diff --git a/src/addrman.cpp b/src/addrman.cpp index 181218bc9..2b64e7cfb 100644 --- a/src/addrman.cpp +++ b/src/addrman.cpp @@ -1,762 +1,766 @@ // Copyright (c) 2012 Pieter Wuille // Copyright (c) 2012-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include int CAddrInfo::GetTriedBucket(const uint256 &nKey, const std::vector &asmap) const { uint64_t hash1 = (CHashWriter(SER_GETHASH, 0) << nKey << GetKey()).GetCheapHash(); uint64_t hash2 = (CHashWriter(SER_GETHASH, 0) << nKey << GetGroup(asmap) << (hash1 % ADDRMAN_TRIED_BUCKETS_PER_GROUP)) .GetCheapHash(); int tried_bucket = hash2 % ADDRMAN_TRIED_BUCKET_COUNT; uint32_t mapped_as = GetMappedAS(asmap); LogPrint(BCLog::NET, "IP %s mapped to AS%i belongs to tried bucket %i\n", ToStringIP(), mapped_as, tried_bucket); return tried_bucket; } int CAddrInfo::GetNewBucket(const uint256 &nKey, const CNetAddr &src, const std::vector &asmap) const { std::vector vchSourceGroupKey = src.GetGroup(asmap); uint64_t hash1 = (CHashWriter(SER_GETHASH, 0) << nKey << GetGroup(asmap) << vchSourceGroupKey) .GetCheapHash(); uint64_t hash2 = (CHashWriter(SER_GETHASH, 0) << nKey << vchSourceGroupKey << (hash1 % ADDRMAN_NEW_BUCKETS_PER_SOURCE_GROUP)) .GetCheapHash(); int new_bucket = hash2 % ADDRMAN_NEW_BUCKET_COUNT; uint32_t mapped_as = GetMappedAS(asmap); LogPrint(BCLog::NET, "IP %s mapped to AS%i belongs to new bucket %i\n", ToStringIP(), mapped_as, new_bucket); return new_bucket; } int CAddrInfo::GetBucketPosition(const uint256 &nKey, bool fNew, int nBucket) const { uint64_t hash1 = (CHashWriter(SER_GETHASH, 0) << nKey << (fNew ? 'N' : 'K') << nBucket << GetKey()) .GetCheapHash(); return hash1 % ADDRMAN_BUCKET_SIZE; } bool CAddrInfo::IsTerrible(int64_t nNow) const { // never remove things tried in the last minute if (nLastTry && nLastTry >= nNow - 60) { return false; } // came in a flying DeLorean if (nTime > nNow + 10 * 60) { return true; } // not seen in recent history if (nTime == 0 || nNow - nTime > ADDRMAN_HORIZON_DAYS * 24 * 60 * 60) { return true; } // tried N times and never a success if (nLastSuccess == 0 && nAttempts >= ADDRMAN_RETRIES) { return true; } if (nNow - nLastSuccess > ADDRMAN_MIN_FAIL_DAYS * 24 * 60 * 60 && nAttempts >= ADDRMAN_MAX_FAILURES) { // N successive failures in the last week return true; } return false; } double CAddrInfo::GetChance(int64_t nNow) const { double fChance = 1.0; int64_t nSinceLastTry = std::max(nNow - nLastTry, 0); // deprioritize very recent attempts away if (nSinceLastTry < 60 * 10) { fChance *= 0.01; } // deprioritize 66% after each failed attempt, but at most 1/28th to avoid // the search taking forever or overly penalizing outages. fChance *= std::pow(0.66, std::min(nAttempts, 8)); return fChance; } CAddrInfo *CAddrMan::Find(const CNetAddr &addr, int *pnId) { std::map::iterator it = mapAddr.find(addr); if (it == mapAddr.end()) { return nullptr; } if (pnId) { *pnId = (*it).second; } std::map::iterator it2 = mapInfo.find((*it).second); if (it2 != mapInfo.end()) { return &(*it2).second; } return nullptr; } CAddrInfo *CAddrMan::Create(const CAddress &addr, const CNetAddr &addrSource, int *pnId) { int nId = nIdCount++; mapInfo[nId] = CAddrInfo(addr, addrSource); mapAddr[addr] = nId; mapInfo[nId].nRandomPos = vRandom.size(); vRandom.push_back(nId); if (pnId) { *pnId = nId; } return &mapInfo[nId]; } void CAddrMan::SwapRandom(unsigned int nRndPos1, unsigned int nRndPos2) { if (nRndPos1 == nRndPos2) { return; } assert(nRndPos1 < vRandom.size() && nRndPos2 < vRandom.size()); int nId1 = vRandom[nRndPos1]; int nId2 = vRandom[nRndPos2]; assert(mapInfo.count(nId1) == 1); assert(mapInfo.count(nId2) == 1); mapInfo[nId1].nRandomPos = nRndPos2; mapInfo[nId2].nRandomPos = nRndPos1; vRandom[nRndPos1] = nId2; vRandom[nRndPos2] = nId1; } void CAddrMan::Delete(int nId) { assert(mapInfo.count(nId) != 0); CAddrInfo &info = mapInfo[nId]; assert(!info.fInTried); assert(info.nRefCount == 0); SwapRandom(info.nRandomPos, vRandom.size() - 1); vRandom.pop_back(); mapAddr.erase(info); mapInfo.erase(nId); nNew--; } void CAddrMan::ClearNew(int nUBucket, int nUBucketPos) { // if there is an entry in the specified bucket, delete it. if (vvNew[nUBucket][nUBucketPos] != -1) { int nIdDelete = vvNew[nUBucket][nUBucketPos]; CAddrInfo &infoDelete = mapInfo[nIdDelete]; assert(infoDelete.nRefCount > 0); infoDelete.nRefCount--; vvNew[nUBucket][nUBucketPos] = -1; if (infoDelete.nRefCount == 0) { Delete(nIdDelete); } } } void CAddrMan::MakeTried(CAddrInfo &info, int nId) { // remove the entry from all new buckets for (int bucket = 0; bucket < ADDRMAN_NEW_BUCKET_COUNT; bucket++) { int pos = info.GetBucketPosition(nKey, true, bucket); if (vvNew[bucket][pos] == nId) { vvNew[bucket][pos] = -1; info.nRefCount--; } } nNew--; assert(info.nRefCount == 0); // which tried bucket to move the entry to int nKBucket = info.GetTriedBucket(nKey, m_asmap); int nKBucketPos = info.GetBucketPosition(nKey, false, nKBucket); // first make space to add it (the existing tried entry there is moved to // new, deleting whatever is there). if (vvTried[nKBucket][nKBucketPos] != -1) { // find an item to evict int nIdEvict = vvTried[nKBucket][nKBucketPos]; assert(mapInfo.count(nIdEvict) == 1); CAddrInfo &infoOld = mapInfo[nIdEvict]; // Remove the to-be-evicted item from the tried set. infoOld.fInTried = false; vvTried[nKBucket][nKBucketPos] = -1; nTried--; // find which new bucket it belongs to int nUBucket = infoOld.GetNewBucket(nKey, m_asmap); int nUBucketPos = infoOld.GetBucketPosition(nKey, true, nUBucket); ClearNew(nUBucket, nUBucketPos); assert(vvNew[nUBucket][nUBucketPos] == -1); // Enter it into the new set again. infoOld.nRefCount = 1; vvNew[nUBucket][nUBucketPos] = nIdEvict; nNew++; } assert(vvTried[nKBucket][nKBucketPos] == -1); vvTried[nKBucket][nKBucketPos] = nId; nTried++; info.fInTried = true; } void CAddrMan::Good_(const CService &addr, bool test_before_evict, int64_t nTime) { int nId; nLastGood = nTime; CAddrInfo *pinfo = Find(addr, &nId); // if not found, bail out if (!pinfo) { return; } CAddrInfo &info = *pinfo; // check whether we are talking about the exact same CService (including // same port) if (info != addr) { return; } // update info info.nLastSuccess = nTime; info.nLastTry = nTime; info.nAttempts = 0; // nTime is not updated here, to avoid leaking information about // currently-connected peers. // if it is already in the tried set, don't do anything else if (info.fInTried) { return; } // find a bucket it is in now int nRnd = insecure_rand.randrange(ADDRMAN_NEW_BUCKET_COUNT); int nUBucket = -1; for (unsigned int n = 0; n < ADDRMAN_NEW_BUCKET_COUNT; n++) { int nB = (n + nRnd) % ADDRMAN_NEW_BUCKET_COUNT; int nBpos = info.GetBucketPosition(nKey, true, nB); if (vvNew[nB][nBpos] == nId) { nUBucket = nB; break; } } // if no bucket is found, something bad happened; // TODO: maybe re-add the node, but for now, just bail out if (nUBucket == -1) { return; } // which tried bucket to move the entry to int tried_bucket = info.GetTriedBucket(nKey, m_asmap); int tried_bucket_pos = info.GetBucketPosition(nKey, false, tried_bucket); // Will moving this address into tried evict another entry? if (test_before_evict && (vvTried[tried_bucket][tried_bucket_pos] != -1)) { // Output the entry we'd be colliding with, for debugging purposes auto colliding_entry = mapInfo.find(vvTried[tried_bucket][tried_bucket_pos]); LogPrint(BCLog::ADDRMAN, "Collision inserting element into tried table (%s), moving %s " "to m_tried_collisions=%d\n", colliding_entry != mapInfo.end() ? colliding_entry->second.ToString() : "", addr.ToString(), m_tried_collisions.size()); if (m_tried_collisions.size() < ADDRMAN_SET_TRIED_COLLISION_SIZE) { m_tried_collisions.insert(nId); } } else { LogPrint(BCLog::ADDRMAN, "Moving %s to tried\n", addr.ToString()); // move nId to the tried tables MakeTried(info, nId); } } bool CAddrMan::Add_(const CAddress &addr, const CNetAddr &source, int64_t nTimePenalty) { if (!addr.IsRoutable()) { return false; } bool fNew = false; int nId; CAddrInfo *pinfo = Find(addr, &nId); // Do not set a penalty for a source's self-announcement if (addr == source) { nTimePenalty = 0; } if (pinfo) { // periodically update nTime bool fCurrentlyOnline = (GetAdjustedTime() - addr.nTime < 24 * 60 * 60); int64_t nUpdateInterval = (fCurrentlyOnline ? 60 * 60 : 24 * 60 * 60); if (addr.nTime && (!pinfo->nTime || pinfo->nTime < addr.nTime - nUpdateInterval - nTimePenalty)) { pinfo->nTime = std::max((int64_t)0, addr.nTime - nTimePenalty); } // add services pinfo->nServices = ServiceFlags(pinfo->nServices | addr.nServices); // do not update if no new information is present if (!addr.nTime || (pinfo->nTime && addr.nTime <= pinfo->nTime)) { return false; } // do not update if the entry was already in the "tried" table if (pinfo->fInTried) { return false; } // do not update if the max reference count is reached if (pinfo->nRefCount == ADDRMAN_NEW_BUCKETS_PER_ADDRESS) { return false; } // stochastic test: previous nRefCount == N: 2^N times harder to // increase it int nFactor = 1; for (int n = 0; n < pinfo->nRefCount; n++) { nFactor *= 2; } if (nFactor > 1 && (insecure_rand.randrange(nFactor) != 0)) { return false; } } else { pinfo = Create(addr, source, &nId); pinfo->nTime = std::max((int64_t)0, (int64_t)pinfo->nTime - nTimePenalty); nNew++; fNew = true; } int nUBucket = pinfo->GetNewBucket(nKey, source, m_asmap); int nUBucketPos = pinfo->GetBucketPosition(nKey, true, nUBucket); if (vvNew[nUBucket][nUBucketPos] != nId) { bool fInsert = vvNew[nUBucket][nUBucketPos] == -1; if (!fInsert) { CAddrInfo &infoExisting = mapInfo[vvNew[nUBucket][nUBucketPos]]; if (infoExisting.IsTerrible() || (infoExisting.nRefCount > 1 && pinfo->nRefCount == 0)) { // Overwrite the existing new table entry. fInsert = true; } } if (fInsert) { ClearNew(nUBucket, nUBucketPos); pinfo->nRefCount++; vvNew[nUBucket][nUBucketPos] = nId; } else if (pinfo->nRefCount == 0) { Delete(nId); } } return fNew; } void CAddrMan::Attempt_(const CService &addr, bool fCountFailure, int64_t nTime) { CAddrInfo *pinfo = Find(addr); // if not found, bail out if (!pinfo) { return; } CAddrInfo &info = *pinfo; // check whether we are talking about the exact same CService (including // same port) if (info != addr) { return; } // update info info.nLastTry = nTime; if (fCountFailure && info.nLastCountAttempt < nLastGood) { info.nLastCountAttempt = nTime; info.nAttempts++; } } CAddrInfo CAddrMan::Select_(bool newOnly) { if (size() == 0) { return CAddrInfo(); } if (newOnly && nNew == 0) { return CAddrInfo(); } // Use a 50% chance for choosing between tried and new table entries. if (!newOnly && (nTried > 0 && (nNew == 0 || insecure_rand.randbool() == 0))) { // use a tried node double fChanceFactor = 1.0; while (1) { int nKBucket = insecure_rand.randrange(ADDRMAN_TRIED_BUCKET_COUNT); int nKBucketPos = insecure_rand.randrange(ADDRMAN_BUCKET_SIZE); while (vvTried[nKBucket][nKBucketPos] == -1) { nKBucket = (nKBucket + insecure_rand.randbits( ADDRMAN_TRIED_BUCKET_COUNT_LOG2)) % ADDRMAN_TRIED_BUCKET_COUNT; nKBucketPos = (nKBucketPos + insecure_rand.randbits( ADDRMAN_BUCKET_SIZE_LOG2)) % ADDRMAN_BUCKET_SIZE; } int nId = vvTried[nKBucket][nKBucketPos]; assert(mapInfo.count(nId) == 1); CAddrInfo &info = mapInfo[nId]; if (insecure_rand.randbits(30) < fChanceFactor * info.GetChance() * (1 << 30)) { return info; } fChanceFactor *= 1.2; } } else { // use a new node double fChanceFactor = 1.0; while (1) { int nUBucket = insecure_rand.randrange(ADDRMAN_NEW_BUCKET_COUNT); int nUBucketPos = insecure_rand.randrange(ADDRMAN_BUCKET_SIZE); while (vvNew[nUBucket][nUBucketPos] == -1) { nUBucket = (nUBucket + insecure_rand.randbits( ADDRMAN_NEW_BUCKET_COUNT_LOG2)) % ADDRMAN_NEW_BUCKET_COUNT; nUBucketPos = (nUBucketPos + insecure_rand.randbits( ADDRMAN_BUCKET_SIZE_LOG2)) % ADDRMAN_BUCKET_SIZE; } int nId = vvNew[nUBucket][nUBucketPos]; assert(mapInfo.count(nId) == 1); CAddrInfo &info = mapInfo[nId]; if (insecure_rand.randbits(30) < fChanceFactor * info.GetChance() * (1 << 30)) { return info; } fChanceFactor *= 1.2; } } } #ifdef DEBUG_ADDRMAN int CAddrMan::Check_() { std::set setTried; std::map mapNew; if (vRandom.size() != size_t(nTried + nNew)) { return -7; } for (const auto &entry : mapInfo) { int n = entry.first; const CAddrInfo &info = entry.second; if (info.fInTried) { if (!info.nLastSuccess) { return -1; } if (info.nRefCount) { return -2; } setTried.insert(n); } else { if (info.nRefCount < 0 || info.nRefCount > ADDRMAN_NEW_BUCKETS_PER_ADDRESS) { return -3; } if (!info.nRefCount) { return -4; } mapNew[n] = info.nRefCount; } if (mapAddr[info] != n) { return -5; } if (info.nRandomPos < 0 || size_t(info.nRandomPos) >= vRandom.size() || vRandom[info.nRandomPos] != n) { return -14; } if (info.nLastTry < 0) { return -6; } if (info.nLastSuccess < 0) { return -8; } } if (setTried.size() != size_t(nTried)) { return -9; } if (mapNew.size() != size_t(nNew)) { return -10; } for (int n = 0; n < ADDRMAN_TRIED_BUCKET_COUNT; n++) { for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvTried[n][i] != -1) { if (!setTried.count(vvTried[n][i])) { return -11; } if (mapInfo[vvTried[n][i]].GetTriedBucket(nKey, m_asmap) != n) { return -17; } if (mapInfo[vvTried[n][i]].GetBucketPosition(nKey, false, n) != i) { return -18; } setTried.erase(vvTried[n][i]); } } } for (int n = 0; n < ADDRMAN_NEW_BUCKET_COUNT; n++) { for (int i = 0; i < ADDRMAN_BUCKET_SIZE; i++) { if (vvNew[n][i] != -1) { if (!mapNew.count(vvNew[n][i])) { return -12; } if (mapInfo[vvNew[n][i]].GetBucketPosition(nKey, true, n) != i) { return -19; } if (--mapNew[vvNew[n][i]] == 0) { mapNew.erase(vvNew[n][i]); } } } } if (setTried.size()) { return -13; } if (mapNew.size()) { return -15; } if (nKey.IsNull()) { return -16; } return 0; } #endif void CAddrMan::GetAddr_(std::vector &vAddr) { unsigned int nNodes = ADDRMAN_GETADDR_MAX_PCT * vRandom.size() / 100; if (nNodes > ADDRMAN_GETADDR_MAX) { nNodes = ADDRMAN_GETADDR_MAX; } // gather a list of random nodes, skipping those of low quality for (unsigned int n = 0; n < vRandom.size(); n++) { if (vAddr.size() >= nNodes) { break; } int nRndPos = insecure_rand.randrange(vRandom.size() - n) + n; SwapRandom(n, nRndPos); assert(mapInfo.count(vRandom[n]) == 1); const CAddrInfo &ai = mapInfo[vRandom[n]]; if (!ai.IsTerrible()) { vAddr.push_back(ai); } } } void CAddrMan::Connected_(const CService &addr, int64_t nTime) { CAddrInfo *pinfo = Find(addr); // if not found, bail out if (!pinfo) { return; } CAddrInfo &info = *pinfo; // check whether we are talking about the exact same CService (including // same port) if (info != addr) { return; } // update info int64_t nUpdateInterval = 20 * 60; if (nTime - info.nTime > nUpdateInterval) { info.nTime = nTime; } } void CAddrMan::SetServices_(const CService &addr, ServiceFlags nServices) { CAddrInfo *pinfo = Find(addr); // if not found, bail out if (!pinfo) { return; } CAddrInfo &info = *pinfo; // check whether we are talking about the exact same CService (including // same port) if (info != addr) { return; } // update info info.nServices = nServices; } void CAddrMan::ResolveCollisions_() { const int64_t adjustedTime = GetAdjustedTime(); for (std::set::iterator it = m_tried_collisions.begin(); it != m_tried_collisions.end();) { int id_new = *it; bool erase_collision = false; // If id_new not found in mapInfo remove it from m_tried_collisions. auto id_new_it = mapInfo.find(id_new); if (id_new_it == mapInfo.end()) { erase_collision = true; } else { CAddrInfo &info_new = id_new_it->second; // Which tried bucket to move the entry to. int tried_bucket = info_new.GetTriedBucket(nKey, m_asmap); int tried_bucket_pos = info_new.GetBucketPosition(nKey, false, tried_bucket); if (!info_new.IsValid()) { // id_new may no longer map to a valid address erase_collision = true; } else if (vvTried[tried_bucket][tried_bucket_pos] != -1) { // The position in the tried bucket is not empty // Get the to-be-evicted address that is being tested int id_old = vvTried[tried_bucket][tried_bucket_pos]; CAddrInfo &info_old = mapInfo[id_old]; // Has successfully connected in last X hours if (adjustedTime - info_old.nLastSuccess < ADDRMAN_REPLACEMENT_SECONDS) { erase_collision = true; } else if (adjustedTime - info_old.nLastTry < ADDRMAN_REPLACEMENT_SECONDS) { // attempted to connect and failed in last X hours // Give address at least 60 seconds to successfully connect if (GetAdjustedTime() - info_old.nLastTry > 60) { LogPrint(BCLog::ADDRMAN, "Replacing %s with %s in tried table\n", info_old.ToString(), info_new.ToString()); // Replaces an existing address already in the tried // table with the new address Good_(info_new, false, GetAdjustedTime()); erase_collision = true; } } else if (GetAdjustedTime() - info_new.nLastSuccess > ADDRMAN_TEST_WINDOW) { // If the collision hasn't resolved in some reasonable // amount of time, just evict the old entry -- we must not // be able to connect to it for some reason. LogPrint(BCLog::ADDRMAN, "Unable to test; replacing %s with %s in tried " "table anyway\n", info_old.ToString(), info_new.ToString()); Good_(info_new, false, GetAdjustedTime()); erase_collision = true; } } else { // Collision is not actually a collision anymore Good_(info_new, false, adjustedTime); erase_collision = true; } } if (erase_collision) { m_tried_collisions.erase(it++); } else { it++; } } } CAddrInfo CAddrMan::SelectTriedCollision_() { if (m_tried_collisions.size() == 0) { return CAddrInfo(); } std::set::iterator it = m_tried_collisions.begin(); // Selects a random element from m_tried_collisions std::advance(it, insecure_rand.randrange(m_tried_collisions.size())); int id_new = *it; // If id_new not found in mapInfo remove it from m_tried_collisions. auto id_new_it = mapInfo.find(id_new); if (id_new_it == mapInfo.end()) { m_tried_collisions.erase(it); return CAddrInfo(); } CAddrInfo &newInfo = id_new_it->second; // which tried bucket to move the entry to int tried_bucket = newInfo.GetTriedBucket(nKey, m_asmap); int tried_bucket_pos = newInfo.GetBucketPosition(nKey, false, tried_bucket); int id_old = vvTried[tried_bucket][tried_bucket_pos]; return mapInfo[id_old]; } std::vector CAddrMan::DecodeAsmap(fs::path path) { std::vector bits; FILE *filestr = fsbridge::fopen(path, "rb"); CAutoFile file(filestr, SER_DISK, CLIENT_VERSION); if (file.IsNull()) { LogPrintf("Failed to open asmap file from disk\n"); return bits; } fseek(filestr, 0, SEEK_END); int length = ftell(filestr); LogPrintf("Opened asmap file %s (%d bytes) from disk\n", path, length); fseek(filestr, 0, SEEK_SET); char cur_byte; for (int i = 0; i < length; ++i) { file >> cur_byte; for (int bit = 0; bit < 8; ++bit) { bits.push_back((cur_byte >> bit) & 1); } } + if (!SanityCheckASMap(bits)) { + LogPrintf("Sanity check of asmap file %s failed\n", path); + return {}; + } return bits; } diff --git a/src/netaddress.cpp b/src/netaddress.cpp index 56f5450af..0fe39d395 100644 --- a/src/netaddress.cpp +++ b/src/netaddress.cpp @@ -1,942 +1,947 @@ // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include #include #include #include static const uint8_t pchIPv4[12] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff}; static const uint8_t pchOnionCat[] = {0xFD, 0x87, 0xD8, 0x7E, 0xEB, 0x43}; // 0xFD + sha256("bitcoin")[0:5] static const uint8_t g_internal_prefix[] = {0xFD, 0x6B, 0x88, 0xC0, 0x87, 0x24}; /** * Construct an unspecified IPv6 network address (::/128). * * @note This address is considered invalid by CNetAddr::IsValid() */ CNetAddr::CNetAddr() { memset(ip, 0, sizeof(ip)); } void CNetAddr::SetIP(const CNetAddr &ipIn) { memcpy(ip, ipIn.ip, sizeof(ip)); } void CNetAddr::SetRaw(Network network, const uint8_t *ip_in) { switch (network) { case NET_IPV4: memcpy(ip, pchIPv4, 12); memcpy(ip + 12, ip_in, 4); break; case NET_IPV6: memcpy(ip, ip_in, 16); break; default: assert(!"invalid network"); } } /** * Try to make this a dummy address that maps the specified name into IPv6 like * so: (0xFD + %sha256("bitcoin")[0:5]) + %sha256(name)[0:10]. Such dummy * addresses have a prefix of fd6b:88c0:8724::/48 and are guaranteed to not be * publicly routable as it falls under RFC4193's fc00::/7 subnet allocated to * unique-local addresses. * * CAddrMan uses these fake addresses to keep track of which DNS seeds were * used. * * @returns Whether or not the operation was successful. * * @see CNetAddr::IsInternal(), CNetAddr::IsRFC4193() */ bool CNetAddr::SetInternal(const std::string &name) { if (name.empty()) { return false; } uint8_t hash[32] = {}; CSHA256().Write((const uint8_t *)name.data(), name.size()).Finalize(hash); memcpy(ip, g_internal_prefix, sizeof(g_internal_prefix)); memcpy(ip + sizeof(g_internal_prefix), hash, sizeof(ip) - sizeof(g_internal_prefix)); return true; } /** * Try to make this a dummy address that maps the specified onion address into * IPv6 using OnionCat's range and encoding. Such dummy addresses have a prefix * of fd87:d87e:eb43::/48 and are guaranteed to not be publicly routable as they * fall under RFC4193's fc00::/7 subnet allocated to unique-local addresses. * * @returns Whether or not the operation was successful. * * @see CNetAddr::IsTor(), CNetAddr::IsRFC4193() */ bool CNetAddr::SetSpecial(const std::string &strName) { if (strName.size() > 6 && strName.substr(strName.size() - 6, 6) == ".onion") { std::vector vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str()); if (vchAddr.size() != 16 - sizeof(pchOnionCat)) { return false; } memcpy(ip, pchOnionCat, sizeof(pchOnionCat)); for (unsigned int i = 0; i < 16 - sizeof(pchOnionCat); i++) { ip[i + sizeof(pchOnionCat)] = vchAddr[i]; } return true; } return false; } CNetAddr::CNetAddr(const struct in_addr &ipv4Addr) { SetRaw(NET_IPV4, (const uint8_t *)&ipv4Addr); } CNetAddr::CNetAddr(const struct in6_addr &ipv6Addr, const uint32_t scope) { SetRaw(NET_IPV6, (const uint8_t *)&ipv6Addr); scopeId = scope; } unsigned int CNetAddr::GetByte(int n) const { return ip[15 - n]; } bool CNetAddr::IsBindAny() const { const int cmplen = IsIPv4() ? 4 : 16; for (int i = 0; i < cmplen; ++i) { if (GetByte(i)) { return false; } } return true; } bool CNetAddr::IsIPv4() const { return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0); } bool CNetAddr::IsIPv6() const { return !IsIPv4() && !IsTor() && !IsInternal(); } bool CNetAddr::IsRFC1918() const { return IsIPv4() && (GetByte(3) == 10 || (GetByte(3) == 192 && GetByte(2) == 168) || (GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31))); } bool CNetAddr::IsRFC2544() const { return IsIPv4() && GetByte(3) == 198 && (GetByte(2) == 18 || GetByte(2) == 19); } bool CNetAddr::IsRFC3927() const { return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254); } bool CNetAddr::IsRFC6598() const { return IsIPv4() && GetByte(3) == 100 && GetByte(2) >= 64 && GetByte(2) <= 127; } bool CNetAddr::IsRFC5737() const { return IsIPv4() && ((GetByte(3) == 192 && GetByte(2) == 0 && GetByte(1) == 2) || (GetByte(3) == 198 && GetByte(2) == 51 && GetByte(1) == 100) || (GetByte(3) == 203 && GetByte(2) == 0 && GetByte(1) == 113)); } bool CNetAddr::IsRFC3849() const { return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8; } bool CNetAddr::IsRFC3964() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x02); } bool CNetAddr::IsRFC6052() const { static const uint8_t pchRFC6052[] = {0, 0x64, 0xFF, 0x9B, 0, 0, 0, 0, 0, 0, 0, 0}; return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0); } bool CNetAddr::IsRFC4380() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0); } bool CNetAddr::IsRFC4862() const { static const uint8_t pchRFC4862[] = {0xFE, 0x80, 0, 0, 0, 0, 0, 0}; return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0); } bool CNetAddr::IsRFC4193() const { return ((GetByte(15) & 0xFE) == 0xFC); } bool CNetAddr::IsRFC6145() const { static const uint8_t pchRFC6145[] = {0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 0, 0}; return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0); } bool CNetAddr::IsRFC4843() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10); } bool CNetAddr::IsRFC7343() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x20); } bool CNetAddr::IsHeNet() const { return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x04 && GetByte(12) == 0x70); } /** * @returns Whether or not this is a dummy address that maps an onion address * into IPv6. * * @see CNetAddr::SetSpecial(const std::string &) */ bool CNetAddr::IsTor() const { return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0); } bool CNetAddr::IsLocal() const { // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8) if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0)) { return true; } // IPv6 loopback (::1/128) static const uint8_t pchLocal[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1}; if (memcmp(ip, pchLocal, 16) == 0) { return true; } return false; } /** * @returns Whether or not this network address is a valid address that @a could * be used to refer to an actual host. * * @note A valid address may or may not be publicly routable on the global * internet. As in, the set of valid addresses is a superset of the set of * publicly routable addresses. * * @see CNetAddr::IsRoutable() */ bool CNetAddr::IsValid() const { // Cleanup 3-byte shifted addresses caused by garbage in size field of addr // messages from versions before 0.2.9 checksum. // Two consecutive addr messages look like this: // header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 // addr26 addr26... so if the first length field is garbled, it reads the // second batch of addr misaligned by 3 bytes. if (memcmp(ip, pchIPv4 + 3, sizeof(pchIPv4) - 3) == 0) { return false; } // unspecified IPv6 address (::/128) uint8_t ipNone6[16] = {}; if (memcmp(ip, ipNone6, 16) == 0) { return false; } // documentation IPv6 address if (IsRFC3849()) { return false; } if (IsInternal()) { return false; } if (IsIPv4()) { // INADDR_NONE uint32_t ipNone = INADDR_NONE; if (memcmp(ip + 12, &ipNone, 4) == 0) { return false; } // 0 ipNone = 0; if (memcmp(ip + 12, &ipNone, 4) == 0) { return false; } } return true; } /** * @returns Whether or not this network address is publicly routable on the * global internet. * * @note A routable address is always valid. As in, the set of routable * addresses is a subset of the set of valid addresses. * * @see CNetAddr::IsValid() */ bool CNetAddr::IsRoutable() const { return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal()); } /** * @returns Whether or not this is a dummy address that maps a name into IPv6. * * @see CNetAddr::SetInternal(const std::string &) */ bool CNetAddr::IsInternal() const { return memcmp(ip, g_internal_prefix, sizeof(g_internal_prefix)) == 0; } enum Network CNetAddr::GetNetwork() const { if (IsInternal()) { return NET_INTERNAL; } if (!IsRoutable()) { return NET_UNROUTABLE; } if (IsIPv4()) { return NET_IPV4; } if (IsTor()) { return NET_ONION; } return NET_IPV6; } std::string CNetAddr::ToStringIP() const { if (IsTor()) { return EncodeBase32(&ip[6], 10) + ".onion"; } if (IsInternal()) { return EncodeBase32(ip + sizeof(g_internal_prefix), sizeof(ip) - sizeof(g_internal_prefix)) + ".internal"; } CService serv(*this, 0); struct sockaddr_storage sockaddr; socklen_t socklen = sizeof(sockaddr); if (serv.GetSockAddr((struct sockaddr *)&sockaddr, &socklen)) { char name[1025] = ""; if (!getnameinfo((const struct sockaddr *)&sockaddr, socklen, name, sizeof(name), nullptr, 0, NI_NUMERICHOST)) { return std::string(name); } } if (IsIPv4()) { return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0)); } return strprintf("%x:%x:%x:%x:%x:%x:%x:%x", GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12), GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8), GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4), GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0)); } std::string CNetAddr::ToString() const { return ToStringIP(); } bool operator==(const CNetAddr &a, const CNetAddr &b) { return (memcmp(a.ip, b.ip, 16) == 0); } bool operator<(const CNetAddr &a, const CNetAddr &b) { return (memcmp(a.ip, b.ip, 16) < 0); } /** * Try to get our IPv4 address. * * @param[out] pipv4Addr The in_addr struct to which to copy. * * @returns Whether or not the operation was successful, in particular, whether * or not our address was an IPv4 address. * * @see CNetAddr::IsIPv4() */ bool CNetAddr::GetInAddr(struct in_addr *pipv4Addr) const { if (!IsIPv4()) { return false; } memcpy(pipv4Addr, ip + 12, 4); return true; } /** * Try to get our IPv6 address. * * @param[out] pipv6Addr The in6_addr struct to which to copy. * * @returns Whether or not the operation was successful, in particular, whether * or not our address was an IPv6 address. * * @see CNetAddr::IsIPv6() */ bool CNetAddr::GetIn6Addr(struct in6_addr *pipv6Addr) const { if (!IsIPv6()) { return false; } memcpy(pipv6Addr, ip, 16); return true; } bool CNetAddr::HasLinkedIPv4() const { return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380()); } uint32_t CNetAddr::GetLinkedIPv4() const { if (IsIPv4() || IsRFC6145() || IsRFC6052()) { // IPv4, mapped IPv4, SIIT translated IPv4: the IPv4 address is the last // 4 bytes of the address return ReadBE32(ip + 12); } else if (IsRFC3964()) { // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6 return ReadBE32(ip + 2); } else if (IsRFC4380()) { // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the // address, but bitflipped return ~ReadBE32(ip + 12); } assert(false); } uint32_t CNetAddr::GetNetClass() const { uint32_t net_class = NET_IPV6; if (IsLocal()) { net_class = 255; } if (IsInternal()) { net_class = NET_INTERNAL; } else if (!IsRoutable()) { net_class = NET_UNROUTABLE; } else if (HasLinkedIPv4()) { net_class = NET_IPV4; } else if (IsTor()) { net_class = NET_ONION; } return net_class; } uint32_t CNetAddr::GetMappedAS(const std::vector &asmap) const { uint32_t net_class = GetNetClass(); if (asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) { return 0; // Indicates not found, safe because AS0 is reserved per // RFC7607. } std::vector ip_bits(128); if (HasLinkedIPv4()) { // For lookup, treat as if it was just an IPv4 address (pchIPv4 prefix + // IPv4 bits) for (int8_t byte_i = 0; byte_i < 12; ++byte_i) { for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { ip_bits[byte_i * 8 + bit_i] = (pchIPv4[byte_i] >> (7 - bit_i)) & 1; } } uint32_t ipv4 = GetLinkedIPv4(); for (int i = 0; i < 32; ++i) { ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1; } } else { // Use all 128 bits of the IPv6 address otherwise for (int8_t byte_i = 0; byte_i < 16; ++byte_i) { uint8_t cur_byte = GetByte(15 - byte_i); for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1; } } } uint32_t mapped_as = Interpret(asmap, ip_bits); return mapped_as; } /** * Get the canonical identifier of our network group * * The groups are assigned in a way where it should be costly for an attacker to * obtain addresses with many different group identifiers, even if it is cheap * to obtain addresses with the same identifier. * * @note No two connections will be attempted to addresses with the same network * group. */ std::vector CNetAddr::GetGroup(const std::vector &asmap) const { std::vector vchRet; uint32_t net_class = GetNetClass(); // If non-empty asmap is supplied and the address is IPv4/IPv6, // return ASN to be used for bucketing. uint32_t asn = GetMappedAS(asmap); if (asn != 0) { // Either asmap was empty, or address has non-asmappable net // class (e.g. TOR). vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in // the same bucket for (int i = 0; i < 4; i++) { vchRet.push_back((asn >> (8 * i)) & 0xFF); } return vchRet; } vchRet.push_back(net_class); int nStartByte = 0; int nBits = 16; if (IsLocal()) { // all local addresses belong to the same group nBits = 0; } else if (IsInternal()) { // all internal-usage addresses get their own group nStartByte = sizeof(g_internal_prefix); nBits = (sizeof(ip) - sizeof(g_internal_prefix)) * 8; } else if (!IsRoutable()) { // all other unroutable addresses belong to the same group nBits = 0; } else if (HasLinkedIPv4()) { // IPv4 addresses (and mapped IPv4 addresses) use /16 groups uint32_t ipv4 = GetLinkedIPv4(); vchRet.push_back((ipv4 >> 24) & 0xFF); vchRet.push_back((ipv4 >> 16) & 0xFF); return vchRet; } else if (IsTor()) { nStartByte = 6; nBits = 4; } else if (IsHeNet()) { // for he.net, use /36 groups nBits = 36; } else { // for the rest of the IPv6 network, use /32 groups nBits = 32; } // push our ip onto vchRet byte by byte... while (nBits >= 8) { vchRet.push_back(GetByte(15 - nStartByte)); nStartByte++; nBits -= 8; } // ...for the last byte, push nBits and for the rest of the byte push 1's if (nBits > 0) { vchRet.push_back(GetByte(15 - nStartByte) | ((1 << (8 - nBits)) - 1)); } return vchRet; } uint64_t CNetAddr::GetHash() const { uint256 hash = Hash(&ip[0], &ip[16]); uint64_t nRet; memcpy(&nRet, &hash, sizeof(nRet)); return nRet; } // private extensions to enum Network, only returned by GetExtNetwork, and only // used in GetReachabilityFrom static const int NET_UNKNOWN = NET_MAX + 0; static const int NET_TEREDO = NET_MAX + 1; static int GetExtNetwork(const CNetAddr *addr) { if (addr == nullptr) { return NET_UNKNOWN; } if (addr->IsRFC4380()) { return NET_TEREDO; } return addr->GetNetwork(); } /** Calculates a metric for how reachable (*this) is from a given partner */ int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const { enum Reachability { REACH_UNREACHABLE, REACH_DEFAULT, REACH_TEREDO, REACH_IPV6_WEAK, REACH_IPV4, REACH_IPV6_STRONG, REACH_PRIVATE }; if (!IsRoutable() || IsInternal()) { return REACH_UNREACHABLE; } int ourNet = GetExtNetwork(this); int theirNet = GetExtNetwork(paddrPartner); bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145(); switch (theirNet) { case NET_IPV4: switch (ourNet) { default: return REACH_DEFAULT; case NET_IPV4: return REACH_IPV4; } case NET_IPV6: switch (ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV4: return REACH_IPV4; // only prefer giving our IPv6 address if it's not tunnelled case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; } case NET_ONION: switch (ourNet) { default: return REACH_DEFAULT; // Tor users can connect to IPv4 as well case NET_IPV4: return REACH_IPV4; case NET_ONION: return REACH_PRIVATE; } case NET_TEREDO: switch (ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; } case NET_UNKNOWN: case NET_UNROUTABLE: default: switch (ourNet) { default: return REACH_DEFAULT; case NET_TEREDO: return REACH_TEREDO; case NET_IPV6: return REACH_IPV6_WEAK; case NET_IPV4: return REACH_IPV4; // either from Tor, or don't care about our address case NET_ONION: return REACH_PRIVATE; } } } CService::CService() : port(0) {} CService::CService(const CNetAddr &cip, unsigned short portIn) : CNetAddr(cip), port(portIn) {} CService::CService(const struct in_addr &ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn) {} CService::CService(const struct in6_addr &ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn) {} CService::CService(const struct sockaddr_in &addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port)) { assert(addr.sin_family == AF_INET); } CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port)) { assert(addr.sin6_family == AF_INET6); } bool CService::SetSockAddr(const struct sockaddr *paddr) { switch (paddr->sa_family) { case AF_INET: *this = CService(*reinterpret_cast(paddr)); return true; case AF_INET6: *this = CService(*reinterpret_cast(paddr)); return true; default: return false; } } unsigned short CService::GetPort() const { return port; } bool operator==(const CService &a, const CService &b) { return static_cast(a) == static_cast(b) && a.port == b.port; } bool operator<(const CService &a, const CService &b) { return static_cast(a) < static_cast(b) || (static_cast(a) == static_cast(b) && a.port < b.port); } /** * Obtain the IPv4/6 socket address this represents. * * @param[out] paddr The obtained socket address. * @param[in,out] addrlen The size, in bytes, of the address structure pointed * to by paddr. The value that's pointed to by this * parameter might change after calling this function if * the size of the corresponding address structure * changed. * * @returns Whether or not the operation was successful. */ bool CService::GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const { if (IsIPv4()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in)) { return false; } *addrlen = sizeof(struct sockaddr_in); struct sockaddr_in *paddrin = reinterpret_cast(paddr); memset(paddrin, 0, *addrlen); if (!GetInAddr(&paddrin->sin_addr)) { return false; } paddrin->sin_family = AF_INET; paddrin->sin_port = htons(port); return true; } if (IsIPv6()) { if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6)) { return false; } *addrlen = sizeof(struct sockaddr_in6); struct sockaddr_in6 *paddrin6 = reinterpret_cast(paddr); memset(paddrin6, 0, *addrlen); if (!GetIn6Addr(&paddrin6->sin6_addr)) { return false; } paddrin6->sin6_scope_id = scopeId; paddrin6->sin6_family = AF_INET6; paddrin6->sin6_port = htons(port); return true; } return false; } /** * @returns An identifier unique to this service's address and port number. */ std::vector CService::GetKey() const { std::vector vKey; vKey.resize(18); memcpy(vKey.data(), ip, 16); // most significant byte of our port vKey[16] = port / 0x100; // least significant byte of our port vKey[17] = port & 0x0FF; return vKey; } std::string CService::ToStringPort() const { return strprintf("%u", port); } std::string CService::ToStringIPPort() const { if (IsIPv4() || IsTor() || IsInternal()) { return ToStringIP() + ":" + ToStringPort(); } else { return "[" + ToStringIP() + "]:" + ToStringPort(); } } std::string CService::ToString() const { return ToStringIPPort(); } CSubNet::CSubNet() : valid(false) { memset(netmask, 0, sizeof(netmask)); } CSubNet::CSubNet(const CNetAddr &addr, int32_t mask) { valid = true; network = addr; // Default to /32 (IPv4) or /128 (IPv6), i.e. match single address memset(netmask, 255, sizeof(netmask)); // IPv4 addresses start at offset 12, and first 12 bytes must match, so just // offset n const int astartofs = network.IsIPv4() ? 12 : 0; // Only valid if in range of bits of address int32_t n = mask; if (n >= 0 && n <= (128 - astartofs * 8)) { n += astartofs * 8; // Clear bits [n..127] for (; n < 128; ++n) { netmask[n >> 3] &= ~(1 << (7 - (n & 7))); } } else { valid = false; } // Normalize network according to netmask for (int x = 0; x < 16; ++x) { network.ip[x] &= netmask[x]; } } CSubNet::CSubNet(const CNetAddr &addr, const CNetAddr &mask) { valid = true; network = addr; // Default to /32 (IPv4) or /128 (IPv6), i.e. match single address memset(netmask, 255, sizeof(netmask)); // IPv4 addresses start at offset 12, and first 12 bytes must match, so just // offset n const int astartofs = network.IsIPv4() ? 12 : 0; for (int x = astartofs; x < 16; ++x) { netmask[x] = mask.ip[x]; } // Normalize network according to netmask for (int x = 0; x < 16; ++x) { network.ip[x] &= netmask[x]; } } CSubNet::CSubNet(const CNetAddr &addr) : valid(addr.IsValid()) { memset(netmask, 255, sizeof(netmask)); network = addr; } /** * @returns True if this subnet is valid, the specified address is valid, and * the specified address belongs in this subnet. */ bool CSubNet::Match(const CNetAddr &addr) const { if (!valid || !addr.IsValid()) { return false; } for (int x = 0; x < 16; ++x) { if ((addr.ip[x] & netmask[x]) != network.ip[x]) { return false; } } return true; } /** * @returns The number of 1-bits in the prefix of the specified subnet mask. If * the specified subnet mask is not a valid one, -1. */ static inline int NetmaskBits(uint8_t x) { switch (x) { case 0x00: return 0; case 0x80: return 1; case 0xc0: return 2; case 0xe0: return 3; case 0xf0: return 4; case 0xf8: return 5; case 0xfc: return 6; case 0xfe: return 7; case 0xff: return 8; default: return -1; } } std::string CSubNet::ToString() const { /* Parse binary 1{n}0{N-n} to see if mask can be represented as /n */ int cidr = 0; bool valid_cidr = true; int n = network.IsIPv4() ? 12 : 0; for (; n < 16 && netmask[n] == 0xff; ++n) { cidr += 8; } if (n < 16) { int bits = NetmaskBits(netmask[n]); if (bits < 0) { valid_cidr = false; } else { cidr += bits; } ++n; } for (; n < 16 && valid_cidr; ++n) { if (netmask[n] != 0x00) { valid_cidr = false; } } /* Format output */ std::string strNetmask; if (valid_cidr) { strNetmask = strprintf("%u", cidr); } else { if (network.IsIPv4()) { strNetmask = strprintf("%u.%u.%u.%u", netmask[12], netmask[13], netmask[14], netmask[15]); } else { strNetmask = strprintf( "%x:%x:%x:%x:%x:%x:%x:%x", netmask[0] << 8 | netmask[1], netmask[2] << 8 | netmask[3], netmask[4] << 8 | netmask[5], netmask[6] << 8 | netmask[7], netmask[8] << 8 | netmask[9], netmask[10] << 8 | netmask[11], netmask[12] << 8 | netmask[13], netmask[14] << 8 | netmask[15]); } } return network.ToString() + "/" + strNetmask; } bool CSubNet::IsValid() const { return valid; } bool operator==(const CSubNet &a, const CSubNet &b) { return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16); } bool operator<(const CSubNet &a, const CSubNet &b) { return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0)); } + +bool SanityCheckASMap(const std::vector &asmap) { + // For IP address lookups, the input is 128 bits + return SanityCheckASMap(asmap, 128); +} diff --git a/src/netaddress.h b/src/netaddress.h index 2b77f4089..6de945b2d 100644 --- a/src/netaddress.h +++ b/src/netaddress.h @@ -1,214 +1,216 @@ // Copyright (c) 2009-2016 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_NETADDRESS_H #define BITCOIN_NETADDRESS_H #if defined(HAVE_CONFIG_H) #include #endif #include #include #include #include #include enum Network { NET_UNROUTABLE = 0, NET_IPV4, NET_IPV6, NET_ONION, NET_INTERNAL, NET_MAX, }; /** IP address (IPv6, or IPv4 using mapped IPv6 range (::FFFF:0:0/96)) */ class CNetAddr { protected: // in network byte order uint8_t ip[16]; // for scoped/link-local ipv6 addresses uint32_t scopeId{0}; public: CNetAddr(); explicit CNetAddr(const struct in_addr &ipv4Addr); void SetIP(const CNetAddr &ip); /** * Set raw IPv4 or IPv6 address (in network byte order) * @note Only NET_IPV4 and NET_IPV6 are allowed for network. */ void SetRaw(Network network, const uint8_t *data); bool SetInternal(const std::string &name); // for Tor addresses bool SetSpecial(const std::string &strName); // INADDR_ANY equivalent bool IsBindAny() const; // IPv4 mapped address (::FFFF:0:0/96, 0.0.0.0/0) bool IsIPv4() const; // IPv6 address (not mapped IPv4, not Tor) bool IsIPv6() const; // IPv4 private networks (10.0.0.0/8, 192.168.0.0/16, 172.16.0.0/12) bool IsRFC1918() const; // IPv4 inter-network communications (198.18.0.0/15) bool IsRFC2544() const; // IPv4 ISP-level NAT (100.64.0.0/10) bool IsRFC6598() const; // IPv4 documentation addresses (192.0.2.0/24, 198.51.100.0/24, // 203.0.113.0/24) bool IsRFC5737() const; // IPv6 documentation address (2001:0DB8::/32) bool IsRFC3849() const; // IPv4 autoconfig (169.254.0.0/16) bool IsRFC3927() const; // IPv6 6to4 tunnelling (2002::/16) bool IsRFC3964() const; // IPv6 unique local (FC00::/7) bool IsRFC4193() const; // IPv6 Teredo tunnelling (2001::/32) bool IsRFC4380() const; // IPv6 ORCHID (deprecated) (2001:10::/28) bool IsRFC4843() const; // IPv6 ORCHIDv2 (2001:20::/28) bool IsRFC7343() const; // IPv6 autoconfig (FE80::/64) bool IsRFC4862() const; // IPv6 well-known prefix for IPv4-embedded address (64:FF9B::/96) bool IsRFC6052() const; // IPv6 IPv4-translated address (::FFFF:0:0:0/96) (actually defined in // RFC2765) bool IsRFC6145() const; // IPv6 Hurricane Electric - https://he.net (2001:0470::/36) bool IsHeNet() const; bool IsTor() const; bool IsLocal() const; bool IsRoutable() const; bool IsInternal() const; bool IsValid() const; enum Network GetNetwork() const; std::string ToString() const; std::string ToStringIP() const; unsigned int GetByte(int n) const; uint64_t GetHash() const; bool GetInAddr(struct in_addr *pipv4Addr) const; uint32_t GetNetClass() const; //! For IPv4, mapped IPv4, SIIT translated IPv4, Teredo, 6to4 tunneled //! addresses, return the relevant IPv4 address as a uint32. uint32_t GetLinkedIPv4() const; //! Whether this address has a linked IPv4 address (see GetLinkedIPv4()). bool HasLinkedIPv4() const; // The AS on the BGP path to the node we use to diversify // peers in AddrMan bucketing based on the AS infrastructure. // The ip->AS mapping depends on how asmap is constructed. uint32_t GetMappedAS(const std::vector &asmap) const; std::vector GetGroup(const std::vector &asmap) const; std::vector GetAddrBytes() const { return {std::begin(ip), std::end(ip)}; } int GetReachabilityFrom(const CNetAddr *paddrPartner = nullptr) const; explicit CNetAddr(const struct in6_addr &pipv6Addr, const uint32_t scope = 0); bool GetIn6Addr(struct in6_addr *pipv6Addr) const; friend bool operator==(const CNetAddr &a, const CNetAddr &b); friend bool operator!=(const CNetAddr &a, const CNetAddr &b) { return !(a == b); } friend bool operator<(const CNetAddr &a, const CNetAddr &b); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(ip); } friend class CSubNet; }; class CSubNet { protected: /// Network (base) address CNetAddr network; /// Netmask, in network byte order uint8_t netmask[16]; /// Is this value valid? (only used to signal parse errors) bool valid; public: CSubNet(); CSubNet(const CNetAddr &addr, int32_t mask); CSubNet(const CNetAddr &addr, const CNetAddr &mask); // constructor for single ip subnet (/32 or /128) explicit CSubNet(const CNetAddr &addr); bool Match(const CNetAddr &addr) const; std::string ToString() const; bool IsValid() const; friend bool operator==(const CSubNet &a, const CSubNet &b); friend bool operator!=(const CSubNet &a, const CSubNet &b) { return !(a == b); } friend bool operator<(const CSubNet &a, const CSubNet &b); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(network); READWRITE(netmask); READWRITE(valid); } }; /** A combination of a network address (CNetAddr) and a (TCP) port */ class CService : public CNetAddr { protected: // host order uint16_t port; public: CService(); CService(const CNetAddr &ip, unsigned short port); CService(const struct in_addr &ipv4Addr, unsigned short port); explicit CService(const struct sockaddr_in &addr); unsigned short GetPort() const; bool GetSockAddr(struct sockaddr *paddr, socklen_t *addrlen) const; bool SetSockAddr(const struct sockaddr *paddr); friend bool operator==(const CService &a, const CService &b); friend bool operator!=(const CService &a, const CService &b) { return !(a == b); } friend bool operator<(const CService &a, const CService &b); std::vector GetKey() const; std::string ToString() const; std::string ToStringPort() const; std::string ToStringIPPort() const; CService(const struct in6_addr &ipv6Addr, unsigned short port); explicit CService(const struct sockaddr_in6 &addr); ADD_SERIALIZE_METHODS; template inline void SerializationOp(Stream &s, Operation ser_action) { READWRITE(ip); READWRITE(WrapBigEndian(port)); } }; +bool SanityCheckASMap(const std::vector &asmap); + #endif // BITCOIN_NETADDRESS_H diff --git a/src/test/fuzz/CMakeLists.txt b/src/test/fuzz/CMakeLists.txt index 84deb4feb..3a23bdecc 100644 --- a/src/test/fuzz/CMakeLists.txt +++ b/src/test/fuzz/CMakeLists.txt @@ -1,208 +1,209 @@ # Fuzzer test harness add_custom_target(bitcoin-fuzzers) define_property(GLOBAL PROPERTY FUZZ_TARGETS BRIEF_DOCS "List of fuzz targets" FULL_DOCS "A list of the fuzz targets" ) set_property(GLOBAL APPEND PROPERTY FUZZ_TARGETS bitcoin-fuzzers) include(InstallationHelper) macro(add_fuzz_target TARGET EXE_NAME) add_executable(${TARGET} EXCLUDE_FROM_ALL fuzz.cpp ${ARGN} ) set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME ${EXE_NAME}) target_link_libraries(${TARGET} server testutil rpcclient) add_dependencies(bitcoin-fuzzers ${TARGET}) set_property(GLOBAL APPEND PROPERTY FUZZ_TARGETS ${TARGET}) install_target(${TARGET} COMPONENT fuzzer EXCLUDE_FROM_ALL ) endmacro() function(add_regular_fuzz_targets) foreach(_fuzz_test_name ${ARGN}) sanitize_target_name("fuzz-" ${_fuzz_test_name} _fuzz_target_name) add_fuzz_target( ${_fuzz_target_name} ${_fuzz_test_name} # Sources "${_fuzz_test_name}.cpp" ) endforeach() endfunction() include(SanitizeHelper) function(add_deserialize_fuzz_targets) foreach(_fuzz_test_name ${ARGN}) sanitize_target_name("fuzz-" ${_fuzz_test_name} _fuzz_target_name) add_fuzz_target( ${_fuzz_target_name} ${_fuzz_test_name} # Sources deserialize.cpp ) sanitize_c_cxx_definition("" ${_fuzz_test_name} _target_definition) string(TOUPPER ${_target_definition} _target_definition) target_compile_definitions(${_fuzz_target_name} PRIVATE ${_target_definition}) endforeach() endfunction() function(add_process_message_fuzz_targets) foreach(_fuzz_test_name ${ARGN}) sanitize_target_name("fuzz-process_message_" ${_fuzz_test_name} _fuzz_target_name) add_fuzz_target( ${_fuzz_target_name} process_message_${_fuzz_test_name} # Sources process_message.cpp ) target_compile_definitions(${_fuzz_target_name} PRIVATE MESSAGE_TYPE=${_fuzz_test_name}) endforeach() endfunction() add_regular_fuzz_targets( addition_overflow addrdb asmap + asmap_direct base_encode_decode block block_header blockfilter bloom_filter cashaddr chain checkqueue cuckoocache descriptor_parse eval_script fee_rate fees flatfile float golomb_rice hex http_request integer key key_io kitchen_sink locale merkleblock message multiplication_overflow net_permissions netaddress p2p_transport_deserializer parse_hd_keypath parse_iso8601 parse_numbers parse_script parse_univalue prevector pow primitives_transaction process_message process_messages protocol psbt random rolling_bloom_filter script script_flags script_ops scriptnum_ops signature_checker span spanparsing string strprintf system timedata transaction tx_in tx_out ) add_deserialize_fuzz_targets( addr_info_deserialize address_deserialize addrman_deserialize banentry_deserialize block_deserialize block_file_info_deserialize block_filter_deserialize block_header_and_short_txids_deserialize blockheader_deserialize blocklocator_deserialize blockmerkleroot blocktransactions_deserialize blocktransactionsrequest_deserialize blockundo_deserialize bloomfilter_deserialize coins_deserialize diskblockindex_deserialize fee_rate_deserialize flat_file_pos_deserialize inv_deserialize key_origin_info_deserialize merkle_block_deserialize messageheader_deserialize netaddr_deserialize out_point_deserialize partial_merkle_tree_deserialize partially_signed_transaction_deserialize prefilled_transaction_deserialize psbt_input_deserialize psbt_output_deserialize pub_key_deserialize script_deserialize service_deserialize snapshotmetadata_deserialize sub_net_deserialize tx_in_deserialize txoutcompressor_deserialize txundo_deserialize uint160_deserialize uint256_deserialize ) add_process_message_fuzz_targets( addr block blocktxn cmpctblock feefilter filteradd filterclear filterload getaddr getblocks getblocktxn getdata getheaders headers inv mempool notfound ping pong sendcmpct sendheaders tx verack version ) diff --git a/src/test/fuzz/asmap.cpp b/src/test/fuzz/asmap.cpp index a8e9f406f..e00daac76 100644 --- a/src/test/fuzz/asmap.cpp +++ b/src/test/fuzz/asmap.cpp @@ -1,31 +1,69 @@ // Copyright (c) 2020 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include -#include #include #include #include +//! asmap code that consumes nothing +static const std::vector IPV6_PREFIX_ASMAP = {}; + +//! asmap code that consumes the 96 prefix bits of ::ffff:0/96 (IPv4-in-IPv6 +//! map) +static const std::vector IPV4_PREFIX_ASMAP = { + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, false, false, false, false, false, false, false, false, // Match 0x00 + true, true, false, true, true, true, true, true, true, + true, true, true, true, true, true, true, true, true, // Match 0xFF + true, true, false, true, true, true, true, true, true, + true, true, true, true, true, true, true, true, true // Match 0xFF +}; + void test_one_input(const std::vector &buffer) { - FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size()); - const Network network = - fuzzed_data_provider.PickValueInArray({NET_IPV4, NET_IPV6}); - if (fuzzed_data_provider.remaining_bytes() < 16) { + // Encoding: [7 bits: asmap size] [1 bit: ipv6?] [3-130 bytes: asmap] [4 or + // 16 bytes: addr] + if (buffer.size() < 1 + 3 + 4) { return; } - CNetAddr net_addr; - net_addr.SetRaw(network, - fuzzed_data_provider.ConsumeBytes(16).data()); - std::vector asmap; - for (const char cur_byte : - fuzzed_data_provider.ConsumeRemainingBytes()) { - for (int bit = 0; bit < 8; ++bit) { - asmap.push_back((cur_byte >> bit) & 1); + int asmap_size = 3 + (buffer[0] & 127); + bool ipv6 = buffer[0] & 128; + int addr_size = ipv6 ? 16 : 4; + if (buffer.size() < size_t(1 + asmap_size + addr_size)) { + return; + } + std::vector asmap = ipv6 ? IPV6_PREFIX_ASMAP : IPV4_PREFIX_ASMAP; + asmap.reserve(asmap.size() + 8 * asmap_size); + for (int i = 0; i < asmap_size; ++i) { + for (int j = 0; j < 8; ++j) { + asmap.push_back((buffer[1 + i] >> j) & 1); } } + if (!SanityCheckASMap(asmap)) { + return; + } + CNetAddr net_addr; + net_addr.SetRaw(ipv6 ? NET_IPV6 : NET_IPV4, buffer.data() + 1 + asmap_size); (void)net_addr.GetMappedAS(asmap); } diff --git a/src/test/fuzz/asmap_direct.cpp b/src/test/fuzz/asmap_direct.cpp new file mode 100644 index 000000000..2dcfb6054 --- /dev/null +++ b/src/test/fuzz/asmap_direct.cpp @@ -0,0 +1,61 @@ +// Copyright (c) 2020 The Bitcoin Core developers +// Distributed under the MIT software license, see the accompanying +// file COPYING or http://www.opensource.org/licenses/mit-license.php. + +#include + +#include + +#include +#include +#include + +void test_one_input(const std::vector &buffer) { + // Encoding: [asmap using 1 bit / byte] 0xFF [addr using 1 bit / byte] + bool have_sep = false; + size_t sep_pos; + for (size_t pos = 0; pos < buffer.size(); ++pos) { + uint8_t x = buffer[pos]; + if ((x & 0xFE) == 0) { + continue; + } + if (x == 0xFF) { + if (have_sep) { + return; + } + have_sep = true; + sep_pos = pos; + } else { + return; + } + } + if (!have_sep) { + // Needs exactly 1 separator + return; + } + if (buffer.size() - sep_pos - 1 > 128) { + // At most 128 bits in IP address + return; + } + + // Checks on asmap + std::vector asmap(buffer.begin(), buffer.begin() + sep_pos); + if (SanityCheckASMap(asmap, buffer.size() - 1 - sep_pos)) { + // Verify that for valid asmaps, no prefix (except up to 7 zero padding + // bits) is valid. + std::vector asmap_prefix = asmap; + while (!asmap_prefix.empty() && + asmap_prefix.size() + 7 > asmap.size() && + asmap_prefix.back() == false) { + asmap_prefix.pop_back(); + } + while (!asmap_prefix.empty()) { + asmap_prefix.pop_back(); + assert( + !SanityCheckASMap(asmap_prefix, buffer.size() - 1 - sep_pos)); + } + // No address input should trigger assertions in interpreter + std::vector addr(buffer.begin() + sep_pos + 1, buffer.end()); + (void)Interpret(asmap, addr); + } +} diff --git a/src/util/asmap.cpp b/src/util/asmap.cpp index 0665ae4ea..3f513668a 100644 --- a/src/util/asmap.cpp +++ b/src/util/asmap.cpp @@ -1,118 +1,278 @@ // Copyright (c) 2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #include #include +#include #include namespace { +constexpr uint32_t INVALID = 0xFFFFFFFF; + uint32_t DecodeBits(std::vector::const_iterator &bitpos, const std::vector::const_iterator &endpos, uint8_t minval, const std::vector &bit_sizes) { uint32_t val = minval; bool bit; for (std::vector::const_iterator bit_sizes_it = bit_sizes.begin(); bit_sizes_it != bit_sizes.end(); ++bit_sizes_it) { if (bit_sizes_it + 1 != bit_sizes.end()) { if (bitpos == endpos) { break; } bit = *bitpos; bitpos++; } else { bit = 0; } if (bit) { val += (1 << *bit_sizes_it); } else { for (int b = 0; b < *bit_sizes_it; b++) { if (bitpos == endpos) { - break; + // Reached EOF in mantissa + return INVALID; } bit = *bitpos; bitpos++; val += bit << (*bit_sizes_it - 1 - b); } return val; } } - return -1; + // Reached EOF in exponent + return INVALID; } +enum class Instruction : uint32_t { + RETURN = 0, + JUMP = 1, + MATCH = 2, + DEFAULT = 3, +}; + const std::vector TYPE_BIT_SIZES{0, 0, 1}; -uint32_t DecodeType(std::vector::const_iterator &bitpos, - const std::vector::const_iterator &endpos) { - return DecodeBits(bitpos, endpos, 0, TYPE_BIT_SIZES); +Instruction DecodeType(std::vector::const_iterator &bitpos, + const std::vector::const_iterator &endpos) { + return Instruction(DecodeBits(bitpos, endpos, 0, TYPE_BIT_SIZES)); } const std::vector ASN_BIT_SIZES{15, 16, 17, 18, 19, 20, 21, 22, 23, 24}; uint32_t DecodeASN(std::vector::const_iterator &bitpos, const std::vector::const_iterator &endpos) { return DecodeBits(bitpos, endpos, 1, ASN_BIT_SIZES); } const std::vector MATCH_BIT_SIZES{1, 2, 3, 4, 5, 6, 7, 8}; uint32_t DecodeMatch(std::vector::const_iterator &bitpos, const std::vector::const_iterator &endpos) { return DecodeBits(bitpos, endpos, 2, MATCH_BIT_SIZES); } const std::vector JUMP_BIT_SIZES{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}; uint32_t DecodeJump(std::vector::const_iterator &bitpos, const std::vector::const_iterator &endpos) { return DecodeBits(bitpos, endpos, 17, JUMP_BIT_SIZES); } } // namespace uint32_t Interpret(const std::vector &asmap, const std::vector &ip) { std::vector::const_iterator pos = asmap.begin(); const std::vector::const_iterator endpos = asmap.end(); uint8_t bits = ip.size(); uint32_t default_asn = 0; - uint32_t opcode, jump, match, matchlen; + uint32_t jump, match, matchlen; + Instruction opcode; while (pos != endpos) { opcode = DecodeType(pos, endpos); - if (opcode == 0) { - return DecodeASN(pos, endpos); - } else if (opcode == 1) { + if (opcode == Instruction::RETURN) { + default_asn = DecodeASN(pos, endpos); + if (default_asn == INVALID) { + // ASN straddles EOF + break; + } + return default_asn; + } else if (opcode == Instruction::JUMP) { jump = DecodeJump(pos, endpos); + if (jump == INVALID) { + // Jump offset straddles EOF + break; + } if (bits == 0) { + // No input bits left break; } if (ip[ip.size() - bits]) { if (jump >= endpos - pos) { + // Jumping past EOF break; } pos += jump; } bits--; - } else if (opcode == 2) { + } else if (opcode == Instruction::MATCH) { match = DecodeMatch(pos, endpos); + if (match == INVALID) { + // Match bits straddle EOF + break; + } matchlen = CountBits(match) - 1; + if (bits < matchlen) { + // Not enough input bits + break; + } for (uint32_t bit = 0; bit < matchlen; bit++) { - if (bits == 0) { - break; - } if ((ip[ip.size() - bits]) != ((match >> (matchlen - 1 - bit)) & 1)) { return default_asn; } bits--; } - } else if (opcode == 3) { + } else if (opcode == Instruction::DEFAULT) { default_asn = DecodeASN(pos, endpos); + if (default_asn == INVALID) { + // ASN straddles EOF + break; + } } else { + // Instruction straddles EOF break; } } + + // Reached EOF without RETURN, or aborted (see any of the breaks above) - + // should have been caught by SanityCheckASMap below + assert(false); + // 0 is not a valid ASN return 0; } + +bool SanityCheckASMap(const std::vector &asmap, int bits) { + const std::vector::const_iterator begin = asmap.begin(), + endpos = asmap.end(); + std::vector::const_iterator pos = begin; + // All future positions we may jump to (bit offset in asmap -> bits to + // consume left) + std::vector> jumps; + jumps.reserve(bits); + Instruction prevopcode = Instruction::JUMP; + bool had_incomplete_match = false; + while (pos != endpos) { + uint32_t offset = pos - begin; + if (!jumps.empty() && offset >= jumps.back().first) { + // There was a jump into the middle of the previous instruction + return false; + } + Instruction opcode = DecodeType(pos, endpos); + if (opcode == Instruction::RETURN) { + if (prevopcode == Instruction::DEFAULT) { + // There should not be any RETURN immediately after a DEFAULT + // (could be combined into just RETURN) + return false; + } + uint32_t asn = DecodeASN(pos, endpos); + if (asn == INVALID) { + // ASN straddles EOF + return false; + } + if (jumps.empty()) { + // Nothing to execute anymore + if (endpos - pos > 7) { + // Excessive padding + return false; + } + while (pos != endpos) { + if (*pos) { + // Nonzero padding bit + return false; + } + ++pos; + } + // Sanely reached EOF + return true; + } else { + // Continue by pretending we jumped to the next instruction + offset = pos - begin; + if (offset != jumps.back().first) { + // Unreachable code + return false; + } + // Restore the number of bits we would have had left after this + // jump + bits = jumps.back().second; + jumps.pop_back(); + prevopcode = Instruction::JUMP; + } + } else if (opcode == Instruction::JUMP) { + uint32_t jump = DecodeJump(pos, endpos); + if (jump == INVALID) { + // Jump offset straddles EOF + return false; + } + if (jump > endpos - pos) { + // Jump out of range + return false; + } + if (bits == 0) { + // Consuming bits past the end of the input + return false; + } + --bits; + uint32_t jump_offset = pos - begin + jump; + if (!jumps.empty() && jump_offset >= jumps.back().first) { + // Intersecting jumps + return false; + } + jumps.emplace_back(jump_offset, bits); + prevopcode = Instruction::JUMP; + } else if (opcode == Instruction::MATCH) { + uint32_t match = DecodeMatch(pos, endpos); + if (match == INVALID) { + // Match bits straddle EOF + return false; + } + int matchlen = CountBits(match) - 1; + if (prevopcode != Instruction::MATCH) { + had_incomplete_match = false; + } + if (matchlen < 8 && had_incomplete_match) { + // Within a sequence of matches only at most one should be + // incomplete + return false; + } + had_incomplete_match = (matchlen < 8); + if (bits < matchlen) { + // Consuming bits past the end of the input + return false; + } + bits -= matchlen; + prevopcode = Instruction::MATCH; + } else if (opcode == Instruction::DEFAULT) { + if (prevopcode == Instruction::DEFAULT) { + // There should not be two successive DEFAULTs (they could be + // combined into one) + return false; + } + uint32_t asn = DecodeASN(pos, endpos); + if (asn == INVALID) { + // ASN straddles EOF + return false; + } + prevopcode = Instruction::DEFAULT; + } else { + // Instruction straddles EOF + return false; + } + } + // Reached EOF without RETURN instruction + return false; +} diff --git a/src/util/asmap.h b/src/util/asmap.h index a0e14013c..50e05c669 100644 --- a/src/util/asmap.h +++ b/src/util/asmap.h @@ -1,10 +1,15 @@ // Copyright (c) 2019 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_UTIL_ASMAP_H #define BITCOIN_UTIL_ASMAP_H +#include +#include + uint32_t Interpret(const std::vector &asmap, const std::vector &ip); +bool SanityCheckASMap(const std::vector &asmap, int bits); + #endif // BITCOIN_UTIL_ASMAP_H