTime; int64_t nTxCount; double dTxRate; }; /** * CChainParams defines various tweakable parameters of a given instance of the * Bitcoin system. There are three: the main network on which people trade goods * and services, the public test network which gets reset from time to time and * a regression test mode which is intended for private networks only. It has * minimal difficulty to ensure that blocks can be found instantly. */ class CChainParams { public: enum Base58Type { PUBKEY_ADDRESS, SCRIPT_ADDRESS, SECRET_KEY, EXT_PUBLIC_KEY, EXT_SECRET_KEY, MAX_BASE58_TYPES }; const Consensus::Params &GetConsensus() const { return consensus; } const CMessageHeader::MessageMagic &DiskMagic() const { return diskMagic; } const CMessageHeader::MessageMagic &NetMagic() const { return netMagic; } int GetDefaultPort() const { return nDefaultPort; } const CBlock &GenesisBlock() const { return genesis; } /** Default value for -checkmempool and -checkblockindex argument */ bool DefaultConsistencyChecks() const { return fDefaultConsistencyChecks; } /** Policy: Filter transactions that do not match well-defined patterns */ bool RequireStandard() const { return fRequireStandard; } uint64_t PruneAfterHeight() const { return nPruneAfterHeight; } /** * Make miner stop after a block is found. In RPC, don't return until * nGenProcLimit blocks are generated. */ bool MineBlocksOnDemand() const { return fMineBlocksOnDemand; } /** Return the BIP70 network string (main, test or regtest) */ std::string NetworkIDString() const { return strNetworkID; } - const std::vector &DNSSeeds() const { return vSeeds; } + /** Return the list of hostnames to look up for DNS seeds */ + const std::vector &DNSSeeds() const { return vSeeds; } const std::vector &Base58Prefix(Base58Type type) const { return base58Prefixes[type]; } const std::string &CashAddrPrefix() const { return cashaddrPrefix; } const std::vector &FixedSeeds() const { return vFixedSeeds; } const CCheckpointData &Checkpoints() const { return checkpointData; } const ChainTxData &TxData() const { return chainTxData; } protected: CChainParams() {} Consensus::Params consensus; CMessageHeader::MessageMagic diskMagic; CMessageHeader::MessageMagic netMagic; int nDefaultPort; uint64_t nPruneAfterHeight; - std::vector vSeeds; + std::vector vSeeds; std::vector base58Prefixes[MAX_BASE58_TYPES]; std::string cashaddrPrefix; std::string strNetworkID; CBlock genesis; std::vector vFixedSeeds; bool fDefaultConsistencyChecks; bool fRequireStandard; bool fMineBlocksOnDemand; CCheckpointData checkpointData; ChainTxData chainTxData; }; /** * Creates and returns a std::unique_ptr of the chosen chain. * @returns a CChainParams* of the chosen chain. * @throws a std::runtime_error if the chain is not supported. */ std::unique_ptr CreateChainParams(const std::string &chain); /** * Return the currently selected parameters. This won't change after app * startup, except for unit tests. */ const CChainParams &Params(); /** * Sets the params returned by Params() to those for the given BIP70 chain name. * @throws std::runtime_error when the chain is not supported. */ void SelectParams(const std::string &chain); #endif // BITCOIN_CHAINPARAMS_H diff --git a/src/net.cpp b/src/net.cpp index 8f124a202..9a1bb0602 100644 --- a/src/net.cpp +++ b/src/net.cpp @@ -1,3098 +1,3092 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #if defined(HAVE_CONFIG_H) #include "config/bitcoin-config.h" #endif #include "net.h" #include "addrman.h" #include "chainparams.h" #include "clientversion.h" #include "config.h" #include "consensus/consensus.h" #include "crypto/common.h" #include "crypto/sha256.h" #include "hash.h" #include "netbase.h" #include "primitives/transaction.h" #include "scheduler.h" #include "ui_interface.h" #include "utilstrencodings.h" #ifdef WIN32 #include #else #include #endif #ifdef USE_UPNP #include #include #include #include #endif #include // Dump addresses to peers.dat and banlist.dat every 15 minutes (900s) #define DUMP_ADDRESSES_INTERVAL 900 // We add a random period time (0 to 1 seconds) to feeler connections to prevent // synchronization. #define FEELER_SLEEP_WINDOW 1 // MSG_NOSIGNAL is not available on some platforms, if it doesn't exist define // it as 0 #if !defined(MSG_NOSIGNAL) #define MSG_NOSIGNAL 0 #endif // MSG_DONTWAIT is not available on some platforms, if it doesn't exist define // it as 0 #if !defined(MSG_DONTWAIT) #define MSG_DONTWAIT 0 #endif // Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h. // Todo: Can be removed when our pull-tester is upgraded to a modern MinGW // version. #ifdef WIN32 #ifndef PROTECTION_LEVEL_UNRESTRICTED #define PROTECTION_LEVEL_UNRESTRICTED 10 #endif #ifndef IPV6_PROTECTION_LEVEL #define IPV6_PROTECTION_LEVEL 23 #endif #endif /** Used to pass flags to the Bind() function */ enum BindFlags { BF_NONE = 0, BF_EXPLICIT = (1U << 0), BF_REPORT_ERROR = (1U << 1), BF_WHITELIST = (1U << 2), }; const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*"; // SHA256("netgroup")[0:8] static const uint64_t RANDOMIZER_ID_NETGROUP = 0x6c0edd8036ef4036ULL; // SHA256("localhostnonce")[0:8] static const uint64_t RANDOMIZER_ID_LOCALHOSTNONCE = 0xd93e69e2bbfa5735ULL; // // Global state variables // bool fDiscover = true; bool fListen = true; bool fRelayTxes = true; CCriticalSection cs_mapLocalHost; std::map mapLocalHost; static bool vfLimited[NET_MAX] = {}; limitedmap mapAlreadyAskedFor(MAX_INV_SZ); void CConnman::AddOneShot(const std::string &strDest) { LOCK(cs_vOneShots); vOneShots.push_back(strDest); } unsigned short GetListenPort() { return (unsigned short)(gArgs.GetArg("-port", Params().GetDefaultPort())); } // find 'best' local address for a particular peer bool GetLocal(CService &addr, const CNetAddr *paddrPeer) { if (!fListen) { return false; } int nBestScore = -1; int nBestReachability = -1; { LOCK(cs_mapLocalHost); for (const auto &entry : mapLocalHost) { int nScore = entry.second.nScore; int nReachability = entry.first.GetReachabilityFrom(paddrPeer); if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore)) { addr = CService(entry.first, entry.second.nPort); nBestReachability = nReachability; nBestScore = nScore; } } } return nBestScore >= 0; } //! Convert the pnSeeds6 array into usable address objects. static std::vector convertSeed6(const std::vector &vSeedsIn) { // It'll only connect to one or two seed nodes because once it connects, // it'll get a pile of addresses with newer timestamps. Seed nodes are given // a random 'last seen time' of between one and two weeks ago. const int64_t nOneWeek = 7 * 24 * 60 * 60; std::vector vSeedsOut; vSeedsOut.reserve(vSeedsIn.size()); for (const auto &seed_in : vSeedsIn) { struct in6_addr ip; memcpy(&ip, seed_in.addr, sizeof(ip)); - CAddress addr(CService(ip, seed_in.port), NODE_NETWORK); + CAddress addr(CService(ip, seed_in.port), + GetDesirableServiceFlags(NODE_NONE)); addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek; vSeedsOut.push_back(addr); } return vSeedsOut; } // Get best local address for a particular peer as a CAddress. Otherwise, return // the unroutable 0.0.0.0 but filled in with the normal parameters, since the IP // may be changed to a useful one by discovery. CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices) { CAddress ret(CService(CNetAddr(), GetListenPort()), nLocalServices); CService addr; if (GetLocal(addr, paddrPeer)) { ret = CAddress(addr, nLocalServices); } ret.nTime = GetAdjustedTime(); return ret; } static int GetnScore(const CService &addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == LOCAL_NONE) { return 0; } return mapLocalHost[addr].nScore; } // Is our peer's addrLocal potentially useful as an external IP source? bool IsPeerAddrLocalGood(CNode *pnode) { CService addrLocal = pnode->GetAddrLocal(); return fDiscover && pnode->addr.IsRoutable() && addrLocal.IsRoutable() && !IsLimited(addrLocal.GetNetwork()); } // Pushes our own address to a peer. void AdvertiseLocal(CNode *pnode) { if (fListen && pnode->fSuccessfullyConnected) { CAddress addrLocal = GetLocalAddress(&pnode->addr, pnode->GetLocalServices()); // If discovery is enabled, sometimes give our peer the address it tells // us that it sees us as in case it has a better idea of our address // than we do. if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() || GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8 : 2) == 0)) { addrLocal.SetIP(pnode->GetAddrLocal()); } if (addrLocal.IsRoutable()) { LogPrint(BCLog::NET, "AdvertiseLocal: advertising address %s\n", addrLocal.ToString()); FastRandomContext insecure_rand; pnode->PushAddress(addrLocal, insecure_rand); } } } // Learn a new local address. bool AddLocal(const CService &addr, int nScore) { if (!addr.IsRoutable()) { return false; } if (!fDiscover && nScore < LOCAL_MANUAL) { return false; } if (IsLimited(addr)) { return false; } LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore); { LOCK(cs_mapLocalHost); bool fAlready = mapLocalHost.count(addr) > 0; LocalServiceInfo &info = mapLocalHost[addr]; if (!fAlready || nScore >= info.nScore) { info.nScore = nScore + (fAlready ? 1 : 0); info.nPort = addr.GetPort(); } } return true; } bool AddLocal(const CNetAddr &addr, int nScore) { return AddLocal(CService(addr, GetListenPort()), nScore); } void RemoveLocal(const CService &addr) { LOCK(cs_mapLocalHost); LogPrintf("RemoveLocal(%s)\n", addr.ToString()); mapLocalHost.erase(addr); } /** * Make a particular network entirely off-limits (no automatic connects to it). */ void SetLimited(enum Network net, bool fLimited) { if (net == NET_UNROUTABLE || net == NET_INTERNAL) { return; } LOCK(cs_mapLocalHost); vfLimited[net] = fLimited; } bool IsLimited(enum Network net) { LOCK(cs_mapLocalHost); return vfLimited[net]; } bool IsLimited(const CNetAddr &addr) { return IsLimited(addr.GetNetwork()); } /** vote for a local address */ bool SeenLocal(const CService &addr) { LOCK(cs_mapLocalHost); if (mapLocalHost.count(addr) == 0) { return false; } mapLocalHost[addr].nScore++; return true; } /** check whether a given address is potentially local */ bool IsLocal(const CService &addr) { LOCK(cs_mapLocalHost); return mapLocalHost.count(addr) > 0; } /** check whether a given network is one we can probably connect to */ bool IsReachable(enum Network net) { LOCK(cs_mapLocalHost); return !vfLimited[net]; } /** check whether a given address is in a network we can probably connect to */ bool IsReachable(const CNetAddr &addr) { enum Network net = addr.GetNetwork(); return IsReachable(net); } CNode *CConnman::FindNode(const CNetAddr &ip) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (static_cast(pnode->addr) == ip) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const CSubNet &subNet) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const std::string &addrName) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (pnode->GetAddrName() == addrName) { return pnode; } } return nullptr; } CNode *CConnman::FindNode(const CService &addr) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (static_cast(pnode->addr) == addr) { return pnode; } } return nullptr; } bool CConnman::CheckIncomingNonce(uint64_t nonce) { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fSuccessfullyConnected && !pnode->fInbound && pnode->GetLocalNonce() == nonce) return false; } return true; } /** Get the bind address for a socket as CAddress */ static CAddress GetBindAddress(SOCKET sock) { CAddress addr_bind; struct sockaddr_storage sockaddr_bind; socklen_t sockaddr_bind_len = sizeof(sockaddr_bind); if (sock != INVALID_SOCKET) { if (!getsockname(sock, (struct sockaddr *)&sockaddr_bind, &sockaddr_bind_len)) { addr_bind.SetSockAddr((const struct sockaddr *)&sockaddr_bind); } else { LogPrint(BCLog::NET, "Warning: getsockname failed\n"); } } return addr_bind; } CNode *CConnman::ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure) { if (pszDest == nullptr) { if (IsLocal(addrConnect)) { return nullptr; } // Look for an existing connection CNode *pnode = FindNode(static_cast(addrConnect)); if (pnode) { LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } /// debug print LogPrint(BCLog::NET, "trying connection %s lastseen=%.1fhrs\n", pszDest ? pszDest : addrConnect.ToString(), pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime) / 3600.0); // Resolve const int default_port = Params().GetDefaultPort(); if (pszDest) { std::vector resolved; if (Lookup(pszDest, resolved, default_port, fNameLookup && !HaveNameProxy(), 256) && !resolved.empty()) { addrConnect = CAddress(resolved[GetRand(resolved.size())], NODE_NONE); if (!addrConnect.IsValid()) { LogPrint(BCLog::NET, "Resolver returned invalid address %s for %s\n", addrConnect.ToString(), pszDest); return nullptr; } // It is possible that we already have a connection to the IP/port // pszDest resolved to. In that case, drop the connection that was // just created, and return the existing CNode instead. Also store // the name we used to connect in that CNode, so that future // FindNode() calls to that name catch this early. LOCK(cs_vNodes); CNode *pnode = FindNode(static_cast(addrConnect)); if (pnode) { pnode->MaybeSetAddrName(std::string(pszDest)); LogPrintf("Failed to open new connection, already connected\n"); return nullptr; } } } // Connect bool connected = false; SOCKET hSocket = INVALID_SOCKET; proxyType proxy; if (addrConnect.IsValid()) { bool proxyConnectionFailed = false; if (GetProxy(addrConnect.GetNetwork(), proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectThroughProxy( proxy, addrConnect.ToStringIP(), addrConnect.GetPort(), hSocket, nConnectTimeout, &proxyConnectionFailed); } else { // no proxy needed (none set for target network) hSocket = CreateSocket(addrConnect); if (hSocket == INVALID_SOCKET) { return nullptr; } connected = ConnectSocketDirectly(addrConnect, hSocket, nConnectTimeout); } if (!proxyConnectionFailed) { // If a connection to the node was attempted, and failure (if any) // is not caused by a problem connecting to the proxy, mark this as // an attempt. addrman.Attempt(addrConnect, fCountFailure); } } else if (pszDest && GetNameProxy(proxy)) { hSocket = CreateSocket(proxy.proxy); if (hSocket == INVALID_SOCKET) { return nullptr; } std::string host; int port = default_port; SplitHostPort(std::string(pszDest), port, host); connected = ConnectThroughProxy(proxy, host, port, hSocket, nConnectTimeout, nullptr); } if (!connected) { CloseSocket(hSocket); return nullptr; } // Add node NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE) .Write(id) .Finalize(); CAddress addr_bind = GetBindAddress(hSocket); CNode *pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addrConnect, CalculateKeyedNetGroup(addrConnect), nonce, addr_bind, pszDest ? pszDest : "", false); pnode->AddRef(); return pnode; } void CConnman::DumpBanlist() { // Clean unused entries (if bantime has expired) SweepBanned(); if (!BannedSetIsDirty()) { return; } int64_t nStart = GetTimeMillis(); CBanDB bandb(config->GetChainParams()); banmap_t banmap; GetBanned(banmap); if (bandb.Write(banmap)) { SetBannedSetDirty(false); } LogPrint(BCLog::NET, "Flushed %d banned node ips/subnets to banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } void CNode::CloseSocketDisconnect() { fDisconnect = true; LOCK(cs_hSocket); if (hSocket != INVALID_SOCKET) { LogPrint(BCLog::NET, "disconnecting peer=%d\n", id); CloseSocket(hSocket); } } void CConnman::ClearBanned() { { LOCK(cs_setBanned); setBanned.clear(); setBannedIsDirty = true; } // Store banlist to disk. DumpBanlist(); if (clientInterface) { clientInterface->BannedListChanged(); } } bool CConnman::IsBanned(CNetAddr ip) { LOCK(cs_setBanned); for (const auto &it : setBanned) { CSubNet subNet = it.first; CBanEntry banEntry = it.second; if (subNet.Match(ip) && GetTime() < banEntry.nBanUntil) { return true; } } return false; } bool CConnman::IsBanned(CSubNet subnet) { LOCK(cs_setBanned); banmap_t::iterator i = setBanned.find(subnet); if (i != setBanned.end()) { CBanEntry banEntry = (*i).second; if (GetTime() < banEntry.nBanUntil) { return true; } } return false; } void CConnman::Ban(const CNetAddr &addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CSubNet subNet(addr); Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch); } void CConnman::Ban(const CSubNet &subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) { CBanEntry banEntry(GetTime()); banEntry.banReason = banReason; if (bantimeoffset <= 0) { bantimeoffset = gArgs.GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME); sinceUnixEpoch = false; } banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime()) + bantimeoffset; { LOCK(cs_setBanned); if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) { setBanned[subNet] = banEntry; setBannedIsDirty = true; } else { return; } } if (clientInterface) { clientInterface->BannedListChanged(); } { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (subNet.Match(static_cast(pnode->addr))) { pnode->fDisconnect = true; } } } if (banReason == BanReasonManuallyAdded) { // Store banlist to disk immediately if user requested ban. DumpBanlist(); } } bool CConnman::Unban(const CNetAddr &addr) { CSubNet subNet(addr); return Unban(subNet); } bool CConnman::Unban(const CSubNet &subNet) { { LOCK(cs_setBanned); if (!setBanned.erase(subNet)) { return false; } setBannedIsDirty = true; } if (clientInterface) { clientInterface->BannedListChanged(); } // Store banlist to disk immediately. DumpBanlist(); return true; } void CConnman::GetBanned(banmap_t &banMap) { LOCK(cs_setBanned); // Sweep the banlist so expired bans are not returned SweepBanned(); // Create a thread safe copy. banMap = setBanned; } void CConnman::SetBanned(const banmap_t &banMap) { LOCK(cs_setBanned); setBanned = banMap; setBannedIsDirty = true; } void CConnman::SweepBanned() { int64_t now = GetTime(); bool notifyUI = false; { LOCK(cs_setBanned); banmap_t::iterator it = setBanned.begin(); while (it != setBanned.end()) { CSubNet subNet = (*it).first; CBanEntry banEntry = (*it).second; if (now > banEntry.nBanUntil) { setBanned.erase(it++); setBannedIsDirty = true; notifyUI = true; LogPrint( BCLog::NET, "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString()); } else { ++it; } } } // update UI if (notifyUI && clientInterface) { clientInterface->BannedListChanged(); } } bool CConnman::BannedSetIsDirty() { LOCK(cs_setBanned); return setBannedIsDirty; } void CConnman::SetBannedSetDirty(bool dirty) { // Reuse setBanned lock for the isDirty flag. LOCK(cs_setBanned); setBannedIsDirty = dirty; } bool CConnman::IsWhitelistedRange(const CNetAddr &addr) { for (const CSubNet &subnet : vWhitelistedRange) { if (subnet.Match(addr)) { return true; } } return false; } std::string CNode::GetAddrName() const { LOCK(cs_addrName); return addrName; } void CNode::MaybeSetAddrName(const std::string &addrNameIn) { LOCK(cs_addrName); if (addrName.empty()) { addrName = addrNameIn; } } CService CNode::GetAddrLocal() const { LOCK(cs_addrLocal); return addrLocal; } void CNode::SetAddrLocal(const CService &addrLocalIn) { LOCK(cs_addrLocal); if (addrLocal.IsValid()) { error("Addr local already set for node: %i. Refusing to change from %s " "to %s", id, addrLocal.ToString(), addrLocalIn.ToString()); } else { addrLocal = addrLocalIn; } } void CNode::copyStats(CNodeStats &stats) { stats.nodeid = this->GetId(); stats.nServices = nServices; stats.addr = addr; stats.addrBind = addrBind; { LOCK(cs_filter); stats.fRelayTxes = fRelayTxes; } stats.nLastSend = nLastSend; stats.nLastRecv = nLastRecv; stats.nTimeConnected = nTimeConnected; stats.nTimeOffset = nTimeOffset; stats.addrName = GetAddrName(); stats.nVersion = nVersion; { LOCK(cs_SubVer); stats.cleanSubVer = cleanSubVer; } stats.fInbound = fInbound; stats.m_manual_connection = m_manual_connection; stats.nStartingHeight = nStartingHeight; { LOCK(cs_vSend); stats.mapSendBytesPerMsgCmd = mapSendBytesPerMsgCmd; stats.nSendBytes = nSendBytes; } { LOCK(cs_vRecv); stats.mapRecvBytesPerMsgCmd = mapRecvBytesPerMsgCmd; stats.nRecvBytes = nRecvBytes; } stats.fWhitelisted = fWhitelisted; // It is common for nodes with good ping times to suddenly become lagged, // due to a new block arriving or other large transfer. Merely reporting // pingtime might fool the caller into thinking the node was still // responsive, since pingtime does not update until the ping is complete, // which might take a while. So, if a ping is taking an unusually long time // in flight, the caller can immediately detect that this is happening. int64_t nPingUsecWait = 0; if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) { nPingUsecWait = GetTimeMicros() - nPingUsecStart; } // Raw ping time is in microseconds, but show it to user as whole seconds // (Bitcoin users should be well used to small numbers with many decimal // places by now :) stats.dPingTime = ((double(nPingUsecTime)) / 1e6); stats.dMinPing = ((double(nMinPingUsecTime)) / 1e6); stats.dPingWait = ((double(nPingUsecWait)) / 1e6); // Leave string empty if addrLocal invalid (not filled in yet) CService addrLocalUnlocked = GetAddrLocal(); stats.addrLocal = addrLocalUnlocked.IsValid() ? addrLocalUnlocked.ToString() : ""; } static bool IsOversizedMessage(const Config &config, const CNetMessage &msg) { if (!msg.in_data) { // Header only, cannot be oversized. return false; } return msg.hdr.IsOversized(config); } bool CNode::ReceiveMsgBytes(const Config &config, const char *pch, uint32_t nBytes, bool &complete) { complete = false; int64_t nTimeMicros = GetTimeMicros(); LOCK(cs_vRecv); nLastRecv = nTimeMicros / 1000000; nRecvBytes += nBytes; while (nBytes > 0) { // Get current incomplete message, or create a new one. if (vRecvMsg.empty() || vRecvMsg.back().complete()) { vRecvMsg.push_back(CNetMessage(config.GetChainParams().NetMagic(), SER_NETWORK, INIT_PROTO_VERSION)); } CNetMessage &msg = vRecvMsg.back(); // Absorb network data. int handled; if (!msg.in_data) { handled = msg.readHeader(config, pch, nBytes); } else { handled = msg.readData(pch, nBytes); } if (handled < 0) { return false; } if (IsOversizedMessage(config, msg)) { LogPrint(BCLog::NET, "Oversized message from peer=%i, disconnecting\n", GetId()); return false; } pch += handled; nBytes -= handled; if (msg.complete()) { // Store received bytes per message command to prevent a memory DOS, // only allow valid commands. mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand.data()); if (i == mapRecvBytesPerMsgCmd.end()) { i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER); } assert(i != mapRecvBytesPerMsgCmd.end()); i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE; msg.nTime = nTimeMicros; complete = true; } } return true; } void CNode::SetSendVersion(int nVersionIn) { // Send version may only be changed in the version message, and only one // version message is allowed per session. We can therefore treat this value // as const and even atomic as long as it's only used once a version message // has been successfully processed. Any attempt to set this twice is an // error. if (nSendVersion != 0) { error("Send version already set for node: %i. Refusing to change from " "%i to %i", id, nSendVersion, nVersionIn); } else { nSendVersion = nVersionIn; } } int CNode::GetSendVersion() const { // The send version should always be explicitly set to INIT_PROTO_VERSION // rather than using this value until SetSendVersion has been called. if (nSendVersion == 0) { error("Requesting unset send version for node: %i. Using %i", id, INIT_PROTO_VERSION); return INIT_PROTO_VERSION; } return nSendVersion; } int CNetMessage::readHeader(const Config &config, const char *pch, uint32_t nBytes) { // copy data to temporary parsing buffer uint32_t nRemaining = 24 - nHdrPos; uint32_t nCopy = std::min(nRemaining, nBytes); memcpy(&hdrbuf[nHdrPos], pch, nCopy); nHdrPos += nCopy; // if header incomplete, exit if (nHdrPos < 24) { return nCopy; } // deserialize to CMessageHeader try { hdrbuf >> hdr; } catch (const std::exception &) { return -1; } // Reject oversized messages if (hdr.IsOversized(config)) { LogPrint(BCLog::NET, "Oversized header detected\n"); return -1; } // switch state to reading message data in_data = true; return nCopy; } int CNetMessage::readData(const char *pch, uint32_t nBytes) { unsigned int nRemaining = hdr.nMessageSize - nDataPos; unsigned int nCopy = std::min(nRemaining, nBytes); if (vRecv.size() < nDataPos + nCopy) { // Allocate up to 256 KiB ahead, but never more than the total message // size. vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024)); } hasher.Write((const uint8_t *)pch, nCopy); memcpy(&vRecv[nDataPos], pch, nCopy); nDataPos += nCopy; return nCopy; } const uint256 &CNetMessage::GetMessageHash() const { assert(complete()); if (data_hash.IsNull()) { hasher.Finalize(data_hash.begin()); } return data_hash; } // requires LOCK(cs_vSend) size_t CConnman::SocketSendData(CNode *pnode) const { AssertLockHeld(pnode->cs_vSend); size_t nSentSize = 0; size_t nMsgCount = 0; for (const auto &data : pnode->vSendMsg) { assert(data.size() > pnode->nSendOffset); int nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { break; } nBytes = send(pnode->hSocket, reinterpret_cast(data.data()) + pnode->nSendOffset, data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT); } if (nBytes == 0) { // couldn't send anything at all break; } if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { LogPrintf("socket send error %s\n", NetworkErrorString(nErr)); pnode->CloseSocketDisconnect(); } break; } assert(nBytes > 0); pnode->nLastSend = GetSystemTimeInSeconds(); pnode->nSendBytes += nBytes; pnode->nSendOffset += nBytes; nSentSize += nBytes; if (pnode->nSendOffset != data.size()) { // could not send full message; stop sending more break; } pnode->nSendOffset = 0; pnode->nSendSize -= data.size(); pnode->fPauseSend = pnode->nSendSize > nSendBufferMaxSize; nMsgCount++; } pnode->vSendMsg.erase(pnode->vSendMsg.begin(), pnode->vSendMsg.begin() + nMsgCount); if (pnode->vSendMsg.empty()) { assert(pnode->nSendOffset == 0); assert(pnode->nSendSize == 0); } return nSentSize; } struct NodeEvictionCandidate { NodeId id; int64_t nTimeConnected; int64_t nMinPingUsecTime; int64_t nLastBlockTime; int64_t nLastTXTime; bool fRelevantServices; bool fRelayTxes; bool fBloomFilter; CAddress addr; uint64_t nKeyedNetGroup; }; static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nMinPingUsecTime > b.nMinPingUsecTime; } static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nTimeConnected > b.nTimeConnected; } static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { return a.nKeyedNetGroup < b.nKeyedNetGroup; } static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have many // peers which have not yet relayed a block. if (a.nLastBlockTime != b.nLastBlockTime) { return a.nLastBlockTime < b.nLastBlockTime; } if (a.fRelevantServices != b.fRelevantServices) { return b.fRelevantServices; } return a.nTimeConnected > b.nTimeConnected; } static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { // There is a fall-through here because it is common for a node to have more // than a few peers that have not yet relayed txn. if (a.nLastTXTime != b.nLastTXTime) { return a.nLastTXTime < b.nLastTXTime; } if (a.fRelayTxes != b.fRelayTxes) { return b.fRelayTxes; } if (a.fBloomFilter != b.fBloomFilter) { return a.fBloomFilter; } return a.nTimeConnected > b.nTimeConnected; } //! Sort an array by the specified comparator, then erase the last K elements. template static void EraseLastKElements(std::vector &elements, Comparator comparator, size_t k) { std::sort(elements.begin(), elements.end(), comparator); size_t eraseSize = std::min(k, elements.size()); elements.erase(elements.end() - eraseSize, elements.end()); } /** * Try to find a connection to evict when the node is full. * Extreme care must be taken to avoid opening the node to attacker triggered * network partitioning. * The strategy used here is to protect a small number of peers for each of * several distinct characteristics which are difficult to forge. In order to * partition a node the attacker must be simultaneously better at all of them * than honest peers. */ bool CConnman::AttemptToEvictConnection() { std::vector vEvictionCandidates; { LOCK(cs_vNodes); for (CNode *node : vNodes) { if (node->fWhitelisted || !node->fInbound || node->fDisconnect) { continue; } NodeEvictionCandidate candidate = { node->GetId(), node->nTimeConnected, node->nMinPingUsecTime, node->nLastBlockTime, node->nLastTXTime, HasAllDesirableServiceFlags(node->nServices), node->fRelayTxes, node->pfilter != nullptr, node->addr, node->nKeyedNetGroup}; vEvictionCandidates.push_back(candidate); } } // Protect connections with certain characteristics // Deterministically select 4 peers to protect by netgroup. // An attacker cannot predict which netgroups will be protected EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4); // Protect the 8 nodes with the lowest minimum ping time. // An attacker cannot manipulate this metric without physically moving nodes // closer to the target. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8); // Protect 4 nodes that most recently sent us transactions. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4); // Protect 4 nodes that most recently sent us blocks. // An attacker cannot manipulate this metric without performing useful work. EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4); // Protect the half of the remaining nodes which have been connected the // longest. This replicates the non-eviction implicit behavior, and // precludes attacks that start later. EraseLastKElements(vEvictionCandidates, ReverseCompareNodeTimeConnected, vEvictionCandidates.size() / 2); if (vEvictionCandidates.empty()) { return false; } // Identify the network group with the most connections and youngest member. // (vEvictionCandidates is already sorted by reverse connect time) uint64_t naMostConnections; unsigned int nMostConnections = 0; int64_t nMostConnectionsTime = 0; std::map> mapNetGroupNodes; for (const NodeEvictionCandidate &node : vEvictionCandidates) { std::vector &group = mapNetGroupNodes[node.nKeyedNetGroup]; group.push_back(node); int64_t grouptime = group[0].nTimeConnected; size_t group_size = group.size(); if (group_size > nMostConnections || (group_size == nMostConnections && grouptime > nMostConnectionsTime)) { nMostConnections = group_size; nMostConnectionsTime = grouptime; naMostConnections = node.nKeyedNetGroup; } } // Reduce to the network group with the most connections vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); // Disconnect from the network group with the most connections NodeId evicted = vEvictionCandidates.front().id; LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (pnode->GetId() == evicted) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::AcceptConnection(const ListenSocket &hListenSocket) { struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr *)&sockaddr, &len); CAddress addr; int nInbound = 0; int nMaxInbound = nMaxConnections - (nMaxOutbound + nMaxFeeler); if (hSocket != INVALID_SOCKET) { if (!addr.SetSockAddr((const struct sockaddr *)&sockaddr)) { LogPrintf("Warning: Unknown socket family\n"); } } bool whitelisted = hListenSocket.whitelisted || IsWhitelistedRange(addr); { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->fInbound) { nInbound++; } } } if (hSocket == INVALID_SOCKET) { int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK) { LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr)); } return; } if (!fNetworkActive) { LogPrintf("connection from %s dropped: not accepting new connections\n", addr.ToString()); CloseSocket(hSocket); return; } if (!IsSelectableSocket(hSocket)) { LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString()); CloseSocket(hSocket); return; } // According to the internet TCP_NODELAY is not carried into accepted // sockets on all platforms. Set it again here just to be sure. SetSocketNoDelay(hSocket); if (IsBanned(addr) && !whitelisted) { LogPrint(BCLog::NET, "connection from %s dropped (banned)\n", addr.ToString()); CloseSocket(hSocket); return; } if (nInbound >= nMaxInbound) { if (!AttemptToEvictConnection()) { // No connection to evict, disconnect the new connection LogPrint(BCLog::NET, "failed to find an eviction candidate - " "connection dropped (full)\n"); CloseSocket(hSocket); return; } } NodeId id = GetNewNodeId(); uint64_t nonce = GetDeterministicRandomizer(RANDOMIZER_ID_LOCALHOSTNONCE) .Write(id) .Finalize(); CAddress addr_bind = GetBindAddress(hSocket); CNode *pnode = new CNode(id, nLocalServices, GetBestHeight(), hSocket, addr, CalculateKeyedNetGroup(addr), nonce, addr_bind, "", true); pnode->AddRef(); pnode->fWhitelisted = whitelisted; m_msgproc->InitializeNode(*config, pnode); LogPrint(BCLog::NET, "connection from %s accepted\n", addr.ToString()); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::ThreadSocketHandler() { unsigned int nPrevNodeCount = 0; while (!interruptNet) { // // Disconnect nodes // { LOCK(cs_vNodes); if (!fNetworkActive) { // Disconnect any connected nodes for (CNode *pnode : vNodes) { if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "Network not active, dropping peer=%d\n", pnode->GetId()); pnode->fDisconnect = true; } } } // Disconnect unused nodes std::vector vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { if (pnode->fDisconnect) { // remove from vNodes vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end()); // release outbound grant (if any) pnode->grantOutbound.Release(); // close socket and cleanup pnode->CloseSocketDisconnect(); // hold in disconnected pool until all refs are released pnode->Release(); vNodesDisconnected.push_back(pnode); } } } { // Delete disconnected nodes std::list vNodesDisconnectedCopy = vNodesDisconnected; for (CNode *pnode : vNodesDisconnectedCopy) { // wait until threads are done using it if (pnode->GetRefCount() <= 0) { bool fDelete = false; { TRY_LOCK(pnode->cs_inventory, lockInv); if (lockInv) { TRY_LOCK(pnode->cs_vSend, lockSend); if (lockSend) { fDelete = true; } } } if (fDelete) { vNodesDisconnected.remove(pnode); DeleteNode(pnode); } } } } size_t vNodesSize; { LOCK(cs_vNodes); vNodesSize = vNodes.size(); } if (vNodesSize != nPrevNodeCount) { nPrevNodeCount = vNodesSize; if (clientInterface) { clientInterface->NotifyNumConnectionsChanged(nPrevNodeCount); } } // // Find which sockets have data to receive // struct timeval timeout; timeout.tv_sec = 0; // Frequency to poll pnode->vSend timeout.tv_usec = 50000; fd_set fdsetRecv; fd_set fdsetSend; fd_set fdsetError; FD_ZERO(&fdsetRecv); FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); SOCKET hSocketMax = 0; bool have_fds = false; for (const ListenSocket &hListenSocket : vhListenSocket) { FD_SET(hListenSocket.socket, &fdsetRecv); hSocketMax = std::max(hSocketMax, hListenSocket.socket); have_fds = true; } { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { // Implement the following logic: // * If there is data to send, select() for sending data. As // this only happens when optimistic write failed, we choose to // first drain the write buffer in this case before receiving // more. This avoids needlessly queueing received data, if the // remote peer is not themselves receiving data. This means // properly utilizing TCP flow control signalling. // * Otherwise, if there is space left in the receive buffer, // select() for receiving data. // * Hand off all complete messages to the processor, to be // handled without blocking here. bool select_recv = !pnode->fPauseRecv; bool select_send; { LOCK(pnode->cs_vSend); select_send = !pnode->vSendMsg.empty(); } LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } FD_SET(pnode->hSocket, &fdsetError); hSocketMax = std::max(hSocketMax, pnode->hSocket); have_fds = true; if (select_send) { FD_SET(pnode->hSocket, &fdsetSend); continue; } if (select_recv) { FD_SET(pnode->hSocket, &fdsetRecv); } } } int nSelect = select(have_fds ? hSocketMax + 1 : 0, &fdsetRecv, &fdsetSend, &fdsetError, &timeout); if (interruptNet) { return; } if (nSelect == SOCKET_ERROR) { if (have_fds) { int nErr = WSAGetLastError(); LogPrintf("socket select error %s\n", NetworkErrorString(nErr)); for (unsigned int i = 0; i <= hSocketMax; i++) { FD_SET(i, &fdsetRecv); } } FD_ZERO(&fdsetSend); FD_ZERO(&fdsetError); if (!interruptNet.sleep_for( std::chrono::milliseconds(timeout.tv_usec / 1000))) { return; } } // // Accept new connections // for (const ListenSocket &hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv)) { AcceptConnection(hListenSocket); } } // // Service each socket // std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { pnode->AddRef(); } } for (CNode *pnode : vNodesCopy) { if (interruptNet) { return; } // // Receive // bool recvSet = false; bool sendSet = false; bool errorSet = false; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } recvSet = FD_ISSET(pnode->hSocket, &fdsetRecv); sendSet = FD_ISSET(pnode->hSocket, &fdsetSend); errorSet = FD_ISSET(pnode->hSocket, &fdsetError); } if (recvSet || errorSet) { // typical socket buffer is 8K-64K char pchBuf[0x10000]; int32_t nBytes = 0; { LOCK(pnode->cs_hSocket); if (pnode->hSocket == INVALID_SOCKET) { continue; } nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT); } if (nBytes > 0) { bool notify = false; if (!pnode->ReceiveMsgBytes(*config, pchBuf, nBytes, notify)) { pnode->CloseSocketDisconnect(); } RecordBytesRecv(nBytes); if (notify) { size_t nSizeAdded = 0; auto it(pnode->vRecvMsg.begin()); for (; it != pnode->vRecvMsg.end(); ++it) { if (!it->complete()) { break; } nSizeAdded += it->vRecv.size() + CMessageHeader::HEADER_SIZE; } { LOCK(pnode->cs_vProcessMsg); pnode->vProcessMsg.splice( pnode->vProcessMsg.end(), pnode->vRecvMsg, pnode->vRecvMsg.begin(), it); pnode->nProcessQueueSize += nSizeAdded; pnode->fPauseRecv = pnode->nProcessQueueSize > nReceiveFloodSize; } WakeMessageHandler(); } } else if (nBytes == 0) { // socket closed gracefully if (!pnode->fDisconnect) { LogPrint(BCLog::NET, "socket closed\n"); } pnode->CloseSocketDisconnect(); } else if (nBytes < 0) { // error int nErr = WSAGetLastError(); if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS) { if (!pnode->fDisconnect) { LogPrintf("socket recv error %s\n", NetworkErrorString(nErr)); } pnode->CloseSocketDisconnect(); } } } // // Send // if (sendSet) { LOCK(pnode->cs_vSend); size_t nBytes = SocketSendData(pnode); if (nBytes) { RecordBytesSent(nBytes); } } // // Inactivity checking // int64_t nTime = GetSystemTimeInSeconds(); if (nTime - pnode->nTimeConnected > 60) { if (pnode->nLastRecv == 0 || pnode->nLastSend == 0) { LogPrint(BCLog::NET, "socket no message in first 60 " "seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->GetId()); pnode->fDisconnect = true; } else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL) { LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend); pnode->fDisconnect = true; } else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90 * 60)) { LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv); pnode->fDisconnect = true; } else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros()) { LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart)); pnode->fDisconnect = true; } else if (!pnode->fSuccessfullyConnected) { LogPrint(BCLog::NET, "version handshake timeout from %d\n", pnode->GetId()); pnode->fDisconnect = true; } } } { LOCK(cs_vNodes); for (CNode *pnode : vNodesCopy) { pnode->Release(); } } } } void CConnman::WakeMessageHandler() { { std::lock_guard lock(mutexMsgProc); fMsgProcWake = true; } condMsgProc.notify_one(); } #ifdef USE_UPNP static CThreadInterrupt g_upnp_interrupt; static std::thread g_upnp_thread; static void ThreadMapPort() { std::string port = strprintf("%u", GetListenPort()); const char *multicastif = nullptr; const char *minissdpdpath = nullptr; struct UPNPDev *devlist = nullptr; char lanaddr[64]; #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0); #elif MINIUPNPC_API_VERSION < 14 /* miniupnpc 1.6 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error); #else /* miniupnpc 1.9.20150730 */ int error = 0; devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error); #endif struct UPNPUrls urls; struct IGDdatas data; int r; r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr)); if (r == 1) { if (fDiscover) { char externalIPAddress[40]; r = UPNP_GetExternalIPAddress( urls.controlURL, data.first.servicetype, externalIPAddress); if (r != UPNPCOMMAND_SUCCESS) { LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r); } else { if (externalIPAddress[0]) { CNetAddr resolved; if (LookupHost(externalIPAddress, resolved, false)) { LogPrintf("UPnP: ExternalIPAddress = %s\n", resolved.ToString().c_str()); AddLocal(resolved, LOCAL_UPNP); } } else { LogPrintf("UPnP: GetExternalIPAddress failed.\n"); } } } std::string strDesc = "Bitcoin " + FormatFullVersion(); do { #ifndef UPNPDISCOVER_SUCCESS /* miniupnpc 1.5 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0); #else /* miniupnpc 1.6 */ r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype, port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0"); #endif if (r != UPNPCOMMAND_SUCCESS) { LogPrintf( "AddPortMapping(%s, %s, %s) failed with code %d (%s)\n", port, port, lanaddr, r, strupnperror(r)); } else { LogPrintf("UPnP Port Mapping successful.\n"); } } while (g_upnp_interrupt.sleep_for(std::chrono::minutes(20))); r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0); LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r); freeUPNPDevlist(devlist); devlist = nullptr; FreeUPNPUrls(&urls); } else { LogPrintf("No valid UPnP IGDs found\n"); freeUPNPDevlist(devlist); devlist = nullptr; if (r != 0) { FreeUPNPUrls(&urls); } } } void StartMapPort() { if (!g_upnp_thread.joinable()) { assert(!g_upnp_interrupt); g_upnp_thread = std::thread( (std::bind(&TraceThread, "upnp", &ThreadMapPort))); } } void InterruptMapPort() { if (g_upnp_thread.joinable()) { g_upnp_interrupt(); } } void StopMapPort() { if (g_upnp_thread.joinable()) { g_upnp_thread.join(); g_upnp_interrupt.reset(); } } #else void StartMapPort() { // Intentionally left blank. } void InterruptMapPort() { // Intentionally left blank. } void StopMapPort() { // Intentionally left blank. } #endif -static std::string GetDNSHost(const CDNSSeedData &data, - ServiceFlags *requiredServiceBits) { - // use default host for non-filter-capable seeds or if we use the default - // service bits (NODE_NETWORK) - if (!data.supportsServiceBitsFiltering || - *requiredServiceBits == NODE_NETWORK) { - *requiredServiceBits = NODE_NETWORK; - return data.host; - } - - // See chainparams.cpp, most dnsseeds only support one or two possible - // servicebits hostnames - return strprintf("x%x.%s", *requiredServiceBits, data.host); -} - void CConnman::ThreadDNSAddressSeed() { // goal: only query DNS seeds if address need is acute. // Avoiding DNS seeds when we don't need them improves user privacy by // creating fewer identifying DNS requests, reduces trust by giving seeds // less influence on the network topology, and reduces traffic to the seeds. if ((addrman.size() > 0) && (!gArgs.GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) { if (!interruptNet.sleep_for(std::chrono::seconds(11))) { return; } LOCK(cs_vNodes); int nRelevant = 0; for (const CNode *pnode : vNodes) { nRelevant += pnode->fSuccessfullyConnected && !pnode->fFeeler && !pnode->fOneShot && !pnode->m_manual_connection && !pnode->fInbound; } if (nRelevant >= 2) { LogPrintf("P2P peers available. Skipped DNS seeding.\n"); return; } } - const std::vector &vSeeds = + const std::vector &vSeeds = config->GetChainParams().DNSSeeds(); int found = 0; LogPrintf("Loading addresses from DNS seeds (could take a while)\n"); - for (const CDNSSeedData &seed : vSeeds) { + for (const std::string &seed : vSeeds) { + if (interruptNet) { + return; + } if (HaveNameProxy()) { - AddOneShot(seed.host); + AddOneShot(seed); } else { std::vector vIPs; std::vector vAdd; ServiceFlags requiredServiceBits = GetDesirableServiceFlags(NODE_NONE); - std::string host = GetDNSHost(seed, &requiredServiceBits); + std::string host = strprintf("x%x.%s", requiredServiceBits, seed); CNetAddr resolveSource; if (!resolveSource.SetInternal(host)) { continue; } if (LookupHost(host.c_str(), vIPs, 0, true)) { for (const CNetAddr &ip : vIPs) { int nOneDay = 24 * 3600; CAddress addr = CAddress( CService(ip, config->GetChainParams().GetDefaultPort()), requiredServiceBits); // Use a random age between 3 and 7 days old. addr.nTime = GetTime() - 3 * nOneDay - GetRand(4 * nOneDay); vAdd.push_back(addr); found++; } addrman.Add(vAdd, resolveSource); + } else { + // We now avoid directly using results from DNS Seeds which do + // not support service bit filtering, instead using them as a + // oneshot to get nodes with our desired service bits. + AddOneShot(seed); } } } LogPrintf("%d addresses found from DNS seeds\n", found); } void CConnman::DumpAddresses() { int64_t nStart = GetTimeMillis(); CAddrDB adb(config->GetChainParams()); adb.Write(addrman); LogPrint(BCLog::NET, "Flushed %d addresses to peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } void CConnman::DumpData() { DumpAddresses(); DumpBanlist(); } void CConnman::ProcessOneShot() { std::string strDest; { LOCK(cs_vOneShots); if (vOneShots.empty()) { return; } strDest = vOneShots.front(); vOneShots.pop_front(); } CAddress addr; CSemaphoreGrant grant(*semOutbound, true); if (grant) { OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true); } } bool CConnman::GetTryNewOutboundPeer() { return m_try_another_outbound_peer; } void CConnman::SetTryNewOutboundPeer(bool flag) { m_try_another_outbound_peer = flag; LogPrint(BCLog::NET, "net: setting try another outbound peer=%s\n", flag ? "true" : "false"); } // Return the number of peers we have over our outbound connection limit. // Exclude peers that are marked for disconnect, or are going to be disconnected // soon (eg one-shots and feelers). // Also exclude peers that haven't finished initial connection handshake yet (so // that we don't decide we're over our desired connection limit, and then evict // some peer that has finished the handshake). int CConnman::GetExtraOutboundCount() { int nOutbound = 0; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fInbound && !pnode->m_manual_connection && !pnode->fFeeler && !pnode->fDisconnect && !pnode->fOneShot && pnode->fSuccessfullyConnected) { ++nOutbound; } } } return std::max(nOutbound - nMaxOutbound, 0); } void CConnman::ThreadOpenConnections(const std::vector connect) { // Connect to specific addresses if (!connect.empty()) { for (int64_t nLoop = 0;; nLoop++) { ProcessOneShot(); for (const std::string &strAddr : connect) { CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, nullptr, strAddr.c_str(), false, false, true); for (int i = 0; i < 10 && i < nLoop; i++) { if (!interruptNet.sleep_for( std::chrono::milliseconds(500))) { return; } } } if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } } } // Initiate network connections int64_t nStart = GetTime(); // Minimum time before next feeler connection (in microseconds). int64_t nNextFeeler = PoissonNextSend(nStart * 1000 * 1000, FEELER_INTERVAL); while (!interruptNet) { ProcessOneShot(); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } CSemaphoreGrant grant(*semOutbound); if (interruptNet) { return; } // Add seed nodes if DNS seeds are all down (an infrastructure attack?). if (addrman.size() == 0 && (GetTime() - nStart > 60)) { static bool done = false; if (!done) { LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be " "available.\n"); CNetAddr local; local.SetInternal("fixedseeds"); addrman.Add(convertSeed6(config->GetChainParams().FixedSeeds()), local); done = true; } } // // Choose an address to connect to based on most recently seen // CAddress addrConnect; // Only connect out to one peer per network group (/16 for IPv4). Do // this here so we don't have to critsect vNodes inside mapAddresses // critsect. int nOutbound = 0; std::set> setConnected; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (!pnode->fInbound && !pnode->m_manual_connection) { // Netgroups for inbound and addnode peers are not excluded // because our goal here is to not use multiple of our // limited outbound slots on a single netgroup but inbound // and addnode peers do not use our outbound slots. Inbound // peers also have the added issue that they're attacker // controlled and could be used to prevent us from // connecting to particular hosts if we used them here. setConnected.insert(pnode->addr.GetGroup()); nOutbound++; } } } // Feeler Connections // // Design goals: // * Increase the number of connectable addresses in the tried table. // // Method: // * Choose a random address from new and attempt to connect to it if // we can connect successfully it is added to tried. // * Start attempting feeler connections only after node finishes // making outbound connections. // * Only make a feeler connection once every few minutes. // bool fFeeler = false; if (nOutbound >= nMaxOutbound && !GetTryNewOutboundPeer()) { // The current time right now (in microseconds). int64_t nTime = GetTimeMicros(); if (nTime > nNextFeeler) { nNextFeeler = PoissonNextSend(nTime, FEELER_INTERVAL); fFeeler = true; } else { continue; } } addrman.ResolveCollisions(); int64_t nANow = GetAdjustedTime(); int nTries = 0; while (!interruptNet) { CAddrInfo addr = addrman.SelectTriedCollision(); // SelectTriedCollision returns an invalid address if it is empty. if (!fFeeler || !addr.IsValid()) { addr = addrman.Select(fFeeler); } // if we selected an invalid address, restart if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr)) { break; } // If we didn't find an appropriate destination after trying 100 // addresses fetched from addrman, stop this loop, and let the outer // loop run again (which sleeps, adds seed nodes, recalculates // already-connected network ranges, ...) before trying new addrman // addresses. nTries++; if (nTries > 100) { break; } if (IsLimited(addr)) { continue; } // only consider very recently tried nodes after 30 failed attempts if (nANow - addr.nLastTry < 600 && nTries < 30) { continue; } // for non-feelers, require all the services we'll want, // for feelers, only require they be a full node (only because most // SPV clients don't have a good address DB available) if (!fFeeler && !HasAllDesirableServiceFlags(addr.nServices)) { continue; } if (fFeeler && !MayHaveUsefulAddressDB(addr.nServices)) { continue; } // do not allow non-default ports, unless after 50 invalid addresses // selected already. if (addr.GetPort() != config->GetChainParams().GetDefaultPort() && nTries < 50) { continue; } addrConnect = addr; break; } if (addrConnect.IsValid()) { if (fFeeler) { // Add small amount of random noise before connection to avoid // synchronization. int randsleep = GetRandInt(FEELER_SLEEP_WINDOW * 1000); if (!interruptNet.sleep_for( std::chrono::milliseconds(randsleep))) { return; } LogPrint(BCLog::NET, "Making feeler connection to %s\n", addrConnect.ToString()); } OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant, nullptr, false, fFeeler); } } } std::vector CConnman::GetAddedNodeInfo() { std::vector ret; std::list lAddresses(0); { LOCK(cs_vAddedNodes); ret.reserve(vAddedNodes.size()); std::copy(vAddedNodes.cbegin(), vAddedNodes.cend(), std::back_inserter(lAddresses)); } // Build a map of all already connected addresses (by IP:port and by name) // to inbound/outbound and resolved CService std::map mapConnected; std::map> mapConnectedByName; { LOCK(cs_vNodes); for (const CNode *pnode : vNodes) { if (pnode->addr.IsValid()) { mapConnected[pnode->addr] = pnode->fInbound; } std::string addrName = pnode->GetAddrName(); if (!addrName.empty()) { mapConnectedByName[std::move(addrName)] = std::make_pair(pnode->fInbound, static_cast(pnode->addr)); } } } for (const std::string &strAddNode : lAddresses) { CService service( LookupNumeric(strAddNode.c_str(), Params().GetDefaultPort())); AddedNodeInfo addedNode{strAddNode, CService(), false, false}; if (service.IsValid()) { // strAddNode is an IP:port auto it = mapConnected.find(service); if (it != mapConnected.end()) { addedNode.resolvedAddress = service; addedNode.fConnected = true; addedNode.fInbound = it->second; } } else { // strAddNode is a name auto it = mapConnectedByName.find(strAddNode); if (it != mapConnectedByName.end()) { addedNode.resolvedAddress = it->second.second; addedNode.fConnected = true; addedNode.fInbound = it->second.first; } } ret.emplace_back(std::move(addedNode)); } return ret; } void CConnman::ThreadOpenAddedConnections() { while (true) { CSemaphoreGrant grant(*semAddnode); std::vector vInfo = GetAddedNodeInfo(); bool tried = false; for (const AddedNodeInfo &info : vInfo) { if (!info.fConnected) { if (!grant.TryAcquire()) { // If we've used up our semaphore and need a new one, lets // not wait here since while we are waiting the // addednodeinfo state might change. break; } tried = true; CAddress addr(CService(), NODE_NONE); OpenNetworkConnection(addr, false, &grant, info.strAddedNode.c_str(), false, false, true); if (!interruptNet.sleep_for(std::chrono::milliseconds(500))) { return; } } } // Retry every 60 seconds if a connection was attempted, otherwise two // seconds. if (!interruptNet.sleep_for(std::chrono::seconds(tried ? 60 : 2))) { return; } } } // If successful, this moves the passed grant to the constructed node. void CConnman::OpenNetworkConnection(const CAddress &addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot, bool fFeeler, bool manual_connection) { // // Initiate outbound network connection // if (interruptNet) { return; } if (!fNetworkActive) { return; } if (!pszDest) { if (IsLocal(addrConnect) || FindNode((CNetAddr)addrConnect) || IsBanned(addrConnect) || FindNode(addrConnect.ToStringIPPort())) { return; } } else if (FindNode(std::string(pszDest))) { return; } CNode *pnode = ConnectNode(addrConnect, pszDest, fCountFailure); if (!pnode) { return; } if (grantOutbound) { grantOutbound->MoveTo(pnode->grantOutbound); } if (fOneShot) { pnode->fOneShot = true; } if (fFeeler) { pnode->fFeeler = true; } if (manual_connection) { pnode->m_manual_connection = true; } m_msgproc->InitializeNode(*config, pnode); { LOCK(cs_vNodes); vNodes.push_back(pnode); } } void CConnman::ThreadMessageHandler() { while (!flagInterruptMsgProc) { std::vector vNodesCopy; { LOCK(cs_vNodes); vNodesCopy = vNodes; for (CNode *pnode : vNodesCopy) { pnode->AddRef(); } } bool fMoreWork = false; for (CNode *pnode : vNodesCopy) { if (pnode->fDisconnect) { continue; } // Receive messages bool fMoreNodeWork = m_msgproc->ProcessMessages( *config, pnode, flagInterruptMsgProc); fMoreWork |= (fMoreNodeWork && !pnode->fPauseSend); if (flagInterruptMsgProc) { return; } // Send messages { LOCK(pnode->cs_sendProcessing); m_msgproc->SendMessages(*config, pnode, flagInterruptMsgProc); } if (flagInterruptMsgProc) { return; } } { LOCK(cs_vNodes); for (CNode *pnode : vNodesCopy) { pnode->Release(); } } std::unique_lock lock(mutexMsgProc); if (!fMoreWork) { condMsgProc.wait_until(lock, std::chrono::steady_clock::now() + std::chrono::milliseconds(100), [this] { return fMsgProcWake; }); } fMsgProcWake = false; } } bool CConnman::BindListenPort(const CService &addrBind, std::string &strError, bool fWhitelisted) { strError = ""; int nOne = 1; // Create socket for listening for incoming connections struct sockaddr_storage sockaddr; socklen_t len = sizeof(sockaddr); if (!addrBind.GetSockAddr((struct sockaddr *)&sockaddr, &len)) { strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString()); LogPrintf("%s\n", strError); return false; } SOCKET hListenSocket = CreateSocket(addrBind); if (hListenSocket == INVALID_SOCKET) { strError = strprintf("Error: Couldn't open socket for incoming " "connections (socket returned error %s)", NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); return false; } // Allow binding if the port is still in TIME_WAIT state after // the program was closed and restarted. setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (sockopt_arg_type)&nOne, sizeof(int)); // Some systems don't have IPV6_V6ONLY but are always v6only; others do have // the option and enable it by default or not. Try to enable it, if // possible. if (addrBind.IsIPv6()) { #ifdef IPV6_V6ONLY setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (sockopt_arg_type)&nOne, sizeof(int)); #endif #ifdef WIN32 int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED; setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (sockopt_arg_type)&nProtLevel, sizeof(int)); #endif } if (::bind(hListenSocket, (struct sockaddr *)&sockaddr, len) == SOCKET_ERROR) { int nErr = WSAGetLastError(); if (nErr == WSAEADDRINUSE) { strError = strprintf(_("Unable to bind to %s on this computer. %s " "is probably already running."), addrBind.ToString(), _(PACKAGE_NAME)); } else { strError = strprintf(_("Unable to bind to %s on this computer " "(bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr)); } LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } LogPrintf("Bound to %s\n", addrBind.ToString()); // Listen for incoming connections if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR) { strError = strprintf(_("Error: Listening for incoming connections " "failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError())); LogPrintf("%s\n", strError); CloseSocket(hListenSocket); return false; } vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted)); if (addrBind.IsRoutable() && fDiscover && !fWhitelisted) { AddLocal(addrBind, LOCAL_BIND); } return true; } void Discover() { if (!fDiscover) { return; } #ifdef WIN32 // Get local host IP char pszHostName[256] = ""; if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR) { std::vector vaddr; if (LookupHost(pszHostName, vaddr, 0, true)) { for (const CNetAddr &addr : vaddr) { if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString()); } } } } #else // Get local host ip struct ifaddrs *myaddrs; if (getifaddrs(&myaddrs) == 0) { for (struct ifaddrs *ifa = myaddrs; ifa != nullptr; ifa = ifa->ifa_next) { if (ifa->ifa_addr == nullptr || (ifa->ifa_flags & IFF_UP) == 0 || strcmp(ifa->ifa_name, "lo") == 0 || strcmp(ifa->ifa_name, "lo0") == 0) { continue; } if (ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in *s4 = (struct sockaddr_in *)(ifa->ifa_addr); CNetAddr addr(s4->sin_addr); if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } else if (ifa->ifa_addr->sa_family == AF_INET6) { struct sockaddr_in6 *s6 = (struct sockaddr_in6 *)(ifa->ifa_addr); CNetAddr addr(s6->sin6_addr); if (AddLocal(addr, LOCAL_IF)) { LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString()); } } } freeifaddrs(myaddrs); } #endif } void CConnman::SetNetworkActive(bool active) { LogPrint(BCLog::NET, "SetNetworkActive: %s\n", active); if (fNetworkActive == active) { return; } fNetworkActive = active; uiInterface.NotifyNetworkActiveChanged(fNetworkActive); } CConnman::CConnman(const Config &configIn, uint64_t nSeed0In, uint64_t nSeed1In) : config(&configIn), nSeed0(nSeed0In), nSeed1(nSeed1In) { fNetworkActive = true; setBannedIsDirty = false; fAddressesInitialized = false; nLastNodeId = 0; nSendBufferMaxSize = 0; nReceiveFloodSize = 0; flagInterruptMsgProc = false; SetTryNewOutboundPeer(false); Options connOptions; Init(connOptions); } NodeId CConnman::GetNewNodeId() { return nLastNodeId.fetch_add(1, std::memory_order_relaxed); } bool CConnman::Bind(const CService &addr, unsigned int flags) { if (!(flags & BF_EXPLICIT) && IsLimited(addr)) { return false; } std::string strError; if (!BindListenPort(addr, strError, (flags & BF_WHITELIST) != 0)) { if ((flags & BF_REPORT_ERROR) && clientInterface) { clientInterface->ThreadSafeMessageBox( strError, "", CClientUIInterface::MSG_ERROR); } return false; } return true; } bool CConnman::InitBinds(const std::vector &binds, const std::vector &whiteBinds) { bool fBound = false; for (const auto &addrBind : binds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR)); } for (const auto &addrBind : whiteBinds) { fBound |= Bind(addrBind, (BF_EXPLICIT | BF_REPORT_ERROR | BF_WHITELIST)); } if (binds.empty() && whiteBinds.empty()) { struct in_addr inaddr_any; inaddr_any.s_addr = INADDR_ANY; struct in6_addr inaddr6_any = IN6ADDR_ANY_INIT; fBound |= Bind(CService(inaddr6_any, GetListenPort()), BF_NONE); fBound |= Bind(CService(inaddr_any, GetListenPort()), !fBound ? BF_REPORT_ERROR : BF_NONE); } return fBound; } bool CConnman::Start(CScheduler &scheduler, const Options &connOptions) { Init(connOptions); nTotalBytesRecv = 0; nTotalBytesSent = 0; nMaxOutboundTotalBytesSentInCycle = 0; nMaxOutboundCycleStartTime = 0; if (fListen && !InitBinds(connOptions.vBinds, connOptions.vWhiteBinds)) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Failed to listen on any port. Use -listen=0 if you want " "this."), "", CClientUIInterface::MSG_ERROR); } return false; } for (const auto &strDest : connOptions.vSeedNodes) { AddOneShot(strDest); } if (clientInterface) { clientInterface->InitMessage(_("Loading P2P addresses...")); } // Load addresses from peers.dat int64_t nStart = GetTimeMillis(); { CAddrDB adb(config->GetChainParams()); if (adb.Read(addrman)) { LogPrintf("Loaded %i addresses from peers.dat %dms\n", addrman.size(), GetTimeMillis() - nStart); } else { // Addrman can be in an inconsistent state after failure, reset it addrman.Clear(); LogPrintf("Invalid or missing peers.dat; recreating\n"); DumpAddresses(); } } if (clientInterface) { clientInterface->InitMessage(_("Loading banlist...")); } // Load addresses from banlist.dat nStart = GetTimeMillis(); CBanDB bandb(config->GetChainParams()); banmap_t banmap; if (bandb.Read(banmap)) { // thread save setter SetBanned(banmap); // no need to write down, just read data SetBannedSetDirty(false); // sweep out unused entries SweepBanned(); LogPrint(BCLog::NET, "Loaded %d banned node ips/subnets from banlist.dat %dms\n", banmap.size(), GetTimeMillis() - nStart); } else { LogPrintf("Invalid or missing banlist.dat; recreating\n"); // force write SetBannedSetDirty(true); DumpBanlist(); } uiInterface.InitMessage(_("Starting network threads...")); fAddressesInitialized = true; if (semOutbound == nullptr) { // initialize semaphore semOutbound = std::unique_ptr(new CSemaphore( std::min((nMaxOutbound + nMaxFeeler), nMaxConnections))); } if (semAddnode == nullptr) { // initialize semaphore semAddnode = std::unique_ptr(new CSemaphore(nMaxAddnode)); } // // Start threads // assert(m_msgproc); InterruptSocks5(false); interruptNet.reset(); flagInterruptMsgProc = false; { std::unique_lock lock(mutexMsgProc); fMsgProcWake = false; } // Send and receive from sockets, accept connections threadSocketHandler = std::thread( &TraceThread>, "net", std::function(std::bind(&CConnman::ThreadSocketHandler, this))); if (!gArgs.GetBoolArg("-dnsseed", true)) { LogPrintf("DNS seeding disabled\n"); } else { threadDNSAddressSeed = std::thread(&TraceThread>, "dnsseed", std::function( std::bind(&CConnman::ThreadDNSAddressSeed, this))); } // Initiate outbound connections from -addnode threadOpenAddedConnections = std::thread(&TraceThread>, "addcon", std::function(std::bind( &CConnman::ThreadOpenAddedConnections, this))); if (connOptions.m_use_addrman_outgoing && !connOptions.m_specified_outgoing.empty()) { if (clientInterface) { clientInterface->ThreadSafeMessageBox( _("Cannot provide specific connections and have addrman find " "outgoing connections at the same."), "", CClientUIInterface::MSG_ERROR); } return false; } if (connOptions.m_use_addrman_outgoing || !connOptions.m_specified_outgoing.empty()) { threadOpenConnections = std::thread(&TraceThread>, "opencon", std::function( std::bind(&CConnman::ThreadOpenConnections, this, connOptions.m_specified_outgoing))); } // Process messages threadMessageHandler = std::thread(&TraceThread>, "msghand", std::function( std::bind(&CConnman::ThreadMessageHandler, this))); // Dump network addresses scheduler.scheduleEvery(std::bind(&CConnman::DumpData, this), DUMP_ADDRESSES_INTERVAL * 1000); return true; } class CNetCleanup { public: CNetCleanup() {} ~CNetCleanup() { #ifdef WIN32 // Shutdown Windows Sockets WSACleanup(); #endif } } instance_of_cnetcleanup; void CConnman::Interrupt() { { std::lock_guard lock(mutexMsgProc); flagInterruptMsgProc = true; } condMsgProc.notify_all(); interruptNet(); InterruptSocks5(true); if (semOutbound) { for (int i = 0; i < (nMaxOutbound + nMaxFeeler); i++) { semOutbound->post(); } } if (semAddnode) { for (int i = 0; i < nMaxAddnode; i++) { semAddnode->post(); } } } void CConnman::Stop() { if (threadMessageHandler.joinable()) { threadMessageHandler.join(); } if (threadOpenConnections.joinable()) { threadOpenConnections.join(); } if (threadOpenAddedConnections.joinable()) { threadOpenAddedConnections.join(); } if (threadDNSAddressSeed.joinable()) { threadDNSAddressSeed.join(); } if (threadSocketHandler.joinable()) { threadSocketHandler.join(); } if (fAddressesInitialized) { DumpData(); fAddressesInitialized = false; } // Close sockets for (CNode *pnode : vNodes) { pnode->CloseSocketDisconnect(); } for (ListenSocket &hListenSocket : vhListenSocket) { if (hListenSocket.socket != INVALID_SOCKET) { if (!CloseSocket(hListenSocket.socket)) { LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError())); } } } // clean up some globals (to help leak detection) for (CNode *pnode : vNodes) { DeleteNode(pnode); } for (CNode *pnode : vNodesDisconnected) { DeleteNode(pnode); } vNodes.clear(); vNodesDisconnected.clear(); vhListenSocket.clear(); semOutbound.reset(); semAddnode.reset(); } void CConnman::DeleteNode(CNode *pnode) { assert(pnode); bool fUpdateConnectionTime = false; m_msgproc->FinalizeNode(*config, pnode->GetId(), fUpdateConnectionTime); if (fUpdateConnectionTime) { addrman.Connected(pnode->addr); } delete pnode; } CConnman::~CConnman() { Interrupt(); Stop(); } size_t CConnman::GetAddressCount() const { return addrman.size(); } void CConnman::SetServices(const CService &addr, ServiceFlags nServices) { addrman.SetServices(addr, nServices); } void CConnman::MarkAddressGood(const CAddress &addr) { addrman.Good(addr); } void CConnman::AddNewAddresses(const std::vector &vAddr, const CAddress &addrFrom, int64_t nTimePenalty) { addrman.Add(vAddr, addrFrom, nTimePenalty); } std::vector CConnman::GetAddresses() { return addrman.GetAddr(); } bool CConnman::AddNode(const std::string &strNode) { LOCK(cs_vAddedNodes); for (const std::string &it : vAddedNodes) { if (strNode == it) { return false; } } vAddedNodes.push_back(strNode); return true; } bool CConnman::RemoveAddedNode(const std::string &strNode) { LOCK(cs_vAddedNodes); for (std::vector::iterator it = vAddedNodes.begin(); it != vAddedNodes.end(); ++it) { if (strNode == *it) { vAddedNodes.erase(it); return true; } } return false; } size_t CConnman::GetNodeCount(NumConnections flags) { LOCK(cs_vNodes); // Shortcut if we want total if (flags == CConnman::CONNECTIONS_ALL) { return vNodes.size(); } int nNum = 0; for (const auto &pnode : vNodes) { if (flags & (pnode->fInbound ? CONNECTIONS_IN : CONNECTIONS_OUT)) { nNum++; } } return nNum; } void CConnman::GetNodeStats(std::vector &vstats) { vstats.clear(); LOCK(cs_vNodes); vstats.reserve(vNodes.size()); for (CNode *pnode : vNodes) { vstats.emplace_back(); pnode->copyStats(vstats.back()); } } bool CConnman::DisconnectNode(const std::string &strNode) { LOCK(cs_vNodes); if (CNode *pnode = FindNode(strNode)) { pnode->fDisconnect = true; return true; } return false; } bool CConnman::DisconnectNode(NodeId id) { LOCK(cs_vNodes); for (CNode *pnode : vNodes) { if (id == pnode->GetId()) { pnode->fDisconnect = true; return true; } } return false; } void CConnman::RecordBytesRecv(uint64_t bytes) { LOCK(cs_totalBytesRecv); nTotalBytesRecv += bytes; } void CConnman::RecordBytesSent(uint64_t bytes) { LOCK(cs_totalBytesSent); nTotalBytesSent += bytes; uint64_t now = GetTime(); if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now) { // timeframe expired, reset cycle nMaxOutboundCycleStartTime = now; nMaxOutboundTotalBytesSentInCycle = 0; } // TODO, exclude whitebind peers nMaxOutboundTotalBytesSentInCycle += bytes; } void CConnman::SetMaxOutboundTarget(uint64_t limit) { LOCK(cs_totalBytesSent); nMaxOutboundLimit = limit; } uint64_t CConnman::GetMaxOutboundTarget() { LOCK(cs_totalBytesSent); return nMaxOutboundLimit; } uint64_t CConnman::GetMaxOutboundTimeframe() { LOCK(cs_totalBytesSent); return nMaxOutboundTimeframe; } uint64_t CConnman::GetMaxOutboundTimeLeftInCycle() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return 0; } if (nMaxOutboundCycleStartTime == 0) { return nMaxOutboundTimeframe; } uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe; uint64_t now = GetTime(); return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime(); } void CConnman::SetMaxOutboundTimeframe(uint64_t timeframe) { LOCK(cs_totalBytesSent); if (nMaxOutboundTimeframe != timeframe) { // reset measure-cycle in case of changing the timeframe. nMaxOutboundCycleStartTime = GetTime(); } nMaxOutboundTimeframe = timeframe; } bool CConnman::OutboundTargetReached(bool historicalBlockServingLimit) { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return false; } if (historicalBlockServingLimit) { // keep a large enough buffer to at least relay each block once. uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle(); uint64_t buffer = timeLeftInCycle / 600 * ONE_MEGABYTE; if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer) { return true; } } else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) { return true; } return false; } uint64_t CConnman::GetOutboundTargetBytesLeft() { LOCK(cs_totalBytesSent); if (nMaxOutboundLimit == 0) { return 0; } return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle; } uint64_t CConnman::GetTotalBytesRecv() { LOCK(cs_totalBytesRecv); return nTotalBytesRecv; } uint64_t CConnman::GetTotalBytesSent() { LOCK(cs_totalBytesSent); return nTotalBytesSent; } ServiceFlags CConnman::GetLocalServices() const { return nLocalServices; } void CConnman::SetBestHeight(int height) { nBestHeight.store(height, std::memory_order_release); } int CConnman::GetBestHeight() const { return nBestHeight.load(std::memory_order_acquire); } unsigned int CConnman::GetReceiveFloodSize() const { return nReceiveFloodSize; } CNode::CNode(NodeId idIn, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn, bool fInboundIn) : nTimeConnected(GetSystemTimeInSeconds()), addr(addrIn), addrBind(addrBindIn), fInbound(fInboundIn), nKeyedNetGroup(nKeyedNetGroupIn), addrKnown(5000, 0.001), filterInventoryKnown(50000, 0.000001), id(idIn), nLocalHostNonce(nLocalHostNonceIn), nLocalServices(nLocalServicesIn), nMyStartingHeight(nMyStartingHeightIn), nSendVersion(0) { nServices = NODE_NONE; hSocket = hSocketIn; nRecvVersion = INIT_PROTO_VERSION; nLastSend = 0; nLastRecv = 0; nSendBytes = 0; nRecvBytes = 0; nTimeOffset = 0; addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn; nVersion = 0; strSubVer = ""; fWhitelisted = false; fOneShot = false; m_manual_connection = false; // set by version message fClient = false; fFeeler = false; fSuccessfullyConnected = false; fDisconnect = false; nRefCount = 0; nSendSize = 0; nSendOffset = 0; hashContinue = uint256(); nStartingHeight = -1; filterInventoryKnown.reset(); fSendMempool = false; fGetAddr = false; nNextLocalAddrSend = 0; nNextAddrSend = 0; nNextInvSend = 0; fRelayTxes = false; fSentAddr = false; pfilter = std::unique_ptr(new CBloomFilter()); timeLastMempoolReq = 0; nLastBlockTime = 0; nLastTXTime = 0; nPingNonceSent = 0; nPingUsecStart = 0; nPingUsecTime = 0; fPingQueued = false; nMinPingUsecTime = std::numeric_limits::max(); minFeeFilter = Amount::zero(); lastSentFeeFilter = Amount::zero(); nextSendTimeFeeFilter = 0; fPauseRecv = false; fPauseSend = false; nProcessQueueSize = 0; for (const std::string &msg : getAllNetMessageTypes()) { mapRecvBytesPerMsgCmd[msg] = 0; } mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0; if (fLogIPs) { LogPrint(BCLog::NET, "Added connection to %s peer=%d\n", addrName, id); } else { LogPrint(BCLog::NET, "Added connection peer=%d\n", id); } } CNode::~CNode() { CloseSocket(hSocket); } void CNode::AskFor(const CInv &inv) { if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ) { return; } // a peer may not have multiple non-responded queue positions for a single // inv item. if (!setAskFor.insert(inv.hash).second) { return; } // We're using mapAskFor as a priority queue, the key is the earliest time // the request can be sent. int64_t nRequestTime; limitedmap::const_iterator it = mapAlreadyAskedFor.find(inv.hash); if (it != mapAlreadyAskedFor.end()) { nRequestTime = it->second; } else { nRequestTime = 0; } LogPrint(BCLog::NET, "askfor %s %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime / 1000000), id); // Make sure not to reuse time indexes to keep things in the same order int64_t nNow = GetTimeMicros() - 1000000; static int64_t nLastTime; ++nLastTime; nNow = std::max(nNow, nLastTime); nLastTime = nNow; // Each retry is 2 minutes after the last nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow); if (it != mapAlreadyAskedFor.end()) { mapAlreadyAskedFor.update(it, nRequestTime); } else { mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime)); } mapAskFor.insert(std::make_pair(nRequestTime, inv)); } bool CConnman::NodeFullyConnected(const CNode *pnode) { return pnode && pnode->fSuccessfullyConnected && !pnode->fDisconnect; } void CConnman::PushMessage(CNode *pnode, CSerializedNetMsg &&msg) { size_t nMessageSize = msg.data.size(); size_t nTotalSize = nMessageSize + CMessageHeader::HEADER_SIZE; LogPrint(BCLog::NET, "sending %s (%d bytes) peer=%d\n", SanitizeString(msg.command.c_str()), nMessageSize, pnode->GetId()); std::vector serializedHeader; serializedHeader.reserve(CMessageHeader::HEADER_SIZE); uint256 hash = Hash(msg.data.data(), msg.data.data() + nMessageSize); CMessageHeader hdr(config->GetChainParams().NetMagic(), msg.command.c_str(), nMessageSize); memcpy(hdr.pchChecksum, hash.begin(), CMessageHeader::CHECKSUM_SIZE); CVectorWriter{SER_NETWORK, INIT_PROTO_VERSION, serializedHeader, 0, hdr}; size_t nBytesSent = 0; { LOCK(pnode->cs_vSend); bool optimisticSend(pnode->vSendMsg.empty()); // log total amount of bytes per command pnode->mapSendBytesPerMsgCmd[msg.command] += nTotalSize; pnode->nSendSize += nTotalSize; if (pnode->nSendSize > nSendBufferMaxSize) { pnode->fPauseSend = true; } pnode->vSendMsg.push_back(std::move(serializedHeader)); if (nMessageSize) { pnode->vSendMsg.push_back(std::move(msg.data)); } // If write queue empty, attempt "optimistic write" if (optimisticSend == true) { nBytesSent = SocketSendData(pnode); } } if (nBytesSent) { RecordBytesSent(nBytesSent); } } bool CConnman::ForNode(NodeId id, std::function func) { CNode *found = nullptr; LOCK(cs_vNodes); for (auto &&pnode : vNodes) { if (pnode->GetId() == id) { found = pnode; break; } } return found != nullptr && NodeFullyConnected(found) && func(found); } int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) { return nNow + int64_t(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5); } CSipHasher CConnman::GetDeterministicRandomizer(uint64_t id) const { return CSipHasher(nSeed0, nSeed1).Write(id); } uint64_t CConnman::CalculateKeyedNetGroup(const CAddress &ad) const { std::vector vchNetGroup(ad.GetGroup()); return GetDeterministicRandomizer(RANDOMIZER_ID_NETGROUP) .Write(vchNetGroup.data(), vchNetGroup.size()) .Finalize(); } /** * This function convert MaxBlockSize from byte to * MB with a decimal precision one digit rounded down * E.g. * 1660000 -> 1.6 * 2010000 -> 2.0 * 1000000 -> 1.0 * 230000 -> 0.2 * 50000 -> 0.0 * * NB behavior for EB<1MB not standardized yet still * the function applies the same algo used for * EB greater or equal to 1MB */ std::string getSubVersionEB(uint64_t MaxBlockSize) { // Prepare EB string we are going to add to SubVer: // 1) translate from byte to MB and convert to string // 2) limit the EB string to the first decimal digit (floored) std::stringstream ebMBs; ebMBs << (MaxBlockSize / (ONE_MEGABYTE / 10)); std::string eb = ebMBs.str(); eb.insert(eb.size() - 1, ".", 1); if (eb.substr(0, 1) == ".") { eb = "0" + eb; } return eb; } std::string userAgent(const Config &config) { // format excessive blocksize value std::string eb = getSubVersionEB(config.GetMaxBlockSize()); std::vector uacomments; uacomments.push_back("EB" + eb); // sanitize comments per BIP-0014, format user agent and check total size for (const std::string &cmt : gArgs.GetArgs("-uacomment")) { if (cmt != SanitizeString(cmt, SAFE_CHARS_UA_COMMENT)) { LogPrintf( "User Agent comment (%s) contains unsafe characters. " "We are going to use a sanitize version of the comment.\n", cmt); } uacomments.push_back(cmt); } std::string subversion = FormatSubVersion(CLIENT_NAME, CLIENT_VERSION, uacomments); if (subversion.size() > MAX_SUBVERSION_LENGTH) { LogPrintf("Total length of network version string (%i) exceeds maximum " "length (%i). Reduce the number or size of uacomments. " "String has been resized to the max length allowed.\n", subversion.size(), MAX_SUBVERSION_LENGTH); subversion.resize(MAX_SUBVERSION_LENGTH - 2); subversion.append(")/"); LogPrintf("Current network string has been set to: %s\n", subversion); } return subversion; } diff --git a/src/protocol.h b/src/protocol.h index 84d00e4d0..2af2cb03c 100644 --- a/src/protocol.h +++ b/src/protocol.h @@ -1,436 +1,444 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef __cplusplus #error This header can only be compiled as C++. #endif #ifndef BITCOIN_PROTOCOL_H #define BITCOIN_PROTOCOL_H #include "netaddress.h" #include "serialize.h" #include "uint256.h" #include "version.h" #include #include #include class Config; /** * Maximum length of incoming protocol messages (Currently 1MB). * NB: Messages propagating block content are not subject to this limit. */ static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 1 * 1024 * 1024; /** * Message header. * (4) message start. * (12) command. * (4) size. * (4) checksum. */ class CMessageHeader { public: enum { MESSAGE_START_SIZE = 4, COMMAND_SIZE = 12, MESSAGE_SIZE_SIZE = 4, CHECKSUM_SIZE = 4, MESSAGE_SIZE_OFFSET = MESSAGE_START_SIZE + COMMAND_SIZE, CHECKSUM_OFFSET = MESSAGE_SIZE_OFFSET + MESSAGE_SIZE_SIZE, HEADER_SIZE = MESSAGE_START_SIZE + COMMAND_SIZE + MESSAGE_SIZE_SIZE + CHECKSUM_SIZE }; typedef std::array MessageMagic; CMessageHeader(const MessageMagic &pchMessageStartIn); CMessageHeader(const MessageMagic &pchMessageStartIn, const char *pszCommand, unsigned int nMessageSizeIn); std::string GetCommand() const; bool IsValid(const Config &config) const; bool IsValidWithoutConfig(const MessageMagic &magic) const; bool IsOversized(const Config &config) const; ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(FLATDATA(pchMessageStart)); READWRITE(FLATDATA(pchCommand)); READWRITE(nMessageSize); READWRITE(FLATDATA(pchChecksum)); } MessageMagic pchMessageStart; std::array pchCommand; uint32_t nMessageSize; uint8_t pchChecksum[CHECKSUM_SIZE]; }; /** * Bitcoin protocol message types. When adding new message types, don't forget * to update allNetMessageTypes in protocol.cpp. */ namespace NetMsgType { /** * The version message provides information about the transmitting node to the * receiving node at the beginning of a connection. * @see https://bitcoin.org/en/developer-reference#version */ extern const char *VERSION; /** * The verack message acknowledges a previously-received version message, * informing the connecting node that it can begin to send other messages. * @see https://bitcoin.org/en/developer-reference#verack */ extern const char *VERACK; /** * The addr (IP address) message relays connection information for peers on the * network. * @see https://bitcoin.org/en/developer-reference#addr */ extern const char *ADDR; /** * The inv message (inventory message) transmits one or more inventories of * objects known to the transmitting peer. * @see https://bitcoin.org/en/developer-reference#inv */ extern const char *INV; /** * The getdata message requests one or more data objects from another node. * @see https://bitcoin.org/en/developer-reference#getdata */ extern const char *GETDATA; /** * The merkleblock message is a reply to a getdata message which requested a * block using the inventory type MSG_MERKLEBLOCK. * @since protocol version 70001 as described by BIP37. * @see https://bitcoin.org/en/developer-reference#merkleblock */ extern const char *MERKLEBLOCK; /** * The getblocks message requests an inv message that provides block header * hashes starting from a particular point in the block chain. * @see https://bitcoin.org/en/developer-reference#getblocks */ extern const char *GETBLOCKS; /** * The getheaders message requests a headers message that provides block * headers starting from a particular point in the block chain. * @since protocol version 31800. * @see https://bitcoin.org/en/developer-reference#getheaders */ extern const char *GETHEADERS; /** * The tx message transmits a single transaction. * @see https://bitcoin.org/en/developer-reference#tx */ extern const char *TX; /** * The headers message sends one or more block headers to a node which * previously requested certain headers with a getheaders message. * @since protocol version 31800. * @see https://bitcoin.org/en/developer-reference#headers */ extern const char *HEADERS; /** * The block message transmits a single serialized block. * @see https://bitcoin.org/en/developer-reference#block */ extern const char *BLOCK; /** * The getaddr message requests an addr message from the receiving node, * preferably one with lots of IP addresses of other receiving nodes. * @see https://bitcoin.org/en/developer-reference#getaddr */ extern const char *GETADDR; /** * The mempool message requests the TXIDs of transactions that the receiving * node has verified as valid but which have not yet appeared in a block. * @since protocol version 60002. * @see https://bitcoin.org/en/developer-reference#mempool */ extern const char *MEMPOOL; /** * The ping message is sent periodically to help confirm that the receiving * peer is still connected. * @see https://bitcoin.org/en/developer-reference#ping */ extern const char *PING; /** * The pong message replies to a ping message, proving to the pinging node that * the ponging node is still alive. * @since protocol version 60001 as described by BIP31. * @see https://bitcoin.org/en/developer-reference#pong */ extern const char *PONG; /** * The notfound message is a reply to a getdata message which requested an * object the receiving node does not have available for relay. * @ince protocol version 70001. * @see https://bitcoin.org/en/developer-reference#notfound */ extern const char *NOTFOUND; /** * The filterload message tells the receiving peer to filter all relayed * transactions and requested merkle blocks through the provided filter. * @since protocol version 70001 as described by BIP37. * Only available with service bit NODE_BLOOM since protocol version * 70011 as described by BIP111. * @see https://bitcoin.org/en/developer-reference#filterload */ extern const char *FILTERLOAD; /** * The filteradd message tells the receiving peer to add a single element to a * previously-set bloom filter, such as a new public key. * @since protocol version 70001 as described by BIP37. * Only available with service bit NODE_BLOOM since protocol version * 70011 as described by BIP111. * @see https://bitcoin.org/en/developer-reference#filteradd */ extern const char *FILTERADD; /** * The filterclear message tells the receiving peer to remove a previously-set * bloom filter. * @since protocol version 70001 as described by BIP37. * Only available with service bit NODE_BLOOM since protocol version * 70011 as described by BIP111. * @see https://bitcoin.org/en/developer-reference#filterclear */ extern const char *FILTERCLEAR; /** * The reject message informs the receiving node that one of its previous * messages has been rejected. * @since protocol version 70002 as described by BIP61. * @see https://bitcoin.org/en/developer-reference#reject */ extern const char *REJECT; /** * Indicates that a node prefers to receive new block announcements via a * "headers" message rather than an "inv". * @since protocol version 70012 as described by BIP130. * @see https://bitcoin.org/en/developer-reference#sendheaders */ extern const char *SENDHEADERS; /** * The feefilter message tells the receiving peer not to inv us any txs * which do not meet the specified min fee rate. * @since protocol version 70013 as described by BIP133 */ extern const char *FEEFILTER; /** * Contains a 1-byte bool and 8-byte LE version number. * Indicates that a node is willing to provide blocks via "cmpctblock" messages. * May indicate that a node prefers to receive new block announcements via a * "cmpctblock" message rather than an "inv", depending on message contents. * @since protocol version 70014 as described by BIP 152 */ extern const char *SENDCMPCT; /** * Contains a CBlockHeaderAndShortTxIDs object - providing a header and * list of "short txids". * @since protocol version 70014 as described by BIP 152 */ extern const char *CMPCTBLOCK; /** * Contains a BlockTransactionsRequest * Peer should respond with "blocktxn" message. * @since protocol version 70014 as described by BIP 152 */ extern const char *GETBLOCKTXN; /** * Contains a BlockTransactions. * Sent in response to a "getblocktxn" message. * @since protocol version 70014 as described by BIP 152 */ extern const char *BLOCKTXN; /** * Indicate if the message is used to transmit the content of a block. * These messages can be significantly larger than usual messages and therefore * may need to be processed differently. */ bool IsBlockLike(const std::string &strCommand); }; // namespace NetMsgType /* Get a vector of all valid message types (see above) */ const std::vector &getAllNetMessageTypes(); /** * nServices flags. */ enum ServiceFlags : uint64_t { // Nothing NODE_NONE = 0, // NODE_NETWORK means that the node is capable of serving the block chain. // It is currently set by all Bitcoin ABC nodes, and is unset by SPV clients // or other peers that just want network services but don't provide them. NODE_NETWORK = (1 << 0), // NODE_GETUTXO means the node is capable of responding to the getutxo // protocol request. Bitcoin ABC does not support this but a patch set // called Bitcoin XT does. See BIP 64 for details on how this is // implemented. NODE_GETUTXO = (1 << 1), // NODE_BLOOM means the node is capable and willing to handle bloom-filtered // connections. Bitcoin ABC nodes used to support this by default, without // advertising this bit, but no longer do as of protocol version 70011 (= // NO_BLOOM_VERSION) NODE_BLOOM = (1 << 2), // NODE_XTHIN means the node supports Xtreme Thinblocks. If this is turned // off then the node will not service nor make xthin requests. NODE_XTHIN = (1 << 4), // NODE_BITCOIN_CASH means the node supports Bitcoin Cash and the // associated consensus rule changes. // This service bit is intended to be used prior until some time after the // UAHF activation when the Bitcoin Cash network has adequately separated. // TODO: remove (free up) the NODE_BITCOIN_CASH service bit once no longer // needed. NODE_BITCOIN_CASH = (1 << 5), // Bits 24-31 are reserved for temporary experiments. Just pick a bit that // isn't getting used, or one not being used much, and notify the // bitcoin-development mailing list. Remember that service bits are just // unauthenticated advertisements, so your code must be robust against // collisions and other cases where nodes may be advertising a service they // do not actually support. Other service bits should be allocated via the // BIP process. }; /** * Gets the set of service flags which are "desirable" for a given peer. * * These are the flags which are required for a peer to support for them * to be "interesting" to us, ie for us to wish to use one of our few * outbound connection slots for or for us to wish to prioritize keeping * their connection around. * * Relevant service flags may be peer- and state-specific in that the * version of the peer may determine which flags are required (eg in the * case of NODE_NETWORK_LIMITED where we seek out NODE_NETWORK peers * unless they set NODE_NETWORK_LIMITED and we are out of IBD, in which * case NODE_NETWORK_LIMITED suffices). * - * Thus, generally, avoid calling with peerServices == NODE_NONE. + * Thus, generally, avoid calling with peerServices == NODE_NONE, unless + * state-specific flags must absolutely be avoided. When called with + * peerServices == NODE_NONE, the returned desirable service flags are + * guaranteed to not change dependant on state - ie they are suitable for + * use when describing peers which we know to be desirable, but for which + * we do not have a confirmed set of service flags. + * + * If the NODE_NONE return value is changed, contrib/seeds/makeseeds.py + * should be updated appropriately to filter for the same nodes. */ static ServiceFlags GetDesirableServiceFlags(ServiceFlags services) { return ServiceFlags(NODE_NETWORK); } /** * A shortcut for (services & GetDesirableServiceFlags(services)) * == GetDesirableServiceFlags(services), ie determines whether the given * set of service flags are sufficient for a peer to be "relevant". */ static inline bool HasAllDesirableServiceFlags(ServiceFlags services) { return !(GetDesirableServiceFlags(services) & (~services)); } /** * Checks if a peer with the given service flags may be capable of having a * robust address-storage DB. Currently an alias for checking NODE_NETWORK. */ static inline bool MayHaveUsefulAddressDB(ServiceFlags services) { return services & NODE_NETWORK; } /** * A CService with information about it as peer. */ class CAddress : public CService { public: CAddress(); explicit CAddress(CService ipIn, ServiceFlags nServicesIn); void Init(); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { if (ser_action.ForRead()) Init(); int nVersion = s.GetVersion(); if (s.GetType() & SER_DISK) READWRITE(nVersion); if ((s.GetType() & SER_DISK) || (nVersion >= CADDR_TIME_VERSION && !(s.GetType() & SER_GETHASH))) READWRITE(nTime); uint64_t nServicesInt = nServices; READWRITE(nServicesInt); nServices = (ServiceFlags)nServicesInt; READWRITE(*(CService *)this); } // TODO: make private (improves encapsulation) public: ServiceFlags nServices; // disk and network only unsigned int nTime; }; /** getdata message type flags */ const uint32_t MSG_TYPE_MASK = 0xffffffff >> 3; /** getdata / inv message types. * These numbers are defined by the protocol. When adding a new value, be sure * to mention it in the respective BIP. */ enum GetDataMsg { UNDEFINED = 0, MSG_TX = 1, MSG_BLOCK = 2, // The following can only occur in getdata. Invs always use TX or BLOCK. //!< Defined in BIP37 MSG_FILTERED_BLOCK = 3, //!< Defined in BIP152 MSG_CMPCT_BLOCK = 4, }; /** inv message data */ class CInv { public: // TODO: make private (improves encapsulation) uint32_t type; uint256 hash; public: CInv() : type(0), hash() {} CInv(uint32_t typeIn, const uint256 &hashIn) : type(typeIn), hash(hashIn) {} ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(type); READWRITE(hash); } friend bool operator<(const CInv &a, const CInv &b) { return a.type < b.type || (a.type == b.type && a.hash < b.hash); } std::string GetCommand() const; std::string ToString() const; uint32_t GetKind() const { return type & MSG_TYPE_MASK; } bool IsTx() const { auto k = GetKind(); return k == MSG_TX; } bool IsSomeBlock() const { auto k = GetKind(); return k == MSG_BLOCK || k == MSG_FILTERED_BLOCK || k == MSG_CMPCT_BLOCK; } }; #endif // BITCOIN_PROTOCOL_H